1
|
Fijałkowska A, Wojtania J, Woźniacka A, Robak E. Psoriasis and Lupus Erythematosus-Similarities and Differences between Two Autoimmune Diseases. J Clin Med 2024; 13:4361. [PMID: 39124628 PMCID: PMC11312967 DOI: 10.3390/jcm13154361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Systemic lupus erythematosus (SLE) and psoriasis (Ps) are two clinically distinct diseases with different pathogenesis. However, recent studies indicate some similarities in both clinical presentation and pathogenetic mechanisms. The coexistence of both entities is very uncommon and has not been fully elucidated. Thus, it remains a diagnostic and therapeutic challenge. In fact, drugs used in SLE can induce psoriatic lesions, whereas phototherapy effective in Ps is an important factor provoking skin lesions in patients with SLE. The aim of this work is to discuss in detail the common pathogenetic elements and the therapeutic options effective in both diseases.
Collapse
Affiliation(s)
| | | | | | - Ewa Robak
- Department of Dermatology and Venereology, Medical University of Lodz, Haller sq. 1, 90-647 Lodz, Poland; (A.F.); (J.W.); (A.W.)
| |
Collapse
|
2
|
Abisheva S, Rutskaya-Moroshan K, Nuranova G, Batyrkhan T, Abisheva A. Antimalarial Drugs at the Intersection of SARS-CoV-2 and Rheumatic Diseases: What Are the Potential Opportunities? MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1171. [PMID: 39064600 PMCID: PMC11279047 DOI: 10.3390/medicina60071171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Background and Objectives: The coronavirus disease of 2019 (COVID-19) pandemic has posed a serious threat to humanity and is considered a global health emergency. Antimalarial drugs (ADs) have been used in the treatment of immuno-inflammatory arthritis (IIA) and coronavirus infection (COVID-19). The aim of this review is to analyze the current knowledge about the immunomodulatory and antiviral mechanisms of action, characteristics of use, and side effects of antimalarial drugs. Material and Methods: A literature search was carried out using PubMed, MEDLINE, SCOPUS, and Google Scholar databases. The inclusion criteria were the results of randomized and cohort studies, meta-analyses, systematic reviews, and original full-text manuscripts in the English language containing statistically confirmed conclusions. The exclusion criteria were summary reports, newspaper articles, and personal messages. Qualitative methods were used for theoretical knowledge on antimalarial drug usage in AIRDs and SARS-CoV-2 such as a summarization of the literature and a comparison of the treatment methods. Results: The ADs were considered a "candidate" for the therapy of a new coronavirus infection due to mechanisms of antiviral activity, such as interactions with endocytic pathways, the prevention of glycosylation of the ACE2 receptors, blocking sialic acid receptors, and reducing the manifestations of cytokine storms. The majority of clinical trials suggest no role of antimalarial drugs in COVID-19 treatment or prevention. These circumstances do not allow for their use in the treatment and prevention of COVID-19. Conclusions: The mechanisms of hydroxychloroquine are related to potential cardiotoxic manifestations and demonstrate potential adverse effects when used for COVID-19. Furthermore, the need for high doses in the treatment of viral infections increases the likelihood of gastrointestinal side effects, the prolongation of QT, and retinopathy. Large randomized clinical trials (RCTs) have refuted the fact that there is a positive effect on the course and results of COVID-19.
Collapse
Affiliation(s)
- Saule Abisheva
- Department of Family Medicine №1, NJSC “Astana Medical University”, Astana 010000, Kazakhstan; (S.A.); (T.B.); (A.A.)
| | - Kristina Rutskaya-Moroshan
- Department of Family Medicine №1, NJSC “Astana Medical University”, Astana 010000, Kazakhstan; (S.A.); (T.B.); (A.A.)
| | - Gulnaz Nuranova
- Department of Children’s Diseases with Courses in Pulmonology and Nephrology, NJSC “Astana Medical University”, Astana 010000, Kazakhstan;
| | - Tansholpan Batyrkhan
- Department of Family Medicine №1, NJSC “Astana Medical University”, Astana 010000, Kazakhstan; (S.A.); (T.B.); (A.A.)
| | - Anilim Abisheva
- Department of Family Medicine №1, NJSC “Astana Medical University”, Astana 010000, Kazakhstan; (S.A.); (T.B.); (A.A.)
| |
Collapse
|
3
|
Trefond L, Lhote R, Mathian A, de Chambrun MP, Pha M, Hie M, Miyara M, Papo M, Moyon Q, Taieb D, Saade S, Salem TB, Haroche J, Chasset F, Aubart FC, Zahr N, Amoura Z. Identification of new risk factors for hydroxychloroquine and chloroquine retinopathy in systemic lupus erythematosus patients. Semin Arthritis Rheum 2024; 66:152417. [PMID: 38394986 DOI: 10.1016/j.semarthrit.2024.152417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/20/2023] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Long-term hydroxychloroquine (HCQ) or chloroquine (CQ) intake causes retinal toxicity in 0.3-8 % of patients with rheumatic diseases. Numerous risk factors have been described, eg, daily dose by weight, treatment duration, chronic kidney disease, concurrent tamoxifen therapy and pre-existing retinal or macular disease. However, those factors cannot explain the entire risk of developing antimalarial retinopathy. OBJECTIVE This study was undertaken to identify new risk factors associated with HCQ or CQ retinopathy (QRNP) in systemic lupus erythematosus (SLE) patients. METHODS This case-control (1:2) study compared SLE patients with QRNP (cases) to those without (controls). Controls were matched for sex and known QRNP risk factors: HCQ and/or CQ treatment duration (±1 year) and age (±5 year) at SLE diagnosis. RESULTS Forty-eight cases were compared to 96 SLE controls. Multivariable logistic-regression analysis retained the following as independent determinants significantly associated with QRNP: concomitant selective serotonin-reuptake inhibitor (SSRI) or serotonin- and norepinephrine-reuptake inhibitor (SNRI) intake (OR [95 % confidence interval] 6.6 [1.2 to 40.9]; p < 0.01); antiphospholipid syndrome (OR=8.9 [2.2 to 41.4] p < 0.01); blood hydroxychloroquine/desethylchloroquine concentration ([HCQ]/[DCQ]) ratio <7.2 (OR 8.4 [2.7 to 30.8]; p < 0.01) or skin phototype ≥4 (OR 5.5 [1.4 to 26.5]; p = 0.02), but not daily HCQ dose, blood [HCQ] or body mass index. CONCLUSION The results of this case-control study identified blood [HCQ]/[DCQ] ratio, concurrent SSRI/SNRI therapy, skin phototype ≥4 and antiphospholipid syndrome as new risk factors for QRNP.
Collapse
Affiliation(s)
- Ludovic Trefond
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (APHP), Groupe Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France; Médecine Interne, Centre Hospitalier Universitaire Gabriel-Montpied, M2iSH, Inserm UMR, Université Clermont-Auvergne, 63000 Clermont-Ferrand, France
| | - Raphael Lhote
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (APHP), Groupe Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Alexis Mathian
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (APHP), Groupe Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Marc Pineton de Chambrun
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (APHP), Groupe Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Micheline Pha
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (APHP), Groupe Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Miguel Hie
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (APHP), Groupe Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Makoto Miyara
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (APHP), Groupe Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Matthias Papo
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (APHP), Groupe Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Quentin Moyon
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (APHP), Groupe Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Dov Taieb
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (APHP), Groupe Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Sonia Saade
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (APHP), Groupe Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Thouraya Ben Salem
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (APHP), Groupe Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Julien Haroche
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (APHP), Groupe Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - François Chasset
- Sorbonne Université, Faculté de Médecine, APHP, Service de Dermatologie et Allergologie, Hôpital Tenon, Paris, France
| | - Fleur Cohen Aubart
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (APHP), Groupe Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Noël Zahr
- Service de Pharmacologie, APHP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Zahir Amoura
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (APHP), Groupe Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France.
| |
Collapse
|
4
|
Fierro JJ, Velásquez-Berrío M, Ospina A, Henning S, de Leeuw K, Cadavid J ÁP. The effects of hydroxychloroquine and its promising use in refractory obstetric antiphospholipid syndrome. Rheumatol Int 2024; 44:223-234. [PMID: 37741812 PMCID: PMC10796698 DOI: 10.1007/s00296-023-05457-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 09/25/2023]
Abstract
Hydroxychloroquine (HCQ) is obtained by hydroxylation of chloroquine (CQ) and the first indication was malaria. Nowadays, HCQ is commonly used in systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) with favorable results. Antiphospholipid syndrome (APS) is an autoimmune disease characterized by thrombosis and/or pregnancy morbidity and persistent positivity of antiphospholipid antibodies. Around 20-30% of pregnant women with APS develop adverse pregnancy outcomes despite conventional treatment with aspirin and heparin, called refractory obstetric APS. Interestingly, HCQ has shown positive effects on top of the standard of care in some refractory obstetric APS patients. HCQ mechanisms of action in APS comprise its ability to bind sialic acid present in cell membranes, its capacity to block the binding of antiphospholipid antibodies to the cell and the induced increase of pH in extracellular and intracellular compartments. However, the precise mechanisms of HCQ in the specific situation of refractory APS still need to be fully clarified. Therefore, this review summarizes the known modulating effects of HCQ and CQ, their side effects and use in APS and different pathologies to understand the benefit effects and the mechanism of action of HCQ in refractory obstetric APS.
Collapse
Affiliation(s)
- Juan J Fierro
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700RB, Groningen, The Netherlands.
- Grupo Reproducción, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia.
| | - Manuela Velásquez-Berrío
- Grupo Reproducción, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Alexandra Ospina
- Grupo Reproducción, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Svenja Henning
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700RB, Groningen, The Netherlands
| | - Karina de Leeuw
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700RB, Groningen, The Netherlands
| | - Ángela P Cadavid J
- Grupo Reproducción, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
5
|
Bert A, El Jammal T, Kodjikian L, Gerfaud-Valentin M, Jamilloux Y, Seve P. Hydroxychloroquine Therapy in Sarcoidosis-Associated Uveitis. Ocul Immunol Inflamm 2024; 32:154-160. [PMID: 36749910 DOI: 10.1080/09273948.2023.2165952] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/03/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND/PURPOSE To assess the efficacy and tolerance of hydroxychloroquine in sarcoidosis-associated uveitis. METHODS Retrospective study on all patients with sarcoidosis-associated uveitis who were treated with hydroxychloroquine between 2003 and 2019 in a French university hospital. RESULTS Twenty-seven patients with sarcoidosis-associated uveitis received hydroxychloroquine. The mean duration of treatment was 20.0 ± 10.9 months. At the end of the follow-up, hydroxychloroquine success was achieved in 15 (55.6%) patients. Four of them were also on oral corticosteroids, with a prednisone dose ≤5 mg/day. Under treatment, the median prednisone dose decreased from 20.0 (interquartile range (IQR), 7-25) to 5.0 (IQR, 3-6.5) mg/day (p = .02). The incidence rate of flare decreased from 204.6 to 63.8 per 100 person-years (p = .02). Hydroxychloroquine was discontinued in 12 (44.4%) patients during follow-up, including 8 (29.6%) for ineffectiveness, and three who experienced side effects. CONCLUSION Hydroxychloroquine appears as an interesting option in sarcoidosis-associated uveitis.Abbreviations: AZA: Azathioprine; BAL: Bronchoalveolar Lavage; BCVA: Best-Corrected Visual Acuity; ENT: Ears, Nose and Throat; HCQ: Hydroxychloroquine; IOP: Intra-Ocular Pressure; IQR: interquartile range; MHC: Major Histocompatibility Complex; MMF: Mycophenolate Mofetil; MTX: Methotrexate; PMSI: Programme de Médicalisation du Système d'Information; SAU: Sarcoidosis-Associated Uveitis; SD: Standard Deviation; SUN: Standard Uveitis Nomenclature.
Collapse
Affiliation(s)
- Arthur Bert
- Department of Internal Medicine, University Hospital Lyon Croix-Rousse, Claude Bernard University - Lyon 1, Lyon, France
| | - Thomas El Jammal
- Department of Internal Medicine, University Hospital Lyon Croix-Rousse, Claude Bernard University - Lyon 1, Lyon, France
| | - Laurent Kodjikian
- Department of Ophthalmology, University Hospital Lyon Croix-Rousse, University Claude Bernard University - Lyon 1, Lyon, France
| | - Mathieu Gerfaud-Valentin
- Department of Internal Medicine, University Hospital Lyon Croix-Rousse, Claude Bernard University - Lyon 1, Lyon, France
| | - Yvan Jamilloux
- Department of Internal Medicine, University Hospital Lyon Croix-Rousse, Claude Bernard University - Lyon 1, Lyon, France
| | - Pascal Seve
- Department of Internal Medicine, University Hospital Lyon Croix-Rousse, Claude Bernard University - Lyon 1, Lyon, France
- Research on Healthcare Performance (RESHAPE), INSERM U1290, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
6
|
Pan M, Jin R, Dai Y, Gao B, Liu Y, Peng X, Qiao J, Shuai Z. The presumable effects of hydroxychloroquine and its metabolites in the treatment of systemic lupus erythematosus. Int Immunopharmacol 2024; 126:111269. [PMID: 38006753 DOI: 10.1016/j.intimp.2023.111269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 11/27/2023]
Abstract
OBJECTIVE Hydroxychloroquine (HCQ) is an essential drug in the treatment of systemic lupus erythematosus (SLE). This study aimed to detect the concentrations of HCQ and its metabolites from peripheral blood of SLE patients and to investigate the relationship between those concentrations and SLE disease activity. METHODS 176 SLE patients treated with HCQ were enrolled in this study. The concentrations of HCQ and its metabolites in their peripheral blood were measured by high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). Patients' disease activity was evaluated with the systemic lupus erythematosus disease activity index (SLEDAI). The variables between different concentrations or treatments were statistically analyzed. Linear regression was employed to explore relationships between the concentrations of HCQ and its metabolites with the disease activity. RESULTS The SLEDAI was lower in patients with higher concentrations of HCQ, desethylhydroxychloroquine (DHCQ), and desethylchloroquine (DCQ) (P = 0.024, P = 0.018, and P = 0.003, respectively). There were no significant differences in SLEDAI and the concentrations of HCQ and its metabolites among groups with different treatments (P > 0.05). After adjusting age, gender, disease duration, HCQ dose adjusted to actual body weight, and glucocorticoid (GC) dose, the SLEDAI was negatively correlated with the concentrations of HCQ, DHCQ, DCQ and bisdesethylchloroquine (BDCQ) (P = 0.007, P = 0.011, P = 0.029, and P = 0.008, respectively). After grouping analysis, in patients treated with HCQ and GC, the SLEDAI was negatively correlated with concentrations of HCQ, DHCQ and BDCQ (P = 0.011, P = 0.035, and P = 0.036, respectively). CONCLUSIONS The concentrations of HCQ and metabolites were correlated with the SLE disease activity after adjusting possible confounding factors, indicating that HCQ and its metabolites might play certain immunoregulatory roles in SLE treatment. Moreover, GC might have a synergistic effect with HCQ. It is helpful in clinical management and follow-up to monitor the concentrations of HCQ and its metabolites in SLE patients.
