1
|
Fan X, Sun L, Qin Y, Liu Y, Wu S, Du L. The Role of HSP90 Molecular Chaperones in Depression: Potential Mechanisms. Mol Neurobiol 2025; 62:708-717. [PMID: 38896156 DOI: 10.1007/s12035-024-04284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Major depressive disorder (MDD) is characterized by high rates of disability and death and has become a public health problem that threatens human life and health worldwide. HPA axis disorder and neuroinflammation are two common biological abnormalities in MDD patients. Hsp90 is an important molecular chaperone that is widely distributed in the organism. Hsp90 binds to the co-chaperone and goes through a molecular chaperone cycle to complete its regulation of the client protein. Numerous studies have demonstrated that Hsp90 regulates how the HPA axis reacts to stress and how GR, the HPA axis' responsive substrate, matures. In addition, Hsp90 exhibits pro-inflammatory effects that are closely related to neuroinflammation in MDD. Currently, Hsp90 inhibitors have made some progress in the treatment of a variety of human diseases, but they still need to be improved. Further insight into the role of Hsp90 in MDD provides new ideas for the development of new antidepressant drugs targeting Hsp90.
Collapse
Affiliation(s)
- Xuyuan Fan
- Department of Medicine, Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Lei Sun
- Department of Medicine, Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Ye Qin
- Department of Laboratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Yuan Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Shusheng Wu
- Department of the Central Laboratory, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, Jiangsu, China.
| | - Longfei Du
- Department of Laboratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, Jiangsu, China.
| |
Collapse
|
2
|
Zgajnar N, Lagadari M, Gallo LI, Piwien-Pilipuk G, Galigniana MD. Mitochondrial-nuclear communication by FKBP51 shuttling. J Cell Biochem 2024; 125:e30386. [PMID: 36815347 DOI: 10.1002/jcb.30386] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/24/2023] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Abstract
The HSP90-binding immunophilin FKBP51 is a soluble protein that shows high homology and structural similarity with FKBP52. Both immunophilins are functionally divergent and often show antagonistic actions. They were first described in steroid receptor complexes, their exchange in the complex being the earliest known event in steroid receptor activation upon ligand binding. In addition to steroid-related events, several pleiotropic actions of FKBP51 have emerged during the last years, ranging from cell differentiation and apoptosis to metabolic and psychiatric disorders. On the other hand, mitochondria play vital cellular roles in maintaining energy homeostasis, responding to stress conditions, and affecting cell cycle regulation, calcium signaling, redox homeostasis, and so forth. This is achieved by proteins that are encoded in both the nuclear genome and mitochondrial genes. This implies active nuclear-mitochondrial communication to maintain cell homeostasis. Such communication involves factors that regulate nuclear and mitochondrial gene expression affecting the synthesis and recruitment of mitochondrial and nonmitochondrial proteins, and/or changes in the functional state of the mitochondria itself, which enable mitochondria to recover from stress. FKBP51 has emerged as a serious candidate to participate in these regulatory roles since it has been unexpectedly found in mitochondria showing antiapoptotic effects. Such localization involves the tetratricopeptide repeats domains of the immunophilin and not its intrinsic enzymatic activity of peptidylprolyl-isomerase. Importantly, FKBP51 abandons the mitochondria and accumulates in the nucleus upon cell differentiation or during the onset of stress. Nuclear FKBP51 enhances the enzymatic activity of telomerase. The mitochondrial-nuclear trafficking is reversible, and certain situations such as viral infections promote the opposite trafficking, that is, FKBP51 abandons the nucleus and accumulates in mitochondria. In this article, we review the latest findings related to the mitochondrial-nuclear communication mediated by FKBP51 and speculate about the possible implications of this phenomenon.
Collapse
Affiliation(s)
- Nadia Zgajnar
- Instituto de Biología y Medicina Experimental (IBYME)/CONICET, Buenos Aires, Argentina
| | - Mariana Lagadari
- Instituto de Ciencia y Tecnología de Alimentos de Entre Ríos, Concordia, Argentina
| | - Luciana I Gallo
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFYBYNE)/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Mario D Galigniana
- Instituto de Biología y Medicina Experimental (IBYME)/CONICET, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
3
|
Holsboer F, Ising M. Precision Psychiatry Approach to Treat Depression and Anxiety Targeting the Stress Hormone System - V1b-antagonists as a Case in Point. PHARMACOPSYCHIATRY 2024; 57:263-274. [PMID: 39159843 DOI: 10.1055/a-2372-3549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The future of depression pharmacotherapy lies in a precision medicine approach that recognizes that depression is a disease where different causalities drive symptoms. That approach calls for a departure from current diagnostic categories, which are broad enough to allow adherence to the "one-size-fits-all" paradigm, which is complementary to the routine use of "broad-spectrum" mono-amine antidepressants. Similar to oncology, narrowing the overinclusive diagnostic window by implementing laboratory tests, which guide specifically targeted treatments, will be a major step forward in overcoming the present drug discovery crisis.A substantial subgroup of patients presents with signs and symptoms of hypothalamic-pituitary-adrenocortical (HPA) overactivity. Therefore, this stress hormone system was considered to offer worthwhile targets. Some promising results emerged, but in sum, the results achieved by targeting corticosteroid receptors were mixed.More specific are non-peptidergic drugs that block stress-responsive neuropeptides, corticotropin-releasing hormone (CRH), and arginine vasopressin (AVP) in the brain by antagonizing their cognate CRHR1-and V1b-receptors. If a patient's depressive symptomatology is driven by overactive V1b-signaling then a V1b-receptor antagonist should be first-line treatment. To identify the patient having this V1b-receptor overactivity, a neuroendocrine test, the so-called dex/CRH-test, was developed, which indicates central AVP release but is too complicated to be routinely used. Therefore, this test was transformed into a gene-based "near-patient" test that allows immediate identification if a depressed patient's symptomatology is driven by overactive V1b-receptor signaling. We believe that this precision medicine approach will be the next major innovation in the pharmacotherapy of depression.
Collapse
Affiliation(s)
- Florian Holsboer
- Max Planck Institute of Psychiatry, Munich, Germany
- HMNC Holding GmbH, Munich, Germany
| | - Marcus Ising
- Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
4
|
Gan YL, Lin WJ, Fang YC, Tang CY, Lee YH, Jeng CJ. FKBP51 is involved in LPS-induced microglial activation via NF-κB signaling to mediate neuroinflammation. Life Sci 2024; 351:122867. [PMID: 38914303 DOI: 10.1016/j.lfs.2024.122867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/03/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
AIMS FKBP5 encodes FKBP51, which has been implicated in stress-related psychiatric disorders, and its expression is often increased under chronic stress, contributing to mental dysfunctions. However, the precise role of FKBP51 in brain inflammation remains unclear. This study aimed to investigate the role of FKBP51 in microglia-mediated inflammatory responses in the central nervous system. MAIN METHODS We employed a peripheral lipopolysaccharide (LPS) administration model to compare microglial activation and cytokine gene expression between Fkbp5 knockout (Fkbp5-KO) and wild-type (WT) male mice. Additionally, we used both BV2 and primary microglia in vitro to examine how Fkbp5 deletion influenced inflammation-related pathways and microglial functions. KEY FINDINGS This study revealed that systemic LPS-induced microglial activation was significantly attenuated in Fkbp5-KO mice compared with WT mice. In Fkbp5-KO mice following the LPS challenge, there was a notable decrease in the expression of pro-inflammatory genes, coupled with an increase in the anti-inflammatory gene Arg1. Furthermore, Fkbp5 knockdown in BV2 microglial cells led to reduced expression of LPS-induced inflammatory markers, and targeted inhibition of NF-κB activation, while Akt signaling remained unaffected. Similar results were observed in Fkbp5-KO primary microglia, which exhibited not only decreased microglial activation but also a significant reduction in phagocytic activity in response to LPS stimulation. SIGNIFICANCE This study highlights the critical role of FKBP51 in LPS-induced microglial activation and neuroinflammation. It shows that reducing FKBP51 levels attenuates inflammation through NF-κB signaling in microglia. This suggests that FKBP51 is a potential target for alleviating neuroinflammation-induced stress responses.
Collapse
Affiliation(s)
- Yu-Ling Gan
- Institute of Anatomy and Cell Biology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Wan-Jung Lin
- Institute of Anatomy and Cell Biology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Department of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Ya-Ching Fang
- Institute of Anatomy and Cell Biology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Department of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chih-Yung Tang
- Department of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yi-Hsuan Lee
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| | - Chung-Jiuan Jeng
- Institute of Anatomy and Cell Biology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| |
Collapse
|
5
|
Simova Z, Sima M, Pelclova D, Klusackova P, Zdimal V, Schwarz J, Maskova L, Bradna P, Roubickova A, Krejcik Z, Klema J, Rossner P, Rossnerova A. Transcriptome changes in humans acutely exposed to nanoparticles during grinding of dental nanocomposites. Nanomedicine (Lond) 2024; 19:1511-1523. [PMID: 38953869 PMCID: PMC11321414 DOI: 10.1080/17435889.2024.2362611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/24/2024] [Indexed: 07/04/2024] Open
Abstract
Aim: Today, there is a lack of research studies concerning human acute exposure to nanoparticles (NPs). Our investigation aimed to simulate real-world acute inhalation exposure to NPs released during work with dental nanocomposites in a dental office or technician laboratory. Methods: Blood samples from female volunteers were processed before and after inhalation exposure. Transcriptomic mRNA and miRNA expression changes were analyzed. Results: We detected large interindividual variability, 90 significantly deregulated mRNAs, and 4 miRNAs when samples of participants before and after dental nanocomposite grinding were compared. Conclusion: The results suggest that inhaled dental NPs may present an occupational hazard to human health, as indicated by the changes in the processes related to oxidative stress, synthesis of eicosanoids, and cell division.
Collapse
Affiliation(s)
- Zuzana Simova
- Institute of Experimental Medicine CAS, Department of Toxicology & Molecular Epidemiology, Videnska 1083, Prague 4142 20, Czech Republic
- Department of Genetics & Microbiology, Faculty of Science, Charles University, Vinicna 5, Prague 2128 44, Czech Republic
| | - Michal Sima
- Institute of Experimental Medicine CAS, Department of Toxicology & Molecular Epidemiology, Videnska 1083, Prague 4142 20, Czech Republic
| | - Daniela Pelclova
- First Faculty of Medicine, Charles University in Prague & General University Hospital in Prague, Department of Occupational Medicine, Na Bojisti 1, Prague 2120 00, Czech Republic
| | - Pavlina Klusackova
- First Faculty of Medicine, Charles University in Prague & General University Hospital in Prague, Department of Occupational Medicine, Na Bojisti 1, Prague 2120 00, Czech Republic
| | - Vladimir Zdimal
- Institute of Chemical Process Fundamentals CAS, Department of Aerosol Chemistry & Physics, Rozvojova 1, Prague 6165 02, Czech Republic
| | - Jaroslav Schwarz
- Institute of Chemical Process Fundamentals CAS, Department of Aerosol Chemistry & Physics, Rozvojova 1, Prague 6165 02, Czech Republic
| | - Ludmila Maskova
- Institute of Chemical Process Fundamentals CAS, Department of Aerosol Chemistry & Physics, Rozvojova 1, Prague 6165 02, Czech Republic
| | - Pavel Bradna
- Institute of Dental Medicine, First Faculty of Medicine, Charles University & General University Hospital in Prague, Katerinska 32, Prague 2121 08, Czech Republic
| | - Adela Roubickova
- Institute of Dental Medicine, First Faculty of Medicine, Charles University & General University Hospital in Prague, Katerinska 32, Prague 2121 08, Czech Republic
| | - Zdenek Krejcik
- Institute of Experimental Medicine CAS, Department of Toxicology & Molecular Epidemiology, Videnska 1083, Prague 4142 20, Czech Republic
| | - Jiri Klema
- Department of Computer Science, Czech Technical University in Prague, Karlovo Namesti 13, Prague 2121 35, Czech Republic
| | - Pavel Rossner
- Institute of Experimental Medicine CAS, Department of Toxicology & Molecular Epidemiology, Videnska 1083, Prague 4142 20, Czech Republic
| | - Andrea Rossnerova
- Institute of Experimental Medicine CAS, Department of Toxicology & Molecular Epidemiology, Videnska 1083, Prague 4142 20, Czech Republic
| |
Collapse
|
6
|
Liu T, Wang C, Xia Z. Overexpressed FKBP5 mediates colorectal cancer progression and sensitivity to FK506 treatment via the NF-κB signaling pathway. FEBS J 2024; 291:3128-3146. [PMID: 38602236 DOI: 10.1111/febs.17126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/01/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Colorectal cancer (CRC) is a common and deadly tumor. FK506-binding protein 5 (FKBP5) is associated with some cancers, but the role of FKBP5 in CRC is not clear. The present study aimed to reveal the relationship between FKBP5 and CRC and to uncover the roles of FK506 in CRC. In total, 96 CRC patients were recruited. Survival analysis was conducted using the Kaplan-Meier method and COX regression analyses. Bioinformatics analyses were performed to explore the functions of FKBP5. The mechanisms of FKBP5 and the roles of FK506 in CRC progression were clarified by immunohistochemistry, MTS, scratch assay, transwell and flow cytometric analyses via in vitro and in vivo experiments. FKBP5 was overexpressed in 77 cancer tissues compared to that in matched normal tissues, and the overall survival rate of these patients was relatively shorter. Bioinformatics analyses showed that FKBP5 regulates proliferation, invasion, migration, epithelial-mesenchymal transition and nuclear factor-kappa B (NF-κB) signaling. The upregulation or downregulation of FKBP5 dramatically increases or decreases the proliferation, invasion and migration abilities of CRC cells. The expression of NF-κB, inhibitor B kinase α, matrix metalloproteinase-2 and metalloproteinase-9 positively correlated with FKBP5. FK506 inhibits the progression of CRC via the FKBP5/NF-κB signaling pathway. Our study identified a regulatory role for FKBP5 in CRC progression. Therefore, targeting FKBP5 may provide a novel treatment approach for CRC. FK506 can inhibit the progression of CRC by restraining the FKBP5/NF-κB signaling pathway and is expected to become a new drug for the treatment of CRC.
