1
|
Zhang W, Li P. The suppression of nuclear factor kappa B/microRNA 222 axis alleviates lipopolysaccharide-induced acute lung injury through increasing the alkylglyceronephosphate synthase expression. J Infect Chemother 2024:S1341-321X(24)00232-0. [PMID: 39209261 DOI: 10.1016/j.jiac.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/01/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Acute lung injury (ALI) is a serious and rapidly progressing pulmonary disorder with a high mortality rate. In this study, we aimed to investigate the relationship between miR-222 and NF-κB (p65) activation in ALI. METHODS ALI was induced in mice using lipopolysaccharide (LPS). Lung tissues and bronchoalveolar lavage fluid were collected for analysis. MH-S cell lines were used as an ALI model. Various techniques including histopathology, molecular analysis, and cell culture assays were employed. RESULTS Increased miR-222 levels were observed in the LPS-induced ALI mouse model. ALI mice exhibited severe lung pathology, inflammatory cell infiltration, edema, elevated W/D ratio, MPO activity, and increased TNFα, IL1, and IL6 levels, which were reversed by miR-222 antagomir, confirming miR-222's exacerbation of LPS-induced ALI. miR-222 directly targeted the 3'-UTR of alkylglyceronephosphate synthase (AGPS) mRNA, reducing its expression. AGPS is crucial for plasmalogen synthesis, which protects against oxidative stress. NF-κB (p-p65) levels were increased in ALI models, and LPS promoted the enrichment of the miR-222 promoter region, suggesting NF-κB (p65) involvement in miR-222 transcriptional regulation. The NF-κB/miR-222/AGPS axis played a significant role in ALI progression. CONCLUSIONS The present study indicates that NF-κB (p65) activates miR-222 transcription by enriching its promoter region, leading to increased miR-222 expression. Elevated miR-222 levels downregulate AGPS, thereby accelerating the progression of ALI. Targeting the NF-κB/miR-222/AGPS axis may hold promise as a therapeutic approach for ALI, although further research is needed to fully understand its significance.
Collapse
Affiliation(s)
- Wei Zhang
- Intensive care unit, Shandong Provincial Third Hospital, Shandong University, Jinan, 250031, China.
| | - Pibao Li
- Intensive care unit, Shandong Provincial Third Hospital, Shandong University, Jinan, 250031, China.
| |
Collapse
|
2
|
Zimmer VC, Lauer AA, Haupenthal V, Stahlmann CP, Mett J, Grösgen S, Hundsdörfer B, Rothhaar T, Endres K, Eckhardt M, Hartmann T, Grimm HS, Grimm MOW. A bidirectional link between sulfatide and Alzheimer's disease. Cell Chem Biol 2024; 31:265-283.e7. [PMID: 37972592 DOI: 10.1016/j.chembiol.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 09/05/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
Reduced sulfatide level is found in Alzheimer's disease (AD) patients. Here, we demonstrate that amyloid precursor protein (APP) processing regulates sulfatide synthesis and vice versa. Different cell culture models and transgenic mice models devoid of APP processing or in particular the APP intracellular domain (AICD) reveal that AICD decreases Gal3st1/CST expression and subsequently sulfatide synthesis. In return, sulfatide supplementation decreases Aβ generation by reducing β-secretase (BACE1) and γ-secretase processing of APP. Increased BACE1 lysosomal degradation leads to reduced BACE1 protein level in endosomes. Reduced γ-secretase activity is caused by a direct effect on γ-secretase activity and reduced amounts of γ-secretase components in lipid rafts. Similar changes were observed by analyzing cells and mice brain samples deficient of arylsulfatase A responsible for sulfatide degradation or knocked down in Gal3st1/CST. In line with these findings, addition of sulfatides to brain homogenates of AD patients resulted in reduced γ-secretase activity. Human brain APP level shows a significant negative correlation with GAL3ST1/CST expression underlining the in vivo relevance of sulfatide homeostasis in AD.
Collapse
Affiliation(s)
- Valerie Christin Zimmer
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany
| | - Anna Andrea Lauer
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany; Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| | - Viola Haupenthal
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany
| | - Christoph Peter Stahlmann
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany
| | - Janine Mett
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany; Biosciences Zoology/Physiology-Neurobiology, ZHMB (Center of Human and Molecular Biology), Faculty NT-Natural Science and Technology, Saarland University, 66123 Saarbrücken, Germany
| | - Sven Grösgen
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany
| | - Benjamin Hundsdörfer
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany
| | - Tatjana Rothhaar
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Matthias Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Tobias Hartmann
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany
| | - Heike Sabine Grimm
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany; Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| | - Marcus Otto Walter Grimm
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany; Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany.
| |
Collapse
|
3
|
Chaves-Filho AM, Braniff O, Angelova A, Deng Y, Tremblay MÈ. Chronic inflammation, neuroglial dysfunction, and plasmalogen deficiency as a new pathobiological hypothesis addressing the overlap between post-COVID-19 symptoms and myalgic encephalomyelitis/chronic fatigue syndrome. Brain Res Bull 2023; 201:110702. [PMID: 37423295 DOI: 10.1016/j.brainresbull.2023.110702] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/13/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
After five waves of coronavirus disease 2019 (COVID-19) outbreaks, it has been recognized that a significant portion of the affected individuals developed long-term debilitating symptoms marked by chronic fatigue, cognitive difficulties ("brain fog"), post-exertional malaise, and autonomic dysfunction. The onset, progression, and clinical presentation of this condition, generically named post-COVID-19 syndrome, overlap significantly with another enigmatic condition, referred to as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Several pathobiological mechanisms have been proposed for ME/CFS, including redox imbalance, systemic and central nervous system inflammation, and mitochondrial dysfunction. Chronic inflammation and glial pathological reactivity are common hallmarks of several neurodegenerative and neuropsychiatric disorders and have been consistently associated with reduced central and peripheral levels of plasmalogens, one of the major phospholipid components of cell membranes with several homeostatic functions. Of great interest, recent evidence revealed a significant reduction of plasmalogen contents, biosynthesis, and metabolism in ME/CFS and acute COVID-19, with a strong association to symptom severity and other relevant clinical outcomes. These bioactive lipids have increasingly attracted attention due to their reduced levels representing a common pathophysiological manifestation between several disorders associated with aging and chronic inflammation. However, alterations in plasmalogen levels or their lipidic metabolism have not yet been examined in individuals suffering from post-COVID-19 symptoms. Here, we proposed a pathobiological model for post-COVID-19 and ME/CFS based on their common inflammation and dysfunctional glial reactivity, and highlighted the emerging implications of plasmalogen deficiency in the underlying mechanisms. Along with the promising outcomes of plasmalogen replacement therapy (PRT) for various neurodegenerative/neuropsychiatric disorders, we sought to propose PRT as a simple, effective, and safe strategy for the potential relief of the debilitating symptoms associated with ME/CFS and post-COVID-19 syndrome.
Collapse
Affiliation(s)
| | - Olivia Braniff
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F-91400 Orsay, France
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Department of Molecular Medicine, Université Laval, Québec City, Québec, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, Québec, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Advanced Materials and Related Technology (CAMTEC) and Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
4
|
Jové M, Mota-Martorell N, Obis È, Sol J, Martín-Garí M, Ferrer I, Portero-Otin M, Pamplona R. Ether Lipid-Mediated Antioxidant Defense in Alzheimer's Disease. Antioxidants (Basel) 2023; 12:293. [PMID: 36829852 PMCID: PMC9952080 DOI: 10.3390/antiox12020293] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
One of the richest tissues in lipid content and diversity of the human body is the brain. The human brain is constitutively highly vulnerable to oxidative stress. This oxidative stress is a determinant in brain aging, as well as in the onset and progression of sporadic (late-onset) Alzheimer's disease (sAD). Glycerophospholipids are the main lipid category widely distributed in neural cell membranes, with a very significant presence for the ether lipid subclass. Ether lipids have played a key role in the evolution of the human brain compositional specificity and functionality. Ether lipids determine the neural membrane structural and functional properties, membrane trafficking, cell signaling and antioxidant defense mechanisms. Here, we explore the idea that ether lipids actively participate in the pathogenesis of sAD. Firstly, we evaluate the quantitative relevance of ether lipids in the human brain composition, as well as their role in the human brain evolution. Then, we analyze the implications of ether lipids in neural cell physiology, highlighting their inherent antioxidant properties. Finally, we discuss changes in ether lipid content associated with sAD and their physiopathological implications, and propose a mechanism that, as a vicious cycle, explains the potential significance of ether lipids in sAD.
Collapse
Affiliation(s)
- Mariona Jové
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Natàlia Mota-Martorell
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Èlia Obis
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Joaquim Sol
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
- Research Support Unit (USR), Catalan Institute of Health (ICS), Fundació Institut Universitari per a la Recerca en Atenció Primària de Salut Jordi Gol i Gurina (IDIAP JGol), E-25007 Lleida, Spain
| | - Meritxell Martín-Garí
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona (UB), E-08907 Barcelona, Spain
- Neuropathology Group, Institute of Biomedical Research of Bellvitge (IDIBELL), E-08907 Barcelona, Spain
- Network Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, E-08907 Barcelona, Spain
| | - Manuel Portero-Otin
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| |
Collapse
|
5
|
Wanders RJA, Baes M, Ribeiro D, Ferdinandusse S, Waterham HR. The physiological functions of human peroxisomes. Physiol Rev 2023; 103:957-1024. [PMID: 35951481 DOI: 10.1152/physrev.00051.2021] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peroxisomes are subcellular organelles that play a central role in human physiology by catalyzing a range of unique metabolic functions. The importance of peroxisomes for human health is exemplified by the existence of a group of usually severe diseases caused by an impairment in one or more peroxisomal functions. Among others these include the Zellweger spectrum disorders, X-linked adrenoleukodystrophy, and Refsum disease. To fulfill their role in metabolism, peroxisomes require continued interaction with other subcellular organelles including lipid droplets, lysosomes, the endoplasmic reticulum, and mitochondria. In recent years it has become clear that the metabolic alliance between peroxisomes and other organelles requires the active participation of tethering proteins to bring the organelles physically closer together, thereby achieving efficient transfer of metabolites. This review intends to describe the current state of knowledge about the metabolic role of peroxisomes in humans, with particular emphasis on the metabolic partnership between peroxisomes and other organelles and the consequences of genetic defects in these processes. We also describe the biogenesis of peroxisomes and the consequences of the multiple genetic defects therein. In addition, we discuss the functional role of peroxisomes in different organs and tissues and include relevant information derived from model systems, notably peroxisomal mouse models. Finally, we pay particular attention to a hitherto underrated role of peroxisomes in viral infections.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Bharthur Sanjay A, Patania A, Yan X, Svaldi D, Duran T, Shah N, Nemes S, Chen E, Apostolova LG. Characterization of gene expression patterns in mild cognitive impairment using a transcriptomics approach and neuroimaging endophenotypes. Alzheimers Dement 2022; 18:2493-2508. [PMID: 35142026 PMCID: PMC10078657 DOI: 10.1002/alz.12587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Identification of novel therapeutics and risk assessment in early stages of Alzheimer's disease (AD) is a crucial aspect of addressing this complex disease. We characterized gene-expression patterns at the mild cognitive impairment (MCI) stage to identify critical mRNA measures and gene clusters associated with AD pathogenesis. METHODS We used a transcriptomics approach, integrating magnetic resonance imaging (MRI) and peripheral blood-based gene expression data using persistent homology (PH) followed by kernel-based clustering. RESULTS We identified three clusters of genes significantly associated with diagnosis of amnestic MCI. The biological processes associated with each cluster were mitochondrial function, NF-kB signaling, and apoptosis. Cluster-level associations with cortical thickness displayed canonical AD-like patterns. Driver genes from clusters were also validated in an external dataset for prediction of amyloidosis and clinical diagnosis. DISCUSSION We found a disease-relevant transcriptomic signature sensitive to prodromal AD and identified a subset of potential therapeutic targets associated with AD pathogenesis.
