1
|
Wang AN, Carlos J, Singh KK, Fraser GM, McGuire JJ. Endothelium dysfunction in hind limb arteries of male Zucker Diabetic-Sprague Dawley rats. Biochem Pharmacol 2022; 206:115319. [PMID: 36279920 DOI: 10.1016/j.bcp.2022.115319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
Endothelium dysfunction produces peripheral vascular disease comorbidities in type 2 diabetes, including hypertension, and critical limb ischemia. In this study we aimed to test endothelial dysfunction, the vasodilator effects of a proteinase-activated receptor 2 (PAR2) agonist (2fLIGRLO), and thromboxane A2 synthase inhibitor (ozagrel) on PAR2 vasodilation in hind limb arteries ex vivo, using Zucker Diabetic-Sprague Dawley (ZDSD) rats, a model of type 2 diabetes. Male Sprague Dawley rats (SD) and ZDSD were fed a high-fat content 'Western diet' from 16 to 20 weeks of age (wks) then fed a standard laboratory diet. We identified diabetic ZDSD rats by two consecutive blood glucose measurements > 12.5 mM, based on weekly monitoring. We used acetylcholine, 2fLIGRLO, and nitroprusside with wire-myograph methods to compare relaxations of femoral, and saphenous arteries from diabetic ZDSD (21-23 wks) to age-matched normoglycemic SD. All arteries showed evidence of endothelium dysfunction using acetylcholine (reduced maximum relaxations, reduced sensitivity), and higher sensitivities to 2fLIGRLO, and nitroprusside in ZDSD vs SD. Ozagrel treatment of ZDSD distal segments, and end-branches of saphenous arteries decreased their sensitivities to 2fLIGRLO. We tested aortas for altered expression of endothelium-specific gene targets using PCR array and qPCR. PAR2, and placental growth factor gene transcripts were 1.5, and 4-times higher in ZDSD than SD aortas. Hind limb arteries of ZDSD exhibit endothelium dysfunction having less GPCR agonist induced vasodilation by endothelial NO-release. Different expression of several endothelial genes in ZDSD vs SD aortas, including PAR2, suggests altered inflammatory, and angiogenesis signaling pathways in the endothelium of ZDSD.
Collapse
Affiliation(s)
- Andrea N Wang
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Joselia Carlos
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Krishna K Singh
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Graham M Fraser
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - John J McGuire
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.
| |
Collapse
|
2
|
Wang AN, Fraser GM, McGuire JJ. Characterization of Endothelium-Dependent Relaxation in the Saphenous Artery and Its Caudal Branches in Young and Old Adult Sprague Dawley Rats. Biomolecules 2022; 12:biom12070889. [PMID: 35883445 PMCID: PMC9312764 DOI: 10.3390/biom12070889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 12/11/2022] Open
Abstract
Ageing is associated with reduced endothelium-derived nitric oxide (NO) production in the femoral artery of Sprague Dawley (SD) rats. In the current study, we examined endothelium-dependent relaxation (EDR) in the saphenous artery and its caudal branches. We used acetylcholine and the Proteinase-Activated receptor-2 (PAR2)-specific agonist (2fLIGRLO) with nitroarginine methylester (L-NAME) to assess EDR in two groups of male SD rats (age in weeks: young, 10–12; old, 27–29). Acetylcholine and 2fLIGRLO were potent NO-dependent relaxant agents in all arteries. For all arteries, EDR by acetylcholine decreased significantly in old compared to young SD rats. Interestingly, PAR2-induced EDR of proximal saphenous artery segments and caudal branches decreased significantly in old compared to young, but did not differ for the in-between middle and distal ends of the saphenous artery. L-NAME treatment increased subsequent contractions of proximal and middle segments of saphenous arteries by phenylephrine and U46619 in young, but not in old, SD rats. We conclude the SD saphenous artery and caudal branches exhibit regional characteristics that differ in response to specific EDR agonists, endothelial NO synthase inhibitor, and changes to endothelium function with increased age, which are, in part, attributed to decreased sensitivity of vascular smooth muscle to the gaseous transmitter NO.
Collapse
Affiliation(s)
- Andrea N. Wang
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada;
| | - Graham M. Fraser
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL A1B 3V6, Canada;
| | - John J. McGuire
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada;
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
- Correspondence:
| |
Collapse
|
3
|
Valencia I, Vallejo S, Dongil P, Romero A, San Hipólito-Luengo Á, Shamoon L, Posada M, García-Olmo D, Carraro R, Erusalimsky JD, Romacho T, Peiró C, Sánchez-Ferrer CF. DPP4 Promotes Human Endothelial Cell Senescence and Dysfunction via the PAR2-COX-2-TP Axis and NLRP3 Inflammasome Activation. Hypertension 2022; 79:1361-1373. [PMID: 35477273 DOI: 10.1161/hypertensionaha.121.18477] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Abnormal accumulation of senescent cells in the vessel wall leads to a compromised vascular function contributing to vascular aging. Soluble DPP4 (dipeptidyl peptidase 4; sDPP4) secretion from visceral adipose tissue is enhanced in obesity, now considered a progeric condition. sDPP4 triggers vascular deleterious effects, albeit its contribution to vascular aging is unknown. We aimed to explore sDPP4 involvement in vascular aging, unraveling the molecular pathway by which sDPP4 acts on the endothelium. METHODS Human endothelial cell senescence was assessed by senescence-associated β-galactosidase assay, visualization of DNA damage, and expression of prosenescent markers, whereas vascular function was evaluated by myography over human dissected microvessels. In visceral adipose tissue biopsies from a cohort of obese patients, we explored several age-related parameters in vitro and ex vivo. RESULTS By a common mechanism, sDPP4 triggers endothelial cell senescence and endothelial dysfunction in isolated human resistance arteries. sDPP4 activates the metabotropic receptor PAR2 (protease-activated receptor 2), COX-2 (cyclooxygenase 2) activity, and the production of TXA2 (thromboxane A2) acting over TP (thromboxane receptor) receptors (PAR2-COX-2-TP axis), leading to NLRP3 (nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing 3) inflammasome activation. Obese patients exhibited impaired microarterial functionality in comparison to control nonobese counterparts. Importantly, endothelial dysfunction in obese patients positively correlated with greater expression of DPP4, prosenescent, and proinflammatory markers in visceral adipose tissue nearby the resistance arteries. Moreover, when DPP4 activity or sDPP4-induced prosenescent mechanism was blocked, endothelial dysfunction was restored back to levels of healthy subjects. CONCLUSIONS These results reveal sDPP4 as a relevant mediator in early vascular aging and highlight its capacity activating main proinflammatory mediators in the endothelium that might be pharmacologically tackled.
Collapse
Affiliation(s)
- Inés Valencia
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, Spain. (I.V., S.V., P.D., A.R., Á.S.H.-L., L.S., T.R., C.P., C.F.S.-F.).,PhD Programme in Pharmacology and Physiology, Doctoral School, Universidad Autónoma de Madrid, Spain. (I.V., L.S.).,Instituto de Investigación Sanitaria del Hospital Universitario La Paz, Madrid, Spain (I.V., S.V., P.D., A.R., Á.S.H.-L., L.S., T.R., C.P., C.F.S.-F.)
| | - Susana Vallejo
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, Spain. (I.V., S.V., P.D., A.R., Á.S.H.-L., L.S., T.R., C.P., C.F.S.-F.).,Instituto de Investigación Sanitaria del Hospital Universitario La Paz, Madrid, Spain (I.V., S.V., P.D., A.R., Á.S.H.-L., L.S., T.R., C.P., C.F.S.-F.)
| | - Pilar Dongil
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, Spain. (I.V., S.V., P.D., A.R., Á.S.H.-L., L.S., T.R., C.P., C.F.S.-F.).,Instituto de Investigación Sanitaria del Hospital Universitario La Paz, Madrid, Spain (I.V., S.V., P.D., A.R., Á.S.H.-L., L.S., T.R., C.P., C.F.S.-F.)
| | - Alejandra Romero
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, Spain. (I.V., S.V., P.D., A.R., Á.S.H.-L., L.S., T.R., C.P., C.F.S.-F.).,Instituto de Investigación Sanitaria del Hospital Universitario La Paz, Madrid, Spain (I.V., S.V., P.D., A.R., Á.S.H.-L., L.S., T.R., C.P., C.F.S.-F.)
| | - Álvaro San Hipólito-Luengo
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, Spain. (I.V., S.V., P.D., A.R., Á.S.H.-L., L.S., T.R., C.P., C.F.S.-F.).,Instituto de Investigación Sanitaria del Hospital Universitario La Paz, Madrid, Spain (I.V., S.V., P.D., A.R., Á.S.H.-L., L.S., T.R., C.P., C.F.S.-F.)
| | - Licia Shamoon
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, Spain. (I.V., S.V., P.D., A.R., Á.S.H.-L., L.S., T.R., C.P., C.F.S.-F.).,PhD Programme in Pharmacology and Physiology, Doctoral School, Universidad Autónoma de Madrid, Spain. (I.V., L.S.).,Instituto de Investigación Sanitaria del Hospital Universitario La Paz, Madrid, Spain (I.V., S.V., P.D., A.R., Á.S.H.-L., L.S., T.R., C.P., C.F.S.-F.)
| | - María Posada
- Service of Surgery and Instituto de Investigación Sanitaria del Hospital Fundación Jiménez Díaz, Madrid, Spain (M.P., D.G.-O.)
| | - Damián García-Olmo
- Service of Surgery and Instituto de Investigación Sanitaria del Hospital Fundación Jiménez Díaz, Madrid, Spain (M.P., D.G.-O.)
| | - Raffaelle Carraro
- Department of Medicine, School of Medicine, Universidad Autónoma de Madrid, Spain. (R.C.).,Service of Endocrinology and Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, Madrid, Spain (R.C.)
| | - Jorge D Erusalimsky
- School of Sport and Health Sciences, Cardiff Metropolitan University, United Kingdom (J.D.E.)
| | - Tania Romacho
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, Spain. (I.V., S.V., P.D., A.R., Á.S.H.-L., L.S., T.R., C.P., C.F.S.-F.).,Instituto de Investigación Sanitaria del Hospital Universitario La Paz, Madrid, Spain (I.V., S.V., P.D., A.R., Á.S.H.-L., L.S., T.R., C.P., C.F.S.-F.)