Collapse
Affiliation(s)
- Tiancong Liu
- Department of Otolaryngology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Changliang Wang
- The People's Procuratorate of Liaoning Province, Judicial Authentication Center, Shenyang, China
- Collaborative Laboratory of Intelligentized Forensic Science (CLIFS), Shenyang, China
| | - Zhixiu Xia
- Colorectal Tumor Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Bielawski A, Zelek-Molik A, Rafa-Zabłocka K, Kowalska M, Gruca P, Papp M, Nalepa I. Elevated Expression of HSP72 in the Prefrontal Cortex and Hippocampus of Rats Subjected to Chronic Mild Stress and Treated with Imipramine. Int J Mol Sci 2023; 25:243. [PMID: 38203414 PMCID: PMC10779295 DOI: 10.3390/ijms25010243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The HSP70 and HSP90 family members belong to molecular chaperones that exhibit protective functions during the cellular response to stressful agents. We investigated whether the exposure of rats to chronic mild stress (CMS), a validated model of depression, affects the expression of HSP70 and HSP90 in the prefrontal cortex (PFC), hippocampus (HIP) and thalamus (Thal). Male Wistar rats were exposed to CMS for 3 or 8 weeks. The antidepressant imipramine (IMI, 10 mg/kg, i.p., daily) was introduced in the last five weeks of the long-term CMS procedure. Depressive-like behavior was verified by the sucrose consumption test. The expression of mRNA and protein was quantified by real-time PCR and Western blot, respectively. In the 8-week CMS model, stress alone elevated HSP72 and HSP90B mRNA expression in the HIP. HSP72 mRNA was increased in the PFC and HIP of rats not responding to IMI treatment vs. IMI responders. The CMS exposure increased HSP72 protein expression in the cytosolic fraction of the PFC and HIP, and this effect was diminished by IMI treatment. Our results suggest that elevated levels of HSP72 may serve as an important indicator of neuronal stress reactions accompanying depression pathology and could be a potential target for antidepressant strategy.
Collapse
Affiliation(s)
- Adam Bielawski
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (A.B.); (A.Z.-M.); (K.R.-Z.); (M.K.)
| | - Agnieszka Zelek-Molik
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (A.B.); (A.Z.-M.); (K.R.-Z.); (M.K.)
| | - Katarzyna Rafa-Zabłocka
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (A.B.); (A.Z.-M.); (K.R.-Z.); (M.K.)
| | - Marta Kowalska
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (A.B.); (A.Z.-M.); (K.R.-Z.); (M.K.)
| | - Piotr Gruca
- Behavioral Pharmacology Laboratory, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (P.G.); (M.P.)
| | - Mariusz Papp
- Behavioral Pharmacology Laboratory, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (P.G.); (M.P.)
| | - Irena Nalepa
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (A.B.); (A.Z.-M.); (K.R.-Z.); (M.K.)
| |
Collapse
|
8
|
Herrera-De La Mata S, Ramírez-Suástegui C, Mistry H, Castañeda-Castro FE, Kyyaly MA, Simon H, Liang S, Lau L, Barber C, Mondal M, Zhang H, Arshad SH, Kurukulaaratchy RJ, Vijayanand P, Seumois G. Cytotoxic CD4 + tissue-resident memory T cells are associated with asthma severity. MED 2023; 4:875-897.e8. [PMID: 37865091 PMCID: PMC10964988 DOI: 10.1016/j.medj.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/02/2023] [Accepted: 09/18/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Patients with severe uncontrolled asthma represent a distinct endotype with persistent airway inflammation and remodeling that is refractory to corticosteroid treatment. CD4+ TH2 cells play a central role in orchestrating asthma pathogenesis, and biologic therapies targeting their cytokine pathways have had promising outcomes. However, not all patients respond well to such treatment, and their effects are not always durable nor reverse airway remodeling. This observation raises the possibility that other CD4+ T cell subsets and their effector molecules may drive airway inflammation and remodeling. METHODS We performed single-cell transcriptome analysis of >50,000 airway CD4+ T cells isolated from bronchoalveolar lavage samples from 30 patients with mild and severe asthma. FINDINGS We observed striking heterogeneity in the nature of CD4+ T cells present in asthmatics' airways, with tissue-resident memory T (TRM) cells making a dominant contribution. Notably, in severe asthmatics, a subset of CD4+ TRM cells (CD103-expressing) was significantly increased, comprising nearly 65% of all CD4+ T cells in the airways of male patients with severe asthma when compared to mild asthma (13%). This subset was enriched for transcripts linked to T cell receptor activation (HLA-DRB1, HLA-DPA1) and cytotoxicity (GZMB, GZMA) and, following stimulation, expressed high levels of transcripts encoding for pro-inflammatory non-TH2 cytokines (CCL3, CCL4, CCL5, TNF, LIGHT) that could fuel persistent airway inflammation and remodeling. CONCLUSIONS Our findings indicate the need to look beyond the traditional T2 model of severe asthma to better understand the heterogeneity of this disease. FUNDING This research was funded by the NIH.
Collapse
Affiliation(s)
| | | | - Heena Mistry
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton Foundation Trust, Southampton SO16 6YD, UK; The David Hide Asthma and Allergy Research Centre, St. Mary's Hospital, Newport PO30 5TG, Isle of Wight, UK
| | | | - Mohammad A Kyyaly
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; The David Hide Asthma and Allergy Research Centre, St. Mary's Hospital, Newport PO30 5TG, Isle of Wight, UK
| | - Hayley Simon
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Shu Liang
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Laurie Lau
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton Foundation Trust, Southampton SO16 6YD, UK
| | - Clair Barber
- National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton Foundation Trust, Southampton SO16 6YD, UK
| | | | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Syed Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton Foundation Trust, Southampton SO16 6YD, UK; The David Hide Asthma and Allergy Research Centre, St. Mary's Hospital, Newport PO30 5TG, Isle of Wight, UK
| | - Ramesh J Kurukulaaratchy
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton Foundation Trust, Southampton SO16 6YD, UK; The David Hide Asthma and Allergy Research Centre, St. Mary's Hospital, Newport PO30 5TG, Isle of Wight, UK.
| | - Pandurangan Vijayanand
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA; Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK.
| | | |
Collapse
|
9
|
Wang X, Song J, Yuan Y, Li L, Abu-Taha I, Heijman J, Sun L, Dobrev S, Kamler M, Xie L, Wehrens XH, Horrigan FT, Dobrev D, Li N. Downregulation of FKBP5 Promotes Atrial Arrhythmogenesis. Circ Res 2023; 133:e1-e16. [PMID: 37154033 PMCID: PMC10330339 DOI: 10.1161/circresaha.122.322213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 04/21/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Atrial fibrillation (AF), the most common arrhythmia, is associated with the downregulation of FKBP5 (encoding FKBP5 [FK506 binding protein 5]). However, the function of FKBP5 in the heart remains unknown. Here, we elucidate the consequences of cardiomyocyte-restricted loss of FKBP5 on cardiac function and AF development and study the underlying mechanisms. METHODS Right atrial samples from patients with AF were used to assess the protein levels of FKBP5. A cardiomyocyte-specific FKBP5 knockdown mouse model was established by crossbreeding Fkbp5flox/flox mice with Myh6MerCreMer/+ mice. Cardiac function and AF inducibility were assessed by echocardiography and programmed intracardiac stimulation. Histology, optical mapping, cellular electrophysiology, and biochemistry were employed to elucidate the proarrhythmic mechanisms due to loss of cardiomyocyte FKBP5. RESULTS FKBP5 protein levels were lower in the atrial lysates of patients with paroxysmal AF or long-lasting persistent (chronic) AF. Cardiomyocyte-specific knockdown mice exhibited increased AF inducibility and duration compared with control mice. Enhanced AF susceptibility in cardiomyocyte-specific knockdown mice was associated with the development of action potential alternans and spontaneous Ca2+ waves, and increased protein levels and activity of the NCX1 (Na+/Ca2+-exchanger 1), mimicking the cellular phenotype of chronic AF patients. FKBP5-deficiency enhanced transcription of Slc8a1 (encoding NCX1) via transcription factor hypoxia-inducible factor 1α. In vitro studies revealed that FKBP5 negatively modulated the protein levels of hypoxia-inducible factor 1α by competitively interacting with heat-shock protein 90. Injections of the heat-shock protein 90 inhibitor 17-AAG normalized protein levels of hypoxia-inducible factor 1α and NCX1 and reduced AF susceptibility in cardiomyocyte-specific knockdown mice. Furthermore, the atrial cardiomyocyte-selective knockdown of FKBP5 was sufficient to enhance AF arrhythmogenesis. CONCLUSIONS This is the first study to demonstrate a role for the FKBP5-deficiency in atrial arrhythmogenesis and to establish FKBP5 as a negative regulator of hypoxia-inducible factor 1α in cardiomyocytes. Our results identify a potential molecular mechanism for the proarrhythmic NCX1 upregulation in chronic AF patients.
Collapse
Affiliation(s)
- Xiaolei Wang
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
| | - Jia Song
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
| | - Yue Yuan
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
| | - Luge Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
| | - Issam Abu-Taha
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Jordi Heijman
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Liang Sun
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Shokoufeh Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Markus Kamler
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Liang Xie
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Xander H.T. Wehrens
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Frank T. Horrigan
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada
| | - Na Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
10
|
Johnston JG, Welch AK, Cain BD, Sayeski PP, Gumz ML, Wingo CS. Aldosterone: Renal Action and Physiological Effects. Compr Physiol 2023; 13:4409-4491. [PMID: 36994769 PMCID: PMC11472823 DOI: 10.1002/cphy.c190043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Aldosterone exerts profound effects on renal and cardiovascular physiology. In the kidney, aldosterone acts to preserve electrolyte and acid-base balance in response to changes in dietary sodium (Na+ ) or potassium (K+ ) intake. These physiological actions, principally through activation of mineralocorticoid receptors (MRs), have important effects particularly in patients with renal and cardiovascular disease as demonstrated by multiple clinical trials. Multiple factors, be they genetic, humoral, dietary, or otherwise, can play a role in influencing the rate of aldosterone synthesis and secretion from the adrenal cortex. Normally, aldosterone secretion and action respond to dietary Na+ intake. In the kidney, the distal nephron and collecting duct are the main targets of aldosterone and MR action, which stimulates Na+ absorption in part via the epithelial Na+ channel (ENaC), the principal channel responsible for the fine-tuning of Na+ balance. Our understanding of the regulatory factors that allow aldosterone, via multiple signaling pathways, to function properly clearly implicates this hormone as central to many pathophysiological effects that become dysfunctional in disease states. Numerous pathologies that affect blood pressure (BP), electrolyte balance, and overall cardiovascular health are due to abnormal secretion of aldosterone, mutations in MR, ENaC, or effectors and modulators of their action. Study of the mechanisms of these pathologies has allowed researchers and clinicians to create novel dietary and pharmacological targets to improve human health. This article covers the regulation of aldosterone synthesis and secretion, receptors, effector molecules, and signaling pathways that modulate its action in the kidney. We also consider the role of aldosterone in disease and the benefit of mineralocorticoid antagonists. © 2023 American Physiological Society. Compr Physiol 13:4409-4491, 2023.
