1
|
Ding ZM, Neslund EM, Sun D, Tan X. Methoxsalen Inhibits the Acquisition of Nicotine Self-Administration: Attenuation by Cotinine Replacement in Male Rats. Nicotine Tob Res 2024; 26:1234-1243. [PMID: 38513068 PMCID: PMC11339168 DOI: 10.1093/ntr/ntae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 02/14/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
INTRODUCTION Cigarette smoking remains the leading preventable cause of disease and death. Nicotine is the primary reinforcing ingredient in cigarettes sustaining addiction. Cotinine is the major metabolite of nicotine that produces a myriad of neurobehavioral effects. Previous studies showed that cotinine-supported self-administration in rats and rats with a history of cotinine self-administration exhibited relapse-like drug-seeking behavior, suggesting that cotinine may also be reinforcing. To date, whether cotinine may contribute to nicotine reinforcement remains unknown. Nicotine metabolism is mainly catalyzed by hepatic CYP2B1/2 enzymes in rats and methoxsalen is a potent CYP2B1/2 inhibitor. AIMS AND METHODS The study examined nicotine metabolism, self-administration, and locomotor activity. The hypothesis is that methoxsalen inhibits nicotine self-administration and cotinine replacement attenuates the inhibitory effects of methoxsalen in male rats. RESULTS Methoxsalen decreased plasma cotinine levels following a subcutaneous nicotine injection. Repeated daily methoxsalen treatments reduced the acquisition of nicotine self-administration, leading to fewer nicotine infusions, lower nicotine intake, and lower plasma cotinine levels. However, methoxsalen did not alter the maintenance of nicotine self-administration despite a significant reduction of plasma cotinine levels. Cotinine replacement by mixing cotinine with nicotine for self-administration dose-dependently increased plasma cotinine levels and enhanced the acquisition of self-administration. Neither basal nor nicotine-induced locomotor activity was altered by methoxsalen. CONCLUSIONS These results indicate that methoxsalen inhibition of cotinine formation impaired the acquisition of nicotine self-administration, and cotinine replacement attenuated the inhibitory effects of methoxsalen on the acquisition of self-administration, suggesting that cotinine may contribute to the initial development of nicotine reinforcement. IMPLICATIONS Smoking cessation medications targeting nicotine's effects are only moderately effective, making it imperative to better understand the mechanisms of nicotine misuse. Methoxsalen inhibited nicotine metabolism to cotinine and impaired the acquisition of nicotine self-administration. Cotinine replacement restored plasma cotinine and attenuated the methoxsalen inhibition of nicotine self-administration in rats. These results suggest that (1) the inhibition of nicotine metabolism may be a viable strategy in reducing the development of nicotine reinforcement, (2) methoxsalen may be translationally valuable, and (3) cotinine may be a potential pharmacological target for therapeutic development given its important role in the initial development of nicotine reinforcement.
Collapse
Affiliation(s)
- Zheng-Ming Ding
- Department of Anesthesiology and Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Elizabeth M Neslund
- Department of Anesthesiology and Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Dongxiao Sun
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA
- Penn State Mass Spectrometry Core Facility, Penn State University College of Medicine, Hershey, PA, USA
| | - Xiaoying Tan
- Department of Anesthesiology and Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
2
|
Demirel S, Tuzcu F, Uysal Harzadin N, Kandiş S, Kızıldağ S, Kanıt L. Examination of Empathy-Like Behaviour in Nicotine-Preferring Rat Lines. Int J Neurosci 2024:1-20. [PMID: 38318673 DOI: 10.1080/00207454.2024.2312989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/27/2024] [Indexed: 02/07/2024]
Abstract
Addiction is an important global health issue, impacting also addicts environment and society. Empathy plays crucial role in establishing successful social relationships and is a fundamental component of social life. The aim of this study is to investigate how nicotine preferring (NP) strain and oral forced nicotine administration affects empathy-like behaviour in rats, with gender differences. Sprague-Dawley NP rats (10 males/10 females) and wild-type control rats (10 males/10 females) were used. Behavioural tests were administered to all rats before and after oral forced nicotine administration. The behavioural tests were completed in the fourth week of nicotine administration. Anxiety levels that could affect empathy-like behaviour were evaluated with open field, elevated plus maze tests and with blood cortisol levels. Oxytocin receptor and arginine vasopressin (AVP) levels, which have been shown to be related to empathy-like behaviour, were examined in the prefrontal cortex and amygdala regions using the enzyme-linked immunoassay method. It was observed that males from the NP strain showed less empathy-like behaviour than all other groups, and nicotine administration did not cause a significant change in the results. Higher levels of locomotor activity (LA) were found in control females than in all other groups. Blood nicotine and corticosterone levels were higher in NP rats. No significant differences were found in AVP and oxytocin receptor levels in the prefrontal cortex and amygdala. In conclusion, it was found that coming from an addicted strain particularly reduces empathy-like behaviour in males.
Collapse
Affiliation(s)
- Sinem Demirel
- Ege University, Institude of Health Sciences, Department of Neuroscience, Izmir, Turkey
| | - Fulya Tuzcu
- Ege University, Institude of Health Sciences, Department of Neuroscience, Izmir, Turkey
- Ege University, Faculty of Medicine, Department of Physiology, Izmir, Turkey
| | - Nazan Uysal Harzadin
- Dokuz Eylul University, Faculty of Medicine, Department of Physiology, Izmir, Turkey
| | - Sevim Kandiş
- Dokuz Eylul University, Faculty of Medicine, Department of Physiology, Izmir, Turkey
| | - Servet Kızıldağ
- Dokuz Eylul University, Vocational School of Health Services, Medical Laboratory Techniques Program, Izmir, Turkey
| | - Lütfiye Kanıt
- Ege University, Institude of Health Sciences, Department of Neuroscience, Izmir, Turkey
- Ege University, Faculty of Medicine, Department of Physiology, Izmir, Turkey
| |
Collapse
|
3
|
Namba MD, Xie Q, Barker JM. Advancing the preclinical study of comorbid neuroHIV and substance use disorders: Current perspectives and future directions. Brain Behav Immun 2023; 113:453-475. [PMID: 37567486 PMCID: PMC10528352 DOI: 10.1016/j.bbi.2023.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/23/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Human immunodeficiency virus (HIV) remains a persistent public health concern throughout the world. Substance use disorders (SUDs) are a common comorbidity that can worsen treatment outcomes for people living with HIV. The relationship between HIV infection and SUD outcomes is likely bidirectional, making clear interrogation of neurobehavioral outcomes challenging in clinical populations. Importantly, the mechanisms through which HIV and addictive drugs disrupt homeostatic immune and CNS function appear to be highly overlapping and synergistic within HIV-susceptible reward and motivation circuitry in the central nervous system. Decades of animal research have revealed invaluable insights into mechanisms underlying the pathophysiology SUDs and HIV, although translational studies examining comorbid SUDs and HIV are very limited due to the technical challenges of modeling HIV infection preclinically. In this review, we discuss preclinical animal models of HIV and highlight key pathophysiological characteristics of each model, with a particular emphasis on rodent models of HIV. We then review the implementation of these models in preclinical SUD research and identify key gaps in knowledge in the field. Finally, we discuss how cutting-edge behavioral neuroscience tools, which have revealed key insights into the neurobehavioral mechanisms of SUDs, can be applied to preclinical animal models of HIV to reveal potential, novel treatment avenues for comorbid HIV and SUDs. Here, we argue that future preclinical SUD research would benefit from incorporating comorbidities such as HIV into animal models and would facilitate the discovery of more refined, subpopulation-specific mechanisms and effective SUD prevention and treatment targets.
Collapse
Affiliation(s)
- Mark D Namba
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Qiaowei Xie
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Jacqueline M Barker
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Tan X, Neslund EM, Ding ZM. The involvement of dopamine and D2 receptor-mediated transmission in effects of cotinine in male rats. Neuropharmacology 2023; 230:109495. [PMID: 36914092 PMCID: PMC10071274 DOI: 10.1016/j.neuropharm.2023.109495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Previous studies indicated that cotinine, the major metabolite of nicotine, supported intravenous self-administration and exhibited relapse-like drug-seeking behaviors in rats. Subsequent studies started to reveal an important role of the mesolimbic dopamine system in cotinine's effects. Passive administration of cotinine elevated extracellular dopamine levels in the nucleus accumbens (NAC) and the D1 receptor antagonist SCH23390 attenuated cotinine self-administration. The objective of the current study was to further investigate the role of mesolimbic dopamine system in mediating cotinine's effects in male rats. Conventional microdialysis was conducted to examine NAC dopamine changes during active self-administration. Quantitative microdialysis and Western blot were used to determine cotinine-induced neuroadaptations within the NAC. Behavioral pharmacology was performed to investigate potential involvement of D2-like receptors in cotinine self-administration and relapse-like behaviors. NAC extracellular dopamine levels increased during active self-administration of cotinine and nicotine with less robust increase during cotinine self-administration. Repeated subcutaneous injections of cotinine reduced basal extracellular dopamine concentrations without altering dopamine reuptake in the NAC. Chronic self-administration of cotinine led to reduced protein expression of D2 receptors within the core but not shell subregion of the NAC, but did not change either D1 receptors or tyrosine hydroxylase in either subregion. On the other hand, chronic nicotine self-administration had no significant effect on any of these proteins. Systemic administration of eticlopride, a D2-like receptor antagonist attenuated both cotinine self-administration and cue-induced reinstatement of cotinine seeking. These results further support the hypothesis that the mesolimbic dopamine transmission plays a critical role in mediating reinforcing effects of cotinine.
Collapse
Affiliation(s)
- Xiaoying Tan
- Department of Anesthesiology & Perioperative Medicine, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Elizabeth M Neslund
- Department of Anesthesiology & Perioperative Medicine, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Zheng-Ming Ding
- Department of Anesthesiology & Perioperative Medicine, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA; Department of Pharmacology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
| |
Collapse
|
5
|
Smethells JR, Burroughs D, Saykao A, LeSage MG. The relative reinforcing efficacy of nicotine in an adolescent rat model of attention-deficit hyperactivity disorder. Front Psychiatry 2023; 14:1154773. [PMID: 37255676 PMCID: PMC10225533 DOI: 10.3389/fpsyt.2023.1154773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023] Open
Abstract
Introduction Attention-deficit/hyperactivity disorder (ADHD) is an independent risk factor for tobacco use disorder. Individuals with ADHD are more likely to begin smoking at a younger age, become a daily smoker sooner, smoke more cigarettes per day, and exhibit greater nicotine dependence than individuals without ADHD. It is unclear whether these findings are due to the reinforcing efficacy of nicotine per se being greater among individuals with ADHD. The purpose of the present study was to examine this issue using an animal model of ADHD, the spontaneously hypertensive rat (SHR) strain. Methods Adolescent SHR and Wistar (control) rats were given access to a typically reinforcing nicotine unit dose (30 μg/kg), a threshold reinforcing nicotine dose (4 μg/kg), or saline under an FR 1 (week 1) and FR 2 (week 2) schedule during 23 h sessions to examine acquisition of self-administration. Behavioral economic demand elasticity was then evaluated at the 30 μg/kg dose through an FR escalation procedure. Results At the 30 μg/kg dose, SHR rats exhibited a lower average response rate, lower mean active to inactive lever discrimination ratio, and lower proportion of rats acquiring self-administration compared to control rats. During demand assessment, SHR rats showed no significant difference from Wistars in demand intensity (Q0) or elasticity (α; i.e., reinforcing efficacy). In addition, no strain difference in acquisition measures were observed at the 4 μg/kg dose. Discussion These findings suggest that the increased risk of tobacco use disorder in adolescents with ADHD may not be attributable to a greater reinforcing efficacy of nicotine, and that other aspects of tobacco smoking (e.g., non-nicotine constituents, sensory factors) may play a more important role. A policy implication of these findings is that a nicotine standard to reduce initiation of tobacco use among adolescents in the general population may also be effective among those with ADHD.