| | - Concepción Peiró
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, Spain. (I.V., S.V., P.D., A.R., Á.S.H.-L., L.S., T.R., C.P., C.F.S.-F.).,Instituto de Investigación Sanitaria del Hospital Universitario La Paz, Madrid, Spain (I.V., S.V., P.D., A.R., Á.S.H.-L., L.S., T.R., C.P., C.F.S.-F.)
| | - Carlos F Sánchez-Ferrer
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, Spain. (I.V., S.V., P.D., A.R., Á.S.H.-L., L.S., T.R., C.P., C.F.S.-F.).,Instituto de Investigación Sanitaria del Hospital Universitario La Paz, Madrid, Spain (I.V., S.V., P.D., A.R., Á.S.H.-L., L.S., T.R., C.P., C.F.S.-F.)
| |
Collapse
|
4
|
Rivaroxaban attenuates cardiac hypertrophy by inhibiting protease-activated receptor-2 signaling in renin-overexpressing hypertensive mice. Hypertens Res 2021; 44:1261-1273. [PMID: 34285375 DOI: 10.1038/s41440-021-00700-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 03/07/2021] [Accepted: 03/28/2021] [Indexed: 02/07/2023]
Abstract
Rivaroxaban (Riv), a direct factor Xa (FXa) inhibitor, exerts anti-inflammatory effects in addition to anticoagulation. However, its role in cardiovascular remodeling is largely unknown. We tested the hypothesis that Riv attenuates the progression of cardiac hypertrophy and fibrosis induced by continuous activation of the renin-angiotensin system (RAS) in renin-overexpressing hypertensive transgenic (Ren-Tg) mice. We treated 12-week-old male Ren-Tg and wild-type (WT) mice with a diet containing Riv (12 mg/kg/day) or a regular diet for 4 weeks. After this, FXa in plasma significantly increased in Ren-Tg mice compared with WT mice, and Riv inhibited this increase. Left ventricular wall thickness (LVWT) and the area of cardiac fibrosis evaluated by Masson's trichrome staining were greater in Ren-Tg mice than in WT mice, and Riv decreased them. Cardiac expression levels of the protease-activated receptor (PAR)-2, tumor necrosis factor-α, transforming growth factor (TGF)-β1, and collagen type 3 α1 (COL3A1) genes were all greater in Ren-Tg mice than in WT mice, and Riv attenuated these increases. To investigate the possible involvement of PAR-2, we treated Ren-Tg mice with a continuous subcutaneous infusion of 10 μg/kg/day of the PAR-2 antagonist FSLLRY for 4 weeks. FSLLRY significantly decreased LVWT and cardiac expression of PAR-2, TGF-β1, and COL3A1. In isolated cardiac fibroblasts (CFs), Riv or FSLLRY pretreatment inhibited the FXa-induced increase in the phosphorylation of extracellular signal-regulated kinases. In addition, Riv or FSLLRY inhibited FXa-stimulated wound closure in CFs. Riv exerts a protective effect against cardiac hypertrophy and fibrosis development induced by continuous activation of the RAS, partly by inhibiting PAR-2.
Collapse
|
5
|
Maruyama-Fumoto K, McGuire JJ, Fairlie DP, Shinozuka K, Kagota S. Activation of protease-activated receptor 2 is associated with blood pressure regulation and proteinuria reduction in metabolic syndrome. Clin Exp Pharmacol Physiol 2021; 48:211-220. [PMID: 33124085 DOI: 10.1111/1440-1681.13431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/27/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022]
Abstract
Metabolic syndrome (MetS) increases the risk of kidney disease. In SHRSP.Z-Leprfa /IzmDmcr (SHRSP.ZF) rats with MetS, protease-activated receptor 2 (PAR2)-mediated vasorelaxation is preserved in the aorta at 20 weeks of age (weeks) via enhancement of nitric oxide production but impaired at 30 weeks by oxidative stress. However, impairment of PAR2-mediated vasorelaxation of renal arteries and its possible implications for kidney disease are unclear. We used organ baths to assess PAR2-mediated vasorelaxation of isolated renal arteries, colorimetric methods to measure urinary protein levels as an index of renal function, and western blot to determine expression of PAR2 and nephrin proteins in the kidneys of SHRSP.ZF rats at 10, 20, and 30 weeks. We assessed renal arteries and kidney function for effects of orally administered GB88, a pathway-dependent PAR2 antagonist, from 10 to 18 weeks, and azilsartan, an angiotensin II type 1 receptor blocker, from 13 to 23 weeks. PAR2-mediated vasorelaxation was slightly lower at 20 weeks and attenuated significantly at 30 weeks compared with those at 10 weeks. Urinary protein levels were increased at 20 and 30 weeks. Decreased protein expression of PAR2 and nephrin in the kidney were observed at 30 weeks. Administration of GB88 increased blood pressure (BP) and proteinuria. Azilsartan reduced the high BP and the impaired PAR2-mediated vasorelaxation, but did not restore the increase in urinary protein levels and decreased PAR2 and nephrin protein expression in the kidney. PAR2 activation in the kidney may be associated with maintenance of BP and urinary protein excretion in MetS.
Collapse
Affiliation(s)
- Kana Maruyama-Fumoto
- Department of Pharmacology II, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - John J McGuire
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - David P Fairlie
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Qld, Australia
| | - Kazumasa Shinozuka
- Department of Pharmacology II, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Satomi Kagota
- Department of Pharmacology II, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| |
Collapse
|
6
|
Li JC, Velagic A, Qin CX, Li M, Leo CH, Kemp-Harper BK, Ritchie RH, Woodman OL. Diabetes Attenuates the Contribution of Endogenous Nitric Oxide but Not Nitroxyl to Endothelium Dependent Relaxation of Rat Carotid Arteries. Front Pharmacol 2021; 11:585740. [PMID: 33716721 PMCID: PMC7944142 DOI: 10.3389/fphar.2020.585740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/16/2020] [Indexed: 12/27/2022] Open
Abstract
Endothelial dysfunction is a major risk factor for several of the vascular complications of diabetes, including ischemic stroke. Nitroxyl (HNO), the one electron reduced and protonated form of nitric oxide (NO•), is resistant to scavenging by superoxide, but the role of HNO in diabetes mellitus associated endothelial dysfunction in the carotid artery remains unknown. Aim: To assess how diabetes affects the role of endogenous NO• and HNO in endothelium-dependent relaxation in rat isolated carotid arteries. Methods: Male Sprague Dawley rats were fed a high-fat-diet (HFD) for 2 weeks prior to administration of low dose streptozotocin (STZ; 35 mg/kg i. p./day) for 2 days. The HFD was continued for a further 12 weeks. Sham rats were fed standard chow and administered with citrate vehicle. After 14 weeks total, rats were anesthetized and carotid arteries collected to assess responses to the endothelium-dependent vasodilator, acetylcholine (ACh) by myography. The combination of calcium-activated potassium channel blockers, TRAM-34 (1 μmol/L) and apamin (1 μmol/L) was used to assess the contribution of endothelium-dependent hyperpolarization to relaxation. The corresponding contribution of NOS-derived nitrogen oxide species to relaxation was assessed using the combination of the NO• synthase inhibitor, L-NAME (200 μmol/L) and the soluble guanylate cyclase inhibitor ODQ (10 μmol/L). Lastly, L-cysteine (3 mmol/L), a selective HNO scavenger, and hydroxocobalamin (HXC; 100 μmol/L), a NO• scavenger, were used to distinguish between NO• and HNO-mediated relaxation. Results: At study end, diabetic rats exhibited significantly retarded body weight gain and elevated blood glucose levels compared to sham rats. The sensitivity and the maximal relaxation response to ACh was significantly impaired in carotid arteries from diabetic rats, indicating endothelial dysfunction. The vasorelaxation evoked by ACh was abolished by L-NAME plus ODQ, but not affected by the apamin plus TRAM-34 combination, indicating that NOS-derived nitrogen oxide species are the predominant endothelium-derived vasodilators in sham and diabetic rat carotid arteries. The maximum relaxation to ACh was significantly decreased by L-cysteine in both sham and diabetic rats, whereas HXC attenuated ACh-induced relaxation only in sham rats, suggesting that diabetes impaired the contribution of NO•, whereas HNO-mediated vasorelaxation remained intact. Conclusion: Both NO• and HNO contribute to endothelium-dependent relaxation in carotid arteries. In diabetes, NO•-mediated relaxation is impaired, whereas HNO-mediated relaxation was preserved. The potential for preserved HNO activity under pathological conditions that are associated with oxidative stress indicates that HNO donors may represent a viable therapeutic approach to the treatment of vascular dysfunction.