Collapse
Affiliation(s)
- Jermaine G Johnston
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Amanda K Welch
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Peter P Sayeski
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Michelle L Gumz
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Charles S Wingo
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| |
Collapse
|
11
|
Li W, Wang W, Lai W, Li X, Zhu L, Shi J, Teopiz KM, McIntyre RS, Guo L, Lu C. The association of FKBP5 gene methylation, adolescents' sex, and depressive symptoms among Chinese adolescents: a nested case-control study. BMC Psychiatry 2022; 22:749. [PMID: 36451133 PMCID: PMC9710023 DOI: 10.1186/s12888-022-04392-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Depressive symptoms among adolescents are a serious health concern around the world. Altered DNA methylation in the FK506 binding protein 5 (FKBP5) gene has been reported to regulate stress response, which has been reported to be closely associated with depressive symptoms. However, most of the contributing studies have been conducted among adults and relatively few studies have considered the effect of disparate social influences and sex differences on the DNA methylation of FKBP5 in persons with depressive symptoms. The present study aimed to test the associations of FKBP5 DNA methylation and depressive symptoms among adolescents and explore possible sex differences in the foregoing associations. METHODS This study was conducted using a nested case-control design within a longitudinal cohort study from January 2019 to December 2019. Adolescents aged 12 to 17 years from 69 classes in 10 public high schools located in Guangdong province of China participated in this research. Students with persistent depressive symptoms that reported having depressive symptoms at both baseline and follow-up were treated as the case group, and those without depressive symptoms were randomly selected as the control group. Our study finally included 87 cases and 151 controls. Quantitative methylation analyses of the selected gene were carried out by MassARRAY platform System. RESULTS The overall DNA methylation trend of FKBP5 CpG sites in the case group was lower in comparison to the control group. Compared to healthy controls, lower methylation percentage of FKBP5-12 CpG 1 was observed in adolescents with persistent depressive symptoms after adjusting for covariates (case: 0.94 ± 2.00, control: 0.47 ± 0.92; F = 5.41, P = 0.021), although the statistical significance of the difference was lost after false discovery rate correction (q > 0.05). In addition, the hypomethylation of FKBP5-12 CpG 1 was approaching significance after adjustment for social-environmental factors (aOR = 0.77; P = 0.055), which indicated that no independent association was detected between hypomethylation of FKBP5 CpG sites and persistent depressive symptoms. Furthermore, in the present study, we were unable to identify sex differences in the association of FKBP5 gene methylation with depressive symptoms. CONCLUSION The decreased methylation level of FKBP5 was observed in adolescents with persistent depressive symptoms, albeit non-significant after correction for multiple testing. Our results presented here are preliminary and underscore the complex gene-environment interactions relevant to the risk for depressive symptoms.
Collapse
Affiliation(s)
- Wenyan Li
- grid.12981.330000 0001 2360 039XDepartment of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd 2, 510080 Guangzhou, China
| | - Wanxin Wang
- grid.12981.330000 0001 2360 039XDepartment of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd 2, 510080 Guangzhou, China
| | - Wenjian Lai
- grid.12981.330000 0001 2360 039XDepartment of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd 2, 510080 Guangzhou, China
| | - Xiuwen Li
- grid.12981.330000 0001 2360 039XDepartment of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd 2, 510080 Guangzhou, China
| | - Liwan Zhu
- grid.12981.330000 0001 2360 039XDepartment of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd 2, 510080 Guangzhou, China
| | - Jingman Shi
- grid.12981.330000 0001 2360 039XDepartment of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd 2, 510080 Guangzhou, China
| | - Kayla M. Teopiz
- grid.231844.80000 0004 0474 0428Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON Canada
| | - Roger S. McIntyre
- grid.231844.80000 0004 0474 0428Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Pharmacology, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Institute of Medical Science, University of Toronto, Toronto, ON Canada
| | - Lan Guo
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd 2, 510080, Guangzhou, China.
| | - Ciyong Lu
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd 2, 510080, Guangzhou, China.
| |
Collapse
|
12
|
Olesen MA, Villavicencio-Tejo F, Quintanilla RA. The use of fibroblasts as a valuable strategy for studying mitochondrial impairment in neurological disorders. Transl Neurodegener 2022; 11:36. [PMID: 35787292 PMCID: PMC9251940 DOI: 10.1186/s40035-022-00308-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
Neurological disorders (NDs) are characterized by progressive neuronal dysfunction leading to synaptic failure, cognitive impairment, and motor injury. Among these diseases, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) have raised a significant research interest. These disorders present common neuropathological signs, including neuronal dysfunction, protein accumulation, oxidative damage, and mitochondrial abnormalities. In this context, mitochondrial impairment is characterized by a deficiency in ATP production, excessive production of reactive oxygen species, calcium dysregulation, mitochondrial transport failure, and mitochondrial dynamics deficiencies. These defects in mitochondrial health could compromise the synaptic process, leading to early cognitive dysfunction observed in these NDs. Interestingly, skin fibroblasts from AD, PD, HD, and ALS patients have been suggested as a useful strategy to investigate and detect early mitochondrial abnormalities in these NDs. In this context, fibroblasts are considered a viable model for studying neurodegenerative changes due to their metabolic and biochemical relationships with neurons. Also, studies of our group and others have shown impairment of mitochondrial bioenergetics in fibroblasts from patients diagnosed with sporadic and genetic forms of AD, PD, HD, and ALS. Interestingly, these mitochondrial abnormalities have been observed in the brain tissues of patients suffering from the same pathologies. Therefore, fibroblasts represent a novel strategy to study the genesis and progression of mitochondrial dysfunction in AD, PD, HD, and ALS. This review discusses recent evidence that proposes fibroblasts as a potential target to study mitochondrial bioenergetics impairment in neurological disorders and consequently to search for new biomarkers of neurodegeneration.
Collapse
Affiliation(s)
- Margrethe A Olesen
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Francisca Villavicencio-Tejo
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
13
|
Gallucci G, Díaz A, Fernandez RDV, Bongiovanni B, Imhoff M, Massa E, Santucci N, Bértola D, Lioi S, Bay ML, Bottasso O, D'Attilio L. Differential expression of genes regulated by the glucocorticoid receptor pathway in patients with pulmonary tuberculosis. Life Sci 2022; 301:120614. [PMID: 35526591 DOI: 10.1016/j.lfs.2022.120614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/19/2022] [Accepted: 05/01/2022] [Indexed: 11/25/2022]
Abstract
AIMS Previous studies in TB patients showed an immuno-endocrine imbalance characterized by a disease-severity associated increase in plasma levels of proinflammatory cytokines and glucocorticoids (GCs). To analyze the potential immunomodulatory effect of circulating GCs over peripheral blood mononuclear cells (PBMC) from TB patients, we investigated the expression of positively (anti-inflammatory-related genes ANXA1; FKBP51; GILZ, NFKBIA, and NFKBIB) and negatively (inflammatory genes: IL-6, IL-1β, and IFN-γ) Glucocorticoids Receptors (GR)-regulated genes. Plasma concentrations of cytokines and hormones, together with specific lymphoproliferation were also assessed. MATERIALS AND METHODS Gene expression was quantified by RT-qPCR, specific lymphoproliferation by 3H-thymidine incorporation, whereas plasma cytokines and hormones levels by ELISA. KEY FINDINGS Transcripts of ANXA1, GILZ, NFKBIB, and NFKBIA appeared significantly increased in patients, whereas FKBP51, IL-6, IL-1β, and NF-κB remained unchanged. Upon analyzing according to disease severity, mRNA levels for ANXA1 and NFKBIB were even higher in moderate and severe patients. GILZ was increased in moderate cases, with NFKBIA and IL-1 β being higher in severe ones, who also displayed increased GRβ transcripts. TB patients had reduced plasma DHEA concentrations together with increased pro and anti-inflammatory cytokines (IFN-γ, IL-6, and IL-10) cortisol and cortisol/DHEA ratio, more evident in progressive cases, in whom their PBMC also showed a decreased mycobacterial-driven proliferation. The cortisol/DHEA ratio and GRα expression were positively correlated with GR-regulated genes mainly in moderate patients. SIGNIFICANCE The increased expression of cortisol-regulated anti-inflammatory genes in TB patients-PBMC, predominantly in progressive disease, seems compatible with a relatively insufficient attempt to downregulate the accompanying inflammation.
Collapse
Affiliation(s)
- Georgina Gallucci
- Instituto de Inmunología Clínica y Experimental Rosario (IDICER), CONICET-UNR, Rosario, Argentina
| | - Ariana Díaz
- Instituto de Inmunología Clínica y Experimental Rosario (IDICER), CONICET-UNR, Rosario, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | - Bettina Bongiovanni
- Instituto de Inmunología Clínica y Experimental Rosario (IDICER), CONICET-UNR, Rosario, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Matilde Imhoff
- Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Estefanía Massa
- Instituto de Inmunología Clínica y Experimental Rosario (IDICER), CONICET-UNR, Rosario, Argentina
| | - Natalia Santucci
- Instituto de Inmunología Clínica y Experimental Rosario (IDICER), CONICET-UNR, Rosario, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Diego Bértola
- Servicio de Clínica Médica, Hospital Provincial del Centenario, Rosario, Santa Fe, Argentina
| | - Susana Lioi
- Laboratorio Central, Hospital Provincial del Centenario, Rosario, Argentina
| | - María Luisa Bay
- Instituto de Inmunología Clínica y Experimental Rosario (IDICER), CONICET-UNR, Rosario, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Oscar Bottasso
- Instituto de Inmunología Clínica y Experimental Rosario (IDICER), CONICET-UNR, Rosario, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Luciano D'Attilio
- Instituto de Inmunología Clínica y Experimental Rosario (IDICER), CONICET-UNR, Rosario, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
14
|
The maternal-placental-fetal interface: Adaptations of the HPA axis and immune mediators following maternal stress and prenatal alcohol exposure. Exp Neurol 2022; 355:114121. [DOI: 10.1016/j.expneurol.2022.114121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022]
|
15
|
Lee EH, Park JY, Kwon HJ, Han PL. Repeated exposure with short-term behavioral stress resolves pre-existing stress-induced depressive-like behavior in mice. Nat Commun 2021; 12:6682. [PMID: 34795225 PMCID: PMC8602389 DOI: 10.1038/s41467-021-26968-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic stress induces adaptive changes in the brain via the cumulative action of glucocorticoids, which is associated with mood disorders. Here we show that repeated daily five-minute restraint resolves pre-existing stress-induced depressive-like behavior in mice. Repeated injection of glucocorticoids in low doses mimics the anti-depressive effects of short-term stress. Repeated exposure to short-term stress and injection of glucocorticoids activate neurons in largely overlapping regions of the brain, as shown by c-Fos staining, and reverse distinct stress-induced gene expression profiles. Chemogenetic inhibition of neurons in the prelimbic cortex projecting to the nucleus accumbens, basolateral amygdala, or bed nucleus of the stria terminalis results in anti-depressive effects similarly to short-term stress exposure, while only inhibition of neurons in the prelimbic cortex projecting to the bed nucleus of the stria terminalis rescues defective glucocorticoid release. In summary, we show that short-term stress can reverse adaptively altered stress gains and resolve stress-induced depressive-like behavior.
Collapse
Affiliation(s)
- Eun-Hwa Lee
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jin-Young Park
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Hye-Jin Kwon
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea.