Collapse
Affiliation(s)
| | - Alice Patania
- Indiana University Network Sciences InstituteIndiana UniversityBloomingtonIndianaUSA
| | - Xiaoran Yan
- Indiana University Network Sciences InstituteIndiana UniversityBloomingtonIndianaUSA
| | - Diana Svaldi
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Tugce Duran
- Department of Internal Medicine, Section of Gerontology & Geriatric MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Niraj Shah
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Sara Nemes
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Eric Chen
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Liana G. Apostolova
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
7
|
Udagawa J, Hino K. Plasmalogen in the brain: Effects on cognitive functions and behaviors attributable to its properties. Brain Res Bull 2022; 188:197-202. [PMID: 35970332 DOI: 10.1016/j.brainresbull.2022.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/31/2022] [Accepted: 08/09/2022] [Indexed: 12/29/2022]
Abstract
Ether phospholipid compositions are altered in the plasma or brain of patients with brain disorders, such as Alzheimer and Parkinson's disease, including those with psychiatric disorders like schizophrenia and bipolar disorders. Notably, plasmenyl ethanolamine has a unique chemical structure, i.e., a vinyl-ether bond at the sn-1 position, which mainly links with polyunsaturated fatty acids (PUFAs) at the sn-2 position. Those characteristic moieties give plasmalogen molecules unique biophysical and chemical properties that modulate membrane trafficking, lipid rafts, intramolecular PUFA moieties, and oxidative states. Previous reports suggested that a deficiency in plasmenyl ethanolamine leads to disturbances of the myelin structure, synaptic neurotransmission and intracellular signaling, apoptosis of neurons, and neuroinflammation, accompanied by cognitive disturbances and aberrant behaviors like hyperactivity in mice. Therefore, this review summarizes the relationship between the biological functions of plasmalogen. We also proposed biophysical properties that alter brain phospholipid compositions related to aberrant behaviors and cognitive dysfunction. Finally, a brief review of possible remedial plasmalogen replacement therapies for neurological, psychiatric, and developmental disorders attributable to disturbed plasmalogen compositions in the organs and cells was conducted.
Collapse
Affiliation(s)
- Jun Udagawa
- Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan.
| | - Kodai Hino
- Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
8
|
Dorninger F, Werner ER, Berger J, Watschinger K. Regulation of plasmalogen metabolism and traffic in mammals: The fog begins to lift. Front Cell Dev Biol 2022; 10:946393. [PMID: 36120579 PMCID: PMC9471318 DOI: 10.3389/fcell.2022.946393] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022] Open
Abstract
Due to their unique chemical structure, plasmalogens do not only exhibit distinct biophysical and biochemical features, but require specialized pathways of biosynthesis and metabolization. Recently, major advances have been made in our understanding of these processes, for example by the attribution of the gene encoding the enzyme, which catalyzes the final desaturation step in plasmalogen biosynthesis, or by the identification of cytochrome C as plasmalogenase, which allows for the degradation of plasmalogens. Also, models have been presented that plausibly explain the maintenance of adequate cellular levels of plasmalogens. However, despite the progress, many aspects around the questions of how plasmalogen metabolism is regulated and how plasmalogens are distributed among organs and tissues in more complex organisms like mammals, remain unresolved. Here, we summarize and interpret current evidence on the regulation of the enzymes involved in plasmalogen biosynthesis and degradation as well as the turnover of plasmalogens. Finally, we focus on plasmalogen traffic across the mammalian body - a topic of major importance, when considering plasmalogen replacement therapies in human disorders, where deficiencies in these lipids have been reported. These involve not only inborn errors in plasmalogen metabolism, but also more common diseases including Alzheimer's disease and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria,*Correspondence: Fabian Dorninger, ; Katrin Watschinger,
| | - Ernst R. Werner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Katrin Watschinger
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria,*Correspondence: Fabian Dorninger, ; Katrin Watschinger,
| |
Collapse
|
9
|
Theiss EL, Griebsch LV, Lauer AA, Janitschke D, Erhardt VKJ, Haas EC, Kuppler KN, Radermacher J, Walzer O, Portius D, Grimm HS, Hartmann T, Grimm MOW. Vitamin B12 Attenuates Changes in Phospholipid Levels Related to Oxidative Stress in SH-SY5Y Cells. Cells 2022; 11:cells11162574. [PMID: 36010649 PMCID: PMC9406929 DOI: 10.3390/cells11162574] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/18/2022] [Accepted: 08/15/2022] [Indexed: 01/04/2023] Open
Abstract
Oxidative stress is closely linked to Alzheimer’s disease (AD), and is detected peripherally as well as in AD-vulnerable brain regions. Oxidative stress results from an imbalance between the generation and degradation of reactive oxidative species (ROS), leading to the oxidation of proteins, nucleic acids, and lipids. Extensive lipid changes have been found in post mortem AD brain tissue; these changes include the levels of total phospholipids, sphingomyelin, and ceramide, as well as plasmalogens, which are highly susceptible to oxidation because of their vinyl ether bond at the sn-1 position of the glycerol-backbone. Several lines of evidence indicate that a deficiency in the neurotropic vitamin B12 is linked with AD. In the present study, treatment of the neuroblastoma cell line SH-SY5Y with vitamin B12 resulted in elevated levels of phosphatidylcholine, phosphatidylethanolamine, sphingomyelin, and plasmalogens. Vitamin B12 also protected plasmalogens from hydrogen peroxide (H2O2)-induced oxidative stress due to an elevated expression of the ROS-degrading enzymes superoxide-dismutase (SOD) and catalase (CAT). Furthermore, vitamin B12 elevates plasmalogen synthesis by increasing the expression of alkylglycerone phosphate synthase (AGPS) and choline phosphotransferase 1 (CHPT1) in SH-SY5Y cells exposed to H2O2-induced oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Oliver Walzer
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
| | - Dorothea Portius
- Nutrition Therapy and Counseling, Campus Gera, SRH University of Applied Health Science, 07548 Gera, Germany
| | | | - Tobias Hartmann
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
- Deutsches Institut für DemenzPrävention, Saarland University, 66424 Homburg, Germany
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
- Deutsches Institut für DemenzPrävention, Saarland University, 66424 Homburg, Germany
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
- Correspondence: or
| |
Collapse
|
10
|
Cho Y, Bae HG, Okun E, Arumugam TV, Jo DG. Physiology and pharmacology of amyloid precursor protein. Pharmacol Ther 2022; 235:108122. [PMID: 35114285 DOI: 10.1016/j.pharmthera.2022.108122] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023]
Abstract
Amyloid precursor protein (APP) is an evolutionarily conserved transmembrane protein and a well-characterized precursor protein of amyloid-beta (Aβ) peptides, which accumulate in the brains of individuals with Alzheimer's disease (AD)-related pathologies. Aβ has been extensively investigated since the amyloid hypothesis in AD was proposed. Besides Aβ, previous studies on APP and its proteolytic cleavage products have suggested their diverse pathological and physiological functions. However, their roles still have not been thoroughly understood. In this review, we extensively discuss the evolutionarily-conserved biology of APP, including its structure and processing pathway, as well as recent findings on the physiological roles of APP and its fragments in the central nervous system and peripheral nervous system. We have also elaborated upon the current status of APP-targeted therapeutic approaches for AD treatment by discussing inhibitors of several proteases participating in APP processing, including α-, β-, and γ-secretases. Finally, we have highlighted the future perspectives pertaining to further research and the potential clinical role of APP.
Collapse
Affiliation(s)
- Yoonsuk Cho
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Han-Gyu Bae
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eitan Okun
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; The Pauld Feder Laboratory on Alzheimer's Disease Research, Israel
| | - Thiruma V Arumugam
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea; School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia.
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea; Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, South Korea; Biomedical Institute for Convergence, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
11
|
Azad AK, Kobayashi H, Md Sheikh A, Osago H, Sakai H, Ahsanul Haque M, Yano S, Nagai A. Rapid identification of plasmalogen molecular species using targeted multiplexed selected reaction monitoring mass spectrometry. J Mass Spectrom Adv Clin Lab 2021; 22:26-33. [PMID: 34939052 DOI: 10.1016/j.jmsacl.2021.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/22/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022] Open
Abstract
Plasmalogens (Pls) levels are reported to be altered in several neurological and metabolic diseases. Identification of sn-1 fatty alcohols and sn-2 fatty acids of different Pls species is necessary to determine the roles and mechanisms of action of Pls in different diseases. Previously, full-scan tandem mass spectrometry (MS/MS) was used for this purpose but is not effective for low-abundance Pls species. Recently, multiplexed selected reaction monitoring MS (SRM/MS) was found to be more selective and sensitive than conventional full-scan MS/MS for the identification of low-abundance compounds. In the present study, we developed a liquid chromatography (LC)-targeted multiplexed SRM/MS system for the identification and quantification of different Pls choline (Pls-PC) and Pls ethanolamine (Pls-PE) species. We determined five precursor-product ion transitions to identify sn-1 and sn-2 fragments of each Pls species. Consequently, sn-1 and sn-2 fatty acyl chains of 22 Pls-PC and 55 Pls-PE species were identified in mouse brain samples. Among them, some species had C20:0 and C20:1 fatty alcohols at the sn-1 position. For quantification of Pls species in mouse brain samples, a single SRM transition was employed. Thus, our results suggest that the LC-targeted multiplexed SRM/MS system is very sensitive for the identification and quantification of low-abundance lipids such as Pls, and is thus expected to make a significant contribution to basic and clinical research in this field in the future.
Collapse
Key Words
- CS, commercial standard
- IS, internal standard
- Identification
- LC, liquid chromatography
- LC-MS/MS
- MS/MS, tandem mass spectrometry
- MTBE, methyl tert-butyl ether
- PLs, glycerophospholipids
- PUFAs, polyunsaturated fatty acids
- Phospholipids
- Plasmalogens
- Pls, plasmalogens
- Pls-PC, plasmalogens choline
- Pls-PE, plasmalogens ethanolamine
- Quantification
- RT, retention time
- SRM, selected reaction monitoring
- Targeted multiplexed SRM/MS‘
Collapse
Affiliation(s)
- Abul Kalam Azad
- Department of Neurology, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo 693-8501, Japan.,Department of Microbiology, Jagannath University, Dhaka 1100, Bangladesh
| | - Hironori Kobayashi
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo 693-8501, Japan.,Department of Laboratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo 693-8501, Japan
| | - Abdullah Md Sheikh
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo 693-8501, Japan
| | - Harumi Osago
- Department of Biochemistry, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo 693-8501, Japan
| | - Hiromichi Sakai
- Department of Biosignaling and Radioisotope Experiment, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo 693-8501, Japan
| | - Md Ahsanul Haque
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo 693-8501, Japan.,Department of Pharmacy, University of Asia Pacific, Dhaka 1205, Bangladesh
| | - Shozo Yano
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo 693-8501, Japan
| | - Atsushi Nagai
- Department of Neurology, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo 693-8501, Japan
| |
Collapse
|
12
|
Sakr F, Dyrba M, Bräuer AU, Teipel S. Association of Lipidomics Signatures in Blood with Clinical Progression in Preclinical and Prodromal Alzheimer's Disease. J Alzheimers Dis 2021; 85:1115-1127. [PMID: 34897082 DOI: 10.3233/jad-201504] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Lipidomics may provide insight into biochemical processes driving Alzheimer's disease (AD) pathogenesis and ensuing clinical trajectories. OBJECTIVE To identify a peripheral lipidomics signature associated with AD pathology and investigate its potential to predict clinical progression. METHODS We used Bayesian elastic net regression to select plasma lipid classes associated with the CSF pTau/Aβ42 ratio as a biomarker of AD pathology in preclinical and prodromal AD cases from the ADNI cohort. Consensus clustering of the selected lipid classes was used to identify lipidomic endophenotypes and study their association with clinical progression. RESULTS In the APOE4-adjusted model, ether-glycerophospholipids, lyso-glycerophospholipids, free-fatty acids, cholesterol esters, and complex sphingolipids were found to be associated with the CSF pTau/Aβ 42 ratio. We found an optimal number of five lipidomic endophenotypes in the prodromal and preclinical cases, respectively. In the prodromal cases, these clusters differed with respect to the risk of clinical progression as measured by clinical dementia rating score conversion. CONCLUSION Lipid alterations can be captured at the earliest phases of AD. A lipidomic signature in blood may provide a dynamic overview of an individual's metabolic status and may support identifying different risks of clinical progression.
