1
|
Suri JS, Bhagawati M, Paul S, Protogeron A, Sfikakis PP, Kitas GD, Khanna NN, Ruzsa Z, Sharma AM, Saxena S, Faa G, Paraskevas KI, Laird JR, Johri AM, Saba L, Kalra M. Understanding the bias in machine learning systems for cardiovascular disease risk assessment: The first of its kind review. Comput Biol Med 2022; 142:105204. [PMID: 35033879 DOI: 10.1016/j.compbiomed.2021.105204] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 02/09/2023]
|
2
|
Jain PK, Sharma N, Saba L, Paraskevas KI, Kalra MK, Johri A, Laird JR, Nicolaides AN, Suri JS. Unseen Artificial Intelligence-Deep Learning Paradigm for Segmentation of Low Atherosclerotic Plaque in Carotid Ultrasound: A Multicenter Cardiovascular Study. Diagnostics (Basel) 2021; 11:2257. [PMID: 34943494 PMCID: PMC8699942 DOI: 10.3390/diagnostics11122257] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The early detection of carotid wall plaque is recommended in the prevention of cardiovascular disease (CVD) in moderate-risk patients. Previous techniques for B-mode carotid atherosclerotic wall plaque segmentation used artificial intelligence (AI) methods on monoethnic databases, where training and testing are from the "same" ethnic group ("Seen AI"). Therefore, the versatility of the system is questionable. This is the first study of its kind that uses the "Unseen AI" paradigm where training and testing are from "different" ethnic groups. We hypothesized that deep learning (DL) models should perform in 10% proximity between "Unseen AI" and "Seen AI". METHODOLOGY Two cohorts from multi-ethnic groups (330 Japanese and 300 Hong Kong (HK)) were used for the validation of our hypothesis. We used a four-layered UNet architecture for the segmentation of the atherosclerotic wall with low plaque. "Unseen AI" (training: Japanese, testing: HK or vice versa) and "Seen AI" experiments (single ethnicity or mixed ethnicity) were performed. Evaluation was conducted by measuring the wall plaque area. Statistical tests were conducted for its stability and reliability. RESULTS When using the UNet DL architecture, the "Unseen AI" pair one (Training: 330 Japanese and Testing: 300 HK), the mean accuracy, dice-similarity, and correlation-coefficient were 98.55, 78.38, and 0.80 (p < 0.0001), respectively, while for "Unseen AI" pair two (Training: 300 HK and Testing: 330 Japanese), these were 98.67, 82.49, and 0.87 (p < 0.0001), respectively. Using "Seen AI", the same parameters were 99.01, 86.89 and 0.92 (p < 0.0001), respectively. CONCLUSION We demonstrated that "Unseen AI" was in close proximity (<10%) to "Seen AI", validating our DL model for low atherosclerotic wall plaque segmentation. The online system runs < 1 s.
Collapse
Affiliation(s)
- Pankaj K. Jain
- School of Biomedical Engineering, IIT (BHU), Varanasi 221005, India; (P.K.J.); (N.S.)
| | - Neeraj Sharma
- School of Biomedical Engineering, IIT (BHU), Varanasi 221005, India; (P.K.J.); (N.S.)
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 10015 Cagliari, Italy;
| | | | - Mandeep K. Kalra
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA;
| | - Amer Johri
- Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA;
| | - Andrew N. Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia, Nicosia 1700, Cyprus;
| | - Jasjit S. Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA
| |
Collapse
|
3
|
Munjral S, Ahluwalia P, Jamthikar AD, Puvvula A, Saba L, Faa G, Singh IM, Chadha PS, Turk M, Johri AM, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Pareek G, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou A, Misra P, Agarwal V, Kitas GD, Kolluri R, Teji J, Al-Maini M, Dhanjil SK, Sockalingam M, Saxena A, Sharma A, Rathore V, Fatemi M, Alizad A, Viswanathan V, Krishnan PK, Omerzu T, Naidu S, Nicolaides A, Suri JS. Nutrition, atherosclerosis, arterial imaging, cardiovascular risk stratification, and manifestations in COVID-19 framework: a narrative review. FRONT BIOSCI-LANDMRK 2021; 26:1312-1339. [PMID: 34856770 DOI: 10.52586/5026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023]
Abstract
Background: Atherosclerosis is the primary cause of the cardiovascular disease (CVD). Several risk factors lead to atherosclerosis, and altered nutrition is one among those. Nutrition has been ignored quite often in the process of CVD risk assessment. Altered nutrition along with carotid ultrasound imaging-driven atherosclerotic plaque features can help in understanding and banishing the problems associated with the late diagnosis of CVD. Artificial intelligence (AI) is another promisingly adopted technology for CVD risk assessment and management. Therefore, we hypothesize that the risk of atherosclerotic CVD can be accurately monitored using carotid ultrasound imaging, predicted using AI-based algorithms, and reduced with the help of proper nutrition. Layout: The review presents a pathophysiological link between nutrition and atherosclerosis by gaining a deep insight into the processes involved at each stage of plaque development. After targeting the causes and finding out results by low-cost, user-friendly, ultrasound-based arterial imaging, it is important to (i) stratify the risks and (ii) monitor them by measuring plaque burden and computing risk score as part of the preventive framework. Artificial intelligence (AI)-based strategies are used to provide efficient CVD risk assessments. Finally, the review presents the role of AI for CVD risk assessment during COVID-19. Conclusions: By studying the mechanism of low-density lipoprotein formation, saturated and trans fat, and other dietary components that lead to plaque formation, we demonstrate the use of CVD risk assessment due to nutrition and atherosclerosis disease formation during normal and COVID times. Further, nutrition if included, as a part of the associated risk factors can benefit from atherosclerotic disease progression and its management using AI-based CVD risk assessment.
Collapse
Affiliation(s)
- Smiksha Munjral
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Superspeciality Hospital, 110058 New Delhi, India
| | - Ankush D Jamthikar
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
- Visvesvaraya National Institute of Technology, 440001 Nagpur, India
| | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
- Annu's Hospitals for Skin and Diabetes, 24002 Nellore, AP, India
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 09125 Cagliari, Italy
| | - Gavino Faa
- Department of Pathology, AOU of Cagliari, 09125 Cagliari, Italy
| | - Inder M Singh
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
| | - Paramjit S Chadha
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27749 Delmenhorst, Germany
| | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, ON K7L, Canada
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, 110001 New Delhi, India
| | | | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, 106 71 Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02906, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, RI 02903, USA
| | - David W Sobel
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02906, USA
| | | | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 106 71 Athens, Greece
| | - George Tsoulfas
- Aristoteleion University of Thessaloniki, 546 30 Thessaloniki, Greece
| | | | - Prasanna Misra
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, 226018 Lucknow, UP, India
| | - Vikas Agarwal
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, 226018 Lucknow, UP, India
| | - George D Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, DY2 8 Dudley, UK
- Arthritis Research UK Epidemiology Unit, Manchester University, M13 9 Manchester, UK
| | | | - Jagjit Teji
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60629, USA
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON M5H, Canada
| | - Surinder K Dhanjil
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
| | | | - Ajit Saxena
- Department of Cardiology, Indraprastha APOLLO Hospitals, 110001 New Delhi, India
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA 95823, USA
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engg., Mayo Clinic College of Medicine and Science, MN 55441, USA
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, MN 55441, USA
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Professor MVD Research Centre, 600003 Chennai, India
| | - P K Krishnan
- Neurology Department, Fortis Hospital, 562123 Bangalore, India
| | - Tomaz Omerzu
- Department of Neurology, University Medical Centre Maribor, 2000 Maribor, Slovenia
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, 999058 Nicosia, Cyprus
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
| |
Collapse
|
4
|
Poredos P, Jezovnik MK. Preclinical carotid atherosclerosis as an indicator of polyvascular disease: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1204. [PMID: 34430645 PMCID: PMC8350699 DOI: 10.21037/atm-20-5570] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 06/29/2021] [Indexed: 12/15/2022]
Abstract
Carotid atherosclerotic lesions are correlated with atherosclerotic deterioration of the arterial wall in other vascular territories and with cardiovascular events. The detection of pre-symptomatic carotid lesions like intima-media thickness (IMT) and asymptomatic carotid plaques is possible by non-invasive ultrasound duplex scanning. Current measurement guidelines suggest an average measurement of IMT within 10 mm of the segment of the common carotid artery. The thickening of intima-media appears in a long subclinical period of atherosclerosis. Therefore, the determination of IMT has emerged as one of the methods for determining early structural deterioration of the arterial wall. A close interrelationship was shown between IMT and risk factors of atherosclerosis, their duration, and intensity. Different studies demonstrated that increased IMT is a powerful predictor of coronary, cerebrovascular, and peripheral arterial occlusive disease and their complication. A recent meta-analysis indicated a minimal improvement in the risk estimation of cardiovascular events after adding IMT to the Framingham Risk Score. These findings influenced the latest ACC/AHA guidelines which again recommend the use of carotid IMT measurement for individual risk assessment. The presence of atherosclerotic plaques indicates that the atherosclerotic process is already ongoing. The findings of different studies are equivocal that carotid plaques independently predict cardiovascular events and improve risk predictions for coronary artery disease when added to the Framingham Risk Score. However, besides the size of plaque and grade of stenosis, the structure of plaque calcification, vascularization, lipid core, and the surface of plaques are important indicators of related risks for cardiovascular events.
