1
|
Acharya B, Sahu PK, Behera A, Feehan J, Mishra DP, Apostolopoulos V. Cannabinoids and the male reproductive system: Implications of endocannabinoid signaling pathways. Maturitas 2025; 192:108156. [PMID: 39602858 DOI: 10.1016/j.maturitas.2024.108156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
The escalating use and legalization of cannabis (marijuana) in the United States reflect shifting societal attitudes and growing awareness of its potential therapeutic benefits. Historically viewed as a harmful psychoactive substance, contemporary research has shown the intricate pharmacology of cannabis, with its diverse array of cannabinoids and their interactions with the endocannabinoid system. Among these cannabinoids, Δ9-tetrahydrocannabinol is the primary psychoactive component, characterized by its activation of cannabinoid receptors. The discovery of endocannabinoids, including anandamide and 2-arachidonoylglycerol, illuminated the body's innate cannabinoid signaling pathways and their involvement in several physiological processes. Endocannabinoids exert both positive and negative effects on the male reproductive system. They facilitate erectile function by modulating neurotransmission and vasodilation, offering potential therapeutic avenues for conditions like erectile dysfunction and prostatitis. However, chronic exogenous cannabinoid use, mainly of tetrahydrocannabinol, poses risks to male reproductive health by disrupting spermatogenesis, causing hormonal imbalances, and potentially influencing cancer cell proliferation. Understanding endocannabinoid signaling in the male reproductive system is essential to fully comprehend both the therapeutic benefits and potential drawbacks of cannabis use. Further research is required on these mechanisms, to provide insights that can guide clinical practice and policy-making regarding cannabis use. In this narrative review, we highlight the need for additional research into how cannabinoids affect male reproductive health, particularly with prolonged use. Investigating cannabinoids' impacts on spermatogenesis, hormonal balance, and cancer cell proliferation can provide valuable insights for healthcare professionals.
Collapse
Affiliation(s)
- Biswajeet Acharya
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, India.
| | - Prafulla Kumar Sahu
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, India; Department of Pharmacy, Keonjhar Institute of Medical Science & Research, Keonjhar, Odisha, India; IndQuench Life Science Innovations (OPC) Pvt. Ltd., Plot No: 31/761, Devika Bihar, Dasabatia, Tamando (P), Khurda (Dist), Bhubaneswar, Odisha-751028, India.
| | | | - Jack Feehan
- School of Health and Biomedical Sciences, STEM College, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Durga Prasad Mishra
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, India.
| | - Vasso Apostolopoulos
- School of Health and Biomedical Sciences, STEM College, RMIT University, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
2
|
Wainwright CL, Walsh SK. Pharmacology of Non-Psychoactive Phytocannabinoids and Their Potential for Treatment of Cardiometabolic Disease. Handb Exp Pharmacol 2024. [PMID: 39235486 DOI: 10.1007/164_2024_731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The use of Cannabis sativa by humans dates back to the third millennium BC, and it has been utilized in many forms for multiple purposes, including production of fibre and rope, as food and medicine, and (perhaps most notably) for its psychoactive properties for recreational use. The discovery of Δ9-tetrahydrocannabinol (Δ9-THC) as the main psychoactive phytocannabinoid contained in cannabis by Gaoni and Mechoulam in 1964 (J Am Chem Soc 86, 1646-1647), was the first major step in cannabis research; since then the identification of the chemicals (phytocannabinoids) present in cannabis, the classification of the pharmacological targets of these compounds and the discovery that the body has its own endocannabinoid system (ECS) have highlighted the potential value of cannabis-derived compounds in the treatment of many diseases, such as neurological disorders and cancers. Although the use of Δ9-THC as a therapeutic agent is constrained by its psychoactive properties, there is growing evidence that non-psychoactive phytocannabinoids, derived from both Cannabis sativa and other plant species, as well as non-cannabinoid compounds found in Cannabis sativa, have real potential as therapeutics. This chapter will focus on the possibilities for using these compounds in the prevention and treatment of cardiovascular disease and related metabolic disturbances.
Collapse
Affiliation(s)
- Cherry L Wainwright
- Centre for Cardiometabolic Health Research, School of Pharmacy & Life Sciences, Robert Gordon University, Aberdeen, Scotland, UK.
| | - Sarah K Walsh
- Centre for Cardiometabolic Health Research, School of Pharmacy & Life Sciences, Robert Gordon University, Aberdeen, Scotland, UK
| |
Collapse
|
3
|
Classen N, Pitakbut T, Schöfbänker M, Kühn J, Hrincius ER, Ludwig S, Hensel A, Kayser O. Cannabigerol and Cannabicyclol Block SARS-CoV-2 Cell Fusion. PLANTA MEDICA 2024; 90:717-725. [PMID: 38885660 DOI: 10.1055/a-2320-8822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The search for new active substances against SARS-CoV-2 is still a central challenge after the COVID-19 pandemic. Antiviral agents to complement vaccination are an important pillar in the clinical situation. Selected cannabinoids such as cannabigerol, cannabicyclol, cannabichromene, and cannabicitran from Cannabis sativa and synthetic homologues of cannabigerol and cannabicyclol were evaluated for effects on the cell viability of Vero cells (CC50 of cannabigerol and cannabicyclol 40 resp. 38 µM) and reduced virus entry of vesicular stomatitis pseudotyped viruses with surface-expressed SARS-CoV-2 spike protein at 20 µM. In addition to a reduction of pseudotyped virus entry, a titer reduction assay on Vero cells after preincubation of Wuhan SARS-CoV-2 significantly confirmed antiviral activity. Investigations on the molecular targets addressed by cannabigerol and cannabicyclol indicated that both compounds are inhibitors of SARS-CoV-2 spike protein-mediated membrane fusion, as could be shown by a virus-free reporter fusion inhibition assay (EC50 for cannabigerol 5.5 µM and for cannabicyclol 10.8 µM) and by monitoring syncytia formation in Vero reporter cells. Selectivity indices were calculated as 7.4 for cannabigerol and 3.5 for cannabicyclol. Systematic semisynthetic alterations of cannabigerol and cannabicyclol indicated that the side chains of both compounds do not contribute to the observed anti-membrane fusion activity.
Collapse
Affiliation(s)
- Nica Classen
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Germany
| | - Thanet Pitakbut
- Technical Biochemistry Laboratory, Faculty of Biochemical and Chemical Engineering, Technical University of Dortmund, Germany
| | | | - Joachim Kühn
- Institute of Virology Münster (IVM), University of Münster, Germany
| | - Eike R Hrincius
- Institute of Virology Münster (IVM), University of Münster, Germany
| | - Stephan Ludwig
- Institute of Virology Münster (IVM), University of Münster, Germany
| | - Andreas Hensel
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Germany
| | - Oliver Kayser
- Technical Biochemistry Laboratory, Faculty of Biochemical and Chemical Engineering, Technical University of Dortmund, Germany
| |
Collapse
|
4
|
Tomašević N, Emser FS, Muratspahić E, Gattringer J, Hasinger S, Hellinger R, Keov P, Felkl M, Gertsch J, Becker CFW, Gruber CW. Discovery and development of macrocyclic peptide modulators of the cannabinoid 2 receptor. J Biol Chem 2024; 300:107330. [PMID: 38679329 PMCID: PMC11154713 DOI: 10.1016/j.jbc.2024.107330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024] Open
Abstract
The cannabinoid type 2 receptor (CB2R), a G protein-coupled receptor, is an important regulator of immune cell function and a promising target to treat chronic inflammation and fibrosis. While CB2R is typically targeted by small molecules, including endo-, phyto-, and synthetic cannabinoids, peptides-owing to their size-may offer a different interaction space to facilitate differential interactions with the receptor. Here, we explore plant-derived cyclic cystine-knot peptides as ligands of the CB2R. Cyclotides are known for their exceptional biochemical stability. Recently, they gained attention as G protein-coupled receptor modulators and as templates for designing peptide ligands with improved pharmacokinetic properties over linear peptides. Cyclotide-based ligands for CB2R were profiled based on a peptide-enriched extract library comprising nine plants. Employing pharmacology-guided fractionation and peptidomics, we identified the cyclotide vodo-C1 from sweet violet (Viola odorata) as a full agonist of CB2R with an affinity (Ki) of 1 μM and a potency (EC50) of 8 μM. Leveraging deep learning networks, we verified the structural topology of vodo-C1 and modeled its molecular volume in comparison to the CB2R ligand binding pocket. In a fragment-based approach, we designed and characterized vodo-C1-based bicyclic peptides (vBCL1-4), aiming to reduce size and improve potency. Opposite to vodo-C1, the vBCL peptides lacked the ability to activate the receptor but acted as negative allosteric modulators or neutral antagonists of CB2R. This study introduces a macrocyclic peptide phytocannabinoid, which served as a template for the development of synthetic CB2R peptide modulators. These findings offer opportunities for future peptide-based probe and drug development at cannabinoid receptors.
Collapse
Affiliation(s)
- Nataša Tomašević
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Fabiola Susanna Emser
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Edin Muratspahić
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jasmin Gattringer
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Simon Hasinger
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Roland Hellinger
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Peter Keov
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Manuel Felkl
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Christian F W Becker
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Christian W Gruber
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Devinsky O, Jones NA, Cunningham MO, Jayasekera BAP, Devore S, Whalley BJ. Cannabinoid treatments in epilepsy and seizure disorders. Physiol Rev 2024; 104:591-649. [PMID: 37882730 DOI: 10.1152/physrev.00049.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023] Open
Abstract
Cannabis has been used to treat convulsions and other disorders since ancient times. In the last few decades, preclinical animal studies and clinical investigations have established the role of cannabidiol (CBD) in treating epilepsy and seizures and support potential therapeutic benefits for cannabinoids in other neurological and psychiatric disorders. Here, we comprehensively review the role of cannabinoids in epilepsy. We briefly review the diverse physiological processes mediating the central nervous system response to cannabinoids, including Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol, and terpenes. Next, we characterize the anti- and proconvulsive effects of cannabinoids from animal studies of acute seizures and chronic epileptogenesis. We then review the clinical literature on using cannabinoids to treat epilepsy, including anecdotal evidence and case studies as well as the more recent randomized controlled clinical trials that led to US Food and Drug Administration approval of CBD for some types of epilepsy. Overall, we seek to evaluate our current understanding of cannabinoids in epilepsy and focus future research on unanswered questions.
Collapse
Affiliation(s)
- Orrin Devinsky
- Department of Neurology, NYU Grossman School of Medicine, New York, New York, United States
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, New York, United States
- Department of Psychiatry, NYU Grossman School of Medicine, New York, New York, United States
| | | | - Mark O Cunningham
- Discipline of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - B Ashan P Jayasekera
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Neurosurgery, Royal Victoria Hospital, Newcastle upon Tyne, United Kingdom
| | - Sasha Devore
- Department of Neurology, NYU Grossman School of Medicine, New York, New York, United States
| | | |
Collapse
|
6
|
Liktor-Busa E, Largent-Milnes TM. Natural Products Derived from Cannabis sativa for Pain Management. Handb Exp Pharmacol 2024. [PMID: 38509238 DOI: 10.1007/164_2024_710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Cannabis sativa is one of the oldest medicinal plants in human history. Even ancient physicians from hundreds of years ago used Cannabis sativa to treat several conditions like pain. In the modern era, the research community, including health-care providers, have witnessed wide-scale changes in cannabis policy, legislation, and marketing, with a parallel increase in patient interest. A simple search in PubMed using "cannabis and pain" as keywords provides more than 2,400 articles, about 80% of which were published in the last 8-10 years. Several advancements have been achieved in understanding the complex chemistry of cannabis along with its multiple pharmacological activities. Preclinical data have demonstrated evidence for the promising potential of cannabis for pain management, and the continuous rise in the prevalence of pain increases the urgency to translate this into clinical practice. Despite the large body of cannabis literature, researchers still need to find rigorous answers for the questions about the efficacy and safety of cannabis in treatment of certain disorders such as pain. In the current chapter, we seek to present a critical overview about the current knowledge on cannabis with special emphasis on pain-related disorders.