Collapse
Affiliation(s)
- Fatemah Sakr
- Department of Psychosomatic Medicine, University Medicine Rostock, Rostock, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Rostock, Germany.,Anatomy Research Group, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Martin Dyrba
- German Centre for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Anja U Bräuer
- Anatomy Research Group, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Research Centre for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Stefan Teipel
- Department of Psychosomatic Medicine, University Medicine Rostock, Rostock, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | | |
Collapse
|
13
|
Azad AK, Sheikh AM, Haque MA, Osago H, Sakai H, Shibly AZ, Yano S, Michikawa M, Hossain S, Tabassum S, A G, Zhou X, Zhang Y, Nagai A. Time-Dependent Analysis of Plasmalogens in the Hippocampus of an Alzheimer's Disease Mouse Model: A Role of Ethanolamine Plasmalogen. Brain Sci 2021; 11:1603. [PMID: 34942905 PMCID: PMC8699479 DOI: 10.3390/brainsci11121603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022] Open
Abstract
Plasmalogens are alkenyl-acyl glycerophospholipids and decreased in post-mortem Alzheimer's disease (AD) brains. The aim of this study is to investigate the time-dependent changes of plasmalogens in the hippocampus of an AD model mouse (J20). Plasmalogen levels at 3, 6, 9, 12 and 15 months were analyzed by liquid-chromatography-targeted-multiplexed-selected-reaction-monitoring-tandem-mass-spectrometry (LC-SRM/MS). Reactive oxygen species (ROS) levels were evaluated using dichlorofluorescein diacetate (DCF-DA). Plasmalogen synthesizing enzyme glycerone-phosphate O-acyltransferase (GNPAT) and late endosome marker Rab7 levels were quantified by Western blotting. GNPAT localization, changes of neuronal and glial cell numbers were evaluated by immunostaining. Compared to wild-type mice (WT), total plasmalogen-ethanolamine, but not plasmalogen-choline levels, were increased at 9 months and subsequently decreased at 15 months in J20 mice. A principal component analysis of plasmalogen-ethanolamine species could separate WT and J20 mice both at 9 and 15 months. Both GNPAT and Rab7 protein were increased in J20 mice at 9 months, whereas GNPAT was decreased at 15 months. ROS levels were increased in J20 mice except for 9 months. Our results suggest that increased plasmalogen-ethanolamine could counteract ROS levels and contribute to the phagocytosis process in J20 mice at 9 months. Such results might indicate a transient protective response of plasmalogen-ethanolamine in AD conditions.
Collapse
Affiliation(s)
- Abul Kalam Azad
- Department of Neurology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
- Department of Microbiology, Jagannath University, Dhaka 1100, Bangladesh
| | - Abdullah Md Sheikh
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| | - Md Ahsanul Haque
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
- Department of Pharmacy, University of Asia Pacific, Dhaka 1205, Bangladesh
| | - Harumi Osago
- Department of Biochemistry, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| | - Hiromichi Sakai
- Department of Biosignaling and Radioisotope Experiment, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| | - Abu Zaffar Shibly
- Department of Neurology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Shozo Yano
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| | - Makoto Michikawa
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Shahdat Hossain
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Shatera Tabassum
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| | - Garu A
- Department of Neurology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| | - Xiaojing Zhou
- Department of Neurology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| | - Yuchi Zhang
- Department of Neurology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| | - Atsushi Nagai
- Department of Neurology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| |
Collapse
|
14
|
Galkina OV, Vetrovoy OV, Eschenko ND. The Role of Lipids in Implementing Specific Functions in the Central Nervous System. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021050253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Kurokin I, Lauer AA, Janitschke D, Winkler J, Theiss EL, Griebsch LV, Pilz SM, Matschke V, van der Laan M, Grimm HS, Hartmann T, Grimm MOW. Targeted Lipidomics of Mitochondria in a Cellular Alzheimer's Disease Model. Biomedicines 2021; 9:1062. [PMID: 34440266 PMCID: PMC8393816 DOI: 10.3390/biomedicines9081062] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) is neuropathologically characterized by the accumulation of Amyloid-β (Aβ) in senile plaques derived from amyloidogenic processing of a precursor protein (APP). Recently, changes in mitochondrial function have become in the focus of the disease. Whereas a link between AD and lipid-homeostasis exists, little is known about potential alterations in the lipid composition of mitochondria. Here, we investigate potential changes in the main mitochondrial phospholipid classes phosphatidylcholine, phosphatidylethanolamine and the corresponding plasmalogens and lyso-phospholipids of a cellular AD-model (SH-SY5Y APPswedish transfected cells), comparing these results with changes in cell-homogenates. Targeted shotgun-lipidomics revealed lipid alterations to be specific for mitochondria and cannot be predicted from total cell analysis. In particular, lipids containing three and four times unsaturated fatty acids (FA X:4), such as arachidonic-acid, are increased, whereas FA X:6 or X:5, such as eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA), are decreased. Additionally, PE plasmalogens are increased in contrast to homogenates. Results were confirmed in another cellular AD model, having a lower affinity to amyloidogenic APP processing. Besides several similarities, differences in particular in PE species exist, demonstrating that differences in APP processing might lead to specific changes in lipid homeostasis in mitochondria. Importantly, the observed lipid alterations are accompanied by changes in the carnitine carrier system, also suggesting an altered mitochondrial functionality.
Collapse
Affiliation(s)
- Irina Kurokin
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (I.K.); (A.A.L.); (D.J.); (J.W.); (E.L.T.); (L.V.G.); (S.M.P.); (H.S.G.)
| | - Anna Andrea Lauer
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (I.K.); (A.A.L.); (D.J.); (J.W.); (E.L.T.); (L.V.G.); (S.M.P.); (H.S.G.)
| | - Daniel Janitschke
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (I.K.); (A.A.L.); (D.J.); (J.W.); (E.L.T.); (L.V.G.); (S.M.P.); (H.S.G.)
| | - Jakob Winkler
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (I.K.); (A.A.L.); (D.J.); (J.W.); (E.L.T.); (L.V.G.); (S.M.P.); (H.S.G.)
| | - Elena Leoni Theiss
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (I.K.); (A.A.L.); (D.J.); (J.W.); (E.L.T.); (L.V.G.); (S.M.P.); (H.S.G.)
| | - Lea Victoria Griebsch
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (I.K.); (A.A.L.); (D.J.); (J.W.); (E.L.T.); (L.V.G.); (S.M.P.); (H.S.G.)
| | - Sabrina Melanie Pilz
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (I.K.); (A.A.L.); (D.J.); (J.W.); (E.L.T.); (L.V.G.); (S.M.P.); (H.S.G.)
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Medical Faculty, Ruhr University Bochum, D-44801 Bochum, Germany;
| | - Martin van der Laan
- Medical Biochemistry & Molecular Biology, Center for Molecular Signaling PZMS, Saarland University Medical School, 66421 Homburg, Germany;
| | - Heike Sabine Grimm
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (I.K.); (A.A.L.); (D.J.); (J.W.); (E.L.T.); (L.V.G.); (S.M.P.); (H.S.G.)
| | - Tobias Hartmann
- Deutsches Institut für Demenzprävention, Saarland University, 66421 Homburg, Germany;
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (I.K.); (A.A.L.); (D.J.); (J.W.); (E.L.T.); (L.V.G.); (S.M.P.); (H.S.G.)
- Deutsches Institut für Demenzprävention, Saarland University, 66421 Homburg, Germany;
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| |
Collapse
|
16
|
Shotgun lipidomics of liver and brain tissue of Alzheimer's disease model mice treated with acitretin. Sci Rep 2021; 11:15301. [PMID: 34315969 PMCID: PMC8316403 DOI: 10.1038/s41598-021-94706-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/08/2021] [Indexed: 01/04/2023] Open
Abstract
Alzheimer’s disease (AD) is a very frequent neurodegenerative disorder characterized by an accumulation of amyloid-β (Aβ). Acitretin, a retinoid-derivative and approved treatment for Psoriasis vulgaris,
increases non-amyloidogenic Amyloid-Precursor-Protein-(APP)-processing, prevents Aβ-production and elicits cognitive improvement in AD mouse models. As an unintended side effect, acitretin could result in hyperlipidemia. Here, we analyzed the impact of acitretin on the lipidome in brain and liver tissue in the 5xFAD mouse-model. In line with literature, triglycerides were increased in liver accompanied by increased PCaa, plasmalogens and acyl-carnitines, whereas SM-species were decreased. In brain, these effects were partially enhanced or similar but also inverted. While for SM and plasmalogens similar effects were found, PCaa, TAG and acyl-carnitines showed an inverse effect in both tissues. Our findings emphasize, that potential pharmaceuticals to treat AD should be carefully monitored with respect to lipid-homeostasis because APP-processing itself modulates lipid-metabolism and medication might result in further and unexpected changes. Moreover, deducing effects of brain lipid-homeostasis from results obtained for other tissues should be considered cautiously. With respect to acitretin, the increase in brain plasmalogens might display a further positive probability in AD-treatment, while other results, such as decreased SM, indicate the need of medical surveillance for treated patients.
Collapse
|
17
|
Liu TT, Pang SJ, Jia SS, Man QQ, Li YQ, Song S, Zhang J. Association of Plasma Phospholipids with Age-Related Cognitive Impairment: Results from a Cross-Sectional Study. Nutrients 2021; 13:2185. [PMID: 34201969 PMCID: PMC8308406 DOI: 10.3390/nu13072185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 01/14/2023] Open
Abstract
Decreased concentration of phospholipids were observed in brain tissue from individuals with dementia compared with controls, indicating phospholipids might be a key variable in development of age-related cognitive impairment. The reflection of these phospholipid changes in blood might provide both reference for diagnosis/monitoring and potential targets for intervention through peripheral circulation. Using a full-scale targeted phospholipidomic approach, 229 molecular species of plasma phospholipid were identified and quantified among 626 senile residents; the association of plasma phospholipids with MoCA score was also comprehensively discussed. Significant association was confirmed between phospholipid matrix and MoCA score by a distance-based linear model. Additionally, the network analysis further observed that two modules containing PEs were positively associated with MoCA score, and one module containing LPLs had a trend of negative correlation with MoCA score. Furthermore, 23 phospholipid molecular species were found to be significantly associated with MoCA score independent of fasting glucose, lipidemia, lipoproteins, inflammatory variables and homocysteine. Thus, the decreased levels of pPEs containing LC-PUFA and the augmented levels of LPLs were the most prominent plasma phospholipid changes correlated with the cognitive decline, while alterations in plasma PC, PS and SM levels accompanying cognitive decline might be due to variation of lipidemia and inflammatory levels.