- Department of Chemistry and Nano Science, College of Natural Science, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
16
|
Analysis of the cerebellar molecular stress response led to first evidence of a role for FKBP51 in brain FKBP52 expression in mice and humans. Neurobiol Stress 2021; 15:100401. [PMID: 34632006 PMCID: PMC8488056 DOI: 10.1016/j.ynstr.2021.100401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/05/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022] Open
Abstract
As the cerebellar molecular stress response is understudied, we assessed protein expression levels of hypothalamic-pituitary-adrenal (HPA) axis regulators and neurostructural markers in the cerebellum of a male PTSD mouse model and of unstressed vs. stressed male FK506 binding protein 51 (Fkbp5) knockout (KO) vs. wildtype mice. We explored the translatability of our findings in the Fkbp5 KO model to the situation in humans by correlating mRNA levels of candidates with those of FKBP5 in two whole transcriptome datasets of post-mortem human cerebellum and in blood of unstressed and stressed humans. Fkbp5 deletion rescued the stress-induced loss in hippocampal, prefrontal cortical, and, possibly, also cerebellar FKBP52 expression and modulated post-stress cerebellar expression levels of the glucocorticoid receptor (GR) and possibly (trend) also of glial fibrillary acidic protein (GFAP). Accordingly, expression levels of genes encoding for these three genes correlated with those of FKBP5 in human post-mortem cerebellum, while other neurostructural markers were not related to Fkbp5 either in mouse or human cerebellum. Also, gene expression levels of the two immunophilins correlated inversely in the blood of unstressed and stressed humans. We found transient changes in FKBP52 and persistent changes in GR and GFAP in the cerebellum of PTSD-like mice. Altogether, upon elucidating the cerebellar stress response we found first evidence for a novel facet of HPA axis regulation, i.e., the ability of FKBP51 to modulate the expression of its antagonist FKBP52 in the mouse and, speculatively, also in the human brain and blood and, moreover, detected long-term single stress-induced changes in expression of cerebellar HPA axis regulators and neurostructural markers of which some might contribute to the role of the cerebellum in fear extinction.
Collapse
|
17
|
HUZARD D, RAPPENEAU V, MEIJER OC, TOUMA C, ARANGO-LIEVANO M, GARABEDIAN MJ, JEANNETEAU F. Experience and activity-dependent control of glucocorticoid receptors during the stress response in large-scale brain networks. Stress 2021; 24:130-153. [PMID: 32755268 PMCID: PMC7907260 DOI: 10.1080/10253890.2020.1806226] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The diversity of actions of the glucocorticoid stress hormones among individuals and within organs, tissues and cells is shaped by age, gender, genetics, metabolism, and the quantity of exposure. However, such factors cannot explain the heterogeneity of responses in the brain within cells of the same lineage, or similar tissue environment, or in the same individual. Here, we argue that the stress response is continuously updated by synchronized neural activity on large-scale brain networks. This occurs at the molecular, cellular and behavioral levels by crosstalk communication between activity-dependent and glucocorticoid signaling pathways, which updates the diversity of responses based on prior experience. Such a Bayesian process determines adaptation to the demands of the body and external world. We propose a framework for understanding how the diversity of glucocorticoid actions throughout brain networks is essential for supporting optimal health, while its disruption may contribute to the pathophysiology of stress-related disorders, such as major depression, and resistance to therapeutic treatments.
Collapse
Affiliation(s)
- Damien HUZARD
- Department of Neuroscience and Physiology, University of Montpellier, CNRS, INSERM, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Virginie RAPPENEAU
- Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany
| | - Onno C. MEIJER
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
| | - Chadi TOUMA
- Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany
| | - Margarita ARANGO-LIEVANO
- Department of Neuroscience and Physiology, University of Montpellier, CNRS, INSERM, Institut de Génomique Fonctionnelle, Montpellier, France
| | | | - Freddy JEANNETEAU
- Department of Neuroscience and Physiology, University of Montpellier, CNRS, INSERM, Institut de Génomique Fonctionnelle, Montpellier, France
- Corresponding author:
| |
Collapse
|
18
|
Gholamian Dehkordi N, Mirzaei SA, Elahian F. Pharmacodynamic mechanisms of anti-inflammatory drugs on the chemosensitization of multidrug-resistant cancers and the pharmacogenetics effectiveness. Inflammopharmacology 2020; 29:49-74. [PMID: 33070257 DOI: 10.1007/s10787-020-00765-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/27/2020] [Indexed: 01/07/2023]
Abstract
Drug resistance as a remarkable issue in cancer treatment is associated with inflammation which occurs through complex chemical reactions in the tumor microenvironment. Recent studies have implicated that glucocorticoids and NSAIDs are mainly useful combinations for inflammatory response modulation in chemotherapeutic protocols for cancer treatment. Immunosuppressive actions of glucocorticoids and NSAIDs are mainly mediated by the transrepression or activation regulation of inflammatory genes with different DNA-bound transcription factors including AP-1, NFAT, NF-κB, STAT and also, varying functions of COX enzymes in cancer cells. Interestingly, many investigations have proved the benefits of these anti-inflammatory agents in the quenching of multidrug resistance pathways. Numerous analyses on the ABC transporter promoters showed conserved nucleotide sequences with several DNA response elements that participate in transcriptional regulation. Furthermore, genetic variations in nucleotide sequences of membrane transporters were strongly associated with changes in these transporters' expression or function and a substantial impact on systemic drug exposure and toxicity. It appeared that several polymorphisms in MDR transporter genes especially MDR1 have influenced the regulatory mechanisms and explained differences in glucocorticoid responses.
Collapse
Affiliation(s)
- Neda Gholamian Dehkordi
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Abbas Mirzaei
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
19
|
Lin CC, Cheng PY, Liu YP. Effects of early life social experience on fear extinction and related glucocorticoid profiles - behavioral and neurochemical approaches in a rat model of PTSD. Behav Brain Res 2020; 391:112686. [PMID: 32428628 DOI: 10.1016/j.bbr.2020.112686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 01/06/2023]
Abstract
People may agonize over an intrusive fear-inducing memory even when the traumatic event has passed, which is the principle manifestation of posttraumatic stress disorder (PTSD). However, many traumatized people do not present symptoms of PTSD, implying that certain hidden factors help those individuals to cope with the traumatic stress. Increasing evidence suggests that early life experience may serve as a predisposing factor in the development of PTSD. For example, early life social deprivation disrupts the glucocorticoid system, one of the biological abnormalities of PTSD. By employing isolation rearing (IR) with a subsequent single prolonged stress (SPS) paradigm, we examined the hypothesis that early-life social experience may change the outcome of traumatic stress in both behavioral and neurochemical profiles. Behaviorally, the performance of rats on a Pavlovian fear conditioning test was measured to evaluate their retrieval ability of fear memory extinction. Neurochemically, plasma corticosterone levels and glucocorticoid receptor (GR), FK506-binding proteins 4 and 5 (FKBP4 and FKBP5) and early growth response-1 (Egr-1) expression were measured in GR-abundant brain areas, including the hypothalamus, medial prefrontal cortex, and hippocampus. Our results demonstrated an area-dependent IR effect on the SPS outcomes. IR prevented the SPS-impaired fear extinction retrieval ability and averted the SPS-elevated expression of GR, FKBP4, and Egr-1 in the hippocampus, whereas it did not change the SPS-reduced plasma corticosterone levels and SPS-enhanced GR activity in the mPFC and hypothalamus. The present study provides some new insights to support the hypothesis that early-life experience may play a role in the occurrence of PTSD.
Collapse
Affiliation(s)
- Chen-Cheng Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan; Department of Psychiatry, Cheng Hsin General Hospital, Taipei 11220, Taiwan; Laboratory of Cognitive Neuroscience, Department of Physiology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Pao-Yun Cheng
- Department of Physiology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yia-Ping Liu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan; Department of Psychiatry, Cheng Hsin General Hospital, Taipei 11220, Taiwan; Laboratory of Cognitive Neuroscience, Department of Physiology, National Defense Medical Center, Taipei 11490, Taiwan.
| |
Collapse
|
20
|
Starvaggi Cucuzza L, Divari S, Biolatti B, Cannizzo FT. Expression of corticosteroid hormone receptors, prereceptors, and molecular chaperones in hypothalamic-pituitary-adrenal axis and adipose tissue after the administration of growth promoters in veal calves. Domest Anim Endocrinol 2020; 72:106473. [PMID: 32361423 DOI: 10.1016/j.domaniend.2020.106473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 02/14/2020] [Accepted: 03/01/2020] [Indexed: 02/08/2023]
Abstract
The action of glucocorticoids on target tissues is regulated by the glucocorticoid and mineralocorticoid receptors (codified by the NR3C1 and NR3C2 gene, respectively). Moreover, the prereceptor system, represented by the hydroxysteroid 11-beta dehydrogenases (HSD11Bs), catalyzes the interconversion from active glucocorticoids into inactive compounds. This study aimed to determine whether the expression of the prereceptor system, the corticosteroid receptors, and the molecules regulating their intracellular trafficking (FKBP prolyl isomerase 4 and FKBP prolyl isomerase 5) could be regulated in the hypothalamic-pituitary-adrenal axis and in different type of adipose tissue of calves by the administration of dexamethasone in combination with estradiol or prednisolone. Research about the glucocorticoid effects on bovine target tissues may allow development of new diagnostic methods that use potential molecular biomarkers of glucocorticoid treatment. The administration of dexamethasone in combination with estradiol increased the gene expression of HSD11B1 (P < 0.01), HSD11B2 (P < 0.05), NR3C1 (P < 0.01), and NR3C2 (P < 0.01) in the adrenal glands; NR3C2 in the intramuscular adipose tissue (P < 0.01), and HSD11B1 in the subcutaneous adipose tissue (P < 0.01). Prednisolone administration increased the gene expression of HSD11B1 (P < 0.01), NR3C1 (P < 0.05), and NR3C2 (P < 0.05) in the adrenal glands and HSD11B1 (P < 0.01) in the subcutaneous adipose tissue. Interestingly, most of the examined tissues/organs showed a significant variation of FKBP5 gene expression after the administration of dexamethasone in combination with estradiol. So, these changes suggest that the FKBP5 gene expression could be a possible biomarker of the illegal dexamethasone administration in calves.
Collapse
Affiliation(s)
- L Starvaggi Cucuzza
- Dipartimento di Scienze Veterinarie, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy.
| | - S Divari
- Dipartimento di Scienze Veterinarie, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - B Biolatti
- Dipartimento di Scienze Veterinarie, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - F T Cannizzo
- Dipartimento di Scienze Veterinarie, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| |
Collapse
|
21
|
Regulation of FKBP51 and FKBP52 functions by post-translational modifications. Biochem Soc Trans 2020; 47:1815-1831. [PMID: 31754722 DOI: 10.1042/bst20190334] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 12/17/2022]
Abstract
FKBP51 and FKBP52 are two iconic members of the family of peptidyl-prolyl-(cis/trans)-isomerases (EC: 5.2.1.8), which comprises proteins that catalyze the cis/trans isomerization of peptidyl-prolyl peptide bonds in unfolded and partially folded polypeptide chains and native state proteins. Originally, both proteins have been studied as molecular chaperones belonging to the steroid receptor heterocomplex, where they were first discovered. In addition to their expected role in receptor folding and chaperoning, FKBP51 and FKBP52 are also involved in many biological processes, such as signal transduction, transcriptional regulation, protein transport, cancer development, and cell differentiation, just to mention a few examples. Recent studies have revealed that both proteins are subject of post-translational modifications such as phosphorylation, SUMOlyation, and acetylation. In this work, we summarize recent advances in the study of these immunophilins portraying them as scaffolding proteins capable to organize protein heterocomplexes, describing some of their antagonistic properties in the physiology of the cell, and the putative regulation of their properties by those post-translational modifications.
Collapse
|
22
|
De Leo SA, Zgajnar NR, Mazaira GI, Erlejman AG, Galigniana MD. Role of the Hsp90-Immunophilin Heterocomplex in Cancer Biology. CURRENT CANCER THERAPY REVIEWS 2020. [DOI: 10.2174/1573394715666190102120801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The identification of new factors that may function as cancer markers and become eventual pharmacologic targets is a challenge that may influence the management of tumor development and management. Recent discoveries connecting Hsp90-binding immunophilins with the regulation of signalling events that can modulate cancer progression transform this family of proteins in potential unconventional factors that may impact on the screening and diagnosis of malignant diseases. Immunophilins are molecular chaperones that group a family of intracellular receptors for immunosuppressive compounds. A subfamily of the immunophilin family is characterized by showing structural tetratricopeptide repeats, protein domains that are able to interact with the C-terminal end of the molecular chaperone Hsp90, and via the proper Hsp90-immunophilin complex, the biological properties of a number of client-proteins involved in cancer biology are modulated. Recent discoveries have demonstrated that two of the most studied members of this Hsp90- binding subfamily of immunophilins, FKBP51 and FKBP52, participate in several cellular processes such as apoptosis, carcinogenesis progression, and chemoresistance. While the expression levels of some members of the immunophilin family are affected in both cancer cell lines and human cancer tissues compared to normal samples, novel regulatory mechanisms have emerged during the last few years for several client-factors of immunophilins that are major players in cancer development and progression, among them steroid receptors, the transctiption factor NF-κB and the catalytic subunit of telomerase, hTERT. In this review, recent findings related to the biological properties of both iconic Hsp90-binding immunophilins, FKBP51 and FKBP52, are reviewed within the context of their interactions with those chaperoned client-factors. The potential roles of both immunophilins as potential cancer biomarkers and non-conventional pharmacologic targets for cancer treatment are discussed.