Collapse
Affiliation(s)
- Jasmin Chendi Li
- Drug, Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
- Department of Pharmacology, University of Melbourne, Parkville, VIC, Australia
| | - Anida Velagic
- Drug, Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
| | - Cheng Xue Qin
- Drug, Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
- Department of Pharmacology, University of Melbourne, Parkville, VIC, Australia
| | - Mandy Li
- Drug, Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Chen Huei Leo
- Science, Maths and Technology Cluster, Singapore University of Technology & Design, Singapore, Singapore
| | - Barbara K. Kemp-Harper
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Rebecca H. Ritchie
- Drug, Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
- Department of Pharmacology, University of Melbourne, Parkville, VIC, Australia
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Owen L. Woodman
- Drug, Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Otterbein H, Mihara K, Hollenberg MD, Lehnert H, Witte D, Ungefroren H. RAC1B Suppresses TGF-β-Dependent Chemokinesis and Growth Inhibition through an Autoregulatory Feed-Forward Loop Involving PAR2 and ALK5. Cancers (Basel) 2019; 11:cancers11081211. [PMID: 31434318 PMCID: PMC6721813 DOI: 10.3390/cancers11081211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023] Open
Abstract
The small GTPase RAC1B functions as a powerful inhibitor of transforming growth factor (TGF)-β1-induced epithelial-mesenchymal transition, cell motility, and growth arrest in pancreatic epithelial cells. Previous work has shown that RAC1B downregulates the TGF-β type I receptor ALK5, but the molecular details of this process have remained unclear. Here, we hypothesized that RAC1B-mediated suppression of activin receptor-like kinase 5 (ALK5) involves proteinase-activated receptor 2 (PAR2), a G protein-coupled receptor encoded by F2RL1 that is crucial for sustaining ALK5 expression. We found in pancreatic carcinoma Panc1 cells that PAR2 is upregulated by TGF-β1 in an ALK5-dependent manner and that siRNA-mediated knockdown of RAC1B increased both basal and TGF-β1-induced expression of PAR2. Further, the simultaneous knockdown of PAR2 and RAC1B rescued Panc1 cells from a RAC1B knockdown-induced increase in ALK5 abundance and the ALK5-mediated increase in TGF-β1-induced migratory activity. Conversely, Panc1 cells with stable ectopic expression of RAC1B displayed reduced ALK5 expression, an impaired upregulation of PAR2, and a reduced migratory responsiveness to TGF-β1 stimulation. However, these effects could be reversed by ectopic overexpression of PAR2. Moreover, the knockdown of PAR2 alone in Panc1 cells and HaCaT keratinocytes phenocopied RAC1B's ability to suppress ALK5 abundance and TGF-β1-induced chemokinesis and growth inhibition. Lastly, we found that the RAC1B knockdown-induced increase in TGF-β1-induced PAR2 mRNA expression was sensitive to pharmacological inhibition of MEK-ERK signaling. Our data show that in pancreatic and skin epithelial cells, downregulation of ALK5 activity by RAC1B is secondary to suppression of F2RL1/PAR2 expression. Since F2RL1 itself is a TGF-β target gene and its upregulation by TGF-β1 is mediated by ALK5 and MEK-ERK signaling, we suggest the existence of a feed-forward signaling loop involving ALK5 and PAR2 that is efficiently suppressed by RAC1B to restrict TGF-β-driven cell motility and growth inhibition.
Collapse
Affiliation(s)
- Hannah Otterbein
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany
| | - Koichiro Mihara
- Departments of Physiology and Pharmacology and Medicine, Inflammation Research Network, Snyder Institute for Chronic Diseases, University of Calgary, Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
| | - Morley D Hollenberg
- Departments of Physiology and Pharmacology and Medicine, Inflammation Research Network, Snyder Institute for Chronic Diseases, University of Calgary, Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
| | - Hendrik Lehnert
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany
| | - David Witte
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany.
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany.
- Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany.
| |
Collapse
|
8
|
El-Daly M, Pulakazhi Venu VK, Saifeddine M, Mihara K, Kang S, Fedak PW, Alston LA, Hirota SA, Ding H, Triggle CR, Hollenberg MD. Hyperglycaemic impairment of PAR2-mediated vasodilation: Prevention by inhibition of aortic endothelial sodium-glucose-co-Transporter-2 and minimizing oxidative stress. Vascul Pharmacol 2018; 109:56-71. [DOI: 10.1016/j.vph.2018.06.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/05/2018] [Accepted: 06/09/2018] [Indexed: 01/16/2023]
|
9
|
Ando M, Matsumoto T, Kobayashi S, Iguchi M, Taguchi K, Kobayashi T. Impairment of Protease-Activated Receptor 2-Induced Relaxation of Aortas of Aged Spontaneously Hypertensive Rat. Biol Pharm Bull 2018; 41:815-819. [PMID: 29709920 DOI: 10.1248/bpb.b17-00987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypertension is one of the most prevalent diseases worldwide and can cause harmful complications within the vascular system. Further research on vascular responsiveness to different ligands and diverse receptors in various arteries is required to understand the mechanisms underlying the development of these vascular complications. Here, we investigated the vasorelaxant effect of the protease-activated receptor 2 (PAR2) agonist 2-furoyl-LIGRLO-amide (2-Fly) and two commonest agents, namely endothelium-dependent dilator acetylcholine (ACh) and endothelium-independent dilator sodium nitroprusside (SNP), on the thoracic aorta isolated from aged spontaneously hypertensive rats (SHR) (age, 52±1 weeks). The effects of these agents were compared between aortas isolated from SHR and age-matched normotensive Wistar Kyoto (WKY) rats. Compared with the WKY group, in the SHR group, 2-Fly-induced relaxation was impaired, ACh-induced relaxation was slightly decreased at low concentrations, and SNP-induced relaxation was similar. In addition, 2-Fly-induced aortic relaxation was largely decreased by a PAR2 antagonist (FSLLRY), endothelial denudation, and a nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine (L-NNA) but not by an Akt inhibitor. These results suggested that PAR2-induced relaxations of aortas of aged SHR was impaired, and this impaired aortic relaxation may be attributed to decreased NO bioavailability rather than altered NO sensitivity unrelated to the Akt activity.
Collapse
Affiliation(s)
- Makoto Ando
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Shota Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Maika Iguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| |
Collapse
|
10
|
Maruyama K, McGuire JJ, Kagota S. Progression of Time-Dependent Changes to the Mechanisms of Vasodilation by Protease-Activated Receptor 2 in Metabolic Syndrome. Biol Pharm Bull 2018; 40:2039-2044. [PMID: 29199228 DOI: 10.1248/bpb.b17-00343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protease-activated receptor 2 (PAR2) is a G protein-coupled receptor activated by serine proteases released from tissues or by synthetic peptide ligands administered pharmacologically. Its wide expression in the cardiovascular system, particularly within the endothelium, vasodilation activity, and link to increased expression of inflammatory cytokines positions PAR2 as a potentially important regulator of vascular pathology under conditions of tissue inflammation, and injury; and thus, a pharmaceutical target for new therapeutics. Obesity is considered a chronic low-grade systemic inflammatory condition as inflammatory cytokines released from adipocytes are closely related to development of metabolic syndrome and related disorders. Our work over the past five-years has focused on the changes in vasomotor functions of PAR2 in metabolic syndrome, using an animal model known as the SHRSP.Z-Leprfa/IzmDmcr rats (SHRSP.ZF). In young SHRSP.ZF that had already developed impaired responses to nitric oxide, we reported that PAR2-induced endothelium-dependent vasodilation is preserved. However, this PAR2 vasodilation decreased with increasing age and further chronic exposure to the conditions of metabolism disorder. These findings raise the possibility that PAR2 regulates tissue perfusion and can protect organs from injury, which is an increasing clinical concern at later stages of metabolic syndrome. Here we present our studies on the time-dependent changes in vasoreactivity to PAR2 in metabolic syndrome and the underlying mechanisms. Furthermore, we discuss the implications of these age-related changes in PAR2 for the cardiovascular system in metabolic syndrome.
Collapse
Affiliation(s)
- Kana Maruyama
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - John J McGuire
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University
| | - Satomi Kagota
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| |
Collapse
|
11
|
Jones SM, Mann A, Conrad K, Saum K, Hall DE, McKinney LM, Robbins N, Thompson J, Peairs AD, Camerer E, Rayner KJ, Tranter M, Mackman N, Owens AP. PAR2 (Protease-Activated Receptor 2) Deficiency Attenuates Atherosclerosis in Mice. Arterioscler Thromb Vasc Biol 2018; 38:1271-1282. [PMID: 29599135 PMCID: PMC6324171 DOI: 10.1161/atvbaha.117.310082] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 03/15/2018] [Indexed: 12/25/2022]
Abstract
OBJECTIVE PAR2 (protease-activated receptor 2)-dependent signaling results in augmented inflammation and has been implicated in the pathogenesis of several autoimmune conditions. The objective of this study was to determine the effect of PAR2 deficiency on the development of atherosclerosis. APPROACH AND RESULTS PAR2 mRNA and protein expression is increased in human carotid artery and mouse aortic arch atheroma versus control carotid and aortic arch arteries, respectively. To determine the effect of PAR2 deficiency on atherosclerosis, male and female low-density lipoprotein receptor-deficient (Ldlr-/-) mice (8-12 weeks old) that were Par2+/+ or Par2-/- were fed a fat- and cholesterol-enriched diet for 12 or 24 weeks. PAR2 deficiency attenuated atherosclerosis in the aortic sinus and aortic root after 12 and 24 weeks. PAR2 deficiency did not alter total plasma cholesterol concentrations or lipoprotein distributions. Bone marrow transplantation showed that PAR2 on nonhematopoietic cells contributed to atherosclerosis. PAR2 deficiency significantly attenuated levels of the chemokines Ccl2 and Cxcl1 in the circulation and macrophage content in atherosclerotic lesions. Mechanistic studies using isolated primary vascular smooth muscle cells showed that PAR2 deficiency is associated with reduced Ccl2 and Cxcl1 mRNA expression and protein release into the supernatant resulting in less monocyte migration. CONCLUSIONS Our results indicate that PAR2 deficiency is associated with attenuation of atherosclerosis and may reduce lesion progression by blunting Ccl2- and Cxcl1-induced monocyte infiltration.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Aortic Diseases/prevention & control
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Carotid Artery Diseases/genetics
- Carotid Artery Diseases/metabolism
- Carotid Artery Diseases/pathology
- Cell Movement
- Cells, Cultured
- Chemokine CCL2/genetics
- Chemokine CCL2/metabolism
- Chemokine CXCL1/genetics
- Chemokine CXCL1/metabolism
- Disease Models, Animal
- Female
- Genetic Predisposition to Disease
- Humans
- Lipids/blood
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Plaque, Atherosclerotic
- Receptor, PAR-1/deficiency
- Receptor, PAR-1/genetics
- Receptor, PAR-2/deficiency
- Receptor, PAR-2/genetics
- Receptors, G-Protein-Coupled/deficiency
- Receptors, G-Protein-Coupled/genetics
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
Collapse
Affiliation(s)
- Shannon M Jones
- From the Division of Cardiovascular Health and Disease (S.M.J., A.M., K.C., K.S., L.M.M., N.R., M.T., A.P.O.)
| | - Adrien Mann
- From the Division of Cardiovascular Health and Disease (S.M.J., A.M., K.C., K.S., L.M.M., N.R., M.T., A.P.O.)
| | - Kelsey Conrad
- From the Division of Cardiovascular Health and Disease (S.M.J., A.M., K.C., K.S., L.M.M., N.R., M.T., A.P.O.)
- Pathobiology and Molecular Medicine Program (K.C., M.T., A.P.O.)
| | - Keith Saum
- From the Division of Cardiovascular Health and Disease (S.M.J., A.M., K.C., K.S., L.M.M., N.R., M.T., A.P.O.)