Collapse
Affiliation(s)
- Menglu Pan
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, China
| | - Ruimin Jin
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, China
| | - Yaqian Dai
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, China
| | - Beibei Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, China
| | - Yue Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, China
| | - Xinchen Peng
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, China
| | - Jinping Qiao
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, China.
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui Province 230032, China.
| |
Collapse
|
7
|
Low LE, Kong CK, Yap WH, Siva SP, Gan SH, Siew WS, Ming LC, Lai-Foenander AS, Chang SK, Lee WL, Wu Y, Khaw KY, Ong YS, Tey BT, Singh SK, Dua K, Chellappan DK, Goh BH. Hydroxychloroquine: Key therapeutic advances and emerging nanotechnological landscape for cancer mitigation. Chem Biol Interact 2023; 386:110750. [PMID: 37839513 DOI: 10.1016/j.cbi.2023.110750] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/12/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
Hydroxychloroquine (HCQ) is a unique class of medications that has been widely utilized for the treatment of cancer. HCQ plays a dichotomous role by inhibiting autophagy induced by the tumor microenvironment (TME). Preclinical studies support the use of HCQ for anti-cancer therapy, especially in combination with conventional anti-cancer treatments since they sensitize tumor cells to drugs, potentiating the therapeutic activity. However, clinical evidence has suggested poor outcomes for HCQ due to various obstacles, including non-specific distribution, low aqueous solubility and low bioavailability at target sites, transport across tissue barriers, and retinal toxicity. These issues are addressable via the integration of HCQ with nanotechnology to produce HCQ-conjugated nanomedicines. This review aims to discuss the pharmacodynamic, pharmacokinetic and antitumor properties of HCQ. Furthermore, the antitumor performance of the nanoformulated HCQ is also reviewed thoroughly, aiming to serve as a guide for the HCQ-based enhanced treatment of cancers. The nanoencapsulation or nanoconjugation of HCQ with nanoassemblies appears to be a promising method for reducing the toxicity and improving the antitumor efficacy of HCQ.
Collapse
Affiliation(s)
- Liang Ee Low
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Chee Kei Kong
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Wei-Hsum Yap
- School of Biosciences, Taylor's University, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia; Centre for Drug Discovery and Molecular Pharmacology, Faculty of Medical and Health Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Sangeetaprivya P Siva
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Siew Hua Gan
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Wei Sheng Siew
- School of Biosciences, Taylor's University, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Long Chiau Ming
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Sunway City, Selangor, Malaysia.
| | - Ashley Sean Lai-Foenander
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Sui Kiat Chang
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, 31900, Perak, Malaysia.
| | - Wai-Leng Lee
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Yongjiang Wu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China.
| | - Kooi-Yeong Khaw
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Yong Sze Ong
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Beng Ti Tey
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India.
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), 57000 Bukit Jalil, Kuala Lumpur, Malaysia.
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China; Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway City, Selangor, Malaysia.
| |
Collapse
|
8
|
Ravipati A, Randolph M, Al-Salhi W, Tosti A. Use of Hydroxychloroquine in Hair Disorders. Skin Appendage Disord 2023; 9:416-422. [PMID: 38058539 PMCID: PMC10697765 DOI: 10.1159/000533583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/10/2023] [Indexed: 12/08/2023] Open
Abstract
Hydroxychloroquine (HCQ) is an antimalarial that is utilized to treat a range of dermatologic and autoimmune disorders. With its ability to alter immunologic mechanisms, it has been used to slow or halt the progression of hair loss in conditions secondary to autoimmune dysfunction. Lichen planopilaris (LPP), frontal fibrosing alopecia (FFA), and alopecia areata (AA) are hair disorders with underlying autoimmune components and no standardized treatment guidelines. We summarized the available literature on the use of HCQ to treat LPP, FFA, and AA. For all three conditions, HCQ showed variable efficacy from halted hair loss to no improvement. While patients did show success with HCQ treatment, there were no clear treatment patterns. Regimens ranged from HCQ monotherapy to combination treatments with other agents like steroids. Overall, HCQ should certainly be considered by clinicians as a treatment option for patient suffering from these hair disorders. While there is no standardized treatment, incorporation of HCQ should take into consideration individual patient characteristics, clinical judgment, and risks of side effects.
Collapse
Affiliation(s)
- Advaitaa Ravipati
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami School of Medicine, Miami, FL, USA
| | - Michael Randolph
- Department of Dermatology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Waleed Al-Salhi
- Department of Dermatology, Majmaah University College of Medicine, Al-Majmaah, Saudi Arabia
| | - Antonella Tosti
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami School of Medicine, Miami, FL, USA
| |
Collapse
|
9
|
Rao IR, Kolakemar A, Shenoy SV, Prabhu RA, Nagaraju SP, Rangaswamy D, Bhojaraja MV. Hydroxychloroquine in nephrology: current status and future directions. J Nephrol 2023; 36:2191-2208. [PMID: 37530940 PMCID: PMC10638202 DOI: 10.1007/s40620-023-01733-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/03/2023] [Indexed: 08/03/2023]
Abstract
Hydroxychloroquine is one of the oldest disease-modifying anti-rheumatic drugs in clinical use. The drug interferes with lysosomal activity and antigen presentation, inhibits autophagy, and decreases transcription of pro-inflammatory cytokines. Owing to its immunomodulatory, anti-inflammatory, anti-thrombotic effect, hydroxychloroquine has been an integral part of therapy for systemic lupus erythematosus and lupus nephritis for several decades. The therapeutic versatility of hydroxychloroquine has led to repurposing it for other clinical conditions, with recent studies showing reduction in proteinuria in IgA nephropathy. Research is also underway to investigate the efficacy of hydroxychloroquine in primary membranous nephropathy, Alport's syndrome, systemic vasculitis, anti-GBM disease, acute kidney injury and for cardiovascular risk reduction in chronic kidney disease. Hydroxychloroquine is well-tolerated, inexpensive, and widely available and therefore, should its indications expand in the future, it would certainly be welcomed. However, clinicians should be aware of the risk of irreversible and progressive retinal toxicity and rarely, cardiomyopathy. Monitoring hydroxychloroquine levels in blood appears to be a promising tool to evaluate compliance, individualize the dose and reduce the risk of retinal toxicity, although this is not yet standard clinical practice. In this review, we discuss the existing knowledge regarding the mechanism of action of hydroxychloroquine, its utility in lupus nephritis and other kidney diseases, the main adverse effects and the evidence gaps that need to be addressed in future research. Created with Biorender.com. HCQ, hydroxychloroquine; GBM, glomerular basement membrane; mDC, myeloid dendritic cell; MHC, major histocompatibility complex; TLR, toll-like receptor.
Collapse
Affiliation(s)
- Indu Ramachandra Rao
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104.
| | - Ashwija Kolakemar
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Srinivas Vinayak Shenoy
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Ravindra Attur Prabhu
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Shankar Prasad Nagaraju
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Dharshan Rangaswamy
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | | |
Collapse
|
10
|
Yusuf IH, Charbel Issa P, Ahn SJ. Hydroxychloroquine-induced Retinal Toxicity. Front Pharmacol 2023; 14:1196783. [PMID: 37324471 PMCID: PMC10267834 DOI: 10.3389/fphar.2023.1196783] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
Long-term use of hydroxychloroquine can cause retinopathy, which may result in severe and progressive visual loss. In the past decade, hydroxychloroquine use has markedly increased and modern retinal imaging techniques have enabled the detection of early, pre-symptomatic disease. As a consequence, the prevalence of retinal toxicity in long-term hydroxychloroquine users is known to be higher than was previously estimated. The pathophysiology of the retinopathy is incompletely characterised, although significant advances have been made in understanding the disease from clinical imaging studies. Hydroxychloroquine retinopathy elicits sufficient public health concern to justify the implementation of retinopathy screening programs for patients at risk. Here, we describe the historical background of hydroxychloroquine retinopathy and summarize its current understanding. We review the utility and limitations of each of the mainstream diagnostic tests used to detect hydroxychloroquine retinopathy. The key considerations towards a consensus on the definition of hydroxychloroquine retinopathy are outlined in the context of what is known of the natural history of the disease. We compare the current screening recommendations for hydroxychloroquine retinopathy, identifying where additional evidence is required, and the management of proven cases of toxicity. Finally, we highlight the areas for further investigation, which may further reduce the risk of visual loss in hydroxychloroquine users.
Collapse
Affiliation(s)
- Imran H. Yusuf
- Oxford Eye Hospital and Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Peter Charbel Issa
- Oxford Eye Hospital and Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Seong Joon Ahn
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, South Korea
| |
Collapse
|
11
|
Fairley JL, Nikpour M, Mack HG, Brosnan M, Saracino AM, Pellegrini M, Wicks IP. How toxic is an old friend? A review of the safety of hydroxychloroquine in clinical practice. Intern Med J 2023; 53:311-317. [PMID: 35969110 PMCID: PMC10947006 DOI: 10.1111/imj.15908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022]
Abstract
Hydroxychloroquine (HCQ) and its close relative chloroquine (CQ) were initially used as antimalarial agents but are now widely prescribed in rheumatology, dermatology and immunology for the management of autoimmune diseases. HCQ is considered to have a better long-term safety profile than CQ and is therefore more commonly used. HCQ has a key role in the treatment of connective tissue diseases including systemic lupus erythematosus (SLE), where it provides beneficial immunomodulation without clinically significant immunosuppression. HCQ can also assist in managing inflammatory arthritis, including rheumatoid arthritis (RA). Debate around toxicity of HCQ in COVID-19 has challenged those who regularly prescribe HCQ to discuss its potential toxicities. Accordingly, we have reviewed the adverse effect profile of HCQ to provide guidance about this therapeutic agent in clinical practice.
Collapse
Affiliation(s)
- Jessica L. Fairley
- Department of RheumatologyRoyal Melbourne HospitalMelbourneVictoriaAustralia
- Department of MedicineThe University of Melbourne at St Vincent's Hospital (Melbourne)MelbourneVictoriaAustralia
| | - Mandana Nikpour
- Department of MedicineThe University of Melbourne at St Vincent's Hospital (Melbourne)MelbourneVictoriaAustralia
- Department of RheumatologySt. Vincent's Hospital MelbourneMelbourneVictoriaAustralia
| | - Heather G. Mack
- Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalMelbourneVictoriaAustralia
- Department of OphthalmologyMelbourne HealthMelbourneVictoriaAustralia
| | - Maria Brosnan
- Department of CardiologySt. Vincent's Hospital MelbourneMelbourneVictoriaAustralia
| | | | - Marc Pellegrini
- Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Ian P. Wicks
- Department of RheumatologyRoyal Melbourne HospitalMelbourneVictoriaAustralia
- Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
12
|
Villa Zapata L, Boyce RD, Chou E, Hansten PD, Horn JR, Gephart SM, Subbian V, Romero A, Malone DC. QTc Prolongation with the Use of Hydroxychloroquine and Concomitant Arrhythmogenic Medications: A Retrospective Study Using Electronic Health Records Data. Drugs Real World Outcomes 2022; 9:415-423. [PMID: 35665910 PMCID: PMC9167427 DOI: 10.1007/s40801-022-00307-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction Hydroxychloroquine can induce QT/QTc interval prolongation for some patients; however, little is known about its interactions with other QT-prolonging drugs. Objective The purpose of this retrospective electronic health records study was to evaluate changes in the QTc interval in patients taking hydroxychloroquine with or without concomitant QT-prolonging medications. Methods De-identified health records were obtained from the Cerner Health Facts® database. Variables of interest included demographics, diagnoses, clinical procedures, laboratory tests, and medications. Patients were categorized into six cohorts based on exposure to hydroxychloroquine, methotrexate, or sulfasalazine alone, or the combination of any those drugs with any concomitant drug known to prolong the QT interval. Tisdale QTc risk score was calculated for each patient cohort. Two-sample paired t-tests were used to test differences between the mean before and after QTc measurements within each group and ANOVA was used to test for significant differences across the cohort means. Results A statistically significant increase in QTc interval from the last measurement prior to concomitant exposure of 18.0 ms (95% CI 3.5–32.5; p < 0.05) was found in the hydroxychloroquine monotherapy cohort. QTc changes varied considerably across cohorts, with standard deviations ranging from 40.9 (hydroxychloroquine monotherapy) to 57.8 (hydroxychloroquine + sulfasalazine). There was no difference in QTc measurements among cohorts. The hydroxychloroquine + QTc-prolonging agent cohort had the highest average Tisdale Risk Score compared with those without concomitant exposure (p < 0.05). Conclusion Our analysis of retrospective electronic health records found hydroxychloroquine to be associated with a moderate increase in the QTc interval compared with sulfasalazine or methotrexate. However, the QTc was not significantly increased with concomitant exposure to other drugs known to increase QTc interval.