Collapse
Affiliation(s)
- Sonia A. De Leo
- Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nadia R. Zgajnar
- Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
| | - Gisela I. Mazaira
- Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandra G. Erlejman
- Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mario D. Galigniana
- Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
23
|
Liberman AC, Budziñski ML, Sokn C, Gobbini RP, Ugo MB, Arzt E. SUMO conjugation as regulator of the glucocorticoid receptor-FKBP51 cellular response to stress. Steroids 2020; 153:108520. [PMID: 31604074 DOI: 10.1016/j.steroids.2019.108520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/20/2019] [Accepted: 10/01/2019] [Indexed: 01/19/2023]
Abstract
In order to adequately respond to stressful stimuli, glucocorticoids (GCs) target almost every tissue of the body. By exerting a negative feedback loop in the hypothalamic-pituitary-adrenal (HPA) axis GCs inhibit their own synthesis and restore homeostasis. GCs actions are mostly mediated by the GC receptor (GR), a member of the nuclear receptor superfamily. Alterations of the GR activity have been associatedto different diseases including mood disorders and can lead to severe complication. Therefore, understanding the molecular complexity of GR modulation is mandatory for the development of new and effective drugs for treating GR-associated disorders. FKBP51 is a GR chaperone that has gained much attention because it is a strong inhibitor of GR activity and has a crucial role in psychiatric diseases. Both GR and FKBP51 activity are regulated by SUMOylation, a posttranslational (PTM). In this review, we focus on the impact of SUMO-conjugation as a regulator of this pathway.
Collapse
Affiliation(s)
- Ana C Liberman
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina.
| | - Maia L Budziñski
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Clara Sokn
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Romina P Gobbini
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Maria B Ugo
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina; Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.
| |
Collapse
|
24
|
Shen Y, Shi Z, Yan B. Carboxylesterases: Pharmacological Inhibition Regulated Expression and Transcriptional Involvement of Nuclear Receptors and other Transcription Factors. NUCLEAR RECEPTOR RESEARCH 2019. [DOI: 10.32527/2019/101435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Yuanjun Shen
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh Department of Medicine, Pittsburgh, PA 15261, USA
| | - Zhanquan Shi
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Bingfang Yan
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
25
|
Häusl AS, Balsevich G, Gassen NC, Schmidt MV. Focus on FKBP51: A molecular link between stress and metabolic disorders. Mol Metab 2019; 29:170-181. [PMID: 31668388 PMCID: PMC6812026 DOI: 10.1016/j.molmet.2019.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Obesity, Type 2 diabetes (T2D) as well as stress-related disorders are rising public health threats and major burdens for modern society. Chronic stress and depression are highly associated with symptoms of the metabolic syndrome, but the molecular link is still not fully understood. Furthermore, therapies tackling these biological disorders are still lacking. The identification of shared molecular targets underlying both pathophysiologies may lead to the development of new treatments. The FK506 binding protein 51 (FKBP51) has recently been identified as a promising therapeutic target for stress-related psychiatric disorders and obesity-related metabolic outcomes. SCOPE OF THE REVIEW The aim of this review is to summarize current evidence of in vitro, preclinical, and human studies on the stress responsive protein FKBP51, focusing on its newly discovered role in metabolism. Also, we highlight the therapeutic potential of FKBP51 as a new treatment target for symptoms of the metabolic syndrome. MAJOR CONCLUSIONS We conclude the review by emphasizing missing knowledge gaps that remain and future research opportunities needed to implement FKBP51 as a drug target for stress-related obesity or T2D.
Collapse
Affiliation(s)
- Alexander S Häusl
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany.
| | - Georgia Balsevich
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Ab T2N 4N1, Canada
| | - Nils C Gassen
- Department of Psychiatry and Psychotherapy, Bonn Clinical Center, University of Bonn, 53127, Bonn, Germany; Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany.
| |
Collapse
|
26
|
chen J, Yin B, Pang L, Wang W, Zhang JZH, Zhu T. Binding modes and conformational changes of FK506-binding protein 51 induced by inhibitor bindings: insight into molecular mechanisms based on multiple simulation technologies. J Biomol Struct Dyn 2019; 38:2141-2155. [DOI: 10.1080/07391102.2019.1624616] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jianzhong chen
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Baohua Yin
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Laixue Pang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - John Z. H. Zhang
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Tong Zhu
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| |
Collapse
|
27
|
Aluja A, Balada F, Blanco E, Fibla J, Blanch A. Twenty candidate genes predicting neuroticism and sensation seeking personality traits: A multivariate analysis association approach. PERSONALITY AND INDIVIDUAL DIFFERENCES 2019. [DOI: 10.1016/j.paid.2018.03.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Spiers JG, Chen HJC, Bourgognon JM, Steinert JR. Dysregulation of stress systems and nitric oxide signaling underlies neuronal dysfunction in Alzheimer's disease. Free Radic Biol Med 2019; 134:468-483. [PMID: 30716433 DOI: 10.1016/j.freeradbiomed.2019.01.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 12/12/2022]
Abstract
Stress is a multimodal response involving the coordination of numerous body systems in order to maximize the chance of survival. However, long term activation of the stress response results in neuronal oxidative stress via reactive oxygen and nitrogen species generation, contributing to the development of depression. Stress-induced depression shares a high comorbidity with other neurological conditions including Alzheimer's disease (AD) and dementia, often appearing as one of the earliest observable symptoms in these diseases. Furthermore, stress and/or depression appear to exacerbate cognitive impairment in the context of AD associated with dysfunctional catecholaminergic signaling. Given there are a number of homologous pathways involved in the pathophysiology of depression and AD, this article will highlight the mechanisms by which stress-induced perturbations in oxidative stress, and particularly NO signaling, contribute to neurodegeneration.
Collapse
Affiliation(s)
- Jereme G Spiers
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3083, Australia.
| | - Hsiao-Jou Cortina Chen
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | | | - Joern R Steinert
- Department of Neuroscience, Psychology and Behavior, University of Leicester, Leicester, LE1 9HN, United Kingdom.
| |
Collapse
|
29
|
Ising M, Maccarrone G, Brückl T, Scheuer S, Hennings J, Holsboer F, Turck CW, Uhr M, Lucae S. FKBP5 Gene Expression Predicts Antidepressant Treatment Outcome in Depression. Int J Mol Sci 2019; 20:ijms20030485. [PMID: 30678080 PMCID: PMC6387218 DOI: 10.3390/ijms20030485] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/13/2019] [Accepted: 01/20/2019] [Indexed: 12/12/2022] Open
Abstract
Adverse experiences and chronic stress are well-known risk factors for the development of major depression, and an impaired stress response regulation is frequently observed in acute depression. Impaired glucocorticoid receptor (GR) signalling plays an important role in these alterations, and a restoration of GR signalling appears to be a prerequisite of successful antidepressant treatment. Variants in genes of the stress response regulation contribute to the vulnerability to depression in traumatized subjects. Consistent findings point to an important role of FKBP5, the gene expressing FK506-binding protein 51 (FKBP51), which is a strong inhibitor of the GR, and thus, an important regulator of the stress response. We investigated the role of FKBP5 and FKB51 expression with respect to stress response regulation and antidepressant treatment outcome in depressed patients. This study included 297 inpatients, who participated in the Munich Antidepressant Response Signature (MARS) project and were treated for acute depression. In this open-label study, patients received antidepressant treatment according to the attending doctor’s choice. In addition to the FKBP5 genotype, changes in blood FKBP51 expression during antidepressant treatment were analyzed using RT-PCR and ZeptoMARKTM reverse phase protein microarray (RPPM). Stress response regulation was evaluated in a subgroup of patients using the combined dexamethasone (dex)/corticotropin releasing hormone (CRH) test. As expected, increased FKBP51 expression was associated with an impaired stress response regulation at baseline and after six weeks was accompanied by an elevated cortisol response to the combined dex/CRH test. Further, we demonstrated an active involvement of FKBP51 in antidepressant treatment outcome. While patients responding to antidepressant treatment had a pronounced reduction of FKBP5 gene and FKBP51 protein expression, increasing expression levels were observed in nonresponders. This effect was moderated by the genotype of the FKBP5 single nucleotide polymorphism (SNP) rs1360780, with carriers of the minor allele showing the most pronounced association. Our findings demonstrate that FKBP5 and, specifically, its expression product FKBP51 are important modulators of antidepressant treatment outcome, pointing to a new, promising target for future antidepressant drug development.
Collapse
Affiliation(s)
- Marcus Ising
- Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| | | | - Tanja Brückl
- Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| | - Sandra Scheuer
- Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| | | | - Florian Holsboer
- Max Planck Institute of Psychiatry, 80804 Munich, Germany.
- HMNC Brain Health GmbH, 80807 Munich, Germany.
| | | | - Manfred Uhr
- Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| | - Susanne Lucae
- Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| |
Collapse
|
30
|
Galigniana MD. HSP90-Based Heterocomplex as Essential Regulator for Cancer Disease. HEAT SHOCK PROTEINS 2019:19-45. [DOI: 10.1007/978-3-030-23158-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
31
|
Memic A, Streit F, Hasandedic L, Witt SH, Strohmaier J, Rietschel M, Oruc L. Neurocognitive Endophenotypes of Schizophrenia and Bipolar Disorder and Possible Associations with FKBP Variant rs3800373. Med Arch 2018; 72:352-356. [PMID: 30524168 PMCID: PMC6282916 DOI: 10.5455/medarh.2018.72.352-356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Introduction Schizophrenia(SCZ) and Bipolar disorder (BD) are frequently occurring and impairing disorders that affect around 1% of the population. Important endophenotypes in the genetic research of SCZ and BD are cognitive functions. Core symptoms for SCZ and BD are impairments in working memory, declarative memory and attention, all of which fulfill the criteria for an endophenotype. The FK506 Binding Protein 5 (FKBP5) gene codes for a co-chaperone of the glucocorticoid receptor and has been reported to be associated with cognition. Aim The aims of our research were to determine the degree of cognitive impairment in patients suffering from SCZ and BD and to explore the association of the FKBP5 variant rs3800373 genotype with the cognitive endophenotypes. Material and Methods Patients and healthy controls were recruited over a period of two years from the Psychiatric Clinic, Clinical Center University of Sarajevo. Genotyping and neuropsychological assessments were performed for 263 subjects (129 SCZ, 53 BD, and 81 healthy controls [HC]). Neuropsychological assessments were performed for all patients with the Trail Making Test-A&B (TMT-A&B) and Digit-span forward&backwards tasks. The single nucleotide polymorphism (SNP) rs3800373 in the FKBP5 gene was genotyped using Infinium PsychArray Bead Chips. Results and Conclusion SCZ and BD patients performed lower than HC in the TMT-A&B and in the Digit-span backwards task, while no differences were observed between SCZ and BD patients. While SCZ patients performed lower than HC in the Digit-span forwards task, there were no differences between BD and HC or between BD and SCZ. Rs 3800373 was not associated with performance in the TMT-A&B or Digit-span forwards&backwards tasks. SCZ and BD share largely overlapping neurocognitive characteristics. Rs3800373 was not associated with performance in the neuropsychological tests. However, given the limited sample size, the results do not exclude an association with the rs3800373 variant in a larger sample. Furthermore, as the analysis was limited to one SNP, the results cannot be generalized to other genetic variants in FKBP5.