Collapse
Affiliation(s)
- Ting-Ting Liu
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing 100050, China; (T.-T.L.); (S.-S.J.); (Q.-Q.M.); (Y.-Q.L.); (J.Z.)
| | - Shao-Jie Pang
- Institute of Grain Quality and Nutrition Research, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China;
| | - Shan-Shan Jia
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing 100050, China; (T.-T.L.); (S.-S.J.); (Q.-Q.M.); (Y.-Q.L.); (J.Z.)
| | - Qing-Qing Man
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing 100050, China; (T.-T.L.); (S.-S.J.); (Q.-Q.M.); (Y.-Q.L.); (J.Z.)
| | - Yu-Qian Li
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing 100050, China; (T.-T.L.); (S.-S.J.); (Q.-Q.M.); (Y.-Q.L.); (J.Z.)
| | - Shuang Song
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing 100050, China; (T.-T.L.); (S.-S.J.); (Q.-Q.M.); (Y.-Q.L.); (J.Z.)
| | - Jian Zhang
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing 100050, China; (T.-T.L.); (S.-S.J.); (Q.-Q.M.); (Y.-Q.L.); (J.Z.)
| |
Collapse
|
18
|
Saunders AM, Burns DK, Gottschalk WK. Reassessment of Pioglitazone for Alzheimer's Disease. Front Neurosci 2021; 15:666958. [PMID: 34220427 PMCID: PMC8243371 DOI: 10.3389/fnins.2021.666958] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/18/2021] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease is a quintessential 'unmet medical need', accounting for ∼65% of progressive cognitive impairment among the elderly, and 700,000 deaths in the United States in 2020. In 2019, the cost of caring for Alzheimer's sufferers was $244B, not including the emotional and physical toll on caregivers. In spite of this dismal reality, no treatments are available that reduce the risk of developing AD or that offer prolonged mitiagation of its most devestating symptoms. This review summarizes key aspects of the biology and genetics of Alzheimer's disease, and we describe how pioglitazone improves many of the patholophysiological determinants of AD. We also summarize the results of pre-clinical experiments, longitudinal observational studies, and clinical trials. The results of animal testing suggest that pioglitazone can be corrective as well as protective, and that its efficacy is enhanced in a time- and dose-dependent manner, but the dose-effect relations are not monotonic or sigmoid. Longitudinal cohort studies suggests that it delays the onset of dementia in individuals with pre-existing type 2 diabetes mellitus, which small scale, unblinded pilot studies seem to confirm. However, the results of placebo-controlled, blinded clinical trials have not borne this out, and we discuss possible explanations for these discrepancies.
Collapse
Affiliation(s)
- Ann M. Saunders
- Zinfandel Pharmaceuticals, Inc., Chapel Hill, NC, United States
| | - Daniel K. Burns
- Zinfandel Pharmaceuticals, Inc., Chapel Hill, NC, United States
| | | |
Collapse
|
19
|
Baumel BS, Doraiswamy PM, Sabbagh M, Wurtman R. Potential Neuroregenerative and Neuroprotective Effects of Uridine/Choline-Enriched Multinutrient Dietary Intervention for Mild Cognitive Impairment: A Narrative Review. Neurol Ther 2021; 10:43-60. [PMID: 33368017 PMCID: PMC8139993 DOI: 10.1007/s40120-020-00227-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/02/2020] [Indexed: 01/21/2023] Open
Abstract
In mild cognitive impairment (MCI) due to Alzheimer disease (AD), also known as prodromal AD, there is evidence for a pathologic shortage of uridine, choline, and docosahexaenoic acid [DHA]), which are key nutrients needed by the brain. Preclinical and clinical evidence shows the importance of nutrient bioavailability to support the development and maintenance of brain structure and function in MCI and AD. Availability of key nutrients is limited in MCI, creating a distinct nutritional need for uridine, choline, and DHA. Evidence suggests that metabolic derangements associated with ageing and disease-related pathology can affect the body's ability to generate and utilize nutrients. This is reflected in lower levels of nutrients measured in the plasma and brains of individuals with MCI and AD dementia, and progressive loss of cognitive performance. The uridine shortage cannot be corrected by normal diet, making uridine a conditionally essential nutrient in affected individuals. It is also challenging to correct the choline shortfall through diet alone, because brain uptake from the plasma significantly decreases with ageing. There is no strong evidence to support the use of single-agent supplements in the management of MCI due to AD. As uridine and choline work synergistically with DHA to increase phosphatidylcholine formation, there is a compelling rationale to combine these nutrients. A multinutrient enriched with uridine, choline, and DHA developed to support brain function has been evaluated in randomized controlled trials covering a spectrum of dementia from MCI to moderate AD. A randomized controlled trial in subjects with prodromal AD showed that multinutrient intervention slowed brain atrophy and improved some measures of cognition. Based on the available clinical evidence, nutritional intervention should be considered as a part of the approach to the management of individuals with MCI due to AD, including adherence to a healthy, balanced diet, and consideration of evidence-based multinutrient supplements.
Collapse
Affiliation(s)
- Barry S Baumel
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - P Murali Doraiswamy
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Marwan Sabbagh
- Lou Ruvo Center for Brain Health, Cleveland Clinic, Las Vegas, NV, USA
| | - Richard Wurtman
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
20
|
Ramírez-Nuñez O, Jové M, Torres P, Sol J, Fontdevila L, Romero-Guevara R, Andrés-Benito P, Ayala V, Rossi C, Boada J, Povedano M, Ferrer I, Pamplona R, Portero-Otin M. Nuclear lipidome is altered in amyotrophic lateral sclerosis: A pilot study. J Neurochem 2021; 158:482-499. [PMID: 33905537 DOI: 10.1111/jnc.15373] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 03/28/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022]
Abstract
Nucleocytosolic transport, a membrane process, is impaired in motor neurons in amyotrophic lateral sclerosis (ALS). This study analyzes the nuclear lipidome in motor neurons in ALS and examines molecular pathways linked to the major lipid alterations. Nuclei were obtained from the frozen anterior horn of the lumbar spinal cord of ALS patients and age-matched controls. Lipidomic profiles of this subcellular fraction were obtained using liquid chromatography and mass spectrometry. We validated the mechanisms behind presumable lipidomic changes by exploring ALS surrogate models including human motor neurons (derived from ALS lines and controls) subjected to oxidative stress, the hSOD-G93A transgenic mice, and samples from an independent cohort of ALS patients. Among the differential lipid species, we noted 41 potential identities, mostly belonging to phospholipids (particularly ether phospholipids, as plasmalogens), as well as diacylglycerols and triacylglycerides. Decreased expression of alkyldihydroxyacetonephosphate synthase (AGPS)-a critical peroxisomal enzyme in plasmalogen synthesis-is found in motor neuron disease models; this occurs in parallel with an increase in the expression of sterol carrier protein 2 (SCP2) mRNA in ALS and Scp2 levels in G93A transgenic mice. Further, we identified diminished expression of diacylglycerol-related enzymes, such as phospholipase C βI (PLCβI) and protein kinase CβII (PKCβII), linked to diacylglycerol metabolism. Finally, lipid droplets were recognized in the nuclei, supporting the identification of triacylglycerides as differential lipids. Our results point to the potentially pathogenic role of altered composition of nuclear membrane lipids and lipids in the nucleoplasm in the anterior horn of the spinal cord in ALS. Overall, these data support the usefulness of subcellular lipidomics applied to neurodegenerative diseases.
Collapse
Affiliation(s)
- Omar Ramírez-Nuñez
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain
| | - Pascual Torres
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain
| | - Joaquim Sol
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain.,Institut Català de la Salut, Lleida, Spain.,Research Support Unit Lleida, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Lleida, Spain
| | - Laia Fontdevila
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain
| | | | - Pol Andrés-Benito
- Departament of Pathology and Experimental Therapeutics, Hospital Universitari de Bellvitge, IDIBELL, Universitat de Barcelona, Hospitalet de Llobregat, Spain.,CIBERNED (Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas), Instituto Carlos III, Barcelona, Spain
| | - Victòria Ayala
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain
| | - Chiara Rossi
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain
| | - Jordi Boada
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain
| | - Mònica Povedano
- Neurology Service, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Isidro Ferrer
- Departament of Pathology and Experimental Therapeutics, Hospital Universitari de Bellvitge, IDIBELL, Universitat de Barcelona, Hospitalet de Llobregat, Spain.,CIBERNED (Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas), Instituto Carlos III, Barcelona, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain
| | - Manuel Portero-Otin
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain
| |
Collapse
|
21
|
Lim WLF, Huynh K, Chatterjee P, Martins I, Jayawardana KS, Giles C, Mellett NA, Laws SM, Bush AI, Rowe CC, Villemagne VL, Ames D, Drew BG, Masters CL, Meikle PJ, Martins RN. Relationships Between Plasma Lipids Species, Gender, Risk Factors, and Alzheimer's Disease. J Alzheimers Dis 2021; 76:303-315. [PMID: 32474467 PMCID: PMC7369125 DOI: 10.3233/jad-191304] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background: Lipid metabolism is altered in Alzheimer’s disease (AD); however, the relationship between AD risk factors (age, APOEɛ4, and gender) and lipid metabolism is not well defined. Objective: We investigated whether altered lipid metabolism associated with increased age, gender, and APOE status may contribute to the development of AD by examining these risk factors in healthy controls and also clinically diagnosed AD individuals. Methods: We performed plasma lipidomic profiling (582 lipid species) of the Australian Imaging, Biomarkers and Lifestyle flagship study of aging cohort (AIBL) using liquid chromatography-mass spectrometry. Linear regression and interaction analysis were used to explore the relationship between risk factors and plasma lipid species. Results: We observed strong associations between plasma lipid species with gender and increasing age in cognitively normal individuals. However, APOEɛ4 was relatively weakly associated with plasma lipid species. Interaction analysis identified differential associations of sphingolipids and polyunsaturated fatty acid esterified lipid species with AD based on age and gender, respectively. These data indicate that the risk associated with age, gender, and APOEɛ4 may, in part, be mediated by changes in lipid metabolism. Conclusion: This study extends our existing knowledge of the relationship between the lipidome and AD and highlights the complexity of the relationships between lipid metabolism and AD at different ages and between men and women. This has important implications for how we assess AD risk and also for potential therapeutic strategies involving modulation of lipid metabolic pathways.