Collapse
Affiliation(s)
- Lorenzo Villa Zapata
- Department of Pharmacy Practice, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Richard D Boyce
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, The Offices@Baum, 5607 Baum Blvd, Pittsburgh, PA, 15202, USA.
| | - Eric Chou
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, The Offices@Baum, 5607 Baum Blvd, Pittsburgh, PA, 15202, USA
| | | | - John R Horn
- Department of Pharmacy Practice, School of Pharmacy and Pharmacy Services UW Medicine, University of Washington, Seattle, WA, USA
| | - Sheila M Gephart
- Community and Health Systems Science, College of Nursing, The University of Arizona, Tucson, AZ, USA
| | - Vignesh Subbian
- Department of Biomedical Engineering and Department of Systems and Industrial Engineering, College of Engineering, The University of Arizona, Tucson, AZ, USA
| | - Andrew Romero
- Department of Pharmacy, Banner University Medical Center, Tucson, AZ, USA
| | - Daniel C Malone
- College of Pharmacy, L.S. Skaggs Research Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
13
|
Jamilloux Y, El Jammal T, Bert A, Sève P. [Hydroxychloroquine for non-severe extra-pulmonary sarcoidosis]. Rev Med Interne 2022; 43:406-411. [PMID: 35660263 DOI: 10.1016/j.revmed.2022.04.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 03/11/2022] [Accepted: 04/21/2022] [Indexed: 01/08/2023]
Abstract
Sarcoidosis can develop into a chronic disease in about 30% of cases. When general treatment is indicated, corticosteroids are the first-line treatment. More than one third of patients treated with corticosteroids receive a steroid-sparing agent. Although methotrexate is the most commonly used sparing agent, synthetic antimalarials have been used for more than fifty years on the basis of small, randomised, therapeutic trials. Despite this low level of evidence, chloroquine or more often hydroxychloroquine are used in daily practice, particularly to treat skin, bone and joint sarcoidosis, as well as hypercalcemia and certain types of uveitis. This review summarises the state of knowledge on steroid-sparing therapy in sarcoidosis, particularly in its extra-pulmonary form. These data support the need for good quality therapeutic trials to validate the use of hydroxychloroquine in this specific indication.
Collapse
Affiliation(s)
- Y Jamilloux
- Service de médecine interne, hôpital de la Croix-Rousse, Hospices Civils de Lyon, Université Claude Bernard-Lyon 1, 103, grande rue de la Croix Rousse, 69004 Lyon, France; Lyon Immunopathology FEderation (LIFE), Université Claude Bernard-Lyon 1, Lyon, France.
| | - T El Jammal
- Service de médecine interne, hôpital de la Croix-Rousse, Hospices Civils de Lyon, Université Claude Bernard-Lyon 1, 103, grande rue de la Croix Rousse, 69004 Lyon, France
| | - A Bert
- Service de médecine interne, hôpital de la Croix-Rousse, Hospices Civils de Lyon, Université Claude Bernard-Lyon 1, 103, grande rue de la Croix Rousse, 69004 Lyon, France
| | - P Sève
- Service de médecine interne, hôpital de la Croix-Rousse, Hospices Civils de Lyon, Université Claude Bernard-Lyon 1, 103, grande rue de la Croix Rousse, 69004 Lyon, France; Université Claude Bernard-Lyon 1, Research on Healthcare Performance (RESHAPE), Inserm U1290, Lyon, France
| |
Collapse
|
14
|
Račková L, Csekes E. Redox aspects of cytotoxicity and anti-neuroinflammatory profile of chloroquine and hydroxychloroquine in serum-starved BV-2 microglia. Toxicol Appl Pharmacol 2022; 447:116084. [PMID: 35618033 DOI: 10.1016/j.taap.2022.116084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022]
Abstract
Chloroquine (CQ) and hydroxychloroquine (HCQ) have long been used worldwide to treat and prevent human malarias. However, these 4-aminoquinolines have also shown promising potential in treating chronic illnesses with an inflammatory component, including neurological diseases. Given the current demand for serum avoidance during pharmacological testing and modeling of some pathologies, we compared cytotoxicities of CQ and HCQ in both serum-deprived and -fed murine BV-2 microglia. Furthermore, we assessed the anti-neuroinflammatory potential of both compounds in serum-deprived cells. Under both conditions, CQ showed higher cytotoxicity than HCQ. However, the comparable MTT-assay-derived data measured under different serum conditions were associated with disparate cytotoxic mechanisms of CQ and HCQ. In particular, under serum starvation, CQ mildly enhanced secondary ROS, mitochondrial hyperpolarization, and decreased phagocytosis. However, CQ promoted G1 phase cell cycle arrest and mitochondrial depolarization in serum-fed cells. Under both conditions, CQ fostered early apoptosis. Additionally, we confirmed that both compounds could exert anti-inflammatory effects in microglia through interference with MAPK signaling under nutrient-deprivation-related stress. Nevertheless, unlike HCQ, CQ is more likely to exaggerate intracellular prooxidant processes in activated starved microglia, which are inefficiently buffered by Nrf2/HO-1 signaling pathway activation. These outcomes also show HCQ as a promising anti-neuroinflammatory drug devoid of CQ-mediated cytotoxicity.
Collapse
Affiliation(s)
- Lucia Račková
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Experimental Pharmacology and Toxicology, Dúbravská cesta 9, 841 04 Bratislava, Slovak Republic.
| | - Erika Csekes
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Experimental Pharmacology and Toxicology, Dúbravská cesta 9, 841 04 Bratislava, Slovak Republic
| |
Collapse
|
15
|
Patel J, Vazquez T, Chin F, Keyes E, Yan D, Diaz D, Grinnell M, Sharma M, Li Y, Feng R, Sprow G, Dan J, Werth VP. Multidimensional immune profiling of cutaneous lupus erythematosus in vivo stratified by patient responses to antimalarials. Arthritis Rheumatol 2022; 74:1687-1698. [PMID: 35583812 DOI: 10.1002/art.42235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/14/2022] [Accepted: 05/12/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The pathogenesis of cutaneous lupus erythematous (CLE) is multifactorial and CLE is difficult to treat due to heterogeneity of inflammatory processes between patients. Antimalarials such as hydroxychloroquine (HCQ) and quinacrine (QC) have long been first-line systemic therapy; however, many patients do not respond and require systemic immunosuppressants with undesirable side effects. Given the complexity and unpredictable responses in CLE, we sought to identify the immunologic landscape of CLE patients stratified by subsequent treatment outcomes to identify potential biomarkers of inducible response. METHOD We performed imaging mass cytometry with 48 treatment-naïve skin biopsies of HCQ responders, QC responders, and non-responders (NR) to analyze multiple immune cell types and inflammatory markers in their native environment in CLE skin. Patients were stratified according to their subsequent response to antimalarials to identify baseline immunophenotypes which may predict response to therapy. RESULTS HCQ responders demonstrated increased CD4 T cells compared to QC. NR had decreased Tregs compared to QC and increased central memory T cells compared to HCQ. QC responders expressed increased phosphorylated (p) STING and IFNκ compared to HCQ. pSTING and IFNκ localized to conventional dendritic cells and positively correlated on a tissue and cellular level. Neighborhood analysis revealed decreased regulatory cell interactions in NR patients. Hierarchical clustering revealed NR groups separated based on pSTAT2/3/4/5, pIRF3, Granzyme B, pJAK2, IL4, IL17, and IFNγ. CONCLUSION These findings demonstrate differential immune compositions between CLE patients, guiding the future for precision-based medicine and treatment response.
Collapse
Affiliation(s)
- Jay Patel
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Vazquez
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104
| | - Felix Chin
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily Keyes
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daisy Yan
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - DeAnna Diaz
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Madison Grinnell
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Meena Sharma
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yubin Li
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rui Feng
- Department of Biostatistics and Epidemiology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Grant Sprow
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Josh Dan
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Victoria P Werth
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
16
|
Nyckowski T, Grammenos A, Vinokurov A, Nathoo R. Between a Rock and a Hard Place: Management of Systemic Lupus Erythematosus and Porphyria Cutanea Tarda. J DERMATOL TREAT 2022; 33:2689-2691. [PMID: 35362354 DOI: 10.1080/09546634.2022.2060925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Porphyria cutanea tarda (PCT), the most common porphyria, is a rare photodermatosis characterized by fragile, hemorrhagic bullae and erosions with associated milia, hyperpigmentation, and hypertrichosis. SLE is a systemic connective tissue disease with approximately 80% of those affected manifesting cutaneous findings. These include malar and discoid rashes, photosensitivity, bullae, oral ulcerations, as well as a variety of other non-specific findings. In this case we illustrate a rare but established association between these two pathologic entities, and the resulting therapeutic challenge in treating a patient with both conditions. The concurrence of these two diseases poses therapeutic challenges with a paucity of evidence-based recommendations. Management with low dose weekly antimalarial therapy may be the appropriate middle ground in effectively treating the two co-morbid conditions especially in a patient with other underlying systemic conditions.
Collapse
Affiliation(s)
- Timothy Nyckowski
- Kansas City University Graduate Medical Education Consortium- Orlando Dermatology, Orlando, FL, USA
| | - Alexandra Grammenos
- Kansas City University Graduate Medical Education Consortium- Orlando Dermatology, Orlando, FL, USA
| | | | - Rajiv Nathoo
- Kansas City University Graduate Medical Education Consortium- Orlando Dermatology, Orlando, FL, USA
| |
Collapse
|
17
|
Zeidi M, Chen KL, Patel J, Desai K, Kim HJ, Chakka S, Lim R, Werth VP. Increased CD69+CCR7+ circulating activated T cells and STAT3 expression in cutaneous lupus erythematosus patients recalcitrant to antimalarials. Lupus 2022; 31:472-481. [PMID: 35258358 DOI: 10.1177/09612033221084093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Antimalarials are first-line systemic therapy for cutaneous lupus erythematosus (CLE). While some patients unresponsive to hydroxychloroquine (HCQ) alone benefit from the addition of quinacrine (QC), a subset of patients is refractory to both antimalarials. METHODS We classified CLE patients as HCQ-responders, HCQ+QC-responders, or HCQ+QC-nonresponders to compare immune profiles. Immunohistochemistry, immunofluorescence, and qRT-PCR were used to characterize inflammatory cells and cytokines in lesional skin. RESULTS Immunohistochemistry showed that CD69+ T cells were higher in HCQ+QC-nonresponders compared to HCQ- and HCQ+QC-responders (p < 0.05). Immunofluorescence further identified these cells as CD69+CCR7+ circulating activated T cells. Myeloid dendritic cells were significantly higher in HCQ+QC-responders compared to both HCQ-responders and HCQ+QC-nonresponders. Plasmacytoid dendritic cells were significantly increased in HCQ-responders compared to HCQ- and HCQ+QC-nonresponders. No differences were found in the number of autoreactive T cells, MAC387+ cells, and neutrophils among the groups. CLASI scores of the HCQ+QC-nonresponder group positively correlated with CD69+CCR7+ circulating activated T cells (r = 0.6335, p < 0.05) and MAC387+ cells (r = 0.5726, p < 0.05). IL-17 protein expression was higher in HCQ+QC-responders compared to HCQ-responders or HCQ+QC-nonresponders, while IL-22 protein expression did not differ. mRNA expression demonstrated increased STAT3 expression in a subset of HCQ+QC-nonresponders. CONCLUSION An increased number of CD69+CCR7+ circulating activated T cells and a strong correlation with CLASI scores in the HCQ+QC-nonresponders suggest these cells are involved in antimalarial-refractory skin disease. STAT3 is also increased in HCQ+QC-nonresponders and may also be a potential target for antimalarial-refractory skin disease.
Collapse
Affiliation(s)
- Majid Zeidi
- Corporal Michael J Crescenz VAMC, Philadelphia, PA, USA.,Department of Dermatology, Perelman School of Medicine, 14640University of Pennsylvania, Philadelphia, PA, USA
| | - Kristen L Chen
- Corporal Michael J Crescenz VAMC, Philadelphia, PA, USA.,Department of Dermatology, Perelman School of Medicine, 14640University of Pennsylvania, Philadelphia, PA, USA
| | - Jay Patel
- Corporal Michael J Crescenz VAMC, Philadelphia, PA, USA.,Department of Dermatology, Perelman School of Medicine, 14640University of Pennsylvania, Philadelphia, PA, USA
| | - Krisha Desai
- Corporal Michael J Crescenz VAMC, Philadelphia, PA, USA.,Department of Dermatology, Perelman School of Medicine, 14640University of Pennsylvania, Philadelphia, PA, USA
| | - Hee Joo Kim
- Corporal Michael J Crescenz VAMC, Philadelphia, PA, USA.,Department of Dermatology, Perelman School of Medicine, 14640University of Pennsylvania, Philadelphia, PA, USA
| | - Srita Chakka
- Department of Dermatology, Perelman School of Medicine, 14640University of Pennsylvania, Philadelphia, PA, USA
| | - Rachel Lim
- Corporal Michael J Crescenz VAMC, Philadelphia, PA, USA
| | - Victoria P Werth
- Corporal Michael J Crescenz VAMC, Philadelphia, PA, USA.,Department of Dermatology, Perelman School of Medicine, 14640University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
18
|
Lozano B, Santibañez J, Severino N, Saldias C, Vera M, Retamal J, Torres S, Barrera NP. Hypothesis: How far are we from predicting multi-drug interactions during treatment for COVID-19 infection? Br J Pharmacol 2022; 179:3831-3838. [PMID: 35180811 DOI: 10.1111/bph.15819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/04/2022] [Accepted: 01/28/2022] [Indexed: 11/27/2022] Open
Abstract
Seriously ill patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and hospitalized in intensive care units (ICUs) are commonly given a combination of drugs, a process known as multi-drug treatment. After extracting data on drug-drug interactions with clinical relevance from available online platforms, we hypothesize that an overall interaction map can be generated for all drugs administered. Furthermore, by combining this approach with simulations of cellular biochemical pathways, we may be able to explain the general clinical outcome. Finally, we postulate that by applying this strategy retrospectively to a cohort of patients hospitalized in ICU, a prediction of the timing of developing acute kidney injury (AKI) could be made. Whether or not this approach can be extended to other diseases is uncertain. Still, we believe it represents a valuable pharmacological insight to help improve clinical outcomes for severely ill patients.