Collapse
|
7
|
Wilson G, Yang L, Su X, Ding S, Li L, Yang Y, Wang X, Wang W, Sa Y, Zhang Y, Chen J, Ma X. Exploring the therapeutic potential of natural compounds modulating the endocannabinoid system in various diseases and disorders: review. Pharmacol Rep 2023; 75:1410-1444. [PMID: 37906390 DOI: 10.1007/s43440-023-00544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023]
Abstract
Cannabinoid receptors, endogenous cannabinoids (endocannabinoids), and the enzymes involved in the biosynthesis and degradation of the endocannabinoids make up the endocannabinoid system (ECS). The components of the ECS are proven to modulate a vast bulk of various physiological and pathological processes due to their abundance throughout the human body. Such discoveries have attracted the researchers' attention and emerged as a potential therapeutical target for the treatment of various diseases. In the present article, we reviewed the discoveries of natural compounds, herbs, herbs formula, and their therapeutic properties in various diseases and disorders by modulating the ECS. We also summarize the molecular mechanisms through which these compounds elicit their properties by interacting with the ECS based on the existing findings. Our study provides the insight into the use of natural compounds that modulate ECS in various diseases and disorders, which in turn may facilitate future studies exploiting natural lead compounds as novel frameworks for designing more effective and safer therapeutics.
Collapse
Affiliation(s)
- Gidion Wilson
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Lingling Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Xiaojuan Su
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Shuqin Ding
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Liuyan Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Youyue Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Xiaoying Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Weibiao Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Yuping Sa
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Yue Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Jianyu Chen
- Fujian University of Traditional Chinese Medicine, No. 1, Huatuo Road, Minhoushangjie, Fuzhou, 350122, China.
| | - Xueqin Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| |
Collapse
|
8
|
Peters EN, Yardley H, Harrison A, Eglit GM, Antonio J, Turcotte C, Bonn-Miller MO. A randomized, double-blind, placebo-controlled, repeated-dose pilot study of the safety, tolerability, and preliminary effects of a cannabidiol (CBD)- and cannabigerol (CBG)-based beverage powder to support recovery from delayed onset muscle soreness (DOMS). J Int Soc Sports Nutr 2023; 20:2280113. [PMID: 37947792 PMCID: PMC10653658 DOI: 10.1080/15502783.2023.2280113] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Cannabinoid-containing products are marketed to athletes as promoting recovery, in spite of a lack of data on their safety and effects. This randomized, double-blind, placebo-controlled, repeated-dose pilot study tested the safety, tolerability, and preliminary effects on recovery of a formulation containing cannabidiol (CBD; 35 mg), cannabigerol (CBG; 50 mg), beta caryophyllene (BCP; 25 mg), branched-chain amino acids (BCAAs; 3.8 g), and magnesium citrate (420 mg). METHODS Exercise-trained individuals (N = 40) underwent an experimental induction of delayed onset muscle soreness (DOMS) and completed follow-up visits 24-, 48-, and 72-hours post-DOMS. Participants were randomized to active or placebo formulation, and consumed the formulation twice per day for 3.5 days. RESULTS There was one adverse event (AE) in the active group (diarrhea) and two AEs in placebo (dry mouth; eye rash/swollen eye). There was 100% self-reported compliance with formulation consumption across the two groups. For the primary outcome of interest, the estimate of effect for ratings of average soreness/discomfort 72 hours post-DOMS between active and placebo groups was -1.33 (85% confidence interval = -2.55, -0.10), suggesting moderate evidence of a treatment difference. The estimate of effect for the outcome of ratings of interference of soreness, discomfort, or stiffness on daily activities at work or home 48 hours post-DOMS was -1.82 (95% confidence interval = -3.64, -0.01), indicating a treatment difference of potential clinical importance. There was no significant effect between active and placebo groups on objective measures of recovery, sleep quality, or mood disturbance. CONCLUSIONS The tested formulation reduced interference of DOMS on daily activities, demonstrating its improvement on a functional aspect of recovery.
Collapse
Affiliation(s)
| | - Helena Yardley
- Canopy Growth Corporation, Smiths Falls, Ontario, Canada
| | - Amy Harrison
- Canopy Growth Corporation, Smiths Falls, Ontario, Canada
| | | | - Jose Antonio
- Nova Southeastern University, Exercise and Sport Science, Davie, FL, USA
| | | | | |
Collapse
|
9
|
Ghazwani M, Hani U, Alqarni MH, Alam A. Beta Caryophyllene-Loaded Nanostructured Lipid Carriers for Topical Management of Skin Disorders: Statistical Optimization, In Vitro and Dermatokinetic Evaluation. Gels 2023; 9:550. [PMID: 37504429 PMCID: PMC10378941 DOI: 10.3390/gels9070550] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023] Open
Abstract
This work aimed to overcome the disadvantages of the oral administration of beta-caryophyllene and boost efficiency by developing a nanostructured lipid carrier for topical administration of the drug in skin disorders. The heat emulsification method was utilized to produce beta-caryophyllene-loaded nanostructured lipid carriers. The newly created formulation was examined for its particle size, entrapment efficiency, and zeta potential after being improved using the Box-Behnken Design. The chosen formulation underwent tests to determine its ex vivo skin retention, dermatokinetic, in vitro release, antioxidant, and confocal laser scanning microscopy study. The findings of the characterization of the nanostructured lipid carriers demonstrated that the particles had a spherical form and a size of 210.86 nm (0.263 polydispersity index). The entrapment efficiency was determined to be 86.74%, and the zeta potential was measured to be -26.97 mV. The in vitro release investigation showed that nanostructure lipid carriers were capable of releasing regulated amounts of beta-caryophyllene for up to 24 hrs. In comparison to the traditional gel formulation, the ex vivo investigation demonstrated a 1.94-fold increase in the skin's capacity to retain the substance. According to the findings of the study, nanostructure lipid carriers loaded with beta-caryophyllene have the potential to be investigated for use as a topical administration method in skin disorders with enhanced skin retention and effectiveness.
Collapse
Affiliation(s)
- Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia
| | - Mohammed H Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| |
Collapse
|
10
|
Govindarajan RK, Mishra AK, Cho KH, Kim KH, Yoon KM, Baek KH. Biosynthesis of Phytocannabinoids and Structural Insights: A Review. Metabolites 2023; 13:442. [PMID: 36984882 PMCID: PMC10051821 DOI: 10.3390/metabo13030442] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Cannabis belongs to the family Cannabaceae, and phytocannabinoids are produced by the Cannabis sativa L. plant. A long-standing debate regarding the plant is whether it contains one or more species. Phytocannabinoids are bioactive natural products found in flowers, seeds, and fruits. They can be beneficial for treating human diseases (such as multiple sclerosis, neurodegenerative diseases, epilepsy, and pain), the cellular metabolic process, and regulating biological function systems. In addition, several phytocannabinoids are used in various therapeutic and pharmaceutical applications. This study provides an overview of the different sources of phytocannabinoids; further, the biosynthesis of bioactive compounds involving various pathways is elucidated. The structural classification of phytocannabinoids is based on their decorated resorcinol core and the bioactivities of naturally occurring cannabinoids. Furthermore, phytocannabinoids have been studied in terms of their role in animal models and antimicrobial activity against bacteria and fungi; further, they show potential for therapeutic applications and are used in treating various human diseases. Overall, this review can help deepen the current understanding of the role of biotechnological approaches and the importance of phytocannabinoids in different industrial applications.
Collapse
Affiliation(s)
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Kiu-Hyung Cho
- Gyeongbuk Institute for Bioindustry, Andong 36618, Gyeongbuk, Republic of Korea
| | - Ki-Hyun Kim
- Gyeongbuk Institute for Bioindustry, Andong 36618, Gyeongbuk, Republic of Korea
| | - Kyoung Mi Yoon
- Gyeongbuk Institute for Bioindustry, Andong 36618, Gyeongbuk, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| |
Collapse
|
11
|
Mahardhika AB, Ressemann A, Kremers SE, Gregório Castanheira MS, Schoeder CT, Müller CE, Pillaiyar T. Design, synthesis, and structure-activity relationships of diindolylmethane derivatives as cannabinoid CB 2 receptor agonists. Arch Pharm (Weinheim) 2023; 356:e2200493. [PMID: 36437108 DOI: 10.1002/ardp.202200493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022]
Abstract
3,3'-Diindolylmethane (DIM), a natural product-derived compound formed upon ingestion of cruciferous vegetables, was recently described to act as a partial agonist of the anti-inflammatory cannabinoid (CB) receptor subtype CB2 . In the present study, we synthesized and evaluated a series of DIM derivatives and determined their affinities for human CB receptor subtypes in radioligand binding studies. Potent compounds were additionally evaluated in functional cAMP accumulation and β-arrestin recruitment assays. Small substituents in the 4-position of both indole rings of DIM were beneficial for high CB2 receptor affinity and efficacy. Di-(4-cyano-1H-indol-3-yl)methane (46, PSB-19837, EC50 : cAMP, 0.0144 µM, 95% efficacy compared to the full standard agonist CP55,940; β-arrestin, 0.0149 µM, 67% efficacy) was the most potent CB2 receptor agonist of the present series. Di-(4-bromo-1H-indol-3-yl)methane (44, PSB-19571) showed higher potency in β-arrestin (EC50 0.0450 µM, 61% efficacy) than in cAMP accumulation assays (EC50 0.509 µM, 85% efficacy) while 3-((1H-indol-3-yl)methyl)-4-methyl-1H-indole (149, PSB-18691) displayed a 19-fold bias for the G protein pathway (EC50 : cAMP, 0.0652 µM; β-arrestin, 1.08 µM). DIM and its analogs act as allosteric CB2 receptor agonists. These potent CB2 receptor agonists have potential as novel drugs for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Andhika B Mahardhika
- Department of Pharmaceutical & Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Bonn, Germany.,Research Training Group 1873, University of Bonn, Bonn, Germany
| | - Anastasiia Ressemann
- Department of Pharmaceutical & Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Sarah E Kremers
- Department of Pharmaceutical & Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Mariana S Gregório Castanheira
- Department of Pharmaceutical & Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Clara T Schoeder
- Department of Pharmaceutical & Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Bonn, Germany.,Research Training Group 1873, University of Bonn, Bonn, Germany
| | - Christa E Müller
- Department of Pharmaceutical & Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Bonn, Germany.,Research Training Group 1873, University of Bonn, Bonn, Germany
| | - Thanigaimalai Pillaiyar
- Department of Pharmaceutical & Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Bonn, Germany.,Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Institute of Pharmacy, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
12
|
Takeda S, Hirao-Suzuki M, Aramaki H, Watanabe K. Δ 9-Tetrahydrocannabinol stimulation of estrogen receptor-positive MCF-7 breast cancer cell migration: Interfering interaction with the estrogenic milieu. Forensic Toxicol 2022:10.1007/s11419-022-00655-5. [PMID: 36583834 DOI: 10.1007/s11419-022-00655-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022]
Abstract
PURPOSE The effects of extended Δ9-tetrahydrocannabinol (Δ9-THC) exposure on estrogen receptor-positive human breast cancer MCF-7 cells have been investigated; however, the effects of Δ9-THC exposure for a shorter duration remain unclear. In this study, we sought to study whether Δ9-THC stimulates the migration of MCF-7 cells under both estrogenic and estrogen-deprived conditions over a short period (approximately 6 h). METHODS MCF-7 cells were treated with Δ9-THC under estrogenic or estrogen-deprived conditions, and cell migration was subsequently analyzed. RESULTS Δ9-THC-stimulated migration of MCF-7 cells 6 h after exposure was only observed in the estrogen-deprived condition. However, Δ9-THC-mediated migration was counteracted under estrogenic conditions without affecting cell proliferation and estrogen receptor expression during this period. CONCLUSIONS Δ9-THC can stimulate MCF-7 cell migration under estrogen-deprived conditions; however, there is an interfering interaction between Δ9-THC and the estrogenic milieu that influences the migration of MCF-7 cells.
