1
|
Smith ME, Bazinet RP. Unraveling brain palmitic acid: Origin, levels and metabolic fate. Prog Lipid Res 2024; 96:101300. [PMID: 39222711 DOI: 10.1016/j.plipres.2024.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
In the human brain, palmitic acid (16:0; PAM) comprises nearly half of total brain saturates and has been identified as the third most abundant fatty acid overall. Brain PAM supports the structure of membrane phospholipids, provides energy, and regulates protein stability. Sources underlying the origin of brain PAM are both diet and endogenous synthesis via de novo lipogenesis (DNL), primarily from glucose. However, studies investigating the origin of brain PAM are limited to tracer studies utilizing labelled (14C/11C/3H/2H) PAM, and results vary based on the model and tracer used. Nevertheless, there is evidence PAM is synthesized locally in the brain, in addition to obtained directly from the diet. Herein, we provide an overview of brain PAM origin, entry to the brain, metabolic fate, and factors influencing brain PAM kinetics and levels, the latter in the context of age, as well as neurological diseases and psychiatric disorders. Additionally, we briefly summarize the role of PAM in signaling at the level of the brain. We add to the literature a rudimentary summary on brain PAM metabolism.
Collapse
Affiliation(s)
- Mackenzie E Smith
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
2
|
Longarzo ML, Vázquez RF, Bellini MJ, Zamora RA, Redondo-Morata L, Giannotti MI, Oliveira Jr ON, Fanani ML, Maté SM. Understanding the effects of omega-3 fatty acid supplementation on the physical properties of brain lipid membranes. iScience 2024; 27:110362. [PMID: 39071883 PMCID: PMC11277689 DOI: 10.1016/j.isci.2024.110362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/24/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024] Open
Abstract
A deficiency in omega-3 fatty acids (ω3 FAs) in the brain has been correlated with cognitive impairment, learning deficiencies, and behavioral changes. In this study, we provided ω3 FAs as a supplement to spontaneously hypertensive rats (SHR+ ω3). Our focus was on examining the impact of dietary supplementation on the physicochemical properties of the brain-cell membranes. Significant increases in ω3 levels in the cerebral cortex of SHR+ ω3 were observed, leading to alterations in brain lipid membranes molecular packing, elasticity, and lipid miscibility, resulting in an augmented phase disparity. Results from synthetic lipid mixtures confirmed the disordering effect introduced by ω3 lipids, showing its consequences on the hydration levels of the monolayers and the organization of the membrane domains. These findings suggest that dietary ω3 FAs influence the organization of brain membranes, providing insight into a potential mechanism for the broad effects of dietary fat on brain health and disease.
Collapse
Affiliation(s)
- María L. Longarzo
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, (1900), La Plata, Argentina
| | - Romina F. Vázquez
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, (1900), La Plata, Argentina
| | - María J. Bellini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, (1900), La Plata, Argentina
| | - Ricardo A. Zamora
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Instituto de Investigación Interdisciplinaria (I³), Vicerrectoría Académica, and Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Campus Lircay, Talca 3460000, Chile
| | - Lorena Redondo-Morata
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017, CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Marina I. Giannotti
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- CIBER-BBN, ISCIII, 08028 Barcelona, Spain
- Department of Materials Science and Physical Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Osvaldo N. Oliveira Jr
- São Carlos Institute of Physics (IFSC-USP), University of São Paulo, 13566-590 São Carlos, São Paulo, Brazil
| | - María L. Fanani
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Cordoba, Argentina
- Departamento de Química Biológica Raquel Caputto, Facultad de Cs. Químicas, Universidad Nacional de Córdoba. Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | - Sabina M. Maté
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, (1900), La Plata, Argentina
| |
Collapse
|
3
|
Nasri K, Ben Jamaa N, Siala Gaigi S, Feki M, Marrakchi R. Docosahexaenoic acid, eicosapentaenoic acid, arachidonic acid, and neural tube defects in Tunisian population. Birth Defects Res 2024; 116:e2372. [PMID: 38877667 DOI: 10.1002/bdr2.2372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/01/2024] [Accepted: 05/09/2024] [Indexed: 06/16/2024]
Abstract
OBJECTIVE To determine the effect of maternal status in (plasma and red blood cell) folate, vitamin B12, homocysteine, and vitamin D, as well as their interaction with MTHFR (C677T and A1298C) and MTRR A66G polymorphisms, on maternal plasma docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and arachidonic acid (ARA) levels and the risk of neural tube defects (NTDs). METHODS ARA, EPA, and DHA composition was assessed using capillary gas chromatography. RESULTS ARA and DHA levels were higher in controls than in case mothers for low plasma folate status. For low red blood cell folate status, DHA levels were higher in controls than in case mothers. For high homocysteine levels, ARA and DHA levels were higher in controls than in case mothers. NTD mothers had lower EPA and DHA levels for low vitamin B12 levels. NTD mothers had lower DHA levels for low vitamin D levels. For low plasma folate status, DHA levels in the MTHFR C677T gene and ARA and EPA levels in MTHFR A1298C gene were different among the three genotypes in case mothers. DHA levels in the MTHFR C677T gene were different among the three genotypes in case mothers for both low and high homocysteine levels. For low vitamin B12 levels, ARA and DHA levels were different among the three genotypes of the MTHFR C677T gene in case mothers. In the MTHFR C677T gene, ARA and DHA levels were different among the three genotypes in case mothers for low vitamin D levels. CONCLUSIONS More advanced research is required to verify a suitable biochemical parameter status in relation to the genotypes in pregnant women.
Collapse
Affiliation(s)
- Kaouther Nasri
- Faculty of Sciences of Bizerte, University of Carthage, Bizerte, Tunisia
- Service of Embryo-Fetopathology, Center for Maternity and Neonatology of Tunis, Tunis El Manar University, Tunis, Tunisia
| | - Nadia Ben Jamaa
- Department of Histology-Embryology, Faculty of Medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| | - Soumeya Siala Gaigi
- Service of Embryo-Fetopathology, Center for Maternity and Neonatology of Tunis, Tunis El Manar University, Tunis, Tunisia
| | - Moncef Feki
- Department of Biochemistry, Rabta Hospital, Tunis El Manar University, Tunis, Tunisia
| | - Raja Marrakchi
- Laboratory of Human Genetics, Immunology and Pathology, Faculty of Sciences of Tunis, Tunis El Manar University, Tunis, Tunisia
| |
Collapse
|
4
|
Zhang H, He Y, Song C, Chai Z, Liu C, Sun S, Huang Q, He C, Zhang X, Zhou Y, Zhao F. Analysis of fatty acid composition and sensitivity to dietary n-3 PUFA intervention of mouse n-3 PUFA-enriched tissues/organs. Prostaglandins Leukot Essent Fatty Acids 2023; 192:102568. [PMID: 37003143 DOI: 10.1016/j.plefa.2023.102568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
PURPOSE n-3 polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA; C22:6 n3) and eicosapentaenoic acid (EPA; C20:5 n3), are of concern for their health-promoting effects such as anti-inflammatory, but the tissue selectivity for n-3 PUFA (i.e., which tissues and organs are rich in n-3 PUFA) is still not well known. In addition, it is unclear which tissues and organs are more sensitive to n-3 PUFA intervention. These unresolved issues have greatly hindered the exploring of the health benefits of n-3 PUFA. METHODS Twenty-four 7-week-old male C57BL/6 J mice were assigned to the control, fish oil, DHA, and EPA groups. The last three groups were given a 4-week oral intervention of fatty acids in ethyl ester (400 mg/kg bw). The fatty acid profiles in 27 compartments were determined by gas chromatography. RESULTS The proportion of long-chain n-3 PUFA (the total relative percentage of EPA, DPA n3, and DHA) was analyzed. Eight tissues and organs, including the brain (cerebral cortex, hippocampus, hypothalamus) and peripheral organs (tongue, quadriceps, gastrocnemius, kidney, and heart) were determined as being n-3 PUFA-enriched tissues and organs, owing to their high n-3 PUFA levels. The highest n-3 PUFA content was observed in the tongue for the first time. Notably, the content of linoleic acid (LA; C18:2 n6c) in peripheral organs was observed to be relatively high compared with that in the brain. Interestingly, the proportions of EPA in the kidney, heart, quadriceps, gastrocnemius, and tongue increased more markedly after the EPA intervention than after the DHA or fish oil intervention. As expected, the levels of proinflammatory arachidonic acid (AA; C20:4 n6) in the kidney, quadriceps, and tongue were markedly decreased after the three dietary interventions. CONCLUSION Peripheral tissues and organs, including the tongue, quadriceps, gastrocnemius, kidney, and heart, besides the brain, showed obvious tissue selectivity for n-3 PUFA. In the whole body of mice, the tongue exhibits the strongest preference for n-3 PUFA, with the highest proportion of n-3 PUFA. Moreover, these peripheral tissues and organs, especially the kidney, are more sensitive to dietary EPA administration in comparison with the brain.
Collapse
Affiliation(s)
- Hui Zhang
- School of Public Health, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Yannan He
- Institute of Nutrition & Health, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China; OmegaBandz.Inc, Shanghai, 1180 Xingxian Road, Shanghai, 201815, China
| | - Chunyan Song
- School of Public Health, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Zhenglong Chai
- School of Public Health, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Chundi Liu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Shuben Sun
- The Affiliated Hospital of Medical School, Ningbo University, Institute of Digestive Disease of Ningbo University, Ningbo, Zhejiang, 315020, China
| | - Qiuhan Huang
- School of Public Health, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Canxia He
- School of Public Health, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Xiaohong Zhang
- School of Public Health, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China.
| | - Yuping Zhou
- The Affiliated Hospital of Medical School, Ningbo University, Institute of Digestive Disease of Ningbo University, Ningbo, Zhejiang, 315020, China
| | - Feng Zhao
- Institute of Nutrition & Health, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| |
Collapse
|
5
|
He W, Tran A, Chen CT, Loganathan N, Bazinet RP, Belsham DD. Oleate restores altered autophagic flux to rescue palmitate lipotoxicity in hypothalamic neurons. Mol Cell Endocrinol 2022; 557:111753. [PMID: 35981630 DOI: 10.1016/j.mce.2022.111753] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 01/18/2023]
Abstract
Accumulation of excess lipids in non-adipose tissues, such as the hypothalamus, is termed lipotoxicity and causative of free fatty acid-mediated pathology in metabolic disease. This study aimed to elucidate the molecular mechanisms behind oleate (OA)- and palmitate (PA)-mediated changes in hypothalamic neurons. Using the well-characterized hypothalamic neuronal cell model, mHypoE-46, we assessed gene changes through qRT-PCR, cell death with quantitative imaging, PA metabolism using stable isotope labeling, and cellular mechanisms using pharmacological modulation of lipid metabolism and autophagic flux. Palmitate (PA) disrupts gene expression, including Npy, Grp78, and Il-6 mRNA in mHypoE-46 hypothalamic neurons. Blocking PA metabolism using triacsin-C prevented the increase of these genes, implying that these changes depend on PA intracellular metabolism. Co-incubation with oleate (OA) is also potently protective and prevents cell death induced by increasing concentrations of PA. However, OA does not decrease U-13C-PA incorporation into diacylglycerol and phospholipids. Remarkably, OA can reverse PA toxicity even after significant PA metabolism and cellular impairment. OA can restore PA-mediated impairment of autophagy to prevent or reverse the accumulation of PA metabolites through lysosomal degradation, and not through other reported mechanisms. The autophagic flux inhibitor chloroquine (CQ) mimics PA toxicity by upregulating autophagy-related genes, Npy, Grp78, and Il-6, an effect partially reversed by OA. CQ also prevented the OA defense against PA toxicity, whereas the autophagy inducer rapamycin provided some protection. Thus, PA impairment of autophagic flux significantly contributes to its lipotoxicity, and OA-mediated protection requires functional autophagy. Overall, our results suggest that impairment of autophagy contributes to hypothalamic lipotoxicity.