- University of Cincinnati Medical Scientist Training Program (K.S.)
| | - David E Hall
- Department of Nutritional Sciences, College of Allied Health (D.E.H., A.D.P.)
- Department of Internal Medicine (D.E.H., A.D.P.), University of Cincinnati College of Medicine, OH
| | - Lisa M McKinney
- From the Division of Cardiovascular Health and Disease (S.M.J., A.M., K.C., K.S., L.M.M., N.R., M.T., A.P.O.)
| | - Nathan Robbins
- From the Division of Cardiovascular Health and Disease (S.M.J., A.M., K.C., K.S., L.M.M., N.R., M.T., A.P.O.)
| | - Joel Thompson
- Division of Endocrinology and Molecular Medicine, Department of Internal Medicine, University of Kentucky, Lexington (J.T.)
| | - Abigail D Peairs
- Department of Nutritional Sciences, College of Allied Health (D.E.H., A.D.P.)
- Department of Internal Medicine (D.E.H., A.D.P.), University of Cincinnati College of Medicine, OH
| | - Eric Camerer
- INSERM U970, Paris Cardiovascular Research Centre, France (E.C.)
| | - Katey J Rayner
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa Heart Institute, Ontario, Canada (K.J.R.)
| | - Michael Tranter
- From the Division of Cardiovascular Health and Disease (S.M.J., A.M., K.C., K.S., L.M.M., N.R., M.T., A.P.O.)
- Pathobiology and Molecular Medicine Program (K.C., M.T., A.P.O.)
| | - Nigel Mackman
- Division of Hematology and Oncology, Department of Medicine, UNC McAllister Heart Institute, University of North Carolina at Chapel Hill (N.M.)
| | - A Phillip Owens
- From the Division of Cardiovascular Health and Disease (S.M.J., A.M., K.C., K.S., L.M.M., N.R., M.T., A.P.O.)
- Pathobiology and Molecular Medicine Program (K.C., M.T., A.P.O.)
| |
Collapse
|
12
|
Proteinase-activated receptor 2 promotes TGF-β-dependent cell motility in pancreatic cancer cells by sustaining expression of the TGF-β type I receptor ALK5. Oncotarget 2018; 7:41095-41109. [PMID: 27248167 PMCID: PMC5173045 DOI: 10.18632/oncotarget.9600] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 05/14/2016] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by high expression of transforming growth factor (TGF)-β and the G protein-coupled receptor proteinase-activated receptor 2 (PAR2), the latter of which functions as a cell-surface sensor for serine proteinases asscociated with the tumour microenvironment. Since TGF-β and PAR2 affect tumourigenesis by regulating migration, invasion and metastasis, we hypothesized that there is signalling crosstalk between them. Depleting PDAC and non-PDAC cells of PAR2 by RNA interference strongly decreased TGF-β1-induced activation of Smad2/3 and p38 mitogen-activated protein kinase, Smad dependent transcriptional activity, expression of invasion associated genes, and cell migration/invasion in vitro. Likewise, the plasminogen activator-inhibitor 1 gene in primary cultures of aortic smooth muscle cells from PAR2-/- mice displayed a greatly attenuated sensitivity to TGF-β1 stimulation. PAR2 depletion in PDAC cells resulted in reduced protein and mRNA levels of the TGF-β type I receptor activin receptor-like kinase 5 (ALK5). Forced expression of wild-type ALK5 or a kinase-active ALK5 mutant, but not a kinase-active but Smad-binding defective ALK5 mutant, was able to rescue TGF-β1-induced Smad3 activation, Smad dependent transcription, and cell migration in PAR2-depleted cells. Together, our data show that PAR2 is crucial for TGF-β1-induced cell motility by its ability to sustain expression of ALK5. Therapeutically targeting PAR2 may thus be a promising approach in preventing TGF-β-dependent driven metastatic dissemination in PDAC and possibly other stroma-rich tumour types.
Collapse
|
13
|
Fujii N, McNeely BD, Zhang SY, Abdellaoui YC, Danquah MO, Kenny GP. Activation of protease-activated receptor 2 mediates cutaneous vasodilatation but not sweating: roles of nitric oxide synthase and cyclo-oxygenase. Exp Physiol 2018; 102:265-272. [PMID: 27981668 DOI: 10.1113/ep086092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/05/2016] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Protease-activated receptor 2 (PAR2) is located in the endothelial cells of skin vessels and eccrine sweat glands. However, a functional role of PAR2 in the control of cutaneous blood flow and sweating remains to be assessed in humans in vivo. What is the main finding and its importance? Our results demonstrate that in normothermic resting humans in vivo, activation of PAR2 elicits cutaneous vasodilatation partly through nitric oxide synthase-dependent mechanisms, but does not mediate sweating. These results provide important new insights into the physiological significance of PAR2 in human skin. Protease-activated receptor 2 (PAR2) is present in human skin, including keratinocytes, endothelial cells of skin microvessels and eccrine sweat glands. However, whether PAR2 contributes functionally to the regulation of cutaneous blood flow and sweating remains entirely unclear in humans in vivo. We hypothesized that activation of PAR2 directly stimulates cutaneous vasodilatation and sweating via actions of nitric oxide synthase (NOS) and cyclo-oxygenase (COX). In 12 physically active young men (29 ± 5 years old), cutaneous vascular conductance (CVC) and sweat rate were measured at four intradermal microdialysis forearm skin sites that were treated with the following: (i) lactated Ringer's solution (control); (ii) 10 mm NG -nitro-l-arginine (NOS inhibitor); (iii) 10 mm ketorolac (COX inhibitor); or (iv) a combination of both inhibitors. At all sites, a PAR2 agonist (SLIGKV-NH2 ) was co-administered in a dose-dependent fashion (0.06, 0.18, 0.55, 1.66 and 5 mm, each for 25 min). The highest dose of SLIGKV-NH2 (5 mm) increased CVC from baseline at the control site (P ≤ 0.05). This increase in CVC associated with PAR2 activation was attenuated by NOS inhibition regardless of the presence or absence of simultaneous COX inhibition (both P ≤ 0.05). However, COX inhibition alone did not affect the PAR2-mediated increase in CVC (P > 0.05). No increase in sweat rate was measured at any administered dose of SLIGKV-NH2 (all P > 0.05). We show that in normothermic resting humans in vivo, PAR2 activation does not increase sweat rate, whereas it does modulate cutaneous vasodilatation through NOS-dependent mechanisms.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Brendan D McNeely
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Sarah Y Zhang
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Yasmine C Abdellaoui
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Mercy O Danquah
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
14
|
Myrie SB, McKnight LL, King JC, McGuire JJ, Van Vliet BN, Cheema SK, Bertolo RF. Intrauterine growth-restricted Yucatan miniature pigs experience early catch-up growth, leading to greater adiposity and impaired lipid metabolism as young adults. Appl Physiol Nutr Metab 2017; 42:1322-1329. [PMID: 28813611 DOI: 10.1139/apnm-2017-0311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2023]
Abstract
Early nutrition has critical influences on cardiovascular disease risk in adulthood. The study objectives were to evaluate the impact of low birth weight on fasting and postprandial lipid metabolism and endothelium function in Yucatan miniature pigs. Intrauterine growth-restricted (IUGR) piglets (n = 6; 3 days old, 0.73 ± 0.04 kg) were paired with normal-weight (NW) same-sex littermates (n = 6; 1.11 ± 0.05 kg) and fed milk replacer ad libitum for 4 weeks. Thereafter, all pigs were fed a standard diet ad libitum for 5 h/day with growth, intakes, and blood samples collected for 8 months. At 9 months old, pigs were surgically fitted with venous catheters and an oral fat tolerance test was performed. At 10 months old, pigs were killed and endothelium-dependent and -independent vasodilations of isolated coronary arteries were measured using wire-myographs. IUGR pigs demonstrated catch-up growth (P < 0.05) in body weight and abdominal circumference prior to sexual maturity (<7 months old) and had more (P < 0.05) subcutaneous fat at 10 months old compared with NW pigs. IUGR pigs had consistently higher fasting plasma triglyceride concentrations from 5 to 10 months old and higher liver triglyceride and total cholesterol concentrations at 10 months old (P < 0.05). The fat tolerance test revealed delayed postprandial triglyceride clearance in IUGR pigs, but no differences in plaque formation or vascular reactivity. To conclude, IUGR and early postnatal catch-up growth are associated with increased overall body fat deposition and altered triglyceride metabolism in adult Yucatan miniature swine.
Collapse
Affiliation(s)
- Semone B Myrie
- a Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Leslie L McKnight
- a Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - J Christopher King
- b Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - John J McGuire
- b Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Bruce N Van Vliet
- b Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Sukhinder K Cheema
- a Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Robert F Bertolo
- a Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| |
Collapse
|
15
|
Kagota S, Iwata S, Maruyama K, Wakuda H, Shinozuka K. Functional Relationship between Arterial Tissue and Perivascular Adipose Tissue in Metabolic Syndrome. YAKUGAKU ZASSHI 2017; 136:693-7. [PMID: 27150921 DOI: 10.1248/yakushi.15-00262-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metabolic syndrome is a complex of disorders that includes visceral obesity, insulin resistance, hypertension, and dyslipidemia. It is characterized by an increased risk for serious cardiovascular events. Adipocytes are now recognized to contribute to the development of cardiovascular complications in metabolic syndrome via the release of several bioactive substances (adipocytokines). Obesity induces an increase in the volume of perivascular adipose tissue (PVAT), which is located outside the blood vessels. In recent years, PVAT has been reported to produce/release vasoactive adipocytokines. Thus, PVAT can modulate vasomotor function by releasing vasorelaxing/vasocontracting factors, resulting in the development of cardiovascular disease due to metabolic syndrome. By using animal models (SHR/NDmcr-cp rats, SHRSP.Z-Lepr(fa)/IzmDmcr rats, and B6.BKS (D)-Lepr(fa)/J mice), we have demonstrated that chronic oxidative-nitrative stress is closely linked to the development of vascular dysfunction in response to nitric oxide (NO) in resistant arteries with increasing age/exposure to metabolic abnormalities. Further, our recent findings have led us to believe that PVAT helps in the regulation of vasodilation to compensate for the impaired vasodilation observed in pathophysiological conditions in the mesenteric arteries of SHRSP.Z-Lepr(fa)/IzmDmcr rats. However, a breakdown of the compensatory system occurs with long-term exposure to metabolic abnormalities. We propose the concept of the functional regulation of vascular tissue by PVAT in metabolic syndrome.
