1
|
Han Z, Wang K, Ding S, Zhang M. Cross-talk of inflammation and cellular senescence: a new insight into the occurrence and progression of osteoarthritis. Bone Res 2024; 12:69. [PMID: 39627227 PMCID: PMC11615234 DOI: 10.1038/s41413-024-00375-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 12/06/2024] Open
Abstract
Osteoarthritis (OA) poses a significant challenge in orthopedics. Inflammatory pathways are regarded as central mechanisms in the onset and progression of OA. Growing evidence suggests that senescence acts as a mediator in inflammation-induced OA. Given the lack of effective treatments for OA, there is an urgent need for a clearer understanding of its pathogenesis. In this review, we systematically summarize the cross-talk between cellular senescence and inflammation in OA. We begin by focusing on the mechanisms and hallmarks of cellular senescence, summarizing evidence that supports the relationship between cellular senescence and inflammation. We then discuss the mechanisms of interaction between cellular senescence and inflammation, including senescence-associated secretory phenotypes (SASP) and the effects of pro- and anti-inflammatory interventions on cellular senescence. Additionally, we focus on various types of cellular senescence in OA, including senescence in cartilage, subchondral bone, synovium, infrapatellar fat pad, stem cells, and immune cells, elucidating their mechanisms and impacts on OA. Finally, we highlight the potential of therapies targeting senescent cells in OA as a strategy for promoting cartilage regeneration.
Collapse
Affiliation(s)
- Zeyu Han
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China
| | - Ketao Wang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China
| | - Shenglong Ding
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China
| | - Mingzhu Zhang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China.
| |
Collapse
|
2
|
Saribal D, Çalis H, Ceylan Z, Depciuch J, Cebulski J, Guleken Z. Investigation of the structural changes in the hippocampus and prefrontal cortex using FTIR spectroscopy in sleep deprived mice. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124702. [PMID: 38917751 DOI: 10.1016/j.saa.2024.124702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
Sleep is a basic, physiological requirement for living things to survive and is a process that covers one third of our lives. Melatonin is a hormone that plays an important role in the regulation of sleep. Sleep deprivation affect brain structures and functions. Sleep deprivation causes a decrease in brain activity, with particularly negative effects on the hippocampus and prefrontal cortex. Despite the essential role of protein and lipids vibrations, polysaccharides, fatty acid side chains functional groups, and ratios between amides in brain structures and functions, the brain chemical profile exposed to gentle handling sleep deprivation model versus Melatonin exposure remains unexplored. Therefore, the present study, aims to investigate a molecular profile of these regions using FTIR spectroscopy measurement's analysis based on lipidomic approach with chemometrics and multivariate analysis to evaluate changes in lipid composition in the hippocampus, prefrontal regions of the brain. In this study, C57BL/6J mice were randomly assigned to either the control or sleep deprivation group, resulting in four experimental groups: Control (C) (n = 6), Control + Melatonin (C + M) (n = 6), Sleep Deprivation (S) (n = 6), and Sleep Deprivation + Melatonin (S + M) (n = 6). Interventions were administered each morning via intraperitoneal injections of melatonin (10 mg/kg) or vehicle solution (%1 ethanol + saline), while the S and S + M groups underwent 6 h of daily sleep deprivation from using the Gentle Handling method. All mice were individually housed in cages with ad libitum access to food and water within a 12-hour light-dark cycle. Results presented that the brain regions affected by insomnia. The structure of phospholipids, changed. Yet, not only changes in lipids but also in amides were noticed in hippocampus and prefrontal cortex tissues. Additionally, FTIR results showed that melatonin affected the lipids as well as the amides fraction in cortex and hippocampus collected from both control and sleep deprivation groups.