Collapse
Affiliation(s)
- John R. Smethells
- Hennepin Healthcare Research Institute, Minneapolis, MN, United States
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, United States
| | | | - Amy Saykao
- Hennepin Healthcare Research Institute, Minneapolis, MN, United States
| | - Mark G. LeSage
- Hennepin Healthcare Research Institute, Minneapolis, MN, United States
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, United States
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
- Department of Psychology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
6
|
Lucente E, Söderpalm B, Ericson M, Adermark L. Acute and chronic effects by nicotine on striatal neurotransmission and synaptic plasticity in the female rat brain. Front Mol Neurosci 2023; 15:1104648. [PMID: 36710931 PMCID: PMC9877298 DOI: 10.3389/fnmol.2022.1104648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Tobacco use is in part a gendered activity, yet neurobiological studies outlining the effect by nicotine on the female brain are scarce. The aim of this study was to outline acute and sub-chronic effects by nicotine on the female rat brain, with special emphasis on neurotransmission and synaptic plasticity in the dorsolateral striatum (DLS), a key brain region with respect to the formation of habits. Methods In vivo microdialysis and ex vivo electrophysiology were performed in nicotine naïve female Wistar rats, and following sub-chronic nicotine exposure (0.36 mg/kg free base, 15 injections). Locomotor behavior was assessed at the first and last drug-exposure. Results Acute exposure to nicotine ex vivo depresses excitatory neurotransmission by reducing the probability of transmitter release. Bath applied nicotine furthermore facilitated long-term synaptic depression induced by high frequency stimulation (HFS-LTD). The cannabinoid 1 receptor (CB1R) agonist WIN55,212-2 produced a robust synaptic depression of evoked potentials, and HFS-LTD was blocked by the CB1R antagonist AM251, suggesting that HFS-LTD in the female rat DLS is endocannabinoid mediated. Sub-chronic exposure to nicotine in vivo produced behavioral sensitization and electrophysiological recordings performed after 2-8 days abstinence revealed a sustained depression of evoked population spike amplitudes in the DLS, with no concomitant change in paired pulse ratio. Rats receiving sub-chronic nicotine exposure further demonstrated an increased neurophysiological responsiveness to nicotine with respect to both dopaminergic- and glutamatergic signaling. However, a tolerance towards the plasticity facilitating property of bath applied nicotine was developed during sub-chronic nicotine exposure in vivo. In addition, the dopamine D2 receptor agonist quinpirole selectively facilitate HFS-LTD in slices from nicotine naïve rats, suggesting that the tolerance may be associated with changes in dopaminergic signaling. Conclusion Nicotine produces acute and sustained effects on striatal neurotransmission and synaptic plasticity in the female rat brain, which may contribute to the establishment of persistent nicotine taking habits.
Collapse
Affiliation(s)
- Erika Lucente
- Integrative Neuroscience Unit, Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Louise Adermark
- Integrative Neuroscience Unit, Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,*Correspondence: Louise Adermark, ✉
| |
Collapse
|
7
|
Seemiller LR, Goldberg LR, Smith PB, Dennis J, Patterson AD, Gould TJ. Genetic differences in nicotine sensitivity and metabolism in C57BL/6J and NOD/ShiLtJ mouse strains. Neuropharmacology 2022; 221:109279. [PMID: 36208797 DOI: 10.1016/j.neuropharm.2022.109279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/13/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022]
Abstract
Genetic background impacts sensitivity to nicotine's rewarding and aversive effects and metabolism, which influences susceptibility to nicotine addiction. This is important because sensitivity to nicotine influences susceptibility to nicotine addiction. Thus, understanding genetic contribution to nicotine sensitivity can aid in identifying risk factors for nicotine addiction. Genetic variability in addiction phenotypes can be modeled in rodent systems, and comparisons of nicotine sensitivity in inbred mice can identify contributing genetic substrates. Our laboratory has identified differences in nicotine sensitivity in male mice from two inbred mouse strains, C57BL/6J and NOD/ShiLtJ. We found that the NOD/ShiLtJ strain experienced greater nicotine-induced locomotor depression and hypothermia than the C57BL/6J strain. To investigate possible differences in nicotine metabolism between strains, subjects were treated with acute nicotine and serum and urine samples were analyzed using LC-MS/MS to quantify nicotine and metabolites. This analysis revealed that NOD/ShiLtJ mice had similar serum nicotine but lower cotinine and 3'-hydroxycotinine levels after nicotine treatment when compared to C57BL/6J mice. Possible genetic factors mediating strain differences were identified by surveying nicotine sensitivity- and metabolism-related genes within the Mouse Phenome Database SNP retrieval tool. Polymorphisms were found in 15 of the 26 examined gene sequences. Liver expression levels of nicotine metabolism-related genes (Cyp2a5, Cyp2a4, and Aox1) were measured using qPCR. NOD/ShiLtJ mice showed lower expression of Cyp2a5 and Cyp2a4 and greater expression of Aox1 in liver tissue. These data demonstrate complex differences in nicotine sensitivity and metabolism driven by genetic differences between C57BL/6J and NOD/ShiLtJ inbred mouse strains.
Collapse
Affiliation(s)
- Laurel R Seemiller
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Lisa R Goldberg
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Phillip B Smith
- The Huck Institutes for the Life Sciences, Penn State University, University Park, PA, USA
| | - Jason Dennis
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, Penn State University, University Park, PA, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA.
| |
Collapse
|
8
|
Zakiniaeiz Y, Liu H, Gao H, Najafzadeh S, Ropchan J, Nabulsi N, Huang Y, Matuskey D, Chen MK, Cosgrove KP, Morris ED. Nicotine Patch Alters Patterns of Cigarette Smoking-Induced Dopamine Release: Patterns Relate to Biomarkers Associated With Treatment Response. Nicotine Tob Res 2022; 24:1597-1606. [PMID: 35100429 PMCID: PMC9575980 DOI: 10.1093/ntr/ntac026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/04/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Tobacco smoking is a major public health burden. The first-line pharmacological treatment for tobacco smoking is nicotine replacement therapy (eg, the nicotine patch (NIC)). Nicotine acts on nicotinic-acetylcholine receptors on dopamine terminals to release dopamine in the ventral and dorsal striatum encoding reward and habit formation, respectively. AIMS AND METHODS To better understand treatment efficacy, a naturalistic experimental design combined with a kinetic model designed to characterize smoking-induced dopamine release in vivo was used. Thirty-five tobacco smokers (16 female) wore a NIC (21 mg, daily) for 1-week and a placebo patch (PBO) for 1-week in a randomized, counter-balanced order. Following 1-week under NIC and then overnight abstinence, smokers participated in a 90-minute [11C]raclopride positron emission tomography scan and smoked a cigarette while in the scanner. Identical procedures were followed for the PBO scan. A time-varying kinetic model was used at the voxel level to model transient dopamine release peaking instantaneously at the start of the stimulus and decaying exponentially. Magnitude and spatial extent of dopamine release were estimated. Smokers were subcategorized by nicotine dependence level and nicotine metabolism rate. RESULTS Dopamine release magnitude was enhanced by NIC in ventral striatum and diminished by NIC in dorsal striatum. More-dependent smokers activated more voxels than the less-dependent smokers under both conditions. Under PBO, fast metabolizers activated more voxels in ventral striatum and fewer voxels in dorsal striatum compared to slow metabolizers. CONCLUSIONS These findings demonstrate that the model captured a pattern of transient dopamine responses to cigarette smoking which may be different across smoker subgroup categorizations. IMPLICATIONS This is the first study to show that NIC alters highly localized patterns of cigarette smoking-induced dopamine release and that levels of nicotine dependence and nicotine clearance rate contribute to these alterations. This current work included a homogeneous subject sample with regards to demographic and smoking variables, as well as a highly sensitive model capable of detecting significant acute dopamine transients. The findings of this study add support to the recent identification of biomarkers for predicting the effect of nicotine replacement therapies on dopamine function which could help refine clinical practice for smoking cessation.
Collapse
Affiliation(s)
- Yasmin Zakiniaeiz
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Yale Positron Emission Tomography (PET) Center, Yale University, New Haven, CT, USA
| | - Heather Liu
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Hong Gao
- Yale Positron Emission Tomography (PET) Center, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Soheila Najafzadeh
- Yale Positron Emission Tomography (PET) Center, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Jim Ropchan
- Yale Positron Emission Tomography (PET) Center, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Nabeel Nabulsi
- Yale Positron Emission Tomography (PET) Center, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Yiyun Huang
- Yale Positron Emission Tomography (PET) Center, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - David Matuskey
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Yale Positron Emission Tomography (PET) Center, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Ming-Kai Chen
- Yale Positron Emission Tomography (PET) Center, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Kelly P Cosgrove
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Yale Positron Emission Tomography (PET) Center, Yale University, New Haven, CT, USA
| | - Evan D Morris
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Yale Positron Emission Tomography (PET) Center, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| |
Collapse
|
9
|
UFR2709, an Antagonist of Nicotinic Acetylcholine Receptors, Delays the Acquisition and Reduces Long-Term Ethanol Intake in Alcohol-Preferring UChB Bibulous Rats. Biomedicines 2022; 10:biomedicines10071482. [PMID: 35884787 PMCID: PMC9312520 DOI: 10.3390/biomedicines10071482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022] Open
Abstract
Alcoholism is a worldwide public health problem with high economic cost and which affects health and social behavior. It is estimated that alcoholism kills 3 million people globally, while in Chile it is responsible for around 9 thousand deaths per year. Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels expressed in the central nervous system, and they were suggested to modulate the ethanol mechanism involved in abuse and dependence. Previous work demonstrated a short-term treatment with UFR2709, a nAChRs antagonist, which reduced ethanol intake using a two-bottle free-choice paradigm in University of Chile bibulous (UChB) rats. Here, we present evidence of the UFR2709 efficacy in reducing the acquisition and long-term ethanol consumption. Our results show that UFR2709 (2.5 mg/kg i.p.) reduces the seek behavior and ethanol intake, even when the drug administration was stopped, and induced a reduction in the overall ethanol intake by around 55%. Using naïve UChB bibulous rats, we demonstrate that UFR2709 could delay and reduce the genetically adaptive impulse to seek and drink ethanol and prevent its excessive intake.
Collapse
|
10
|
Tan X, Ingraham CM, McBride WJ, Ding ZM. The involvement of mesolimbic dopamine system in cotinine self-administration in rats. Behav Brain Res 2022; 417:113596. [PMID: 34562552 PMCID: PMC8578415 DOI: 10.1016/j.bbr.2021.113596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 01/26/2023]
Abstract
Cotinine is the major metabolite of nicotine and has recently been shown to be self-administered intravenously by rats. However, mechanisms underlying cotinine self-administration remained unknown. Mesolimbic dopamine system projecting from the ventral tegmental area (VTA) to nucleus accumbens (NAC) is closely implicated in drug reinforcement, including nicotine. The objective of the current study was to determine potential involvement of mesolimbic dopamine system in cotinine self-administration. An intracranial self-administration experiment demonstrates that cotinine at 0.88 and 1.76 ng/100 nl/infusion was self-infused into the VTA by rats. Rats produced more infusions of cotinine than vehicle and responded more on active than inactive lever during acquisition, reduced responding when cotinine was replaced by vehicle, and resumed responding during re-exposure to cotinine. Microinjection of cotinine at 1.76 ng/100 nl/infusion into the VTA increased extracellular dopamine levels within the NAC. Subcutaneous injection of cotinine at 1 mg/kg also increased extracellular dopamine levels within the NAC. Administration of the D1-like receptor antagonist SCH 23390 attenuated intravenous cotinine self-administration. On the other hand, bupropion, a catecholamine uptake inhibitor, did not significantly alter intravenous cotinine self-administration. These results suggest that activation of mesolimbic dopamine system may represent one cellular mechanism underlying cotinine self-administration. This shared mechanism between cotinine and nicotine suggests that cotinine may play a role in nicotine reinforcement.
Collapse
Affiliation(s)
- Xiaoying Tan
- Department of Anesthesiology & Perioperative Medicine, and Pharmacology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Cynthia M Ingraham
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - William J McBride
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Zheng-Ming Ding
- Department of Anesthesiology & Perioperative Medicine, and Pharmacology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
11
|
LeSage MG. Stimulus functions of nicotine. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 93:133-170. [PMID: 35341565 PMCID: PMC9438898 DOI: 10.1016/bs.apha.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Behavioral pharmacology has made vital contributions to the concepts and methods used in tobacco and other drug use research, and is largely responsible for the now generally accepted notion that nicotine is the primary component in tobacco that engenders and maintains tobacco use. One of the most important contributions of behavioral pharmacology to the science of drug use is the notion that drugs can act as environmental stimuli that control behavior in many of the same ways as other stimuli (e.g., visual, gustatory, olfactory). The purpose of this chapter is to provide an overview of research that illustrates the respondent and operant stimulus functions of nicotine, using a contemporary taxonomy of stimulus functions as a general framework. Each function is formally defined and examples from research on the behavioral pharmacology of nicotine are presented. Some of the factors that modulate each function are also discussed. The role of nicotine's stimulus functions in operant and respondent theories of tobacco use is examined and some suggestions for future research are presented. The chapter illustrates how a taxonomy of stimulus functions can guide conceptions of tobacco use and direct research and theory accordingly.
Collapse
|
12
|
Chen G, Ghazal M, Rahman S, Lutfy K. The impact of adolescent nicotine exposure on alcohol use during adulthood: The role of neuropeptides. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:53-93. [PMID: 34801174 DOI: 10.1016/bs.irn.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Nicotine and alcohol abuse and co-dependence represent major public health crises. Indeed, previous research has shown that the prevalence of alcoholism is higher in smokers than in non-smokers. Adolescence is a susceptible period of life for the initiation of nicotine and alcohol use and the development of nicotine-alcohol codependence. However, there is a limited number of pharmacotherapeutic agents to treat addiction to nicotine or alcohol alone. Notably, there is no effective medication to treat this comorbid disorder. This chapter aims to review the early nicotine use and its impact on subsequent alcohol abuse during adolescence and adulthood as well as the role of neuropeptides in this comorbid disorder. The preclinical and clinical findings discussed in this chapter will advance our understanding of this comorbid disorder's neurobiology and lay a foundation for developing novel pharmacotherapies to treat nicotine and alcohol codependence.