Collapse
Affiliation(s)
- Satomi Kagota
- Department of Pharmacology II, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | | | | | | | | |
Collapse
|
16
|
Daniels RE, Haq KT, Miller LS, Chia EW, Miura M, Sorrentino V, McGuire JJ, Stuyvers BD. Cardiac expression of ryanodine receptor subtype 3; a strategic component in the intracellular Ca 2+ release system of Purkinje fibers in large mammalian heart. J Mol Cell Cardiol 2017; 104:31-42. [PMID: 28111173 DOI: 10.1016/j.yjmcc.2017.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 12/08/2016] [Accepted: 01/18/2017] [Indexed: 10/20/2022]
Abstract
BACKGROUND Three distinct Ca2+ release channels were identified in dog P-cells: the ryanodine receptor subtype 2 (RyR2) was detected throughout the cell, while the ryanodine receptor subtype 3 (RyR3) and inositol phosphate sensitive Ca2+ release channel (InsP3R) were found in the cell periphery. How each of these channels contributes to the Ca2+ cycling of P-cells is unclear. Recent modeling of Ca2+ mobilization in P-cells suggested that Ca2+ sensitivity of Ca2+induced Ca2+release (CICR) was larger at the P-cell periphery. Our study examined whether this numerically predicted region of Ca2+ release exists in live P-cells. We compared the regional Ca2+ dynamics with the arrangement of intracellular Ca2+ release (CR) channels. METHODS Gene expression of CR channels was measured by qPCR in Purkinje fibers and myocardium of adult Yucatan pig hearts. We characterized the CR channels protein expression in isolated P-cells by immuno-fluorescence, laser scanning confocal microscopy, and 3D reconstruction. The spontaneous Ca2+ activity and electrically-evoked Ca2+ mobilization were imaged by 2D spinning disk confocal microscopy. Functional regions of P-cell were differentiated by the characteristics of local Ca2+ events. We used the Ca2+ propagation velocities as indicators of channel Ca2+ sensitivity. RESULTS RyR2 gene expression was identical in Purkinje fibers and myocardium (6 hearts) while RyR3 and InsP3R gene expressions were, respectively, 100 and 16 times larger in the Purkinje fibers. Specific fluorescent immuno-staining of Ca2+ release channels revealed an intermediate layer of RyR3 expression between a near-membrane InsP3R-region and a central RyR2-region. We found that cell periphery produced two distinct forms of spontaneous Ca2+-transients: (1) large asymmetrical Ca2+ sparks under the membrane, and (2) typical Ca2+-wavelets propagating exclusively around the core of the cell. Larger cell-wide Ca2+ waves (CWWs) appeared occasionally traveling in the longitudinal direction through the core of Pcells. Large sparks arose in a micrometric space overlapping the InsP3R expression. The InsP3R antagonists 2-aminoethoxydiphenyl borate (2-APB; 3μM) and xestospongin C (XeC; 50μM) dramatically reduced their frequency. The Ca2+ wavelets propagated in a 5-10μm thick layered space which matched the intermediate zone of RyR3 expression. The wavelet incidence was unchanged by 2-APB or XeC, but was reduced by 60% in presence of the RyR3 antagonist dantrolene (10μM). The velocity of wavelets was two times larger (86±16μm/s; n=14) compared to CWWs' (46±10μm/s; n=11; P<0.05). Electric stimulation triggered a uniform and large elevation of Ca2+ concentration under the membrane which preceded the propagation of Ca2+ into the interior of the cell. Elevated Cai propagated at 150μm/s (147±34μm/s; n=5) through the region equivalent to the zone of RyR3 expression. This velocity dropped by 50% (75±24μm/s; n=5) in the central region wherein predominant RyR2 expression was detected. CONCLUSION We identified two layers of distinct Ca2+ release channels in the periphery of Pcell: an outer layer of InsP3Rs under the membrane and an inner layer of RyR3s. The propagation of Ca2+ events in these layers revealed that Ca2+ sensitivity of Ca2+ release was larger in the RyR3 layer compared to that of other sub-cellular regions. We propose that RyR3 expression in P-cells plays a role in the stability of electric function of Purkinje fibers.
Collapse
Affiliation(s)
- Rebecca E Daniels
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Kazi T Haq
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Lawson S Miller
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Elizabeth W Chia
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Masahito Miura
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - John J McGuire
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Bruno D Stuyvers
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
17
|
Vanhoutte PM, Shimokawa H, Feletou M, Tang EHC. Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol (Oxf) 2017; 219:22-96. [PMID: 26706498 DOI: 10.1111/apha.12646] [Citation(s) in RCA: 581] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/27/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023]
Abstract
The endothelium can evoke relaxations of the underlying vascular smooth muscle, by releasing vasodilator substances. The best-characterized endothelium-derived relaxing factor (EDRF) is nitric oxide (NO) which activates soluble guanylyl cyclase in the vascular smooth muscle cells, with the production of cyclic guanosine monophosphate (cGMP) initiating relaxation. The endothelial cells also evoke hyperpolarization of the cell membrane of vascular smooth muscle (endothelium-dependent hyperpolarizations, EDH-mediated responses). As regards the latter, hydrogen peroxide (H2 O2 ) now appears to play a dominant role. Endothelium-dependent relaxations involve both pertussis toxin-sensitive Gi (e.g. responses to α2 -adrenergic agonists, serotonin, and thrombin) and pertussis toxin-insensitive Gq (e.g. adenosine diphosphate and bradykinin) coupling proteins. New stimulators (e.g. insulin, adiponectin) of the release of EDRFs have emerged. In recent years, evidence has also accumulated, confirming that the release of NO by the endothelial cell can chronically be upregulated (e.g. by oestrogens, exercise and dietary factors) and downregulated (e.g. oxidative stress, smoking, pollution and oxidized low-density lipoproteins) and that it is reduced with ageing and in the course of vascular disease (e.g. diabetes and hypertension). Arteries covered with regenerated endothelium (e.g. following angioplasty) selectively lose the pertussis toxin-sensitive pathway for NO release which favours vasospasm, thrombosis, penetration of macrophages, cellular growth and the inflammatory reaction leading to atherosclerosis. In addition to the release of NO (and EDH, in particular those due to H2 O2 ), endothelial cells also can evoke contraction of the underlying vascular smooth muscle cells by releasing endothelium-derived contracting factors. Recent evidence confirms that most endothelium-dependent acute increases in contractile force are due to the formation of vasoconstrictor prostanoids (endoperoxides and prostacyclin) which activate TP receptors of the vascular smooth muscle cells and that prostacyclin plays a key role in such responses. Endothelium-dependent contractions are exacerbated when the production of nitric oxide is impaired (e.g. by oxidative stress, ageing, spontaneous hypertension and diabetes). They contribute to the blunting of endothelium-dependent vasodilatations in aged subjects and essential hypertensive and diabetic patients. In addition, recent data confirm that the release of endothelin-1 can contribute to endothelial dysfunction and that the peptide appears to be an important contributor to vascular dysfunction. Finally, it has become clear that nitric oxide itself, under certain conditions (e.g. hypoxia), can cause biased activation of soluble guanylyl cyclase leading to the production of cyclic inosine monophosphate (cIMP) rather than cGMP and hence causes contraction rather than relaxation of the underlying vascular smooth muscle.
Collapse
Affiliation(s)
- P. M. Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| | - H. Shimokawa
- Department of Cardiovascular Medicine; Tohoku University; Sendai Japan
| | - M. Feletou
- Department of Cardiovascular Research; Institut de Recherches Servier; Suresnes France
| | - E. H. C. Tang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
- School of Biomedical Sciences; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| |
Collapse
|
18
|
Maruyama K, Kagota S, McGuire JJ, Wakuda H, Yoshikawa N, Nakamura K, Shinozuka K. Age-related changes to vascular protease-activated receptor 2 in metabolic syndrome: a relationship between oxidative stress, receptor expression, and endothelium-dependent vasodilation. Can J Physiol Pharmacol 2016; 95:356-364. [PMID: 28103056 DOI: 10.1139/cjpp-2016-0298] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Protease-activated receptor 2 (PAR2) is expressed in vascular endothelium. Nitric oxide (NO) - cyclic GMP-mediated vasodilation in response to 2-furoyl-LIGRLO-amide (2fLIGRLO), a PAR2-activating peptide, is impaired in aortas from aged SHRSP.Z-Leprfa/IzmDmcr (SHRSP.ZF) rats with metabolic syndrome. Here we investigated mechanisms linking PAR2's vascular effects to phenotypic characteristics of male SHRSP.ZF rats at 10, 20, and 30 weeks of age. We found vasodilation responses to either 2fLIGRLO or enzyme-mediated PAR2 activation by trypsin were sustained until 20 weeks and lessened at 30 weeks. PAR2 protein and mRNA levels were lower in aortas at 30 weeks than at 10 and 20 weeks. PAR2-mediated responses positively correlated with PAR2 protein and mRNA levels. Decreased cGMP accumulation in the presence of 2fLIGRLO paralleled the decreased relaxations elicited by nitroprusside and the cGMP analog 8-pCPT-cGMP, and the less soluble guanylyl cyclase protein at 30 weeks. 2fLIGRLO-induced relaxation was negatively correlated with serum thiobarbituric acid reactive substances, an index of oxidative stress, which increased with age. Forward stepwise data regression supported a model of age-related decreases in PAR2 function resulting from decreased PAR2 mRNA and increased oxidative stress. We conclude that decreased responsiveness of aortic smooth muscle to NO and downregulation of receptor expression impair PAR2 functions at later stages of metabolic syndrome in SHRSP.ZF rats.