Collapse
Affiliation(s)
- Wenyuan He
- Department of Physiology, University of Toronto, Ontario, Canada
| | - Andy Tran
- Department of Physiology, University of Toronto, Ontario, Canada
| | - Chuck T Chen
- Department of Nutritional Sciences, University of Toronto, Ontario, Canada
| | | | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, Ontario, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Ontario, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Patan MJ, Kennedy DO, Husberg C, Hustvedt SO, Calder PC, Khan J, Forster J, Jackson PA. Supplementation with oil rich in eicosapentaenoic acid, but not in docosahexaenoic acid, improves global cognitive function in healthy, young adults: results from randomized controlled trials. Am J Clin Nutr 2021; 114:914-924. [PMID: 34113957 PMCID: PMC8408864 DOI: 10.1093/ajcn/nqab174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/28/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Evidence regarding the effects of the omega-3 (ɷ-3) PUFAs (n-3 PUFAs) DHA and EPA on cognition is lacking. OBJECTIVES We investigated whether supplementation with oils rich in EPA or DHA improves cognition, prefrontal cortex (PFC) hemoglobin (Hb) oxygenation, and memory consolidation. METHODS Healthy adults (n = 310; age range: 25-49 y) completed a 26-wk randomized controlled trial in which they consumed either 900 mg DHA/d and 270 mg EPA/d (DHA-rich oil), 360 mg DHA/d and 900 mg EPA/d (EPA-rich oil), or 3000 mg/d refined olive oil (placebo). Cognitive performance and memory consolidation were assessed via computerized cognitive test battery. PFC Hb oxygenation was measured using near infrared spectroscopy (NIRS). RESULTS Both global accuracy and speed improved with EPA-rich oil compared with placebo and DHA-rich oil [EPA vs. placebo accuracy: estimated marginal mean (EMM) = 0.17 (95% CI: 0.09, 0.24) vs. EMM = 0.03 (95% CI = -0.04, 0.11); P = 0.044; EPA vs. placebo speed: EMM = -0.15 (95% CI: -0.22, -0.07) vs. EMM = 0.03 (95% CI: -0.05, 0.10); P = 0.003]. Accuracy of memory was improved with EPA compared with DHA [EMM = 0.66 (95% CI: 0.26, 1.06) vs. EMM = -0.08 (95% CI: -0.49, 0.33); P = 0.034]. Both EPA- and DHA-rich oils showed trends towards reduced PFC oxygenated Hb (oxy-Hb) compared with placebo [placebo: EMM = 27.36 µM (95% CI: 25.73, 28.98); DHA: EMM = 24.62 µM (95% CI: 22.75, 26.48); P = 0.060; EPA: EMM = 24.97 µM (95% CI: 23.35, 26.59); P = 0.082]. CONCLUSIONS EPA supplementation improved global cognitive function and was superior to the oil enriched with DHA. Interpreted within a neural efficiency framework, reduced PFC oxygenated Hb suggests that n-3 PUFAs may be associated with increased efficiency.These trials were registered in the clinical trials registry (https://clinicaltrials.gov/) as NCT03158545, NCT03592251, NCT02763514.
Collapse
Affiliation(s)
- Michael J Patan
- Brain Performance and Nutrition Research Centre, Northumbria University, Newcastle Upon Tyne, United Kingdom
| | - David O Kennedy
- Brain Performance and Nutrition Research Centre, Northumbria University, Newcastle Upon Tyne, United Kingdom
| | | | | | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- National Institute of Health Research Southampton Biomedical Research Centre, University Hospital Southampton National Health Service Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Julie Khan
- Brain Performance and Nutrition Research Centre, Northumbria University, Newcastle Upon Tyne, United Kingdom
| | - Joanne Forster
- Brain Performance and Nutrition Research Centre, Northumbria University, Newcastle Upon Tyne, United Kingdom
| | - Philippa A Jackson
- Brain Performance and Nutrition Research Centre, Northumbria University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
7
|
Morgese MG, Schiavone S, Bove M, Colia AL, Dimonte S, Tucci P, Trabace L. N-3 PUFA Prevent Oxidative Stress in a Rat Model of Beta-Amyloid-Induced Toxicity. Pharmaceuticals (Basel) 2021; 14:ph14040339. [PMID: 33917814 PMCID: PMC8068120 DOI: 10.3390/ph14040339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 12/11/2022] Open
Abstract
Polyunsaturated fatty acids (PUFA) are involved in brain disorders associated to amyloid beta (Aβ) toxicity for which oxidative stress, neurochemical dysfunctions, and neuroinflammation are underlying mechanisms. Here, mechanisms through which lifelong exposure to n-3 PUFA-enriched or n-6/n-3 balanced diets could elicit a protective role in a rat model of Aβ-induced toxicity were investigated. To this aim, we quantified hippocampal reactive oxygen species (ROS) amount, 8-hydroxy-2'-deoxyguanosine and interleukin-10 levels, NADPH oxidase (NOX) 1, NOX2, superoxide dismutase 1, and glutathione contents, as well as plasmatic malondialdehyde. Moreover, in the same experimental groups, we assessed tryptophan, serotonin, and its turnover, kynurenine, and noradrenaline amounts. Results showed increased hippocampal ROS and NOX2 levels, serotonin turnover, kynurenine, and noradrenaline contents in Aβ-treated rats. Both n-6/n-3 balanced and n-3 PUFA enriched diets reduced ROS production, NOX1 and malondialdehyde levels, serotonin turnover, and kynurenine amount in Aβ-injected rats, while increasing NOX2, superoxide dismutase 1, and serotonin contents. No differences in plasmatic coenzyme Q10, reduced glutathione (GSH) and tryptophan levels were detected among different experimental groups, whereas GSH + oxidized glutathione (GSSG) levels were increased in sham animals fed with n-3 PUFA enriched diet and in Aβ-treated rats exposed to both n-6/n-3 balanced and n-3 enriched diets. In addition, Aβ-induced decrease of interleukin-10 levels was prevented by n-6/n-3 PUFA balanced diet. N-3 PUFA enriched diet further increased interleukin-10 and 8-hydroxy-2'-deoxyguanosine levels. In conclusion, our data highlight the possible neuroprotective role of n-3 PUFA in perturbation of oxidative equilibrium induced by Aβ-administration.
Collapse
|
8
|
Peng S, Peng Z, Qin M, Huang L, Zhao B, Wei L, Ning J, Tuo QH, Yuan TF, Shi Z, Liao DF. Targeting neuroinflammation: The therapeutic potential of ω-3 PUFAs in substance abuse. Nutrition 2020; 83:111058. [PMID: 33360033 DOI: 10.1016/j.nut.2020.111058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/23/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022]
Abstract
Substance abuse is a chronic relapsing disorder that results in serious health and socioeconomic issues worldwide. Addictive drugs induce long-lasting morphologic and functional changes in brain circuits and account for the formation of compulsive drug-seeking and drug-taking behaviors. Yet, there remains a lack of reliable therapy. In recent years, accumulating evidence indicated that neuroinflammation was implicated in the development of drug addiction. Findings from both our and other laboratories suggest that ω-3 polyunsaturated fatty acids (PUFAs) are effective in treating neuroinflammation-related mental diseases, and indicate that they could exert positive effects in treating drug addiction. Thus, in the present review, we summarized and evaluated recently published articles reporting the neuroinflammation mechanism in drug addiction and the immune regulatory ability of ω-3 PUFAs. We also sought to identify some of the challenges ahead in the translation of ω-3 PUFAs into addiction treatment.
Collapse
Affiliation(s)
- Sha Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Hunan, China
| | - Zhuang Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Hunan, China
| | - Meng Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lu Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Bin Zhao
- Xinxiang Key Laboratory of Forensic Toxicology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lai Wei
- Xinxiang Key Laboratory of Forensic Toxicology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, China
| | - Jie Ning
- Department of Metabolic Endocrinology, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Qin-Hui Tuo
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Hunan, China
| | - Ti-Fei Yuan
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Zhe Shi
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Hunan, China.
| | - Duan-Fang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Hunan, China.
| |
Collapse
|
9
|
Bazinet RP, Metherel AH, Chen CT, Shaikh SR, Nadjar A, Joffre C, Layé S. Brain eicosapentaenoic acid metabolism as a lead for novel therapeutics in major depression. Brain Behav Immun 2020; 85:21-28. [PMID: 31278982 DOI: 10.1016/j.bbi.2019.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
The results of several meta-analyses suggest that eicosapentaenoic acid (EPA) supplementation is therapeutic in managing the symptoms of major depression. It was previously assumed that because EPA is extremely low in the brain it did not cross the blood-brain barrier and any therapeutic effects it exerted would be via the periphery. However, more recent studies have established that EPA does enter the brain, but is rapidly metabolised following entry. While EPA does not accumulate within the brain, it is present in microglia and homeostatic mechanisms may regulate its esterification to phospholipids that serve important roles in cell signaling. Furthermore, a variety of signaling molecules from EPA have been described in the periphery and they have the potential to exert effects within the brain. If EPA is confirmed to be therapeutic in major depression as a result of adequately powered randomized clinical trials, future research on brain EPA metabolism could lead to the discovery of novel targets for treating or preventing major depression.
Collapse
Affiliation(s)
- Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada.
| | - Adam H Metherel
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Chuck T Chen
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, North Bethesda, MD 20852, United States
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health & School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Agnes Nadjar
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Université de Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Corinne Joffre
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Université de Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Sophie Layé
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Université de Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| |
Collapse
|
10
|
Joffre C, Dinel AL, Chataigner M, Pallet V, Layé S. n-3 Polyunsaturated Fatty Acids and Their Derivates Reduce Neuroinflammation during Aging. Nutrients 2020; 12:nu12030647. [PMID: 32121189 PMCID: PMC7146513 DOI: 10.3390/nu12030647] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/15/2022] Open
Abstract
: Aging is associated to cognitive decline, which can lead to loss of life quality, personal suffering, and ultimately neurodegenerative diseases. Neuroinflammation is one of the mechanisms explaining the loss of cognitive functions. Indeed, aging is associated to the activation of inflammatory signaling pathways, which can be targeted by specific nutrients with anti-inflammatory effects. Dietary n-3 polyunsaturated fatty acids (PUFAs) are particularly attractive as they are present in the brain, possess immunomodulatory properties, and are precursors of lipid derivates named specialized pro-resolving mediators (SPM). SPMs are crucially involved in the resolution of inflammation that is modified during aging, resulting in chronic inflammation. In this review, we first examine the effect of aging on neuroinflammation and then evaluate the potential beneficial effect of n-3 PUFA as precursors of bioactive derivates, particularly during aging, on the resolution of inflammation. Lastly, we highlight evidence supporting a role of n-3 PUFA during aging.
Collapse
Affiliation(s)
- Corinne Joffre
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.C.); (V.P.); (S.L.)
- Correspondence:
| | - Anne-Laure Dinel
- NutriBrain Research and Technology Transfer, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Mathilde Chataigner
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.C.); (V.P.); (S.L.)
- Abyss Ingredients, 56850 Caudan, France
| | - Véronique Pallet
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.C.); (V.P.); (S.L.)
| | - Sophie Layé
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.C.); (V.P.); (S.L.)
| |
Collapse
|
11
|
Pakiet A, Jakubiak A, Czumaj A, Sledzinski T, Mika A. The effect of western diet on mice brain lipid composition. Nutr Metab (Lond) 2019; 16:81. [PMID: 31788013 PMCID: PMC6880556 DOI: 10.1186/s12986-019-0401-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022] Open
Abstract
Background The appropriate fatty acids composition of brain lipids is critical for functioning of this organ. The alterations of brain fatty acids composition may lead to neurological and neurodegenerative diseases. Methods The aim of this work was to evaluate the effect of western diet containing high fat content on fatty acid composition of brain lipids. In this study we used mice fed high fat diet (HFD) for 19 weeks. Brain lipids were separated by SPE extraction and fatty acid composition in chow, mice serum, brain and other tissues was analyzed by GC-MS method. Results The body weight and adipose tissue weigh of mice after HFD increased significantly. The concentrations of most of fatty acids in serum of mice after HFD increased, due to their higher delivery from food. Unexpectedly the serum eicosapentaenoic acid (EPA) concentration was lower in mice after HFD than in controls. Also the brain, and other tissue EPA content was lower. Among studied groups of brain lipids EPA was significantly decreased in phospholipids and sphingolipids. Conclusions Considering important role of brain EPA including maintaining of appropriate composition of cell membrane lipids and anti-inflammatory properties we conclude that decrease of brain EPA after western diet may result in impaired brain function.