Collapse
Affiliation(s)
- Pavel Poredos
- Department of Vascular Disease, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Department of Advanced Cardiopulmonary Therapies and Transplantation, The University of Texas Health Science Centre at Houston, Houston, TX, USA
| | - Mateja K Jezovnik
- Department of Advanced Cardiopulmonary Therapies and Transplantation, The University of Texas Health Science Centre at Houston, Houston, TX, USA
| |
Collapse
|
5
|
Suri JS, Puvvula A, Majhail M, Biswas M, Jamthikar AD, Saba L, Faa G, Singh IM, Oberleitner R, Turk M, Srivastava S, Chadha PS, Suri HS, Johri AM, Nambi V, Sanches JM, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Bit A, Pareek G, Miner M, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou A, Misra DP, Agarwal V, Kitas GD, Kolluri R, Teji J, Porcu M, Al-Maini M, Agbakoba A, Sockalingam M, Sexena A, Nicolaides A, Sharma A, Rathore V, Viswanathan V, Naidu S, Bhatt DL. Integration of cardiovascular risk assessment with COVID-19 using artificial intelligence. Rev Cardiovasc Med 2020; 21:541-560. [PMID: 33387999 DOI: 10.31083/j.rcm.2020.04.236] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 11/06/2022] Open
Abstract
Artificial Intelligence (AI), in general, refers to the machines (or computers) that mimic "cognitive" functions that we associate with our mind, such as "learning" and "solving problem". New biomarkers derived from medical imaging are being discovered and are then fused with non-imaging biomarkers (such as office, laboratory, physiological, genetic, epidemiological, and clinical-based biomarkers) in a big data framework, to develop AI systems. These systems can support risk prediction and monitoring. This perspective narrative shows the powerful methods of AI for tracking cardiovascular risks. We conclude that AI could potentially become an integral part of the COVID-19 disease management system. Countries, large and small, should join hands with the WHO in building biobanks for scientists around the world to build AI-based platforms for tracking the cardiovascular risk assessment during COVID-19 times and long-term follow-up of the survivors.
Collapse
Affiliation(s)
- Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, 95747, CA, USA
| | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, 95747, CA, USA
- Annu's Hospitals for Skin and Diabetes, Nellore, 524001, AP, India
| | - Misha Majhail
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, 95747, CA, USA
- Oakmount High School and AtheroPoint™, Roseville, 95747, CA, USA
| | | | - Ankush D Jamthikar
- Department of ECE, Visvesvaraya National Institute of Technology, Nagpur, 440010, MH, India
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09100, Cagliari, Italy
| | - Gavino Faa
- Department of Pathology, 09100, AOU of Cagliari, Italy
| | - Inder M Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, 95747, CA, USA
| | | | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27749, Delmenhorst, Germany
| | - Saurabh Srivastava
- School of Computing Science & Engineering, Galgotias University, 201301, Gr. Noida, India
| | - Paramjit S Chadha
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, 95747, CA, USA
| | | | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, B0P 1R0, Ontario, Canada
| | - Vijay Nambi
- Department of Cardiology, Baylor College of Medicine, 77001, TX, USA
| | - J Miguel Sanches
- Institute of Systems and Robotics, Instituto Superior Tecnico, 1000-001, Lisboa, Portugal
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, 110001, New Delhi, India
| | | | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, 104 31, Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, 94574, CA, USA
| | - Arindam Bit
- Department of Biomedical Engineering, NIT, Raipur, 783334, CG, India
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, 02901, Rhode Island, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, 02901, Rhode Island, USA
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09100, Cagliari, Italy
| | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 104 31, Greece
| | - George Tsoulfas
- Aristoteleion University of Thessaloniki, 544 53, Thessaloniki, Greece
| | | | - Durga Prasanna Misra
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226001, UP, India
| | - Vikas Agarwal
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226001, UP, India
| | - George D Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, DY1, Dudley, UK
- Arthritis Research UK Epidemiology Unit, Manchester University, M13, Manchester, UK
| | | | - Jagjit Teji
- Ann and Robert H. Lurie Children's Hospital of Chicago, 60601, Chicago, USA
| | - Michele Porcu
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09100, Cagliari, Italy
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, M3H 6A7, Toronto, Canada
| | | | | | - Ajit Sexena
- Department of Cardiology, Indraprastha APOLLO Hospitals, 110001, New Delhi, India
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, 999058, Cyprus
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, 22901, VA, USA
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, 94203, CA, USA
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Professor M Viswanathan Diabetes Research Centre, 600001, Chennai, India
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, 55801, MN, USA
| | - Deepak L Bhatt
- Brigham and Women's Hospital Heart & Vascular Center, Harvard Medical School, Boston, 02108, MA, USA
| |
Collapse
|
6
|
Low-Cost Office-Based Cardiovascular Risk Stratification Using Machine Learning and Focused Carotid Ultrasound in an Asian-Indian Cohort. J Med Syst 2020; 44:208. [DOI: 10.1007/s10916-020-01675-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022]
|
7
|
Jamthikar A, Gupta D, Saba L, Khanna NN, Araki T, Viskovic K, Mavrogeni S, Laird JR, Pareek G, Miner M, Sfikakis PP, Protogerou A, Viswanathan V, Sharma A, Nicolaides A, Kitas GD, Suri JS. Cardiovascular/stroke risk predictive calculators: a comparison between statistical and machine learning models. Cardiovasc Diagn Ther 2020; 10:919-938. [PMID: 32968651 DOI: 10.21037/cdt.2020.01.07] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Statistically derived cardiovascular risk calculators (CVRC) that use conventional risk factors, generally underestimate or overestimate the risk of cardiovascular disease (CVD) or stroke events primarily due to lack of integration of plaque burden. This study investigates the role of machine learning (ML)-based CVD/stroke risk calculators (CVRCML) and compares against statistically derived CVRC (CVRCStat) based on (I) conventional factors or (II) combined conventional with plaque burden (integrated factors). Methods The proposed study is divided into 3 parts: (I) statistical calculator: initially, the 10-year CVD/stroke risk was computed using 13 types of CVRCStat (without and with plaque burden) and binary risk stratification of the patients was performed using the predefined thresholds and risk classes; (II) ML calculator: using the same risk factors (without and with plaque burden), as adopted in 13 different CVRCStat, the patients were again risk-stratified using CVRCML based on support vector machine (SVM) and finally; (III) both types of calculators were evaluated using AUC based on ROC analysis, which was computed using combination of predicted class and endpoint equivalent to CVD/stroke events. Results An Institutional Review Board approved 202 patients (156 males and 46 females) of Japanese ethnicity were recruited for this study with a mean age of 69±11 years. The AUC for 13 different types of CVRCStat calculators were: AECRS2.0 (AUC 0.83, P<0.001), QRISK3 (AUC 0.72, P<0.001), WHO (AUC 0.70, P<0.001), ASCVD (AUC 0.67, P<0.001), FRScardio (AUC 0.67, P<0.01), FRSstroke (AUC 0.64, P<0.001), MSRC (AUC 0.63, P=0.03), UKPDS56 (AUC 0.63, P<0.001), NIPPON (AUC 0.63, P<0.001), PROCAM (AUC 0.59, P<0.001), RRS (AUC 0.57, P<0.001), UKPDS60 (AUC 0.53, P<0.001), and SCORE (AUC 0.45, P<0.001), while the AUC for the CVRCML with integrated risk factors (AUC 0.88, P<0.001), a 42% increase in performance. The overall risk-stratification accuracy for the CVRCML with integrated risk factors was 92.52% which was higher compared all the other CVRCStat. Conclusions ML-based CVD/stroke risk calculator provided a higher predictive ability of 10-year CVD/stroke compared to the 13 different types of statistically derived risk calculators including integrated model AECRS 2.0.