Collapse
Affiliation(s)
- G Chen
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States; Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - M Ghazal
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - S Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - K Lutfy
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States.
| |
Collapse
|
13
|
Abstract
BACKGROUND Animal models are critical to improve our understanding of the neuronal mechanisms underlying nicotine withdrawal. Nicotine dependence in rodents can be established by repeated nicotine injections, chronic nicotine infusion via osmotic minipumps, oral nicotine intake, tobacco smoke exposure, nicotine vapor exposure, and e-cigarette aerosol exposure. The time course of nicotine withdrawal symptoms associated with these methods has not been reviewed in the literature. AIM The goal of this review is to discuss nicotine withdrawal symptoms associated with the cessation of nicotine, tobacco smoke, nicotine vapor, and e-cigarette aerosol exposure in rats and mice. Furthermore, age and sex differences in nicotine withdrawal symptoms are reviewed. RESULTS Cessation of nicotine, tobacco smoke, nicotine vapor, and e-cigarette aerosol exposure leads to nicotine withdrawal symptoms such as somatic withdrawal signs, changes in locomotor activity, anxiety- and depressive-like behavior, learning and memory deficits, attention deficits, hyperalgesia, and dysphoria. These withdrawal symptoms are most pronounced within the first week after cessation of nicotine exposure. Anxiety- and depressive-like behavior, and deficits in learning and memory may persist for several months. Adolescent (4-6 weeks old) rats and mice display fewer nicotine withdrawal symptoms than adults (>8 weeks old). In adult rats and mice, females show fewer nicotine withdrawal symptoms than males. The smoking cessation drugs bupropion and varenicline reduce nicotine withdrawal symptoms in rodents. CONCLUSION The nicotine withdrawal symptoms that are observed in rodents are similar to those observed in humans. Tobacco smoke and e-cigarette aerosol contain chemicals and added flavors that enhance the reinforcing properties of nicotine. Therefore, more valid animal models of tobacco and e-cigarette use need to be developed by using tobacco smoke and e-cigarette aerosol exposure methods to induce dependence.
Collapse
Affiliation(s)
| | - Azin Behnood-Rod
- Department of Psychiatry, University of Florida, Gainesville, USA
| | | | - Ryann Wilson
- Department of Psychiatry, University of Florida, Gainesville, USA
| | - Vijayapandi Pandy
- Department of Pharmacology, Chalapathi Institute of Pharmaceutical Sciences, Guntur, India
| | | |
Collapse
|
14
|
Danielsson K, Stomberg R, Adermark L, Ericson M, Söderpalm B. Differential dopamine release by psychosis-generating and non-psychosis-generating addictive substances in the nucleus accumbens and dorsomedial striatum. Transl Psychiatry 2021; 11:472. [PMID: 34518523 PMCID: PMC8438030 DOI: 10.1038/s41398-021-01589-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023] Open
Abstract
Schizophrenia is associated with three main categories of symptoms; positive, negative and cognitive. Of these, only the positive symptoms respond well to treatment with antipsychotics. Due to the lack of effect of antipsychotics on negative symptoms, it has been suggested that while the positive symptoms are related to a hyperdopaminergic state in associative striatum, the negative symptoms may be a result of a reduced dopamine (DA) activity in the nucleus accumbens (nAc). Drug abuse is common in schizophrenia, supposedly alleviating negative symptomatology. Some, but not all, drugs aggravate psychosis, tentatively due to differential effects on DA activity in striatal regions. Here this hypothesis was tested in rats by using a double-probe microdialysis technique to simultaneously assess DA release in the nAc and associative striatum (dorsomedial striatum; DMS) following administration of the psychosis-generating substances amphetamine (0.5 mg/kg), cocaine (15 mg/kg) and Δ9-tetrahydrocannabinol (THC, 3 mg/kg), and the generally non-psychosis-generating substances ethanol (2.5 g/kg), nicotine (0.36 mg/kg) and morphine (5 mg/kg). The data show that amphetamine and cocaine produce identical DA elevations both in the nAc and DMS, whereas nicotine increases DA in nAc only. Ethanol and morphine both increased DMS DA, but weaker and in a qualitatively different way than in nAc, suggesting that the manner in which DA is increased might be important to the triggering of psychosis. THC elevated DA in neither region, indicating that the pro-psychotic effects of THC are not related to DA release. We conclude that psychosis-generating substances affect striatal DA release differently than non-psychosis-generating substances.
Collapse
Affiliation(s)
- Klara Danielsson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Rosita Stomberg
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Louise Adermark
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden ,grid.8761.80000 0000 9919 9582Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mia Ericson
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bo Söderpalm
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden ,grid.1649.a000000009445082XBeroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
15
|
Noda Y, Soeda K, Uchida M, Goto S, Ito T, Kitagaki S, Mamiya T, Yoshimi A, Ozaki N, Mouri A. Multiple nicotinic acetylcholine receptor subtypes regulate social or cognitive behaviors in mice repeatedly administered phencyclidine. Behav Brain Res 2021; 408:113284. [PMID: 33819533 DOI: 10.1016/j.bbr.2021.113284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/21/2021] [Accepted: 03/30/2021] [Indexed: 11/15/2022]
Abstract
Habitual smoking in patients with schizophrenia (SCZ) is considered to improve their own psychoses or to develop a vulnerability to psychological dependence on (-)-nicotine ([-]-NIC) by stimulating nicotinic acetylcholine receptors (nAChRs) in the central nervous system. In the present study, we investigated whether habitual smoking is due to get therapeutic effect or to psychological dependence and which nAChR subunits are associated with them using mice that were repeatedly administered phencyclidine (PCP: 10 mg/kg/day, s.c. for 14 days) as SCZ-like model mice. Mice that were repeatedly administered PCP showed impairments in social or cognitive behaviors; decreased expression of α7 and/or α4 nAChR subunits in the prefrontal cortex (PFC); and increased expression of α7, α4, and β2 nAChR subunits in the nucleus accumbens (NAc). These changes were attenuated by repeated administration of (-)-NIC. The attenuating effects on behavioral impairments were prevented by a selective α7 nAChR antagonist and a selective α4β2 nAChR antagonist. At non- or weak effective dose by themselves, co-administration of (-)-NIC (0.03 mg/kg) and risperidone (0.03 mg/kg) showed synergistic effects on behavioral impairments in PCP-administered mice. Repeated (-)-NIC administration did not affect the performance of conditioned place preference, while it showed behavioral sensitization to (-)-NIC in the PCP-administered mice. Repeated (-)-NIC administration did not affect the performance of conditioned place preference, while it showed behavioral sensitization to (-)-NIC and attenuating effect on haloperidol-induced catalepsy in the PCP-administered mice. Our findings suggest that habitual smoking in SCZ might be attributed to get therapeutic and reduce side effects mediated by α7 and α4β2 nAChR activation by (-)-NIC.
Collapse
Affiliation(s)
- Yukihiro Noda
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, 468-8503, Japan.
| | - Koki Soeda
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, 468-8503, Japan
| | - Mizuki Uchida
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, 468-8503, Japan
| | - Sakika Goto
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, 468-8503, Japan
| | - Takahiro Ito
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, 468-8503, Japan
| | - Shinji Kitagaki
- Department of Medical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, 468-8503, Japan
| | - Takayoshi Mamiya
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, 468-8503, Japan
| | - Akira Yoshimi
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, 468-8503, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, 466-8560, Japan
| | - Akihiro Mouri
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals and Devices, Graduate School of Health Science, Fujita Health University, Toyoake, 470-1192, Japan
| |
Collapse
|
16
|
The Role of CaMKII and ERK Signaling in Addiction. Int J Mol Sci 2021; 22:ijms22063189. [PMID: 33804804 PMCID: PMC8004038 DOI: 10.3390/ijms22063189] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Nicotine is the predominant addictive compound of tobacco and causes the acquisition of dependence through its interactions with nicotinic acetylcholine receptors and various neurotransmitter releases in the central nervous system. The Ca2+/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinase (ERK) play a pivotal role in synaptic plasticity in the hippocampus. CaMKII is involved in long-term potentiation induction, which underlies the consolidation of learning and memory; however, the roles of CaMKII in nicotine and other psychostimulant-induced addiction still require further investigation. This article reviews the molecular mechanisms and crucial roles of CaMKII and ERK in nicotine and other stimulant drug-induced addiction. We also discuss dopamine (DA) receptor signaling involved in nicotine-induced addiction in the brain reward circuitry. In the last section, we introduce the association of polyunsaturated fatty acids and cellular chaperones of fatty acid-binding protein 3 in the context of nicotine-induced addiction in the mouse nucleus accumbens and provide a novel target for the treatment of drug abuse affecting dopaminergic systems.
Collapse
|
17
|
Zeid D, Goldberg LR, Seemiller LR, Mooney-Leber S, Smith PB, Gould TJ. Multigenerational nicotine exposure affects offspring nicotine metabolism, nicotine-induced hypothermia, and basal corticosterone in a sex-dependent manner. Neurotoxicol Teratol 2021; 85:106972. [PMID: 33727150 DOI: 10.1016/j.ntt.2021.106972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022]
Abstract
Parental nicotine exposure can impact phenotypes in unexposed offspring. Our laboratory recently published data showing that nicotine reward and hippocampal gene expression involved in stress pathways were perturbed in F1 offspring of male C57BL/6J mice chronically exposed to nicotine. For the current study, we aimed to further test nicotine and stress-sensitivity phenotypes that may predict vulnerability to nicotine addiction in new cohorts of F1 offspring derived from nicotine-exposed males. We tested locomotor and body temperature sensitivity to acute nicotine administration, serum concentration of nicotine and nicotine metabolites after acute nicotine dosing, and serum corticosterone levels in male and female F1 offspring of nicotine- or saline-exposed males. Paternal nicotine exposure reduced sensitivity to nicotine-induced hypothermia in males, altered nicotine metabolite concentrations in males and females, and reduced serum basal corticosterone levels in females. These findings may point to reduced susceptibility to nicotine addiction-related phenotypes as a result of parental nicotine exposure.
Collapse
Affiliation(s)
- Dana Zeid
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA.
| | - Lisa R Goldberg
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Laurel R Seemiller
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Sean Mooney-Leber
- Department of Psychology, University of Wisconsin-Stevens Point, Stevens Point, WI, USA
| | - Philip B Smith
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| |
Collapse
|
18
|
Baumbach JL, McCormick CM. Nicotine sensitization (Part 2): Time spent in the centre of an open field sensitizes to repeated nicotine into the drug-free state in female rats. Psychopharmacology (Berl) 2021; 238:371-382. [PMID: 33123818 DOI: 10.1007/s00213-020-05686-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/19/2020] [Indexed: 01/08/2023]
Abstract
RATIONALE Nicotine is initially anxiogenic and becomes anxiolytic after prolonged exposure. The mechanisms that facilitate the shift in anxiety-like behaviour produced by nicotine are unclear. OBJECTIVE We investigated the change in time spent in the centre of an open field (as a measure anxiety-like behaviour) produced by three intermittent injections of nicotine as part of experiments of locomotor sensitization to nicotine. METHODS Rats were injected with nicotine (0.4 mg/kg) or saline and immediately placed in the open field arena for 1 h on two consecutive days and again 9 days later. RESULTS When given saline, time spent in the centre of the arena did not change, whereas repeated nicotine injections increased in time spent in the centre beyond the increase produced by an acute injection of nicotine. Repeated nicotine (and not acute nicotine) also increased time in the centre in a drug-free state when tested 24 h after the last injection. CONCLUSION Repeated nicotine sensitized the time spent in the centre of an open field with the long-lasting sensitization of this measure of anxiety-like behaviour evident in a drug-free state, in contrast to locomotor sensitization which does not persist in the drug-free state. The results suggest independence of the mechanisms of sensitization that underlie locomotor and anxiolytic effects.