Collapse
Affiliation(s)
- Kana Maruyama
- a Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyuban-cho, Nishinomiya 663-8179, Japan
| | - Satomi Kagota
- a Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyuban-cho, Nishinomiya 663-8179, Japan
| | - John J McGuire
- b Cardiovascular Research Group, Division of Biomedical Sciences, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John's, NL A1B 3V6, Canada
| | - Hirokazu Wakuda
- a Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyuban-cho, Nishinomiya 663-8179, Japan
| | - Noriko Yoshikawa
- a Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyuban-cho, Nishinomiya 663-8179, Japan
| | - Kazuki Nakamura
- a Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyuban-cho, Nishinomiya 663-8179, Japan
| | - Kazumasa Shinozuka
- a Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyuban-cho, Nishinomiya 663-8179, Japan
| |
Collapse
|
19
|
Maruyama K, McGuire JJ, Shinozuka K, Kagota S. [Role/function of protease-activated receptor 2 on vascular endothelium in metabolic syndrome]. Nihon Yakurigaku Zasshi 2016; 147:135-138. [PMID: 26960771 DOI: 10.1254/fpj.147.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
|
20
|
Characterization and Functions of Protease-Activated Receptor 2 in Obesity, Diabetes, and Metabolic Syndrome: A Systematic Review. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3130496. [PMID: 27006943 PMCID: PMC4781943 DOI: 10.1155/2016/3130496] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/26/2016] [Indexed: 12/16/2022]
Abstract
Proteinase-activated receptor 2 (PAR2) is a cell surface receptor activated by serine proteinases or specific synthetic compounds. Interest in PAR2 as a pharmaceutical target for various diseases is increasing. Here we asked two questions relevant to endothelial dysfunction and diabetes: How is PAR2 function affected in blood vessels? What role does PAR2 have in promoting obesity, diabetes, and/or metabolic syndrome, specifically via the endothelium and adipose tissues? We conducted a systematic review of the published literature in PubMed and Scopus (July 2015; search terms: par2, par-2, f2lr1, adipose, obesity, diabetes, and metabolic syndrome). Seven studies focused on PAR2 and vascular function. The obesity, diabetes, or metabolic syndrome animal models differed amongst studies, but each reported that PAR2-mediated vasodilator actions were preserved in the face of endothelial dysfunction. The remaining studies focused on nonvascular functions and provided evidence supporting the concept that PAR2 activation promoted obesity. Key studies showed that PAR2 activation regulated cellular metabolism, and PAR2 antagonists inhibited adipose gain and metabolic dysfunction in rats. We conclude that PAR2 antagonists for treatment of obesity indeed show early promise as a therapeutic strategy; however, endothelial-specific PAR2 functions, which may offset mechanisms that produce vascular dysfunction in diabetes, warrant additional study.
Collapse
|
21
|
Maruyama K, Kagota S, McGuire JJ, Wakuda H, Yoshikawa N, Nakamura K, Shinozuka K. Enhanced Nitric Oxide Synthase Activation via Protease-Activated Receptor 2 Is Involved in the Preserved Vasodilation in Aortas from Metabolic Syndrome Rats. J Vasc Res 2016; 52:232-43. [DOI: 10.1159/000442415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 11/09/2015] [Indexed: 11/19/2022] Open
|
22
|
Kagota S, Maruyama K, Iwata S, Tada Y. [Impairment of vasodilation and effects of perivascular adipose tissue in metabolic syndrome]. Nihon Yakurigaku Zasshi 2015; 145:59-64. [PMID: 25747015 DOI: 10.1254/fpj.145.59] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Hennessey JC, Stuyvers BD, McGuire JJ. Small caliber arterial endothelial cells calcium signals elicited by PAR2 are preserved from endothelial dysfunction. Pharmacol Res Perspect 2015; 3:e00112. [PMID: 25729579 PMCID: PMC4324686 DOI: 10.1002/prp2.112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 10/24/2014] [Indexed: 12/05/2022] Open
Abstract
Endothelial cell (EC)-dependent vasodilation by proteinase-activated receptor 2 (PAR2) is preserved in small caliber arteries in disease states where vasodilation by muscarinic receptors is decreased. In this study, we identified and characterized the PAR2-mediated intracellular calcium (Ca2+)-release mechanisms in EC from small caliber arteries in healthy and diseased states. Mesenteric arterial EC were isolated from PAR2 wild-type (WT) and null mice, after saline (controls) or angiotensin II (AngII) infusion, for imaging intracellular calcium and characterizing the calcium-release system by immunofluorescence. EC Ca2+ signals comprised two forms of Ca2+-release events that had distinct spatial-temporal properties and occurred near either the plasmalemma (peripheral) or center of EC. In healthy EC, PAR2-dependent increases in the densities and firing rates of both forms of Ca2+-release were abolished by inositol 1,4,5- trisphosphate receptor (IP3R) inhibitor, but partially reduced by transient potential vanilloid channels inhibitor ruthenium red (RR). Acetylcholine (ACh)-induced less overall Ca2+-release than PAR2 activation, but enhanced selectively the incidence of central events. PAR2-dependent Ca2+-activity, inhibitors sensitivities, IP3R, small- and intermediate-conductance Ca2+-activated potassium channels expressions were unchanged in EC from AngII WT. However, the same cells exhibited decreases in ACh-induced Ca2+-release, RR sensitivity, and endothelial nitric oxide synthase expression, indicating AngII-induced dysfunction was differentiated by receptor, Ca2+-release, and downstream targets of EC activation. We conclude that PAR2 and muscarinic receptors selectively elicit two elementary Ca2+ signals in single EC. PAR2-selective IP3R-dependent peripheral Ca2+-release mechanisms are identical between healthy and diseased states. Further study of PAR2-selective Ca2+-release for eliciting pathological and/or normal EC functions is warranted.
Collapse
Affiliation(s)
- John C Hennessey
- Cardiovascular Research Group, Division of BioMedical Sciences, Faculty of Medicine, Memorial University St. John's, Newfoundland, Canada
| | - Bruno D Stuyvers
- Cardiovascular Research Group, Division of BioMedical Sciences, Faculty of Medicine, Memorial University St. John's, Newfoundland, Canada
| | - John J McGuire
- Cardiovascular Research Group, Division of BioMedical Sciences, Faculty of Medicine, Memorial University St. John's, Newfoundland, Canada
| |
Collapse
|
24
|
Kagota S, Maruyama K, Wakuda H, McGuire JJ, Yoshikawa N, Nakamura K, Shinozuka K. Disturbance of vasodilation via protease-activated receptor 2 in SHRSP.Z-Leprfa/IzmDmcr rats with metabolic syndrome. Vascul Pharmacol 2014; 63:46-54. [DOI: 10.1016/j.vph.2014.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 05/29/2014] [Accepted: 06/26/2014] [Indexed: 01/28/2023]
|
25
|
Carrillo-Sepulveda MA, Matsumoto T, Nunes KP, Webb RC. Therapeutic implications of peptide interactions with G-protein-coupled receptors in diabetic vasculopathy. Acta Physiol (Oxf) 2014; 211:20-35. [PMID: 24640957 DOI: 10.1111/apha.12281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/22/2013] [Accepted: 03/12/2014] [Indexed: 12/16/2022]
Abstract
The dramatic worldwide increase in the prevalence of diabetes has generated an attempt by the scientific community to identify strategies for its treatment and prevention. Vascular dysfunction is a hallmark of diabetes and frequently leads to the development of atherosclerosis, coronary disease-derived myocardial infarction, stroke, peripheral arterial disease and diabetic 'triopathy' (retinopathy, nephropathy and neuropathy). These vascular complications, developing in an increasingly younger cohort of patients with diabetes, contribute to morbidity and mortality. Despite the development of new anti-diabetic or anti-hyperglycaemic drugs, vascular complications remain to be a problem. This warrants a need for new therapeutic strategies to tackle diabetic vasculopathy. There is a growing body of evidence showing that peptide-binding G-protein-coupled receptors (peptide-binding GPCRs) play an important role in the pathophysiology of vascular dysfunction during diabetes. Thus, in this review, we discuss some of the peptide-binding GPCRs involved in the regulation of vascular function that have potential to be a therapeutic target in the treatment of diabetic vasculopathy.
Collapse
Affiliation(s)
| | - T. Matsumoto
- Department of Physiology and Morphology; Institute of Medicinal Chemistry; Hoshi University; Shinagawa-ku Tokyo Japan
| | - K. P. Nunes
- Department of Physiology; Georgia Regents University; Augusta GA USA
- Department of Cell and Regenerative Biology; School of Medicine and Public Health; University of Wisconsin; Madison WI USA
| | - R. C. Webb
- Department of Physiology; Georgia Regents University; Augusta GA USA
| |
Collapse
|
26
|
Effect of diet-induced obesity on BKCa function in contraction and dilation of rat isolated middle cerebral artery. Vascul Pharmacol 2014; 61:10-5. [DOI: 10.1016/j.vph.2014.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/13/2014] [Accepted: 02/16/2014] [Indexed: 01/09/2023]
|
27
|
Toda N, Okamura T. Obesity impairs vasodilatation and blood flow increase mediated by endothelial nitric oxide: an overview. J Clin Pharmacol 2013; 53:1228-39. [PMID: 24030923 DOI: 10.1002/jcph.179] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/04/2013] [Indexed: 11/07/2022]
Abstract
Obesity dramatically increases the risk of development of cardiovascular and metabolic diseases. Endothelial dysfunction induced by obesity is an important risk factor that impairs blood flow controls in various organs. Impaired endothelial function occurs early in life in obese children. Obesity-induced endothelial dysfunction is associated with decreased nitric oxide (NO) production due to impaired endothelial NO synthase activity and expression and increased production of superoxide anion and the endogenous NOS inhibitor ADMA, together with increased vasoconstrictor factors, such as endothelin-1 and sympathetic nerve activation. Decreased endothelial progenitor cells are also involved in endothelial cell senescence in obese individuals. Insulin resistance and diabetes mellitus augment obesity-induced endothelial dysfunction. Adipokines liberated from adipose tissues play roles in modulating endothelial function; adiponectin and ghrelin have beneficial effects on endothelial cells. Effects of leptin on endothelial function are controversial. Decreased body weight by physical exercise, dietary interventions, and bariatric surgery are effective measures that reverse endothelial dysfunction; however, the weight control is not only the reason for improving of endothelia function. Pharmacological therapies with β-adrenoceptor antagonists, resveratolol, anti-obesity agents, nifedipine, and NADPH oxidase inhibitors may also be effective; however, these treatments have to be utilized under the basis of exercise and dietary controls.