Collapse
Affiliation(s)
- Alicja Pakiet
- 1Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Agnieszka Jakubiak
- 2Tri-City Academic Laboratory Animal Centre - Research & Services Centre, Medical University of Gdansk, Gdansk, Poland
| | - Aleksandra Czumaj
- 3Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Tomasz Sledzinski
- 3Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Adriana Mika
- 1Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.,3Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| |
Collapse
|
12
|
Joffre C, Rey C, Layé S. N-3 Polyunsaturated Fatty Acids and the Resolution of Neuroinflammation. Front Pharmacol 2019; 10:1022. [PMID: 31607902 PMCID: PMC6755339 DOI: 10.3389/fphar.2019.01022] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/12/2019] [Indexed: 12/22/2022] Open
Abstract
In the past few decades, as a result of their anti-inflammatory properties, n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFAs), have gained greater importance in the regulation of inflammation, especially in the central nervous system (in this case known as neuroinflammation). If sustained, neuroinflammation is a common denominator of neurological disorders, including Alzheimer’s disease and major depression, and of aging. Hence, limiting neuroinflammation is a real strategy for neuroinflammatory disease therapy and treatment. Recent data show that n-3 LC-PUFAs exert anti-inflammatory properties in part through the synthesis of specialized pro-resolving mediators (SPMs) such as resolvins, maresins and protectins. These SPMs are crucially involved in the resolution of inflammation. They could be good candidates to resolve brain inflammation and to contribute to neuroprotective functions and could lead to novel therapeutics for brain inflammatory diseases. This review presents an overview 1) of brain n-3 LC-PUFAs as precursors of SPMs with an emphasis on the effect of n-3 PUFAs on neuroinflammation, 2) of the formation and action of SPMs in the brain and their biological roles, and the possible regulation of their synthesis by environmental factors such as inflammation and nutrition and, in particular, PUFA consumption.
Collapse
Affiliation(s)
- Corinne Joffre
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France.,Université de Bordeaux 2, Bordeaux, France
| | - Charlotte Rey
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France.,Université de Bordeaux 2, Bordeaux, France.,ITERG, Nutrition Health and Lipid Biochemistry Department, Canéjan, France
| | - Sophie Layé
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France.,Université de Bordeaux 2, Bordeaux, France
| |
Collapse
|
13
|
Oxylipin concentration, but not fatty acid composition, is altered in human donor milk pasteurised using both thermal and non-thermal techniques. Br J Nutr 2019; 122:47-55. [PMID: 31006410 DOI: 10.1017/s0007114519000916] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Human donor milk (DM) is Holder pasteurised (62·5°C, 30 min) to ensure its microbiological safety for infant consumption. In low-resource settings, flash heating is used to pasteurise milk. Although there is considerable interest in non-thermal alternatives (high hydrostatic pressure processing (HHP) and UVC irradiation) for pasteurisation, their effect on the fatty acid composition is not well understood. Of particular interest is the effect of pasteurisation on the generation of oxylipins. DM from eight mothers containing bacteria >5 × 107 colony-forming units/l was used. In a paired design, each pool of milk underwent four pasteurisation techniques: Holder; flash heating; UVC (250 nm, 25 min) and HHP (500 MPa, 8 min). Fatty acids were quantified by GC-flame ionisation detection and oxylipins derived from arachidonic acid; 18-carbon PUFA (α-linolenic acid, linoleic acid and γ-linolenic acid) and EPA/DHA were measured by liquid chromatography-tandem MS in aliquots of raw and processed milk. There were no significant changes to the composition of fatty acids following all pasteurisation techniques compared with raw milk. The n-6:n-3 ratio remained constant ranging from 6·4 to 6·6. Several arachidonic acid-derived oxylipins were highest post-UVC and elevated post-HHP compared with raw milk. Several oxylipins derived from 18-carbon PUFA (linoleic and α-linolenic acids) were elevated in UVC-treated milk. EPA/DHA-derived oxylipins were on average, unaffected by pasteurisation. Although some PUFA-derived oxylipins were increased following UVC and HHP, no method affected the fatty acid composition of human DM. Further research is needed to determine if varying levels of oxylipins in human DM as a result of processing can potentially mediate cellular signalling; proliferation and apoptosis, especially important for preterm infant development.
Collapse
|
14
|
Lacombe RJS, Giuliano V, Chouinard-Watkins R, Bazinet RP. Natural Abundance Carbon Isotopic Analysis Indicates the Equal Contribution of Local Synthesis and Plasma Uptake to Palmitate Levels in the Mouse Brain. Lipids 2018; 53:481-490. [DOI: 10.1002/lipd.12046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/15/2018] [Accepted: 05/01/2018] [Indexed: 11/11/2022]
Affiliation(s)
- R. J. Scott Lacombe
- Department of Nutritional Sciences, Faculty of Medicine; University of Toronto, 150 College St., Room 306, FitzGerald Building; Toronto Ontario M5S3E2 Canada
| | - Vanessa Giuliano
- Department of Nutritional Sciences, Faculty of Medicine; University of Toronto, 150 College St., Room 306, FitzGerald Building; Toronto Ontario M5S3E2 Canada
| | - Raphaël Chouinard-Watkins
- Department of Nutritional Sciences, Faculty of Medicine; University of Toronto, 150 College St., Room 306, FitzGerald Building; Toronto Ontario M5S3E2 Canada
| | - Richard P. Bazinet
- Department of Nutritional Sciences, Faculty of Medicine; University of Toronto, 150 College St., Room 306, FitzGerald Building; Toronto Ontario M5S3E2 Canada
| |
Collapse
|
15
|
Trépanier MO, Hildebrand KD, Nyamoya SD, Amor S, Bazinet RP, Kipp M. Phosphatidylcholine 36:1 concentration decreases along with demyelination in the cuprizone animal model and in post-mortem multiple sclerosis brain tissue. J Neurochem 2018; 145:504-515. [DOI: 10.1111/jnc.14335] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/27/2018] [Accepted: 01/30/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Marc-Olivier Trépanier
- Department of Nutritional Sciences; Faculty of Medicine; University of Toronto; Toronto Ontario Canada
| | - Kayla D. Hildebrand
- Department of Nutritional Sciences; Faculty of Medicine; University of Toronto; Toronto Ontario Canada
| | - Stella D. Nyamoya
- Department of Neuroanatomy; Ludwig-Maximilians-University of Munich; Munich Germany
| | - Sandra Amor
- Department of Pathology; VU University Medical Centre; Amsterdam The Netherlands
- Blizard Institute; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; London UK
| | - Richard P. Bazinet
- Department of Nutritional Sciences; Faculty of Medicine; University of Toronto; Toronto Ontario Canada
| | - Markus Kipp
- Department of Neuroanatomy; Ludwig-Maximilians-University of Munich; Munich Germany
| |
Collapse
|
16
|
Fish oil feeding attenuates neuroinflammatory gene expression without concomitant changes in brain eicosanoids and docosanoids in a mouse model of Alzheimer's disease. Brain Behav Immun 2018; 69:74-90. [PMID: 29109025 DOI: 10.1016/j.bbi.2017.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/16/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Neuroinflammation is a recognized hallmark of Alzheimer's disease, along with accumulation of amyloid-β plaques, neurofibrillary tangles and synaptic loss. n-3 polyunsaturated fatty acids (PUFA) and molecules derived from them, including eicosapentaenoic acid-derived eicosanoids and docosahexaenoic acid-derived docosanoids, are known to have both anti-inflammatory and pro-resolving properties, while human observational data links consumption of these fatty acids to a decreased risk of Alzheimer's disease. Few studies have examined the neuroinflammation-modulating effects of n-3 PUFA feeding in an Alzheimer's disease-related model, and none have investigated whether these effects are mediated by changes in brain eicosanoids and docosanoids. Here, we use both a fat-1 transgenic mouse and a fish oil feeding model to study the impact of increasing tissue n-3 PUFA on neuroinflammation and the production of pro-inflammatory and pro-resolving lipid mediators. METHODS Fat-1 mice, transgenic animals that can convert n-6 to n-3 PUFA, and their wildtype littermates were fed diets containing either fish oil (high n-3 PUFA) or safflower oil (negligible n-3 PUFA) from weaning to 12 weeks. Animals then underwent intracerebroventricular infusion of either amyloid-β 1-40 or a control peptide. Hippocampi were collected from non-surgery and surgery animals 10 days after infusion. Microarray was used to measure enrichment of inflammation-associated gene categories and expression of genes involved in the synthesis of lipid mediators. Results were validated by real-time PCR in a separate cohort of animals. Lipid mediators were measured via liquid chromatography tandem mass spectrometry. RESULTS Fat-1 and wildtype mice fed fish oil had higher total hippocampal DHA than wildtype mice fed the safflower oil diet. The safflower-fed mice, but not the fat-1 or fish oil-fed mice, had significantly increased expression in gene ontology categories associated with inflammation in response to amyloid-β infusion. These effects were independent of changes in the expression of genes involved in the synthesis of eicosanoids or docosanoids in any group. Gene expression was replicated upon validation in the wildtype safflower and fish oil-fed, but not the fat-1 mice. Protectin, maresin and D and E series resolvins were not detected in any sample. There were no major differences in levels of other eicosanoids or docosanoids between any of the groups in response to amyloid-β infusion. CONCLUSIONS Fish oil feeding decreases neuroinflammatory gene expression in response to amyloid-β. Neither amyloid-β infusion or increasing brain DHA affects the brain concentrations of specialized pro-resolving mediators in this model, or the concentrations of most other eicosanoids and docosanoids.
Collapse
|
17
|
Wen M, Ding L, Zhang L, Cong P, Zhang T, Xu J, Chang Y, Wang Y, Xue C. A comparative study of eicosapentaenoic acid enriched phosphatidylcholine and ethyl ester in improving cognitive deficiency in Alzheimer's disease model rats. Food Funct 2018. [DOI: 10.1039/c7fo01815k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular mechanisms of EPA-PC and EPA-EE in improving Aβ-induced cognitive deficiency in rats.
Collapse
Affiliation(s)
- Min Wen
- Institute of BioPharmaceutical Research
- Liaocheng University
- Liaocheng 252059
- P.R. China
- College of Food Science and Engineering
| | - Lin Ding
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P.R. China
| | - Lingyu Zhang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P.R. China
| | - Peixu Cong
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P.R. China
| | - Tiantian Zhang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P.R. China
| | - Jie Xu
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P.R. China
| | - Yaoguang Chang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P.R. China
| | - Yuming Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P.R. China
- Qingdao National Laboratory for Marine Science and Technology
| | - Changhu Xue
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P.R. China
- Qingdao National Laboratory for Marine Science and Technology
| |
Collapse
|
18
|
N-3 PUFA diet enrichment prevents amyloid beta-induced depressive-like phenotype. Pharmacol Res 2017; 129:526-534. [PMID: 29203442 DOI: 10.1016/j.phrs.2017.11.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 12/31/2022]
Abstract
Among neuropsychiatric diseases, depression is one of the most prevalent. Many pathologies have been indicated as comorbid with depression and in particular, neurodegenerative disorders such as Alzheimer's diseases (AD). In this regard, several evidences endorse a strong relationship between depression and AD, so much that this mental illness has been proposed either as a risk factor for AD or as a prodromic AD phase. Furthermore, amyloid beta (Aβ) peptide, the main constituent of amyloid plaques commonly considered the principal hallmark of AD brains, has been shown to be increased, in its soluble form, in depressed patients. Accordingly, we have previously found that Aβ, intracerebroventricularly (i.c.v.) injected, is able to evoke a depressive-like profile in rats accompanied by low cortical serotonin and reduced neurotrophin content. Taking into account the great increase in AD and depression prevalence, many environmental factors have been under study, particularly dietary factors, and the role of polyunsaturated fatty acids (PUFA) is becoming central in this field of research. Thus, aim of the present study was to evaluate the neurobehavioral effects of lifelong exposure to either n-3 PUFA rich or n-3 PUFA poor diet after Aβ central administration. Results showed that n-3 PUFA enriched diet prevented the Aβ- induced depressive-like behaviors, as reveled by the reduction in the immobility time in the FST test. Furthermore, n-3 PUFA rich diet exposure reverted also serotonin and neurotrophin level reduction in prefrontal cortex of Aβ treated rats. Taken together, our data support the concept that supplementation of diet with n-3 PUFA represents a valid approach to reduce the risk of developing depressive symptoms, as well as reducing the risk of Aβ-related pathologies, such as AD.