Collapse
Affiliation(s)
- Benjamin Lozano
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de, Chile
| | - Javier Santibañez
- Department of Mathematics Engineering, Faculty of Mathematical and Physical Sciences, Universidad de, Chile
| | - Nicolás Severino
- Department of Intensive Medicine, Faculty of Medicine, Pontificia Universidad Católica de, Chile
| | - Cristina Saldias
- School of Medicine, Faculty of Medicine, Universidad de Valparaíso
| | - Magdalena Vera
- Department of Intensive Medicine, Faculty of Medicine, Pontificia Universidad Católica de, Chile
| | - Jaime Retamal
- Department of Intensive Medicine, Faculty of Medicine, Pontificia Universidad Católica de, Chile
| | - Soledad Torres
- CIMFAV, Faculty of Engineering, Universidad de Valparaíso
| | - Nelson P Barrera
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de, Chile
| |
Collapse
|
19
|
Li X, Sun X, Guo X, Li X, Peng S, Mu X. Chemical reagents modulate nucleic acid-activated toll-like receptors. Biomed Pharmacother 2022; 147:112622. [PMID: 35008000 DOI: 10.1016/j.biopha.2022.112622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/08/2023] Open
Abstract
Nucleic acid-mediated interferon signaling plays a pivotal role in defense against microorganisms, especially during viral infection. Receptors sensing exogenous nucleic acid molecules are localized in the cytosol and endosomes. Cytosolic sensors, including cGAS, RIG-I, and MDA5, and endosome-anchored receptors are toll-like receptors (TLR3, TLR7, TLR8, and TLR9). These TLRs share the same domain architecture and have similar structures, facing the interior of endosomes so their binding to nucleic acids of invading pathogens via endocytosis is possible. The correct function of these receptors is crucial for cell homeostasis and effective response against pathogen invasion. A variety of endogenous mechanisms modulates their activities. Nevertheless, naturally occurring mutations lead to aberrant TLR-mediated interferon (IFN) signaling. Furthermore, certain pathogens require a more robust defense against control. Thus, manipulating these TLR activities has a profound impact. High-throughput virtual screening followed by experimental validation led to the discovery of numerous chemicals that can change these TLR-mediated IFN signaling activities. Many of them are unique in selectivity, while others regulate more than one TLR due to commonalities in these receptors. We summarized these nucleic acid-sensing TLR-mediated IFN signaling pathways and the corresponding chemicals activating or deactivating their signaling.
Collapse
Affiliation(s)
- Xiao Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xinyuan Sun
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xuemin Guo
- Meizhou People's Hospital, Meizhou 514031, China; Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translation Research of Hakka Population, Meizhou 514031, China
| | - Xueren Li
- Department of Respiratory Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin 300350, China
| | - Shouchun Peng
- Department of Respiratory Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin 300350, China.
| | - Xin Mu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
20
|
Rando HM, Wellhausen N, Ghosh S, Lee AJ, Dattoli AA, Hu F, Byrd JB, Rafizadeh DN, Lordan R, Qi Y, Sun Y, Brueffer C, Field JM, Ben Guebila M, Jadavji NM, Skelly AN, Ramsundar B, Wang J, Goel RR, Park Y, Boca SM, Gitter A, Greene CS. Identification and Development of Therapeutics for COVID-19. mSystems 2021; 6:e0023321. [PMID: 34726496 PMCID: PMC8562484 DOI: 10.1128/msystems.00233-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
After emerging in China in late 2019, the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread worldwide, and as of mid-2021, it remains a significant threat globally. Only a few coronaviruses are known to infect humans, and only two cause infections similar in severity to SARS-CoV-2: Severe acute respiratory syndrome-related coronavirus, a species closely related to SARS-CoV-2 that emerged in 2002, and Middle East respiratory syndrome-related coronavirus, which emerged in 2012. Unlike the current pandemic, previous epidemics were controlled rapidly through public health measures, but the body of research investigating severe acute respiratory syndrome and Middle East respiratory syndrome has proven valuable for identifying approaches to treating and preventing novel coronavirus disease 2019 (COVID-19). Building on this research, the medical and scientific communities have responded rapidly to the COVID-19 crisis and identified many candidate therapeutics. The approaches used to identify candidates fall into four main categories: adaptation of clinical approaches to diseases with related pathologies, adaptation based on virological properties, adaptation based on host response, and data-driven identification (ID) of candidates based on physical properties or on pharmacological compendia. To date, a small number of therapeutics have already been authorized by regulatory agencies such as the Food and Drug Administration (FDA), while most remain under investigation. The scale of the COVID-19 crisis offers a rare opportunity to collect data on the effects of candidate therapeutics. This information provides insight not only into the management of coronavirus diseases but also into the relative success of different approaches to identifying candidate therapeutics against an emerging disease. IMPORTANCE The COVID-19 pandemic is a rapidly evolving crisis. With the worldwide scientific community shifting focus onto the SARS-CoV-2 virus and COVID-19, a large number of possible pharmaceutical approaches for treatment and prevention have been proposed. What was known about each of these potential interventions evolved rapidly throughout 2020 and 2021. This fast-paced area of research provides important insight into how the ongoing pandemic can be managed and also demonstrates the power of interdisciplinary collaboration to rapidly understand a virus and match its characteristics with existing or novel pharmaceuticals. As illustrated by the continued threat of viral epidemics during the current millennium, a rapid and strategic response to emerging viral threats can save lives. In this review, we explore how different modes of identifying candidate therapeutics have borne out during COVID-19.
Collapse
Affiliation(s)
- Halie M. Rando
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Nils Wellhausen
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Soumita Ghosh
- Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alexandra J. Lee
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anna Ada Dattoli
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fengling Hu
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James Brian Byrd
- University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Diane N. Rafizadeh
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yanjun Qi
- Department of Computer Science, University of Virginia, Charlottesville, Virginia, USA
| | - Yuchen Sun
- Department of Computer Science, University of Virginia, Charlottesville, Virginia, USA
| | | | - Jeffrey M. Field
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marouen Ben Guebila
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Nafisa M. Jadavji
- Biomedical Science, Midwestern University, Glendale, Arizona, USA
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Ashwin N. Skelly
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Jinhui Wang
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rishi Raj Goel
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - YoSon Park
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - COVID-19 Review Consortium
BansalVikasBartonJohn P.BocaSimina M.BoerckelJoel D.BruefferChristianByrdJames BrianCaponeStephenDasShiktaDattoliAnna AdaDziakJohn J.FieldJeffrey M.GhoshSoumitaGitterAnthonyGoelRishi RajGreeneCasey S.GuebilaMarouen BenHimmelsteinDaniel S.HuFenglingJadavjiNafisa M.KamilJeremy P.KnyazevSergeyKollaLikhithaLeeAlexandra J.LordanRonanLubianaTiagoLukanTemitayoMacLeanAdam L.MaiDavidMangulSergheiManheimDavidMcGowanLucy D’AgostinoNaikAmrutaParkYoSonPerrinDimitriQiYanjunRafizadehDiane N.RamsundarBharathRandoHalie M.RaySandipanRobsonMichael P.RubinettiVincentSellElizabethShinholsterLamonicaSkellyAshwin N.SunYuchenSunYushaSzetoGregory L.VelazquezRyanWangJinhuiWellhausenNils
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, USA
- Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- University of Michigan School of Medicine, Ann Arbor, Michigan, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Computer Science, University of Virginia, Charlottesville, Virginia, USA
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA
- Biomedical Science, Midwestern University, Glendale, Arizona, USA
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- The DeepChem Project
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC, USA
- Early Biometrics & Statistical Innovation, Data Science & Artificial Intelligence, R & D, AstraZeneca, Gaithersburg, Maryland, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Philadelphia, Pennsylvania, USA
| | - Simina M. Boca
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC, USA
- Early Biometrics & Statistical Innovation, Data Science & Artificial Intelligence, R & D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Anthony Gitter
- Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Casey S. Greene
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Philadelphia, Pennsylvania, USA
| |
Collapse
|
21
|
Targeted Therapies in Autoimmune Skin Diseases. J Invest Dermatol 2021; 142:969-975.e7. [PMID: 34756580 DOI: 10.1016/j.jid.2021.08.439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 01/21/2023]
Abstract
Unlike the established anti-inflammatory drugs with a broad range, new-targeted therapeutic approaches have emerged in the management of autoimmune skin diseases to increase efficacy and decrease adverse reactions on the basis of an improved molecular understanding of pathogenesis. Most inflammatory dermatoses are driven by misled immune responses physiologically directed at exogenous pathogens, that is, type 1 immunity against viral pathogens, type 2 immunity against parasites, and type 3 immunity against fungi and bacteria. Pathogenic hallmarks of these major immune reaction patterns are characterized within this article, and a comprehensive overview of current clinical trials evaluating targeted therapeutics for respective dermatoses is outlined.
Collapse
|
22
|
Lim JW, Lee JH, Kim HJ. Use of hydroxychloroquine in dermatology: A multicenter retrospective study in Korea. J Dermatol 2021; 49:173-178. [PMID: 34713476 DOI: 10.1111/1346-8138.16200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/16/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022]
Abstract
Despite the expanding clinical application of hydroxychloroquine in dermatology, the overall data on hydroxychloroquine use among dermatologists are limited. With retrospective review of the medical records of the 790 patients who were prescribed hydroxychloroquine, we classified the diagnoses into 12 disease categories, the lupus erythematosus group being the largest. The lupus erythematosus group had the longest prescription duration (median, 6.2 months), whereas the photodermatitis group had a significantly shorter prescription duration (median, 0.5 months). The overall good response rate was 77.1%. The photodermatitis group had the best response (88.7%), followed by the lupus panniculitis (85.1%) and lichen planus (84.4%). In conclusion, hydroxychloroquine has proven utility for various inflammatory skin diseases, including but not limited to cutaneous lupus erythematosus.
Collapse
Affiliation(s)
- Jae Woo Lim
- Department of Dermatology, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - June Hyunkyung Lee
- Department of Dermatology, Eulji General Hospital, Eulji University College of Medicine, Seoul, Korea
| | - Hee Joo Kim
- Department of Dermatology, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| |
Collapse
|
23
|
Therapeutic and Reconstructive Management Options in Scleroderma (Morphea) en Coup de Sabre in Children and Adults. A Systematic Literature Review. J Clin Med 2021; 10:jcm10194517. [PMID: 34640533 PMCID: PMC8509267 DOI: 10.3390/jcm10194517] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 01/15/2023] Open
Abstract
Scleroderma (morphea) en coup de sabre is a localized subtype restricted to the frontoparietal region of the head. Current treatment paradigms rely on low levels of evidence, primarily case reports and case series-supported by expert opinions. The aim of this article was to systematically analyze current data related to the treatment of localized scleroderma en coup de sabre. The databases Scopus, PubMed, and EBSCO were searched for all reports discussing the treatment of localized scleroderma en coup de sabre. The keywords en coup de sabre, “facial linear scleroderma”, and “morphea linearis”, combined with “treatment” or “therapy” were used as search terms. A total of 34 articles analyzed treatment outcomes for patients with localized scleroderma en coup de sabre including 4 retrospective cohort studies, 2 prospective cohort studies, 4 case series, and 24 case reports, representing a total of 69 patients (38 children and 31 adults). Methotrexate was the most commonly investigated treatment (26 patients) with a highest response rate (26/26, 100%). Other treatments included systemic glucocorticosteroids (nine patients), followed by UVA1 (four patients), mycophenolate mofetil (two patients), hydroxychloroquine (five patients), abatacept (two patients), tocilizumab (three patients), cyclosporine (one patient), interferon gamma (one patient), PUVA therapy (two patients), NB-UVB therapy (one patient), and pulsed dye laser (one patient). Reconstructive and surgery treatment was successfully used for lesions with settled disease activity to improve the cosmetic aspect of the lesions. Conclusion: methotrexate is the most often-studied treatment and reported good clinical outcomes in children and adults with localized scleroderma en coup de sabre.
Collapse
|
24
|
Grygiel-Górniak B. Antimalarial drugs-are they beneficial in rheumatic and viral diseases?-considerations in COVID-19 pandemic. Clin Rheumatol 2021; 41:1-18. [PMID: 34218393 PMCID: PMC8254634 DOI: 10.1007/s10067-021-05805-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/25/2021] [Accepted: 05/30/2021] [Indexed: 02/06/2023]
Abstract
The majority of the medical fraternity is continuously involved in finding new therapeutic schemes, including antimalarial medications (AMDs), which can be useful in combating the 2019-nCoV: coronavirus disease (COVID-19). For many decades, AMDs have been widely used in the treatment of malaria and various other anti-inflammatory diseases, particularly to treat autoimmune disorders of the connective tissue. The review comprises in vitro and in vivo studies, original studies, clinical trials, and consensus reports for the analysis, which were available in medical databases (e.g., PubMed). This manuscript summarizes the current knowledge about chloroquine (CQ)/hydroxychloroquine (HCQ) and shows the difference between their use, activity, recommendation, doses, and adverse effects on two groups of patients: those with rheumatic and viral diseases (including COVID-19). In the case of connective tissue disorders, AMDs are prescribed for a prolonged duration in small doses, and their effect is observed after few weeks, whereas in the case of viral infections, they are prescribed in larger doses for a short duration to achieve a quick saturation effect. In rheumatic diseases, AMDs are well tolerated, and their side effects are rare. However, in some viral diseases, the effect of AMDs is questionable or not so noticeable as suggested during the initial prognosis. They are mainly used as an additive therapy to antiviral drugs, but recent studies have shown that AMDs can diminish the efficacy of some antiviral drugs and may cause respiratory, kidney, liver, and cardiac complications.