Collapse
Affiliation(s)
- Ankush Jamthikar
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Deep Gupta
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Luca Saba
- Department of Radiology, University of Cagliari, Cagliari, Italy
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Tadashi Araki
- Division of Cardiovascular Medicine, Toho University, Tokyo, Japan
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, Zagreb, Croatia
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, Rhode Island, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, Rhode Island, USA
| | - Petros P Sfikakis
- Rheumatology Unit, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Protogerou
- Department of Cardiovascular Prevention & Research Unit Clinic & Laboratory of Pathophysiology, National and Kapodistrian University of Athens, Athens, Greece
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Professor M Viswanathan Diabetes Research Centre, Chennai, India
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Nicosia, Cyprus
| | - George D Kitas
- R & D Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| |
Collapse
|
8
|
Jamthikar A, Gupta D, Cuadrado-Godia E, Puvvula A, Khanna NN, Saba L, Viskovic K, Mavrogeni S, Turk M, Laird JR, Pareek G, Miner M, Sfikakis PP, Protogerou A, Kitas GD, Shankar C, Nicolaides A, Viswanathan V, Sharma A, Suri JS. Ultrasound-based stroke/cardiovascular risk stratification using Framingham Risk Score and ASCVD Risk Score based on "Integrated Vascular Age" instead of "Chronological Age": a multi-ethnic study of Asian Indian, Caucasian, and Japanese cohorts. Cardiovasc Diagn Ther 2020; 10:939-954. [PMID: 32968652 DOI: 10.21037/cdt.2020.01.16] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Vascular age (VA) has recently emerged for CVD risk assessment and can either be computed using conventional risk factors (CRF) or by using carotid intima-media thickness (cIMT) derived from carotid ultrasound (CUS). This study investigates a novel method of integrating both CRF and cIMT for estimating VA [so-called integrated VA (IVA)]. Further, the study analyzes and compares CVD/stroke risk using the Framingham Risk Score (FRS)-based risk calculator when adapting IVA against VA. Methods The system follows a four-step process: (I) VA using cIMT based using linear-regression (LR) model and its coefficients; (II) VA prediction using ten CRF using a multivariate linear regression (MLR)-based model with gender adjustment; (III) coefficients from the LR-based model and MLR-based model are combined using a linear model to predict the final IVA; (IV) the final step consists of FRS-based risk stratification with IVA as inputs and benchmarked against FRS using conventional method of CA. Area-under-the-curve (AUC) is computed using IVA and benchmarked against CA while taking the response variable as a standardized combination of cIMT and glycated hemoglobin. Results The study recruited 648 patients, 202 were Japanese, 314 were Asian Indian, and 132 were Caucasians. Both left and right common carotid arteries (CCA) of all the population were scanned, thus a total of 1,287 ultrasound scans. The 10-year FRS using IVA reported higher AUC (AUC =0.78) compared with 10-year FRS using CA (AUC =0.66) by ~18%. Conclusions IVA is an efficient biomarker for risk stratifications for patients in routine practice.
Collapse
Affiliation(s)
- Ankush Jamthikar
- Department of Electronics and Communications Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Deep Gupta
- Department of Electronics and Communications Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | | | - Anudeep Puvvula
- Annu's Hospitals for Skin and Diabetes, Nellore, Andra Pradesh, India
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Luca Saba
- Department of Radiology, University of Cagliari, Italy
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, Zagreb, Croatia
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - Monika Turk
- Department of Neurology, University Medical Centre Maribor, Maribor, Slovenia
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, Rhode Island, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, Rhode Island, USA
| | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Protogerou
- Department of Cardiovascular Prevention & Research Unit Clinic & Laboratory of Pathophysiology, National and Kapodistrian Univ. of Athens, Athens, Greece
| | - George D Kitas
- R & D Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK
| | | | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Nicosia, Cyprus
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Professor M Viswanathan Diabetes Research Centre, Chennai, India
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| |
Collapse
|
9
|
Jamthikar A, Gupta D, Khanna NN, Saba L, Laird JR, Suri JS. Cardiovascular/stroke risk prevention: A new machine learning framework integrating carotid ultrasound image-based phenotypes and its harmonics with conventional risk factors. Indian Heart J 2020; 72:258-264. [PMID: 32861380 PMCID: PMC7474133 DOI: 10.1016/j.ihj.2020.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/29/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
MOTIVATION Machine learning (ML)-based stroke risk stratification systems have typically focused on conventional risk factors (CRF) (AtheroRisk-conventional). Besides CRF, carotid ultrasound image phenotypes (CUSIP) have shown to be powerful phenotypes risk stratification. This is the first ML study of its kind that integrates CUSIP and CRF for risk stratification (AtheroRisk-integrated) and compares against AtheroRisk-conventional. METHODS Two types of ML-based setups called (i) AtheroRisk-integrated and (ii) AtheroRisk-conventional were developed using random forest (RF) classifiers. AtheroRisk-conventional uses a feature set of 13 CRF such as age, gender, hemoglobin A1c, fasting blood sugar, low-density lipoprotein, and high-density lipoprotein (HDL) cholesterol, total cholesterol (TC), a ratio of TC and HDL, hypertension, smoking, family history, triglyceride, and ultrasound-based carotid plaque score. AtheroRisk-integrated system uses the feature set of 38 features with a combination of 13 CRF and 25 CUSIP features (6 types of current CUSIP, 6 types of 10-year CUSIP, 12 types of quadratic CUSIP (harmonics), and age-adjusted grayscale median). Logistic regression approach was used to select the significant features on which the RF classifier was trained. The performance of both ML systems was evaluated by area-under-the-curve (AUC) statistics computed using a leave-one-out cross-validation protocol. RESULTS Left and right common carotid arteries of 202 Japanese patients were retrospectively examined to obtain 404 ultrasound scans. RF classifier showed higher improvement in AUC (~57%) for leave-one-out cross-validation protocol. Using RF classifier, AUC statistics for AtheroRisk-integrated system was higher (AUC = 0.99,p-value<0.001) compared to AtheroRisk-conventional (AUC = 0.63,p-value<0.001). CONCLUSION The AtheroRisk-integrated ML system outperforms the AtheroRisk-conventional ML system using RF classifier.
Collapse
Affiliation(s)
- Ankush Jamthikar
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Deep Gupta
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Luca Saba
- Department of Radiology, University of Cagliari, Italy
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA.