Collapse
Affiliation(s)
- Noboru Toda
- Toyama Institute for Cardiovascular Pharmacology Research, Osaka, Japan; Department of Pharmacology, Shiga University of Medical Science, Shiga, Japan
| | | |
Collapse
|
28
|
Yau MK, Liu L, Fairlie DP. Toward drugs for protease-activated receptor 2 (PAR2). J Med Chem 2013; 56:7477-97. [PMID: 23895492 DOI: 10.1021/jm400638v] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PAR2 has a distinctive functional phenotype among an unusual group of GPCRs called protease activated receptors, which self-activate after cleavage of their N-termini by mainly serine proteases. PAR2 is the most highly expressed PAR on certain immune cells, and it is activated by multiple proteases (but not thrombin) in inflammation. PAR2 is expressed on many types of primary human cells and cancer cells. PAR2 knockout mice and PAR2 agonists and antagonists have implicated PAR2 as a promising target in inflammatory conditions; respiratory, gastrointestinal, metabolic, cardiovascular, and neurological dysfunction; and cancers. This article summarizes salient features of PAR2 structure, activation, and function; opportunities for disease intervention via PAR2; pharmacological properties of published or patented PAR2 modulators (small molecule agonists and antagonists, pepducins, antibodies); and some personal perspectives on limitations of assessing their properties and on promising new directions for PAR2 modulation.
Collapse
Affiliation(s)
- Mei-Kwan Yau
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland , Brisbane, Queensland 4072, Australia
| | | | | |
Collapse
|
29
|
Bucci M, Vellecco V, Harrington L, Brancaleone V, Roviezzo F, Mattace Raso G, Ianaro A, Lungarella G, De Palma R, Meli R, Cirino G. Cross-talk between toll-like receptor 4 (TLR4) and proteinase-activated receptor 2 (PAR(2) ) is involved in vascular function. Br J Pharmacol 2013; 168:411-20. [PMID: 22957757 DOI: 10.1111/j.1476-5381.2012.02205.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 07/16/2012] [Accepted: 08/06/2012] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Proteinase-activated receptors (PARs) and toll-like receptors (TLRs) are involved in innate immune responses. The aim of this study was to evaluate the possible cross-talk between PAR(2) and TLR4 in vessels in physiological condition and how it varies following stimulation of TLR4 by using in vivo and ex vivo models. EXPERIMENTAL APPROACH Thoracic aortas were harvested from both naïve and endotoxaemic rats for in vitro studies. Arterial blood pressure was monitored in anaesthetized rats in vivo. LPS was used as a TLR4 agonist while PAR(2) activating peptide (AP) was used as a PAR(2) agonist. Aortas harvested from TLR4(-/-) mice were also used to characterize the PAR(2) response. KEY RESULTS PAR(2) , but not TLR4, expression was enhanced in aortas of endotoxaemic rats. PAR(2) AP-induced vasorelaxation was increased in aortic rings of LPS-treated rats. TLR4 inhibitors, curcumine and resveratrol, reduced PAR(2) AP-induced vasorelaxation and PAR(2) AP-induced hypotension in both naïve and endotoxaemic rats. Finally, in aortic rings from TLR4(-/-) mice, the expression of PAR(2) was reduced and the PAR(2) AP-induced vasodilatation impaired compared with those from wild-type mice and both resveratrol and curcumine were ineffective. CONCLUSIONS AND IMPLICATIONS Cross-talk between PAR(2) and TLR4 contributes to vascular homeostasis.
Collapse
Affiliation(s)
- M Bucci
- Department of Experimental Pharmacology, Faculty of Pharmacy, University of Naples 'Federico II', Napoli, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kagota S, Maruyama K, Tada Y, Fukushima K, Umetani K, Wakuda H, Shinozuka K. Chronic oxidative-nitrosative stress impairs coronary vasodilation in metabolic syndrome model rats. Microvasc Res 2013; 88:70-8. [PMID: 23571030 DOI: 10.1016/j.mvr.2013.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/02/2013] [Accepted: 04/01/2013] [Indexed: 01/22/2023]
Abstract
Metabolic syndrome (MetS) is a combination of clinical disorders that together increase the risk for cardiovascular disease and diabetes. SHRSP.Z-Lepr(fa)/IzmDmcr (SHRSP.ZF) rats with MetS show impaired nitric oxide-mediated relaxation in coronary and mesenteric arteries, and angiotensin II receptor type 1 blockers protect against dysfunction and oxidative-nitrosative stress independently of metabolic effects. We hypothesize that superoxide contributes to functional deterioration in SHRSP.ZF rats. To test our hypothesis, we studied effects of treatment with tempol, a membrane-permeable radical scavenger, on impaired vasodilation in SHRSP.ZF rats. Tempol did not alter body weight, high blood pressure, or metabolic abnormalities, but prevented impairment of acetylcholine-induced and nitroprusside-induced vasodilation in the coronary and mesenteric arteries. Furthermore, tempol reduced the levels of serum thiobarbituric acid reactive substance (TBARS) and 3-nitrotyrosine content in mesenteric arteries. Systemic administration of tempol elevated the expression of soluble guanylate cyclase (sGC) above basal levels in mesenteric arteries of SHRSP.ZF rats. However, acute treatment with tempol or ebselen, a peroxynitrite scavenger, did not ameliorate impaired relaxation of isolated mesenteric arteries. No nitration of tyrosine residues in sGC was observed; however, sGC mRNA expression levels in the arteries of SHRSP.ZF rats were lower than those in the arteries of Wistar-Kyoto rats. Levels of Thr(496)- and Ser(1177)-phosphorylated endothelial nitric oxide synthase (eNOS) were lower in arteries of SHRSP.ZF rats, and acetylcholine decreased Thr(496)-phosphorylated eNOS levels. These results indicated that prolonged superoxide production, leading to oxidative-nitrosative stress, was associated with impaired vasodilation in SHRSP.ZF rats with MetS. Down-regulated sGC expression may be linked to dysfunction, while reduced NO bioavailability/eNOS activity and modified sGC activity due to superoxide production were excluded as pivotal mechanisms.
Collapse
Affiliation(s)
- Satomi Kagota
- Department of Pharmacology, School of Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
Hughes KH, Wijekoon EP, Valcour JE, Chia EW, McGuire JJ. Effects of chronic in-vivo treatments with protease-activated receptor 2 agonist on endothelium function and blood pressures in mice. Can J Physiol Pharmacol 2013; 91:295-305. [DOI: 10.1139/cjpp-2012-0266] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Short-term treatments with protease-activated receptor 2-activating peptides (PAR2-AP) induce endothelium-dependent vasodilation and decrease blood pressure. In this study, we tested the effect of chronic in-vivo treatment with PAR2-AP on the blood pressure and endothelium function of mice. Male PAR2 wild-type (WT) and par2-deficient (KO) mice received subcutaneous infusions of either saline, low (PAR2-LD), or high (PAR2-HD) doses of 2-furoyl-LIGRLO-amide for 1 or 2 weeks. In each treatment group, endothelium function was assessed in isolated arteries. Blood pressure, heart rate, and locomotor activity were recorded by radiotelemetry, and levels of tumour nercrosis factor α (TNF-α) and interkeukin 1β (IL-1β) were measured in plasma samples by ELISA. The relaxation of WT aortas and mesenteric arteries induced by PAR2-AP was decreased by PAR2-LD and PAR2-HD. In mesenteric arteries, PAR2-LD and PAR2-HD decreased the relaxation induced by acetylcholine, but not by nitroprusside; in aortas, PAR2-LD and PAR2-HD caused differential decreases in the relaxations induced by acetylcholine and nitroprusside. Only PAR2-HD lowered systolic arterial pressures in WT, when compared with all of the other groups. TNF-α and IL-1β plasma concentrations were not different among the groups. We conclude that the systolic blood pressure of unrestrained mice can be lowered by chronic in-vivo activation of PAR2; however, this effect is countered by receptor desensitization and the concomitant development of endothelium and vascular dysfunction.
Collapse
Affiliation(s)
- Keon H. Hughes
- Cardiovascular Research Group, Division of BioMedical Sciences, Memorial University, 300 Prince Philip Drive, St. John's, NL A1B 3V6, Canada
| | - Enoka P. Wijekoon
- Cardiovascular Research Group, Division of BioMedical Sciences, Memorial University, 300 Prince Philip Drive, St. John's, NL A1B 3V6, Canada
| | - James E. Valcour
- Division of Community Health and Humanities, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John's, NL A1B 3V6, Canada
| | - Elizabeth W. Chia
- Cardiovascular Research Group, Division of BioMedical Sciences, Memorial University, 300 Prince Philip Drive, St. John's, NL A1B 3V6, Canada
| | - John J. McGuire
- Cardiovascular Research Group, Division of BioMedical Sciences, Memorial University, 300 Prince Philip Drive, St. John's, NL A1B 3V6, Canada
| |
Collapse
|
32
|
Hennessey JC, McGuire JJ. Attenuated vasodilator effectiveness of protease-activated receptor 2 agonist in heterozygous par2 knockout mice. PLoS One 2013; 8:e55965. [PMID: 23409098 PMCID: PMC3567012 DOI: 10.1371/journal.pone.0055965] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/03/2013] [Indexed: 01/20/2023] Open
Abstract
Studies of homozygous PAR2 gene knockout mice have described a mix of phenotypic effects in vitro and in vivo. However, there have been few studies of PAR2 heterozygous (wild-type/knockout; PAR2-HET) mice. The phenotypes of many hemi and heterozygous transgenic mice have been described as intermediates between those of wild-type and knockout animals. In our study we aimed to determine the effects of intermediary par2 gene zygosity on vascular tissue responses to PAR2 activation. Specifically, we compared the vasodilator effectiveness of the PAR2 activating peptide 2-furoyl-LIGRLO-amide in aortas of wild-type PAR2 homozygous (PAR2-WT) and PAR2-HET mice. In myographs under isometric tension conditions, isolated aortic rings were contracted by alpha 1-adrenoeceptor agonist (phenylephrine), and thromboxane receptor agonist (U46619) and then relaxation responses by the additions of 2-furoyl-LIGRLO-amide, acetylcholine, and nitroprusside were recorded. A Schild regression analysis of the inhibition by a PAR2 antagonist (GB-83) of PAR2 agonist-induced aortic ring relaxations was used to compare receptor expression in PAR2-WT to PAR2-HET. PAR2 mRNA in aortas was measured by quantitative real-time PCR. In aortas contracted by either phenylephrine or U46619, the maximum relaxations induced by 2-furoyl-LIGRLO-amide were less in PAR2-HET than in the gender-matched PAR2-WT. GB-83 was 3- to 4-fold more potent for inhibition of 2fly in PAR2-HET than in PAR2-WT. PAR2 mRNA content of aortas from PAR2-HET was not significantly different than in PAR2-WT. Acetylcholine- and nitroprusside-induced relaxations of aortas from PAR2-HET were not significantly different than in PAR2-WT and PAR2 knockout. An interesting secondary finding was that relaxations induced by agonists of PAR2 and muscarinic receptors were larger in females than in males. We conclude that the lower PAR2-mediated responses in PAR2-HET aortas are consistent with evidence of a lower quantity of functional receptor expression, despite the apparently normal PAR2 mRNA content in PAR2-HET aortas.