Collapse
|
19
|
Hopperton KE, James NCE, Mohammad D, Irfan M, Bazinet RP. Dietary fish oil, and to a lesser extent the fat-1 transgene, increases astrocyte activation in response to intracerebroventricular amyloid-β 1-40 in mice. Nutr Neurosci 2017; 22:418-424. [PMID: 29113539 DOI: 10.1080/1028415x.2017.1396068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Increases in astrocytes and one of their markers, glial fibrillary acidic protein (GFAP) have been reported in the brains of patients with Alzheimer's disease (AD). N-3 polyunsaturated fatty acids (PUFA) modulate neuroinflammation in animal models; however, their effect on astrocytes is unclear. METHODS Fat-1 mice and their wildtype littermates were fed either a fish oil diet or a safflower oil diet deprived of n-3 PUFA. At 12 weeks, mice underwent intracerebroventricular infusion of amyloid-β 1-40. Astrocyte phenotype in the hippocampus was assessed at baseline and 10 days post-surgery using immunohistochemistry with various microscopy and image analysis techniques. RESULTS GFAP increased in all groups in response to amyloid-β, with a greater increase in fish oil-fed mice than either fat-1 or wildtype safflower oil-fed mice. Astrocytes in this group were also more hypertrophic, suggesting increased activation. Both fat-1- and fish oil-fed mice had greater increases in branch number and length in response to amyloid-β infusion than wildtype safflower animals. CONCLUSION Fish oil feeding, and to a lesser extent the fat-1 transgene, enhances the astrocyte activation phenotype in response to amyloid-β 1-40. Astrocytes in mice fed fish oil were more activated in response to amyloid-β than in fat-1 mice despite similar levels of hippocampal n-3 PUFA, which suggests that other fatty acids or dietary factors contribute to this effect.
Collapse
Affiliation(s)
- Kathryn E Hopperton
- a Department of Nutritional Sciences , University of Toronto , Toronto , Canada
| | - Nicholas C E James
- a Department of Nutritional Sciences , University of Toronto , Toronto , Canada
| | - Dana Mohammad
- b Department of Pharmacology and Toxicology , University of Toronto , Toronto , Canada
| | - Maha Irfan
- a Department of Nutritional Sciences , University of Toronto , Toronto , Canada
| | - Richard P Bazinet
- a Department of Nutritional Sciences , University of Toronto , Toronto , Canada
| |
Collapse
|
20
|
Alashmali SM, Kitson AP, Lin L, Lacombe RJS, Bazinet RP. Maternal dietary n-6 polyunsaturated fatty acid deprivation does not exacerbate post-weaning reductions in arachidonic acid and its mediators in the mouse hippocampus. Nutr Neurosci 2017; 22:223-234. [PMID: 28903622 DOI: 10.1080/1028415x.2017.1372160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The present study examines how lowering maternal dietary n-6 polyunsaturated fatty acids (PUFA) (starting from pregnancy) compared to offspring (starting from post-weaning) affect the levels of n-6 and n-3 fatty acids in phospholipids (PL) and lipid mediators in the hippocampus of mice. METHODS Pregnant mice were randomly assigned to consume either a deprived or an adequate n-6 PUFA diet during pregnancy and lactation (maternal exposure). On postnatal day (PND) 21, half of the male pups were weaned onto the same diet as their dams, and the other half were switched to the other diet for 9 weeks (offspring exposure). At PND 84, upon head-focused high-energy microwave irradiation, hippocampi were collected for PL fatty acid and lipid mediator analyses. RESULTS Arachidonic acid (ARA) concentrations were significantly decreased in both total PL and PL fractions, while eicosapentaenoic acid (EPA) concentrations were increased only in PL fractions upon n-6 PUFA deprivation of offspring, regardless of maternal exposure. Several ARA-derived eicosanoids were reduced, while some of the EPA-derived eicosanoids were elevated by n-6 PUFA deprivation in offspring. There was no effect of diet on docosahexaenoic acid (DHA) or DHA-derived docosanoids concentrations under either maternal or offspring exposure. DISCUSSION These results indicate that the maternal exposure to dietary n-6 PUFA may not be as important as the offspring exposure in regulating hippocampal ARA and some lipid mediators. Results from this study will be helpful in the design of experiments aimed at testing the significance of altering brain ARA levels over different stages of life.
Collapse
Affiliation(s)
- Shoug M Alashmali
- a Department of Nutritional Sciences, Faculty of Medicine , University of Toronto , Toronto , Canada
| | - Alex P Kitson
- a Department of Nutritional Sciences, Faculty of Medicine , University of Toronto , Toronto , Canada
| | - Lin Lin
- a Department of Nutritional Sciences, Faculty of Medicine , University of Toronto , Toronto , Canada
| | - R J Scott Lacombe
- a Department of Nutritional Sciences, Faculty of Medicine , University of Toronto , Toronto , Canada
| | - Richard P Bazinet
- a Department of Nutritional Sciences, Faculty of Medicine , University of Toronto , Toronto , Canada
| |
Collapse
|
21
|
Lacombe RJS, Giuliano V, Colombo SM, Arts MT, Bazinet RP. Compound-specific isotope analysis resolves the dietary origin of docosahexaenoic acid in the mouse brain. J Lipid Res 2017; 58:2071-2081. [PMID: 28694298 DOI: 10.1194/jlr.d077990] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/05/2017] [Indexed: 12/23/2022] Open
Abstract
DHA (22:6n-3) may be derived from two dietary sources, preformed dietary DHA or through synthesis from α-linolenic acid (ALA; 18:3n-3). However, conventional methods cannot distinguish between DHA derived from either source without the use of costly labeled tracers. In the present study, we demonstrate the proof-of-concept that compound-specific isotope analysis (CSIA) by GC-isotope ratio mass spectrometry (IRMS) can differentiate between sources of brain DHA based on differences in natural 13C enrichment. Mice were fed diets containing either purified ALA or DHA as the sole n-3 PUFA. Extracted lipids were analyzed by CSIA for natural abundance 13C enrichment. Brain DHA from DHA-fed mice was significantly more enriched (-23.32‰ to -21.92‰) compared with mice on the ALA diet (-28.25‰ to -27.49‰). The measured 13C enrichment of brain DHA closely resembled the dietary n-3 PUFA source, -21.86‰ and -28.22‰ for DHA and ALA, respectively. The dietary effect on DHA 13C enrichment was similar in liver and blood fractions. Our results demonstrate the effectiveness of CSIA, at natural 13C enrichment, to differentiate between the incorporation of preformed or synthesized DHA into the brain and other tissues without the need for tracers.
Collapse
Affiliation(s)
- R J Scott Lacombe
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Vanessa Giuliano
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Stefanie M Colombo
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Michael T Arts
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| |
Collapse
|
22
|
Ostermann AI, Reutzel M, Hartung N, Franke N, Kutzner L, Schoenfeld K, Weylandt KH, Eckert GP, Schebb NH. A diet rich in omega-3 fatty acids enhances expression of soluble epoxide hydrolase in murine brain. Prostaglandins Other Lipid Mediat 2017; 133:79-87. [PMID: 28583889 DOI: 10.1016/j.prostaglandins.2017.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/28/2017] [Accepted: 06/01/2017] [Indexed: 02/09/2023]
Abstract
Several studies suggest that intake of omega-3 polyunsaturated fatty acids (n3-PUFA) beneficially influences cognitive function. However, effects on the adult brain are not clear. Little is known about the impact of dietary intervention on the fatty acid profile in adult brain, the modulation in the expression of enzymes involved in fatty acid biosynthesis and metabolism as well as changes in resulting oxylipins. These questions were addressed in the present study in two independent n3-PUFA feeding experiments in mice. Supplementation of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA, 1% each in the diet) for 30days to adult NMRI and C57BL/6 mice led to a distinct shift in the brain PUFA pattern. While n3-PUFAs EPA, n3 docosapentaenoic acid and DHA were elevated, many n6-PUFAs were significantly decreased (except, e.g. C20:3 n6 which was increased). This shift in PUFAs was accompanied by immense differences in concentrations of oxidative metabolites derived from enzymatic conversion of PUFAs, esp. arachidonic acid whose products were uniformly decreased, and a modulation in the activity and expression pattern of delta-5 and delta-6 desaturases. In both mouse strains a remarkable increase in the soluble epoxide hydrolase (sEH) activity (decreased epoxy-FA concentrations and epoxy-FA to dihydroxy-FA-ratios) as well as sEH expression was observed. Taking the high biological activity of epoxy-FA, e.g. on blood flow and nociceptive signaling into account, this finding might be of relevance for the effects of n3-PUFAs in neurodegenerative diseases. On any account, our study suggests a new distinct regulation of brain PUFA and oxylipin pattern by supplementation of n3-PUFAs to adult rodents.
Collapse
Affiliation(s)
- Annika Irmgard Ostermann
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Martina Reutzel
- Institute of Nutritional Sciences, Justus-Liebig-University, Wilhelmstr. 20, 35392 Giessen, Germany
| | - Nicole Hartung
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Nicole Franke
- Institute of Nutritional Sciences, Justus-Liebig-University, Wilhelmstr. 20, 35392 Giessen, Germany
| | - Laura Kutzner
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Kirsten Schoenfeld
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Karsten-Henrich Weylandt
- Medical Department, Division of Hepatology and Gastroenterology (including Metabolic Diseases), Charité University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany; Experimental and Clinical Research Centre, Charité University Medicine, Campus Buch, Berlin, Germany; Medical Department, Division of Gastroenterology, Oncology, Hematology, Rheumatology and Diabetes, Ruppiner Kliniken, Brandenburg Medical School, Neuruppin, Germany
| | - Gunter Peter Eckert
- Institute of Nutritional Sciences, Justus-Liebig-University, Wilhelmstr. 20, 35392 Giessen, Germany
| | - Nils Helge Schebb
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany; Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany.
| |
Collapse
|
23
|
Neuromuscular adaptations to sprint interval training and the effect of mammalian omega-3 fatty acid supplementation. Eur J Appl Physiol 2017; 117:469-482. [DOI: 10.1007/s00421-017-3539-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 01/05/2017] [Indexed: 10/20/2022]
|
24
|
Shi SY, Luk CT, Schroer SA, Kim MJ, Dodington DW, Sivasubramaniyam T, Lin L, Cai EP, Lu SY, Wagner KU, Bazinet RP, Woo M. Janus Kinase 2 (JAK2) Dissociates Hepatosteatosis from Hepatocellular Carcinoma in Mice. J Biol Chem 2017; 292:3789-3799. [PMID: 28100771 DOI: 10.1074/jbc.m116.752519] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 12/29/2016] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma is an end-stage complication of non-alcoholic fatty liver disease (NAFLD). Inflammation plays a critical role in the progression of non-alcoholic fatty liver disease and the development of hepatocellular carcinoma. However, whether steatosis per se promotes liver cancer, and the molecular mechanisms that control the progression in this disease spectrum remain largely elusive. The Janus kinase signal transducers and activators of transcription (JAK-STAT) pathway mediates signal transduction by numerous cytokines that regulate inflammation and may contribute to hepatocarcinogenesis. Mice with hepatocyte-specific deletion of JAK2 (L-JAK2 KO) develop extensive fatty liver spontaneously. We show here that this simple steatosis was insufficient to drive carcinogenesis. In fact, L-JAK2 KO mice were markedly protected from chemically induced tumor formation. Using the methionine choline-deficient dietary model to induce steatohepatitis, we found that steatohepatitis development was completely arrested in L-JAK2 KO mice despite the presence of steatosis, suggesting that JAK2 is the critical factor required for inflammatory progression in the liver. In line with this, L-JAK2 KO mice exhibited attenuated inflammation after chemical carcinogen challenge. This was associated with increased hepatocyte apoptosis without elevated compensatory proliferation, thus thwarting expansion of transformed hepatocytes. Taken together, our findings identify an indispensable role of JAK2 in hepatocarcinogenesis through regulating critical inflammatory pathways. Targeting the JAK-STAT pathway may provide a novel therapeutic option for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Sally Yu Shi
- From the Toronto General Hospital Research Institute, Toronto, Ontario M5G 2C4, Canada.,the Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Cynthia T Luk
- From the Toronto General Hospital Research Institute, Toronto, Ontario M5G 2C4, Canada.,the Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Stephanie A Schroer
- From the Toronto General Hospital Research Institute, Toronto, Ontario M5G 2C4, Canada
| | - Min Jeong Kim
- From the Toronto General Hospital Research Institute, Toronto, Ontario M5G 2C4, Canada.,the Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Korea
| | - David W Dodington
- From the Toronto General Hospital Research Institute, Toronto, Ontario M5G 2C4, Canada
| | - Tharini Sivasubramaniyam
- From the Toronto General Hospital Research Institute, Toronto, Ontario M5G 2C4, Canada.,the Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Lauren Lin
- the Department of Nutritional Sciences, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Erica P Cai
- From the Toronto General Hospital Research Institute, Toronto, Ontario M5G 2C4, Canada.,the Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Shun-Yan Lu
- From the Toronto General Hospital Research Institute, Toronto, Ontario M5G 2C4, Canada
| | - Kay-Uwe Wagner
- the Eppley Institute for Research in Cancer and Allied Diseases and the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, and
| | - Richard P Bazinet
- the Department of Nutritional Sciences, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Minna Woo
- From the Toronto General Hospital Research Institute, Toronto, Ontario M5G 2C4, Canada, .,the Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,the Division of Endocrinology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
25
|
Hopperton KE, Trépanier MO, Giuliano V, Bazinet RP. Brain omega-3 polyunsaturated fatty acids modulate microglia cell number and morphology in response to intracerebroventricular amyloid-β 1-40 in mice. J Neuroinflammation 2016; 13:257. [PMID: 27688126 PMCID: PMC5041295 DOI: 10.1186/s12974-016-0721-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/13/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Neuroinflammation is a proposed mechanism by which Alzheimer's disease (AD) pathology potentiates neuronal death and cognitive decline. Consumption of omega-3 polyunsaturated fatty acids (PUFA) is associated with a decreased risk of AD in human observational studies and exerts protective effects on cognition and pathology in animal models. These fatty acids and molecules derived from them are known to have anti-inflammatory and pro-resolving properties, presenting a potential mechanism for these protective effects. METHODS Here, we explore this mechanism using fat-1 transgenic mice and their wild type littermates weaned onto either a fish oil diet (high in n-3 PUFA) or a safflower oil diet (negligible n-3 PUFA). The fat-1 mouse carries a transgene that enables it to convert omega-6 to omega-3 PUFA. At 12 weeks of age, mice underwent intracerebroventricular (icv) infusion of amyloid-β 1-40. Brains were collected between 1 and 28 days post-icv, and hippocampal microglia, astrocytes, and degenerating neurons were quantified by immunohistochemistry with epifluorescence microscopy, while microglia morphology was assessed with confocal microscopy and skeleton analysis. RESULTS Fat-1 mice fed with the safflower oil diet and wild type mice fed with the fish oil diet had higher brain DHA in comparison with the wild type mice fed with the safflower oil diet. Relative to the wild type mice fed with the safflower oil diet, fat-1 mice exhibited a lower peak in the number of labelled microglia, wild type mice fed with fish oil had fewer degenerating neurons, and both exhibited alterations in microglia morphology at 10 days post-surgery. There were no differences in astrocyte number at any time point and no differences in the time course of microglia or astrocyte activation following infusion of amyloid-β 1-40. CONCLUSIONS Increasing brain DHA, through either dietary or transgenic means, decreases some elements of the inflammatory response to amyloid-β in a mouse model of AD. This supports the hypothesis that omega-3 PUFA may be protective against AD by modulating the immune response to amyloid-β.