| |
Collapse
|
10
|
Biswas M, Saba L, Chakrabartty S, Khanna NN, Song H, Suri HS, Sfikakis PP, Mavrogeni S, Viskovic K, Laird JR, Cuadrado-Godia E, Nicolaides A, Sharma A, Viswanathan V, Protogerou A, Kitas G, Pareek G, Miner M, Suri JS. Two-stage artificial intelligence model for jointly measurement of atherosclerotic wall thickness and plaque burden in carotid ultrasound: A screening tool for cardiovascular/stroke risk assessment. Comput Biol Med 2020; 123:103847. [PMID: 32768040 DOI: 10.1016/j.compbiomed.2020.103847] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022]
Abstract
MOTIVATION The early screening of cardiovascular diseases (CVD) can lead to effective treatment. Thus, accurate and reliable atherosclerotic carotid wall detection and plaque measurements are crucial. Current measurement methods are time-consuming and do not utilize the power of knowledge-based paradigms such as artificial intelligence (AI). We present an AI-based methodology for the joint automated detection and measurement of wall thickness and carotid plaque (CP) in the form of carotid intima-media thickness (cIMT) and total plaque area (TPA), a class of AtheroEdge™ system (AtheroPoint™, CA, USA). METHOD The novel system consists of two stages, and each stage comprises an independent deep learning (DL) model. In Stage I, the first DL model segregates the common carotid artery (CCA) patches from ultrasound (US) images into the rectangular wall and non-wall patches. The characterized wall patches are integrated to form the region of interest (ROI), which is then fed into Stage II. In Stage II, the second DL model segments the far wall region. Lumen-intima (LI) and media-adventitial (MA) boundaries are then extracted from the wall region, which is then used for cIMT and PA measurement. RESULTS Using the database of 250 carotid scans, the cIMT error using the AI model is 0.0935±0.0637 mm, which is lower than those of all previous methods. The PA error is found to be 2.7939±2.3702 mm2. The system's correlation coefficient (CC) between AI and ground truth (GT) values for cIMT is 0.99 (p < 0.0001), which is higher compared with the CC of 0.96 (p < 0.0001) shown by the earlier DL method. The CC for PA between AI and GT values is 0.89 (p < 0.0001). CONCLUSION A novel AI-based strategy was applied to carotid US images for the joint detection of carotid wall thickness (cWT) and plaque area (PA), followed by cIMT and PA measurement. This AI-based strategy shows improved performance using the patch technique compared with previous methods using full carotid scans.
Collapse
Affiliation(s)
| | - Luca Saba
- Department of Radiology, A.O.U., Italy
| | | | - Narender N Khanna
- Cardiology Department, Indraprastha Apollo Hospitals, New Delhi, India
| | | | | | | | | | - Klaudija Viskovic
- Radiology and Ultrasound, University Hospital for Infectious Diseases, Zagreb, Croatia
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | | | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, London, UK; Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, VA, USA
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Professor M Viswanathan Diabetes Research Centre, Chennai, India
| | | | - George Kitas
- Department of Rheumatology, University of Manchester, Dudley, UK
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, Rhode Island, USA
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA.
| |
Collapse
|
11
|
Viswanathan V, Jamthikar AD, Gupta D, Puvvula A, Khanna NN, Saba L, Viskovic K, Mavrogeni S, Turk M, Laird JR, Pareek G, Miner M, Ajuluchukwu J, Sfikakis PP, Protogerou A, Kitas GD, Nicolaides A, Sharma A, Suri JS. Integration of estimated glomerular filtration rate biomarker in image-based cardiovascular disease/stroke risk calculator: a south Asian-Indian diabetes cohort with moderate chronic kidney disease. INT ANGIOL 2020; 39:290-306. [PMID: 32214072 DOI: 10.23736/s0392-9590.20.04338-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Recently, a 10-year image-based integrated calculator (called AtheroEdge Composite Risk Score-AECRS1.0) was developed which combines conventional cardiovascular risk factors (CCVRF) with image phenotypes derived from carotid ultrasound (CUS). Such calculators did not include chronic kidney disease (CKD)-based biomarker called estimated glomerular filtration rate (eGFR). The novelty of this study is to design and develop an advanced integrated version called-AECRS2.0 that combines eGFR with image phenotypes to compute the composite risk score. Furthermore, AECRS2.0 was benchmarked against QRISK3 which considers eGFR for risk assessment. METHODS The method consists of three major steps: 1) five, current CUS image phenotypes (CUSIP) measurements using AtheroEdge system (AtheroPoint, CA, USA) consisting of: average carotid intima-media thickness (cIMTave), maximum cIMT (cIMTmax), minimum cIMT (cIMTmin), variability in cIMT (cIMTV), and total plaque area (TPA); 2) five, 10-year CUSIP measurements by combining these current five CUSIP with 11 CCVRF (age, ethnicity, gender, body mass index, systolic blood pressure, smoking, carotid artery type, hemoglobin, low-density lipoprotein cholesterol, total cholesterol, and eGFR); 3) AECRS2.0 risk score computation and its comparison to QRISK3 using area-under-the-curve (AUC). RESULTS South Asian-Indian 339 patients were retrospectively analyzed by acquiring their left/right common carotid arteries (678 CUS, mean age: 54.25±9.84 years; 75.22% males; 93.51% diabetic with HbA1c ≥6.5%; and mean eGFR 73.84±20.91 mL/min/1.73m<sup>2</sup>). The proposed AECRS2.0 reported higher AUC (AUC=0.89, P<0.001) compared to QRISK3 (AUC=0.51, P<0.001) by ~74% in CKD patients. CONCLUSIONS An integrated calculator AECRS2.0 can be used to assess the 10-year CVD/stroke risk in patients suffering from CKD. AECRS2.0 was much superior to QRISK3.
Collapse
Affiliation(s)
- Vijay Viswanathan
- MV Hospital for Diabetes and Professor M Viswanathan Diabetes Research Centre, Chennai, India
| | - Ankush D Jamthikar
- Department of Electronics and Communications, Visvesvaraya National Institute of Technology, Nagpur, India
| | - Deep Gupta
- Department of Electronics and Communications, Visvesvaraya National Institute of Technology, Nagpur, India
| | | | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Luca Saba
- Department of Radiology, University of Cagliari, Cagliari, Italy
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, Zagreb, Croatia
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - Monika Turk
- Department of Neurology, University Medical Center Maribor, Maribor, Slovenia
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital, Providence, RI, USA
| | - Jna Ajuluchukwu
- Department of Medicine, LUTH (Lagos University Teaching Hospital), Lagos, Nigeria
| | - Petros P Sfikakis
- Unit of Rheumatology, National Kapodistrian University, Athens, Greece
| | - Athanasios Protogerou
- Department of Cardiovascular Prevention and, Research Unit Clinic, Laboratory of Pathophysiology, National and Kapodistrian University, Athens, Greece
| | - George D Kitas
- R & D Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Center, University of Nicosia Medical School, Nicosia, Cyprus
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jasjit S Suri
- Division of Stroke Monitoring and Diagnostics, AtheroPoint™, Roseville, CA, USA -
| |
Collapse
|
12
|
Puvvula A, Jamthikar AD, Gupta D, Khanna NN, Porcu M, Saba L, Viskovic K, Ajuluchukwu JNA, Gupta A, Mavrogeni S, Turk M, Laird JR, Pareek G, Miner M, Sfikakis PP, Protogerou A, Kitas GD, Nicolaides A, Viswanathan V, Suri JS. Morphological Carotid Plaque Area Is Associated With Glomerular Filtration Rate: A Study of South Asian Indian Patients With Diabetes and Chronic Kidney Disease. Angiology 2020; 71:520-535. [PMID: 32180436 DOI: 10.1177/0003319720910660] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We evaluated the association between automatically measured carotid total plaque area (TPA) and the estimated glomerular filtration rate (eGFR), a biomarker of chronic kidney disease (CKD). Automated average carotid intima-media thickness (cIMTave) and TPA measurements in carotid ultrasound (CUS) were performed using AtheroEdge (AtheroPoint). Pearson correlation coefficient (CC) was then computed between the TPA and eGFR for (1) males versus females, (2) diabetic versus nondiabetic patients, and (3) between the left and right carotid artery. Overall, 339 South Asian Indian patients with either type 2 diabetes mellitus (T2DM) or CKD, or hypertension (stage 1 or stage 2) were retrospectively analyzed by acquiring cIMTave and TPA measurements of their left and right common carotid arteries (CCA; total CUS: 678, mean age: 54.2 ± 9.8 years; 75.2% males; 93.5% with T2DM). The CC between TPA and eGFR for different scenarios were (1) for males and females -0.25 (P < .001) and -0.35 (P < .001), respectively; (2) for T2DM and non-T2DM -0.26 (P < .001) and -0.49 (P = .02), respectively, and (3) for left and right CCA -0.25 (P < .001) and -0.23 (P < .001), respectively. Automated TPA is an equally reliable biomarker compared with cIMTave for patients with CKD (with or without T2DM) with subclinical atherosclerosis.