Collapse
Affiliation(s)
- Wei Ling Florence Lim
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, WA, Australia.,Cooperative Research Centre (CRC) for Mental Health, Australia
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, Victoria, VIC, Australia.,Monash University, Melbourne, Victoria, VIC, Australia
| | - Pratishtha Chatterjee
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, WA, Australia.,Department of Biomedical Sciences, Macquarie University, North Ryde, New South Wales, NSW, Australia.,KaRa Institute of Neurological Disease, Sydney, Macquarie Park, New South Wales, NSW, Australia
| | - Ian Martins
- Cooperative Research Centre (CRC) for Mental Health, Australia
| | | | - Corey Giles
- Baker Heart and Diabetes Institute, Melbourne, Victoria, VIC, Australia
| | - Natalie A Mellett
- Baker Heart and Diabetes Institute, Melbourne, Victoria, VIC, Australia
| | - Simon M Laws
- Cooperative Research Centre (CRC) for Mental Health, Australia.,Collaborative Genomics Group, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, WA, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Western Australia, WA, Australia
| | - Ashley I Bush
- The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, VIC, Australia
| | - Christopher C Rowe
- The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, VIC, Australia.,Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Victoria, VIC, Australia
| | - Victor L Villemagne
- The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, VIC, Australia.,Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Victoria, VIC, Australia.,Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, VIC, Australia
| | - David Ames
- National Ageing Research Institute, Parkville, Victoria, VIC, Australia
| | - Brian G Drew
- Baker Heart and Diabetes Institute, Melbourne, Victoria, VIC, Australia.,Monash University, Melbourne, Victoria, VIC, Australia
| | - Colin L Masters
- The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, VIC, Australia
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Victoria, VIC, Australia.,Monash University, Melbourne, Victoria, VIC, Australia
| | - Ralph N Martins
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, WA, Australia.,Cooperative Research Centre (CRC) for Mental Health, Australia.,Department of Biomedical Sciences, Macquarie University, North Ryde, New South Wales, NSW, Australia.,KaRa Institute of Neurological Disease, Sydney, Macquarie Park, New South Wales, NSW, Australia.,School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Perth, WA, Australia.,Australian Alzheimer's Research Foundation, Nedlands, Western Australia, WA, Australia
| | | |
Collapse
|
22
|
Su H, Rustam YH, Masters CL, Makalic E, McLean CA, Hill AF, Barnham KJ, Reid GE, Vella LJ. Characterization of brain-derived extracellular vesicle lipids in Alzheimer's disease. J Extracell Vesicles 2021; 10:e12089. [PMID: 34012516 PMCID: PMC8111496 DOI: 10.1002/jev2.12089] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022] Open
Abstract
Lipid dyshomeostasis is associated with the most common form of dementia, Alzheimer's disease (AD). Substantial progress has been made in identifying positron emission tomography and cerebrospinal fluid biomarkers for AD, but they have limited use as front-line diagnostic tools. Extracellular vesicles (EVs) are released by all cells and contain a subset of their parental cell composition, including lipids. EVs are released from the brain into the periphery, providing a potential source of tissue and disease specific lipid biomarkers. However, the EV lipidome of the central nervous system is currently unknown and the potential of brain-derived EVs (BDEVs) to inform on lipid dyshomeostasis in AD remains unclear. The aim of this study was to reveal the lipid composition of BDEVs in human frontal cortex, and to determine whether BDEVs have an altered lipid profile in AD. Using semi-quantitative mass spectrometry, we describe the BDEV lipidome, covering four lipid categories, 17 lipid classes and 692 lipid molecules. BDEVs were enriched in glycerophosphoserine (PS) lipids, a characteristic of small EVs. Here we further report that BDEVs are enriched in ether-containing PS lipids, a finding that further establishes ether lipids as a feature of EVs. BDEVs in the AD frontal cortex offered improved detection of dysregulated lipids in AD over global lipid profiling of this brain region. AD BDEVs had significantly altered glycerophospholipid and sphingolipid levels, specifically increased plasmalogen glycerophosphoethanolamine and decreased polyunsaturated fatty acyl containing lipids, and altered amide-linked acyl chain content in sphingomyelin and ceramide lipids relative to CTL. The most prominent alteration was a two-fold decrease in lipid species containing anti-inflammatory/pro-resolving docosahexaenoic acid. The in-depth lipidome analysis provided in this study highlights the advantage of EVs over more complex tissues for improved detection of dysregulated lipids that may serve as potential biomarkers in the periphery.
Collapse
Affiliation(s)
- Huaqi Su
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Yepy H. Rustam
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Colin L. Masters
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Enes Makalic
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Catriona A. McLean
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Andrew F. Hill
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular Science, La Trobe UniversityBundooraVictoriaAustralia
| | - Kevin J. Barnham
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Gavin E. Reid
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVictoriaAustralia
- School of Chemistry, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Laura J. Vella
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
- Department of Surgery, The Royal Melbourne HospitalThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
23
|
Gwanyanya A, Godsmark CN, Kelly-Laubscher R. Ethanolamine: A Potential Promoiety with Additional Effects in the Brain. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 21:108-117. [PMID: 33319663 DOI: 10.2174/1871527319999201211204645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/14/2020] [Accepted: 09/11/2020] [Indexed: 11/22/2022]
Abstract
Ethanolamine is a bioactive molecule found in several cells, including those in the central nervous system (CNS). In the brain, ethanolamine and ethanolamine-related molecules have emerged as prodrug moieties that can promote drug movement across the blood-brain barrier. This improvement in the ability to target drugs to the brain may also mean that in the process ethanolamine concentrations in the brain are increased enough for ethanolamine to exert its own neurological ac-tions. Ethanolamine and its associated products have various positive functions ranging from cell signaling to molecular storage, and alterations in their levels have been linked to neurodegenerative conditions such as Alzheimer's disease. This mini-review focuses on the effects of ethanolamine in the CNS and highlights the possible implications of these effects for drug design.
Collapse
Affiliation(s)
- Asfree Gwanyanya
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town,. South Africa
| | - Christie Nicole Godsmark
- School of Public Health, College of Medicine and Health, University College Cork, Cork,. Ireland
| | - Roisin Kelly-Laubscher
- Department of Pharmacology and Therapeutics, School of Medicine, College of Medicine and Health, University College Cork, Cork,. Ireland
| |
Collapse
|
24
|
Serum lipidomics study reveals protective effects of Rhodiola crenulata extract on Alzheimer's disease rats. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1158:122346. [PMID: 32882532 DOI: 10.1016/j.jchromb.2020.122346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/17/2020] [Accepted: 08/23/2020] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a chronic and progressive neurodegenerative disorder. Rhodiola crenulata extract (RCE) has shown its protective effects on AD, however, the underlying mechanism is still unclear. In this work, serum lipidomics was conducted to reveal the action mechanism of RCE on AD by HPLC coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The animal model of AD was reproduced by intrahippocampal injection of Aβ1-42 in rats. The novel object recognition test and passive avoidance test were performed to evaluate the protective effects of RCE on AD rats. The differences of lipid metabolism profiles in rats were evaluated by multivariate statistical analysis. Then, the potential lipid biomarkers were identified and the possible mechanism of RCE on AD was elucidated by metabolic pathways analysis. As a result, twenty-eight lipids with significant differences between the control group and the model group were screened out. With the treatment of RCE, 19 lipids in AD rats showed a trend of callback to the normal levels. The results of pathway analysis indicated that the protective effects of RCE on AD might be closely related to the regulation of linoleic acid metabolism, α-linoleic acid metabolism, sphingolipid metabolism and ether lipid metabolism. In conclusion, this study provides a new perspective on the potential intervention mechanism of RCE for AD treatment.
Collapse
|
25
|
Huynh K, Lim WLF, Giles C, Jayawardana KS, Salim A, Mellett NA, Smith AAT, Olshansky G, Drew BG, Chatterjee P, Martins I, Laws SM, Bush AI, Rowe CC, Villemagne VL, Ames D, Masters CL, Arnold M, Nho K, Saykin AJ, Baillie R, Han X, Kaddurah-Daouk R, Martins RN, Meikle PJ. Concordant peripheral lipidome signatures in two large clinical studies of Alzheimer's disease. Nat Commun 2020; 11:5698. [PMID: 33173055 PMCID: PMC7655942 DOI: 10.1038/s41467-020-19473-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/15/2020] [Indexed: 11/22/2022] Open
Abstract
Changes to lipid metabolism are tightly associated with the onset and pathology of Alzheimer's disease (AD). Lipids are complex molecules comprising many isomeric and isobaric species, necessitating detailed analysis to enable interpretation of biological significance. Our expanded targeted lipidomics platform (569 species across 32 classes) allows for detailed lipid separation and characterisation. In this study we examined peripheral samples of two cohorts (AIBL, n = 1112 and ADNI, n = 800). We are able to identify concordant peripheral signatures associated with prevalent AD arising from lipid pathways including; ether lipids, sphingolipids (notably GM3 gangliosides) and lipid classes previously associated with cardiometabolic disease (phosphatidylethanolamine and triglycerides). We subsequently identified similar lipid signatures in both cohorts with future disease. Lastly, we developed multivariate lipid models that improved classification and prediction. Our results provide a holistic view between the lipidome and AD using a comprehensive approach, providing targets for further mechanistic investigation.
Collapse
Affiliation(s)
- Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Monash University, Melbourne, VIC, 3800, Australia
| | - Wei Ling Florence Lim
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
- Cooperative research Centre (CRC) for Mental Health, Sydney, NSW, Australia
| | - Corey Giles
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | | | - Agus Salim
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Mathematics and Statistics, La Trobe University, Melbourne, VIC, Australia
- Melbourne School of Global and Population Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | | | | | | | - Brian G Drew
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Monash University, Melbourne, VIC, 3800, Australia
| | - Pratishtha Chatterjee
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
- KaRa Institute of Neurological Disease, Sydney, NSW, Australia
| | - Ian Martins
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
- Cooperative research Centre (CRC) for Mental Health, Sydney, NSW, Australia
| | - Simon M Laws
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
- Collaborative Genomics Group, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Ashley I Bush
- The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Christopher C Rowe
- The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, VIC, Australia
| | - Victor L Villemagne
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, VIC, Australia
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia
| | - David Ames
- National Ageing Research Institute, Parkville, VIC, 3050, Australia
| | - Colin L Masters
- The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Matthias Arnold
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA.
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA.
- Department of Medicine, Duke University, Durham, NC, USA.
| | - Ralph N Martins
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.
- Cooperative research Centre (CRC) for Mental Health, Sydney, NSW, Australia.
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.
- KaRa Institute of Neurological Disease, Sydney, NSW, Australia.
- School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Perth, WA, Australia.
- Australian Alzheimer's Research Foundation, Nedlands, WA, Australia.
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
26
|
Dorninger F, Forss-Petter S, Wimmer I, Berger J. Plasmalogens, platelet-activating factor and beyond - Ether lipids in signaling and neurodegeneration. Neurobiol Dis 2020; 145:105061. [PMID: 32861763 PMCID: PMC7116601 DOI: 10.1016/j.nbd.2020.105061] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/12/2022] Open
Abstract
Glycerol-based ether lipids including ether phospholipids form a specialized branch of lipids that in mammals require peroxisomes for their biosynthesis. They are major components of biological membranes and one particular subgroup, the plasmalogens, is widely regarded as a cellular antioxidant. Their vast potential to influence signal transduction pathways is less well known. Here, we summarize the literature showing associations with essential signaling cascades for a wide variety of ether lipids, including platelet-activating factor, alkylglycerols, ether-linked lysophosphatidic acid and plasmalogen-derived polyunsaturated fatty acids. The available experimental evidence demonstrates links to several common players like protein kinase C, peroxisome proliferator-activated receptors or mitogen-activated protein kinases. Furthermore, ether lipid levels have repeatedly been connected to some of the most abundant neurological diseases, particularly Alzheimer's disease and more recently also neurodevelopmental disorders like autism. Thus, we critically discuss the potential role of these compounds in the etiology and pathophysiology of these diseases with an emphasis on signaling processes. Finally, we review the emerging interest in plasmalogens as treatment target in neurological diseases, assessing available data and highlighting future perspectives. Although many aspects of ether lipid involvement in cellular signaling identified in vitro still have to be confirmed in vivo, the compiled data show many intriguing properties and contributions of these lipids to health and disease that will trigger further research.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna 1090, Austria.
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna 1090, Austria
| | - Isabella Wimmer
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna 1090, Austria.
| |
Collapse
|
27
|
Affiliation(s)
- Omer Dasdag
- Pre-Graduate Internship Department, Medical School, Biruni University, Istanbul, Turkey
| | - Nur Adalier
- Pre-Graduate Internship Department, Medical School, Medical School, Koc University, Istanbul, Turkey
| | - Suleyman Dasdag
- Biophysics Department, Medical School, Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
28
|
Zhou Y, Yu N, Zhao J, Xie Z, Yang Z, Tian B. Advances in the Biosynthetic Pathways and Application Potential of Plasmalogens in Medicine. Front Cell Dev Biol 2020; 8:765. [PMID: 32984309 PMCID: PMC7487321 DOI: 10.3389/fcell.2020.00765] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/21/2020] [Indexed: 11/13/2022] Open
Abstract
Plasmalogens are a special class of polar glycerolipids containing a vinyl-ether bond and an ester bond at sn-1 and sn-2 positions of the glycerol backbone, respectively. In animals, impaired biosynthesis and regulation of plasmalogens may lead to certain neurological and metabolic diseases. Plasmalogens deficiency was proposed to be strongly associated with neurodegenerative and metabolic diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), and appropriate supplement of plasmalogens could help to prevent and possibly provide therapy of these diseases. Plasmalogens evolved first in anaerobic bacteria with an anaerobic biosynthetic pathway. Later, an oxygen-dependent biosynthesis of plasmalogens appeared in animal cells. This review summarizes and updates current knowledge of anaerobic and aerobic pathways of plasmalogens biosynthesis, including the enzymes involved, steps and aspects of the regulation of these processes. Strategies for increasing the expression of plasmalogen synthetic genes using synthetic biology techniques under specific conditions are discussed. Deep understanding of plasmalogens biosynthesis will provide the bases for the use of plasmalogens and their precursors as potential therapeutic regimens for age-related degenerative and metabolic diseases.