Collapse
Affiliation(s)
- Kathryn E Hopperton
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, FitzGerald Building, 150 College St., Room 306, Toronto, ON, M5S 3E2, Canada
| | - Marc-Olivier Trépanier
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, FitzGerald Building, 150 College St., Room 306, Toronto, ON, M5S 3E2, Canada
| | - Vanessa Giuliano
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, FitzGerald Building, 150 College St., Room 306, Toronto, ON, M5S 3E2, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, FitzGerald Building, 150 College St., Room 306, Toronto, ON, M5S 3E2, Canada.
| |
Collapse
|
26
|
Morgese MG, Trabace L. Maternal Malnutrition in the Etiopathogenesis of Psychiatric Diseases: Role of Polyunsaturated Fatty Acids. Brain Sci 2016; 6:E24. [PMID: 27472366 PMCID: PMC5039453 DOI: 10.3390/brainsci6030024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 12/11/2022] Open
Abstract
Evidence from human studies indicates that maternal metabolic state and malnutrition dramatically influence the risk for developing psychiatric complications in later adulthood. In this regard, the central role of polyunsaturated fatty acids (PUFAs), and particularly n-3 PUFAs, is emerging considering that epidemiological evidences have established a negative correlation between n-3 PUFA consumption and development of mood disorders. These findings were supported by clinical studies indicating that low content of n-3 PUFAs in diet is linked to an increased susceptibility to psychiatric disorders. PUFAs regulate membrane fluidity and exert their central action by modulating synaptogenesis and neurotrophic factor expression, neurogenesis, and neurotransmission. Moreover, they are precursors of molecules implicated in modulating immune and inflammatory processes in the brain. Importantly, their tissue concentrations are closely related to diet intake, especially to maternal consumption during embryonal life, considering that their synthesis from essential precursors has been shown to be inefficient in mammals. The scope of this review is to highlight the possible mechanisms of PUFA functions in the brain during pre- and post-natal period and to evaluate their role in the pathogenesis of psychiatric diseases.
Collapse
Affiliation(s)
- Maria Grazia Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71122, Italy.
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71122, Italy.
| |
Collapse
|
27
|
Mason-Ennis JK, LeMay-Nedjelski LP, Wiggins AK, Thompson LU. Exploration of mechanisms of α-linolenic acid in reducing the growth of oestrogen receptor positive breast cancer cells (MCF-7). J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.04.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
28
|
Johnston LW, Harris SB, Retnakaran R, Zinman B, Giacca A, Liu Z, Bazinet RP, Hanley AJ. Longitudinal Associations of Phospholipid and Cholesteryl Ester Fatty Acids With Disorders Underlying Diabetes. J Clin Endocrinol Metab 2016; 101:2536-44. [PMID: 27144932 DOI: 10.1210/jc.2015-4267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Specific serum fatty acid (FA) profiles predict the development of incident type 2 diabetes; however, limited longitudinal data exist exploring their role in the progression of insulin sensitivity (IS) and β-cell function. OBJECTIVE To examine the longitudinal associations of the FA composition of serum phospholipid (PL) and cholesteryl ester (CE) fractions with IS and β-cell function over 6 years. DESIGN The Prospective Metabolism and Islet Cell Evaluation (PROMISE) cohort is a longitudinal observational study, with clinic visits occurring every 3 years. Three visits have been completed, totaling 6 years of follow-up. SETTING Individuals (n = 477) at risk for diabetes recruited from the general population in London and Toronto, Canada. MAIN OUTCOME MEASURES Values from an oral glucose tolerance test were used to compute 1/HOMA-IR and the Matsuda index for IS, the insulinogenic index over HOMA-IR, and the insulin secretion-sensitivity index-2 for β-cell function. Thin-layer chromatograph and gas chromatograph quantified FA. Generalized estimating equations were used for the analysis. RESULTS IS and β-cell function declined by 8.3-19.4% over 6 years. In fully adjusted generalized estimating equation models, PL cis-vaccenate (18:1n-7) was positively associated with all outcomes, whereas γ-linolenate (GLA; 18:3n-6) and stearate (18:0) were negatively associated with IS. Tests for time interactions revealed that PL eicosadienoate (20:2n-6) and palmitate (16:0) and CE dihomo-γ-linolenate (20:3n-6), GLA, and palmitate had stronger associations with the outcomes after longer follow-up. CONCLUSIONS In a Canadian population at risk for diabetes, we found that higher PL stearate and GLA and lower cis-vaccenic acid predicted consistently lower IS and β-cell function over 6 years.
Collapse
Affiliation(s)
- Luke W Johnston
- Department of Nutritional Sciences (L.W.J., Z.L., R.P.B., A.J.H.), University of Toronto, Toronto, ON M5S 3E2, Canada; Centre for Studies in Family Medicine (S.B.H.), University of Western Ontario, London, ON N6G 2M1, Canada; Division of Endocrinology (R.R., B.Z.), University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld Tanenbaum Research Institute (R.R., B.Z.), Mt Sinai Hospital, Toronto, ON M5T 3L9, Canada; Department of Physiology (A.G.), University of Toronto, Toronto, ON M5S 1A8, Canada; and Dalla Lana School of Public Health (A.J.H.), University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Stewart B Harris
- Department of Nutritional Sciences (L.W.J., Z.L., R.P.B., A.J.H.), University of Toronto, Toronto, ON M5S 3E2, Canada; Centre for Studies in Family Medicine (S.B.H.), University of Western Ontario, London, ON N6G 2M1, Canada; Division of Endocrinology (R.R., B.Z.), University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld Tanenbaum Research Institute (R.R., B.Z.), Mt Sinai Hospital, Toronto, ON M5T 3L9, Canada; Department of Physiology (A.G.), University of Toronto, Toronto, ON M5S 1A8, Canada; and Dalla Lana School of Public Health (A.J.H.), University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Ravi Retnakaran
- Department of Nutritional Sciences (L.W.J., Z.L., R.P.B., A.J.H.), University of Toronto, Toronto, ON M5S 3E2, Canada; Centre for Studies in Family Medicine (S.B.H.), University of Western Ontario, London, ON N6G 2M1, Canada; Division of Endocrinology (R.R., B.Z.), University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld Tanenbaum Research Institute (R.R., B.Z.), Mt Sinai Hospital, Toronto, ON M5T 3L9, Canada; Department of Physiology (A.G.), University of Toronto, Toronto, ON M5S 1A8, Canada; and Dalla Lana School of Public Health (A.J.H.), University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Bernard Zinman
- Department of Nutritional Sciences (L.W.J., Z.L., R.P.B., A.J.H.), University of Toronto, Toronto, ON M5S 3E2, Canada; Centre for Studies in Family Medicine (S.B.H.), University of Western Ontario, London, ON N6G 2M1, Canada; Division of Endocrinology (R.R., B.Z.), University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld Tanenbaum Research Institute (R.R., B.Z.), Mt Sinai Hospital, Toronto, ON M5T 3L9, Canada; Department of Physiology (A.G.), University of Toronto, Toronto, ON M5S 1A8, Canada; and Dalla Lana School of Public Health (A.J.H.), University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Adria Giacca
- Department of Nutritional Sciences (L.W.J., Z.L., R.P.B., A.J.H.), University of Toronto, Toronto, ON M5S 3E2, Canada; Centre for Studies in Family Medicine (S.B.H.), University of Western Ontario, London, ON N6G 2M1, Canada; Division of Endocrinology (R.R., B.Z.), University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld Tanenbaum Research Institute (R.R., B.Z.), Mt Sinai Hospital, Toronto, ON M5T 3L9, Canada; Department of Physiology (A.G.), University of Toronto, Toronto, ON M5S 1A8, Canada; and Dalla Lana School of Public Health (A.J.H.), University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Zhen Liu
- Department of Nutritional Sciences (L.W.J., Z.L., R.P.B., A.J.H.), University of Toronto, Toronto, ON M5S 3E2, Canada; Centre for Studies in Family Medicine (S.B.H.), University of Western Ontario, London, ON N6G 2M1, Canada; Division of Endocrinology (R.R., B.Z.), University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld Tanenbaum Research Institute (R.R., B.Z.), Mt Sinai Hospital, Toronto, ON M5T 3L9, Canada; Department of Physiology (A.G.), University of Toronto, Toronto, ON M5S 1A8, Canada; and Dalla Lana School of Public Health (A.J.H.), University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences (L.W.J., Z.L., R.P.B., A.J.H.), University of Toronto, Toronto, ON M5S 3E2, Canada; Centre for Studies in Family Medicine (S.B.H.), University of Western Ontario, London, ON N6G 2M1, Canada; Division of Endocrinology (R.R., B.Z.), University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld Tanenbaum Research Institute (R.R., B.Z.), Mt Sinai Hospital, Toronto, ON M5T 3L9, Canada; Department of Physiology (A.G.), University of Toronto, Toronto, ON M5S 1A8, Canada; and Dalla Lana School of Public Health (A.J.H.), University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Anthony J Hanley
- Department of Nutritional Sciences (L.W.J., Z.L., R.P.B., A.J.H.), University of Toronto, Toronto, ON M5S 3E2, Canada; Centre for Studies in Family Medicine (S.B.H.), University of Western Ontario, London, ON N6G 2M1, Canada; Division of Endocrinology (R.R., B.Z.), University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld Tanenbaum Research Institute (R.R., B.Z.), Mt Sinai Hospital, Toronto, ON M5T 3L9, Canada; Department of Physiology (A.G.), University of Toronto, Toronto, ON M5S 1A8, Canada; and Dalla Lana School of Public Health (A.J.H.), University of Toronto, Toronto, ON M5T 3M7, Canada
| |
Collapse
|
29
|
Rozbicka-Wieczorek AJ, Krajewska-Bienias KA, Czauderna M. Dietary carnosic acid, selenized yeast, selenate and fish oil affected the concentration of fatty acids, tocopherols, cholesterol and aldehydes in the brains of lambs. Arch Anim Breed 2016. [DOI: 10.5194/aab-59-215-2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Abstract. The function of the brain is to exert centralized control over the other internal organs and tissues of the body. Thus, the objective of our studies was to evaluate changes in the concentration of fatty acids (FAs), cholesterol (CHOL), cholest-4-en-3-one (CHOL-4-3), tocopherols, malondialdehyde (MDA) and fatty aldehydes in the brains of lambs fed supplemented diets. Thirty male Corriedale lambs with a body weight of 30.5 ± 2.6 kg were allotted to five groups of six lambs and housed individually. After the preliminary period, for 35 days the animals were fed a diet containing 3 % rapeseed oil (RO) (the RO diet), a diet enriched with 2 % RO and 1 % fish oil (FO) (the FO diet) or the diets with combined addition of 2 % RO, 1 % FO, 0.1 % carnosic acid (CA) (the CA diet) and 0.35 ppm Se as the selenized yeast (SeY) (the CASeY diet) or selenate (SeVI) (the CASeVI diet). The CASeVI diet most efficiently increased the accumulation of FAs (including unsaturated FAs), CHOL-4-3 and fatty aldehydes in the lamb brain. This diet most effectively decreased the concentration of CHOL and MDA in the brain. The CASeY diet showed a different impact on the level of FAs, CHOL, CHOL-4-3, tocopherols, MDA and fatty aldehydes in the brain as compared with the CASeVI diet. The CA diet reduced the concentration of CHOL-4-3, the sums of fatty aldehydes, FAs, atherogenic- and thrombogenic-saturated FAs in the brain compared with the CASeVI diet; the CA diet most effectively increased the value of polyunsaturated FA (PUFA) peroxidation index in the brain. The RO diet most efficiently increased the concentration of CHOL and values of the ratios of saturated FAs to PUFAs and long-chain n-6PUFAs to long-chain n-3PUFAs in the brain.The current studies provide new useful information for nutritionists carrying out further investigations aimed at improving farm-animal health, growth performance, reproductive system and the nutritional quality of feed for ruminants.