Collapse
Affiliation(s)
- Anudeep Puvvula
- Annu's Hospitals for Skin and Diabetes, Nellore, Andhra Pradesh, India
| | - Ankush D Jamthikar
- Department of Electronics and Communications Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Deep Gupta
- Department of Electronics and Communications Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha Apollo Hospitals, New Delhi, Delhi, India
| | - Michele Porcu
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, Zagreb, Croatia
| | | | - Ajay Gupta
- Department of Radiology, Weill Cornell Medicine, New York City, NY, USA
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - Monika Turk
- Department of Neurology, University Medical Centre Maribor, Slovenia
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St Helena, St Helena, CA, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital, Providence, RI, USA
| | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, Greece
| | - Athanasios Protogerou
- Department of Cardiovascular Prevention and Research Unit Clinic and Laboratory of Pathophysiology, National and Kapodistrian University of Athens, Greece
| | - George D Kitas
- R & D Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, United Kingdom
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Cyprus
| | - Vijay Viswanathan
- M. V. Hospital for Diabetes and Professor M. Viswanathan Diabetes Research Centre, Chennai, Tamil Nadu, India
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint, Roseville, CA, USA
| |
Collapse
|
13
|
Saba L, Jamthikar A, Gupta D, Khanna NN, Viskovic K, Suri HS, Gupta A, Mavrogeni S, Turk M, Laird JR, Pareek G, Miner M, Sfikakis PP, Protogerou A, Kitas GD, Viswanathan V, Nicolaides A, Bhatt DL, Suri JS. Global perspective on carotid intima-media thickness and plaque: should the current measurement guidelines be revisited? INT ANGIOL 2019; 38:451-465. [PMID: 31782286 DOI: 10.23736/s0392-9590.19.04267-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Carotid intima-media thickness (cIMT) and carotid plaque (CP) currently act as risk predictors for CVD/Stroke risk assessment. Over 2000 articles have been published that cover either use cIMT/CP or alterations of cIMT/CP and additional image-based phenotypes to associate cIMT related markers with CVD/Stroke risk. These articles have shown variable results, which likely reflect a lack of standardization in the tools for measurement, risk stratification, and risk assessment. Guidelines for cIMT/CP measurement are influenced by major factors like the atherosclerosis disease itself, conventional risk factors, 10-year measurement tools, types of CVD/Stroke risk calculators, incomplete validation of measurement tools, and the fast pace of computer technology advancements. This review discusses the following major points: 1) the American Society of Echocardiography and Mannheim guidelines for cIMT/CP measurements; 2) forces that influence the guidelines; and 3) calculators for risk stratification and assessment under the influence of advanced intelligence methods. The review also presents the knowledge-based learning strategies such as machine and deep learning which may play a future role in CVD/stroke risk assessment. We conclude that both machine learning and non-machine learning strategies will flourish for current and 10-year CVD/Stroke risk prediction as long as they integrate image-based phenotypes with conventional risk factors.
Collapse
Affiliation(s)
- Luca Saba
- Department of Radiology, University of Cagliari, Cagliari, Italy
| | - Ankush Jamthikar
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur, India
| | - Deep Gupta
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur, India
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, Zagreb, Croatia
| | | | - Ajay Gupta
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - Monika Turk
- Department of Neurology, University Medical Center Maribor, Maribor, Slovenia
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital, Providence, RI, USA
| | - Petros P Sfikakis
- Unit of Rheumatology, National Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Protogerou
- Department of Cardiovascular Prevention and Research, Clinic and Laboratory of Pathophysiology, National and Kapodistrian, University of Athens, Athens, Greece
| | - George D Kitas
- R and D Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK
| | - Vijay Viswanathan
- MV Hospital for Diabete, Professor M Viswanathan Diabetes Research Center, Chennai, India
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Center, University of Nicosia Medical School, Nicosia, Cyprus
| | - Deepak L Bhatt
- Brigham and Women's Hospital Heart, Vascular Center, Harvard Medical School, Boston, MA, USA
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA -
| |
Collapse
|
14
|
Khanna NN, Jamthikar AD, Araki T, Gupta D, Piga M, Saba L, Carcassi C, Nicolaides A, Laird JR, Suri HS, Gupta A, Mavrogeni S, Kitas GD, Suri JS. Nonlinear model for the carotid artery disease 10-year risk prediction by fusing conventional cardiovascular factors to carotid ultrasound image phenotypes: A Japanese diabetes cohort study. Echocardiography 2019; 36:345-361. [PMID: 30623485 DOI: 10.1111/echo.14242] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/04/2018] [Indexed: 12/11/2022] Open
Abstract
MOTIVATION This study presents a novel nonlinear model which can predict 10-year carotid ultrasound image-based phenotypes by fusing nine traditional cardiovascular risk factors (ethnicity, gender, age, artery type, body mass index, hemoglobin A1c, hypertension, low-density lipoprotein, and smoking) with five types of carotid automated image phenotypes (three types of carotid intima-media thickness (IMT), wall variability, and total plaque area). METHODOLOGY Two-step process was adapted: First, five baseline carotid image-based phenotypes were automatically measured using AtheroEdge™ (AtheroPoint™ , CA, USA) system by two operators (novice and experienced) and an expert. Second, based on the annual progression rates of cIMT due to nine traditional cardiovascular risk factors, a novel nonlinear model was adapted for 10-year predictions of carotid phenotypes. RESULTS Institute review board (IRB) approved 204 Japanese patients' left/right common carotid artery (407 ultrasound scans) was collected with a mean age of 69 ± 11 years. Age and hemoglobin were reported to have a high influence on the 10-year carotid phenotypes. Mean correlation coefficient (CC) between 10-year carotid image-based phenotype and age was improved by 39.35% in males and 25.38% in females. The area under the curves for the 10-year measurements of five phenotypes IMTave10yr , IMTmax10yr , IMTmin10yr , IMTV10yr , and TPA10yr were 0.96, 0.94, 0.90, 1.0, and 1.0. Inter-operator variability between two operators showed significant CC (P < 0.0001). CONCLUSIONS A nonlinear model was developed and validated by fusing nine conventional CV risk factors with current carotid image-based phenotypes for predicting the 10-year carotid ultrasound image-based phenotypes which may be used risk assessment.
Collapse
Affiliation(s)
- Narendra N Khanna
- Department of Cardiology, Indraprastha Apollo Hospitals, New Delhi, India
| | - Ankush D Jamthikar
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur, India
| | - Tadashi Araki
- Division of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Deep Gupta
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur, India
| | - Matteo Piga
- Department of Rheumatology, University Clinic and AOU of Cagliari, Cagliari, Italy
| | - Luca Saba
- Department of Radiology, University of Cagliari, Cagliari, Italy
| | - Carlo Carcassi
- Department of Genetics, University of Cagliari, Cagliari, Italy
| | - Andrew Nicolaides
- Department of Vascular Surgery, Imperial College, London, UK.,Vascular Diagnostic Center, University of Cyprus, Nicosia, Cyprus
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, California
| | | | - Ajay Gupta
- Department of Radiology and Feil Family Brain and Mind Research Institute, Weill Cornell Medical Center, New York, New York
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - George D Kitas
- Arthritis Research UK Centre for Epidemiology, Manchester University, Manchester, UK.,Director of Research & Development-Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, California
| |
Collapse
|
15
|
Cuadrado-Godia E, Maniruzzaman M, Araki T, Puvvula A, Jahanur Rahman M, Saba L, Suri HS, Gupta A, Banchhor SK, Teji JS, Omerzu T, Khanna NN, Laird JR, Nicolaides A, Mavrogeni S, Kitas GD, Suri JS. Morphologic TPA (mTPA) and composite risk score for moderate carotid atherosclerotic plaque is strongly associated with HbA1c in diabetes cohort. Comput Biol Med 2018; 101:128-145. [PMID: 30138774 DOI: 10.1016/j.compbiomed.2018.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/05/2018] [Accepted: 08/05/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND This study examines the association between six types of carotid artery disease image-based phenotypes and HbA1c in diabetes patients. Six phenotypes (intima-media thickness measurements (cIMT (ave.), cIMT (max.), cIMT (min.)), bidirectional wall variability (cIMTV), morphology-based total plaque area (mTPA), and composite risk score (CRS)) were measured in an automated setting using AtheroEdge™ (AtheroPoint, CA, USA). METHOD Consecutive 199 patients (157 M, age: 68.96 ± 10.98 years), L/R common carotid artery (CCA; 398 US scans) who underwent a carotid ultrasound (L/R) were retrospectively analyzed using AtheroEdge™ system. Two operators (novice and experienced) manually calibrated all the US scans using AtheroEdge™. Logistic regression (LR) and Odds ratio (OR) was computed and phenotypes were ranked. RESULTS The baseline results showed 150 low-risk patients (HbA1c < 6.50 mg/dl) and 49 high-risk patients (HbA1c ≥ 6.50 mg/dl). The fasting blood sugar (FBS) was highly associated with HbA1c (P < 0.001). Except for cIMTV, all phenotypes showed an OR > 1.0 (P < 0.001) for left common carotid artery (LCCA), right carotid artery (RCCA), and mean of left and right common carotid artery (MCCA). After adjusting the FBS, the OR for mTPA showed a higher risk for LCCA, RCCA, and MCCA. The coefficient of correlation (CC) between phenotypes and HbA1c were strong and inter-CC between cIMT and mTPA/CRS was above 0.9 (P < 0.001). The statistical tests showed that phenotypes were significantly associated with diabetes (P-value<0.0001). CONCLUSIONS All phenotypes using AtheroEdge™, except cIMTV, showed a strong association with HbA1c. mTPA and CRS were equally strong phenotypes as cIMT. The CRS phenotype showed the strongest relationship to HbA1c.