Collapse
Affiliation(s)
- Yulong Zhou
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China.,MOE Key Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ning Yu
- MOE Key Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jie Zhao
- Department of Applied Biological Science, Zhejiang University, Hangzhou, China
| | - Zhenming Xie
- MOE Key Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhaonan Yang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China.,MOE Key Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Bing Tian
- MOE Key Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Fontaine D, Figiel S, Félix R, Kouba S, Fromont G, Mahéo K, Potier-Cartereau M, Chantôme A, Vandier C. Roles of endogenous ether lipids and associated PUFAs in the regulation of ion channels and their relevance for disease. J Lipid Res 2020; 61:840-858. [PMID: 32265321 PMCID: PMC7269763 DOI: 10.1194/jlr.ra120000634] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/29/2020] [Indexed: 12/16/2022] Open
Abstract
Ether lipids (ELs) are lipids characterized by the presence of either an ether linkage (alkyl lipids) or a vinyl ether linkage [i.e., plasmalogens (Pls)] at the sn1 position of the glycerol backbone, and they are enriched in PUFAs at the sn2 position. In this review, we highlight that ELs have various biological functions, act as a reservoir for second messengers (such as PUFAs) and have roles in many diseases. Some of the biological effects of ELs may be associated with their ability to regulate ion channels that control excitation-contraction/secretion/mobility coupling and therefore cell physiology. These channels are embedded in lipid membranes, and lipids can regulate their activities directly or indirectly as second messengers or by incorporating into membranes. Interestingly, ELs and EL-derived PUFAs have been reported to play a key role in several pathologies, including neurological disorders, cardiovascular diseases, and cancers. Investigations leading to a better understanding of their mechanisms of action in pathologies have opened a new field in cancer research. In summary, newly identified lipid regulators of ion channels, such as ELs and PUFAs, may represent valuable targets to improve disease diagnosis and advance the development of new therapeutic strategies for managing a range of diseases and conditions.
Collapse
Affiliation(s)
- Delphine Fontaine
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France
| | - Sandy Figiel
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France
| | - Romain Félix
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France
| | - Sana Kouba
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France
| | - Gaëlle Fromont
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France; Department of Pathology, CHRU Bretonneau, F-37044 Tours CEDEX 9, France
| | - Karine Mahéo
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France; Faculté de Pharmacie, Université de Tours, F-37200 Tours, France
| | | | - Aurélie Chantôme
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France; Faculté de Pharmacie, Université de Tours, F-37200 Tours, France
| | - Christophe Vandier
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France. mailto:
| |
Collapse
|
30
|
Grassi S, Giussani P, Mauri L, Prioni S, Sonnino S, Prinetti A. Lipid rafts and neurodegeneration: structural and functional roles in physiologic aging and neurodegenerative diseases. J Lipid Res 2020; 61:636-654. [PMID: 31871065 PMCID: PMC7193971 DOI: 10.1194/jlr.tr119000427] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/11/2019] [Indexed: 12/14/2022] Open
Abstract
Lipid rafts are small, dynamic membrane areas characterized by the clustering of selected membrane lipids as the result of the spontaneous separation of glycolipids, sphingolipids, and cholesterol in a liquid-ordered phase. The exact dynamics underlying phase separation of membrane lipids in the complex biological membranes are still not fully understood. Nevertheless, alterations in the membrane lipid composition affect the lateral organization of molecules belonging to lipid rafts. Neural lipid rafts are found in brain cells, including neurons, astrocytes, and microglia, and are characterized by a high enrichment of specific lipids depending on the cell type. These lipid rafts seem to organize and determine the function of multiprotein complexes involved in several aspects of signal transduction, thus regulating the homeostasis of the brain. The progressive decline of brain performance along with physiological aging is at least in part associated with alterations in the composition and structure of neural lipid rafts. In addition, neurodegenerative conditions, such as lysosomal storage disorders, multiple sclerosis, and Parkinson's, Huntington's, and Alzheimer's diseases, are frequently characterized by dysregulated lipid metabolism, which in turn affects the structure of lipid rafts. Several events underlying the pathogenesis of these diseases appear to depend on the altered composition of lipid rafts. Thus, the structure and function of lipid rafts play a central role in the pathogenesis of many common neurodegenerative diseases.jlr;61/5/636/F1F1f1.
Collapse
Affiliation(s)
- Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy. mailto:
| |
Collapse
|
31
|
Kaya I, Jennische E, Lange S, Tarik Baykal A, Malmberg P, Fletcher JS. Brain region-specific amyloid plaque-associated myelin lipid loss, APOE deposition and disruption of the myelin sheath in familial Alzheimer's disease mice. J Neurochem 2020; 154:84-98. [PMID: 32141089 DOI: 10.1111/jnc.14999] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/07/2020] [Accepted: 03/02/2020] [Indexed: 12/17/2022]
Abstract
There is emerging evidence that amyloid beta (Aβ) aggregates forming neuritic plaques lead to impairment of the lipid-rich myelin sheath and glia. In this study, we examined focal myelin lipid alterations and the disruption of the myelin sheath associated with amyloid plaques in a widely used familial Alzheimer's disease (AD) mouse model; 5xFAD. This AD mouse model has Aβ42 peptide-rich plaque deposition in the brain parenchyma. Matrix-assisted laser desorption/ionization imaging mass spectrometry of coronal brain tissue sections revealed focal Aβ plaque-associated depletion of multiple myelin-associated lipid species including sulfatides, galactosylceramides, and specific plasmalogen phopshatidylethanolamines in the hippocampus, cortex, and on the edges of corpus callosum. Certain phosphatidylcholines abundant in myelin were also depleted in amyloid plaques on the edges of corpus callosum. Further, lysophosphatidylethanolamines and lysophosphatidylcholines, implicated in neuroinflammation, were found to accumulate in amyloid plaques. Double staining of the consecutive sections with fluoromyelin and amyloid-specific antibody revealed amyloid plaque-associated myelin sheath disruption on the edges of the corpus callosum which is specifically correlated with plaque-associated myelin lipid loss only in this region. Further, apolipoprotein E, which is implicated in depletion of sulfatides in AD brain, is deposited in all the Aβ plaques which suggest apolipoprotein E might mediate sulfatide depletion as a consequence of an immune response to Aβ deposition. This high-spatial resolution matrix-assisted laser desorption/ionization imaging mass spectrometry study in combination with (immuno) fluorescence staining of 5xFAD mouse brain provides new understanding of morphological, molecular and immune signatures of Aβ plaque pathology-associated myelin lipid loss and myelin degeneration in a brain region-specific manner. Read the Editorial Highlight for this article on page 7.
Collapse
Affiliation(s)
- Ibrahim Kaya
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Eva Jennische
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Stefan Lange
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Per Malmberg
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - John S Fletcher
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
32
|
Mass Spectrometry Imaging of Lipids in Human Skin Disease Model Hidradenitis Suppurativa by Laser Desorption Ionization from Silicon Nanopost Arrays. Sci Rep 2019; 9:17508. [PMID: 31767918 PMCID: PMC6877612 DOI: 10.1038/s41598-019-53938-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/11/2019] [Indexed: 12/20/2022] Open
Abstract
Neutral lipids have been implicated in a host of potentially debilitating human diseases, such as heart disease, type-2 diabetes, and metabolic syndrome. Matrix-assisted laser desorption ionization (MALDI), the method-of-choice for mass spectrometry imaging (MSI), has led to remarkable success in imaging several lipid classes from biological tissue sections. However, due to ion suppression by phospholipids, MALDI has limited ability to efficiently ionize and image neutral lipids, such as triglycerides (TGs). To help overcome this obstacle, we have utilized silicon nanopost arrays (NAPA), a matrix-free laser desorption ionization (LDI) platform. Hidradenitis suppurativa (HS) is a chronic, recurrent inflammatory skin disease of the apocrine sweat glands. The ability of NAPA to efficiently ionize lipids is exploited in the analysis of human skin samples from sufferers of HS. Ionization by LDI from NAPA allows for the detection and imaging of a number of neutral lipid species, including TGs comprised of shorter, odd-chain fatty acids, which strongly suggests an increased bacterial load within the host tissue, as well as hexosylceramides (HexCers) and galabiosyl-/lactosylceramides that appear to be correlated with the presence of HS. Our results demonstrate that NAPA-LDI-MSI is capable of imaging and potentially differentiating healthy and diseased human skin tissues based on changes in detected neutral lipid composition.
Collapse
|
33
|
Senanayake V, Goodenowe DB. Plasmalogen deficiency and neuropathology in Alzheimer's disease: Causation or coincidence? ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2019; 5:524-532. [PMID: 31650009 PMCID: PMC6804645 DOI: 10.1016/j.trci.2019.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Causation of Alzheimer's disease (AD) is not well understood. It is necessary to look beyond neuropathology to identify the underlying causes of AD and many other common neurological diseases. Lipid abnormalities are well documented in the preclinical phases of many neurological diseases including AD. Here, we use AD as an example to examine the role of lipid abnormalities as an underlying cause of neurodegeneration. Role of lipids, particularly phospholipids, in the optimal function of the nervous system, impact of the aberrations of phospholipid metabolism on β-amyloid deposition and cholinergic neuronal function, epidemiological evidence on the association of phospholipids with AD, and preliminary data on the possible modulation of risk factors of AD by phospholipids are examined. Implications of these findings on diagnosis and prevention are also discussed.
Collapse
|
34
|
Paul S, Lancaster GI, Meikle PJ. WITHDRAWN: Plasmalogens: A potential therapeutic target for neurodegenerative and cardiometabolic disease. Prog Lipid Res 2019:100993. [PMID: 31442528 DOI: 10.1016/j.plipres.2019.100993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/06/2019] [Accepted: 04/07/2019] [Indexed: 01/30/2023]
Affiliation(s)
- Sudip Paul
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, VIC 3800, Australia
| | - Graeme I Lancaster
- Haematopoiesis and Leukocyte Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, VIC 3800, Australia
| | - Peter J Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, VIC 3800, Australia
| |
Collapse
|
35
|
Change in Brain Plasmalogen Composition by Exposure to Prenatal Undernutrition Leads to Behavioral Impairment of Rats. J Neurosci 2019; 39:7689-7702. [PMID: 31391260 DOI: 10.1523/jneurosci.2721-18.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 12/17/2022] Open
Abstract
Epidemiological studies suggest that poor nutrition during pregnancy influences offspring predisposition to experience developmental and psychiatric disorders. Animal studies have shown that maternal undernutrition leads to behavioral impairment, which is linked to alterations in monoaminergic systems and inflammation in the brain. In this study, we focused on the ethanolamine plasmalogen of the brain as a possible contributor to behavioral disturbances observed in offspring exposed to maternal undernutrition. Maternal food or protein restriction between gestational day (GD) 5.5 and GD 10.5 resulted in hyperactivity of rat male adult offspring. Genes related to the phospholipid biosynthesis were found to be activated in the PFC, but not in the NAcc or striatum, in the offspring exposed to prenatal undernutrition. Corresponding to these gene activations, increased ethanolamine plasmalogen (18:0p-22:6) was observed in the PFC using mass spectrometry imaging. A high number of crossings and the long time spent in the center area were observed in the offspring exposed to prenatal undernutrition and were mimicked in adult rats via the intravenous injection of ethanolamine plasmalogen (18:0p-22:6) incorporated into the liposome. Additionally, plasmalogen (18:0p-22:6) increased only in the PFC, and not in the NAcc or striatum. These results suggest that brain plasmalogen is one of the key molecules to control behavior, and its injection using liposome is a potential therapeutic approach for cognitive impairment.SIGNIFICANCE STATEMENT Maternal undernutrition correlates to developmental and psychiatric disorders. Here, we found that maternal undernutrition in early pregnancy led to hyperactivity in rat male offspring and induced gene activation of phospholipid-synthesizing enzyme and elevation of ethanolamine plasmalogen (18:0p-22:6) level in the PFC. Intravenous injection of ethanolamine plasmalogen (18:0p-22:6) incorporated into the liposome maintained crossing activity and the activity was circumscribed to the center area for a long time period, as in prenatally undernourished offspring with aberrant behavior. Furthermore, the amount of ethanolamine plasmalogen (18:0p-22:6) increased in the PFC of the rat after injection. Our result suggests that brain plasmalogen is one of the key molecules to control behavior and that its injection using liposome is a potential therapeutic approach for cognitive impairment.