Collapse
Affiliation(s)
- Shuso Takeda
- Laboratory of Molecular Life Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Sanzou 1, Gakuen-Cho, Fukuyama, Hiroshima, 729-0292, Japan. .,Department of Molecular Biology, Daiichi University of Pharmacy, 22-1 Tamagawa-Cho, Minami-Ku, Fukuoka, 815-8511, Japan. .,Organization for Frontier Research in Preventive Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-Machi, Kanazawa, 920-1181, Japan.
| | - Masayo Hirao-Suzuki
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hiro-Koshingai, Kure, Hiroshima, 737-0112, Japan
| | - Hironori Aramaki
- Department of Molecular Biology, Daiichi University of Pharmacy, 22-1 Tamagawa-Cho, Minami-Ku, Fukuoka, 815-8511, Japan
| | - Kazuhito Watanabe
- Center for Supporting Pharmaceutical Education, Daiichi University of Pharmacy, 22-1 Tamagawa-Cho, Minami-Ku, Fukuoka, 815-8511, Japan.,Organization for Frontier Research in Preventive Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-Machi, Kanazawa, 920-1181, Japan
| |
Collapse
|
13
|
Gholami M, Amri J, Pazhoohan S, Sadegh M. Anticonvulsive and anti-epileptogenesis effects of Echinacea purpurea root extract, an involvement of CB2 receptor. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2022; 19:879-886. [PMID: 34461009 DOI: 10.1515/jcim-2020-0219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES Phytocannabinoids beyond the Δ9-tetrahy-drocannabinol have shown anticonvulsive effects. Also, alkylamides from Echinacea purpurea have been proved as cannabinomimetics. We examined the effect of the hydroalcoholic root extract of E. purpurea on pentylenetetrazol (PTZ)-induced tonic-clonic seizures and kindling model of epileptogenesis and the involvement of CB2 receptors as the mediator of this effect. METHODS Male Wistar rats (200 ± 20 g) were used. Single intraperitoneal (i.p.) injection of PTZ (80 mg/kg) was used to induce tonic-clonic seizures. The kindling model of epileptogenesis was induced by daily injections of PTZ (37 mg/kg; i.p. for 15 days). Latency and duration of the stages were monitored for analysis. The hydroalcoholic root extract of E. purpurea was injected (i.p.) 20 min before seizure induction at the doses of 10, 50, 100 and 200 mg/kg. CB2 receptor antagonist SR144528 was injected (0.1 mg/kg; i.p.) 20 min before the Echinacea injection. RESULTS In the tonic-clonic model, pretreatment with E. purpurea at the doses of 100 and 200 mg/kg significantly increased latencies to S2-S6, while it significantly decreased S6 duration and mortality rate. SR144528 injection before the injection of 100 mg/kg of E. purpurea significantly prevented the effects of the extract on S4-S6 latencies. In the kindling model, E. purpurea at the doses of 100 and 200 mg/kg significantly delayed epileptogenesis and decreased mortality rate, while SR144528 injection before the injection of 100 mg/kg of E. purpurea significantly blocked this effect of the extract. CONCLUSIONS These findings revealed the anticonvulsive and antiepileptogenesis effects of the E. purpurea root extract, which can be mediated by CB2 receptors.
Collapse
Affiliation(s)
- Masoumeh Gholami
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Jamal Amri
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, I.R., Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, I.R., Iran
- Traditional and Complementary Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Saeed Pazhoohan
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mehdi Sadegh
- Traditional and Complementary Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
14
|
Welling MT, Deseo MA, Bacic A, Doblin MS. Biosynthetic origins of unusual cannabimimetic phytocannabinoids in Cannabis sativa L: A review. PHYTOCHEMISTRY 2022; 201:113282. [PMID: 35718133 DOI: 10.1016/j.phytochem.2022.113282] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/02/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Plants of Cannabis sativa L. (Cannabaceae) produce an array of more than 160 isoprenylated resorcinyl polyketides, commonly referred to as phytocannabinoids. These compounds represent molecules of therapeutic importance due to their modulation of the human endocannabinoid system (ECS). While understanding of the biosynthesis of the major phytocannabinoids Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) has grown rapidly in recent years, the biosynthetic origin and genetic regulation of many potentially therapeutically relevant minor phytocannabinoids remain unknown, which limits the development of chemotypically elite varieties of C. sativa. This review provides an up-to-date inventory of unusual phytocannabinoids which exhibit cannabimimetic-like activities and proposes putative metabolic origins. Metabolic branch points exploitable for combinatorial biosynthesis and engineering of phytocannabinoids with augmented therapeutic activities are also described, as is the role of phytocannabinoid remodelling to accelerate the therapeutic portfolio expansion in C. sativa.
Collapse
Affiliation(s)
- Matthew T Welling
- La Trobe Institute for Agriculture & Food, AgriBio Building, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
| | - Myrna A Deseo
- La Trobe Institute for Agriculture & Food, AgriBio Building, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Antony Bacic
- La Trobe Institute for Agriculture & Food, AgriBio Building, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Monika S Doblin
- La Trobe Institute for Agriculture & Food, AgriBio Building, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia.
| |
Collapse
|
15
|
Agatonovic‐Kustrin S, Gegechkori VI, Morton DW. QSAR
analysis of the partitioning of terpenes and terpenoids into human milk. FLAVOUR FRAG J 2022. [DOI: 10.1002/ffj.3713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Snezana Agatonovic‐Kustrin
- I.M. Sechenov First Moscow State Medical University (Sechenov University) Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev of the Institute of Pharmacy Moscow Russia
- School of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Sciences, La Trobe University Bendigo Australia
| | - Vladimir I. Gegechkori
- I.M. Sechenov First Moscow State Medical University (Sechenov University) Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev of the Institute of Pharmacy Moscow Russia
| | - David W. Morton
- I.M. Sechenov First Moscow State Medical University (Sechenov University) Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev of the Institute of Pharmacy Moscow Russia
- School of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Sciences, La Trobe University Bendigo Australia
| |
Collapse
|
16
|
Barbee BR, Gourley SL. Brain systems in cocaine abstinence-induced anxiety-like behavior in rodents: A review. ADDICTION NEUROSCIENCE 2022; 2:100012. [PMID: 37485439 PMCID: PMC10361393 DOI: 10.1016/j.addicn.2022.100012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Cocaine use disorder (CUD) is a significant public health issue that generates substantial personal, familial, and economic burdens. Still, there are no FDA-approved pharmacotherapies for CUD. Cocaine-dependent individuals report anxiety during withdrawal, and alleviation of anxiety and other negative affective states may be critical for maintaining drug abstinence. However, the neurobiological mechanisms underlying abstinence-related anxiety in humans or anxiety-like behavior in rodents are not fully understood. This review summarizes investigations regarding anxiety-like behavior in mice and rats undergoing cocaine abstinence, as assessed using four of the most common anxiety-related assays: the elevated plus (or its derivative, the elevated zero) maze, open field test, light-dark transition test, and defensive burying task. We first summarize available evidence that cocaine abstinence generates anxiety-like behavior that persists throughout protracted abstinence. Then, we examine investigations concerning neuropeptide, neurotransmitter, and neuromodulator systems in cocaine abstinence-induced anxiety-like behavior. Throughout, we discuss how differences in sex, rodent strain, cocaine dose and dosing strategy and abstinence duration interact to generate anxiety-like behavior.
Collapse
Affiliation(s)
- Britton R. Barbee
- Graduate Program in Molecular and Systems Pharmacology,
Emory University
- Department of Pediatrics, Emory University School of
Medicine; Yerkes National Primate Research Center
| | - Shannon L. Gourley
- Graduate Program in Molecular and Systems Pharmacology,
Emory University
- Department of Pediatrics, Emory University School of
Medicine; Yerkes National Primate Research Center
| |
Collapse
|
17
|
Procaccia S, Lewitus GM, Lipson Feder C, Shapira A, Berman P, Meiri D. Cannabis for Medical Use: Versatile Plant Rather Than a Single Drug. Front Pharmacol 2022; 13:894960. [PMID: 35548332 PMCID: PMC9081504 DOI: 10.3389/fphar.2022.894960] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 03/28/2022] [Indexed: 12/05/2022] Open
Abstract
Medical Cannabis and its major cannabinoids (−)-trans-Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are gaining momentum for various medical purposes as their therapeutic qualities are becoming better established. However, studies regarding their efficacy are oftentimes inconclusive. This is chiefly because Cannabis is a versatile plant rather than a single drug and its effects do not depend only on the amount of THC and CBD. Hundreds of Cannabis cultivars and hybrids exist worldwide, each with a unique and distinct chemical profile. Most studies focus on THC and CBD, but these are just two of over 140 phytocannabinoids found in the plant in addition to a milieu of terpenoids, flavonoids and other compounds with potential therapeutic activities. Different plants contain a very different array of these metabolites in varying relative ratios, and it is the interplay between these molecules from the plant and the endocannabinoid system in the body that determines the ultimate therapeutic response and associated adverse effects. Here, we discuss how phytocannabinoid profiles differ between plants depending on the chemovar types, review the major factors that affect secondary metabolite accumulation in the plant including the genotype, growth conditions, processing, storage and the delivery route; and highlight how these factors make Cannabis treatment highly complex.
Collapse
|
18
|
Mirlohi S, Bladen C, Santiago MJ, Arnold JC, McGregor I, Connor M. Inhibition of human recombinant T-type calcium channels by phytocannabinoids in vitro. Br J Pharmacol 2022; 179:4031-4043. [PMID: 35342937 DOI: 10.1111/bph.15842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE T-type Ca channels (ICa ) regulate neuronal excitability and contribute to neurotransmitter release. The phytocannabinoids Δ9 -tetrahydrocannabinol and cannabidiol effectively modulate T-type ICa , but effects of other biologically active phytocannabinoids on these channels are unknown. We thus investigated the modulation of T-type ICa by low abundance phytocannabinoids. EXPERIMENTAL APPROACH A fluorometric (FLIPR) assay was used to investigate modulation of human T-type ICa (CaV 3.1, 3.2 and 3.3) stably expressed in FlpIn-TREx HEK293 cells. The biophysical effects of some compounds were examined using whole-cell patch clamp recordings from the same cells. KEY RESULTS In the FLIPR assay, all eleven phytocannabinoids tested modulated T-type ICa , with most inhibiting CaV 3.1 and CaV 3.2 more effectively than CaV 3.3. Cannabigerolic acid was the most potent inhibitor of CaV 3.1 (pIC50 6.1 ± 0.6) and CaV 3.2 (pIC50 6.4 ± 0.4); in all cases phytocannabinoid acids were more potent than their corresponding neutral forms. In patch clamp recordings, cannabigerolic acid inhibited CaV 3.1 and 3.2 with similar potency to the FLIPR assay, the inhibition was associated with significant hyperpolarizing shift in activation and steady state inactivation of these channels. In contrast, cannabidiol, cannabidivarin and cannabigerol only affected channel inactivation. CONCLUSION AND IMPLICATIONS Modulation of T-type calcium channels is a common property of phytocannabinoids, which all increase steady state inactivation at physiological membrane potentials, with some also affecting channel activation. Thus, T-type ICa may be a common site of action for phytocannabinoids, and the diverse actions of phytocannabinoids on channel gating may provide insight into structural requirement for selective T-type ICa modulators.