Collapse
Affiliation(s)
- Amra Memic
- Psychiatric Clinic, Clinical Center University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Lejla Hasandedic
- Psychology Department, Faculty of Letters, Akdeniz University, Antalya, Turkey
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Jana Strohmaier
- Department of Genetic Epidemiology in Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Lilijana Oruc
- Psychiatric Clinic, Clinical Center University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
32
|
Wilkinson L, Verhoog NJD, Louw A. Disease- and treatment-associated acquired glucocorticoid resistance. Endocr Connect 2018; 7:R328-R349. [PMID: 30352419 PMCID: PMC6280593 DOI: 10.1530/ec-18-0421] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/11/2018] [Indexed: 12/16/2022]
Abstract
The development of resistance to glucocorticoids (GCs) in therapeutic regimens poses a major threat. Generally, GC resistance is congenital or acquired over time as a result of disease progression, prolonged GC treatment or, in some cases, both. Essentially, disruptions in the function and/or pool of the glucocorticoid receptor α (GRα) underlie this resistance. Many studies have detailed how alterations in GRα function lead to diminished GC sensitivity; however, the current review highlights the wealth of data concerning reductions in the GRα pool, mediated by disease-associated and treatment-associated effects, which contribute to a significant decrease in GC sensitivity. Additionally, the current understanding of the molecular mechanisms involved in driving reductions in the GRα pool is discussed. After highlighting the importance of maintaining the level of the GRα pool to combat GC resistance, we present current strategies and argue that future strategies to prevent GC resistance should involve biased ligands with a predisposition for reduced GR dimerization, a strategy originally proposed as the SEMOGRAM-SEDIGRAM concept to reduce the side-effect profile of GCs.
Collapse
Affiliation(s)
- Legh Wilkinson
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Ann Louw
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
- Correspondence should be addressed to A Louw:
| |
Collapse
|
33
|
Mazaira GI, Zgajnar NR, Lotufo CM, Daneri-Becerra C, Sivils JC, Soto OB, Cox MB, Galigniana MD. The Nuclear Receptor Field: A Historical Overview and Future Challenges. NUCLEAR RECEPTOR RESEARCH 2018; 5:101320. [PMID: 30148160 PMCID: PMC6108593 DOI: 10.11131/2018/101320] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this article we summarize the birth of the field of nuclear receptors, the discovery of untransformed and transformed isoforms of ligand-binding macromolecules, the discovery of the three-domain structure of the receptors, and the properties of the Hsp90-based heterocomplex responsible for the overall structure of the oligomeric receptor and many aspects of the biological effects. The discovery and properties of the subfamily of receptors called orphan receptors is also outlined. Novel molecular aspects of the mechanism of action of nuclear receptors and challenges to resolve in the near future are discussed.
Collapse
Affiliation(s)
- Gisela I. Mazaira
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (1428), Argentina
| | - Nadia R. Zgajnar
- Instituto de Biología y Medicina Experimental- CONICET. Buenos Aires (1428), Argentina
| | - Cecilia M. Lotufo
- Instituto de Biología y Medicina Experimental- CONICET. Buenos Aires (1428), Argentina
| | | | - Jeffrey C. Sivils
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Olga B. Soto
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Marc B. Cox
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Mario D. Galigniana
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (1428), Argentina
- Instituto de Biología y Medicina Experimental- CONICET. Buenos Aires (1428), Argentina
| |
Collapse
|
34
|
Orłowski M, Popławska K, Pieprzyk J, Szczygieł-Sommer A, Więch A, Zarębski M, Tarczewska A, Dobrucki J, Ożyhar A. Molecular determinants of Drosophila immunophilin FKBP39 nuclear localization. Biol Chem 2018; 399:467-484. [PMID: 29337690 DOI: 10.1515/hsz-2017-0251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/04/2018] [Indexed: 12/27/2022]
Abstract
FK506-binding proteins (FKBPs) belong to a distinct class of immunophilins that interact with immunosuppressants. They use their peptidyl-prolyl isomerase (PPIase) activity to catalyze the cis-trans conversion of prolyl bonds in proteins during protein-folding events. FKBPs also act as a unique group of chaperones. The Drosophila melanogaster peptidyl-prolyl cis-trans isomerase FK506-binding protein of 39 kDa (FKBP39) is thought to act as a transcriptional modulator of gene expression in 20-hydroxyecdysone and juvenile hormone signal transduction. The aim of this study was to analyze the molecular determinants responsible for the subcellular distribution of an FKBP39-yellow fluorescent protein (YFP) fusion construct (YFP-FKBP39). We found that YFP-FKBP39 was predominantly nucleolar. To identify the nuclear localization signal (NLS), a series of YFP-tagged FKBP39 deletion mutants were prepared and examined in vivo. The identified NLS signal is located in a basic domain. Detailed mutagenesis studies revealed that residues K188 and K191 are crucial for the nuclear targeting of FKBP39 and its nucleoplasmin-like (NPL) domain contains the sequence that controls the nucleolar-specific translocation of the protein. These results show that FKBP39 possesses a specific NLS in close proximity to a putative helix-turn-helix (HTH) motif and FKBP39 may bind DNA in vivo and in vitro.
Collapse
Affiliation(s)
- Marek Orłowski
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Katarzyna Popławska
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Joanna Pieprzyk
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Aleksandra Szczygieł-Sommer
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Anna Więch
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Mirosław Zarębski
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Aneta Tarczewska
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Jurek Dobrucki
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
35
|
Panagiotou C, Mihailidou C, Brauhli G, Katsarou O, Moutsatsou P. Effect of steviol, steviol glycosides and stevia extract on glucocorticoid receptor signaling in normal and cancer blood cells. Mol Cell Endocrinol 2018; 460:189-199. [PMID: 28754349 DOI: 10.1016/j.mce.2017.07.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 06/27/2017] [Accepted: 07/24/2017] [Indexed: 12/29/2022]
Abstract
The use of steviol glycosides as non-caloric sweeteners has proven to be beneficial for patients with type 2 diabetes mellitus (T2D), obesity, and metabolic syndrome. However, recent data demonstrate that steviol and stevioside might act as glucocorticoid receptor (GR) agonists and thus correlate with adverse effects on metabolism. Herein, we evaluated the impact of steviol, steviol glycosides, and a Greek-derived stevia extract on a number of key steps of GR signaling cascade in peripheral blood mononuclear cells (PBMCs) and in Jurkat leukemia cells. Our results revealed that none of the tested compounds altered the expression of primary GR-target genes (GILZ, FKPB5), GR protein levels or GR subcellular localization in PBMCs; those compounds increased GILZ and FKPB5 mRNA levels as well as GRE-mediated luciferase activity, inducing in parallel GR nuclear translocation in Jurkat cells. The GR-modulatory activity demonstrated by stevia-compounds in Jurkat cells but not in PBMCs may be due to a cell-type specific effect.
Collapse
Affiliation(s)
- Christina Panagiotou
- Department of Clinical Biochemistry, Medical School, National and Kapodistrian University of Athens, University General Hospital "ATTIKO", Athens, Greece
| | - Chrysovalantou Mihailidou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Olga Katsarou
- 2nd Blood Transfusion Center and Hemophilia Center, Laikon General Hospital, Athens, Greece
| | - Paraskevi Moutsatsou
- Department of Clinical Biochemistry, Medical School, National and Kapodistrian University of Athens, University General Hospital "ATTIKO", Athens, Greece.
| |
Collapse
|
36
|
Starvaggi Cucuzza L, Biolatti B, Scaglione FE, Cannizzo FT. Role of FKBP51 in the modulation of the expression of the corticosteroid receptors in bovine thymus following glucocorticoid administration. Domest Anim Endocrinol 2018; 62:10-15. [PMID: 28886589 DOI: 10.1016/j.domaniend.2017.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 11/23/2022]
Abstract
The aim of this work was to study the transcriptional effects of glucocorticoids on corticosteroid hormone receptors, prereceptors (11β-hydroxysteroid dehydrogenase 1 and 2, 11β-HSD1 and 2), and chaperones molecules regulating intracellular trafficking of the receptors (FKBP51 and FKBP52) in thymus of veal calves. Moreover, the expression of FKBP51 and FKBP52 gene were investigated in beef cattle thymus. In the cervical thymus of veal calves, dexamethasone administration in combination with estradiol decreased FKBP51 expression (P < 0.01). The same treatment increased mineralocorticoid receptor (MR) (P < 0.01) and 11β-HSD1 expression (P < 0.05) compared to control group in the cervical thymus of veal calves. The thoracic thymus of veal calves treated with dexamethasone and estradiol showed a decrease of FKBP51 (P < 0.05), FKBP52 (P < 0.05), glucocorticoid receptor (P < 0.05), and MR expression (P < 0.05) compared to control group in the thoracic thymus of veal calves. The gene expression of FKBP51 decreased both in cervical (P < 0.01) and thoracic thymus (P < 0.01) of beef cattle treated with dexamethasone and estradiol. In addition, also prednisolone administration reduced FKBP51 expression in the cervical thymus (P < 0.01) and in the thoracic thymus of beef cattle (P < 0.01). The gene expression of FKBP52 increased only in the cervical thymus following dexamethasone administration (P < 0.01). The decrease of FKBP51 gene expression in thymus could be a possible biomarker of illicit dexamethasone administration in bovine husbandry. Moreover, so far, an effective biomarker of prednisolone administration is not identified. In this context, the decrease of FKBP51 gene expression in thymus of beef cattle following prednisolone administration could play an important role in the indirect identification of animals illegally treated with prednisolone.
Collapse
Affiliation(s)
- L Starvaggi Cucuzza
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Turin, Italy
| | - B Biolatti
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Turin, Italy
| | - F E Scaglione
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Turin, Italy
| | - F T Cannizzo
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Turin, Italy.
| |
Collapse
|
37
|
Liu XH, Wang ZJ, Jin L, Huang J, Pu DY, Wang DS, Zhang YG. Effects of subchronic exposure to waterborne cadmium on H-P-I axis hormones and related genes in rare minnows (Gobiocypris rarus). Comp Biochem Physiol C Toxicol Pharmacol 2017; 202:1-11. [PMID: 28743461 DOI: 10.1016/j.cbpc.2017.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 11/21/2022]
Abstract
The H (hypothalamic)-P (pituitary)-I (interrenal) axis is critical in the stress response and other activities of fish. To further investigate cadmium (Cd) toxicity on the H-P-I axis and to identify its potential regulatory genes in fish, the adult female rare minnows (Gobiocypris rarus) were exposed to subchronic (5weeks) levels of waterborne Cd in the present study. This kind of treatment caused dose-dependent decline in fish growth, with significance in the high dose group (100μg/L). Correspondingly, low dose (5-50μg/L) waterborne Cd disrupted the endocrine system of H-P-I axis just at the secretion level, while high dose Cd disrupted both the secretion and synthesis of cortisol and its downstream signals in rare minnows, revealed by the significantly upregulation and positive correlation of corticosteroidogenic genes including MC2R, StAR, CYP11A1, and CYP11B1 in the kidney (including the interrenal tissue) (P<0.05), and the significant alteration of Glcci1, Hsp90AA and Hsp90AB in the hepatopancreas, gill and intestine as well (P<0.05). The expression of Glcci1 was significantly decreased in hepatopancreas, gill and intestine of tested fish following treatment, and its positive correlation with GR (Glucocorticoid receptor) suggested its potential regulation on the cortisol and/or H-P-I axis in fish. The expression of FKBP5 in the intestine was positively and significantly correlated with that of Hsp90AA (P<0.05), and the Hsp90AB transcript in the hepatopancreas was positively correlated with that of Hsp90AA (P<0.05), which indicated that Hsp90AA and Hsp90AB were more likely to serve as cofactors of GR and FKBP5 in response to Cd exposure.
Collapse
Affiliation(s)
- Xiao-Hong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - Zhi-Jian Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - Li Jin
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - Jing Huang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - De-Yong Pu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - De-Shou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - Yao-Guang Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China.
| |
Collapse
|
38
|
Genome-Wide Association between Transcription Factor Expression and Chromatin Accessibility Reveals Regulators of Chromatin Accessibility. PLoS Comput Biol 2017; 13:e1005311. [PMID: 28118358 PMCID: PMC5261565 DOI: 10.1371/journal.pcbi.1005311] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 12/15/2016] [Indexed: 11/29/2022] Open
Abstract
To better understand genome regulation, it is important to uncover the role of transcription factors in the process of chromatin structure establishment and maintenance. Here we present a data-driven approach to systematically characterise transcription factors that are relevant for this process. Our method uses a linear mixed modelling approach to combine datasets of transcription factor binding motif enrichments in open chromatin and gene expression across the same set of cell lines. Applying this approach to the ENCODE dataset, we confirm already known and imply numerous novel transcription factors that play a role in the establishment or maintenance of open chromatin. In particular, our approach rediscovers many factors that have been annotated as pioneer factors. Transcription factor binding occurs mainly in regions of open chromatin. For many transcription factors, it is unclear whether binding is the cause or the consequence of open chromatin. Here, we used datasets on open chromatin and gene expression provided by the ENCODE project to predict which transcription factors drive transitions between open and closed states. A signature of such a factor is that its expression values are correlated to chromatin accessibility at its motif across the same set of cell lines. Our method assesses this correlation while accounting for the fact that some tested cell lines are more related than others. We find many transcription factors showing evidence of driving transitions and a high proportion of these transcription factors are known pioneer factors, i.e., they play a role in opening up closed chromatin.