Collapse
|
30
|
Chhetry BT, Hezghia A, Miller JM, Lee S, Rubin-Falcone H, Cooper TB, Oquendo MA, Mann JJ, Sublette ME. Omega-3 polyunsaturated fatty acid supplementation and white matter changes in major depression. J Psychiatr Res 2016; 75:65-74. [PMID: 26802812 PMCID: PMC4948754 DOI: 10.1016/j.jpsychires.2015.12.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/02/2015] [Accepted: 12/07/2015] [Indexed: 01/15/2023]
Abstract
White matter abnormalities are implicated in major depressive disorder (MDD). As omega-3 polyunsaturated fatty acids (PUFAs) are low in MDD and affect myelination, we hypothesized that PUFA supplementation may alleviate depression through improving white matter integrity. Acutely depressed MDD patients (n = 16) and healthy volunteers (HV, n = 12) had 25-direction diffusion tensor imaging before and after 6 weeks of fish oil supplementation. Plasma phospholipid omega-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and omega-6 PUFA arachidonic acid (AA) levels were determined before and after supplementation using high-throughput extraction and gas chromatography and expressed as a percentage of total phospholipids (PUFA%). Fractional anisotropy (FA) was computed using a least-squares-fit diffusion tensor with non-linear optimization. Regression analyses were performed with changes in PUFA levels or Hamilton Depression Rating Scale scores as predictors, voxel-wise difference maps of FA as outcome, covariates age and sex, with family-wise correction for multiple comparisons. Increases in plasma phospholipid DHA% (but not EPA% or AA%) after fish oil predicted increases in FA in MDD but not HV, in a cluster including genu and body of the corpus callosum, and anterior corona radiata and cingulum (cluster-level p < 0.001, peak t-score = 8.10, p = 0.002). There was a trend for greater change in FA in MDD responders over nonresponders (t = -1.874, df = 13.56, p = 0.08). Decreased depression severity predicted increased FA in left corticospinal tract and superior longitudinal fasciculus (cluster-level p < 0.001, peak t-score = 5.04, p = 0.0001). Increased FA correlated with increased DHA% and decreased depression severity after fish oil supplementation suggests therapeutic effects of omega-3 PUFAs may be related to improvements in white matter integrity.
Collapse
Affiliation(s)
- Binod Thapa Chhetry
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA,Division of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 42, New York, NY 10032, USA
| | - Adrienne Hezghia
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Jeffrey M. Miller
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA,Division of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 42, New York, NY 10032, USA
| | - Seonjoo Lee
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA,Department of Biostatistics, Columbia University, 722 West 168th St., New York, NY 10032, USA
| | - Harry Rubin-Falcone
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA,Division of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 42, New York, NY 10032, USA
| | - Thomas B. Cooper
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA,Division of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 42, New York, NY 10032, USA,Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
| | - Maria A. Oquendo
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA,Division of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 42, New York, NY 10032, USA
| | - J. John Mann
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA,Division of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 42, New York, NY 10032, USA,Department of Radiology, Columbia University, 622 West 168th St, New York, NY, USA
| | - M. Elizabeth Sublette
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA,Division of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 42, New York, NY 10032, USA,To whom correspondence should be addressed: New York State Psychiatric Institute, 1051 Riverside Drive, Unit 42, New York, NY 10032, TEL 646 774-7514, FAX 646 774-7589,
| |
Collapse
|
31
|
Kitson AP, Metherel AH, Chen CT, Domenichiello AF, Trépanier MO, Berger A, Bazinet RP. Effect of dietary docosahexaenoic acid (DHA) in phospholipids or triglycerides on brain DHA uptake and accretion. J Nutr Biochem 2016; 33:91-102. [PMID: 27135386 DOI: 10.1016/j.jnutbio.2016.02.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/27/2016] [Accepted: 02/11/2016] [Indexed: 11/28/2022]
Abstract
Tracer studies suggest that phospholipid DHA (PL-DHA) more effectively targets the brain than triglyceride DHA (TAG-DHA), although the mechanism and whether this translates into higher brain DHA concentrations are not clear. Rats were gavaged with [U-(3)H]PL-DHA and [U-(3)H]TAG-DHA and blood sampled over 6h prior to collection of brain regions and other tissues. In another experiment, rats were supplemented for 4weeks with TAG-DHA (fish oil), PL-DHA (roe PL) or a mixture of both for comparison to a low-omega-3 diet. Brain regions and other tissues were collected, and blood was sampled weekly. DHA accretion rates were estimated using the balance method. [U-(3)H]PL-DHA rats had higher radioactivity in cerebellum, hippocampus and remainder of brain, with no differences in other tissues despite higher serum lipid radioactivity in [U-(3)H]TAG-DHA rats. TAG-DHA, PL-DHA or a mixture were equally effective at increasing brain DHA. There were no differences between DHA-supplemented groups in brain region, whole-body, or tissue DHA accretion rates except heart and serum TAG where the PL-DHA/TAG-DHA blend was higher than TAG-DHA. Apparent DHA β-oxidation was not different between DHA-supplemented groups. This indicates that more labeled DHA enters the brain when consumed as PL; however, this may not translate into higher brain DHA concentrations.
Collapse
Affiliation(s)
- Alex P Kitson
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, M5S3E2, Canada
| | - Adam H Metherel
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, M5S3E2, Canada
| | - Chuck T Chen
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, M5S3E2, Canada
| | | | - Marc-Olivier Trépanier
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, M5S3E2, Canada
| | - Alvin Berger
- Arctic Nutrition AS, NO-6155, Ørsta, Norway; Department of Food Science & Nutrition, University of Minnesota, St. Paul, MN, 55108-1038, USA
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, M5S3E2, Canada.
| |
Collapse
|
32
|
Furman R, Murray IVJ, Schall HE, Liu Q, Ghiwot Y, Axelsen PH. Amyloid Plaque-Associated Oxidative Degradation of Uniformly Radiolabeled Arachidonic Acid. ACS Chem Neurosci 2016; 7:367-77. [PMID: 26800372 DOI: 10.1021/acschemneuro.5b00316] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Oxidative stress is a frequently observed feature of Alzheimer's disease, but its pathological significance is not understood. To explore the relationship between oxidative stress and amyloid plaques, uniformly radiolabeled arachidonate was introduced into transgenic mouse models of Alzheimer's disease via intracerebroventricular injection. Uniform labeling with carbon-14 is used here for the first time, and made possible meaningful quantification of arachidonate oxidative degradation products. The injected arachidonate entered a fatty acid pool that was subject to oxidative degradation in both transgenic and wild-type animals. However, the extent of its degradation was markedly greater in the hippocampus of transgenic animals where amyloid plaques were abundant. In human Alzheimer's brain, plaque-associated proteins were post-translationally modified by hydroxynonenal, a well-known oxidative degradation product of arachidonate. These results suggest that several recurring themes in Alzheimer's pathogenesis, amyloid β proteins, transition metal ions, oxidative stress, and apolipoprotein isoforms, may be involved in a common mechanism that has the potential to explain both neuronal loss and fibril formation in this disease.
Collapse
Affiliation(s)
- Ran Furman
- Department
of Pharmacology, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ian V. J. Murray
- Department of Neuroscience and Experimental Therapeutics, Texas A & M University, College Station, Texas 77807, United States
- Department
of Physiology and Neuroscience, St. George’s University, St. George’s, Grenada
| | - Hayley E. Schall
- Department of Neuroscience and Experimental Therapeutics, Texas A & M University, College Station, Texas 77807, United States
| | - Qiwei Liu
- Department
of Pharmacology, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yonatan Ghiwot
- Department of Neuroscience and Experimental Therapeutics, Texas A & M University, College Station, Texas 77807, United States
| | - Paul H. Axelsen
- Department
of Pharmacology, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
33
|
Plasma non-esterified docosahexaenoic acid is the major pool supplying the brain. Sci Rep 2015; 5:15791. [PMID: 26511533 PMCID: PMC4625162 DOI: 10.1038/srep15791] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/05/2015] [Indexed: 12/27/2022] Open
Abstract
Despite being critical for normal brain function, the pools that supply docosahexaenoic acid (DHA) to the brain are not agreed upon. Using multiple kinetic models in free-living adult rats, we first demonstrate that DHA uptake from the plasma non-esterified fatty acid (NEFA) pool predicts brain uptake of DHA upon oral administration, which enters the plasma NEFA pool as well as multiple plasma esterified pools. The rate of DHA loss by the brain is similar to the uptake from the plasma NEFA pool. Furthermore, upon acute iv administration, although more radiolabeled lysophosphatidylcholine (LPC)-DHA enters the brain than NEFA-DHA, this is due to the longer plasma half-life and exposure to the brain. Direct comparison of the uptake rate of LPC-DHA and NEFA-DHA demonstrates that uptake of NEFA-DHA into the brain is 10-fold greater than LPC-DHA. In conclusion, plasma NEFA-DHA is the major plasma pool supplying the brain.
Collapse
|
34
|
Ross BM, Babay S, Malik I. Brain and Liver Headspace Aldehyde Concentration Following Dietary Supplementation with n-3 Polyunsaturated Fatty Acids. Lipids 2015; 50:1123-31. [DOI: 10.1007/s11745-015-4063-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/04/2015] [Indexed: 01/05/2023]
|
35
|
Mason JK, Klaire S, Kharotia S, Wiggins AKA, Thompson LU. α-linolenic acid and docosahexaenoic acid, alone and combined with trastuzumab, reduce HER2-overexpressing breast cancer cell growth but differentially regulate HER2 signaling pathways. Lipids Health Dis 2015; 14:91. [PMID: 26282560 PMCID: PMC4539855 DOI: 10.1186/s12944-015-0090-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/31/2015] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Diets rich in the n-3 fatty acid alpha-linolenic acid (ALA) have been shown to reduce breast tumor growth, enhance the effectiveness of the HER2-targeted drug trastuzumab (TRAS) and reduce HER2 signaling in mouse models. It is unclear whether this is due to direct effects of ALA or due to its long-chain n-3 fatty acids metabolites including docosahexaenoic acid (DHA). METHODS The ability of HER2-overexpressing BT-474 human breast cancer cells to convert ALA to long-chain n-3 fatty acids was determined by measurement of phospholipid fatty acids by gas chromatography following treatment with 100 μM ALA. The effects of 96 h treatment with ALA or DHA, at serum levels seen in mice (50-100 μM), alone and combined with TRAS (10 μg/ml), on BT-474 cell growth measured by trypan blue exclusion, apoptosis measured by flow cytometric analysis of Annexin-V/7-AAD stained cells (ALA and TRAS treatment only) and protein biomarkers HER2 signaling measured by western blot were determined. RESULTS ALA-treated BT-474 cells had higher phospholipid ALA but no increase in downstream n-3 metabolites including DHA. Both ALA and DHA reduced cell growth with and without TRAS. ALA had no effect on apoptosis. ALA and DHA showed opposite effects on Akt and MAPK phosphorylation; ALA increased and DHA decreased phosphorylation. CONCLUSIONS Together these data suggest that, while both ALA and its DHA metabolite can reduce HER2-overexpressing breast cancer growth with and without TRAS, they demonstrate for the first time that DHA is responsible for the effects of ALA-rich diets on HER2 signaling pathways.