Collapse
Affiliation(s)
| | - Cheryl M McCormick
- Department of Psychology, Department of Biological Sciences, Centre for Neuroscience, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada.
| |
Collapse
|
19
|
Jia W, Wilar G, Kawahata I, Cheng A, Fukunaga K. Impaired Acquisition of Nicotine-Induced Conditioned Place Preference in Fatty Acid-Binding Protein 3 Null Mice. Mol Neurobiol 2021; 58:2030-2045. [PMID: 33411237 DOI: 10.1007/s12035-020-02228-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
Nicotine causes psychological dependence through its interactions with nicotinic acetylcholine receptors in the brain. We previously demonstrated that fatty acid-binding protein 3 (FABP3) colocalizes with dopamine D2 receptors (D2Rs) in the dorsal striatum, and FABP3 deficiency leads to impaired D2R function. Moreover, D2R null mice do not exhibit increased nicotine-induced conditioned place preference (CPP) following chronic nicotine administration. To investigate the role of FABP3 in nicotine-induced CPP, FABP3 knockout (FABP3-/-) mice were evaluated using a CPP apparatus following consecutive nicotine administration (0.5 mg/kg) for 14 days. Importantly, nicotine-induced CPP was suppressed in the conditioning, withdrawal, and relapse phases in FABP3-/- mice. To resolve the mechanisms underlying impaired nicotine-induced CPP in these mice, we assessed c-Fos expression and Ca2+/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinase (ERK) signaling in both dopamine D1 receptor (D1R)- and D2R-positive neurons in the nucleus accumbens (NAc). Notably, 64% of dopamine receptor-positive neurons in the mouse NAc expressed both D1R and D2R. Impaired nicotine-induced CPP was correlated with lack of responsiveness of both CaMKII and ERK phosphorylation. The number of D2R-positive neurons was increased in FABP3-/- mice, while the number of D1R-positive neurons and the responsiveness of c-Fos expression to nicotine were decreased. The aberrant c-Fos expression was closely correlated with CaMKII but not ERK phosphorylation levels in the NAc of FABP3-/- mice. Taken together, these results indicate that impaired D2R signaling due to lack of FABP3 may affect D1R and c-Fos signaling and underlie nicotine-induced CPP behaviors.
Collapse
Affiliation(s)
- Wenbin Jia
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, 980-0845, Japan
| | - Gofarana Wilar
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, 980-0845, Japan.,Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, JL. Raya Bandung-Sumedang KM 20.5 Jatinangor, Sumedang, Jawa Barat, 45363, Indonesia
| | - Ichiro Kawahata
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, 980-0845, Japan
| | - An Cheng
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, 980-0845, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, 980-0845, Japan. .,, Sendai, Japan.
| |
Collapse
|
20
|
Effects of 3-Month Exposure to E-Cigarette Aerosols on Glutamatergic Receptors and Transporters in Mesolimbic Brain Regions of Female C57BL/6 Mice. TOXICS 2020; 8:toxics8040095. [PMID: 33137879 PMCID: PMC7712012 DOI: 10.3390/toxics8040095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022]
Abstract
Electronic cigarettes (e-cigs) use has been dramatically increased recently, especially among youths. Previous studies from our laboratory showed that chronic exposure to e-cigs, containing 24 mg/mL nicotine, was associated with dysregulation of glutamate transporters and neurotransmitter levels in the brain of a mouse model. In this study, we evaluated the effect of three months’ continuous exposure to e-cig vapor (JUUL pods), containing a high nicotine concentration, on the expression of glutamate receptors and transporters in drug reward brain regions such as the nucleus accumbens (NAc) core (NAc-core), NAc shell (NAc-shell) and hippocampus (HIP) in female C57BL/6 mice. Three months’ exposure to mint- or mango-flavored JUUL (containing 5% nicotine, 59 mg/mL) induced upregulation of metabotropic glutamate receptor 1 (mGluR1) and postsynaptic density protein 95 (phosphorylated and total PSD95) expression, and downregulation of mGluR5 and glutamate transporter 1 (GLT-1) in the NAc-shell. In addition, three months’ exposure to JUUL was associated with upregulation of mGluR5 and GLT-1 expression in the HIP. These findings demonstrated that three-month exposure to e-cig vapor containing high nicotine concentrations induced differential effects on the glutamatergic system in the NAc and HIP, suggesting dysregulation of glutamatergic system activity in mesolimbic brain regions.
Collapse
|
21
|
Lee AM, Picciotto MR. Effects of nicotine on DARPP-32 and CaMKII signaling relevant to addiction. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 90:89-115. [PMID: 33706940 PMCID: PMC8008986 DOI: 10.1016/bs.apha.2020.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Paul Greengard brought to neuroscience the idea of, and evidence for, the role of second messenger systems in neuronal signaling. The fundamental nature of his contributions is evident in the far reach of his work, relevant to various subfields and topics in neuroscience. In this review, we discuss some of Greengard's work from the perspective of nicotinic acetylcholine receptors and their relevance to nicotine addiction. Specifically, we review the roles of dopamine- and cAMP-regulated phospho-protein of 32kDa (DARPP-32) and Ca2+/calmodulin-dependent kinase II (CaMKII) in nicotine-dependent behaviors. For each protein, we discuss the historical context of their discovery and initial characterization, focusing on the extensive biochemical and immunohistochemical work conducted by Greengard and colleagues. We then briefly summarize contemporary understanding of each protein in key intracellular signaling cascades and evidence for the role of each protein with respect to systems and behaviors relevant to nicotine addiction.
Collapse
Affiliation(s)
- Angela M Lee
- Department of Psychiatry, Yale University, New Haven, CT, United States; Yale Interdepartmental Neuroscience Program, New Haven, CT, United States
| | - Marina R Picciotto
- Department of Psychiatry, Yale University, New Haven, CT, United States; Yale Interdepartmental Neuroscience Program, New Haven, CT, United States.
| |
Collapse
|
22
|
Ferreira A, Lamarque S, Boyer P, Perez-Diaz F, Jouvent R, Cohen-Salmon C. Spontaneous appetence for wheel-running: a model of dependency on physical activity in rat. Eur Psychiatry 2020; 21:580-8. [PMID: 17161285 DOI: 10.1016/j.eurpsy.2005.02.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 10/11/2004] [Accepted: 02/01/2005] [Indexed: 11/25/2022] Open
Abstract
AbstractAccording to human observations of a syndrome of physical activity dependence and its consequences, we tried to examine if running activity in a free activity paradigm, where rats had a free access to activity wheel, may present a valuable animal model for physical activity dependence and most generally to behavioral dependence. The pertinence of reactivity to novelty, a well-known pharmacological dependence predictor was also tested. Given the close linkage observed in human between physical activity and drugs use and abuse, the influence of free activity in activity wheels on reactivity to amphetamine injection and reactivity to novelty were also assessed. It appeared that (1) free access to wheel may be used as a valuable model for physical activity addiction, (2) two populations differing in activity amount also differed in dependence to wheel-running. (3) Reactivity to novelty did not appeared as a predictive factor for physical activity dependence (4) activity modified novelty reactivity and (5) subjects who exhibited a high appetence to wheel-running, presented a strong reactivity to amphetamine. These results propose a model of dependency on physical activity without any pharmacological intervention, and demonstrate the existence of individual differences in the development of this addiction. In addition, these data highlight the development of a likely vulnerability to pharmacological addiction after intense and sustained physical activity, as also described in man. This model could therefore prove pertinent for studying behavioral dependencies and the underlying neurobiological mechanisms. These results may influence the way psychiatrists view behavioral dependencies and phenomena such as doping in sport or addiction to sport itself.
Collapse
|
23
|
Synthetic cathinones and their phenethylamine analogues produce distinct psychomotor and reward behavior in crayfish. Behav Brain Res 2020; 379:112368. [PMID: 31743730 DOI: 10.1016/j.bbr.2019.112368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022]
Abstract
Synthetic cathinones share potent sympathomimetic properties with amphetamines due to their shared phenethylamine backbone. Despite recent work focused on understanding the behavioral effects of synthetic cathinones, a systematic comparison of neuropharmacology, behavior, and physiological effects with other stimulants, has remained elusive. In the present study, we explore the behavioral effects of cathinones in crayfish, a model system which combines a well characterized behavioral paradigm for addiction-like behaviors, a modularly organized nervous system, the lack of a formal blood-brain barrier, and experimental tractability. The objective of this study was to characterize the psychomotor and rewarding effects of methylated cathinones (methylone, mephedrone), and their non β-ketone substituted amphetamine analogs (4-methylmethamphetamine, 4-MMA and 3,4-methylenedioxymethamphetamine MDMA) in crayfish. Our results suggest that these drugs produce psychostimulation, which sensitizes upon repeated drug administration. Furthermore, crayfish demonstrated a conditioned substrate preference for mephedrone and 4-MMA drug-pairings at a 10 μg/g dose, a preference which persisted even through a series of extinction trials. Our study indicates that synthetic cathinones and substituted amphetamine analogues produce distinct behavioral effects in an invertebrate system which consists of a relatively simple neuronal organization. The present findings provide an evolutionary context to our understanding about how drugs of abuse initiate reward at levels far beyond those specific to humans.
Collapse
|
24
|
α-Conotoxin TxIB: A Uniquely Selective Ligand for α6/α3β2β3 Nicotinic Acetylcholine Receptor Attenuates Nicotine-Induced Conditioned Place Preference in Mice. Mar Drugs 2019; 17:md17090490. [PMID: 31443523 PMCID: PMC6780885 DOI: 10.3390/md17090490] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 11/17/2022] Open
Abstract
α-Conotoxin TxIB is a specific antagonist of α6/α3β2β3(α6β2*) nicotinic acetylcholine receptor (nAChR) with an IC50 of 28 nM. Previous studies have shown that α6β2* nAChRs are abundantly expressed in midbrain dopaminergic neurons and play an important role in mediating the mechanism of nicotine and other drugs reward effect. It provided important targets for the development of anti-addiction drugs. The present study evaluated the pharmacological activity of TxIB in vivo with conditioned place preference (CPP) model, which were induced by subcutaneous injection (s.c.) of nicotine (NIC, 0.5 mg/kg). α-Conotoxin TxIB inhibited the expression and reinstatement of CPP in mice dose-dependently, but had no significant effect on locomotor activity. The concentrations of dopamine (DA), γ-aminobutyric acid (GABA) and noradrenaline (NE) in different brain regions were measured by enzyme-linked immunosorbent assay (ELISA). We found that TxIB could inhibit the concentrations of DA, GABA and NE in different brain regions (such as nucleus accumbens (NAc), hippocampus (HIP) and prefrontal cortex (PFC)) in NIC-induced mice. The concentrations of DA and NE were decreased in ventral tegmental area (VTA), while GABA had little change. The current work described the inhibition activity of TxIB in NIC-induced CPP, suggesting that α6β2* nAChR-targeted compound may be a promising drug for nicotine addiction treatment.
Collapse
|
25
|
Sensitization-dependent nicotine place preference in the adult zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:457-469. [PMID: 30826460 DOI: 10.1016/j.pnpbp.2019.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/21/2019] [Accepted: 02/27/2019] [Indexed: 12/21/2022]
Abstract
Sensitization of motor activity is a behavioural test to evaluate the effects of psychostimulants. Conditioned place preference (CPP) is an associative learning procedure to examine the rewarding properties of drugs. We aimed to assess whether motor sensitization to drugs of abuse can make zebrafish more vulnerable to establishing drug-induced CPP. We first evaluated sensitization of locomotor activity of zebrafish to repeated administrations of nicotine and cocaine during 5 days and after 5 days of withdrawal. After withdrawal, when zebrafish were re-exposed to the same dose of nicotine or cocaine locomotor activity was increased by 103% and 166%, respectively. Different groups of zebrafish were sensitized to nicotine or cocaine and trained on a nicotine-CPP task the day after withdrawal. The nicotine dose selected for sensitization was not effective for developing CPP in naïve zebrafish whereas it elicited CPP in zebrafish that were previously sensitized to nicotine or cocaine. Levels of nicotinic acetylcholine receptor β2, α6 and α7 subunit, Pitx3, and tyrosine hydroxylase 1 (TH1) mRNAs were increased in the brain of nicotine- and cocaine-sensitized zebrafish. Nicotine-CPP performed with drug-sensitized zebrafish provoked further enhancements in the expression of α6 and α7 subunit, Pitx3, and TH1 mRNAs suggesting that the expression of these molecules in the reward pathway is involved in both processes. Our findings indicate that repeated exposures to low doses of drugs of abuse can increase subject's sensitivity to the rewarding properties of the same or different drugs. This further suggests that casual drug intake increases the probability of becoming addict.
Collapse
|
26
|
Hellberg SN, Russell TI, Robinson MJF. Cued for risk: Evidence for an incentive sensitization framework to explain the interplay between stress and anxiety, substance abuse, and reward uncertainty in disordered gambling behavior. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 19:737-758. [PMID: 30357661 PMCID: PMC6482104 DOI: 10.3758/s13415-018-00662-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gambling disorder is an impairing condition confounded by psychiatric co-morbidity, particularly with substance use and anxiety disorders. Yet, our knowledge of the mechanisms that cause these disorders to coalesce remains limited. The Incentive Sensitization Theory suggests that sensitization of neural "wanting" pathways, which attribute incentive salience to rewards and their cues, is responsible for the excessive desire for drugs and cue-triggered craving. The resulting hyper-reactivity of the "wanting' system is believed to heavily influence compulsive drug use and relapse. Notably, evidence for sensitization of the mesolimbic dopamine pathway has been seen across gambling and substance use, as well as anxiety and stress-related pathology, with stress playing a major role in relapse. Together, this evidence highlights a phenomenon known as cross-sensitization, whereby sensitization to stress, drugs, or gambling behaviors enhance the sensitivity and dopaminergic response to any of those stimuli. Here, we review the literature on how cue attraction and reward uncertainty may underlie gambling pathology, and examine how this framework may advance our understanding of co-mordidity with substance-use disorders (e.g., alcohol, nicotine) and anxiety disorders. We argue that reward uncertainty, as seen in slot machines and games of chance, increases dopaminergic activity in the mesolimbic pathway and enhances the incentive value of reward cues. We propose that incentive sensitization by reward uncertainty may interact with and predispose individuals to drug abuse and stress, creating a mechanism through which co-mordidity of these disorders may emerge.