Collapse
Affiliation(s)
- John C. Hennessey
- Cardiovascular Research Group, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - John J. McGuire
- Cardiovascular Research Group, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
33
|
Evaluation of antibodies directed against human protease-activated receptor-2. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:861-73. [PMID: 22842724 DOI: 10.1007/s00210-012-0783-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 07/13/2012] [Indexed: 12/29/2022]
Abstract
Protease-activated receptor 2 (PAR2) is a G protein-coupled receptor activated by intramolecular docking of a tethered ligand that is released by the actions of proteases, mainly of the serine protease family. Here, we evaluate four commercially available anti-PAR2 antibodies, SAM11, C17, N19 and H99, demonstrating marked differences in the ability of these reagents to detect the target receptor in Western blot, immunocytochemical and flow cytometry applications. In Western blot analysis, we evaluated antibody reactivity against both ectopic and endogenous receptors. Against material from transfected cells, we show that SAM11 and N19, and to a lesser extent C17, but not H99, are able to detect ectopic PAR2. Interestingly, these Western blot analyses indicate that N19 and C17 detect conformations of ectopic PAR2 distinct to those recognised by SAM11. Significantly, our data also indicate that Western blot signal detected by SAM11 and C17, and much of the signal detected by N19, against cells endogenously expressing PAR2 is non-specific. Despite confounding non-specific signals, we were able to discern N19 reactivity against endogenous PAR2 as a broad smear that we also observed in ectopically expressing human and mouse cells and that is sensitive to loss of N-glycosylation. In immunocytochemistry analysis, each antibody is able to detect ectopic PAR2 although it appears that H99 detects only a subset of the ectopically expressed receptor. In addition, SAM11 and N19 are able to detect both ectopic and endogenous cell surface PAR2 by flow cytometry. In summary: (1) each antibody can detect ectopic PAR2 by immunocytochemical analysis with SAM11 and N19 suitable for cell surface detection of both ectopic and endogenous receptor by flow cytometry; (2) in Western blot analysis, N19, SAM11 and C17 can detect ectopically expressed PAR2, with only N19 able to detect the endogenous receptor by this technique and (3) in each of these approaches, appropriate controls are essential to ensure that non-specific reactivity is identified.
Collapse
|
34
|
Howitt L, Grayson TH, Morris MJ, Sandow SL, Murphy TV. Dietary obesity increases NO and inhibits BKCa-mediated, endothelium-dependent dilation in rat cremaster muscle artery: association with caveolins and caveolae. Am J Physiol Heart Circ Physiol 2012; 302:H2464-76. [DOI: 10.1152/ajpheart.00965.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Obesity is a risk factor for hypertension and other vascular disease. The aim of this study was to examine the effect of diet-induced obesity on endothelium-dependent dilation of rat cremaster muscle arterioles. Male Sprague-Dawley rats (213 ± 1 g) were fed a cafeteria-style high-fat or control diet for 16–20 wk. Control rats weighed 558 ± 7 g compared with obese rats 762 ± 12 g ( n = 52–56; P < 0.05). Diet-induced obesity had no effect on acetylcholine (ACh)-induced dilation of isolated, pressurized (70 mmHg) arterioles, but sodium nitroprusside (SNP)-induced vasodilation was enhanced. ACh-induced dilation of arterioles from control rats was abolished by a combination of the KCa blockers apamin, 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34), and iberiotoxin (IBTX; all 0.1 μmol/l), with no apparent role for nitric oxide (NO). In arterioles from obese rats, however, IBTX had no effect on responses to ACh while the NO synthase (NOS)/guanylate cyclase inhibitors Nω-nitro-l-arginine methyl ester (l-NAME; 100 μmol/l)/1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10 μmol/l) partially inhibited ACh-induced dilation. Furthermore, NOS activity (but not endothelial NOS expression) was increased in arteries from obese rats. l-NAME/ODQ alone or removal of the endothelium constricted arterioles from obese but not control rats. Expression of caveolin-1 and -2 oligomers (but not monomers or caveolin-3) was increased in arterioles from obese rats. The number of caveolae was reduced in the endothelium of arteries, and caveolae density was increased at the ends of smooth muscle cells from obese rats. Diet-induced obesity abolished the contribution of large-conductance Ca2+-activated K+ channel to ACh-mediated endothelium-dependent dilation of rat cremaster muscle arterioles, while increasing NOS activity and inducing an NO-dependent component.
Collapse
Affiliation(s)
- Lauren Howitt
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia; and
| | - T. Hilton Grayson
- Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Margaret J. Morris
- Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Shaun L. Sandow
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia; and
- Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Timothy V. Murphy
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia; and
| |
Collapse
|
35
|
Targeting proteinase-activated receptors: therapeutic potential and challenges. Nat Rev Drug Discov 2012; 11:69-86. [PMID: 22212680 DOI: 10.1038/nrd3615] [Citation(s) in RCA: 240] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Proteinase-activated receptors (PARs), a family of four seven-transmembrane G protein-coupled receptors, act as targets for signalling by various proteolytic enzymes. PARs are characterized by a unique activation mechanism involving the proteolytic unmasking of a tethered ligand that stimulates the receptor. Given the emerging roles of these receptors in cancer as well as in disorders of the cardiovascular, musculoskeletal, gastrointestinal, respiratory and central nervous system, PARs have become attractive targets for the development of novel therapeutics. In this Review we summarize the mechanisms by which PARs modulate cell function and the roles they can have in physiology and diseases. Furthermore, we provide an overview of possible strategies for developing PAR antagonists.
Collapse
|
36
|
Leiva A, Pardo F, Ramírez MA, Farías M, Casanello P, Sobrevia L. Fetoplacental vascular endothelial dysfunction as an early phenomenon in the programming of human adult diseases in subjects born from gestational diabetes mellitus or obesity in pregnancy. EXPERIMENTAL DIABETES RESEARCH 2011; 2011:349286. [PMID: 22144986 PMCID: PMC3226353 DOI: 10.1155/2011/349286] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 08/11/2011] [Accepted: 09/07/2011] [Indexed: 12/16/2022]
Abstract
Gestational diabetes mellitus (GDM) and obesity in pregnancy (OP) are pathological conditions associated with placenta vascular dysfunction coursing with metabolic changes at the fetoplacental microvascular and macrovascular endothelium. These alterations are seen as abnormal expression and activity of the cationic amino acid transporters and endothelial nitric oxide synthase isoform, that is, the "endothelial L-arginine/nitric oxide signalling pathway." Several studies suggest that the endogenous nucleoside adenosine along with insulin, and potentially arginases, are factors involved in GDM-, but much less information regards their role in OP-associated placental vascular alterations. There is convincing evidence that GDM and OP prone placental endothelium to an "altered metabolic state" leading to fetal programming evidenced at birth, a phenomenon associated with future development of chronic diseases. In this paper it is suggested that this pathological state could be considered as a metabolic marker that could predict occurrence of diseases in adulthood, such as cardiovascular disease, obesity, diabetes mellitus (including gestational diabetes), and metabolic syndrome.
Collapse
Affiliation(s)
- Andrea Leiva
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, P.O. Box 114-D, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
37
|
Chia E, Kagota S, Wijekoon EP, McGuire JJ. Protection of protease-activated receptor 2 mediated vasodilatation against angiotensin II-induced vascular dysfunction in mice. BMC Pharmacol 2011; 11:10. [PMID: 21955547 PMCID: PMC3192660 DOI: 10.1186/1471-2210-11-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 09/28/2011] [Indexed: 12/31/2022] Open
Abstract
Background Under conditions of cardiovascular dysfunction, protease-activated receptor 2 (PAR2) agonists maintain vasodilatation activity, which has been attributed to increased cyclooxygenase-2, nitric oxide synthase and calcium-activated potassium channel (SK3.1) activities. Protease-activated receptor 2 agonist mediated vasodilatation is unknown under conditions of dysfunction caused by angiotensin II. The main purpose of our study was to determine whether PAR2-induced vasodilatation of resistance arteries was attenuated by prolonged angiotensin II treatment in mice. We compared the vasodilatation of resistance-type arteries (mesenteric) from angiotensin II-treated PAR2 wild-type mice (WT) induced by PAR2 agonist 2-furoyl-LIGRLO-amide (2fly) to the responses obtained in controls (saline treatment). We also investigated arterial vasodilatation in angiotensin II-treated PAR2 deficient (PAR2-/-) mice. Results 2fly-induced relaxations of untreated arteries from angiotensin II-treated WT were not different than saline-treated WT. Treatment of arteries with nitric oxide synthase inhibitor and SK3.1 inhibitor (L-NAME + TRAM-34) blocked 2fly in angiotensin II-treated WT. Protein and mRNA expression of cyclooxygenase-1 and -2 were increased, and cyclooxygenase activity increased the sensitivity of arteries to 2fly in only angiotensin II-treated WT. These protective vasodilatation mechanisms were selective for 2fly compared with acetylcholine- and nitroprusside-induced relaxations which were attenuated by angiotensin II; PAR2-/- were protected against this attenuation of nitroprusside. Conclusions PAR2-mediated vasodilatation of resistance type arteries is protected against the negative effects of angiotensin II-induced vascular dysfunction in mice. In conditions of endothelial dysfunction, angiotensin II induction of cyclooxygenases increases sensitivity to PAR2 agonist and the preserved vasodilatation mechanism involves activation of SK3.1.
Collapse
Affiliation(s)
- Elizabeth Chia
- Memorial University, St, John's, Newfoundland and Labrador, Canada
| | | | | | | |
Collapse
|