Collapse
Affiliation(s)
| | - Md Maniruzzaman
- Department of Statistics, University of Rajshahi and the JiVit A Project of John Hopkins University, Gaibandha, Bangladesh
| | - Tadashi Araki
- Division of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Anudeep Puvvula
- Annu's Hospitals for Skin and Diabetes, Nellore, Andra Pradesh, India
| | - Md Jahanur Rahman
- Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
| | - Luca Saba
- Department of Radiology, A.O.U., Italy
| | | | - Ajay Gupta
- Brain and Mind Research Institute and Department of Radiology, Weill Cornell Medical College, NY, USA
| | | | - Jagjit S Teji
- Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Feinberg School of Medicine Mercy Hospital, Chicago, IL, USA
| | - Tomaž Omerzu
- Department of Neurology, University Medical Centre Maribor, Slovenia
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha Apollo Hospitals, New Delhi, India
| | - John R Laird
- Heart and Vascular Institute, Adventist Health, St. Helena, CA, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, London, UK; Vascular Diagnostic Centre, University of Cyprus, Nicosia, Cyprus
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - George D Kitas
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester, UK; Department of Rheumatology, Group NHS Foundation Trust, Dudley, UK
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA.
| | | |
Collapse
|
16
|
Banchhor SK, Londhe ND, Araki T, Saba L, Radeva P, Laird JR, Suri JS. Wall-based measurement features provides an improved IVUS coronary artery risk assessment when fused with plaque texture-based features during machine learning paradigm. Comput Biol Med 2017; 91:198-212. [PMID: 29100114 DOI: 10.1016/j.compbiomed.2017.10.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Planning of percutaneous interventional procedures involves a pre-screening and risk stratification of the coronary artery disease. Current screening tools use stand-alone plaque texture-based features and therefore lack the ability to stratify the risk. METHOD This IRB approved study presents a novel strategy for coronary artery disease risk stratification using an amalgamation of IVUS plaque texture-based and wall-based measurement features. Due to common genetic plaque makeup, carotid plaque burden was chosen as a gold standard for risk labels during training-phase of machine learning (ML) paradigm. Cross-validation protocol was adopted to compute the accuracy of the ML framework. A set of 59 plaque texture-based features was padded with six wall-based measurement features to show the improvement in stratification accuracy. The ML system was executed using principle component analysis-based framework for dimensionality reduction and uses support vector machine classifier for training and testing-phases. RESULTS The ML system produced a stratification accuracy of 91.28%, demonstrating an improvement of 5.69% when wall-based measurement features were combined with plaque texture-based features. The fused system showed an improvement in mean sensitivity, specificity, positive predictive value, and area under the curve by: 6.39%, 4.59%, 3.31% and 5.48%, respectively when compared to the stand-alone system. While meeting the stability criteria of 5%, the ML system also showed a high average feature retaining power and mean reliability of 89.32% and 98.24%, respectively. CONCLUSIONS The ML system showed an improvement in risk stratification accuracy when the wall-based measurement features were fused with the plaque texture-based features.
Collapse
Affiliation(s)
| | | | - Tadashi Araki
- Division of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Luca Saba
- Department of Radiology, University of Cagliari, Italy
| | - Petia Radeva
- Department of Mathematics and Computer Science, University of Barcelona, Barcelona, Spain
| | | | - Jasjit S Suri
- Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA.
| |
Collapse
|
17
|
Patel AK, Suri HS, Singh J, Kumar D, Shafique S, Nicolaides A, Jain SK, Saba L, Gupta A, Laird JR, Giannopoulos A, Suri JS. A Review on Atherosclerotic Biology, Wall Stiffness, Physics of Elasticity, and Its Ultrasound-Based Measurement. Curr Atheroscler Rep 2017; 18:83. [PMID: 27830569 DOI: 10.1007/s11883-016-0635-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Functional and structural changes in the common carotid artery are biomarkers for cardiovascular risk. Current methods for measuring functional changes include pulse wave velocity, compliance, distensibility, strain, stress, stiffness, and elasticity derived from arterial waveforms. The review is focused on the ultrasound-based carotid artery elasticity and stiffness measurements covering the physics of elasticity and linking it to biological evolution of arterial stiffness. The paper also presents evolution of plaque with a focus on the pathophysiologic cascade leading to arterial hardening. Using the concept of strain, and image-based elasticity, the paper then reviews the lumen diameter and carotid intima-media thickness measurements in combined temporal and spatial domains. Finally, the review presents the factors which influence the understanding of atherosclerotic disease formation and cardiovascular risk including arterial stiffness, tissue morphological characteristics, and image-based elasticity measurement.
Collapse
Affiliation(s)
- Anoop K Patel
- Department of Computer Engineering, NIT, Kurukshetra, India
| | | | - Jaskaran Singh
- Department of Computer Engineering, NIT, Kurukshetra, India
| | - Dinesh Kumar
- Point-of-Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA
| | | | | | - Sanjay K Jain
- Department of Computer Engineering, NIT, Kurukshetra, India
| | - Luca Saba
- Department of Radiology, University of Cagliari, Cagliari, Italy
| | - Ajay Gupta
- Radiology Department, Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - John R Laird
- UC Davis Vascular Center, University of California, Davis, CA, USA
| | | | - Jasjit S Suri
- Vascular Diagnostic Center, University of Cyprus, Nicosia, Cyprus. .,Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA. .,Department of Electrical Engineering, University of Idaho (Affl.), Moscow, ID, USA. .,Diagnosis and Stroke Monitoring Division, AtheroPoint™, Roseville, CA, USA.
| |
Collapse
|
18
|
Steinbuch J, van Dijk AC, Schreuder F, Truijman M, Hendrikse J, Nederkoorn PJ, van der Lugt A, Hermeling E, Hoeks A, Mess WH. Definition of common carotid wall thickness affects risk classification in relation to degree of internal carotid artery stenosis: the Plaque At RISK (PARISK) study. Cardiovasc Ultrasound 2017; 15:9. [PMID: 28376791 PMCID: PMC5379498 DOI: 10.1186/s12947-017-0097-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 02/23/2017] [Indexed: 01/27/2023] Open
Abstract
Background Mean or maximal intima-media thickness (IMT) is commonly used as surrogate endpoint in intervention studies. However, the effect of normalization by surrounding or median IMT or by diameter is unknown. In addition, it is unclear whether IMT inhomogeneity is a useful predictor beyond common wall parameters like maximal wall thickness, either absolute or normalized to IMT or lumen size. We investigated the interrelationship of common carotid artery (CCA) thickness parameters and their association with the ipsilateral internal carotid artery (ICA) stenosis degree. Methods CCA thickness parameters were extracted by edge detection applied to ultrasound B-mode recordings of 240 patients. Degree of ICA stenosis was determined from CT angiography. Results Normalization of maximal CCA wall thickness to median IMT leads to large variations. Higher CCA thickness parameter values are associated with a higher degree of ipsilateral ICA stenosis (p < 0.001), though IMT inhomogeneity does not provide extra information. When the ratio of wall thickness and diameter instead of absolute maximal wall thickness is used as risk marker for having moderate ipsilateral ICA stenosis (>50%), 55 arteries (15%) are reclassified to another risk category. Conclusions It is more reasonable to normalize maximal wall thickness to end-diastolic diameter rather than to IMT, affecting risk classification and suggesting modification of the Mannheim criteria. Trial registration Clinical trials.gov NCT01208025.