Collapse
Affiliation(s)
- Bogna Grygiel-Górniak
- Department of Rheumatology, Rehabilitation and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
25
|
Das S, Ramachandran AK, Birangal SR, Akbar S, Ahmed B, Joseph A. The controversial therapeutic journey of chloroquine and hydroxychloroquine in the battle against SARS-CoV-2: A comprehensive review. MEDICINE IN DRUG DISCOVERY 2021; 10:100085. [PMID: 33846702 PMCID: PMC8026171 DOI: 10.1016/j.medidd.2021.100085] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/09/2021] [Accepted: 02/20/2021] [Indexed: 12/24/2022] Open
Abstract
Recently, the pandemic outbreak of a novel coronavirus, officially termed as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), indicated by a pulmonary infection in humans, has become one of the most significant challenges for public health. In the current fight against coronavirus disease-2019, the medical and health authorities across the world focused on quick diagnosis and isolation of patients; meanwhile, researchers worldwide are exploring the possibility of developing vaccines and novel therapeutic options to combat this deadly disease. Recently, based on various small clinical observations, uncontrolled case studies and previously reported antiviral activity against SARS-CoV-1 chloroquine (CQ) and hydroxychloroquine (HCQ) have attracted exceptional consideration as possible therapeutic agents against SARS-CoV-2. However, there are reports on little to no effect of CQ or HCQ against SARS-CoV-2, and many reports have raised concerns about their cardiac toxicity. Here, in this review, we examine the chemistry, molecular mechanism, and pharmacology, including the current scenario and future prospects of CQ or HCQ in the treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Manipal McGill Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Anu Kunnath Ramachandran
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sumit Raosaheb Birangal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Saleem Akbar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Bahar Ahmed
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
26
|
Villa TG, Sánchez-Pérez Á, Sieiro C. Oral lichen planus: a microbiologist point of view. Int Microbiol 2021; 24:275-289. [PMID: 33751292 PMCID: PMC7943413 DOI: 10.1007/s10123-021-00168-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Oral lichen planus (OLP) is a chronic disease of uncertain etiology, although it is generally considered as an immune-mediated disease that affects the mucous membranes and even the skin and nails. Over the years, this disease was attributed to a variety of causes, including different types of microorganisms. This review analyzes the present state of the art of the disease, from a microbiological point of view, while considering whether or not the possibility of a microbial origin for the disease can be supported. From the evidence presented here, OLP should be considered an immunological disease, as it was initially proposed, as opposed to an illness of microbiological origin. The different microorganisms so far described as putative disease-causing agents do not fulfill Koch’s postulates; they are, actually, not the cause, but a result of the disease that provides the right circumstances for microbial colonization. This means that, at this stage, and unless new data becomes available, no microorganism can be envisaged as the causative agent of lichen planus.
Collapse
Affiliation(s)
- Tomás G. Villa
- Department of Microbiology, Faculty of Pharmacy, University of Santiago de Compostela, 15706 Santiago de Compostela, EU Spain
| | - Ángeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camperdown, NSW 2006 Australia
| | - Carmen Sieiro
- Department of Functional Biology and Health Sciences, Microbiology Area, Faculty of Biology, University of Vigo, 36310 Vigo, Pontevedra, EU Spain
| |
Collapse
|
27
|
Hannon CW, McCourt C, Lima HC, Chen S, Bennett C. Interventions for cutaneous disease in systemic lupus erythematosus. Cochrane Database Syst Rev 2021; 3:CD007478. [PMID: 33687069 PMCID: PMC8092459 DOI: 10.1002/14651858.cd007478.pub2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Lupus erythematosus is an autoimmune disease with significant morbidity and mortality. Cutaneous disease in systemic lupus erythematosus (SLE) is common. Many interventions are used to treat SLE with varying efficacy, risks, and benefits. OBJECTIVES To assess the effects of interventions for cutaneous disease in SLE. SEARCH METHODS We searched the following databases up to June 2019: the Cochrane Skin Specialised Register, CENTRAL, MEDLINE, Embase, Wiley Interscience Online Library, and Biblioteca Virtual em Saude (Virtual Health Library). We updated our search in September 2020, but these results have not yet been fully incorporated. SELECTION CRITERIA We included randomised controlled trials (RCTs) of interventions for cutaneous disease in SLE compared with placebo, another intervention, no treatment, or different doses of the same intervention. We did not evaluate trials of cutaneous lupus in people without a diagnosis of SLE. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. Primary outcomes were complete and partial clinical response. Secondary outcomes included reduction (or change) in number of clinical flares; and severe and minor adverse events. We used GRADE to assess the quality of evidence. MAIN RESULTS Sixty-one RCTs, involving 11,232 participants, reported 43 different interventions. Trials predominantly included women from outpatient clinics; the mean age range of participants was 20 to 40 years. Twenty-five studies reported baseline severity, and 22 studies included participants with moderate to severe cutaneous lupus erythematosus (CLE); duration of CLE was not well reported. Studies were conducted mainly in multi-centre settings. Most often treatment duration was 12 months. Risk of bias was highest for the domain of reporting bias, followed by performance/detection bias. We identified too few studies for meta-analysis for most comparisons. We limited this abstract to main comparisons (all administered orally) and outcomes. We did not identify clinical trials of other commonly used treatments, such as topical corticosteroids, that reported complete or partial clinical response or numbers of clinical flares. Complete clinical response Studies comparing oral hydroxychloroquine against placebo did not report complete clinical response. Chloroquine may increase complete clinical response at 12 months' follow-up compared with placebo (absence of skin lesions) (risk ratio (RR) 1.57, 95% confidence interval (CI) 0.95 to 2.61; 1 study, 24 participants; low-quality evidence). There may be little to no difference between methotrexate and chloroquine in complete clinical response (skin rash resolution) at 6 months' follow-up (RR 1.13, 95% CI 0.84 to 1.50; 1 study, 25 participants; low-quality evidence). Methotrexate may be superior to placebo with regard to complete clinical response (absence of malar/discoid rash) at 6 months' follow-up (RR 3.57, 95% CI 1.63 to 7.84; 1 study, 41 participants; low-quality evidence). At 12 months' follow-up, there may be little to no difference between azathioprine and ciclosporin in complete clinical response (malar rash resolution) (RR 0.83, 95% CI 0.46 to 1.52; 1 study, 89 participants; low-quality evidence). Partial clinical response Partial clinical response was reported for only one key comparison: hydroxychloroquine may increase partial clinical response at 12 months compared to placebo, but the 95% CI indicates that hydroxychloroquine may make no difference or may decrease response (RR 7.00, 95% CI 0.41 to 120.16; 20 pregnant participants, 1 trial; low-quality evidence). Clinical flares Clinical flares were reported for only two key comparisons: hydroxychloroquine is probably superior to placebo at 6 months' follow-up for reducing clinical flares (RR 0.49, 95% CI 0.28 to 0.89; 1 study, 47 participants; moderate-quality evidence). At 12 months' follow-up, there may be no difference between methotrexate and placebo, but the 95% CI indicates there may be more or fewer flares with methotrexate (RR 0.77, 95% CI 0.32 to 1.83; 1 study, 86 participants; moderate-quality evidence). Adverse events Data for adverse events were limited and were inconsistently reported, but hydroxychloroquine, chloroquine, and methotrexate have well-documented adverse effects including gastrointestinal symptoms, liver problems, and retinopathy for hydroxychloroquine and chloroquine and teratogenicity during pregnancy for methotrexate. AUTHORS' CONCLUSIONS Evidence supports the commonly-used treatment hydroxychloroquine, and there is also evidence supporting chloroquine and methotrexate for treating cutaneous disease in SLE. Evidence is limited due to the small number of studies reporting key outcomes. Evidence for most key outcomes was low or moderate quality, meaning findings should be interpreted with caution. Head-to-head intervention trials designed to detect differences in efficacy between treatments for specific CLE subtypes are needed. Thirteen further trials are awaiting classification and have not yet been incorporated in this review; they may alter the review conclusions.
Collapse
Affiliation(s)
- Cora W Hannon
- Dermatologist, Masters of Public Health Program, Harvard School of Public Health, Boston, Massachusetts, USA
| | | | - Hermenio C Lima
- Department of Dermatology, Clinical Unit for Research Trials and Outcomes in Skin (CURTIS), Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Suephy Chen
- Emory University Hospital, Emory Healthcare, Atlanta, Georgia, USA
| | - Cathy Bennett
- Office of Research and Innovation, Royal College of Surgeons in Ireland Coláiste Ríoga na Máinleá in Éirinn, Dublin, Ireland
| |
Collapse
|
28
|
Rando HM, Wellhausen N, Ghosh S, Lee AJ, Dattoli AA, Hu F, Byrd JB, Rafizadeh DN, Lordan R, Qi Y, Sun Y, Brueffer C, Field JM, Guebila MB, Jadavji NM, Skelly AN, Ramsundar B, Wang J, Goel RR, Park Y, Boca SM, Gitter A, Greene CS. Identification and Development of Therapeutics for COVID-19. ARXIV 2021:arXiv:2103.02723v3. [PMID: 33688554 PMCID: PMC7941644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 09/10/2021] [Indexed: 11/23/2022]
Abstract
After emerging in China in late 2019, the novel coronavirus SARS-CoV-2 spread worldwide and as of mid-2021 remains a significant threat globally. Only a few coronaviruses are known to infect humans, and only two cause infections similar in severity to SARS-CoV-2: Severe acute respiratory syndrome-related coronavirus, a closely related species of SARS-CoV-2 that emerged in 2002, and Middle East respiratory syndrome-related coronavirus, which emerged in 2012. Unlike the current pandemic, previous epidemics were controlled rapidly through public health measures, but the body of research investigating severe acute respiratory syndrome and Middle East respiratory syndrome has proven valuable for identifying approaches to treating and preventing novel coronavirus disease 2019 (COVID-19). Building on this research, the medical and scientific communities have responded rapidly to the COVID-19 crisis to identify many candidate therapeutics. The approaches used to identify candidates fall into four main categories: adaptation of clinical approaches to diseases with related pathologies, adaptation based on virological properties, adaptation based on host response, and data-driven identification of candidates based on physical properties or on pharmacological compendia. To date, a small number of therapeutics have already been authorized by regulatory agencies such as the Food and Drug Administration (FDA), while most remain under investigation. The scale of the COVID-19 crisis offers a rare opportunity to collect data on the effects of candidate therapeutics. This information provides insight not only into the management of coronavirus diseases, but also into the relative success of different approaches to identifying candidate therapeutics against an emerging disease.
Collapse
Affiliation(s)
- Halie M Rando
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America; Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, United States of America · Funded by the Gordon and Betty Moore Foundation (GBMF 4552)
| | - Nils Wellhausen
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Soumita Ghosh
- Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alexandra J Lee
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America · Funded by the Gordon and Betty Moore Foundation (GBMF 4552)
| | - Anna Ada Dattoli
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fengling Hu
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - James Brian Byrd
- University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America · Funded by NIH K23HL128909; FastGrants
| | - Diane N Rafizadeh
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America; Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of AmericaFunded by NIH Medical Scientist Training Program T32 GM07170
| | - Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5158, USA
| | - Yanjun Qi
- Department of Computer Science, University of Virginia, Charlottesville, VA, United States of America
| | - Yuchen Sun
- Department of Computer Science, University of Virginia, Charlottesville, VA, United States of America
| | | | - Jeffrey M Field
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marouen Ben Guebila
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Nafisa M Jadavji
- Biomedical Science, Midwestern University, Glendale, AZ, United States of America; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada · Funded by the American Heart Association (20AIREA35050015)
| | - Ashwin N Skelly
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America; Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America · Funded by NIH Medical Scientist Training Program T32 GM07170
| | | | - Jinhui Wang
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rishi Raj Goel
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - YoSon Park
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America · Funded by NHGRI R01 HG10067
| | - Simina M Boca
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, District of Columbia, United States of America; Early Biometrics & Statistical Innovation, Data Science & Artificial Intelligence, R & D, AstraZeneca, Gaithersburg, Maryland, United States of America
| | - Anthony Gitter
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; Morgridge Institute for Research, Madison, Wisconsin, United States of America · Funded by John W. and Jeanne M. Rowe Center for Research in Virology
| | - Casey S Greene
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America; Childhood Cancer Data Lab, Alex's Lemonade Stand Foundation, Philadelphia, Pennsylvania, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America; Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, United States of America · Funded by the Gordon and Betty Moore Foundation (GBMF 4552); the National Human Genome Research Institute (R01 HG010067)
| |
Collapse
|
29
|
Mourouzis IS, Manolis AS, Pantos C. Cardiovascular Risk of Synthetic, Non-Biologic Disease-Modifying Anti- Rheumatic Drugs (DMARDs). Curr Vasc Pharmacol 2020; 18:455-462. [PMID: 31566134 DOI: 10.2174/1570161117666190930113837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 12/16/2022]
Abstract
Patients with rheumatoid diseases have an increased risk of cardiovascular disease (CVD) and CVD-related death compared with the general population. Both the traditional cardiovascular risk factors and systemic inflammation are contributors to this phenomenon. This review examines the available evidence about the effects of synthetic, non-biologic disease-modifying antirheumatic drugs (DMARDs) on CVD risk. This is an important issue for clinicians when deciding on individual treatment plans in patients with rheumatic diseases. Evidence suggests that synthetic, non-biologic DMARDs such as methotrexate, sulfasalazine, hydroxychloroquine, leflunomide and tofacitinib show decreased CVD morbidity and mortality. However, the strongest data in favour of a reduction in CVD events in rheumatoid patients are shown with methotrexate, which has been the focus of most studies. Adequate proof for a favourable effect also exists for hydroxychloroquine. Larger, prospective studies and randomized clinical trials are needed to better characterize the effect of synthetic, non-biologic DMARDs on CVD outcomes in these patients. Design of future studies should include areas with lack of evidence, such as the risk for heart failure, arrhythmias and valvular heart disease. The clinically relevant question whether synthetic, non-biologic DMARDs are inferior to biologic DMARDs in terms of CVD outcomes remains not adequately addressed.