Collapse
Affiliation(s)
- Devrim Saribal
- Department of Biophysics, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Hakan Çalis
- Department of Internal Medicine, Bağcılar State Hospital, Istanbul, Turkey
| | - Zeynep Ceylan
- Samsun University, Faculty of Engineering, Department of Industrial Engineering, Samsun, Turkey
| | - Joanna Depciuch
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin 20-093, Poland; Institute of Nuclear Physics, PAS, 31342 Krakow, Poland
| | - Jozef Cebulski
- Institute of Physics, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Zozan Guleken
- Department of Physiology, Faculty of Medicine, Gaziantep Islam Science and Technology University, Gaziantep, Turkey.
| |
Collapse
|
3
|
Shao X, Yang Y, Liu Y, Wang Y, Zhao Y, Yu X, Liu J, Li YX, Wang YL. Orchestrated feedback regulation between melatonin and sex hormones involving GPER1-PKA-CREB signaling in the placenta. J Pineal Res 2023; 75:e12913. [PMID: 37746893 DOI: 10.1111/jpi.12913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/16/2023] [Accepted: 09/09/2023] [Indexed: 09/26/2023]
Abstract
Maintaining placental endocrine homeostasis is crucial for a successful pregnancy. Pre-eclampsia (PE), a gestational complication, is a leading cause of maternal and perinatal morbidity and mortality. Aberrant elevation of testosterone (T0 ) synthesis, reduced estradiol (E2 ), and melatonin productions have been identified in preeclamptic placentas. However, the precise contribution of disrupted homeostasis among these hormones to the occurrence of PE remains unknown. In this study, we established a strong correlation between suppressed melatonin production and decreased E2 as well as elevated T0 synthesis in PE placentas. Administration of the T0 analog testosterone propionate (TP; 2 mg/kg/day) to pregnant mice from E7.5 onwards resulted in PE-like symptoms, along with elevated T0 production and reduced E2 and melatonin production. Notably, supplementation with melatonin (10 mg/kg/day) in TP-treated mice had detrimental effects on fetal and placental development and compromised hormone synthesis. Importantly, E2 , but not T0 , actively enhanced melatonin synthetase AANAT expression and melatonin production in primary human trophoblast (PHT) cells through GPER1-PKA-CREB signaling pathway. On the other hand, melatonin suppressed the level of estrogen synthetase aromatase while promoting the expressions of androgen synthetic enzymes including 17β-HSD3 and 3β-HSD1 in PHT cells. These findings reveal an orchestrated feedback mechanism that maintains homeostasis of placental sex hormones and melatonin. It is implied that abnormal elevation of T0 synthesis likely serves as the primary cause of placental endocrine disturbances associated with PE. The suppression of melatonin may represent an adaptive strategy to correct the imbalance in sex hormone levels within preeclamptic placentas. The findings of this study offer novel evidence that identifies potential targets for the development of innovative therapeutic strategies for PE.
Collapse
Affiliation(s)
- Xuan Shao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yun Yang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanlei Liu
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yongqing Wang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yangyu Zhao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Xin Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Juan Liu
- Beijing Center for Disease Prevention and Control, Beijing, China
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, China
| | - Yu-Xia Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
4
|
Brembati V, Faustini G, Longhena F, Bellucci A. Alpha synuclein post translational modifications: potential targets for Parkinson's disease therapy? Front Mol Neurosci 2023; 16:1197853. [PMID: 37305556 PMCID: PMC10248004 DOI: 10.3389/fnmol.2023.1197853] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative disorder with motor symptoms. The neuropathological alterations characterizing the brain of patients with PD include the loss of dopaminergic neurons of the nigrostriatal system and the presence of Lewy bodies (LB), intraneuronal inclusions that are mainly composed of alpha-synuclein (α-Syn) fibrils. The accumulation of α-Syn in insoluble aggregates is a main neuropathological feature in PD and in other neurodegenerative diseases, including LB dementia (LBD) and multiple system atrophy (MSA), which are therefore defined as synucleinopathies. Compelling evidence supports that α-Syn post translational modifications (PTMs) such as phosphorylation, nitration, acetylation, O-GlcNAcylation, glycation, SUMOylation, ubiquitination and C-terminal cleavage, play important roles in the modulation α-Syn aggregation, solubility, turnover and membrane binding. In particular, PTMs can impact on α-Syn conformational state, thus supporting that their modulation can in turn affect α-Syn aggregation and its ability to seed further soluble α-Syn fibrillation. This review focuses on the importance of α-Syn PTMs in PD pathophysiology but also aims at highlighting their general relevance as possible biomarkers and, more importantly, as innovative therapeutic targets for synucleinopathies. In addition, we call attention to the multiple challenges that we still need to face to enable the development of novel therapeutic approaches modulating α-Syn PTMs.