Collapse
Affiliation(s)
- J Steinbuch
- Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - A C van Dijk
- Radiology, Erasmus Medical Center, Rotterdam, The Netherlands.,Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Fhbm Schreuder
- Radiology, Maastricht University Medical Center, Maastricht, The Netherlands.,Clinical Neurophysiology, Maastricht University Medical Center, PO Box 5800, 6202, Maastricht, AZ, The Netherlands.,Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Mtb Truijman
- Radiology, Maastricht University Medical Center, Maastricht, The Netherlands.,Clinical Neurophysiology, Maastricht University Medical Center, PO Box 5800, 6202, Maastricht, AZ, The Netherlands.,Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - J Hendrikse
- Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - P J Nederkoorn
- Neurology, Academic Medical Center, Amsterdam, The Netherlands
| | - A van der Lugt
- Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - E Hermeling
- Radiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Apg Hoeks
- Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - W H Mess
- Clinical Neurophysiology, Maastricht University Medical Center, PO Box 5800, 6202, Maastricht, AZ, The Netherlands.
| |
Collapse
|
19
|
Ikeda N, Dey N, Sharma A, Gupta A, Bose S, Acharjee S, Shafique S, Cuadrado-Godia E, Araki T, Saba L, Laird JR, Nicolaides A, Suri JS. Automated segmental-IMT measurement in thin/thick plaque with bulb presence in carotid ultrasound from multiple scanners: Stroke risk assessment. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2017; 141:73-81. [PMID: 28241970 DOI: 10.1016/j.cmpb.2017.01.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/20/2016] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND AND OBJECTIVES Standardization of the carotid IMT requires a reference marker in ultrasound scans. It has been shown previously that manual reference marker and manually created carotid segments are used for measuring IMT in these segments. Manual methods are tedious, time consuming, subjective, and prone to errors. Bulb edge can be considered as a reference marker for measurements of the cIMT. However, bulb edge can be difficult to locate in ultrasound scans due to: (a) low signal to noise ratio in the bulb region as compared to common carotid artery region; (b) uncertainty of bulb location in craniocaudal direction; and (c) variability in carotid bulb shape and size. This paper presents an automated system (a class of AtheroEdge™ system from AtheroPoint™, Roseville, CA, USA) for locating the bulb edge as a reference marker and further develop segmental-IMT (sIMT) which measures IMT in 10mm segments (namely: s1, s2 and s3) proximal to the bulb edge. METHODS The patented methodology uses an integrated approach which combines carotid geometry and pixel-classification paradigms. The system first finds the bulb edge and then measures the sIMT proximal to the bulb edge. The system also estimates IMT in bulb region (bIMT). The 649 image database consists of varying plaque (light, moderate to heavy), image resolutions, shapes, sizes and ethnicity. RESULTS Our results show that the IMT contributions in different carotid segments are as follows: bulb-IMT 34%, s1-IMT 29.46%, s2-IMT 11.48%, and s3-IMT 12.75%, respectively. We compare our automated results against reader's tracings demonstrating the following performance: mean lumen-intima error: 0.01235 ± 0.01224mm, mean media-adventitia error: 0.020933 ± 0.01539mm and mean IMT error: 0.01063 ± 0.0031mm. Our system's Precision of Merit is: 98.23%, coefficient of correlation between automated and Reader's IMT is: 0.998 (p-value < 0.0001). These numbers are improved compared to previous publications by Suri's group which is automated multi-resolution conventional cIMT. CONCLUSIONS Our fully automated bulb detection system reports 92.67% precision against ideal bulb edge locations as marked by the reader in the bulb transition zone.
Collapse
Affiliation(s)
- Nobutaka Ikeda
- Division of Cardiovascular Medicine, Toho University Ohashi Medical Center, 2-17-6 Ohashi Meguro-ku, Tokyo, Japan
| | - Nilanjan Dey
- Point of Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA
| | - Aditya Sharma
- Cardiovascular Medicine, University of Virginia, VA, USA
| | - Ajay Gupta
- Department of Radiology, Brain and Mind Research Institute, Weill Cornell Medical College, NY, USA
| | - Soumyo Bose
- Point of Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA
| | - Suvojit Acharjee
- Point of Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA
| | - Shoaib Shafique
- CorVasc Vascular Laboratory, 8433 Harcourt Rd #100, Indianapolis, IN, USA
| | | | - Tadashi Araki
- Division of Cardiovascular Medicine, Centre for Global Health and Medicine (NCGM), 1-21-1 Toyama Shinjuku-ku, Tokyo, Japan
| | - Luca Saba
- Azienda Ospedaliero Universitaria (A.O.U.) di Cagliari - Polo di Monserrato, Università di Cagliari, s.s. 554 Monserrato, Cagliari 09045, Italy
| | - John R Laird
- UC Davis Vascular Center, University of California, Davis, CA, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, London, and Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Jasjit S Suri
- Point of Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA; Diagnostic and Monitoring Division, AtheroPoint™ LLC, Roseville, CA, USA; Electrical Engineering Department (Aff.), Idaho State University, ID, USA.
| |
Collapse
|
20
|
A Review on Carotid Ultrasound Atherosclerotic Tissue Characterization and Stroke Risk Stratification in Machine Learning Framework. Curr Atheroscler Rep 2016; 17:55. [PMID: 26233633 DOI: 10.1007/s11883-015-0529-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cardiovascular diseases (including stroke and heart attack) are identified as the leading cause of death in today's world. However, very little is understood about the arterial mechanics of plaque buildup, arterial fibrous cap rupture, and the role of abnormalities of the vasa vasorum. Recently, ultrasonic echogenicity characteristics and morphological characterization of carotid plaque types have been shown to have clinical utility in classification of stroke risks. Furthermore, this characterization supports aggressive and intensive medical therapy as well as procedures, including endarterectomy and stenting. This is the first state-of-the-art review to provide a comprehensive understanding of the field of ultrasonic vascular morphology tissue characterization. This paper presents fundamental and advanced ultrasonic tissue characterization and feature extraction methods for analyzing plaque. Additionally, the paper shows how the risk stratification is achieved using machine learning paradigms. More advanced methods need to be developed which can segment the carotid artery walls into multiple regions such as the bulb region and areas both proximal and distal to the bulb. Furthermore, multimodality imaging is needed for validation of such advanced methods for stroke and cardiovascular risk stratification.
Collapse
|
21
|
Relationship between leukoaraiosis, carotid intima-media thickness and intima-media thickness variability: Preliminary results. Eur Radiol 2016; 26:4423-4431. [DOI: 10.1007/s00330-016-4296-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 01/25/2016] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
|
22
|
Araki T, Ikeda N, Shukla D, Londhe ND, Shrivastava VK, Banchhor SK, Saba L, Nicolaides A, Shafique S, Laird JR, Suri JS. A new method for IVUS-based coronary artery disease risk stratification: A link between coronary & carotid ultrasound plaque burdens. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2016; 124:161-179. [PMID: 26707374 DOI: 10.1016/j.cmpb.2015.10.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/12/2015] [Accepted: 10/21/2015] [Indexed: 06/05/2023]
Abstract
Interventional cardiologists have a deep interest in risk stratification prior to stenting and percutaneous coronary intervention (PCI) procedures. Intravascular ultrasound (IVUS) is most commonly adapted for screening, but current tools lack the ability for risk stratification based on grayscale plaque morphology. Our hypothesis is based on the genetic makeup of the atherosclerosis disease, that there is evidence of a link between coronary atherosclerosis disease and carotid plaque built up. This novel idea is explored in this study for coronary risk assessment and its classification of patients between high risk and low risk. This paper presents a strategy for coronary risk assessment by combining the IVUS grayscale plaque morphology and carotid B-mode ultrasound carotid intima-media thickness (cIMT) - a marker of subclinical atherosclerosis. Support vector machine (SVM) learning paradigm is adapted for risk stratification, where both the learning and testing phases use tissue characteristics derived from six feature combinational spaces, which are then used by the SVM classifier with five different kernels sets. These six feature combinational spaces are designed using 56 novel feature sets. K-fold cross validation protocol with 10 trials per fold is used for optimization of best SVM-kernel and best feature combination set. IRB approved coronary IVUS and carotid B-mode ultrasound were jointly collected on 15 patients (2 days apart) via: (a) 40MHz catheter utilizing iMap (Boston Scientific, Marlborough, MA, USA) with 2865 frames per patient (42,975 frames) and (b) linear probe B-mode carotid ultrasound (Toshiba scanner, Japan). Using the above protocol, the system shows the classification accuracy of 94.95% and AUC of 0.95 using optimized feature combination. This is the first system of its kind for risk stratification as a screening tool to prevent excessive cost burden and better patients' cardiovascular disease management, while validating our two hypotheses.