Collapse
Affiliation(s)
- Samantha N Hellberg
- Psychology Department and the Neuroscience and Behavior Program, Wesleyan University, 207 High Street, Middletown, CT, 06457, USA
- University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Trinity I Russell
- Psychology Department and the Neuroscience and Behavior Program, Wesleyan University, 207 High Street, Middletown, CT, 06457, USA
- National Institutes on Drug Abuse, Baltimore, MD, USA
| | - Mike J F Robinson
- Psychology Department and the Neuroscience and Behavior Program, Wesleyan University, 207 High Street, Middletown, CT, 06457, USA.
| |
Collapse
|
27
|
Weggel LA, Pandya AA. Acute Administration of Desformylflustrabromine Relieves Chemically Induced Pain in CD-1 Mice. Molecules 2019; 24:molecules24050944. [PMID: 30866543 PMCID: PMC6432607 DOI: 10.3390/molecules24050944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/27/2019] [Accepted: 03/04/2019] [Indexed: 01/28/2023] Open
Abstract
Neuronal nicotinic acetylcholine receptors are cell membrane-bound ion channels that are widely distributed in the central nervous system. The α4β2 subtype of neuronal nicotinic acetylcholine receptor plays an important role in modulating the signaling pathways for pain. Previous studies have shown that agonists, partial agonists, and positive allosteric modulators for the α4β2 receptors are effective in relieving pain. Desformylflustrabromine is a compound that acts as an allosteric modulator of α4β2 receptors. The aim of this study was to assess the effects of desformylflustrabromine on chemically induced pain. For this purpose, the formalin-induced pain test and the acetic acid-induced writhing response test were carried out in CD-1 mice. Both tests represent chemical assays for nociception. The results show that desformylflustrabromine is effective in producing an analgesic effect in both tests used for assessing nociception. These results suggest that desformylflustrabromine has the potential to become a clinically used drug for pain relief.
Collapse
Affiliation(s)
- Loni A Weggel
- Department of Biosciences, College of Rural and Community Development, 101D Harper Building, 810 Draanjik Drive, University of Alaska Fairbanks, Fairbanks, AK 99709-3419, USA.
| | - Anshul A Pandya
- Department of Biosciences, College of Rural and Community Development, 101D Harper Building, 810 Draanjik Drive, University of Alaska Fairbanks, Fairbanks, AK 99709-3419, USA.
| |
Collapse
|
28
|
Risky decision-making is associated with impulsive action and sensitivity to first-time nicotine exposure. Behav Brain Res 2018; 359:579-588. [PMID: 30296531 DOI: 10.1016/j.bbr.2018.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/04/2018] [Accepted: 10/04/2018] [Indexed: 01/11/2023]
Abstract
Excessive risk-taking is common in multiple psychiatric conditions, including substance use disorders. The risky decision-making task (RDT) models addiction-relevant risk-taking in rats by measuring preference for a small food reward vs. a large food reward associated with systematically increasing risk of shock. Here, we examined the relationship between risk-taking in the RDT and multiple addiction-relevant phenotypes. Risk-taking was associated with elevated impulsive action, but not impulsive choice or habit formation. Furthermore, risk-taking predicted locomotor sensitivity to first-time nicotine exposure and resilience to nicotine-evoked anxiety. These data demonstrate that risk preference in the RDT predicts other traits associated with substance use disorder, and may have utility for identification of neurobiological and genetic biomarkers that engender addiction vulnerability.
Collapse
|
29
|
Quiroz G, Guerra-Díaz N, Iturriaga-Vásquez P, Rivera-Meza M, Quintanilla ME, Sotomayor-Zárate R. Erysodine, a competitive antagonist at neuronal nicotinic acetylcholine receptors, decreases ethanol consumption in alcohol-preferring UChB rats. Behav Brain Res 2018; 349:169-176. [PMID: 29704599 DOI: 10.1016/j.bbr.2018.04.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 12/20/2022]
Abstract
Alcohol abuse is a worldwide health problem with high economic costs to health systems. Emerging evidence suggests that modulation of brain nicotinic acetylcholine receptors (nAChRs) may be a therapeutic target for alcohol dependence. In this work, we assess the effectiveness of four doses of erysodine (1.5, 2.0, 4.0 or 8.0 mg/kg/day, i.p.), a competitive antagonist of nAChRs, on voluntary ethanol consumption behavior in alcohol-preferring UChB rats, administered during three consecutive days. Results show that erysodine administration produces a dose-dependent reduction in ethanol consumption respect to saline injection (control group). The highest doses of erysodine (4 and 8 mg/kg) reduce (45 and 66%, respectively) the ethanol intake during treatment period and first day of post-treatment compared to control group. While, the lowest doses of erysodine (1.5 and 2 mg/kg) only reduce ethanol intake during one day of treatment period. These effective reductions in ethanol intake were 23 and 29% for 1.5 and 2 mg/kg erysodine, respectively. Locomotor activity induced by a high dose of erysodine (10 mg/kg) was similar to those observed with saline injection in control rats, showing that the reduction in ethanol intake was not produced by hypolocomotor effect induced by erysodine. This is the first report showing that erysodine reduces ethanol intake in UChB rats in a dose-dependent manner. Our results highlight the role of nAChRs in the reward effects of ethanol and its modulation as a potentially effective pharmacological alternative for alcohol dependence treatment.
Collapse
Affiliation(s)
- Gabriel Quiroz
- Programa de Doctorado en Farmacología, Universidad de Chile, Santiago, Chile
| | - Nicolás Guerra-Díaz
- Programa de Doctorado en Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Patricio Iturriaga-Vásquez
- Laboratorio de Farmacoquímica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de la Frontera, Temuco, Chile
| | - Mario Rivera-Meza
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - María Elena Quintanilla
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | - Ramón Sotomayor-Zárate
- Laboratorio de Neuroquímica y Neurofarmacología, CENFI, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
30
|
Minogianis EA, Shams WM, Mabrouk OS, Wong JMT, Brake WG, Kennedy RT, du Souich P, Samaha AN. Varying the rate of intravenous cocaine infusion influences the temporal dynamics of both drug and dopamine concentrations in the striatum. Eur J Neurosci 2018; 50:2054-2064. [PMID: 29757478 DOI: 10.1111/ejn.13941] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 11/28/2022]
Abstract
The faster drugs of abuse reach the brain, the greater is the risk of addiction. Even small differences in the rate of drug delivery can influence outcome. Infusing cocaine intravenously over 5 vs. 90-100 s promotes sensitization to the psychomotor and incentive motivational effects of the drug and preferentially recruits mesocorticolimbic regions. It remains unclear whether these effects are due to differences in how fast and/or how much drug reaches the brain. Here, we predicted that varying the rate of intravenous cocaine infusion between 5 and 90 s produces different rates of rise of brain drug concentrations, while producing similar peak concentrations. Freely moving male Wistar rats received acute intravenous cocaine infusions (2.0 mg/kg/infusion) over 5, 45 and 90 s. We measured cocaine concentrations in the dorsal striatum using rapid-sampling microdialysis (1 sample/min) and high-performance liquid chromatography-tandem mass spectrometry. We also measured extracellular concentrations of dopamine and other neurochemicals. Regardless of infusion rate, acute cocaine did not change concentrations of non-dopaminergic neurochemicals. Infusion rate did not significantly influence peak concentrations of cocaine or dopamine, but concentrations increased faster following 5-s infusions. We also assessed psychomotor activity as a function of cocaine infusion rate. Infusion rate did not significantly influence total locomotion, but locomotion increased earlier following 5-s infusions. Thus, small differences in the rate of cocaine delivery influence both the rate of rise of drug and dopamine concentrations, and psychomotor activity. A faster rate of rise of drug and dopamine concentrations might be an important issue in making rapidly delivered cocaine more addictive.
Collapse
Affiliation(s)
- Ellie-Anna Minogianis
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montreal, QC, H3C 3J7, Canada
| | - Waqqas M Shams
- Department of Psychology, Center for Studies in Behavioral Neurobiology (CSBN), Concordia University, Montreal, QC, Canada
| | - Omar S Mabrouk
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | | | - Wayne G Brake
- Department of Psychology, Center for Studies in Behavioral Neurobiology (CSBN), Concordia University, Montreal, QC, Canada
| | - Robert T Kennedy
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA.,Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Patrick du Souich
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montreal, QC, H3C 3J7, Canada
| | - Anne-Noël Samaha
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montreal, QC, H3C 3J7, Canada.,Groupe de recherche sur le système nerveux central, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
31
|
Complex Control of Striatal Neurotransmission by Nicotinic Acetylcholine Receptors via Excitatory Inputs onto Medium Spiny Neurons. J Neurosci 2018; 38:6597-6607. [PMID: 29941445 DOI: 10.1523/jneurosci.0071-18.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/06/2018] [Accepted: 05/10/2018] [Indexed: 01/12/2023] Open
Abstract
The prevalence of nicotine dependence is higher than that for any other substance abuse disorder; still, the underlying mechanisms are not fully established. To this end, we studied acute effects by nicotine on neurotransmission in the dorsolateral striatum, a key brain region with respect to the formation of habits. Electrophysiological recordings in acutely isolated brain slices from rodent showed that nicotine (10 nm to 10 μm) produced an LTD of evoked field potentials. Current-clamp recordings revealed no significant effect by nicotine on membrane voltage or action potential frequency, indicating that the effect by nicotine is primarily synaptic. Nicotine did not modulate sIPSCs, or the connectivity between fast-spiking interneurons and medium spiny neurons, as assessed by whole-cell recordings combined with optogenetics. However, the frequency of sEPSCs was significantly depressed by nicotine. The effect by nicotine was mimicked by agonists targeting α7- or α4-containing nAChRs and blocked in slices pretreated with a mixture of antagonists targeting these receptor subtypes. Nicotine-induced LTD was furthermore inhibited by dopamine D2 receptor antagonist and occluded by D2 receptor agonist. In addition, modulation of cholinergic neurotransmission suppressed the responding to nicotine, which might reflect upon the postulated role for nAChRs as a presynaptic filter to differentially govern dopamine release depending on neuronal activity. Nicotine-induced suppression of excitatory inputs onto medium spiny neurons may promote nicotine-induced locomotor stimulation and putatively initiate neuroadaptations that could contribute to the transition toward compulsive drug taking.SIGNIFICANCE STATEMENT To decrease smoking, prevalence factors that may contribute to the development of nicotine addiction need to be identified. The data presented here show that nicotine suppresses striatal neurotransmission by selectively reducing the frequency of excitatory inputs to medium spiny neurons (MSNs) while rendering excitability, inhibitory neurotransmission, and fast-spiking interneuron-MSN connectivity unaltered. In addition, we show that the effect displayed by nicotine outlasts the presence of the drug, which could be fundamental for the addictive properties of nicotine. Considering the inhibitory tone displayed by MSNs on dopaminergic cell bodies and local terminals, nicotine-induced long-lasting depression of striatal output could play a role in behavioral transformations associated with nicotine use, and putatively elicit neuroadaptations underlying compulsive drug-seeking habits.