Collapse
Affiliation(s)
- Iordanis S Mourouzis
- Department of Pharmacology, School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Antonis S Manolis
- Third Department of Cardiology, Athens University School of Medicine, Athens, Greece
| | - Constantinos Pantos
- Department of Pharmacology, School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
30
|
Morris G, Athan E, Walder K, Bortolasci CC, O'Neil A, Marx W, Berk M, Carvalho AF, Maes M, Puri BK. Can endolysosomal deacidification and inhibition of autophagy prevent severe COVID-19? Life Sci 2020; 262:118541. [PMID: 33035581 PMCID: PMC7537668 DOI: 10.1016/j.lfs.2020.118541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023]
Abstract
The possibility is examined that immunomodulatory pharmacotherapy may be clinically useful in managing the pandemic coronavirus disease 2019 (COVID-19), known to result from infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a positive-sense single-stranded RNA virus. The dominant route of cell entry of the coronavirus is via phagocytosis, with ensconcement in endosomes thereafter proceeding via the endosomal pathway, involving transfer from early (EEs) to late endosomes (LEs) and ultimately into lysosomes via endolysosomal fusion. EE to LE transportation is a rate-limiting step for coronaviruses. Hence inhibition or dysregulation of endosomal trafficking could potentially inhibit SARS-CoV-2 replication. Furthermore, the acidic luminal pH of the endolysosomal system is critical for the activity of numerous pH-sensitive hydrolytic enzymes. Golgi sub-compartments and Golgi-derived secretory vesicles also depend on being mildly acidic for optimal function and structure. Activation of endosomal toll-like receptors by viral RNA can upregulate inflammatory mediators and contribute to a systemic inflammatory cytokine storm, associated with a worsened clinical outcome in COVID-19. Such endosomal toll-like receptors could be inhibited by the use of pharmacological agents which increase endosomal pH, thereby reducing the activity of acid-dependent endosomal proteases required for their activity and/or assembly, leading to suppression of antigen-presenting cell activity, decreased autoantibody secretion, decreased nuclear factor-kappa B activity and decreased pro-inflammatory cytokine production. It is also noteworthy that SARS-CoV-2 inhibits autophagy, predisposing infected cells to apoptosis. It is therefore also suggested that further pharmacological inhibition of autophagy might encourage the apoptotic clearance of SARS-CoV-2-infected cells.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Eugene Athan
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia; Department of Infectious Disease, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Victoria, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Wolf Marx
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Michael Berk
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry, the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - André F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Michael Maes
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia; Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
31
|
Kłosowicz A, Pastuszczak M, Dyduch G, Englert K, Łukasik A, Wojas-Pelc A. Dendritic cells as predictive markers of responsiveness to hydroxychloroquine treatment in primary cicatricial alopecia patients. Dermatol Ther 2020; 33:e14509. [PMID: 33150719 DOI: 10.1111/dth.14509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 11/29/2022]
Abstract
Primary cicatricial alopecia (PCA) encompasses a diverse group of inflammatory diseases characterized by the irreversible replacement of hair follicle structures by fibrous tissue. Although the pathogenesis of PCA remains not fully understood, the key to its understanding might be the location of dendritic cells (DCs) inflammatory infiltrate. One of the systemic therapy of choice in PCA patients is hydroxychloroquine (HCQ). We hypothesized that DCs are implicated in PCA pathogenesis and that they might constitute the biological target of HCQ treatment. For these reasons, we investigated whether DCs could affect the antimalarial responsiveness, and if DCs might be used as predictive factor of responsiveness to HCQ. In this retrospective cohort study, 65 patients diagnosed with PCA were grouped accordingly to their response to HCQ therapy. Skin biopsies had been taken before the treatment was started. Cell count was performed on immunohistochemistry by using characteristic monoclonal antibodies to specific subpopulations of DCs. In almost every second patient (47.7%), we observed remission of the disease during HCQ treatment. The number of plasmacytoid and myeloid DCs as well as Langerhans cells in lesional skin of HCQ responders was higher in comparison with HCQ nonresponders. Moreover, in a predictive model receiver operating characteristic (ROC curve) we showed that plasmacytoid DCs might be used as a predictive factor of responsiveness to HCQ. The results of this study are important as identifying biomarkers for responsiveness to a HCQ therapy will be helpful to individualize treatment and make it more effective.
Collapse
Affiliation(s)
- Agata Kłosowicz
- Department of Dermatology, University Hospital in Krakow, Kraków, Poland
| | - Maciej Pastuszczak
- Department of Dermatology, University Hospital in Krakow, Kraków, Poland
| | - Grzegorz Dyduch
- Department of Pathomorphology, Jagiellonian University Medical College in Krakow, Kraków, Poland
| | - Karolina Englert
- Department of Dermatology, University Hospital in Krakow, Kraków, Poland
| | - Adriana Łukasik
- Department of Dermatology, University Hospital in Krakow, Kraków, Poland
| | - Anna Wojas-Pelc
- Department of Dermatology, University Hospital in Krakow, Kraków, Poland
| |
Collapse
|
32
|
Babayeva M, Loewy Z. Repurposing Drugs for COVID-19: Pharmacokinetics and Pharmacogenomics of Chloroquine and Hydroxychloroquine. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2020; 13:531-542. [PMID: 33122936 PMCID: PMC7591012 DOI: 10.2147/pgpm.s275964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/06/2020] [Indexed: 12/27/2022]
Abstract
Background A new coronavirus SARS-CoV-2 has been identified as the etiological agent of the severe acute respiratory syndrome, COVID-19, the source and cause of the 2019–20 coronavirus pandemic. Hydroxychloroquine and chloroquine have gathered extraordinary attention as therapeutic candidates against SARS-CoV-2 infections. While there is growing scientific data on the therapeutic effect, there is also concern for toxicity of the medications. The therapy of COVID-19 by hydroxychloroquine and chloroquine is off-label. Studies to analyze the personalized effect and safety are lacking. Methods A review of the literature was performed using Medline/PubMed/Embase database. A variety of keywords were employed in keyword/title/abstract searches. The electronic search was followed by extensive hand searching using reference lists from the identified articles. Results A total of 126 results were obtained after screening all sources. Mechanisms underlying variability in drug concentrations and therapeutic response with chloroquine and hydroxychloroquine in mediating beneficial and adverse effects of chloroquine and hydroxychloroquine were reviewed and analyzed. Pharmacogenomic studies from various disease states were evaluated to elucidate the role of genetic variation in drug response and toxicity. Conclusion Knowledge of the pharmacokinetics and pharmacogenomics of chloroquine and hydroxychloroquine is necessary for effective and safe dosing and to avoid treatment failure and severe complications.
Collapse
Affiliation(s)
| | - Zvi Loewy
- Touro College of Pharmacy, New York, NY, USA.,New York Medical College, Valhalla, NY, USA
| |
Collapse
|
33
|
Yan D, Borucki R, Sontheimer RD, Werth VP. Candidate drug replacements for quinacrine in cutaneous lupus erythematosus. Lupus Sci Med 2020; 7:7/1/e000430. [PMID: 33082164 PMCID: PMC7577055 DOI: 10.1136/lupus-2020-000430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/22/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022]
Abstract
Cutaneous lupus erythematosus (CLE) is a disfiguring and potentially disabling disease that causes significant morbidity in patients. Antimalarials are an important class of medication used to treat this disease and have been the first-line systemic therapy since the 1950s. Quinacrine, in particular, is used as an adjuvant therapy to other antimalarials for improved control of CLE. Quinacrine is currently unavailable in the USA, which has taken away an important component of the treatment regimen of patients with CLE. This paper reviews the evidence of available local and systemic therapies in order to assist providers in choosing alternative treatments for patients who previously benefited from quinacrine therapy.
Collapse
Affiliation(s)
- Daisy Yan
- Department of Dermatology, Corporal Michael J Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA.,Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Robert Borucki
- Department of Dermatology, Corporal Michael J Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA.,Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Richard D Sontheimer
- Department of Dermatology, The University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Victoria P Werth
- Department of Dermatology, Corporal Michael J Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA .,Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
34
|
Shittu O, Opeyemi OA, Omotesho OB, Fakayode O, Asogwa N, Adeniyi OM, Fatoba IM, Salawu KM, Ajibaye O, Babamale OA, Iyiola OA, Aremu OI. Clinical Probe of Cyp2C8*2 Mutants in a Malaria Hyperendemic Zone: Evidence from North-Central, Nigeria. ACTA MEDICA (HRADEC KRÁLOVÉ) 2020; 63:119-123. [PMID: 33002398 DOI: 10.14712/18059694.2020.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND A tremendous level of success has been achieved since the introduction of chloroquine and the combination of amodiaquine and artemisinin for the treatment of both complicated and uncomplicated malaria infections in sub-Saharan Africa. However, the recent discovery of drug resistant strains of Plasmodium falciparum (P.f.) and the ability of the parasite to ingest CYP2C8 into its digestive vacuole is of great public health concern. This study probes the occurrence of CYP2C8*2 allelic mutant amongst malaria patients in North-Central Nigeria. METHODS Three hundred and eighty five (385) unrelated study participants were screened for current malaria episodes using routine microscopy and/or rapid diagnostic test strips (RDTs). Chelex extraction method was used for single nucleotide polymorphisms (SNPs) and identification of CYP2C8*2 (805A > T) variant respectively. Wild-type (A) and the defective allele (T) were differentiated with the use of Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP). The results obtained were further validated with Sanger sequencing of a few samples and thereafter, the genotype data were statistically processed. All alleles obtained were in Hardy Weinberg equilibrium. RESULTS Out of the 385 participants (45.5% Male and 54.5% Female) genotyped for SNPs, 75 (19.5%) had the autosomal recessive mutant trait. Occurrence of mutant traits was gender and ethnic independent (p > 0.05). Yoruba ethnic group recorded a reduction in proportion of genotypic defective CYP2C8*2 allele (T) (1 in every 8 persons) with a carrier percentage of 13.3% compared with Hausa (26.62%); Igbo (25.37%) and other minority ethnic groups (17.6%). CONCLUSIONS A remarkable inter-ethnic differences in autosomal recessive CYP2C8*2 allele was observed. By implication, there is a gradual incursion of genetic drift for poor CQ and AQ-Artemisinin metabolizers among the inhabitants.
Collapse
Affiliation(s)
- Olalere Shittu
- Parasitology Unit, Department of Zoology, University of Ilorin, Ilorin, Nigeria.
| | | | | | | | - Nnaemeka Asogwa
- Department of Biochemistry, University of Ilorin, Ilorin, Nigeria
| | | | | | | | - Olusola Ajibaye
- Biochemistry Division, Nigerian Institute of Medical Research, Lagos, Nigeria
| | | | - Oluyinka Ajibola Iyiola
- Cell Biology and Genetics Unit, Department of Zoology, University of Ilorin, Ilorin, Nigeria
| | - Olusola Isaac Aremu
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
35
|
Javorac D, Grahovac L, Manić L, Stojilković N, Anđelković M, Bulat Z, Đukić-Ćosić D, Curcic M, Djordjevic AB. An overview of the safety assessment of medicines currently used in the COVID-19 disease treatment. Food Chem Toxicol 2020; 144:111639. [PMID: 32707160 PMCID: PMC7372271 DOI: 10.1016/j.fct.2020.111639] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/01/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
On 11th March 2020, the pandemic of the new coronavirus was declared by the World Health Organization. At the moment, there are no new registered medicines that can effectively treat the coronavirus infection. However, a number of ongoing clinical trials are investigating the efficacy and safety of the medicines which have already been registered and used for the treatment of other diseases, in the treatment of the coronavirus infection. The proposed combinations of these medicines could potentially present a safety risk, since most of these medicines have the potential to cause numerous side or toxic effects, even when used in monotherapy. Thus, the aim of this study was to review and evaluate the literature data on the toxicity of the selected individual drugs (ritonavir, lopinavir, remdesivir, chloroquine, and umifenovir) and the available clinical data concerning the possible adverse effects of the selected drug combinations (lopinavir/ritonavir + umifenovir, lopinavir/ritonavir + interferon β, chloroquine + remdesivir, and chloroquine + azithromycin). The most often reported toxic effects of these medicines such as hepatotoxicity, retinal damage, nephrotoxicity, and cardiotoxicity, together with the fact that the health status of the patients with COVID-19 disease is often complicated by co-existing illnesses and therapy implicate that the decision on the therapeutic strategy should be made with caution.
Collapse
Affiliation(s)
- Dragana Javorac
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, 11221, Belgrade, Serbia
| | - Lazar Grahovac
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, 11221, Belgrade, Serbia
| | - Luka Manić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, 11221, Belgrade, Serbia
| | - Nikola Stojilković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, 11221, Belgrade, Serbia
| | - Milena Anđelković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, 11221, Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, 11221, Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, 11221, Belgrade, Serbia
| | - Marijana Curcic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, 11221, Belgrade, Serbia.
| | | |
Collapse
|
36
|
Elucidating the Pivotal Immunomodulatory and Anti-Inflammatory Potentials of Chloroquine and Hydroxychloroquine. J Immunol Res 2020; 2020:4582612. [PMID: 33062720 PMCID: PMC7533005 DOI: 10.1155/2020/4582612] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/03/2020] [Indexed: 12/30/2022] Open
Abstract
Chloroquine (CQ) and hydroxychloroquine (HCQ) are derivatives of 4-aminoquinoline compounds with over 60 years of safe clinical usage. CQ and HCQ are able to inhibit the production of cytokines such as interleukin- (IL-) 1, IL-2, IL-6, IL-17, and IL-22. Also, CQ and HCQ inhibit the production of interferon- (IFN-) α and IFN-γ and/or tumor necrotizing factor- (TNF-) α. Furthermore, CQ blocks the production of prostaglandins (PGs) in the intact cell by inhibiting substrate accessibility of arachidonic acid necessary for the production of PGs. Moreover, CQ affects the stability between T-helper cell (Th) 1 and Th2 cytokine secretion by augmenting IL-10 production in peripheral blood mononuclear cells (PBMCs). Additionally, CQ is capable of blocking lipopolysaccharide- (LPS-) triggered stimulation of extracellular signal-modulated extracellular signal-regulated kinases 1/2 in human PBMCs. HCQ at clinical levels effectively blocks CpG-triggered class-switched memory B-cells from differentiating into plasmablasts as well as producing IgG. Also, HCQ inhibits cytokine generation from all the B-cell subsets. IgM memory B-cells exhibits the utmost cytokine production. Nevertheless, CQ triggers the production of reactive oxygen species. A rare, but serious, side effect of CQ or HCQ in nondiabetic patients is hypoglycaemia. Thus, in critically ill patients, CQ and HCQ are most likely to deplete all the energy stores of the body leaving the patient very weak and sicker. We advocate that, during clinical usage of CQ and HCQ in critically ill patients, it is very essential to strengthen the CQ or HCQ with glucose infusion. CQ and HCQ are thus potential inhibitors of the COVID-19 cytokine storm.