Collapse
Affiliation(s)
- Tadashi Araki
- Division of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Nobutaka Ikeda
- Cardiovascular Medicine, National Center for Global Health and Medicine, Tokyo, Japan
| | - Devarshi Shukla
- Department of Electrical Engineering, NIT Raipur, Chhattisgarh, India; Department of Electrical Engineering, University of Idaho (Affl.), ID, USA
| | - Narendra D Londhe
- Department of Electrical Engineering, NIT Raipur, Chhattisgarh, India; Department of Electrical Engineering, University of Idaho (Affl.), ID, USA
| | | | - Sumit K Banchhor
- Department of Electrical Engineering, NIT Raipur, Chhattisgarh, India; Department of Electrical Engineering, University of Idaho (Affl.), ID, USA
| | - Luca Saba
- Department of Radiology, University of Cagliari, Italy
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, London, England, United Kingdom; Vascular Diagnostic Center, University of Cyprus, Nicosia, Cyprus
| | | | - John R Laird
- UC Davis Vascular Center, University of California, Davis, CA, USA
| | - Jasjit S Suri
- Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA; Department of Electrical Engineering, University of Idaho (Affl.), ID, USA.
| |
Collapse
|
23
|
MEIBURGER KRISTENM, ROSATI SAMANTA, BALESTRA GABRIELLA, ACHARYA URAJENDRA, MOLINARI FILIPPO. ULTRASOUND B-MODE DESCRIPTORS AND THEIR ASSOCIATION TO AGE AND AUTOMATED IMT AND IMT VARIABILITY. J MECH MED BIOL 2016. [DOI: 10.1142/s0219519416400078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of this paper is to evaluate the association between four simple B-mode image descriptors and age, to further assess the association between the descriptors and automated intima-media thickness (IMT) and intima-media thickness variability (IMTV) measurements, and finally analyze the predictive value of the B-mode image descriptors. A database of 1774 images of the carotid artery is used to manually calculate the contrast and the signal-to-noise ratio (SNR) between the (i) intima-media complex and lumen, and (ii) adventitial wall layer and intima-media complex. A subset of 200 images is then used to automatically measure the IMT and IMTV parameters with a previously developed algorithm. Correlation studies and logistic regression analysis are then performed. The contrast and SNR between the intima-media complex and lumen (contrastIM and SNRIM) are 112.691[Formula: see text][Formula: see text][Formula: see text]247.427 and 19.542[Formula: see text][Formula: see text][Formula: see text]6.236, respectively; whereas between the adventitial wall layer and intima-media complex the parameters (contrastADV and SNRADV) are found to be 1.684[Formula: see text][Formula: see text][Formula: see text]1.182 and 32.859[Formula: see text][Formula: see text][Formula: see text]10.766, respectively. Pearson’s rho is significantly different from zero considering the contrastIM and the SNRADV descriptors when tested for the association with age. The automated IMT and IMTV measurements are 0.796[Formula: see text][Formula: see text][Formula: see text]0.152[Formula: see text]mm and 0.096[Formula: see text][Formula: see text][Formula: see text]0.044[Formula: see text]mm, respectively. Testing the association with the IMT and IMTV measurements yielded Pearson’s rho values which are significantly different from zero except in the case of contrastIM for the IMTV measurement. The logistic regression results showed the IMTV measurement and the SNR descriptor between the intima-media complex and the lumen has a significant predictive value. Considering the association between the IMT and IMTV, the B-mode image descriptors showed a strong and statistically significant association. Moreover, the SNR between the intima-media complex and lumen is found to be a predictive variable in demonstrating its effectiveness as an image descriptor.
Collapse
Affiliation(s)
- KRISTEN M. MEIBURGER
- Biolab, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - SAMANTA ROSATI
- Biolab, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - GABRIELLA BALESTRA
- Biolab, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - U. RAJENDRA ACHARYA
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
- Department of Biomedical Engineering, School of Science and Technology, SIM University, Singapore
| | - FILIPPO MOLINARI
- Biolab, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| |
Collapse
|
24
|
Ankle–Brachial Index and Its Link to Automated Carotid Ultrasound Measurement of Intima–Media Thickness Variability in 500 Japanese Coronary Artery Disease Patients. Curr Atheroscler Rep 2014; 16:393. [DOI: 10.1007/s11883-013-0393-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Kabra A, Neri L, Weiner H, Khalil Y, Matsumura ME. Carotid Intima-Media Thickness Assessment in Refinement of the Framingham Risk Score: Can It Predict ST-Elevation Myocardial Infarction? A Pilot Study. Echocardiography 2013; 30:1209-13. [DOI: 10.1111/echo.12272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ash Kabra
- Cardiovascular Research Institute; Lehigh Valley Health Network; Allentown Pennsylvania
| | - Lori Neri
- Cardiovascular Research Institute; Lehigh Valley Health Network; Allentown Pennsylvania
| | - Hillel Weiner
- Cardiovascular Research Institute; Lehigh Valley Health Network; Allentown Pennsylvania
| | - Yasser Khalil
- Cardiovascular Research Institute; Lehigh Valley Health Network; Allentown Pennsylvania
| | - Martin E. Matsumura
- Cardiovascular Research Institute; Lehigh Valley Health Network; Allentown Pennsylvania
| |
Collapse
|
26
|
Saba L, Ikeda N, Deidda M, Araki T, Molinari F, Meiburger KM, Acharya UR, Nagashima Y, Mercuro G, Nakano M, Nicolaides A, Suri JS. Association of automated carotid IMT measurement and HbA1c in Japanese patients with coronary artery disease. Diabetes Res Clin Pract 2013; 100:348-53. [PMID: 23611290 DOI: 10.1016/j.diabres.2013.03.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/13/2013] [Accepted: 03/25/2013] [Indexed: 01/20/2023]
Abstract
AIMS The purpose of this study was to evaluate whether carotid IMT (cIMT) identified using automated software is associated with HbA1c in Japanese patients with coronary artery disease. METHODS 370 consecutive patients (males 218; median age 69 years ± 11) who underwent carotid-US and first coronary angiography were prospectively analyzed. After ultrasonographic examinations were performed, the plaque score (PS) was calculated and automated IMT analysis was obtained with a dedicated algorithm. Pearson correlation analysis was performed to calculate the association between automated IMT, PS and HbA1c. RESULTS The mean value of cIMT was 1.00 ± 0.47 mm for the right carotid and 1.04 ± 0.49 mm for the left carotid; the average bilateral value was 1.02 ± 0.43 mm. No significant difference of cIMT was detected between men and women. We found a direct correlation between cIMT values and HbA1c (p=0.0007) whereas the plaque score did not correlate with the HbA1c values (p>0.05) CONCLUSION: The results of our study confirm that automated cIMT values and levels of HbA1c in Japanese patients with coronary artery disease are correlated whereas the plaque score does not show a statistically significant correlation.
Collapse
Affiliation(s)
- Luca Saba
- Department of Imaging Sciences, Azienda Ospedaliero Universitaria (A.O.U.) di Cagliari - Polo di Monserrato, Università di Cagliari, s.s. 554 Monserrato, Cagliari 09045, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|