Collapse
Affiliation(s)
- Julie K Mason
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College Street, Toronto, ON, M5S 3E2, Canada.
| | - Sukhpreet Klaire
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College Street, Toronto, ON, M5S 3E2, Canada.
| | - Shikhil Kharotia
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College Street, Toronto, ON, M5S 3E2, Canada.
| | - Ashleigh K A Wiggins
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College Street, Toronto, ON, M5S 3E2, Canada.
| | - Lilian U Thompson
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College Street, Toronto, ON, M5S 3E2, Canada.
| |
Collapse
|
36
|
Lewis EJH, Radonic PW, Wolever TMS, Wells GD. 21 days of mammalian omega-3 fatty acid supplementation improves aspects of neuromuscular function and performance in male athletes compared to olive oil placebo. J Int Soc Sports Nutr 2015; 12:28. [PMID: 26085822 PMCID: PMC4470064 DOI: 10.1186/s12970-015-0089-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/11/2015] [Indexed: 11/29/2022] Open
Abstract
Background Omega-3 polyunsaturated fatty acids (N-3) are essential nutrients for human health and integral components of neural tissues. There is evidence that N-3 supplementation may benefit exercise performance, however, no study has investigated the ergogenic potential of N-3 supplementation. Our objective was to determine the effect of short-term N-3 supplementation on neuromuscular-function and physical-performance in well-trained athletes. Methods Male athletes (n = 30), 25 years (SD 4.6), training 17 h.wk−1 (SD 5) completed this randomized, placebo-controlled, parallel-design study. At baseline a blood sample was collected, maximal voluntary isometric contractions (MVC) with electromyography (EMG) recordings were measured, and participants underwent various performance tests including a Wingate test and 250 kJ time trial (TT) followed by repeated MVC and EMG measurement. Participants were then randomly assigned to receive N-3 (5 ml seal oil, 375 mg EPA, 230 mg DPA, 510 mg DHA) or placebo (5 ml olive oil) for 21-days after which baseline testing was repeated. The magnitude-based inference approach was used to estimate the probability that N-3 had a beneficial effect on neuromuscular-function and performance of at least ±1 %. Data are shown as mean ± 90 % confidence-interval. Results Plasma EPA was higher on N-3 than placebo (p = 0.004) but the increases in DPA and DHA were not significant (p = 0.087, p = 0.058). N-3 supplementation had an unclear effect on MVC force (4.1 ± 6.6 %) but increased vastus lateralis EMG by 20 ± 18 % vs placebo (very likely beneficial). N-3 supplementation reduced Wingate percent power drop by 4.76 ± 3.4 % vs placebo (very likely beneficial), but the difference in TT performance was unclear (−1.9 ± 4.8 %). Conclusion Our data indicates N-3 PUFA supplementation improved peripheral neuromuscular function and aspects of fatigue with an unclear effect on central neuromuscular function. Clinical trial registration NCT0201433.
Collapse
Affiliation(s)
- Evan J H Lewis
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College St., M5S 3E2 Toronto, Ontario Canada
| | - Peter W Radonic
- Faculty of Kinesiology & Physical Education, University of Toronto, 100 Devonshire Place, M5S 2C9 Toronto, Ontario Canada
| | - Thomas M S Wolever
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College St., M5S 3E2 Toronto, Ontario Canada
| | - Greg D Wells
- Faculty of Kinesiology & Physical Education, University of Toronto, 100 Devonshire Place, M5S 2C9 Toronto, Ontario Canada ; Department of Physiology and Experimental Medicine, The Hospital for Sick Children, 555 University Ave, M5G 1X8 Toronto, Ontario Canada
| |
Collapse
|
37
|
Liu JJ, Green P, John Mann J, Rapoport SI, Sublette ME. Pathways of polyunsaturated fatty acid utilization: implications for brain function in neuropsychiatric health and disease. Brain Res 2015; 1597:220-46. [PMID: 25498862 PMCID: PMC4339314 DOI: 10.1016/j.brainres.2014.11.059] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/11/2014] [Accepted: 11/27/2014] [Indexed: 12/28/2022]
Abstract
Essential polyunsaturated fatty acids (PUFAs) have profound effects on brain development and function. Abnormalities of PUFA status have been implicated in neuropsychiatric diseases such as major depression, bipolar disorder, schizophrenia, Alzheimer's disease, and attention deficit hyperactivity disorder. Pathophysiologic mechanisms could involve not only suboptimal PUFA intake, but also metabolic and genetic abnormalities, defective hepatic metabolism, and problems with diffusion and transport. This article provides an overview of physiologic factors regulating PUFA utilization, highlighting their relevance to neuropsychiatric disease.
Collapse
Affiliation(s)
- Joanne J Liu
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA; New York Medical College, Valhalla, NY, USA
| | - Pnina Green
- Laboratory of Metabolic Research, Felsenstein Medical Research Center, Tel Aviv University, Petach Tikva, Israel
| | - J John Mann
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Columbia University, New York, NY, USA; Department of Radiology, Columbia University, New York, NY, USA
| | - Stanley I Rapoport
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - M Elizabeth Sublette
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Columbia University, New York, NY, USA.
| |
Collapse
|
38
|
Chen CT, Bazinet RP. β-oxidation and rapid metabolism, but not uptake regulate brain eicosapentaenoic acid levels. Prostaglandins Leukot Essent Fatty Acids 2015; 92:33-40. [PMID: 24986271 DOI: 10.1016/j.plefa.2014.05.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The brain has a unique polyunsaturated fatty acid composition, with high levels of arachidonic and docosahexaenoic acids (DHA) while levels of eicosapentaenoic acid (EPA) are several orders of magnitude lower. As evidence accumulated that fatty acid entry into the brain was not selective and, in fact, that DHA and EPA enter the brain at similar rates, new mechanisms were required to explain their large concentration differences in the brain. Here we summarize recent research demonstrating that EPA is rapidly and extensively β-oxidized upon entry into the brain. Although the ATP generated from the β-oxidation of EPA is low compared to the use of glucose, fatty acid β-oxidation may serve to regulate brain fatty acid levels in the absence of selective transportation. Furthermore, when β-oxidation of EPA is blocked, desaturation of EPA increases and Land׳s recycling decreases to maintain low EPA levels.
Collapse
Affiliation(s)
- Chuck T Chen
- Department of Nutritional Sciences, University of Toronto, Fitzgerald Building, 150 College St. Room 306, Ontario, Toronto, M5S 3E2 Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, Fitzgerald Building, 150 College St. Room 306, Ontario, Toronto, M5S 3E2 Canada.
| |
Collapse
|
39
|
Lin LE, Chen CT, Hildebrand KD, Liu Z, Hopperton KE, Bazinet RP. Chronic dietary n-6 PUFA deprivation leads to conservation of arachidonic acid and more rapid loss of DHA in rat brain phospholipids. J Lipid Res 2014; 56:390-402. [PMID: 25477531 DOI: 10.1194/jlr.m055590] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
To determine how the level of dietary n-6 PUFA affects the rate of loss of arachidonic acid (ARA) and DHA in brain phospholipids, male rats were fed either a deprived or adequate n-6 PUFA diet for 15 weeks postweaning, and then subjected to an intracerebroventricular infusion of (3)H-ARA or (3)H-DHA. Brains were collected at fixed times over 128 days to determine half-lives and the rates of loss from brain phospholipids (J out). Compared with the adequate n-6 PUFA rats, the deprived n-6-PUFA rats had a 15% lower concentration of ARA and an 18% higher concentration of DHA in their brain total phospholipids. Loss half-lives of ARA in brain total phospholipids and fractions (except phosphatidylserine) were longer in the deprived n-6 PUFA rats, whereas the J out was decreased. In the deprived versus adequate n-6 PUFA rats, the J out of DHA was higher. In conclusion, chronic n-6 PUFA deprivation decreases the rate of loss of ARA and increases the rate of loss of DHA in brain phospholipids. Thus, a low n-6 PUFA diet can be used to target brain ARA and DHA metabolism.
Collapse
Affiliation(s)
- Lauren E Lin
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Chuck T Chen
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Kayla D Hildebrand
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zhen Liu
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Kathryn E Hopperton
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
40
|
Barbosa M, Valentão P, Andrade PB. Bioactive compounds from macroalgae in the new millennium: implications for neurodegenerative diseases. Mar Drugs 2014; 12:4934-72. [PMID: 25257784 PMCID: PMC4178484 DOI: 10.3390/md12094934] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/05/2014] [Accepted: 09/15/2014] [Indexed: 12/14/2022] Open
Abstract
Marine environment has proven to be a rich source of structurally diverse and complex compounds exhibiting numerous interesting biological effects. Macroalgae are currently being explored as novel and sustainable sources of bioactive compounds for both pharmaceutical and nutraceutical applications. Given the increasing prevalence of different forms of dementia, researchers have been focusing their attention on the discovery and development of new compounds from macroalgae for potential application in neuroprotection. Neuroprotection involves multiple and complex mechanisms, which are deeply related. Therefore, compounds exerting neuroprotective effects through different pathways could present viable approaches in the management of neurodegenerative diseases, such as Alzheimer's and Parkinson's. In fact, several studies had already provided promising insights into the neuroprotective effects of a series of compounds isolated from different macroalgae species. This review will focus on compounds from macroalgae that exhibit neuroprotective effects and their potential application to treat and/or prevent neurodegenerative diseases.
Collapse
Affiliation(s)
- Mariana Barbosa
- REQUIMTE/Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal.
| | - Patrícia Valentão
- REQUIMTE/Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal.
| | - Paula B Andrade
- REQUIMTE/Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
41
|
Mason JK, Kharotia S, Wiggins AKA, Kitson AP, Chen J, Bazinet RP, Thompson LU. 17β-Estradiol Increases Liver and Serum Docosahexaenoic Acid in Mice Fed Varying Levels of α-Linolenic Acid. Lipids 2014; 49:745-56. [DOI: 10.1007/s11745-014-3913-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/11/2014] [Indexed: 01/25/2023]
|
42
|
Barrett EC, McBurney MI, Ciappio ED. ω-3 fatty acid supplementation as a potential therapeutic aid for the recovery from mild traumatic brain injury/concussion. Adv Nutr 2014; 5:268-77. [PMID: 24829473 PMCID: PMC4013179 DOI: 10.3945/an.113.005280] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Sports-related concussions or mild traumatic brain injuries (mTBIs) are becoming increasingly recognized as a major public health concern; however, no effective therapy for these injuries is currently available. ω-3 (n-3) fatty acids, such as docosahexaenoic acid (DHA), have important structural and functional roles in the brain, with established clinical benefits for supporting brain development and cognitive function throughout life. Consistent with these critical roles of DHA in the brain, accumulating evidence suggests that DHA may act as a promising recovery aid, or possibly as a prophylactic nutritional measure, for mTBI. Preclinical investigations demonstrate that dietary consumption of DHA provided either before or after mTBI improves functional outcomes, such as spatial learning and memory. Mechanistic investigations suggest that DHA influences multiple aspects of the pathologic molecular signaling cascade that occurs after mTBI. This review examines the evidence of interactions between DHA and concussion and discusses potential mechanisms by which DHA helps the brain to recover from injury. Additional clinical research in humans is needed to confirm the promising results reported in the preclinical literature.