Collapse
|
37
|
Austin D, John C, Hunt BJ, Carling RS. Validation of a liquid chromatography tandem mass spectrometry method for the simultaneous determination of hydroxychloroquine and metabolites in human whole blood. Clin Chem Lab Med 2020; 58:2047-2061. [DOI: 10.1515/cclm-2020-0610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/29/2020] [Indexed: 12/27/2022]
Abstract
Abstract
Objectives
Hydroxychloroquine (HCQ) is an anti-malarial and immunomodulatory drug reported to inhibit the Corona virus, SARS-CoV-2, in vitro. At present there is insufficient evidence from clinical trials to determine the safety and efficacy of HCQ as a treatment for COVID-19. However, since the World Health Organisation declared COVID-19 a pandemic in March 2020, the US Food and Drug Administration issued an Emergency Use Authorisation to allow HCQ and Chloroquine (CQ) to be distributed and used for certain hospitalised patients with COVID-19 and numerous clinical trials are underway around the world, including the UK based RECOVERY trial, with over 1000 volunteers. The validation of a liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the simultaneous determination of HCQ and two of its major metabolites, desethylchloroquine (DCQ) and di-desethylchloroquine (DDCQ), in whole blood is described.
Methods
Blood samples were deproteinised using acetonitrile. HCQ, DCQ and DDCQ were chromatographically separated on a biphenyl column with gradient elution, at a flow rate of 500 μL/min. The analysis time was 8 min.
Results
For each analyte linear calibration curves were obtained over the concentration range 50-2000 μg/L, the lower limit of quantification (LLOQ) was 13 μg/L, the inter-assay relative standard deviation (RSD) was <10% at 25, 800 and 1750 μg/L and mean recoveries were 80, 81, 78 and 62% for HCQ, d4-HCQ, DCQ and DDCQ, respectively.
Conclusion
This method has acceptable analytical performance and is applicable to the therapeutic monitoring of HCQ, evaluating the pharmacokinetics of HCQ in COVID-19 patients and supporting clinical trials.
Collapse
Affiliation(s)
- Donna Austin
- Biochemical Sciences, Viapath , Guys & St Thomas’ NHSFT , London , UK
| | - Catharine John
- Biochemical Sciences, Viapath , Guys & St Thomas’ NHSFT , London , UK
| | - Beverley J Hunt
- Thrombosis & Haemophilia Centre , Guy’s & St Thomas’ NHSFT , London , UK
| | - Rachel S. Carling
- Biochemical Sciences, Viapath , Guys & St Thomas’ NHSFT , London , UK
- GKT Medical School , Kings College London , London , UK
| |
Collapse
|
38
|
Morrisette T, Lodise TP, Scheetz MH, Goswami S, Pogue JM, Rybak MJ. The Pharmacokinetic and Pharmacodynamic Properties of Hydroxychloroquine and Dose Selection for COVID-19: Putting the Cart Before the Horse. Infect Dis Ther 2020; 9:561-572. [PMID: 32740858 PMCID: PMC7395206 DOI: 10.1007/s40121-020-00325-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the 2019 novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently responsible for a global pandemic. To date, only remdesivir and dexamethasone have demonstrated a positive response in a prospective, randomized trial for the treatment of patients with COVID-19. Hydroxychloroquine (HCQ) is an agent available in an oral formulation with in vitro activity against SARS-CoV-2 that has been suggested as a potential agent. Unfortunately, results of randomized trials evaluating HCQ as treatment against a control group are lacking, and little is known about its pharmacokinetic/pharmacodynamic (PK/PD) profile against SARS-CoV-2. The objective of this review was to describe the current understanding of the PK/PD and dose selection of HCQ against SARS-CoV-2, discuss knowledge gaps, and identify future studies that are needed to optimize the efficacy and safety of treatments against COVID-19.
Collapse
Affiliation(s)
- Taylor Morrisette
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Thomas P Lodise
- Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - Marc H Scheetz
- Department of Pharmacy Practice, Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, USA
- Pharmacometrics Center of Excellence, Midwestern University, Downers Grove, IL, USA
- Department of Pharmacy, Northwestern Memorial Hospital, Chicago, IL, USA
- Department of Pharmacology, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| | | | - Jason M Pogue
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Michael J Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.
- Division of Infectious Diseases, Department of Medicine, Wayne State University, Detroit, MI, USA.
- Department of Pharmacy, Detroit Medical Center, Detroit, MI, USA.
| |
Collapse
|
39
|
Nicol MR, Joshi A, Rizk ML, Sabato PE, Savic RM, Wesche D, Zheng JH, Cook J. Pharmacokinetics and Pharmacological Properties of Chloroquine and Hydroxychloroquine in the Context of COVID-19 Infection. Clin Pharmacol Ther 2020; 108:1135-1149. [PMID: 32687630 PMCID: PMC7404755 DOI: 10.1002/cpt.1993] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
Chloroquine and hydroxychloroquine are quinoline derivatives used to treat malaria. To date, these medications are not approved for the treatment of viral infections, and there are no well‐controlled, prospective, randomized clinical studies or evidence to support their use in patients with coronavirus disease 2019 (COVID‐19). Nevertheless, chloroquine and hydroxychloroquine are being studied alone or in combination with other agents to assess their effectiveness in the treatment or prophylaxis for COVID‐19. The effective use of any medication involves an understanding of its pharmacokinetics, safety, and mechanism of action. This work provides basic clinical pharmacology information relevant for planning and initiating COVID‐19 clinical studies with chloroquine or hydroxychloroquine, summarizes safety data from healthy volunteer studies, and summarizes safety data from phase II and phase II/III clinical studies in patients with uncomplicated malaria, including a phase II/III study in pediatric patients following administration of azithromycin and chloroquine in combination. In addition, this work presents data describing the proposed mechanisms of action against the severe acute respiratory distress syndrome coronavirus–2 and summarizes clinical efficacy to date.
Collapse
Affiliation(s)
- Melanie R Nicol
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Abhay Joshi
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Matthew L Rizk
- Quantitative Pharmacology and Pharmacometrics, Merck & Co Inc, Kenilworth, New Jersey, USA
| | - Philip E Sabato
- Quantitative Pharmacology and Pharmacometrics, Merck & Co Inc, Kenilworth, New Jersey, USA
| | - Radojka M Savic
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | | | - Jenny H Zheng
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Jack Cook
- Clinical Pharmacology Department, Global Product Development, Pfizer Inc, Groton, Connecticut, USA
| |
Collapse
|
40
|
Fernandez-Ruiz R, Bornkamp N, Kim MY, Askanase A, Zezon A, Tseng CE, Belmont HM, Saxena A, Salmon JE, Lockshin M, Buyon JP, Izmirly PM. Discontinuation of hydroxychloroquine in older patients with systemic lupus erythematosus: a multicenter retrospective study. Arthritis Res Ther 2020; 22:191. [PMID: 32807233 PMCID: PMC7430013 DOI: 10.1186/s13075-020-02282-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
Background Although hydroxychloroquine (HCQ) is a mainstay of treatment for patients with systemic lupus erythematosus (SLE), ocular toxicity can result from accumulated exposure. As the longevity of patients with SLE improves, data are needed to balance the risk of ocular toxicity and the risk of disease flare, especially in older patients with quiescent disease. Accordingly, this study was initiated to examine the safety of HCQ withdrawal in older SLE patients. Methods Data were obtained by retrospective chart review at three major lupus centers in New York City. Twenty-six patients who discontinued HCQ and thirty-two patients on HCQ matched for gender, race/ethnicity, and age were included in this study. The primary outcome was the occurrence of a lupus flare classified by the revised version of the Safety of Estrogens in Lupus Erythematosus: National Assessment version of the Systemic Lupus Erythematosus Disease Activity Index (SELENA-SLEDAI) Flare composite index, within 1 year of HCQ withdrawal or matched time of continuation. Results Five patients (19.2%) in the HCQ withdrawal group compared to five (15.6%) in the HCQ continuation group experienced a flare of any severity (odds ratio [OR] = 1.28; 95% CI 0.31, 5.30; p = 0.73). There were no severe flares in either group. The results were similar after adjusting for length of SLE, number of American College of Rheumatology criteria, low complement levels, and SELENA-SLEDAI score, and in a propensity score analysis (OR = 1.18; 95% CI 0.23, 6.16; p = 0.84). The analysis of time to any flare revealed a non-significant earlier time to flare in the HCQ withdrawal group (log-rank p = 0.67). Most flares were in the cutaneous and musculoskeletal systems, but one patient in the continuation group developed pericarditis. The most common reason for HCQ withdrawal was retinal toxicity (42.3%), followed by patient’s preference (34.6%), other confirmed or suspected adverse effects (15.4%), ophthalmologist recommendation for macular degeneration (3.8%), and rheumatologist recommendation for quiescent SLE (3.8%). Conclusions In this retrospective study of older stable patients with SLE on long-term HCQ, withdrawal did not significantly increase the risk of flares.
Collapse
Affiliation(s)
- Ruth Fernandez-Ruiz
- Division of Rheumatology, Department of Medicine, New York University School of Medicine, New York, NY, USA.
| | - Nicole Bornkamp
- Department of Population Medicine, Harvard Medical School, Boston, MA, USA
| | - Mimi Y Kim
- Division of Biostatistics, Department of Epidemiology & Population Health, Albert Einstein College of Medicine, New York, NY, USA
| | - Anca Askanase
- Division of Rheumatology, Department of Medicine, Columbia University College of Physicians & Surgeons, New York, NY, USA
| | - Anna Zezon
- Division of Rheumatology, Englewood Hospital and Medical Center, Englewood, NJ, USA
| | - Chung-E Tseng
- Division of Rheumatology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - H Michael Belmont
- Division of Rheumatology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Amit Saxena
- Division of Rheumatology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Jane E Salmon
- Division of Rheumatology, Department of Medicine, Hospital for Special Surgery, Weill Cornell Medical College, New York, NY, USA
| | - Michael Lockshin
- Division of Rheumatology, Department of Medicine, Hospital for Special Surgery, Weill Cornell Medical College, New York, NY, USA
| | - Jill P Buyon
- Division of Rheumatology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Peter M Izmirly
- Division of Rheumatology, Department of Medicine, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
41
|
Psoriasis and Connective Tissue Diseases. Int J Mol Sci 2020; 21:ijms21165803. [PMID: 32823524 PMCID: PMC7460816 DOI: 10.3390/ijms21165803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022] Open
Abstract
Psoriasis is a chronic systemic inflammatory disease with various co-morbidities, having been recently considered as a comprehensive disease named psoriatic disease or psoriatic syndrome. Autoimmune diseases are one form of its co-morbidities. In addition to the genetic background, shared pathogenesis including innate immunity, neutrophil extracellular trap (NETs), and type I interferon, as well as acquitted immunity such as T helper-17 (Th17) related cytokines are speculated to play a significant role in both psoriasis and connective tissue diseases. On the other hand, there are definite differences between psoriasis and connective tissue diseases, such as their pathomechanisms and response to drugs. Therefore, we cannot expect that one stone kills two birds, and thus caution is necessary when considering whether the administered drug for one disease is effective or not for another disease. In this review, several connective tissue diseases and related diseases are discussed from the viewpoint of their coexistence with psoriasis.
Collapse
|
42
|
Patil VM, Singhal S, Masand N. A systematic review on use of aminoquinolines for the therapeutic management of COVID-19: Efficacy, safety and clinical trials. Life Sci 2020; 254:117775. [PMID: 32418894 PMCID: PMC7211740 DOI: 10.1016/j.lfs.2020.117775] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 01/08/2023]
Abstract
Recent global outbreak of the pandemic caused by coronavirus (COVID-19) emphasizes the urgent need for novel antiviral therapeutics. It can be supplemented by utilization of efficient and validated drug discovery approaches such as drug repurposing/repositioning. The well reported and clinically used anti-malarial aminoquinoline drugs (chloroquine and hydroxychloroquine) have shown potential to be repurposed to control the present pandemic by inhibition of COVID-19. The review elaborates the mechanism of action, safety (side effects, adverse effects, toxicity) and details of clinical trials for chloroquine and hydroxychloroquine to benefit the clinicians, medicinal chemist, pharmacologist actively involved in controlling the pandemic and to provide therapeutics for the treatment of COVID-19 infection.
Collapse
Affiliation(s)
- Vaishali M Patil
- Computer Aided Drug Design Lab, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India.
| | - Shipra Singhal
- Computer Aided Drug Design Lab, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | - Neeraj Masand
- Department of Pharmacy, Lala Lajpat Rai Memorial Medical College, Meerut, Uttar Pradesh, India
| |
Collapse
|
43
|
Nirk EL, Reggiori F, Mauthe M. Hydroxychloroquine in rheumatic autoimmune disorders and beyond. EMBO Mol Med 2020; 12:e12476. [PMID: 32715647 PMCID: PMC7411564 DOI: 10.15252/emmm.202012476] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Initially used as antimalarial drugs, hydroxychloroquine (HCQ) and, to a lesser extent, chloroquine (CQ) are currently being used to treat several diseases. Due to its cost‐effectiveness, safety and efficacy, HCQ is especially used in rheumatic autoimmune disorders (RADs), such as systemic lupus erythematosus, primary Sjögren's syndrome and rheumatoid arthritis. Despite this widespread use in the clinic, HCQ molecular modes of action are still not completely understood. By influencing several cellular pathways through different mechanisms, CQ and HCQ inhibit multiple endolysosomal functions, including autophagy, as well as endosomal Toll‐like receptor activation and calcium signalling. These effects alter several aspects of the immune system with the synergistic consequence of reducing pro‐inflammatory cytokine production and release, one of the most marked symptoms of RADs. Here, we review the current knowledge on the molecular modes of action of these drugs and the circumstances under which they trigger side effects. This is of particular importance as the therapeutic use of HCQ is expanding beyond the treatment of malaria and RADs.