Collapse
|
32
|
Moran LV, Stoeckel LE, Wang K, Caine CE, Villafuerte R, Calderon V, Baker JT, Ongur D, Janes AC, Pizzagalli DA, Eden Evins A. Nicotine Increases Activation to Anticipatory Valence Cues in Anterior Insula and Striatum. Nicotine Tob Res 2018; 20:851-858. [PMID: 29059451 PMCID: PMC5991218 DOI: 10.1093/ntr/ntx217] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/21/2017] [Indexed: 12/30/2022]
Abstract
Introduction Smoking is associated with significant morbidity and mortality. Understanding the neurobiology of the rewarding effects of nicotine promises to aid treatment development for nicotine dependence. Through its actions on mesolimbic dopaminergic systems, nicotine engenders enhanced responses to drug-related cues signaling rewards, a mechanism hypothesized to underlie the development and maintenance of nicotine addiction. Methods We evaluated the effects of acute nicotine on neural responses to anticipatory cues signaling (nondrug) monetary reward or loss among 11 nonsmokers who had no prior history of tobacco smoking. In a double-blind, crossover design, participants completed study procedures while wearing nicotine or placebo patches at least 1 week apart. In each drug condition, participants underwent functional magnetic resonance imaging while performing the monetary incentive delay task and performed a probabilistic monetary reward task, probing reward responsiveness as measured by response bias toward a more frequently rewarded stimulus. Results Nicotine administration was associated with enhanced activation, compared with placebo, of right fronto-anterior insular cortex and striatal regions in response to cues predicting possible rewards or losses and to dorsal anterior cingulate for rewards. Response bias toward rewarded stimuli correlated positively with insular activation to anticipatory cues. Conclusion Nicotinic enhancement of monetary reward-related brain activation in the insula and striatum in nonsmokers dissociated acute effects of nicotine from effects on reward processing due to chronic smoking. Reward responsiveness predicted a greater nicotinic effect on insular activation to salient stimuli. Implications Previous research demonstrates that nicotine enhances anticipatory responses to rewards in regions targeted by midbrain dopaminergic systems. The current study provides evidence that nicotine also enhances responses to rewards and losses in the anterior insula. A previous study found enhanced insular activation to rewards and losses in smokers and ex-smokers, a finding that could be due to nicotine sensitization or factors related to current or past smoking. Our finding of enhanced anterior insula response after acute administration of nicotine in nonsmokers provides support for nicotine-induced sensitization of insular response to rewards and losses.
Collapse
Affiliation(s)
- Lauren V Moran
- McLean Hospital, Belmont, MA
- Harvard Medical School, Boston, MA
| | - Luke E Stoeckel
- Harvard Medical School, Boston, MA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA
| | | | | | | | - Vanessa Calderon
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA
| | - Justin T Baker
- McLean Hospital, Belmont, MA
- Harvard Medical School, Boston, MA
| | - Dost Ongur
- McLean Hospital, Belmont, MA
- Harvard Medical School, Boston, MA
| | - Amy C Janes
- McLean Hospital, Belmont, MA
- Harvard Medical School, Boston, MA
| | | | - A Eden Evins
- Harvard Medical School, Boston, MA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
33
|
Chiamulera C, Marzo CM, Balfour DJK. Metabotropic glutamate receptor 5 as a potential target for smoking cessation. Psychopharmacology (Berl) 2017; 234:1357-1370. [PMID: 27847973 DOI: 10.1007/s00213-016-4487-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/07/2016] [Indexed: 12/21/2022]
Abstract
RATIONALE Most habitual smokers find it difficult to quit smoking because they are dependent upon the nicotine present in tobacco smoke. Tobacco dependence is commonly treated pharmacologically using nicotine replacement therapy or drugs, such as varenicline, that target the nicotinic receptor. Relapse rates, however, remain high, and there remains a need to develop novel non-nicotinic pharmacotherapies for the dependence that are more effective than existing treatments. OBJECTIVE The purpose of this paper is to review the evidence from preclinical and clinical studies that drugs that antagonise the metabotropic glutamate receptor 5 (mGluR5) in the brain are likely to be efficacious as treatments for tobacco dependence. RESULTS Imaging studies reveal that chronic exposure to tobacco smoke reduces the density of mGluR5s in human brain. Preclinical results demonstrate that negative allosteric modulators (NAMs) at mGluR5 attenuate both nicotine self-administration and the reinstatement of responding evoked by exposure to conditioned cues paired with nicotine delivery. They also attenuate the effects of nicotine on brain dopamine pathways implicated in addiction. CONCLUSIONS Although mGluR5 NAMs attenuate most of the key facets of nicotine dependence, they potentiate the symptoms of nicotine withdrawal. This may limit their value as smoking cessation aids. The NAMs that have been employed most widely in preclinical studies of nicotine dependence have too many "off-target" effects to be used clinically. However, newer mGluR5 NAMs have been developed for clinical use in other indications. Future studies will determine if these agents can also be used effectively and safely to treat tobacco dependence.
Collapse
Affiliation(s)
- Cristiano Chiamulera
- Neuropsychopharmacology Lab., Section Pharmacology, Department Diagnostic and Public Health, University of Verona, P.le Scuro 10, 37134, Verona, Italy.
| | - Claudio Marcello Marzo
- Neuropsychopharmacology Lab., Section Pharmacology, Department Diagnostic and Public Health, University of Verona, P.le Scuro 10, 37134, Verona, Italy
| | - David J K Balfour
- Division of Neuroscience, University of Dundee Medical School, Mailbox 6, Ninewells Hospital, Dundee, DD1 9SY, UK
| |
Collapse
|
34
|
Stringfield SJ, Palmatier MI, Boettiger CA, Robinson DL. Orbitofrontal participation in sign- and goal-tracking conditioned responses: Effects of nicotine. Neuropharmacology 2017; 116:208-223. [PMID: 28012948 PMCID: PMC5385154 DOI: 10.1016/j.neuropharm.2016.12.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/15/2016] [Accepted: 12/21/2016] [Indexed: 11/22/2022]
Abstract
Pavlovian conditioned stimuli can acquire incentive motivational properties, and this phenomenon can be measured in animals using Pavlovian conditioned approach behavior. Drugs of abuse can influence the expression of this behavior, and nicotine in particular exhibits incentive amplifying effects. Both conditioned approach behavior and drug abuse rely on overlapping corticolimbic circuitry. We hypothesize that the orbitofrontal cortex (OFC) regulates conditioned approach, and that one site of nicotine action is in the OFC where it reduces cortical output. To test this, we repeatedly exposed rats to 0.4 mg/kg nicotine (s.c.) during training and then pharmacologically inactivated the lateral OFC or performed in vivo electrophysiological recordings of lateral OFC neurons in the presence or absence of nicotine. In Experiment 1, animals were trained in a Pavlovian conditioning paradigm and behavior was evaluated after inactivation of the OFC by microinfusion of the GABA agonists baclofen and muscimol. In Experiment 2, we monitored phasic firing of OFC neurons during Pavlovian conditioning sessions. Nicotine reliably enhanced conditioned responding to the conditioned cue, and inactivation of the OFC reduced conditioned responding, especially the sign-tracking response. OFC neurons exhibited phasic excitations to cue presentation and during goal tracking, and nicotine acutely blunted this phasic neuronal firing. When nicotine was withheld, both conditioned responding and phasic firing in the OFC returned to the level of controls. These results suggest that the OFC is recruited for the expression of conditioned responses, and that nicotine acutely influences this behavior by reducing phasic firing in the OFC.
Collapse
Affiliation(s)
- Sierra J Stringfield
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA; Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC, USA
| | - Matthew I Palmatier
- Department of Psychology, East Tennessee State University, Johnson City, TN, USA
| | - Charlotte A Boettiger
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA; Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC, USA; Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Donita L Robinson
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA; Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC, USA; Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
35
|
Adermark L, Morud J, Lotfi A, Danielsson K, Ulenius L, Söderpalm B, Ericson M. Temporal Rewiring of Striatal Circuits Initiated by Nicotine. Neuropsychopharmacology 2016; 41:3051-3059. [PMID: 27388328 PMCID: PMC5101553 DOI: 10.1038/npp.2016.118] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/18/2016] [Accepted: 06/30/2016] [Indexed: 01/24/2023]
Abstract
Drug addiction has been conceptualized as maladaptive recruitment of integrative circuits coursing through the striatum, facilitating drug-seeking and drug-taking behavior. The aim of this study was to define temporal neuroadaptations in striatal subregions initiated by 3 weeks of intermittent nicotine exposure followed by protracted abstinence. Enhanced rearing activity was assessed in motor activity boxes as a measurement of behavioral change induced by nicotine (0.36 mg/kg), whereas electrophysiological field potential recordings were performed to evaluate treatment effects on neuronal activity. Dopamine receptor mRNA expression was quantified by qPCR, and nicotine-induced dopamine release was measured in striatal subregions using in vivo microdialysis. Golgi staining was performed to assess nicotine-induced changes in spine density of medium spiny neurons. The data presented here show that a brief period of nicotine exposure followed by abstinence leads to temporal changes in synaptic efficacy, dopamine receptor expression, and spine density in a subregion-specific manner. Nicotine may thus initiate a reorganization of striatal circuits that continues to develop despite protracted abstinence. We also show that the response to nicotine is modulated in previously exposed rats even after 6 months of abstinence. The data presented here suggests that, even though not self-administered, nicotine may produce progressive neuronal alterations in brain regions associated with goal-directed and habitual performance, which might contribute to the development of compulsive drug seeking and the increased vulnerability to relapse, which are hallmarks of drug addiction.
Collapse
Affiliation(s)
- Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at The University of Gothenburg, Gothenburg, Sweden
| | - Julia Morud
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at The University of Gothenburg, Gothenburg, Sweden
| | - Amir Lotfi
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at The University of Gothenburg, Gothenburg, Sweden
| | - Klara Danielsson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at The University of Gothenburg, Gothenburg, Sweden
| | - Lisa Ulenius
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at The University of Gothenburg, Gothenburg, Sweden
- Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at The University of Gothenburg, Gothenburg, Sweden
- Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at The University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
36
|
Weidenauer A, Bauer M, Sauerzopf U, Bartova L, Praschak-Rieder N, Sitte HH, Kasper S, Willeit M. Making Sense of: Sensitization in Schizophrenia. Int J Neuropsychopharmacol 2016; 20:1-10. [PMID: 27613293 PMCID: PMC5604613 DOI: 10.1093/ijnp/pyw081] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/07/2016] [Indexed: 12/12/2022] Open
Abstract
Sensitization is defined as a process whereby repeated intermittent exposure to a given stimulus results in an enhanced response at subsequent exposures. Next to robust findings of an increased dopamine synthesis capacity in schizophrenia, empirical data and neuroimaging studies support the notion that the mesolimbic dopamine system of patients with schizophrenia is more reactive compared with healthy controls. These studies led to the conceptualization of schizophrenia as a state of endogenous sensitization, as stronger behavioral response and increased dopamine release after amphetamine administration or exposure to stress have been observed in patients with schizophrenia. These findings have also been integrated into the neurodevelopmental model of the disorder, which assumes that vulnerable neuronal circuits undergo progressive changes during puberty and young adulthood that lead to manifest psychosis. Rodent and human studies have made an attempt to identify the exact mechanisms of sensitization of the dopaminergic system and its association with psychosis. Doing so, several epigenetic and molecular alterations associated with dopamine release, neuroplasticity, and cellular energy metabolism have been discovered. Future research aims at targeting these key proteins associated with sensitization in schizophrenia to enhance the knowledge of the pathophysiology of the illness and pave the way for an improved treatment or even prevention of this severe psychiatric disorder.
Collapse
Affiliation(s)
- Ana Weidenauer
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Drs Weidenauer, Bauer, Sauerzopf, Bartova, Praschak-Rieder, Kasper, and Willeit); Department of Clinical Pharmacology (Dr Bauer), and Institute of Pharmacology, Medical University of Vienna, Austria (Dr Sitte)
| | - Martin Bauer
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Drs Weidenauer, Bauer, Sauerzopf, Bartova, Praschak-Rieder, Kasper, and Willeit); Department of Clinical Pharmacology (Dr Bauer), and Institute of Pharmacology, Medical University of Vienna, Austria (Dr Sitte)
| | - Ulrich Sauerzopf
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Drs Weidenauer, Bauer, Sauerzopf, Bartova, Praschak-Rieder, Kasper, and Willeit); Department of Clinical Pharmacology (Dr Bauer), and Institute of Pharmacology, Medical University of Vienna, Austria (Dr Sitte)
| | - Lucie Bartova
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Drs Weidenauer, Bauer, Sauerzopf, Bartova, Praschak-Rieder, Kasper, and Willeit); Department of Clinical Pharmacology (Dr Bauer), and Institute of Pharmacology, Medical University of Vienna, Austria (Dr Sitte)
| | - Nicole Praschak-Rieder
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Drs Weidenauer, Bauer, Sauerzopf, Bartova, Praschak-Rieder, Kasper, and Willeit); Department of Clinical Pharmacology (Dr Bauer), and Institute of Pharmacology, Medical University of Vienna, Austria (Dr Sitte)
| | - Harald H. Sitte
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Drs Weidenauer, Bauer, Sauerzopf, Bartova, Praschak-Rieder, Kasper, and Willeit); Department of Clinical Pharmacology (Dr Bauer), and Institute of Pharmacology, Medical University of Vienna, Austria (Dr Sitte)
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Drs Weidenauer, Bauer, Sauerzopf, Bartova, Praschak-Rieder, Kasper, and Willeit); Department of Clinical Pharmacology (Dr Bauer), and Institute of Pharmacology, Medical University of Vienna, Austria (Dr Sitte).