Collapse
Affiliation(s)
- Somayeh Mirlohi
- Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney
| | - Chris Bladen
- Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney
| | - Marina J Santiago
- Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney
| | - Jonathon C Arnold
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,Discipline of Pharmacology, Sydney Pharmacy School, The University of Sydney, Sydney, New South Wales, Australia
| | - Ian McGregor
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia
| | - Mark Connor
- Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney
| |
Collapse
|
19
|
Zieglgänsberger W, Brenneisen R, Berthele A, Wotjak CT, Bandelow B, Tölle TR, Lutz B. Chronic Pain and the Endocannabinoid System: Smart Lipids - A Novel Therapeutic Option? Med Cannabis Cannabinoids 2022; 5:61-75. [PMID: 35702403 PMCID: PMC9149512 DOI: 10.1159/000522432] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 01/21/2022] [Indexed: 08/05/2023] Open
Abstract
The development of a high-end cannabinoid-based therapy is the result of intense translational research, aiming to convert recent discoveries in the laboratory into better treatments for patients. Novel compounds and new regimes for drug treatment are emerging. Given that previously unreported signaling mechanisms for cannabinoids have been uncovered, clinical studies detailing their high therapeutic potential are mandatory. The advent of novel genomic, optogenetic, and viral tracing and imaging techniques will help to further detail therapeutically relevant functional and structural features. An evolutionarily highly conserved group of neuromodulatory lipids, their receptors, and anabolic and catabolic enzymes are involved in a remarkable variety of physiological and pathological processes and has been termed the endocannabinoid system (ECS). A large body of data has emerged in recent years, pointing to a crucial role of this system in the regulation of the behavioral domains of acquired fear, anxiety, and stress-coping. Besides neurons, also glia cells and components of the immune system can differentially fine-tune patterns of neuronal activity. Dysregulation of ECS signaling can lead to a lowering of stress resilience and increased incidence of psychiatric disorders. Chronic pain may be understood as a disease process evoked by fear-conditioned nociceptive input and appears as the dark side of neuronal plasticity. By taking a toll on every part of your life, this abnormal persistent memory of an aversive state can be more damaging than its initial experience. All strategies for the treatment of chronic pain conditions must consider stress-related comorbid conditions since cognitive factors such as beliefs, expectations, and prior experience (memory of pain) are key modulators of the perception of pain. The anxiolytic and anti-stress effects of medical cannabinoids can substantially modulate the efficacy and tolerability of therapeutic interventions and will help to pave the way to a successful multimodal therapy. Why some individuals are more susceptible to the effects of stress remains to be uncovered. The development of personalized prevention or treatment strategies for anxiety and depression related to chronic pain must also consider gender differences. An emotional basis of chronic pain opens a new horizon of opportunities for developing treatment strategies beyond the repeated sole use of acutely acting analgesics. A phase I trial to determine the pharmacokinetics, psychotropic effects, and safety profile of a novel nanoparticle-based cannabinoid spray for oromucosal delivery highlights a remarkable innovation in galenic technology and urges clinical studies further detailing the huge therapeutic potential of medical cannabis (Lorenzl et al.; this issue).
Collapse
Affiliation(s)
| | | | | | | | - Borwin Bandelow
- Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Germany
| | | | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
20
|
Fearby N, Penman S, Thanos P. Effects of Δ9-Tetrahydrocannibinol (THC) on Obesity at Different Stages of Life: A Literature Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063174. [PMID: 35328862 PMCID: PMC8951828 DOI: 10.3390/ijerph19063174] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/04/2022] [Indexed: 12/20/2022]
Abstract
The Cannabis sativa plant has historically been used for both recreational and medical purposes. With the recent surge in recreational use of cannabis among adolescents and adults in particular, there is an increased obligation to determine the short- and long-term effects that consuming this plant may have on several aspects of the human psyche and body. The goal of this article was to examine the negative effects of obesity, and how the use of Δ9-tetrahydrocannibinol (THC) or cannabidiol (CBD) can impact rates of this global pandemic at different timepoints of life. Conflicting studies have been reported between adult and adolescents, as there are reports of THC use leading to increased weight due to elevated appetite and consumption of food, while others observed a decrease in overall body weight due to the regulation of omega-6/omega-3 endocannabinoid precursors and a decrease in energy expenditure. Studies supported a positive correlation between prenatal cannabis use and obesity rates in the children as they matured. The data did not indicate a direct connection between prenatal THC levels in cannabis and obesity rates, but that this development may occur due to prenatal THC consumption leading to low birthweight, and subsequent obesity. There are few studies using animal models that directly measure the effects that prenatal THC administration on obesity risks among offspring. Thus, this is a critical area for future studies using a developmental framework to examine potential changes in risk across development.
Collapse
Affiliation(s)
- Nathan Fearby
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14203, USA;
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY 14203, USA;
| | - Samantha Penman
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY 14203, USA;
| | - Panayotis Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY 14203, USA;
- Department of Psychology, University at Buffalo, Buffalo, NY 14203, USA
- Correspondence: ; Tel.: +1-(716)-881-7520
| |
Collapse
|
21
|
Woodman SE, Antonopoulos SR, Durham PL. Inhibition of Nociception in a Preclinical Episodic Migraine Model by Dietary Supplementation of Grape Seed Extract Involves Activation of Endocannabinoid Receptors. FRONTIERS IN PAIN RESEARCH 2022; 3:809352. [PMID: 35295808 PMCID: PMC8915558 DOI: 10.3389/fpain.2022.809352] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/04/2022] [Indexed: 01/15/2023] Open
Abstract
Migraine is associated with peripheral and central sensitization of the trigeminal system and dysfunction of descending pain modulation pathways. Recently, dietary inclusion of grape seed extract (GSE) was shown to inhibit mechanical nociception in a preclinical model of chronic temporomandibular joint disorder, a condition often comorbid with migraine, with the antinociceptive effect mediated, in part, by activation of 5-HT3/7 and GABAB receptors. This study further investigated the mechanisms by which GSE inhibits mechanical nociception in a preclinical model of episodic migraine. Hyperalgesic priming of female and male Sprague Dawley rats was induced by three consecutive daily two-hour episodes of restraint stress. Seven days after the final restraint stress, rats were exposed to pungent odors from an oil extract that contains the compound umbellulone, which stimulates CGRP release and induces migraine-like pain. Some animals received dietary supplementation of GSE in their drinking water beginning one week prior to restraint stress. Changes in mechanical sensitivity in the orofacial region and hindpaw were determined using von Frey filaments. To investigate the role of the endocannabinoid receptors in the effect of GSE, some animals were injected intracisternally with the CB1 antagonist AM 251 or the CB2 antagonist AM 630 prior to odor inhalation. Changes in CGRP expression in the spinal trigeminal nucleus (STN) in response to stress, odor and GSE supplementation were studied using immunohistochemistry. Exposure of stress-primed animals to the odor caused a significant increase in the average number of withdrawal responses to mechanical stimulation in both the orofacial region and hindpaw, and the effect was significantly suppressed by daily supplementation with GSE. The anti-nociceptive effect of GSE was inhibited by intracisternal administration of antagonists of CB1 and CB2 receptors. GSE supplementation inhibited odor-mediated stimulation of CGRP expression in the STN in sensitized animals. These results demonstrate that GSE supplementation inhibits trigeminal pain signaling in an injury-free model of migraine-like pain via activation of endocannabinoid receptors and repression of CGRP expression centrally. Hence, we propose that GSE may be beneficial as a complementary migraine therapeutic.
Collapse
Affiliation(s)
| | | | - Paul L. Durham
- Department of Biology, Missouri State University, Jordan Valley Innovation Center-Center for Biomedical and Life Sciences, Springfield, MO, United States
| |
Collapse
|
22
|
Abstract
Scoparone (6,7-dimethoxycoumarin) is a simple coumarin from botanical drugs of Artemisia species used in Traditional Chinese Medicine and Génépi liquor. However, its bioavailability to the brain and potential central effects remain unexplored. We profiled the neuropharmacological effects of scoparone upon acute and subchronic intraperitoneal administration (2.5-25 mg/kg) in Swiss mice and determined its brain concentrations and its effects on the endocannabinoid system (ECS) and related lipids using LC-ESI-MS/MS. Scoparone showed no effect in the forced swimming test (FST) but, administered acutely, led to a bell-shaped anxiogenic-like behavior in the elevated plus-maze test and bell-shaped procognitive effects in the passive avoidance test when given subchronically and acutely. Scoparone rapidly but moderately accumulated in the brain (Cmax < 15 min) with an apparent first-order elimination (95% eliminated at 1 h). Acute scoparone administration (5 mg/kg) significantly increased brain arachidonic acid, prostaglandins, and N-acylethanolamines (NAEs) in the FST. Conversely, subchronic scoparone treatment (2.5 mg/kg) decreased NAEs and increased 2-arachidonoylglycerol. Scoparone differentially impacted ECS lipid remodeling in the brain independent of serine hydrolase modulation. Overall, the unexpectedly potent central effects of scoparone observed in mice could have toxicopharmacological implications for humans.
Collapse
|
23
|
Examining the Use of Antidepressants for Adolescents with Depression/Anxiety Who Regularly Use Cannabis: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19010523. [PMID: 35010782 PMCID: PMC8744706 DOI: 10.3390/ijerph19010523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/21/2022]
Abstract
Depression and anxiety disorders are two of the most common and growing mental health concerns in adolescents. Consequently, antidepressant medication (AD) use has increased widely during the last decades. Several classes of antidepressants are used mainly to treat depression, anxiety, and obsessive-compulsive disorders by targeting relevant brain neurochemical pathways. Almost all randomized clinical trials of antidepressants examined patients with no concomitant medications or drugs. This does not address the expected course of therapy and outcome in cannabis users. Cannabis is the most commonly used illicit substance globally. Substantial changes in its regulation are recently taking place. Many countries and US states are becoming more permissive towards its medical and recreational use. The psychological and physiological effects of cannabis (mainly of its major components, tetrahydrocannabinol (THC) and cannabidiol (CBD)) have been extensively characterized. Cannabis use can be a risk factor for depressive and anxiety symptoms, but some constituents or mixtures may have antidepressant and/or anxiolytic potential. The aim of this literature review is to explore whether simultaneous use of AD and cannabis in adolescence can affect AD treatment outcomes. Based on the current literature, it is reasonable to assume that antidepressants are less effective for adolescents with depression/anxiety who frequently use cannabis. The mechanisms of action of antidepressants and cannabis point to several similarities and conjunctions that merit future investigation regarding the potential effectiveness of antidepressants among adolescents who consume cannabis regularly.
Collapse
|
24
|
Xu C, Zhang Y, Gozal D, Carney P. Channelopathy of Dravet Syndrome and Potential Neuroprotective Effects of Cannabidiol. J Cent Nerv Syst Dis 2021; 13:11795735211048045. [PMID: 34992485 PMCID: PMC8724990 DOI: 10.1177/11795735211048045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dravet syndrome (DS) is a channelopathy, neurodevelopmental, epileptic encephalopathy characterized by seizures, developmental delay, and cognitive impairment that includes susceptibility to thermally induced seizures, spontaneous seizures, ataxia, circadian rhythm and sleep disorders, autistic-like behaviors, and premature death. More than 80% of DS cases are linked to mutations in genes which encode voltage-gated sodium channel subunits, SCN1A and SCN1B, which encode the Nav1.1α subunit and Nav1.1β1 subunit, respectively. There are other gene mutations encoding potassium, calcium, and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels related to DS. One-third of patients have pharmacoresistance epilepsy. DS is unresponsive to standard therapy. Cannabidiol (CBD), a non-psychoactive phytocannabinoid present in Cannabis, has been introduced for treating DS because of its anticonvulsant properties in animal models and humans, especially in pharmacoresistant patients. However, the etiological channelopathiological mechanism of DS and action mechanism of CBD on the channels are unclear. In this review, we summarize evidence of the direct and indirect action mechanism of sodium, potassium, calcium, and HCN channels in DS, especially sodium subunits. Some channels' loss-of-function or gain-of-function in inhibitory or excitatory neurons determine the balance of excitatory and inhibitory are associated with DS. A great variety of mechanisms of CBD anticonvulsant effects are focused on modulating these channels, especially sodium, calcium, and potassium channels, which will shed light on ionic channelopathy of DS and the precise molecular treatment of DS in the future.