Collapse
|
39
|
Weber MD, Godbout JP, Sheridan JF. Repeated Social Defeat, Neuroinflammation, and Behavior: Monocytes Carry the Signal. Neuropsychopharmacology 2017; 42:46-61. [PMID: 27319971 PMCID: PMC5143478 DOI: 10.1038/npp.2016.102] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/28/2016] [Accepted: 05/27/2016] [Indexed: 02/06/2023]
Abstract
Mounting evidence indicates that proinflammatory signaling in the brain affects mood, cognition, and behavior and is linked with the etiology of psychiatric disorders, including anxiety and depression. The purpose of this review is to focus on stress-induced bidirectional communication pathways between the central nervous system (CNS) and peripheral immune system that converge to promote a heightened neuroinflammatory environment. These communication pathways involve sympathetic outflow from the brain to the peripheral immune system that biases hematopoietic stem cells to differentiate into a glucocorticoid-resistant and primed myeloid lineage immune cell. In conjunction, microglia-dependent neuroinflammatory events promote myeloid cell trafficking to the brain that reinforces stress-related behavior, and is argued to play a role in stress-related psychiatric disorders. We will discuss evidence implicating a key role for endothelial cells that comprise the blood-brain barrier in propagating peripheral-to-central immune communication. We will also discuss novel neuron-to-glia communication pathways involving endogenous danger signals that have recently been argued to facilitate neuroinflammation under various conditions, including stress. These findings help elucidate the complex communication that occurs in response to stress and highlight novel therapeutic targets against the development of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Michael D Weber
- Division of Biosciences, The Ohio State University, Columbus, OH, USA,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA,Division of Biosciences, The Ohio State University, 223 IBMR Building, 305 W 12th Avenue, 460 Medical Center Drive, Columbus, OH 43210, USA, Tel: 614-293-3392, Fax: 614-292-6087, E-mail:
| | - Jonathan P Godbout
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA,Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - John F Sheridan
- Division of Biosciences, The Ohio State University, Columbus, OH, USA,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
40
|
Hartmann K, Koenen M, Schauer S, Wittig-Blaich S, Ahmad M, Baschant U, Tuckermann JP. Molecular Actions of Glucocorticoids in Cartilage and Bone During Health, Disease, and Steroid Therapy. Physiol Rev 2016; 96:409-47. [PMID: 26842265 DOI: 10.1152/physrev.00011.2015] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cartilage and bone are severely affected by glucocorticoids (GCs), steroid hormones that are frequently used to treat inflammatory diseases. Major complications associated with long-term steroid therapy include impairment of cartilaginous bone growth and GC-induced osteoporosis. Particularly in arthritis, GC application can increase joint and bone damage. Contrarily, endogenous GC release supports cartilage and bone integrity. In the last decade, substantial progress in the understanding of the molecular mechanisms of GC action has been gained through genome-wide binding studies of the GC receptor. These genomic approaches have revolutionized our understanding of gene regulation by ligand-induced transcription factors in general. Furthermore, specific inactivation of GC signaling and the GC receptor in bone and cartilage cells of rodent models has enabled the cell-specific effects of GCs in normal tissue homeostasis, inflammatory bone diseases, and GC-induced osteoporosis to be dissected. In this review, we summarize the current view of GC action in cartilage and bone. We further discuss future research directions in the context of new concepts for optimized steroid therapies with less detrimental effects on bone.
Collapse
Affiliation(s)
- Kerstin Hartmann
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Mascha Koenen
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Sebastian Schauer
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Stephanie Wittig-Blaich
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Mubashir Ahmad
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Baschant
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Jan P Tuckermann
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
41
|
Bekhbat M, Merrill L, Kelly SD, Lee VK, Neigh GN. Brief anesthesia by isoflurane alters plasma corticosterone levels distinctly in male and female rats: Implications for tissue collection methods. Behav Brain Res 2016; 305:122-5. [PMID: 26946276 PMCID: PMC4808419 DOI: 10.1016/j.bbr.2016.03.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 11/18/2022]
Abstract
Euthanasia by anesthetic agents is commonly performed prior to tissue collection in order to minimize pain and distress to the animal. However, depending on their mechanism of action as well as administration regimen, different methods of anesthesia may trigger an acute stress response through engaging the hypothalamic-pituitary-adrenal (HPA) axis, which can impact numerous other physiological processes that the researcher may wish to examine as endpoints. We investigated the effects of the commonly used anesthetic agent isoflurane on two different endpoints related to the stress response: plasma corticosterone levels and gene expression of the glucocorticoid receptor (GR) as well as several of its regulators including FK506-binding protein 51 (Fkbp5) in the hippocampus of male and female rats. Our results indicate that brief exposure to anesthesia by isoflurane prior to decapitation can alter plasma corticosterone levels differentially in male and female rats within minutes without impacting gene expression in the hippocampus. We conclude that collection methods can influence stress-related physiological endpoints in female rats and the potential influence of even brief anesthesia as well as sex differences in response to anesthesia should be evaluated during the experimental design process and data interpretation. This finding is particularly important in light of new NIH standards regarding sex and reproducibility, and care should be taken to be certain that sex differences in endpoints of interest are not an artifact of sex differences in response to collection paradigms.
Collapse
Affiliation(s)
- Mandakh Bekhbat
- Department of Physiology, Emory University, Atlanta, GA 30322, United States
| | - Liana Merrill
- Department of Physiology, Emory University, Atlanta, GA 30322, United States; Department of Neurological Sciences, University of Vermont, Burlington, VT 05405, United States
| | - Sean D Kelly
- Department of Physiology, Emory University, Atlanta, GA 30322, United States
| | - Vanessa K Lee
- Division of Animal Resources, Emory University, Atlanta, GA 30322, United States
| | - Gretchen N Neigh
- Department of Physiology, Emory University, Atlanta, GA 30322, United States; Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA 30322, United States.
| |
Collapse
|
42
|
Divergent regulation of distinct glucocorticoid systems in alcohol dependence. Alcohol 2015; 49:811-6. [PMID: 26003866 DOI: 10.1016/j.alcohol.2015.04.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 04/11/2015] [Accepted: 04/12/2015] [Indexed: 11/23/2022]
Abstract
Chronic alcohol consumption disrupts glucocorticoid signaling at multiple physiological levels to interact with several disease-related processes associated with neuroendocrine and psychiatric disorders. Excessive alcohol use produces stress-related neuroadaptations at the level of the hypothalamic-pituitary-adrenal (HPA) axis as well as within central (extra-hypothalamic) neural circuitry, including the central amygdala (CeA) and prefrontal cortex (PFC). Altered glucocorticoid receptor (GR) signaling in these areas following excessive alcohol exposure is postulated to mediate the transition from recreational drinking to dependence, as well as the manifestation of a host of cognitive and neurological deficits. Specifically, a bidirectional regulation of stress systems by glucocorticoids leads to the development of an HPA axis tolerance and a concomitant sensitization of cortical and subcortical circuitries. A greater understanding of how hypothalamic and extra-hypothalamic glucocorticoid systems interact to mediate excessive drinking and related pathologies will lead to more effective therapeutic strategies for alcohol use disorder (AUD) and closely related comorbidities.
Collapse
|
43
|
Araki T, Kawamura M, Tanaka K, Okita Y, Fujikawa H, Uchida K, Toiyama Y, Inoue Y, Mohri Y, Kusunoki M. FK506-Binding Protein 5 mRNA Levels in Ileal Mucosa Are Associated with Pouchitis in Patients with Ulcerative Colitis. Dig Dis Sci 2015; 60:1617-23. [PMID: 25596721 DOI: 10.1007/s10620-015-3528-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 01/07/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Although the pathogenesis of pouchitis is incompletely understood, steroid and FK506 therapy are significantly associated with pouchitis. These medical treatments are regulated by the FK506-binding protein (FKBP) 4 and FKBP5 genes. AIM This study aimed to evaluate the relationship between pouchitis and FKBP4 and FKBP5 mRNA expression in ileal mucosa at the time of colectomy. METHODS Ileal mucosa specimens were collected from 71 patients who underwent ileal pouch-anal anastomosis for ulcerative colitis. FKBP4 and FKBP5 mRNA expression was evaluated. The relationship between mRNA expression and clinicopathological factors, including developed pouchitis, was investigated. RESULTS Of these 71 patients, 25 (35.2 %) patients developed pouchitis in a mean duration of 20.2 months (range 0-68 months). FKBP4 mRNA levels in patients who received an immunomodulator were significantly higher than those in untreated patients (0.167 ± 0.060 vs 0.131 ± 0.065, p = 0.009). However, FKBP5 mRNA levels in patients who received a three-stage operation were significantly lower than those in the other patients (1.97 ± 1.15 vs 2.70 ± 1.12, p = 0.02). A total dose of prednisolone >9.4 g (HR 2.84, p = 0.02) before colectomy and FKBP5 mRNA level higher than the median (HR 4.49, p = 0.01) were identified as factors related to pouchitis. CONCLUSIONS FKBP5 mRNA levels in ileal mucosa at the time of colectomy are significantly associated with pouchitis and may be a predictive factor for developing pouchitis.
Collapse
Affiliation(s)
- Toshimitsu Araki
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
LeMaster DM, Mustafi SM, Brecher M, Zhang J, Héroux A, Li H, Hernández G. Coupling of Conformational Transitions in the N-terminal Domain of the 51-kDa FK506-binding Protein (FKBP51) Near Its Site of Interaction with the Steroid Receptor Proteins. J Biol Chem 2015; 290:15746-15757. [PMID: 25953903 DOI: 10.1074/jbc.m115.650655] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Indexed: 11/06/2022] Open
Abstract
Interchanging Leu-119 for Pro-119 at the tip of the β4-β5 loop in the first FK506 binding domain (FK1) of the FKBP51 and FKBP52 proteins, respectively, has been reported to largely reverse the inhibitory (FKBP51) or stimulatory (FKBP52) effects of these co-chaperones on the transcriptional activity of glucocorticoid and androgen receptor-protein complexes. Previous NMR relaxation studies have identified exchange line broadening, indicative of submillisecond conformational motion, throughout the β4-β5 loop in the FK1 domain of FKBP51, which are suppressed by the FKBP52-like L119P substitution. This substitution also attenuates exchange line broadening in the underlying β2 and β3a strands that is centered near a bifurcated main chain hydrogen bond interaction between these two strands. The present study demonstrates that these exchange line broadening effects arise from two distinct coupled conformational transitions, and the transition within the β2 and β3a strands samples a transient conformation that resembles the crystal structures of the selectively inhibited FK1 domain of FKBP51 recently reported. Although the crystal structures for their series of inhibitors were interpreted as evidence for an induced fit mechanism of association, the presence of a similar conformation being significantly populated in the unliganded FKBP51 domain is more consistent with a conformational selection binding process. The contrastingly reduced conformational plasticity of the corresponding FK1 domain of FKBP52 is consistent with the current model in which FKBP51 binds to both the apo- and hormone-bound forms of the steroid receptor to modulate its affinity for ligand, whereas FKBP52 binds selectively to the latter state.
Collapse
Affiliation(s)
- David M LeMaster
- Wadsworth Center, New York State Department of Health, Albany, New York 12201; Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, New York 12201
| | - Sourajit M Mustafi
- Wadsworth Center, New York State Department of Health, Albany, New York 12201
| | - Matthew Brecher
- Wadsworth Center, New York State Department of Health, Albany, New York 12201
| | - Jing Zhang
- Wadsworth Center, New York State Department of Health, Albany, New York 12201
| | - Annie Héroux
- Brookhaven National Laboratory, Upton, New York 11973-5000
| | - Hongmin Li
- Wadsworth Center, New York State Department of Health, Albany, New York 12201; Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, New York 12201
| | - Griselda Hernández
- Wadsworth Center, New York State Department of Health, Albany, New York 12201; Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, New York 12201.
| |
Collapse
|
45
|
Mazaira GI, Camisay MF, De Leo S, Erlejman AG, Galigniana MD. Biological relevance of Hsp90-binding immunophilins in cancer development and treatment. Int J Cancer 2015; 138:797-808. [PMID: 25754838 DOI: 10.1002/ijc.29509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/17/2015] [Indexed: 12/14/2022]
Abstract
Immunophilins are a family of intracellular receptors for immunosuppressive drugs. Those immunophilins that are related to immunosuppression are the smallest proteins of the family, i.e., FKBP12 and CyPA, whereas the other members of the family have higher molecular weight because the show additional domains to the drug-binding site. Among these extra domains, the TPR-domain is perhaps the most relevant because it permits the interaction of high molecular weight immunophilins with the 90-kDa heat-shock protein, Hsp90. This essential molecular chaperone regulates the biological function of several protein-kinases, oncogenes, protein phosphatases, transcription factors and cofactors . Hsp90-binding immunophilins where first characterized due to their association with steroid receptors. They regulate the cytoplasmic transport and the subcellular localization of these and other Hsp90 client proteins, as well as transcriptional activity, cell proliferation, cell differentiation and apoptosis. Hsp90-binding immunophilins are frequently overexpressed in several types of cancers and play a key role in cell survival. In this article we analyze the most important biological actions of the best characterized Hsp90-binding immunophilins in both steroid receptor function and cancer development and discuss the potential use of these immunophilins for therapeutic purposes as potential targets of specific small molecules.