| | - Matthäus Willeit
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Drs Weidenauer, Bauer, Sauerzopf, Bartova, Praschak-Rieder, Kasper, and Willeit); Department of Clinical Pharmacology (Dr Bauer), and Institute of Pharmacology, Medical University of Vienna, Austria (Dr Sitte)
| |
Collapse
|
37
|
Pittenger ST, Swalve N, Chou S, Smith MD, Hoonakker AJ, Pudiak CM, Fleckenstein AE, Hanson GR, Bevins RA. Sex differences in neurotensin and substance P following nicotine self-administration in rats. Synapse 2016; 70:336-46. [PMID: 27074301 DOI: 10.1002/syn.21907] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/21/2016] [Accepted: 04/08/2016] [Indexed: 02/02/2023]
Abstract
Investigator-administered nicotine alters neurotensin and substance P levels in Sprague-Dawley rats. This finding suggested a role of the dopamine-related endogenous neuropeptides in nicotine addiction. We sought to extend this observation by determining the responses of neurotensin and substance P systems (assessed using radioimmunoassay) in male and female rats following nicotine self-administration (SA). Male and female Sprague-Dawley were trained to self-administer nicotine, or receive saline infusions yoked to a nicotine-administering rat during daily sessions (1-h; 21 days). Brains were extracted 3 h after the last SA session. Nicotine SA increased tissue levels of neurotensin in the males in the anterior and posterior caudate, globus pallidus, frontal cortex, nucleus accumbens core and shell, and ventral tegmental area. Nicotine SA also increased tissue levels of neurotensin in the females in the anterior caudate, globus pallidus, nucleus accumbens core and shell, but not in the posterior caudate, frontal cortex, or ventral tegmental area. There were fewer sex differences observed in the substance P systems. Nicotine SA increased tissue levels of substance P in both the males and females in the posterior caudate, globus pallidus, frontal cortex, nucleus accumbens shell, and ventral tegmental area. A sex difference was observed in the nucleus accumbens core, where nicotine SA increased tissue levels of substance P in the males, yet decreased levels in the females. The regulation of neuropeptides following nicotine SA may play a role in the susceptibility to nicotine dependence in females and males. Synapse 70:336-346, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Steven T Pittenger
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, Nebraska, 68588-0308
| | - Natashia Swalve
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, Nebraska, 68588-0308
| | - Shinnyi Chou
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, Nebraska, 68588-0308
| | - Misty D Smith
- School of Dentistry, University of Utah, 530 so. Wakara Way, Salt Lake City, Utah, 84108.,Department of Pharmacology and Toxicology, University of Utah, Skaggs Hall, Salt Lake City, Utah, 84112
| | - Amanda J Hoonakker
- School of Dentistry, University of Utah, 530 so. Wakara Way, Salt Lake City, Utah, 84108
| | - Cindy M Pudiak
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, Nebraska, 68588-0308
| | - Annette E Fleckenstein
- School of Dentistry, University of Utah, 530 so. Wakara Way, Salt Lake City, Utah, 84108
| | - Glen R Hanson
- School of Dentistry, University of Utah, 530 so. Wakara Way, Salt Lake City, Utah, 84108.,Department of Pharmacology and Toxicology, University of Utah, Skaggs Hall, Salt Lake City, Utah, 84112
| | - Rick A Bevins
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, Nebraska, 68588-0308
| |
Collapse
|
38
|
Eggan BL, McCallum SE. 18-Methoxycoronaridine acts in the medial habenula to attenuate behavioral and neurochemical sensitization to nicotine. Behav Brain Res 2016; 307:186-93. [PMID: 27059333 DOI: 10.1016/j.bbr.2016.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 11/25/2022]
Abstract
Systemic 18-methoxycoronaridine, an alpha3beta4 nicotinic antagonist, slows the rate of induction of behavioral sensitization to nicotine (Glick et al., 1996; 2011). The primary mechanism of action of 18-MC is believed to be the inhibition of α3β4 nicotinic acetylcholine receptors which are densely expressed in the medial habenula and interpeduncular nucleus (Pace et al., 2004; Glick et al., 2012). Recently, these habenular nicotinic receptors and their multiple roles in nicotine aversion and withdrawal have been increasingly emphasized (Antolin-Fontes et al., 2015). Here, we investigated the effects of 18-MC on both behavioral and neurochemical sensitization to nicotine. Daily systemic administration of 18-MC slowed the rate of induction of behavioral sensitization to nicotine but failed to block the expression of a sensitized locomotor response when absent. In contrast, in nicotine sensitized animals, systemic 18-MC significantly reduced the expression of behavioral sensitization. Results from intra-habenular administration of 18-MC paralleled these findings in that the expression of behavioral sensitization was also reduced in sensitized animals. Consistent with its effects on behavioral sensitization, intra-MHb treatment with 18-MC completely abolished sensitized dopamine responses in the nucleus accumbens in nicotine sensitized animals. These results show that α3β4 nicotinic receptors in the MHb contribute to nicotine sensitization, a phenomenon associated with drug craving and relapse.
Collapse
Affiliation(s)
- Branden L Eggan
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, United States.
| | - Sarah E McCallum
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, United States.
| |
Collapse
|
39
|
Kaya E, Gozen O, Ugur M, Koylu EO, Kanit L, Balkan B. Nicotine regulates cocaine-amphetamine-Regulated Transcript (Cart) in the mesocorticolimbic system. Synapse 2016; 70:283-92. [PMID: 26990424 DOI: 10.1002/syn.21903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/03/2016] [Accepted: 03/10/2016] [Indexed: 12/21/2022]
Abstract
Cocaine-and-Amphetamine Regulated Transcript (CART) mRNA and peptides are intensely expressed in the brain regions comprising mesocorticolimbic system. Studies suggest that CART peptides may have a role in the regulation of reward circuitry. The present study aimed to examine the effect of nicotine on CART expression in the mesocorticolimbic system. Three different doses of nicotine (0.2, 0.4, 0.6 mg/kg free base) were injected subcutaneously for 5 days, and on day 6, rats were decapitated following a challenge dose. CART mRNA and peptide levels in medial prefrontal cortex (mPFC), nucleus accumbens (NAc), dorsal striatum (DST), amygdala (AMG), lateral hypothalamic area (LHA), and ventral tegmental area (VTA) were measured by quantitative real-time PCR (qPCR) and Western Blot analysis, respectively. In the mPFC, 0.4 and 0.6 mg/kg nicotine, decreased CART peptide levels whereas there was no effect on CART mRNA levels. In the VTA, a down-regulation of CART peptide expression was observed with 0.2 and 0.6 mg/kg nicotine. Conversely, 0.4 and 0.6 mg/kg nicotine increased CART mRNA levels in the AMG without affecting the CART peptide expression. Nicotine did not regulate CART mRNA or CART peptide expression in the NAc, DST, and LHA. We conclude that nicotine regulates CART expression in the mesocorticolimbic system and this regulation may play an important role in nicotine reward. Synapse 70:283-292, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Egemen Kaya
- Department of Physiology, School of Medicine, Ege University, Izmir, Turkey.,Center for Brain Research, Ege University, Izmir, Turkey
| | - Oguz Gozen
- Department of Physiology, School of Medicine, Ege University, Izmir, Turkey.,Center for Brain Research, Ege University, Izmir, Turkey
| | - Muzeyyen Ugur
- Department of Physiology, School of Medicine, Ege University, Izmir, Turkey
| | - Ersin O Koylu
- Department of Physiology, School of Medicine, Ege University, Izmir, Turkey.,Center for Brain Research, Ege University, Izmir, Turkey
| | - Lutfiye Kanit
- Department of Physiology, School of Medicine, Ege University, Izmir, Turkey.,Center for Brain Research, Ege University, Izmir, Turkey
| | - Burcu Balkan
- Department of Physiology, School of Medicine, Ege University, Izmir, Turkey.,Center for Brain Research, Ege University, Izmir, Turkey
| |
Collapse
|
40
|
Morud J, Adermark L, Perez-Alcazar M, Ericson M, Söderpalm B. Nicotine produces chronic behavioral sensitization with changes in accumbal neurotransmission and increased sensitivity to re-exposure. Addict Biol 2016; 21:397-406. [PMID: 25581387 DOI: 10.1111/adb.12219] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tobacco use is often associated with long-term addiction as well as high risk of relapse following cessation. This is suggestive of persistent neural adaptations, but little is known about the long-lasting effects of nicotine on neural circuits. In order to investigate the long-term effects of nicotine exposure, Wistar rats were treated for 3 weeks with nicotine (0.36 mg/kg), and the duration of behavioral and neurophysiological adaptations was evaluated 7 months later. We found that increased drug-induced locomotion persisted 7 months after the initial behavioral sensitization. In vitro analysis of synaptic activity in the core and shell of the nucleus accumbens (nAc) revealed a decrease in input/output function in both regions of nicotine-treated rats as compared to vehicle-treated control rats. In addition, administration of the dopamine D2 receptor agonist quinpirole (5 μM) significantly increased evoked population spike amplitude in the nAc shell of nicotine-treated rats as compared to vehicle-treated control rats. To test whether nicotine exposure creates long-lasting malleable circuits, animals were re-exposed to nicotine 7 months after the initial exposure. This treatment revealed an increased sensitivity to nicotine among animals previously exposed to nicotine, with higher nicotine-induced locomotion responses than observed initially. In vitro electrophysiological recordings in re-exposed rats detected an increased sensitivity to dopamine D2 receptor activation. These results suggest that nicotine produces persistent neural adaptations that make the system sensitive and receptive to future nicotine re-exposure.
Collapse
Affiliation(s)
- Julia Morud
- Addiction Biology Unit; Department of Psychiatry and Neurochemistry; Institute of Neuroscience and Physiology; The Sahlgrenska Academy at University of Gothenburg; Sweden
| | - Louise Adermark
- Addiction Biology Unit; Department of Psychiatry and Neurochemistry; Institute of Neuroscience and Physiology; The Sahlgrenska Academy at University of Gothenburg; Sweden
| | - Marta Perez-Alcazar
- Department of Physiology; Institute of Neuroscience and Physiology; The Sahlgrenska Academy at the University of Gothenburg; Sweden
| | - Mia Ericson
- Addiction Biology Unit; Department of Psychiatry and Neurochemistry; Institute of Neuroscience and Physiology; The Sahlgrenska Academy at University of Gothenburg; Sweden
| | - Bo Söderpalm
- Addiction Biology Unit; Department of Psychiatry and Neurochemistry; Institute of Neuroscience and Physiology; The Sahlgrenska Academy at University of Gothenburg; Sweden
- Beroendekliniken; Sahlgrenska University Hospital; Sweden
| |
Collapse
|
41
|
Van Skike CE, Maggio SE, Reynolds AR, Casey EM, Bardo MT, Dwoskin LP, Prendergast MA, Nixon K. Critical needs in drug discovery for cessation of alcohol and nicotine polysubstance abuse. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:269-87. [PMID: 26582145 PMCID: PMC4679525 DOI: 10.1016/j.pnpbp.2015.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 01/29/2023]
Abstract
Polysubstance abuse of alcohol and nicotine has been overlooked in our understanding of the neurobiology of addiction and especially in the development of novel therapeutics for its treatment. Estimates show that as many as 92% of people with alcohol use disorders also smoke tobacco. The health risks associated with both excessive alcohol consumption and tobacco smoking create an urgent biomedical need for the discovery of effective cessation treatments, as opposed to current approaches that attempt to independently treat each abused agent. The lack of treatment approaches for alcohol and nicotine abuse/dependence mirrors a similar lack of research in the neurobiology of polysubstance abuse. This review discusses three critical needs in medications development for alcohol and nicotine co-abuse: (1) the need for a better understanding of the clinical condition (i.e. alcohol and nicotine polysubstance abuse), (2) the need to better understand how these drugs interact in order to identify new targets for therapeutic development and (3) the need for animal models that better mimic this human condition. Current and emerging treatments available for the cessation of each drug and their mechanisms of action are discussed within this context followed by what is known about the pharmacological interactions of alcohol and nicotine. Much has been and will continue to be gained from studying comorbid alcohol and nicotine exposure.