Collapse
Affiliation(s)
- Changqing Xu
- Department of Child Health and the Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Yumin Zhang
- Department of Anatomy, Physiology and Genetics; Department of Neuroscience, Uniformed Services University School of Medicine, Bethesda, MD, USA
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Paul Carney
- Departments of Child Health and Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
25
|
Pugazhendhi A, Suganthy N, Chau TP, Sharma A, Unpaprom Y, Ramaraj R, Karuppusamy I, Brindhadevi K. Cannabinoids as anticancer and neuroprotective drugs: Structural insights and pharmacological interactions—A review. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.08.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
26
|
Pathak MP, Patowary P, Das A, Goyary D, Karmakar S, Bhutia YD, Roy PK, Das S, Chattopadhyay P. Crosstalk between AdipoR1/AdipoR2 and Nrf2/HO-1 signal pathways activated by β-caryophyllene suppressed the compound 48/80 induced pseudo-allergic reactions. Clin Exp Pharmacol Physiol 2021; 48:1523-1536. [PMID: 34314522 DOI: 10.1111/1440-1681.13555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 07/09/2021] [Accepted: 07/22/2021] [Indexed: 11/26/2022]
Abstract
Mast cell activation is initiated by two signalling pathways: immunoglobulin E (IgE)-dependent and IgE-independent pathway. It is reported that the IgE-independent type or pseudo-allergy pathway gets activated by G-protein-dependent activation of the mast cell. Recently, adiponectin (APN) receptors, AdipoR1, and AdipoR2 have been identified as G-protein-coupled receptors (GPCRs). Interestingly, APN replenishment is reported to activate the Nrf2/HO-1 signalling axis. However, no study has been performed interlinking the role of APN and the Nrf2/HO-1 signalling axis in pseudo-allergic reaction. In the present study, we evaluated the anti-pseudo-allergic effects of β-caryophyllene, an FDA-approved food additive, in activating AdipoR1/AdipoR2 and Nrf2/HO-1 axis signalling pathway. Compound 48/80 (C48/80)-induced systemic and cutaneous anaphylaxis-like shock in BALB/c mice was performed to assess the efficacy of β-caryophyllene (BCP). To assess the effect of BCP in anaphylactic hypotension, mean arterial pressure was measured in Wistar rats. Inhibitory properties of BCP in mast cell degranulation were estimated in rat peritoneal mast cells (RPMCs). ELISA was performed to estimate interleukin (IL)-6, tumour necrosis factor (TNF), IL-1β, IgE, ovalbumin (OVA)-IgE and APN and western blotting for protein expression of Nrf2/HO-1 and AdipoR1-AdipoR2. BCP dose-dependently inhibited systemic and cutaneous anaphylaxis-like shock induced by C48/80. BCP dose-dependently inhibited the mast cell degranulation followed by inhibition of histamine release. Also BCP dose-dependently activated the Nrf2/HO-1 and AdipoR1-AdipoR2 signalling axis pathway. Moreover, BCP reversed the drop in blood pressure when the haemodynamic parameters were accessed. Our findings suggest that BCP is a potent AdipoR1/AdipoR2-Nrf2/HO-1 axis pathway agonist that may suppress the IgE-independent pathway towards allergic response to secretagogues.
Collapse
Affiliation(s)
- Manash Pratim Pathak
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, India
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Pompy Patowary
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, India
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Danswrang Goyary
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, India
| | - Sanjeev Karmakar
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, India
| | - Yangchen D Bhutia
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, India
| | - Probin Kumar Roy
- Department of Pharmaceutics, Regional Institute of Paramedical and Nursing Sciences, Aizawl, Mizoram, India
| | - Sanghita Das
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, India
- Pharmaceutical & Fine Chemical Division, Department of Chemical Technology, University of Calcutta, Kolkata, India
| | | |
Collapse
|
27
|
de Melo Reis RA, Isaac AR, Freitas HR, de Almeida MM, Schuck PF, Ferreira GC, Andrade-da-Costa BLDS, Trevenzoli IH. Quality of Life and a Surveillant Endocannabinoid System. Front Neurosci 2021; 15:747229. [PMID: 34776851 PMCID: PMC8581450 DOI: 10.3389/fnins.2021.747229] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
The endocannabinoid system (ECS) is an important brain modulatory network. ECS regulates brain homeostasis throughout development, from progenitor fate decision to neuro- and gliogenesis, synaptogenesis, brain plasticity and circuit repair, up to learning, memory, fear, protection, and death. It is a major player in the hypothalamic-peripheral system-adipose tissue in the regulation of food intake, energy storage, nutritional status, and adipose tissue mass, consequently affecting obesity. Loss of ECS control might affect mood disorders (anxiety, hyperactivity, psychosis, and depression), lead to drug abuse, and impact neurodegenerative (Alzheimer's, Parkinson, Huntington, Multiple, and Amyotrophic Lateral Sclerosis) and neurodevelopmental (autism spectrum) disorders. Practice of regular physical and/or mind-body mindfulness and meditative activities have been shown to modulate endocannabinoid (eCB) levels, in addition to other players as brain-derived neurotrophic factor (BDNF). ECS is involved in pain, inflammation, metabolic and cardiovascular dysfunctions, general immune responses (asthma, allergy, and arthritis) and tumor expansion, both/either in the brain and/or in the periphery. The reason for such a vast impact is the fact that arachidonic acid, a precursor of eCBs, is present in every membrane cell of the body and on demand eCBs synthesis is regulated by electrical activity and calcium shifts. Novel lipid (lipoxins and resolvins) or peptide (hemopressin) players of the ECS also operate as regulators of physiological allostasis. Indeed, the presence of cannabinoid receptors in intracellular organelles as mitochondria or lysosomes, or in nuclear targets as PPARγ might impact energy consumption, metabolism and cell death. To live a better life implies in a vigilant ECS, through healthy diet selection (based on a balanced omega-3 and -6 polyunsaturated fatty acids), weekly exercises and meditation therapy, all of which regulating eCBs levels, surrounded by a constructive social network. Cannabidiol, a diet supplement has been a major player with anti-inflammatory, anxiolytic, antidepressant, and antioxidant activities. Cognitive challenges and emotional intelligence might strengthen the ECS, which is built on a variety of synapses that modify human behavior. As therapeutically concerned, the ECS is essential for maintaining homeostasis and cannabinoids are promising tools to control innumerous targets.
Collapse
Affiliation(s)
- Ricardo Augusto de Melo Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alinny Rosendo Isaac
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hércules Rezende Freitas
- Laboratory of Neuroenergetics and Inborn Errors of Metabolism, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Macedo de Almeida
- Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Fernanda Schuck
- Laboratory of Neuroenergetics and Inborn Errors of Metabolism, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Costa Ferreira
- Laboratory of Neuroenergetics and Inborn Errors of Metabolism, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Isis Hara Trevenzoli
- Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Hosami F, Ghadimkhah MH, Salimi V, Ghorbanhosseini SS, Tavakoli-Yaraki M. The strengths and limits of cannabinoids and their receptors in cancer: Insights into the role of tumorigenesis-underlying mechanisms and therapeutic aspects. Biomed Pharmacother 2021; 144:112279. [PMID: 34624678 DOI: 10.1016/j.biopha.2021.112279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022] Open
Abstract
Cancer, as a mysterious and complex disease, has a multi-stage molecular process that uses the cellular molecular machine and multiple signaling pathways to its advantage. Cannabinoids, as terpenophenolic compounds and their derivatives, showed influences on immune system responses, inflammation, and cell growth that have sparked a growing interest in exploring their effects on cancer cell fate, as well. A large body of evidence in experimental models indicating the involvement of cannabinoids and their related receptors in cancer cell growth, development, and fate. In accordance, the present study provided insights regarding the strengths and limits of cannabinoids and their receptors in critical steps of tumorigenesis and its underlying molecular pathways such as; cancer cell proliferation, type of cell death pathway, angiogenesis, invasion, metastasis and, immune system response. Based on the results of the present study and due to the contribution of cannabinoids in various cancer cell growth control processes, these compounds cancer can be considered worthwhile in finding new alternatives for cancer therapy.
Collapse
Affiliation(s)
- Fatemeh Hosami
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Liktor-Busa E, Keresztes A, LaVigne J, Streicher JM, Largent-Milnes TM. Analgesic Potential of Terpenes Derived from Cannabis sativa. Pharmacol Rev 2021; 73:98-126. [PMID: 34663685 PMCID: PMC11060501 DOI: 10.1124/pharmrev.120.000046] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pain prevalence among adults in the United States has increased 25% over the past two decades, resulting in high health-care costs and impacts to patient quality of life. In the last 30 years, our understanding of pain circuits and (intra)cellular mechanisms has grown exponentially, but this understanding has not yet resulted in improved therapies. Options for pain management are limited. Many analgesics have poor efficacy and are accompanied by severe side effects such as addiction, resulting in a devastating opioid abuse and overdose epidemic. These problems have encouraged scientists to identify novel molecular targets and develop alternative pain therapeutics. Increasing preclinical and clinical evidence suggests that cannabis has several beneficial pharmacological activities, including pain relief. Cannabis sativa contains more than 500 chemical compounds, with two principle phytocannabinoids, Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD). Beyond phytocannabinoids, more than 150 terpenes have been identified in different cannabis chemovars. Although the predominant cannabinoids, Δ9-THC and CBD, are thought to be the primary medicinal compounds, terpenes including the monoterpenes β-myrcene, α-pinene, limonene, and linalool, as well as the sesquiterpenes β-caryophyllene and α-humulene may contribute to many pharmacological properties of cannabis, including anti-inflammatory and antinociceptive effects. The aim of this review is to summarize our current knowledge about terpene compounds in cannabis and to analyze the available scientific evidence for a role of cannabis-derived terpenes in modern pain management. SIGNIFICANCE STATEMENT: Decades of research have improved our knowledge of cannabis polypharmacy and contributing phytochemicals, including terpenes. Reform of the legal status for cannabis possession and increased availability (medicinal and recreational) have resulted in cannabis use to combat the increasing prevalence of pain and may help to address the opioid crisis. Better understanding of the pharmacological effects of cannabis and its active components, including terpenes, may assist in identifying new therapeutic approaches and optimizing the use of cannabis and/or terpenes as analgesic agents.
Collapse
Affiliation(s)
| | - Attila Keresztes
- Department of Pharmacology, University of Arizona, Tucson, Arizona
| | - Justin LaVigne
- Department of Pharmacology, University of Arizona, Tucson, Arizona
| | - John M Streicher
- Department of Pharmacology, University of Arizona, Tucson, Arizona
| | | |
Collapse
|
30
|
Madden O, Walshe J, Kishore Patnala P, Barron J, Meaney C, Murray P. Phytocannabinoids - An Overview of the Analytical Methodologies for Detection and Quantification of Therapeutically and Recreationally Relevant Cannabis Compounds. Crit Rev Anal Chem 2021; 53:211-231. [PMID: 34328047 DOI: 10.1080/10408347.2021.1949694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The legalization of the cultivation of low Δ9-tetrahydrocannabinol (Δ9-THC) and high cannabidiol (CBD) Cannabis Sativa plants is gaining momentum around the world due to increasing demand for CBD-containing products. In many countries where CBD oils, extracts and CBD-infused foods and beverages are being sold in health shops and supermarkets, appropriate testing of these products is a legal requirement. Normally this involves determining the total Δ9-THC and CBD and their precursor tetrahydrocannabinolic acids (THCA) and cannabidiolic acid (CBDA). As our knowledge of the other relevant cannabinoids expands, it is likely so too will the demand for them as additives in many consumer products ensuring a necessity for quantification methods and protocols for their identification. This paper discusses therapeutically relevant cannabinoids found in Cannabis plant, the applicability and efficiency of existing extraction and analytical techniques as well as the legal requirements for these analyses.