Collapse
|
36
|
Abstract
Growing evidence suggests that ethanolamine plasmalogens (PlsEtns), a subtype of phospholipids, have a close association with Alzheimer’s disease (AD). Decreased levels of PlsEtns have been commonly found in AD patients, and were correlated with cognition deficit and severity of disease. Limited studies showed positive therapeutic outcomes with plasmalogens interventions in AD subjects and in rodents. The potential mechanisms underlying the beneficial effects of PlsEtns on AD may be related to the reduction of γ–secretase activity, an enzyme that catalyzes the synthesis of β-amyloid (Aβ), a hallmark of AD. Emerging in vitro evidence also showed that PlsEtns prevented neuronal cell death by enhancing phosphorylation of AKT and ERK signaling through the activation of orphan G-protein coupled receptor (GPCR) proteins. In addition, PlsEtns have been found to suppress the death of primary mouse hippocampal neuronal cells through the inhibition of caspase-9 and caspase-3 cleavages. Further in-depth investigations are required to determine the signature molecular species of PlsEtns associated with AD, hence their potential role as biomarkers. Clinical intervention with plasmalogens is still in its infancy but may have the potential to be explored for a novel therapeutic approach to correct AD pathology and neural function.
Collapse
|
37
|
Paul S, Lancaster GI, Meikle PJ. Plasmalogens: A potential therapeutic target for neurodegenerative and cardiometabolic disease. Prog Lipid Res 2019; 74:186-195. [DOI: 10.1016/j.plipres.2019.04.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/06/2019] [Accepted: 04/07/2019] [Indexed: 01/23/2023]
|
38
|
Fincher JA, Dyer JE, Korte AR, Yadavilli S, Morris NJ, Vertes A. Matrix‐free mass spectrometry imaging of mouse brain tissue sections on silicon nanopost arrays. J Comp Neurol 2018; 527:2101-2121. [DOI: 10.1002/cne.24566] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Jarod A. Fincher
- George Washington University Washington District of Columbia 20052
| | | | - Andrew R. Korte
- George Washington University Washington District of Columbia 20052
| | - Sridevi Yadavilli
- Research Center for Genetic Medicine Children's National Medical Center Washington District of Columbia 20010
| | | | - Akos Vertes
- George Washington University Washington District of Columbia 20052
| |
Collapse
|
39
|
Youssef M, Ibrahim A, Akashi K, Hossain MS. PUFA-Plasmalogens Attenuate the LPS-Induced Nitric Oxide Production by Inhibiting the NF-kB, p38 MAPK and JNK Pathways in Microglial Cells. Neuroscience 2018; 397:18-30. [PMID: 30496826 DOI: 10.1016/j.neuroscience.2018.11.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 12/29/2022]
Abstract
The special lipids plasmalogens (Pls) were reported to be reduced in the neurodegenerative brains such as Alzheimer's disease where a marked increase of glial activation is often observed. We previously found that a reduction of brain Pls can enhance the glial activation in murine brains. However, the detailed role of Pls in the prevention of glial activation was mostly elusive. Here we report that the Pls, extracted from scallop (sPls), significantly inhibited the inducible form of nitric oxide synthase (NOS2) and the production of NO in LPS (lipopolysaccharide)-activated microglial cells. We also observed that the polyunsaturated docosahexaenoic acid (DHA)-containing Pls but not the monounsaturated oleic acid-containing Pls attenuated the NOS2 induction. In addition, sPls blocked the activation of nuclear factor (NF)-kB and mitogen-activated protein kinases (MAPKs) e.g., JNK and p38 MAPK, thereby attenuated the nuclear translocation of NF-kB subunit, p65, and activator protein-1 (AP-1) proteins (c-Fos and c-Jun). Interestingly, LPS treatments suppressed the expression of Pls synthesizing enzymes, glycerone phosphate O-acyltransferase (GNPAT) and alkylglycerone phosphate synthase (AGPS) in the microglial cells by the p38MAPK and JNK pathways. Furthermore, the knockdown of GNPAT and AGPS genes by sh-RNAs accelerated the LPS-induced activation of p38MAPK and JNK, resulting in the increased production of NO. These findings suggested that a decrease of brain Pls can activate the NF-kB, p38MAPK and JNK pathways to induce a prolonged microglial activation which may downplay the neuroprotective events in the brains of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mohammed Youssef
- Department of Neuroinflammation and Brain Fatigue Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582 Japan; Department of Animal Physiology, Veterinary Medicine Faculty, South Valley University, Qena 83523 Egypt
| | - Ahmed Ibrahim
- Department of Poultry Diseases, Veterinary Medicine Faculty, South Valley University, Qena 83523 Egypt
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Md Shamim Hossain
- Department of Neuroinflammation and Brain Fatigue Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582 Japan.
| |
Collapse
|
40
|
Kaya I, Zetterberg H, Blennow K, Hanrieder J. Shedding Light on the Molecular Pathology of Amyloid Plaques in Transgenic Alzheimer's Disease Mice Using Multimodal MALDI Imaging Mass Spectrometry. ACS Chem Neurosci 2018; 9:1802-1817. [PMID: 29648443 DOI: 10.1021/acschemneuro.8b00121] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Senile plaques formed by aggregated amyloid β peptides are one of the major pathological hallmarks of Alzheimer's disease (AD) which have been suggested to be the primary influence triggering the AD pathogenesis and the rest of the disease process. However, neurotoxic Aβ aggregation and progression are associated with a wide range of enigmatic biochemical, biophysical and genetic processes. MALDI imaging mass spectrometry (IMS) is a label-free method to elucidate the spatial distribution patterns of intact molecules in biological tissue sections. In this communication, we utilized multimodal MALDI-IMS analysis on 18 month old transgenic AD mice (tgArcSwe) brain tissue sections to enhance molecular information correlated to individual amyloid aggregates on the very same tissue section. Dual polarity MALDI-IMS analysis of lipids on the same pixel points revealed high throughput lipid molecular information including sphingolipids, phospholipids, and lysophospholipids which can be correlated to the ion images of individual amyloid β peptide isoforms at high spatial resolutions (10 μm). Further, multivariate image analysis was applied in order to probe the multimodal MALDI-IMS data in an unbiased way which verified the correlative accumulations of lipid species with dual polarity and Aβ peptides. This was followed by the lipid fragmentation obtained directly on plaque aggregates at higher laser pulse energies which provided tandem MS information useful for structural elucidation of several lipid species. Majority of the amyloid plaque-associated alterations of lipid species are for the first time reported here. The significance of this technique is that it allows correlating the biological discussion of all detected plaque-associated molecules to the very same individual amyloid plaques which can give novel insights into the molecular pathology of even a single amyloid plaque microenvironment in a specific brain region. Therefore, this allowed us to interpret the possible roles of lipids and amyloid peptides in amyloid plaque-associated pathological events such as focal demyelination, autophagic/lysosomal dysfunction, astrogliosis, inflammation, oxidative stress, and cell death.
Collapse
Affiliation(s)
- Ibrahim Kaya
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 405 30 Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V3, 43180 Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V3, 43180 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, House V3, 43180 Mölndal, Sweden
- Institute of Neurology, University College London, Queen Square, London WC1N 3BG, United Kingdom
- UK Dementia Research Institute at University College London, London WC1N 3AR, United Kingdom
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V3, 43180 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, House V3, 43180 Mölndal, Sweden
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V3, 43180 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, House V3, 43180 Mölndal, Sweden
- Institute of Neurology, University College London, Queen Square, London WC1N 3BG, United Kingdom
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
41
|
Abstract
Ether lipids, such as plasmalogens, are peroxisome-derived glycerophospholipids in which the hydrocarbon chain at the sn-1 position of the glycerol backbone is attached by an ether bond, as opposed to an ester bond in the more common diacyl phospholipids. This seemingly simple biochemical change has profound structural and functional implications. Notably, the tendency of ether lipids to form non-lamellar inverted hexagonal structures in model membranes suggests that they have a role in facilitating membrane fusion processes. Ether lipids are also important for the organization and stability of lipid raft microdomains, cholesterol-rich membrane regions involved in cellular signaling. In addition to their structural roles, a subset of ether lipids are thought to function as endogenous antioxidants, and emerging studies suggest that they are involved in cell differentiation and signaling pathways. Here, we review the biology of ether lipids and their potential significance in human disorders, including neurological diseases, cancer, and metabolic disorders.
Collapse
Affiliation(s)
- John M Dean
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Irfan J Lodhi
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| |
Collapse
|
42
|
Grimm MOW, Michaelson DM, Hartmann T. Omega-3 fatty acids, lipids, and apoE lipidation in Alzheimer's disease: a rationale for multi-nutrient dementia prevention. J Lipid Res 2017; 58:2083-2101. [PMID: 28528321 PMCID: PMC5665674 DOI: 10.1194/jlr.r076331] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/09/2017] [Indexed: 12/14/2022] Open
Abstract
In the last decade, it has become obvious that Alzheimer's disease (AD) is closely linked to changes in lipids or lipid metabolism. One of the main pathological hallmarks of AD is amyloid-β (Aβ) deposition. Aβ is derived from sequential proteolytic processing of the amyloid precursor protein (APP). Interestingly, both, the APP and all APP secretases are transmembrane proteins that cleave APP close to and in the lipid bilayer. Moreover, apoE4 has been identified as the most prevalent genetic risk factor for AD. ApoE is the main lipoprotein in the brain, which has an abundant role in the transport of lipids and brain lipid metabolism. Several lipidomic approaches revealed changes in the lipid levels of cerebrospinal fluid or in post mortem AD brains. Here, we review the impact of apoE and lipids in AD, focusing on the major brain lipid classes, sphingomyelin, plasmalogens, gangliosides, sulfatides, DHA, and EPA, as well as on lipid signaling molecules, like ceramide and sphingosine-1-phosphate. As nutritional approaches showed limited beneficial effects in clinical studies, the opportunities of combining different supplements in multi-nutritional approaches are discussed and summarized.