Collapse
Affiliation(s)
- C E Van Skike
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, United States
| | - S E Maggio
- Department of Psychology, University of Kentucky, Lexington, KY 40536, United States
| | - A R Reynolds
- Department of Psychology, University of Kentucky, Lexington, KY 40536, United States
| | - E M Casey
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, United States
| | - M T Bardo
- Department of Psychology, University of Kentucky, Lexington, KY 40536, United States; Center for Drug Abuse and Research Translation, University of Kentucky, Lexington, KY 40536, United States; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, United States
| | - L P Dwoskin
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, United States; Center for Drug Abuse and Research Translation, University of Kentucky, Lexington, KY 40536, United States
| | - M A Prendergast
- Department of Psychology, University of Kentucky, Lexington, KY 40536, United States; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, United States
| | - K Nixon
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, United States; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, United States.
| |
Collapse
|
42
|
Morales-Rosado JA, Cousin MA, Ebbert JO, Klee EW. A Critical Review of Repurposing Apomorphine for Smoking Cessation. Assay Drug Dev Technol 2015; 13:612-22. [DOI: 10.1089/adt.2015.680] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Margot A. Cousin
- Mayo Addiction Research Center, Mayo Clinic, Rochester, Minnesota
| | - Jon O. Ebbert
- Mayo Addiction Research Center, Mayo Clinic, Rochester, Minnesota
| | - Eric W. Klee
- Mayo Addiction Research Center, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
43
|
Methadone’s effect on nAChRs—a link between methadone use and smoking? Biochem Pharmacol 2015; 97:542-549. [DOI: 10.1016/j.bcp.2015.07.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/23/2015] [Indexed: 12/17/2022]
|
44
|
Korpi ER, den Hollander B, Farooq U, Vashchinkina E, Rajkumar R, Nutt DJ, Hyytiä P, Dawe GS. Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse. Pharmacol Rev 2015; 67:872-1004. [DOI: 10.1124/pr.115.010967] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
45
|
Abstract
Nicotine addiction drives tobacco use by one billion people worldwide, causing nearly six million deaths a year. Nicotine binds to nicotinic acetylcholine receptors that are normally activated by the endogenous neurotransmitter acetylcholine. The widespread expression of nicotinic receptors throughout the nervous system accounts for the diverse physiological effects triggered by nicotine. A crucial influence of nicotine is on the synaptic mechanisms underlying learning that contribute to the addiction process. Here, we focus on the acquisition phase of smoking addiction and review animal model studies on how nicotine modifies dopaminergic and cholinergic signaling in key nodes of the reinforcement circuitry: ventral tegmental area, nucleus accumbens (NAc), amygdala, and hippocampus. Capitalizing on mechanisms that subserve natural rewards, nicotine activates midbrain dopamine neurons directly and indirectly, and nicotine causes dopamine release in very broad target areas throughout the brain, including the NAc, amygdala, and hippocampus. In addition, nicotine orchestrates local changes within those target structures, alters the release of virtually all major neurotransmitters, and primes the nervous system to the influence of other addictive drugs. Hence, understanding how nicotine affects the circuitry for synaptic plasticity and learning may aid in developing reasoned therapies to treat nicotine addiction.
Collapse
Affiliation(s)
- Manivannan Subramaniyan
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John A Dani
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
46
|
Gomez AM, Altomare D, Sun WL, Midde NM, Ji H, Shtutman M, Turner JR, Creek KE, Zhu J. Prefrontal microRNA-221 Mediates Environmental Enrichment-Induced Increase of Locomotor Sensitivity to Nicotine. Int J Neuropsychopharmacol 2015; 19:pyv090. [PMID: 26232787 PMCID: PMC4772274 DOI: 10.1093/ijnp/pyv090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/29/2015] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Environmental enrichment alters susceptibility in developing drug addiction. We have demonstrated that rats raised in an enriched condition are more sensitive than rats raised in an impoverished condition to nicotine-induced locomotor activity, and this is associated with alterations of phosphorylated extracellular signal-regulated kinase 1/2 within the prefrontal cortex. This study determined the impact of microRNA-221 in the prefrontal cortex on phosphorylated extracellular signal-regulated kinase 1/2 and the enriched environment-dependent behavioral changes in response to nicotine. METHODS A microRNA array was conducted to profile microRNA expression in the prefrontal cortex of enriched condition and impoverished condition rats in response to repeated nicotine (0.35 mg/kg, s.c.) administration. microRNA-221 in the prefrontal cortex, nucleus accumbens, and striatum was further verified by quantitative real-time PCR. Lentiviral-mediated overexpression of microRNA-221 in PC12 cells and the medial prefrontal cortex was performed to determine the effects of microRNA-221 on nicotine-mediated phosphorylated extracellular signal-regulated kinase 1/2, phosphorylated cAMP-response element-binding protein, and locomotor activity. RESULTS microRNA-221 was profoundly upregulated in the prefrontal cortex but not in nucleus accumbens and striatum of enriched condition rats relative to impoverished condition rats following repeated administration of nicotine. Overexpression of lentiviral-microRNA-221 attenuated nicotine-induced increase in phosphorylated extracellular signal-regulated kinase 1/2 in PC12 cells. Lentiviral-microRNA-221 overexpression in the medial prefrontal cortex further increased locomotor activity in impoverished condition but not in enriched condition rats in response to repeated nicotine administration. Accordingly, lentiviral-microRNA-221 attenuated nicotine-induced increases in phosphorylated extracellular signal-regulated kinase 1/2 and phosphorylated cAMP-response element-binding protein in the medial prefrontal cortex of impoverished condition but not enriched condition rats. CONCLUSION These findings suggest that environmental enrichment, via upregulation of prefrontal microRNA-221 expression, suppresses the nicotine-induced activation of extracellular signal-regulated kinase and cAMP-response element-binding protein, which provides a potential mechanism underlying enhanced locomotor sensitivity to nicotine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC (Dr Gomez, Dr Altomare, Dr Sun, Dr Middle, Mrs Ji, Dr Shtutman, Dr Turner, Dr Creek, and Dr Zhu).
| |
Collapse
|
47
|
Adermark L, Morud J, Lotfi A, Jonsson S, Söderpalm B, Ericson M. Age-contingent influence over accumbal neurotransmission and the locomotor stimulatory response to acute and repeated administration of nicotine in Wistar rats. Neuropharmacology 2015; 97:104-12. [PMID: 26079444 DOI: 10.1016/j.neuropharm.2015.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/28/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022]
Abstract
Nicotine addiction is one of the leading contributors to the global burden of disease, and early onset smokers report a more severe addiction with lower chance of cessation than those with a late onset. Preclinical research supports an age-dependent component to the rewarding and reinforcing properties of nicotine, and the aim of this study was to define behavioral adaptations and changes in accumbal neurotransmission that arise over 15 days of intermittent nicotine treatment (0.36 mg/kg/day) in rats of three different ages (5 weeks, 10 weeks, 36 weeks old). Repeated treatment increased the locomotor stimulatory response to nicotine in all age groups, but significantly faster in the two younger groups. In addition, nicotine decreased rearing activity in a way that sustained even after repeated administration in aged rats but not in the younger age groups. Electrophysiological field potential recordings revealed a decline in input/output function in the nucleus accumbens (NAc) of animals intermittently treated with nicotine starting at 5 weeks of age, but not in older animals. In drug naïve rats, acute administration of nicotine modulated both accumbal dopamine output and excitatory transmission in a partially age-dependent manner. Fifteen days of intermittent nicotine treatment did not alter the acute effect displayed by nicotine on dopamine levels or evoked field potentials. The data presented here show that both acute and repeated nicotine administration modulates accumbal neurotransmission and behavior in an age-contingent manner and that these age-dependent differences could reflect important neurobiological underpinnings associated with the increased vulnerability for nicotine-addiction in adolescents.
Collapse
Affiliation(s)
- L Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| | - J Morud
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - A Lotfi
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - S Jonsson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - B Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - M Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
48
|
Watterson E, Daniels CW, Watterson LR, Mazur GJ, Brackney RJ, Olive MF, Sanabria F. Nicotine-induced place conditioning and locomotor activity in an adolescent animal model of attention deficit/hyperactivity disorder (ADHD). Behav Brain Res 2015; 291:184-188. [PMID: 26008156 DOI: 10.1016/j.bbr.2015.05.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/09/2015] [Accepted: 05/16/2015] [Indexed: 11/28/2022]
Abstract
Attention deficit/hyperactivity disorder (ADHD) is a risk factor for tobacco use and dependence. This study examines the responsiveness to nicotine of an adolescent model of ADHD, the spontaneously hypertensive rat (SHR). The conditioned place preference (CPP) procedure was used to assess nicotine-induced locomotion and conditioned reward in SHR and the Wistar Kyoto (WKY) control strain over a range of nicotine doses (0.0, 0.1, 0.3 and 0.6 mg/kg). Prior to conditioning, SHRs were more active and less biased toward one side of the CPP chamber than WKY rats. Following conditioning, SHRs developed CPP to the highest dose of nicotine (0.6 mg/kg), whereas WKYs did not develop CPP to any nicotine dose tested. During conditioning, SHRs displayed greater locomotor activity in the nicotine-paired compartment than in the saline-paired compartment across conditioning trials. SHRs that received nicotine (0.1, 0.3, 0.6 mg/kg) in the nicotine-paired compartment showed an increase in locomotor activity between conditioning trials. Nicotine did not significantly affect WKY locomotor activity. These findings suggest that the SHR strain is a suitable model for studying ADHD-related nicotine use and dependence, but highlights potential limitations of the WKY control strain and the CPP procedure for modeling ADHD-related nicotine reward.
Collapse
Affiliation(s)
| | | | - Lucas R Watterson
- Arizona State University, United States; Center for Substance Abuse Research, Temple University School of Medicine, United States
| | | | | | | | | |
Collapse
|
49
|
Tallarida CS, Tallarida RJ, Rawls SM. Levamisole enhances the rewarding and locomotor-activating effects of cocaine in rats. Drug Alcohol Depend 2015; 149:145-50. [PMID: 25683823 PMCID: PMC4447121 DOI: 10.1016/j.drugalcdep.2015.01.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 01/24/2015] [Accepted: 01/25/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND The Drug Enforcement Agency estimates that 80% of cocaine seized in the United States contains the veterinary pharmaceutical levamisole (LVM). One problem with LVM is that it is producing life-threatening neutropenia in an alarming number of cocaine abusers. The neuropharmacological profile of LVM is also suggestive of an agent with modest reinforcing and stimulant effects that could enhance cocaine's addictive effects. METHODS We tested the hypothesis that LVM (ip) enhances the rewarding and locomotor stimulant effects of cocaine (ip) using rat conditioned place preference (CPP) and locomotor assays. Effects of LVM by itself were also tested. RESULTS LVM (0-10 mg/kg) produced CPP at 1mg/kg (P<0.05) and locomotor activation at 5mg/kg (P < 0.05). For CPP combination experiments, a statistically inactive dose of LVM (0.1 mg/kg) was administered with a low dose of cocaine (2.5 mg/kg). Neither agent produced CPP compared to saline (P > 0.05); however, the combination of LVM and cocaine produced enhanced CPP compared to saline or either drug by itself (P < 0.01). For locomotor experiments, the same inactive dose of LVM (0.1mg/kg, ip) was administered with low (10 mg/kg) and high doses (30 mg/kg) of cocaine. LVM (0.1 mg/kg) enhanced locomotor activation produced by 10mg/kg of cocaine (P < 0.05) but not by 30 mg/kg (P>0.05). CONCLUSIONS LVM can enhance rewarding and locomotor-activating effects of low doses of cocaine in rats while possessing modest activity of its own.
Collapse
Affiliation(s)
- Christopher S Tallarida
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA; Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Ronald J Tallarida
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA; Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Scott M Rawls
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA; Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
50
|
Goutier W, Kloeze MB, McCreary AC. The effect of varenicline on the development and expression of nicotine-induced behavioral sensitization and cross-sensitization in rats. Addict Biol 2015; 20:248-58. [PMID: 24251901 DOI: 10.1111/adb.12108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The present study focused on the evaluation of behavioral sensitization and cross-sensitization induced by nicotine and varenicline in rats. Furthermore, it examined the influence of varenicline, a partial alpha4beta2 nicotinic receptor agonist, on nicotine-induced sensitization. To assess the development of behavioral sensitization, rats were chronically treated with vehicle, varenicline (0.03-3.0 mg/kg), nicotine (0.4 mg/kg) or combinations for 5 days and locomotor activity was measured. The expression of sensitization was assessed following a withdrawal period (17-26 days). The present results confirmed previous data showing the development and expression of nicotine-induced sensitization of locomotor activity in the rat. Varenicline did not induce sensitization on its own. When varenicline and nicotine were repeatedly administered sequentially, varenicline blocked the development and expression of nicotine-induced sensitization. Acute varenicline blocked the expression of nicotine-induced sensitization in a dose-dependent manner. Acute varenicline did not significantly increase locomotor activity, nor did it attenuate nicotine-induced sensitization. However, varenicline did cross-sensitize to the effects of nicotine, and vice versa. The present study showed that varenicline produced a dose-dependent bidirectional cross-sensitization with nicotine. Taken together, these findings provide pre-clinical evidence that varenicline is able to attenuate the effects of nicotine, yet simultaneously 'substitutes' for the effects of nicotine in the rat. Longitudinal studies would be needed to see if similar effects are seen in the clinical setting, and whether such effects contribute to the actions of varenicline as a smoking cessation aid.
Collapse
Affiliation(s)
- Wouter Goutier
- Abbott Healthcare Products B.V.; C.J. van Houtenlaan 36 1381 CP Weesp The Netherlands
| | - Margreet B. Kloeze
- Abbott Healthcare Products B.V.; C.J. van Houtenlaan 36 1381 CP Weesp The Netherlands
| | - Andrew C. McCreary
- Abbott Healthcare Products B.V.; C.J. van Houtenlaan 36 1381 CP Weesp The Netherlands
| |
Collapse
|