Collapse
Affiliation(s)
- Gisela I Mazaira
- Departamento De Química Biológica, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires and IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - María F Camisay
- Departamento De Química Biológica, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires and IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Sonia De Leo
- Departamento De Química Biológica, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires and IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Alejandra G Erlejman
- Departamento De Química Biológica, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires and IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Mario D Galigniana
- Departamento De Química Biológica, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires and IQUIBICEN-CONICET, Buenos Aires, Argentina.,Instituto De Biología Y Medicina Experimental-CONICET, Buenos Aires, Argentina
| |
Collapse
|
46
|
Molecular mechanisms of repeated social defeat-induced glucocorticoid resistance: Role of microRNA. Brain Behav Immun 2015; 44:195-206. [PMID: 25317829 PMCID: PMC4275324 DOI: 10.1016/j.bbi.2014.09.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/13/2014] [Accepted: 09/25/2014] [Indexed: 12/31/2022] Open
Abstract
Glucocorticoid (GC) resistance is a severe problem associated with various inflammatory diseases. Previous studies have shown that repeated social stress induces GC resistance in innate immune cells, but the underlying molecular mechanisms have not been fully elucidated. Therefore, the purpose of this study was to examine potential underlying molecular mechanism(s) of repeated social defeat (RSD) stress on GC resistance in splenic macrophages. It was hypothesized that mRNA expression of receptors for GC and nuclear translocating-associated regulators in splenic macrophages would be affected by RSD, and that these changes would be associated with epigenetic modification. The data showed that the mRNA expression of GC and mineralocorticoid receptors were significantly decreased in splenic macrophages by RSD. RSD also induced a significantly decreased mRNA expression in FK506-binding protein 52 (FKBP52), consequently resulting in a significantly increased ratio of FKBP51 to FKBP52. Moreover, DNA methyltransferases 3a and 3b showed a significant decrease in their mRNA expression in the RSD group as did mRNA expression of histone deacetyltransferase 2. The RSD group also showed a significantly reduced quantity of methylated DNA in splenic macrophages. Based on microRNA (miRNA) profiling data, it was determined that RSD induced significantly increased expression of 9 different miRNAs that were predicted to interact with mRNAs of the GC receptor (6 miRNAs), mineralocorticoid receptor (3 miRNAs) and FKBP52 (2 miRNAs). Spearman correlation analysis revealed significantly strong correlations between the expression of 2 miRNAs and their target mRNA expression for GC receptors. Among these miRNAs, we verified direct effects of miRNA-29b and -340 overexpression on mRNA expression of GC receptors in L929 cells. The overexpression of miRNA-29b or -340 in L929 cells significantly reduced LPS-induced overexpression of GC receptors. In conclusion, this study provides evidence that epigenetic regulation, such as DNA methylation and miRNA expression, may play a role in the RSD-induced GC resistance that we have observed in splenic macrophages.
Collapse
|
47
|
Schmidt U, Buell DR, Ionescu IA, Gassen NC, Holsboer F, Cox MB, Novak B, Huber C, Hartmann J, Schmidt MV, Touma C, Rein T, Herrmann L. A role for synapsin in FKBP51 modulation of stress responsiveness: Convergent evidence from animal and human studies. Psychoneuroendocrinology 2015; 52:43-58. [PMID: 25459892 DOI: 10.1016/j.psyneuen.2014.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 11/04/2014] [Accepted: 11/04/2014] [Indexed: 01/09/2023]
Abstract
Both the molecular co-chaperone FKBP51 and the presynaptic vesicle protein synapsin (alternatively spliced from SYN1-3) are intensively discussed players in the still insufficiently explored pathobiology of psychiatric disorders such as major depression, schizophrenia and posttraumatic stress disorder (PTSD). To address their still unknown interaction, we compared the expression levels of synapsin and five other neurostructural and HPA axis related marker proteins in the prefrontal cortex (PFC) and the hippocampus of restrained-stressed and unstressed Fkbp5 knockout mice and corresponding wild-type littermates. In addition, we compared and correlated the gene expression levels of SYN1, SYN2 and FKBP5 in three different online datasets comprising expression data of human healthy subjects as well as of predominantly medicated patients with different psychiatric disorders. In summary, we found that Fkbp5 deletion, which we previously demonstrated to improve stress-coping behavior in mice, prevents the stress-induced decline in prefrontal cortical (pc), but not in hippocampal synapsin expression. Accordingly, pc, but not hippocampal, synapsin protein levels correlated positively with a more active mouse stress coping behavior. Searching for an underlying mechanism, we found evidence that deletion of Fkbp5 might prevent stress-induced pc synapsin loss, at least in part, through improvement of pc Akt kinase activity. These results, together with our finding that FKBP5 and SYN1 mRNA levels were regulated in opposite directions in the PFC of schizophrenic patients, who are known for exhibiting an altered stress-coping behavior, provide the first evidence of a role for pc synapsin in FKBP51 modulation of stress responsiveness. This role might extend to other tissues, as we found FKBP5 and SYN1 levels to correlate inversely not only in human PFC samples but also in other expression sites. The main limitation of this study is the small number of individuals included in the correlation analyses. Future studies will have to verify the here-postulated role of the FKBP51-Akt kinase-synapsin pathway in stress responsiveness.
Collapse
Affiliation(s)
- Ulrike Schmidt
- Max Planck Institute of Psychiatry, Department of Clinical Research, RG Molecular Psychotraumatology, Munich, Germany.
| | - Dominik R Buell
- Max Planck Institute of Psychiatry, Department of Clinical Research, RG Molecular Psychotraumatology, Munich, Germany
| | - Irina A Ionescu
- Max Planck Institute of Psychiatry, Department of Clinical Research, RG Molecular Psychotraumatology, Munich, Germany
| | - Nils C Gassen
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Germany
| | - Florian Holsboer
- Max Planck Institute of Psychiatry, Department of Clinical Research, Munich, Germany
| | - Marc B Cox
- University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States
| | - Bozidar Novak
- Max Planck Institute of Psychiatry, Department of Clinical Research, RG Molecular Psychotraumatology, Munich, Germany
| | - Christine Huber
- Max Planck Institute of Psychiatry, Department of Clinical Research, RG Molecular Psychotraumatology, Munich, Germany
| | - Jakob Hartmann
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, Germany
| | - Mathias V Schmidt
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, Germany
| | - Chadi Touma
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, Germany
| | - Theo Rein
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Germany
| | - Leonie Herrmann
- Max Planck Institute of Psychiatry, Department of Clinical Research, RG Molecular Psychotraumatology, Munich, Germany
| |
Collapse
|
48
|
Mantovani F, Zannini A, Rustighi A, Del Sal G. Interaction of p53 with prolyl isomerases: Healthy and unhealthy relationships. Biochim Biophys Acta Gen Subj 2015; 1850:2048-60. [PMID: 25641576 DOI: 10.1016/j.bbagen.2015.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 01/17/2015] [Accepted: 01/19/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND The p53 protein family, comprising p53, p63 and p73, is primarily involved in preserving genome integrity and preventing tumor onset, and also affects a range of physiological processes. Signal-dependent modifications of its members and of other pathway components provide cells with a sophisticated code to transduce a variety of stress signaling into appropriate responses. TP53 mutations are highly frequent in cancer and lead to the expression of mutant p53 proteins that are endowed with oncogenic activities and sensitive to stress signaling. SCOPE OF REVIEW p53 family proteins have unique structural and functional plasticity, and here we discuss the relevance of prolyl-isomerization to actively shape these features. MAJOR CONCLUSIONS The anti-proliferative functions of the p53 family are carefully activated upon severe stress and this involves the interaction with prolyl-isomerases. In particular, stress-induced stabilization of p53, activation of its transcriptional control over arrest- and cell death-related target genes and of its mitochondrial apoptotic function, as well as certain p63 and p73 functions, all require phosphorylation of specific S/T-P motifs and their subsequent isomerization by the prolyl-isomerase Pin1. While these functions of p53 counteract tumorigenesis, under some circumstances their activation by prolyl-isomerases may have negative repercussions (e.g. tissue damage induced by anticancer therapies and ischemia-reperfusion, neurodegeneration). Moreover, elevated Pin1 levels in tumor cells may transduce deregulated phosphorylation signaling into activation of mutant p53 oncogenic functions. GENERAL SIGNIFICANCE The complex repertoire of biological outcomes induced by p53 finds mechanistic explanations, at least in part, in the association between prolyl-isomerases and the p53 pathway. This article is part of a Special Issue entitled Proline-directed foldases: Cell signaling catalysts and drug targets.
Collapse
Affiliation(s)
- Fiamma Mantovani
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| | - Alessandro Zannini
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| | - Alessandra Rustighi
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy.
| |
Collapse
|
49
|
Plant immunophilins: a review of their structure-function relationship. Biochim Biophys Acta Gen Subj 2014; 1850:2145-58. [PMID: 25529299 DOI: 10.1016/j.bbagen.2014.12.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/13/2014] [Accepted: 12/15/2014] [Indexed: 01/02/2023]
Abstract
BACKGROUND Originally discovered as receptors for immunosuppressive drugs, immunophilins consist of two major groups, FK506 binding proteins (FKBPs) and cyclosporin A binding proteins (cyclophilins, CYPs). Many members in both FKBP and CYP families are peptidyl prolyl isomerases that are involved in protein folding processes, though they share little sequence homology. It is not surprising to find immunophilins in all organisms examined so far, including viruses, bacteria, fungi, plants and animals, as protein folding represents a common process in all living systems. SCOPE OF REVIEW Studies on plant immunophilins have revealed new functions beyond protein folding and new structural properties beyond that of typical PPIases. This review focuses on the structural and functional diversity of plant FKBPs and CYPs. MAJOR CONCLUSIONS The differences in sequence, structure as well as subcellular localization, have added on to the diversity of this family of molecular chaperones. In particular, the large number of immunophilins present in the thylakoid lumen of the photosynthetic organelle, promises to deliver insights into the regulation of photosynthesis, a unique feature of plant systems. However, very little structural information and functional data are available for plant immunophilins. GENERAL SIGNIFICANCE Studies on the structure and function of plant immunophilins are important in understanding their role in plant biology. By reviewing the structural and functional properties of some immunophilins that represent the emerging area of research in plant biology, we hope to increase the interest of researchers in pursuing further research in this area. This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
|
50
|
Pomplun S, Wang Y, Kirschner A, Kozany C, Bracher A, Hausch F. Rationales Design und asymmetrische Synthese potenter neuritotropher Liganden für FK506‐bindende Proteine (FKBPs). Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408776] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sebastian Pomplun
- Max‐Planck‐Institut für Psychiatrie, Kraepelinstraße 2–10, 80804 München (Deutschland)
| | - Yansong Wang
- Max‐Planck‐Institut für Psychiatrie, Kraepelinstraße 2–10, 80804 München (Deutschland)
- Derzeitige Adresse: Europäisches Labor für Molekularbiologie, 69117 Heidelberg (Deutschland)
| | - Alexander Kirschner
- Max‐Planck‐Institut für Psychiatrie, Kraepelinstraße 2–10, 80804 München (Deutschland)
| | - Christian Kozany
- Max‐Planck‐Institut für Psychiatrie, Kraepelinstraße 2–10, 80804 München (Deutschland)
| | - Andreas Bracher
- Max‐Planck‐Institut für Biochemie, 82152 Martinsried (Deutschland)
| | - Felix Hausch
- Max‐Planck‐Institut für Psychiatrie, Kraepelinstraße 2–10, 80804 München (Deutschland)
| |
Collapse
|