Collapse
Affiliation(s)
- Olena Madden
- Research and Technology Transfer, Shannon ABC, Limerick Institute of Technology, Limerick, Ireland
| | - Jessica Walshe
- Research and Technology Transfer, Shannon ABC, Limerick Institute of Technology, Limerick, Ireland.,Department of Applied Science, Limerick Institute of Technology, Limerick, Ireland
| | - Prem Kishore Patnala
- Research and Technology Transfer, Shannon ABC, Limerick Institute of Technology, Limerick, Ireland
| | | | - Claire Meaney
- Research and Technology Transfer, Shannon ABC, Limerick Institute of Technology, Limerick, Ireland
| | - Patrick Murray
- Research and Technology Transfer, Shannon ABC, Limerick Institute of Technology, Limerick, Ireland
| |
Collapse
|
31
|
Brugnatelli V, Facco E, Zanette G. Lifestyle Interventions Improving Cannabinoid Tone During COVID-19 Lockdowns May Enhance Compliance With Preventive Regulations and Decrease Psychophysical Health Complications. Front Psychiatry 2021; 12:565633. [PMID: 34335317 PMCID: PMC8322115 DOI: 10.3389/fpsyt.2021.565633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 05/18/2021] [Indexed: 01/20/2023] Open
Abstract
Studies investigating the psychosomatic effects of social isolation in animals have shown that one of the physiologic system that gets disrupted by this environment-affective change is the Endocannabinoid System. As the levels of endocannabinoids change in limbic areas and prefrontal cortex during stressful times, so is the subject more prone to fearful and negative thoughts and aggressive behavior. The interplay of social isolation on the hypothalamic-pituitary-adrenal axis and cannabinoid tone triggers a vicious cycle which further impairs the natural body's homeostatic neuroendocrine levels and provokes a series of risk factors for developing health complications. In this paper, we explore the psychosomatic impact of prolonged quarantine in healthy individuals, and propose management and coping strategies that may improve endocannabinoid tone, such as integration of probiotics, cannabidiol, meditation, and physical exercise interventions with the aim of supporting interpersonal, individual, and professional adherence with COVID-19 emergency public measures whilst minimizing their psycho-physical impact.
Collapse
|
32
|
Hashiesh HM, Sharma C, Goyal SN, Sadek B, Jha NK, Kaabi JA, Ojha S. A focused review on CB2 receptor-selective pharmacological properties and therapeutic potential of β-caryophyllene, a dietary cannabinoid. Biomed Pharmacother 2021; 140:111639. [PMID: 34091179 DOI: 10.1016/j.biopha.2021.111639] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
The endocannabinoid system (ECS), a conserved physiological system emerged as a novel pharmacological target for its significant role and potential therapeutic benefits ranging from neurological diseases to cancer. Among both, CB1 and CB2R types, CB2R have received attention for its pharmacological effects as antioxidant, anti-inflammatory, immunomodulatory and antiapoptotic that can be achieved without causing psychotropic adverse effects through CB1R. The ligands activate CB2R are of endogenous, synthetic and plant origin. In recent years, β-caryophyllene (BCP), a natural bicyclic sesquiterpene in cannabis as well as non-cannabis plants, has received attention due to its selective agonist property on CB2R. BCP has been well studied in a variety of pathological conditions mediating CB2R selective agonist property. The focus of the present manuscript is to represent the CB2R selective agonist mediated pharmacological mechanisms and therapeutic potential of BCP. The present narrative review summarizes insights into the CB2R-selective pharmacological properties and therapeutic potential of BCP such as cardioprotective, hepatoprotective, neuroprotective, nephroprotective, gastroprotective, chemopreventive, antioxidant, anti-inflammatory, and immunomodulator. The available evidences suggest that BCP, can be an important candidate of plant origin endowed with CB2R selective properties that may provide a pharmacological rationale for its pharmacotherapeutic application and pharmaceutical development like a drug. Additionally, given the wide availability in edible plants and dietary use, with safety, and no toxicity, BCP can be promoted as a nutraceutical and functional food for general health and well-being. Further, studies are needed to explore pharmacological and pharmaceutical opportunities for therapeutic and preventive applications of use of BCP in human diseases.
Collapse
Affiliation(s)
- Hebaallah Mamdouh Hashiesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Sameer N Goyal
- Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Juma Al Kaabi
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates; Zayed Bin Sultan Al Nahyan Center for Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| |
Collapse
|
33
|
Luca SV, Minceva M, Gertsch J, Skalicka-Woźniak K. LC-HRMS/MS-based phytochemical profiling of Piper spices: Global association of piperamides with endocannabinoid system modulation. Food Res Int 2021; 141:110123. [DOI: 10.1016/j.foodres.2021.110123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/09/2020] [Accepted: 01/06/2021] [Indexed: 12/29/2022]
|
34
|
Hosami F, Manayi A, Salimi V, Khodakhah F, Nourbakhsh M, Nakstad B, Tavakoli-Yaraki M. The pro-apoptosis effects of Echinacea purpurea and Cannabis sativa extracts in human lung cancer cells through caspase-dependent pathway. BMC Complement Med Ther 2021; 21:37. [PMID: 33446187 PMCID: PMC7809807 DOI: 10.1186/s12906-021-03204-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
Background Considering the advantages of using medicinal herbs as supplementary treatments to sensitize conventional anti-cancer drugs, studying functional mechanisms and regulatory effects of Echinacea purpurea (as a non-cannabinoid plant) and Cannabis sativa (as a cannabinoid plant) are timely and required. The potential effects of such herbs on lung cancer cell growth, apoptosis, cell cycle distribution, cellular reactive oxygen species (ROS) level, caspase activity and their cannabinomimetic properties on the CB2 receptor are addressed in the current study. Methods The cytotoxic effect of both herb extracts on the growth of lung cancer cells (A549) was assessed using the MTT assay. The annexin-V-FITC staining and propidium iodide (PI) staining methods were applied for the detection of apoptosis and cell cycle distribution using flow cytometry. The cellular level of ROS was measured using 7′-dichlorofluorescin diacetate (DCFH-DA) as a fluorescent probe in flow cytometry. The caspase 3 activity was assessed using a colorimetric assay Kit. Results Echinacea purpurea (EP) root extract induced a considerable decrease in A549 viable cells, showing a time and dose-dependent response. The cell toxicity of EP was accompanied by induction of early apoptosis and cell accumulation at the sub G1 phase of the cell cycle. The elevation of cellular ROS level and caspase 3 activity indicate ROS-induced caspase-dependent apoptosis following the treatment of A549 cells by EP extract. The observed effects of EP extract on A549 growth and death were abrogated following blockage of CB2 using AM630, a specific antagonist of the CB2 receptor. Increasing concentrations of Cannabis sativa (CS) induced A549 cell death in a time-dependent manner, followed by induction of early apoptosis, cell cycle arrest at sub G1 phase, elevation of ROS level, and activation of caspase 3. The CB2 blockage caused attenuation of CS effects on A549 cell death which revealed consistency with the effects of EP extract on A549 cells. Conclusions The pro-apoptotic effects of EP and CS extracts on A549 cells and their possible regulatory role of CB2 activity might be attributed to metabolites of both herbs. These effects deserve receiving more attention as alternative anti-cancer agents. Graphical abstract ![]()
Collapse
Affiliation(s)
- Fatemeh Hosami
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Manayi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Khodakhah
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra Nourbakhsh
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Britt Nakstad
- Division of Pediatric and Adolescent Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Pediatric and Adolescent Health, University of Botswana, Gaborone, Botswana
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Piscitelli F, Di Marzo V. Cannabinoids: a class of unique natural products with unique pharmacology. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2021. [DOI: 10.1007/s12210-020-00966-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Echeverry C, Reyes-Parada M, Scorza C. Constituents of Cannabis sativa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1297:1-9. [PMID: 33537933 DOI: 10.1007/978-3-030-61663-2_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cannabis sativa L. is a psychoactive plant that contains more than 500 chemical components. Even though the consumption (in the form of marijuana, hashish, or hashish oil) for recreational purposes, is the most popular way of using the plant, the knowledge of its components has also led to classify Cannabis sativa L. is a plant with medicinal or therapeutical use. Several comprehensive reviews have already been published focused on the chemical composition of Cannabis sativa. In this chapter, we will summarize relevant information about those components, which may help to understand its biological actions that will be described in the following chapters.
Collapse
Affiliation(s)
- Carolina Echeverry
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Miguel Reyes-Parada
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, (USACH), Santiago, Chile
| | - Cecilia Scorza
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| |
Collapse
|
37
|
Cavalli J, Dutra RC. A closer look at cannabimimetic terpenes, polyphenols, and flavonoids: a promising road forward. Neural Regen Res 2021; 16:1433-1435. [PMID: 33318442 PMCID: PMC8284286 DOI: 10.4103/1673-5374.301011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Juliana Cavalli
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Center of Araranguá, Federal University of Santa Catarina, Araranguá, SC, Brazil
| | - Rafael Cypriano Dutra
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Center of Araranguá, Federal University of Santa Catarina, Araranguá; Post-Graduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
38
|
Riboulet-Zemouli K. ‘Cannabis’ ontologies I: Conceptual issues with Cannabis and cannabinoids terminology. ACTA ACUST UNITED AC 2020. [DOI: 10.1177/2050324520945797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective Identify a coherent nomenclature for Cannabis sativa L. derived products and their analogues. Design Research undertaken in parallel to the three-year assessment of Cannabis derivatives by the World Health Organisation. The scope is limited to Cannabis products intended for human incorporation (internal and topical consumption). Primarily embedded in pharmacognosy, the study incorporates a wide range of scholarly and grey literature, folk knowledge, archives, pharmacopœias, international law, field pharmacy, clinical and herbal medicine data, under a philosophical scrutiny. Generic and Cannabis-specific nomenclatural frames are compared to determine the extent to which they coincide or conflict. Results All lexica reviewed use weak, ambiguous, or inconsistent terms. There is insufficient scientific basis for terms and concepts related to Cannabis at all levels. No sound classification exists: current models conflict by adopting idiosyncratic, partial, outdated, or utilitarian schemes to arrange the extraordinarily numerous and diverse derivatives of the C. sativa plant. In law and policy, no clear or unequivocal boundary between herbal and non-herbal drugs, nor natural and synthetic cannabinoids was found; current nomenclatures need updates. In science, the botanical Cannabis lexicon overlooks parthenocarpy, and wide disagreement remains as to the taxonomy and systematics of the plant; chemical research should address differences in kinds between synthetic cannabinoids; pharmacopœias include little information related to Cannabis, and disagree on broader classes of herbal medicines, virtually failing to embrace many known Cannabis medicines. Since existing products and compounds fail to be categorised in an evidence-based manner, confusions will likely increase as novel cannabinoid compounds, genetic and biotechnological modifications surge. Conclusions The lack of clarity is comprehensive: for patients, physicians, and regulators. This study proposes an update of terms at several levels. It points at gaps in morphological descriptions in botany and pharmacognosy and a need for a metaphysical address of cannabinoids. Methods of obtention are identified as a common criterion to distinguish products; the way forward suggests a mutually exclusive nomenclatural pattern based on the smallest common denominator of obtention methods. In the context of a swelling number of Cannabis products being consumed (be it via medical prescription, adult-use, ‘hemp’ foodstuff and cosmetics, or other purposes), this study can assist research, contribute to transparent labelling of products, consumer safety and awareness, pharmacovigilance, medical standards of care, and an update of prevention and harm reduction approaches. It can also better inform regulatory policies surrounding C. sativa, its derivatives, and other cannabinoid-containing products.