Collapse
|
43
|
Freund Levi Y, Vedin I, Cederholm T, Basun H, Faxén Irving G, Eriksdotter M, Hjorth E, Schultzberg M, Vessby B, Wahlund LO, Salem N, Palmblad J. Transfer of omega-3 fatty acids across the blood-brain barrier after dietary supplementation with a docosahexaenoic acid-rich omega-3 fatty acid preparation in patients with Alzheimer's disease: the OmegAD study. J Intern Med 2014; 275:428-36. [PMID: 24410954 DOI: 10.1111/joim.12166] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Little is known about the transfer of essential fatty acids (FAs) across the human blood-brain barrier (BBB) in adulthood. In this study, we investigated whether oral supplementation with omega-3 (n-3) FAs would change the FA profile of the cerebrospinal fluid (CSF). METHODS A total of 33 patients (18 receiving the n-3 FA supplement and 15 receiving placebo) were included in the study. These patients were participants in the double-blind, placebo-controlled randomized OmegAD study in which 204 patients with mild Alzheimer's disease (AD) received 2.3 g n-3 FA [high in docosahexaenoic acid (DHA)] or placebo daily for 6 months. CSF FA levels were related to changes in plasma FA and to CSF biomarkers of AD and inflammation. RESULTS At 6 months, the n-3 FA supplement group displayed significant increases in CSF (and plasma) eicosapentaenoic acid (EPA), DHA and total n-3 FA levels (P < 0.01), whereas no changes were observed in the placebo group. Changes in CSF and plasma levels of EPA and n-3 docosapentaenoic acid were strongly correlated, in contrast to those of DHA. Changes in DHA levels in CSF were inversely correlated with CSF levels of total and phosphorylated tau, and directly correlated with soluble interleukin-1 receptor type II. Thus, the more DHA increased in CSF, the greater the change in CSF AD/inflammatory biomarkers. CONCLUSIONS Oral supplementation with n-3 FAs conferred changes in the n-3 FA profile in CSF, suggesting transfer of these FAs across the BBB in adults.
Collapse
Affiliation(s)
- Y Freund Levi
- Department of Neurobiology, Caring Sciences and Society, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bauer I, Hughes M, Rowsell R, Cockerell R, Pipingas A, Crewther S, Crewther D. Omega-3 supplementation improves cognition and modifies brain activation in young adults. Hum Psychopharmacol 2014; 29:133-44. [PMID: 24470182 DOI: 10.1002/hup.2379] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 09/26/2013] [Accepted: 11/11/2013] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The current study aimed to investigate the effects of eicosapentaenoic acid (EPA)-rich and docosahexaenoic acid (DHA)-rich supplementations on cognitive performance and functional brain activation. DESIGN A double-blind, counterbalanced, crossover design, with a 30-day washout period between two supplementation periods (EPA-rich and DHA-rich) was employed. Functional magnetic resonance imaging scans were obtained during performance of Stroop and Spatial Working Memory tasks prior to supplementation and after each 30-day supplementation period. RESULTS Both supplementations resulted in reduced ratio of arachidonic acid to EPA levels. Following the EPA-rich supplementation, there was a reduction in functional activation in the left anterior cingulate cortex and an increase in activation in the right precentral gyrus coupled with a reduction in reaction times on the colour-word Stroop task. By contrast, the DHA-rich supplementation led to a significant increase in functional activation in the right precentral gyrus during the Stroop and Spatial Working Memory tasks, but there was no change in behavioural performance. CONCLUSIONS By extending the theory of neural efficiency to the within-subject neurocognitive effects of supplementation, we concluded that following the EPA-rich supplementation, participants' brains worked 'less hard' and achieved a better cognitive performance than prior to supplementation. Conversely, the increase in functional activation and lack of improvement in time or accuracy of cognitive performance following DHA-rich supplementation may indicate that DHA-rich supplementation is less effective than EPA-rich supplementation in enhancing neurocognitive functioning after a 30-day supplementation period in the same group of individuals.
Collapse
Affiliation(s)
- Isabelle Bauer
- Centre for Human Psychopharmacology; Swinburne University of Technology; Hawthorn Australia
| | - Matthew Hughes
- Brain and Psychological Sciences Research Centre; Swinburne University of Technology; Hawthorn Australia
| | - Renee Rowsell
- Centre for Human Psychopharmacology; Swinburne University of Technology; Hawthorn Australia
| | - Robyn Cockerell
- Centre for Human Psychopharmacology; Swinburne University of Technology; Hawthorn Australia
| | - Andrew Pipingas
- Centre for Human Psychopharmacology; Swinburne University of Technology; Hawthorn Australia
| | - Sheila Crewther
- School of Psychological Sciences; La Trobe University; Bundoora Australia
| | - David Crewther
- Centre for Human Psychopharmacology; Swinburne University of Technology; Hawthorn Australia
| |
Collapse
|
45
|
Chen CT, Trépanier MO, Hopperton KE, Domenichiello AF, Masoodi M, Bazinet RP. Inhibiting mitochondrial β-oxidation selectively reduces levels of nonenzymatic oxidative polyunsaturated fatty acid metabolites in the brain. J Cereb Blood Flow Metab 2014; 34:376-9. [PMID: 24326387 PMCID: PMC3948125 DOI: 10.1038/jcbfm.2013.221] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 01/09/2023]
Abstract
Schönfeld and Reiser recently hypothesized that fatty acid β-oxidation is a source of oxidative stress in the brain. To test this hypothesis, we inhibited brain mitochondrial β-oxidation with methyl palmoxirate (MEP) and measured oxidative polyunsaturated fatty acid (PUFA) metabolites in the rat brain. Upon MEP treatment, levels of several nonenzymatic auto-oxidative PUFA metabolites were reduced with few effects on enzymatically derived metabolites. Our finding confirms the hypothesis that reduced fatty acid β-oxidation decreases oxidative stress in the brain and β-oxidation inhibitors may be a novel therapeutic approach for brain disorders associated with oxidative stress.
Collapse
Affiliation(s)
- Chuck T Chen
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Marc-Olivier Trépanier
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kathryn E Hopperton
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anthony F Domenichiello
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mojgan Masoodi
- 1] Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada [2] Nestlé Institute of Health Sciences SA, Lausanne, Switzerland
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
46
|
Bauer I, Crewther S, Pipingas A, Sellick L, Crewther D. Does omega-3 fatty acid supplementation enhance neural efficiency? A review of the literature. Hum Psychopharmacol 2014; 29:8-18. [PMID: 24285504 DOI: 10.1002/hup.2370] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/19/2013] [Accepted: 10/20/2013] [Indexed: 11/08/2022]
Abstract
OBJECTIVE While the cardiovascular, anti-inflammatory and mood benefits of omega-3 supplementation containing long chain fatty acids (LCPUFAs) such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are manifest, there is no scientific consensus regarding their effects on neurocognitive functioning. This review aimed to examine the current literature on LCPUFAs by assessing their effects on cognition, neural functioning and metabolic activity. In order to view these findings together, the principle of neural efficiency as established by Richard Haier ("smart brains work less hard") was extended to apply to the neurocognitive effects of omega-3 supplementation. METHODS We reviewed multiple databases from 2000 up till 2013 using a systematic approach and focused our search to papers employing both neurophysiological techniques and cognitive measures. RESULTS Eight studies satisfied the criteria for consideration. We established that studies using brain imaging techniques show consistent changes in neurochemical substances, brain electrical activity, cerebral metabolic activity and brain oxygenation following omega-3 supplementation. CONCLUSIONS We conclude that, where comparison is available, an increase in EPA intake is more advantageous than DHA in reducing "brain effort" relative to cognitive performance.
Collapse
Affiliation(s)
- Isabelle Bauer
- Centre for Human Psychopharmacology; Swinburne University of Technology; Hawthorn Victoria Australia
- University of Texas, Health Science Center at Houston; Department of Psychiatry and Behavioral Sciences; Houston TX USA
| | - Sheila Crewther
- Centre for Human Psychopharmacology; Swinburne University of Technology; Hawthorn Victoria Australia
- School of Psychological Science; La Trobe University; Bundoora Victoria Australia
| | - Andrew Pipingas
- Centre for Human Psychopharmacology; Swinburne University of Technology; Hawthorn Victoria Australia
| | - Laura Sellick
- Centre for Human Psychopharmacology; Swinburne University of Technology; Hawthorn Victoria Australia
| | - David Crewther
- Centre for Human Psychopharmacology; Swinburne University of Technology; Hawthorn Victoria Australia
| |
Collapse
|
47
|
Georgiou T, Neokleous A, Nicolaou D, Sears B. Pilot study for treating dry age-related macular degeneration (AMD) with high-dose omega-3 fatty acids. PHARMANUTRITION 2014. [DOI: 10.1016/j.phanu.2013.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Hopperton KE, Duncan RE, Bazinet RP, Archer MC. Fatty acid synthase plays a role in cancer metabolism beyond providing fatty acids for phospholipid synthesis or sustaining elevations in glycolytic activity. Exp Cell Res 2013; 320:302-10. [PMID: 24200503 DOI: 10.1016/j.yexcr.2013.10.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/08/2013] [Accepted: 10/27/2013] [Indexed: 12/22/2022]
Abstract
Fatty acid synthase is over-expressed in many cancers and its activity is required for cancer cell survival, but the role of endogenously synthesized fatty acids in cancer is unknown. It has been suggested that endogenous fatty acid synthesis is either needed to support the growth of rapidly dividing cells, or to maintain elevated glycolysis (the Warburg effect) that is characteristic of cancer cells. Here, we investigate both hypotheses. First, we compared utilization of fatty acids synthesized endogenously from (14)C-labeled acetate to those supplied exogenously as (14)C-labeled palmitate in the culture medium in human breast cancer (MCF-7 and MDA-MB-231) and untransformed breast epithelial cells (MCF-10A). We found that cancer cells do not produce fatty acids that are different from those derived from exogenous palmitate, that these fatty acids are esterified to the same lipid and phospholipid classes in the same proportions, and that their distribution within neutral lipids is not different from untransformed cells. These results suggest that endogenously synthesized fatty acids do not fulfill a specific function in cancer cells. Furthermore, we observed that cancer cells excrete endogenously synthesized fatty acids, suggesting that they are produced in excess of requirements. We next investigated whether lipogenic activity is involved in the maintenance of high glycolytic activity by culturing both cancer and non-transformed cells under anoxic conditions. Although anoxia increased glycolysis 2-3 fold, we observed no concomitant increase in lipogenesis. Our results indicate that breast cancer cells do not have a specific qualitative or quantitative requirement for endogenously synthesized fatty acids and that increased de novo lipogenesis is not required to sustain elevations in glycolytic activity induced by anoxia in these cells.
Collapse
Affiliation(s)
- Kathryn E Hopperton
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2.
| | - Robin E Duncan
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2.
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2.
| | - Michael C Archer
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2.
| |
Collapse
|
49
|
Igarashi M, Chang L, Ma K, Rapoport SI. Kinetics of eicosapentaenoic acid in brain, heart and liver of conscious rats fed a high n-3 PUFA containing diet. Prostaglandins Leukot Essent Fatty Acids 2013; 89:403-12. [PMID: 24209500 PMCID: PMC5861380 DOI: 10.1016/j.plefa.2013.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/07/2013] [Accepted: 09/07/2013] [Indexed: 01/06/2023]
Abstract
Eicosapentaenoic acid (EPA, 20:5n-3), a precursor of docosahexaenoic acid (DHA), may benefit cardiovascular and brain health. Quantifying EPA's in vivo kinetics might elucidate these effects. [1-(14)C]EPA was infused i.v. for 5min in unanesthetized male rats fed a standard EPA-DHA diet. Plasma and microwaved tissue were analyzed. Kinetic parameters were calculated using our compartmental model. At 5min, 31-48% of labeled EPA in brain and heart was oxidized, 7% in liver. EPA incorporation rates from brain and liver precursor EPA-CoA pools into lipids, mainly phospholipids, were 36 and 2529nmol/s/g×10(-4), insignificant for heart. Deacylation-reacylation half-lives were 22h and 38-128min. Conversion rates to DHA equaled 0.65 and 25.1nmol/s/g×10(-4), respectively. The low brain concentration and incorporation rate and high oxidation of EPA suggest that, if EPA has a beneficial effect in brain, it might result from its suppression of peripheral inflammation and hepatic conversion to bioactive DHA.
Collapse
Affiliation(s)
- Miki Igarashi
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Building 9, Room 1S126, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
50
|
Murphy EJ. A lipid neurochemist's siren: docosahexaenoic acid and its elusive function in the central nervous system. J Neurochem 2013; 127:299-302. [PMID: 24117623 DOI: 10.1111/jnc.12439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 08/26/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Eric J Murphy
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| |
Collapse
|