Collapse
Affiliation(s)
- Marcus O W Grimm
- Department of Experimental Neurology and Department of Neurodegeneration and Neurobiology, and Deutsches Institut für DemenzPrävention (DIDP), Saarland University, Homburg/Saar, Germany
| | - Daniel M Michaelson
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Tobias Hartmann
- Department of Experimental Neurology and Department of Neurodegeneration and Neurobiology, and Deutsches Institut für DemenzPrävention (DIDP), Saarland University, Homburg/Saar, Germany
| |
Collapse
|
43
|
Dorninger F, Forss-Petter S, Berger J. From peroxisomal disorders to common neurodegenerative diseases - the role of ether phospholipids in the nervous system. FEBS Lett 2017; 591:2761-2788. [PMID: 28796901 DOI: 10.1002/1873-3468.12788] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/26/2017] [Accepted: 08/07/2017] [Indexed: 01/01/2023]
Abstract
The emerging diverse roles of ether (phospho)lipids in nervous system development and function in health and disease are currently attracting growing interest. Plasmalogens, a subgroup of ether lipids, are important membrane components involved in vesicle fusion and membrane raft composition. They store polyunsaturated fatty acids and may serve as antioxidants. Ether lipid metabolites act as precursors for the formation of glycosyl-phosphatidyl-inositol anchors; others, like platelet-activating factor, are implicated in signaling functions. Consolidating the available information, we attempt to provide molecular explanations for the dramatic neurological phenotype in ether lipid-deficient human patients and mice by linking individual functional properties of ether lipids with pathological features. Furthermore, recent publications have identified altered ether lipid levels in the context of many acquired neurological disorders including Alzheimer's disease (AD) and autism. Finally, current efforts to restore ether lipids in peroxisomal disorders as well as AD are critically reviewed.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Austria
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Austria
| |
Collapse
|
44
|
Small things matter: Implications of APP intracellular domain AICD nuclear signaling in the progression and pathogenesis of Alzheimer’s disease. Prog Neurobiol 2017; 156:189-213. [DOI: 10.1016/j.pneurobio.2017.05.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 01/08/2023]
|
45
|
Czeczor JK, McGee SL. Emerging roles for the amyloid precursor protein and derived peptides in the regulation of cellular and systemic metabolism. J Neuroendocrinol 2017; 29. [PMID: 28349564 DOI: 10.1111/jne.12470] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/03/2017] [Accepted: 03/22/2017] [Indexed: 01/01/2023]
Abstract
The amyloid precursor protein (APP) is a transmembrane protein that can be cleaved by proteases through two different pathways to yield a number of small peptides, each with distinct physiological properties and functions. It has been extensively studied in the context of Alzheimer's disease, with the APP-derived amyloid β (Aβ) peptide being a major constituent of the amyloid plaques observed in this disease. It has been known for some time that APP can regulate neuronal metabolism; however, the present review examines the evidence indicating that APP and its peptides can also regulate key metabolic processes such as insulin action, lipid synthesis and storage and mitochondrial function in peripheral tissues. This review presents the hypothesis that amyloidogenic processing of APP in peripheral tissues plays a key role in the response to nutrient excess and that this could contribute to the pathogenesis of metabolic diseases such as obesity and type 2 diabetes (T2D).
Collapse
Affiliation(s)
- J K Czeczor
- Metabolic Research Unit, Metabolic Reprogramming Laboratory, School of Medicine and Centre for Molecular and Medical Research, Deakin University, Geelong, VIC, Australia
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich-Heine University, Düsseldorf, Germany
- German Center of Diabetes Research, München-Neuherberg, Germany
| | - S L McGee
- Metabolic Research Unit, Metabolic Reprogramming Laboratory, School of Medicine and Centre for Molecular and Medical Research, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
46
|
Yamashita A, Hayashi Y, Matsumoto N, Nemoto-Sasaki Y, Koizumi T, Inagaki Y, Oka S, Tanikawa T, Sugiura T. Coenzyme-A-Independent Transacylation System; Possible Involvement of Phospholipase A2 in Transacylation. BIOLOGY 2017; 6:biology6020023. [PMID: 28358327 PMCID: PMC5485470 DOI: 10.3390/biology6020023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 11/29/2022]
Abstract
The coenzyme A (CoA)-independent transacylation system catalyzes fatty acid transfer from phospholipids to lysophospholipids in the absence of cofactors such as CoA. It prefers to use C20 and C22 polyunsaturated fatty acids such as arachidonic acid, which are esterified in the glycerophospholipid at the sn-2 position. This system can also acylate alkyl ether-linked lysophospholipids, is involved in the enrichment of arachidonic acid in alkyl ether-linked glycerophospholipids, and is critical for the metabolism of eicosanoids and platelet-activating factor. Despite their importance, the enzymes responsible for these reactions have yet to be identified. In this review, we describe the features of the Ca2+-independent, membrane-bound CoA-independent transacylation system and its selectivity for arachidonic acid. We also speculate on the involvement of phospholipase A2 in the CoA-independent transacylation reaction.
Collapse
Affiliation(s)
- Atsushi Yamashita
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| | - Yasuhiro Hayashi
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| | - Naoki Matsumoto
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| | - Yoko Nemoto-Sasaki
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| | - Takanori Koizumi
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| | - Yusuke Inagaki
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| | - Saori Oka
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| | - Takashi Tanikawa
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| | - Takayuki Sugiura
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| |
Collapse
|
47
|
Reduction of Ether-Type Glycerophospholipids, Plasmalogens, by NF-κB Signal Leading to Microglial Activation. J Neurosci 2017; 37:4074-4092. [PMID: 28292831 DOI: 10.1523/jneurosci.3941-15.2017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 01/08/2023] Open
Abstract
Neuroinflammation characterized by activation of glial cells is observed in various neurodegenerative diseases including Alzheimer's disease (AD). Although the reduction of ether-type glycerophospholipids, plasmalogens (Pls), in the brain is reported in AD patients, the mechanism of the reduction and its impact on neuroinflammation remained elusive. In the present study, we found for the first time that various inflammatory stimuli reduced Pls levels in murine glial cells via NF-κB activation, which then downregulated a Pls-synthesizing enzyme, glycerone phosphate O-acyltransferase (Gnpat) through increased c-Myc recruitment onto the Gnpat promoter. We also found that systemic injection of lipopolysaccharide, aging, and chronic restraint stress reduced brain Pls contents that were associated with glial NF-κB activation, an increase in c-Myc expression, and downregulation of Gnpat in the mouse cortex and hippocampus. More interestingly, the reduction of Pls contents in the murine cortex itself could increase the activated phenotype of microglial cells and the expression of proinflammatory cytokines, suggesting further acceleration of neuroinflammation by reduction of brain Pls. A similar mechanism of Gnpat reduction was also found in human cell lines, triple-transgenic AD mouse brain, and postmortem human AD brain tissues. These findings suggest a novel mechanism of neuroinflammation that may explain prolonged progression of AD and help us to explore preventive and therapeutic strategies to treat neurodegenerative diseases.SIGNIFICANCE STATEMENT Ether-type glycerophospholipids, plasmalogens (Pls), are reduced in the brain of Alzheimer disease (AD) patients. We found that inflammatory stimuli reduced Pls contents by downregulation of the Pls-synthesizing enzyme glycerone phosphate O-acyltransferase (Gnpat) through NF-κB-mediated recruitment of c-Myc onto the Gnpat promoter in both murine and human cell lines. Murine brains after systemic lipopolysaccharide, chronic stress, and aging, as well as triple-transgenic AD mice and postmortem human AD brain tissues all showed increased c-Myc and reduced Gnpat expression. Interestingly, knockdown of Gnpat itself activated NF-κB in glial cell lines and microglia in mouse cortex. Our findings provide a new insight into the mechanism of neuroinflammation and may help to develop a novel therapeutic approach for neurodegenerative diseases such as AD.
Collapse
|
48
|
Grimm MOW, Mett J, Grimm HS, Hartmann T. APP Function and Lipids: A Bidirectional Link. Front Mol Neurosci 2017; 10:63. [PMID: 28344547 PMCID: PMC5344993 DOI: 10.3389/fnmol.2017.00063] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/24/2017] [Indexed: 12/14/2022] Open
Abstract
Extracellular neuritic plaques, composed of aggregated amyloid-β (Aβ) peptides, are one of the major histopathological hallmarks of Alzheimer's disease (AD), a progressive, irreversible neurodegenerative disorder and the most common cause of dementia in the elderly. One of the most prominent risk factor for sporadic AD, carrying one or two aberrant copies of the apolipoprotein E (ApoE) ε4 alleles, closely links AD to lipids. Further, several lipid classes and fatty acids have been reported to be changed in the brain of AD-affected individuals. Interestingly, the observed lipid changes in the brain seem not only to be a consequence of the disease but also modulate Aβ generation. In line with these observations, protective lipids being able to decrease Aβ generation and also potential negative lipids in respect to AD were identified. Mechanistically, Aβ peptides are generated by sequential proteolytic processing of the amyloid precursor protein (APP) by β- and γ-secretase. The α-secretase appears to compete with β-secretase for the initial cleavage of APP, preventing Aβ production. All APP-cleaving secretases as well as APP are transmembrane proteins, further illustrating the impact of lipids on Aβ generation. Beside the pathological impact of Aβ, accumulating evidence suggests that Aβ and the APP intracellular domain (AICD) play an important role in regulating lipid homeostasis, either by direct effects or by affecting gene expression or protein stability of enzymes involved in the de novo synthesis of different lipid classes. This review summarizes the current literature addressing the complex bidirectional link between lipids and AD and APP processing including lipid alterations found in AD post mortem brains, lipids that alter APP processing and the physiological functions of Aβ and AICD in the regulation of several lipid metabolism pathways.
Collapse
Affiliation(s)
- Marcus O. W. Grimm
- Experimental Neurology, Saarland UniversityHomburg/Saar, Germany
- Neurodegeneration and Neurobiology, Saarland UniversityHomburg/Saar, Germany
- Deutsches Institut für DemenzPrävention (DIDP), Saarland UniversityHomburg/Saar, Germany
| | - Janine Mett
- Experimental Neurology, Saarland UniversityHomburg/Saar, Germany
| | - Heike S. Grimm
- Experimental Neurology, Saarland UniversityHomburg/Saar, Germany
| | - Tobias Hartmann
- Experimental Neurology, Saarland UniversityHomburg/Saar, Germany
- Neurodegeneration and Neurobiology, Saarland UniversityHomburg/Saar, Germany
- Deutsches Institut für DemenzPrävention (DIDP), Saarland UniversityHomburg/Saar, Germany
| |
Collapse
|
49
|
Global Changes in Lipid Profiles of Mouse Cortex, Hippocampus, and Hypothalamus Upon p53 Knockout. Sci Rep 2016; 6:36510. [PMID: 27819311 PMCID: PMC5098149 DOI: 10.1038/srep36510] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/17/2016] [Indexed: 12/26/2022] Open
Abstract
Comprehensive lipidomic profiling in three different brain tissues (cortex, hippocampus, and hypothalamus) of mouse with p53 deficiency was performed by nanoflow liquid chromatography-tandem mass spectrometry (nLC-MS/MS) and the profile was compared with that of the wild type. p53 gene is a well-known tumour suppressor that prevents genome mutations that can cause cancers. More than 300 lipids (among 455 identified species), including phospholipids (PLs), sphingolipids, ceramides (Cers), and triacylglycerols (TAGs) were quantitatively analysed by selective reaction monitoring (SRM) of nanoflow ultrahigh performance liquid chromatography-electrospray ionization-tandem mass spectrometry (nUPLC-ESI-MS/MS). Among the three different neural tissues, hypothalamus demonstrated the most evident lipid profile changes upon p53 knockout. Alterations of PLs containing acyl chains of docosahexaenoic acid and arachidonic acid (highly enriched polyunsaturated fatty acids in the nervous system) were examined in relation to cell apoptosis upon p53 knockout. Comparison between sphingomyelins (SMs) and Cers showed that the conversion of SM to Cer did not effectively progress in the hypothalamus, resulting in the accumulation of SMs, possibly due to the inhibition of apoptosis caused by the lack of p53. Furthermore, TAGs were considerably decreased only in the hypothalamus, indicative of lipolysis that led to substantial weight loss of adipose tissue and muscles.
Collapse
|
50
|
Colin J, Gregory-Pauron L, Lanhers MC, Claudepierre T, Corbier C, Yen FT, Malaplate-Armand C, Oster T. Membrane raft domains and remodeling in aging brain. Biochimie 2016; 130:178-187. [DOI: 10.1016/j.biochi.2016.08.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/31/2016] [Indexed: 12/21/2022]
|