Collapse
|
39
|
Perin P, Mabou Tagne A, Enrico P, Marino F, Cosentino M, Pizzala R, Boselli C. Cannabinoids, Inner Ear, Hearing, and Tinnitus: A Neuroimmunological Perspective. Front Neurol 2020; 11:505995. [PMID: 33329293 PMCID: PMC7719758 DOI: 10.3389/fneur.2020.505995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
Cannabis has been used for centuries for recreational and therapeutic purposes. Whereas, the recreative uses are based on the psychotropic effect of some of its compounds, its therapeutic effects range over a wide spectrum of actions, most of which target the brain or the immune system. Several studies have found cannabinoid receptors in the auditory system, both at peripheral and central levels, thus raising the interest in cannabinoid signaling in hearing, and especially in tinnitus, which is affected also by anxiety, memory, and attention circuits where cannabinoid effects are well described. Available studies on animal models of tinnitus suggest that cannabinoids are not likely to be helpful in tinnitus treatment and could even be harmful. However, the pharmacology of cannabinoids is very complex, and most studies focused on neural CB1R-based responses. Cannabinoid effects on the immune system (where CB2Rs predominate) are increasingly recognized as essential in understanding nervous system pathological responses, and data on immune cannabinoid targets have emerged in the auditory system as well. In addition, nonclassical cannabinoid targets (such as TRP channels) appear to play an important role in the auditory system as well. This review will focus on neuroimmunological mechanisms for cannabinoid effects and their possible use as protective and therapeutic agents in the ear and auditory system, especially in tinnitus.
Collapse
Affiliation(s)
- Paola Perin
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | | | | | | | | | - Roberto Pizzala
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Cinzia Boselli
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
40
|
Abstract
This article retraces the story of cannabis from the earliest contacts of humans
with the plant to its subsequent global expansion, its medicinal uses, and the discovery
of the endocannabinoid system in the 20th century. Cannabis was attested to around 12
000 years ago near the Altai Mountains in Central Asia, and since then, cannabis seeds
have accompanied the migration of nomadic peoples. Records of the medicinal use of
cannabis appear before the Common Era in China, Egypt, and Greece (Herodotus), and later
in the Roman empire (Pliny the Elder, Dioscorides, Galen). In the 19th century,
orientalists like Silvestre de Sacy, and Western physicians coming into contact with
Muslim and Indian cultures, like O’Shaughnessy and Moreau de Tours, introduced the
medicinal use of cannabis into Europe. The structure of the main psychoactive
phytocannabinoid, tetrahydrocannabinol (THC), was determined in Israel by Mechoulam and
Gaoni in 1964. This discovery opened the gate for many of the subsequent developments in
the field of endocannabinoid system (ECS) research. The advances in the scientific
knowledge of the ECS place the debate on cannabis liberalization in a new
context.
Collapse
Affiliation(s)
- Marc-Antoine Crocq
- Maison des Adolescents, Mulhouse, France; CAMUHA, University of Upper Alsace, Mulhouse, France
| |
Collapse
|
41
|
Alves VL, Gonçalves JL, Aguiar J, Teixeira HM, Câmara JS. The synthetic cannabinoids phenomenon: from structure to toxicological properties. A review. Crit Rev Toxicol 2020; 50:359-382. [PMID: 32530350 DOI: 10.1080/10408444.2020.1762539] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The word "cannabinoid" refers to every chemical substance, regardless of structure or origin, that joins the cannabinoid receptors of the body and brain and that have similar effects to those produced by the Cannabis plant and based on their source of production, cannabinoids can be classified into endocannabinoids, phytocannabinoids and synthetic cannabinoids. Synthetic cannabinoids represent the largest class of drugs detected through the EU Early Warning System with a total of 190 substances notified from 2008 to 2018 and about 280 have been reported worldwide to the United Nations Office on Drugs and Crime. Sprayed on natural herb mixtures with the aim to mimic the euphoria effect of cannabis and sold as "herbal smoking blends" or "herbal incense" under brand names like "Spice" or "K2", synthetic cannabinoids are available from websites for the combination with herbal materials or more recently, for the use in e-cigarettes. Currently labeled as "not for human consumption" to circumvent legislation, their legal status varies by country with many government institutions currently pushing for their control. However, due to the emergence of new substances, it requires a constant update of the list of controlled drugs. Little is known about how these substances work and their toxic effects in humans and the same product could vary not only in the amount and in the type of substance added. In the last years, synthetic cannabinoids have been associated with deaths and acute intoxications in Europe and, despite a range of new measures introduced in this area, continue to represent a challenge to current drug policy models. These synthetic substances are much more potent than natural cannabis, as well as displayed greater efficacy, acting as full agonists at the cannabinoid receptors. It is possible that, along with being highly potent, some may also have long half-lives, potentially leading to a prolonged psychoactive effect. The present work provides a review on existing literature about the development of synthetic cannabinoids as substances of abuse, current patterns of abuse and their legal status, chemical classification, and some pharmacological and toxicological properties.
Collapse
Affiliation(s)
- Vera L Alves
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - João L Gonçalves
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Joselin Aguiar
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Helena M Teixeira
- Faculdade de Medicina da Universidade de Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal.,Instituto Nacional de Medicina Legal e Ciências Forenses, Coimbra, Portugal
| | - José S Câmara
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal.,Faculdade de Ciências Exactas e da Engenharia, Universidade da Madeira, Funchal, Portugal
| |
Collapse
|
42
|
Gonçalves ECD, Assis PM, Junqueira LA, Cola M, Santos ARS, Raposo NRB, Dutra RC. Citral Inhibits the Inflammatory Response and Hyperalgesia in Mice: The Role of TLR4, TLR2/Dectin-1, and CB2 Cannabinoid Receptor/ATP-Sensitive K + Channel Pathways. JOURNAL OF NATURAL PRODUCTS 2020; 83:1190-1200. [PMID: 32150408 DOI: 10.1021/acs.jnatprod.9b01134] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Citral ((2E)-3,7-dimethylocta-2,6-dienal), a bioactive component of lemongrass, inhibits oxidant activity, nuclear factor kappa B (NF-κB) activation, and cyclooxygenase-2 (COX-2) expression, even as it activates peroxisome proliferator-activated receptor (PPAR)-α and γ. Additionally, citral produces long-lasting inhibition of transient receptor potential (TRP) channels that are found in sensory neurons, such as TRPV1-3 and TRPM8, while it transiently blocks TRPV4 and TRPA1. Here, the effect of citral in experimental models of acute inflammation and hyperalgesia in mice, and the underlying citral mechanisms of action were investigated. ADMET properties and molecular targets were predicted using the online server. The immunomodulatory and antihyperalgesic effects of citral were evaluated, using mechanical and thermal stimuli, at different time-points on carrageenan, lipopolysaccharides (LPS), and zymosan-induced paw edema and hyperalgesia in mice. ADMET analysis ensures that the citral has not violated Lipinski's rule of five, indicating its safety consumption, and molecular target prediction software identified that citral is a potential fatty acid amide hydrolase (FAAH) inhibitor. Oral treatment with citral (50-300 mg/kg) significantly inhibited carrageenan-induced paw edema and thermal allodynia. Furthermore, citral modulated the inflammation induced by LPS and zymosan, toll-like receptor (TLR) 4, and TLR2/dectin-1 ligands, respectively. Moreover, pretreatment with cannabinoid receptor type 2 (CB2R) antagonists and ATP-sensitive K+ channel inhibitor, but not with a cannabinoid receptor type 1 (CB1R) antagonist, significantly reversed the anti-inflammatory effect of citral. Intriguingly, citral did not cause any relevant action in the central nervous system, and it was safe when assessed in a 14 day toxicity assay in male mice. Therefore, citral constitutes a promising, innovative, and safe molecule for the management of immunoinflammatory conditions and pain states.
Collapse
Affiliation(s)
- Elaine C D Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072, Araranguá, SC, Brazil
- Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Pollyana M Assis
- Center of Research and Innovation in Health Sciences (NUPICS), School of Pharmacy, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG, Brazil
| | - Laura A Junqueira
- Center of Research and Innovation in Health Sciences (NUPICS), School of Pharmacy, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG, Brazil
| | - Maíra Cola
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072, Araranguá, SC, Brazil
| | - Adair R S Santos
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Nadia R B Raposo
- Center of Research and Innovation in Health Sciences (NUPICS), School of Pharmacy, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG, Brazil
| | - Rafael C Dutra
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072, Araranguá, SC, Brazil
- Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| |
Collapse
|
43
|
Abstract
Introduction: Cannabis use among inflammatory bowel disease (IBD) patients is common. There are many studies of various laboratory models demonstrating the anti-inflammatory effect of cannabis, but their translation to human disease is still lacking.Areas covered: The cannabis plant contains many cannabinoids, that activate the endocannabinoid system. The two most abundant phytocannabinoids are the psychoactive Tetrahydrocannabinol (THC), and the (mostly) anti-inflammatory cannabidiol (CBD). Approximately 15% of IBD patients use cannabis to ameliorate disease symptoms. Unfortunately, so far there are only three small placebo controlled study regarding the use of cannabis in active Crohns disease, combining altogether 93 subjects. Two of the studies showed significant clinical improvement but no improvement in markers of inflammation.Expert opinion: Cannabis seems to have a therapeutic potential in IBD. This potential must not be neglected; however, cannabis research is still at a very early stage. The complexity of the plant and the diversity of different cannabis chemovars create an inherent difficulty in cannabis research. We need more studies investigating the effect of the various cannabis compounds. These effects can then be investigated in randomized placebo controlled clinical trials to fully explore the potential of cannabis treatment in IBD.
Collapse
Affiliation(s)
- Timna Naftali
- Institute of Gastroenterology and Hepatology, Meir Medical Center, Kfar Saba, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
44
|
Gonçalves ECD, Baldasso GM, Bicca MA, Paes RS, Capasso R, Dutra RC. Terpenoids, Cannabimimetic Ligands, beyond the Cannabis Plant. Molecules 2020; 25:E1567. [PMID: 32235333 PMCID: PMC7181184 DOI: 10.3390/molecules25071567] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Medicinal use of Cannabis sativa L. has an extensive history and it was essential in the discovery of phytocannabinoids, including the Cannabis major psychoactive compound-Δ9-tetrahydrocannabinol (Δ9-THC)-as well as the G-protein-coupled cannabinoid receptors (CBR), named cannabinoid receptor type-1 (CB1R) and cannabinoid receptor type-2 (CB2R), both part of the now known endocannabinoid system (ECS). Cannabinoids is a vast term that defines several compounds that have been characterized in three categories: (i) endogenous, (ii) synthetic, and (iii) phytocannabinoids, and are able to modulate the CBR and ECS. Particularly, phytocannabinoids are natural terpenoids or phenolic compounds derived from Cannabis sativa. However, these terpenoids and phenolic compounds can also be derived from other plants (non-cannabinoids) and still induce cannabinoid-like properties. Cannabimimetic ligands, beyond the Cannabis plant, can act as CBR agonists or antagonists, or ECS enzyme inhibitors, besides being able of playing a role in immune-mediated inflammatory and infectious diseases, neuroinflammatory, neurological, and neurodegenerative diseases, as well as in cancer, and autoimmunity by itself. In this review, we summarize and critically highlight past, present, and future progress on the understanding of the role of cannabinoid-like molecules, mainly terpenes, as prospective therapeutics for different pathological conditions.