Collapse
Affiliation(s)
- Eliise Laura Nirk
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mario Mauthe
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
44
|
Lalabekyan B, Kunst G, Skelton VA. Torsades de Pointes in Coronavirus Disease 2019 Infection. J Cardiothorac Vasc Anesth 2020; 35:954-955. [PMID: 32753328 PMCID: PMC7362787 DOI: 10.1053/j.jvca.2020.07.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Bagrat Lalabekyan
- Department of Anesthesia, King's College Hospital, King's College Hospital NHS Foundation Trust, Denmark Hill, Brixton, London, United Kingdom.
| | - Gudrun Kunst
- School of Cardiovascular Medicine & Sciences, King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Vanessa A Skelton
- Department of Anesthesia, King's College Hospital, King's College Hospital NHS Foundation Trust, Denmark Hill, Brixton, London, United Kingdom
| |
Collapse
|
45
|
Jamilloux Y, Henry T, Belot A, Viel S, Fauter M, El Jammal T, Walzer T, François B, Sève P. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun Rev 2020; 19:102567. [PMID: 32376392 PMCID: PMC7196557 DOI: 10.1016/j.autrev.2020.102567] [Citation(s) in RCA: 447] [Impact Index Per Article: 111.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 01/08/2023]
Abstract
The coronavirus disease-19 pandemic (COVID-19), which appeared in China in December 2019 and rapidly spread throughout the world, has forced clinicians and scientists to take up extraordinary challenges. This unprecedented situation led to the inception of numerous fundamental research protocols and many clinical trials. It quickly became apparent that although COVID-19, in the vast majority of cases, was a benign disease, it could also develop a severe form with sometimes fatal outcomes. Cytokines are central to the pathophysiology of COVID-19; while some of them are beneficial (type-I interferon, interleukin-7), others appear detrimental (interleukin-1β, -6, and TNF-α) particularly in the context of the so-called cytokine storm. Yet another characteristic of the disease has emerged: concomitant immunodeficiency, notably involving impaired type-I interferon response, and lymphopenia. This review provides an overview of current knowledge on COVID-19 immunopathology. We discuss the defective type-I IFN response, the theoretical role of IL-7 to restore lymphocyte repertoire, as well as we mention the two patterns observed in severe COVID-19 (i.e. interleukin-1β-driven macrophage activation syndrome vs. interleukin-6-driven immune dysregulation). Next, reviewing current evidence drawn from clinical trials, we examine a number of cytokine and anti-cytokine therapies, including interleukin-1, -6, and TNF inhibitors, as well as less targeted therapies, such as corticosteroids, chloroquine, or JAK inhibitors.
Collapse
Affiliation(s)
- Yvan Jamilloux
- Department of Internal Medicine, Lyon University Hospital, Lyon, France; Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard-Lyon 1, Lyon, France.
| | - Thomas Henry
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard-Lyon 1, Lyon, France
| | - Alexandre Belot
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard-Lyon 1, Lyon, France; Department of Pediatric rheumatology, nephrology, and dermatology, Lyon University Hospital, Lyon, France; National Referee Centre for Rheumatic and AutoImmune and Systemic diseases in childrEn (RAISE), Lyon, France
| | - Sébastien Viel
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard-Lyon 1, Lyon, France; Service d'Immunologie Biologique, Centre, Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France; National Referee Centre for Rheumatic and AutoImmune and Systemic diseases in childrEn (RAISE), Lyon, France
| | - Maxime Fauter
- Department of Internal Medicine, Lyon University Hospital, Lyon, France; Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard-Lyon 1, Lyon, France
| | - Thomas El Jammal
- Department of Internal Medicine, Lyon University Hospital, Lyon, France
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard-Lyon 1, Lyon, France
| | - Bruno François
- Intensive care unit & Inserm CIC 1435 & Inserm UMR 1092, Dupuytren University Hospital, Limoges, France
| | - Pascal Sève
- Department of Internal Medicine, Lyon University Hospital, Lyon, France
| |
Collapse
|
46
|
Chloroquine / Hydroxychloroquine: Pharmacological view of an old drug currently used in COVID-19 treatment. ANADOLU KLINIĞI TIP BILIMLERI DERGISI 2020. [DOI: 10.21673/anadoluklin.735826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
47
|
Pereira BB. Challenges and cares to promote rational use of chloroquine and hydroxychloroquine in the management of coronavirus disease 2019 (COVID-19) pandemic: a timely review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:177-181. [PMID: 32281481 PMCID: PMC7157945 DOI: 10.1080/10937404.2020.1752340] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As a result of the 2019 coronavirus disease pandemic (COVID-19), there has been an urgent worldwide demand for treatments. Due to factors such as history of prescription for other infectious diseases, availability, and relatively low cost, the use of chloroquine (CQ) and hydroxychloroquine (HCQ) has been tested in vivo and in vitro for the ability to inhibit the causative virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, even though investigators noted the therapeutic potential of these drugs, it is important to consider the toxicological risks and necessary care for rational use of CQ and HCQ. This study provides information on the main toxicological and epidemiological aspects to be considered for prophylaxis or treatment of COVID-19 using CQ but mainly HCQ, which is a less toxic derivative than CQ, and was shown to produce better results in inhibiting proliferation of SARS-CoV-2 based upon preliminary tests.
Collapse
Affiliation(s)
- Boscolli Barbosa Pereira
- Institute of Geography, Department of Environmental Health, Federal University of Uberlândia, Santa Mônica Campus, Uberlândia, Brazil
- Institute of Biotechnology, Department of Genetics and Biochemistry, Federal University of Uberlândia, Umuarama Campus, Uberlândia, Brazil
| |
Collapse
|
48
|
Jamilloux Y, Henry T, Belot A, Viel S, Fauter M, El Jammal T, Walzer T, François B, Sève P. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun Rev 2020. [PMID: 32376392 DOI: 10.1016/j.autrev.2020.102567.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The coronavirus disease-19 pandemic (COVID-19), which appeared in China in December 2019 and rapidly spread throughout the world, has forced clinicians and scientists to take up extraordinary challenges. This unprecedented situation led to the inception of numerous fundamental research protocols and many clinical trials. It quickly became apparent that although COVID-19, in the vast majority of cases, was a benign disease, it could also develop a severe form with sometimes fatal outcomes. Cytokines are central to the pathophysiology of COVID-19; while some of them are beneficial (type-I interferon, interleukin-7), others appear detrimental (interleukin-1β, -6, and TNF-α) particularly in the context of the so-called cytokine storm. Yet another characteristic of the disease has emerged: concomitant immunodeficiency, notably involving impaired type-I interferon response, and lymphopenia. This review provides an overview of current knowledge on COVID-19 immunopathology. We discuss the defective type-I IFN response, the theoretical role of IL-7 to restore lymphocyte repertoire, as well as we mention the two patterns observed in severe COVID-19 (i.e. interleukin-1β-driven macrophage activation syndrome vs. interleukin-6-driven immune dysregulation). Next, reviewing current evidence drawn from clinical trials, we examine a number of cytokine and anti-cytokine therapies, including interleukin-1, -6, and TNF inhibitors, as well as less targeted therapies, such as corticosteroids, chloroquine, or JAK inhibitors.
Collapse
Affiliation(s)
- Yvan Jamilloux
- Department of Internal Medicine, Lyon University Hospital, Lyon, France; Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard-Lyon 1, Lyon, France.
| | - Thomas Henry
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard-Lyon 1, Lyon, France
| | - Alexandre Belot
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard-Lyon 1, Lyon, France; Department of Pediatric rheumatology, nephrology, and dermatology, Lyon University Hospital, Lyon, France; National Referee Centre for Rheumatic and AutoImmune and Systemic diseases in childrEn (RAISE), Lyon, France
| | - Sébastien Viel
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard-Lyon 1, Lyon, France; Service d'Immunologie Biologique, Centre, Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France; National Referee Centre for Rheumatic and AutoImmune and Systemic diseases in childrEn (RAISE), Lyon, France
| | - Maxime Fauter
- Department of Internal Medicine, Lyon University Hospital, Lyon, France; Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard-Lyon 1, Lyon, France
| | - Thomas El Jammal
- Department of Internal Medicine, Lyon University Hospital, Lyon, France
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard-Lyon 1, Lyon, France
| | - Bruno François
- Intensive care unit & Inserm CIC 1435 & Inserm UMR 1092, Dupuytren University Hospital, Limoges, France
| | - Pascal Sève
- Department of Internal Medicine, Lyon University Hospital, Lyon, France
| |
Collapse
|
49
|
Hashem AM, Alghamdi BS, Algaissi AA, Alshehri FS, Bukhari A, Alfaleh MA, Memish ZA. Therapeutic use of chloroquine and hydroxychloroquine in COVID-19 and other viral infections: A narrative review. Travel Med Infect Dis 2020; 35:101735. [PMID: 32387694 PMCID: PMC7202851 DOI: 10.1016/j.tmaid.2020.101735] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022]
Abstract
The rapidly spreading Coronavirus Disease (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2), represents an unprecedented serious challenge to the global public health community. The extremely rapid international spread of the disease with significant morbidity and mortality made finding possible therapeutic interventions a global priority. While approved specific antiviral drugs against SARS-CoV-2 are still lacking, a large number of existing drugs are being explored as a possible treatment for COVID-19 infected patients. Recent publications have re-examined the use of Chloroquine (CQ) and/or Hydroxychloroquine (HCQ) as a potential therapeutic option for these patients. In an attempt to explore the evidence that supports their use in COVID-19 patients, we comprehensively reviewed the previous studies which used CQ or HCQ as an antiviral treatment. Both CQ and HCQ demonstrated promising in vitro results, however, such data have not yet been translated into meaningful in vivo studies. While few clinical trials have suggested some beneficial effects of CQ and HCQ in COVID-19 patients, most of the reported data are still preliminary. Given the current uncertainty, it is worth being mindful of the potential risks and strictly rationalise the use of these drugs in COVID-19 patients until further high quality randomized clinical trials are available to clarify their role in the treatment or prevention of COVID-19.
Collapse
Affiliation(s)
- Anwar M Hashem
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Vaccines and Immunnotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Badrah S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Pre-Clinical Research Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Abdullah A Algaissi
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia; Medical Research Center, Jazan University, Jazan, Saudi Arabia.
| | - Fahad S Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Abdullah Bukhari
- Department of Medicine, Faculty of Medicine, Imam Mohammed Ibn Saud Islamic University, Riyadh, Saudi Arabia.
| | - Mohamed A Alfaleh
- Vaccines and Immunnotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Faculty of Pharmacy; King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Ziad A Memish
- King Saud Medical City, Research & Innovation Center, Ministry of Health, Saudi Arabia; Al-Faisal University, Riyadh, Saudi Arabia; Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
50
|
Zhang Q, Tsuji-Hosokawa A, Willson C, Watanabe M, Si R, Lai N, Wang Z, Yuan JXJ, Wang J, Makino A. Chloroquine differentially modulates coronary vasodilation in control and diabetic mice. Br J Pharmacol 2020; 177:314-327. [PMID: 31503328 DOI: 10.1111/bph.14864] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND PURPOSE Chloroquine is a traditional medicine to treat malaria. There is increasing evidence that chloroquine not only induces phagocytosis but regulates vascular tone. Few reports investigating the effect of chloroquine on vascular responsiveness of coronary arteries have been made. In this study, we examined how chloroquine affected endothelium-dependent relaxation in coronary arteries under normal and diabetic conditions. EXPERIMENTAL APPROACH We isolated coronary arteries from mice and examined endothelium-dependent relaxation (EDR). Human coronary endothelial cells and mouse coronary endothelial cells isolated from control and diabetic mouse (TALLYHO/Jng [TH] mice, a spontaneous type 2 diabetic mouse model) were used for the molecular biological or cytosolic NO and Ca2+ measurements. KEY RESULTS Chloroquine inhibited endothelium-derived NO-dependent relaxation but had negligible effect on endothelium-derived hyperpolarization (EDH)-dependent relaxation in coronary arteries of control mice. Chloroquine significantly decreased NO production in control human coronary endothelial cells partly by phosphorylating eNOSThr495 (an inhibitory phosphorylation site of eNOS) and attenuating the rise of cytosolic Ca2+ concentration after stimulation. EDR was significantly inhibited in diabetic mice in comparison to control mice. Interestingly, chloroquine enhanced EDR in diabetic coronary arteries by, specifically, increasing EDH-dependent relaxation due partly to its augmenting effect on gap junction activity in diabetic mouse coronary endothelial cells. CONCLUSIONS AND IMPLICATIONS These data indicate that chloroquine affects vascular relaxation differently under normal and diabetic conditions. Therefore, the patients' health condition such as coronary macrovascular or microvascular disease, with or without diabetes, must be taken account into the consideration when selecting chloroquine for the treatment of malaria.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Medicine, University of California, San Diego, La Jolla, California.,Department of Physiology, The University of Arizona, Tucson, Arizona.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - Conor Willson
- Department of Physiology, The University of Arizona, Tucson, Arizona
| | - Makiko Watanabe
- Department of Physiology, The University of Arizona, Tucson, Arizona
| | - Rui Si
- Department of Physiology, The University of Arizona, Tucson, Arizona
| | - Ning Lai
- Department of Medicine, University of California, San Diego, La Jolla, California.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ziyi Wang
- Department of Medicine, University of California, San Diego, La Jolla, California.,Department of Medicine, The University of Arizona, Tucson, Arizona.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jason X-J Yuan
- Department of Medicine, University of California, San Diego, La Jolla, California.,Department of Medicine, The University of Arizona, Tucson, Arizona
| | - Jian Wang
- Department of Medicine, The University of Arizona, Tucson, Arizona.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ayako Makino
- Department of Medicine, University of California, San Diego, La Jolla, California.,Department of Physiology, The University of Arizona, Tucson, Arizona.,Department of Medicine, The University of Arizona, Tucson, Arizona
| |
Collapse
|