Collapse
Affiliation(s)
- Elaine C. D. Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
- Graduate Program of Neuroscience, Center of Biological Sciences, Campus Florianópolis, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Gabriela M. Baldasso
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
| | - Maíra A. Bicca
- Neurosurgery Department, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA;
| | - Rodrigo S. Paes
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80,055 Portici, Italy
| | - Rafael C. Dutra
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
- Graduate Program of Neuroscience, Center of Biological Sciences, Campus Florianópolis, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| |
Collapse
|
45
|
Zhou H, Peng X, Hou T, Zhao N, Qiu M, Zhang X, Liang X. Identification of novel phytocannabinoids from Ganoderma by label-free dynamic mass redistribution assay. JOURNAL OF ETHNOPHARMACOLOGY 2020; 246:112218. [PMID: 31494202 DOI: 10.1016/j.jep.2019.112218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/15/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Located throughout the body, cannabinoid receptors (CB1 and CB2) are therapeutic targets for obesity/metabolic diseases, neurological/mental disorders, and immune modulation. Phytocannabinoids are greatly important for the development of new medicines with high efficacy and/or minor side effects. Plants and fungi are used in traditional medicine for beneficial effects to mental and immune system. The current research studied five fungi from the genus Ganoderma and five plants: Ganoderma hainanense J.D. Zhao, L.W. Hsu & X.Q. Zhang; Ganoderma capense (Lloyd) Teng, Zhong Guo De Zhen Jun; Ganoderma cochlear (Blume & T. Nees) Bres., Hedwigia; Ganoderma resinaceum Boud.; Ganoderma applanatum (Pers.) Pat.; Carthamus tinctorius L. (Compositae); Cynanchum otophyllum C. K. Schneid. (Asclepiadaceae); Coffea arabica L. (Rubiaceae); Prinsepia utilis Royle (Rosaceae); Lepidium meyenii Walp. (Brassicaceae). They show immunoregulation, promotion of longevity and maintenance of vitality, stimulant effects on the central nervous system, hormone balance and other beneficial effects. However, it remains unclear whether cannabinoid receptors are involved in these effects. AIM OF THE STUDY This work aimed to identify components working on CB1 and CB2 from the above plants and fungi, as novel phytocannabinoids, and to investigate mechanisms of how these compounds affected the cells. By analyzing the structure-activity relationship, we could identify the core structure for future development. MATERIALS AND METHODS Eighty-two natural compounds were screened on stably transfected Chinese hamster ovary (CHO) cell lines, CHO-CB1 and CHO-CB2, with application of a label-free dynamic mass redistribution (DMR) technology that measured cellular responses to compounds. CP55,940 and WIN55,212-2 were agonist probe molecules, and SR141716A and SR144528 were antagonist probes. Pertussis toxin, cholera toxin, LY294002 and U73122 were signaling pathway inhibitors. The DMR data were acquired by Epic Imager software (Corning, NY), processed by Imager Beta 3.7 (Corning), and analyzed by GraphPad Prism 6 (GraphPad Software, San Diego, CA). RESULTS Transfected CHO-CB1 and CHO-CB2 cell lines were established and characterized. Seven compounds induced responses/activities in the cells. Among the seven compounds, four were purified from two Ganoderma species with potencies between 20 and 35 μM. Three antagonists: Kfb68 antagonized both receptors with a better desensitizing effect on CB2 to WIN55,212-2 over CP55,940. Kga1 and Kfb28 were antagonists selective to CB1 and CB2, respectively. Kfb77 was a special agonist and it stimulated CB1 in a mechanism different from that of CP55,940. Another three active compounds, derived from the Lepidium meyenii Walp. (Brassicaceae), were also identified but their effects were mediated through mechanisms much related to the signaling transduction pathways, especially through the stimulatory Gs protein. CONCLUSIONS We identified four natural cannabinoids that exhibited structural and functional diversities. Our work confirms the presence of active ingredients in the Ganoderma species to CB1 and CB2, and this finding establishes connections between the fungi and the cannabinoid receptors, which will serve as a starting point to connect their beneficial effects to the endocannabinoid system. This research will also enrich the inventory of cannabinoids and phytocannabinoids from fungi. Yet due to some limitations, further structure-activity relationship studies and mechanism investigation are warranted in future.
Collapse
Affiliation(s)
- Han Zhou
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Xingrong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Tao Hou
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Nan Zhao
- Pharmacology Department, University College London, London, WC1E 6BT, UK.
| | - Minghua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Xiuli Zhang
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| | - Xinmiao Liang
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
46
|
Delgado-Povedano MM, Sánchez-Carnerero Callado C, Priego-Capote F, Ferreiro-Vera C. Untargeted characterization of extracts from Cannabis sativa L. cultivars by gas and liquid chromatography coupled to mass spectrometry in high resolution mode. Talanta 2019; 208:120384. [PMID: 31816756 DOI: 10.1016/j.talanta.2019.120384] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/15/2019] [Accepted: 09/19/2019] [Indexed: 01/28/2023]
Abstract
Elucidation of Cannabis composition is required to evaluate the potential of this plant for pharmacological uses, but also for implementation in breeding programs with agronomical purposes. The aim of the present study was to develop a method for untargeted analysis of polar and non-polar Cannabis extracts. For this purpose, extracts from 17 cultivars of Cannabis sativa L. were analyzed by gas chromatography-time-of-flight/mass spectrometry (GC-TOF/MS) and liquid chromatography quadrupole time-of-flight tandem mass spectrometry (LC-QTOF MS/MS) in high resolution mode. One hundred sixty-nine compounds were identified in the extracts by searching MS and MS/MS information. Among identified families, there were mainly cannabinoids, terpenoids, lipids and flavonoids, but also some interesting compounds such as amino and organic acids, among others. Relative contents of terpenoids and cannabinoids in the same cultivars grown in greenhouse and field were compared. Compositional differences in the profile of terpenoids and cannabinoids between both types of grown conditions were found.
Collapse
Affiliation(s)
- M M Delgado-Povedano
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, Córdoba, Spain; Nanochemistry University Institute (IUNAN), Campus of Rabanales, University of Córdoba, Córdoba, Spain; CeiA3 Agroalimentary Excellence Campus, University of Córdoba, Córdoba, Spain; Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Spain
| | | | - F Priego-Capote
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, Córdoba, Spain; Nanochemistry University Institute (IUNAN), Campus of Rabanales, University of Córdoba, Córdoba, Spain; CeiA3 Agroalimentary Excellence Campus, University of Córdoba, Córdoba, Spain; Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Spain
| | - C Ferreiro-Vera
- Phytoplant Research S.L., The Science and Technology Park of Córdoba, Rabanales 21, Córdoba, Spain.
| |
Collapse
|
47
|
VanDolah HJ, Bauer BA, Mauck KF. Clinicians' Guide to Cannabidiol and Hemp Oils. Mayo Clin Proc 2019; 94:1840-1851. [PMID: 31447137 DOI: 10.1016/j.mayocp.2019.01.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/03/2018] [Accepted: 01/04/2019] [Indexed: 01/05/2023]
Abstract
Cannabidiol (CBD) oils are low tetrahydrocannabinol products derived from Cannabis sativa that have become very popular over the past few years. Patients report relief for a variety of conditions, particularly pain, without the intoxicating adverse effects of medical marijuana. In June 2018, the first CBD-based drug, Epidiolex, was approved by the US Food and Drug Administration for treatment of rare, severe epilepsy, further putting the spotlight on CBD and hemp oils. There is a growing body of preclinical and clinical evidence to support use of CBD oils for many conditions, suggesting its potential role as another option for treating challenging chronic pain or opioid addiction. Care must be taken when directing patients toward CBD products because there is little regulation, and studies have found inaccurate labeling of CBD and tetrahydrocannabinol quantities. This article provides an overview of the scientific work on cannabinoids, CBD, and hemp oil and the distinction between marijuana, hemp, and the different components of CBD and hemp oil products. We summarize the current legal status of CBD and hemp oils in the United States and provide a guide to identifying higher-quality products so that clinicians can advise their patients on the safest and most evidence-based formulations. This review is based on a PubMed search using the terms CBD, cannabidiol, hemp oil, and medical marijuana. Articles were screened for relevance, and those with the most up-to-date information were selected for inclusion.
Collapse
Affiliation(s)
| | - Brent A Bauer
- Section of Integrative Medicine and Health, Mayo Clinic, Rochester, MN
| | - Karen F Mauck
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
48
|
Complex Patterns of Cannabinoid Alkyl Side-Chain Inheritance in Cannabis. Sci Rep 2019; 9:11421. [PMID: 31388099 PMCID: PMC6684623 DOI: 10.1038/s41598-019-47812-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/24/2019] [Indexed: 12/20/2022] Open
Abstract
The cannabinoid alkyl side-chain represents an important pharmacophore, where genetic targeting of alkyl homologs has the potential to provide enhanced forms of Cannabis for biopharmaceutical manufacture. Delta(9)-tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA) synthase genes govern dicyclic (CBDA) and tricyclic (THCA) cannabinoid composition. However, the inheritance of alkyl side-chain length has not been resolved, and few studies have investigated the contributions and interactions between cannabinoid synthesis pathway loci. To examine the inheritance of chemical phenotype (chemotype), THCAS and CBDAS genotypes were scored and alkyl cannabinoid segregation analysed in 210 F2 progeny derived from a cross between two Cannabis chemotypes divergent for alkyl and cyclic cannabinoids. Inheritance patterns of F2 progeny were non-Gaussian and deviated from Mendelian expectations. However, discrete alkyl cannabinoid segregation patterns consistent with digenic as well as epistatic modes of inheritance were observed among F2 THCAS and CBDAS genotypes. These results suggest linkage between cannabinoid pathway loci and highlight the need for further detailed characterisation of cannabinoid inheritance to facilitate metabolic engineering of chemically elite germplasm.
Collapse
|
49
|
Zager JJ, Lange I, Srividya N, Smith A, Lange BM. Gene Networks Underlying Cannabinoid and Terpenoid Accumulation in Cannabis. PLANT PHYSIOLOGY 2019; 180:1877-1897. [PMID: 31138625 PMCID: PMC6670104 DOI: 10.1104/pp.18.01506] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/15/2019] [Indexed: 05/21/2023]
Abstract
Glandular trichomes are specialized anatomical structures that accumulate secretions with important biological roles in plant-environment interactions. These secretions also have commercial uses in the flavor, fragrance, and pharmaceutical industries. The capitate-stalked glandular trichomes of Cannabis sativa (cannabis), situated on the surfaces of the bracts of the female flowers, are the primary site for the biosynthesis and storage of resins rich in cannabinoids and terpenoids. In this study, we profiled nine commercial cannabis strains with purportedly different attributes, such as taste, color, smell, and genetic origin. Glandular trichomes were isolated from each of these strains, and cell type-specific transcriptome data sets were acquired. Cannabinoids and terpenoids were quantified in flower buds. Statistical analyses indicated that these data sets enable the high-resolution differentiation of strains by providing complementary information. Integrative analyses revealed a coexpression network of genes involved in the biosynthesis of both cannabinoids and terpenoids from imported precursors. Terpene synthase genes involved in the biosynthesis of the major monoterpenes and sesquiterpenes routinely assayed by cannabis testing laboratories were identified and functionally evaluated. In addition to cloning variants of previously characterized genes, specifically CsTPS14CT [(-)-limonene synthase] and CsTPS15CT (β-myrcene synthase), we functionally evaluated genes that encode enzymes with activities not previously described in cannabis, namely CsTPS18VF and CsTPS19BL (nerolidol/linalool synthases), CsTPS16CC (germacrene B synthase), and CsTPS20CT (hedycaryol synthase). This study lays the groundwork for developing a better understanding of the complex chemistry and biochemistry underlying resin accumulation across commercial cannabis strains.
Collapse
Affiliation(s)
- Jordan J Zager
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, Washington 99164-6340
| | - Iris Lange
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, Washington 99164-6340
| | - Narayanan Srividya
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, Washington 99164-6340
| | | | - B Markus Lange
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, Washington 99164-6340
| |
Collapse
|
50
|
Chen PX, Rogers MA. Opportunities and challenges in developing orally administered cannabis edibles. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|