Collapse
Affiliation(s)
| | | | | | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
5
|
Nguyen JP, Ramirez-Sanchez I, Garate-Carrillo A, Navarrete-Yañez V, Carballo-Castañeda RA, Ceballos G, Moreno-Ulloa A, Villarreal F. Effects of aging and type 2 diabetes on cardiac structure and function: Underlying mechanisms. Exp Gerontol 2023; 173:112108. [PMID: 36708752 DOI: 10.1016/j.exger.2023.112108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
We characterized long-term changes in cardiac structure and function in a high-fat diet/streptozotocin mouse model of aging and type 2 diabetes mellitus (T2D) and examined how the intersection of both conditions alters plasma metabolomics. We also evaluated the possible roles played by oxidative stress, arginase activity and pro-inflammatory cytokines. C57BL/6 male mice (13-month-old) were used. Control animals (n = 13) were fed regular chow for 10 months (aged group). T2D animals (n = 25) were provided a single injection of streptozotocin and fed a high fat diet for 10 months. In select endpoints, young animals were used for comparison. To monitor changes in left ventricular (LV) structure and function, echocardiography was used. At the terminal study (23 months), blood was collected and hearts processed for biochemical or histological analysis. Echo yielded diminished diastolic function with aging and T2D. LV fractional shortening and ejection fraction decreased with T2D by 16 months peaking at 23 months. Western blots noted increases in fibronectin and type I collagen with aging/T2D and greater levels with T2D in α-smooth muscle actin. Increases in plasma and/or myocardial protein carbonyls, arginase activity and pro-inflammatory cytokines occurred with aging and T2D. Untargeted metabolomics and cheminformatics revealed differences in the plasma metabolome of T2D vs. aged mice while select classes of lipid metabolites linked to insulin resistance, were dysregulated. We thus, document changes in LV structure and function with aging that in select endpoints, are accentuated with T2D and link them to increases in OS, arginase activity and pro-inflammatory cytokines.
Collapse
Affiliation(s)
| | - Israel Ramirez-Sanchez
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico
| | - Alejandra Garate-Carrillo
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico
| | - Viridiana Navarrete-Yañez
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico
| | | | - Guillermo Ceballos
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico
| | - Aldo Moreno-Ulloa
- Laboratorio MS2, Departamento de Innovación Biomédica, CICESE, Mexico
| | - Francisco Villarreal
- Veteran Affairs San Diego Health Care, San Diego, CA, USA; Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Effects of Scrophularia buergeriana Extract (Brainon ®) on Aging-Induced Memory Impairment in SAMP8 Mice. Curr Issues Mol Biol 2023; 45:1287-1305. [PMID: 36826029 PMCID: PMC9955813 DOI: 10.3390/cimb45020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Alzheimer's disease (AD) is a worldwide problem. Currently, there are no effective drugs for AD treatment. Scrophularia buergeriana Miquel (SB) is a traditional herbal medicine used in Korea to treat various diseases. Our previous studies have shown that ethanol extract of SB roots (SBE, Brainon®) exhibits potent anti-amnesic effects in Aβ1-42- or scopolamine-treated memory impairment mice model and neuroprotective effects in a glutamate-induced SH-SY5Y cell model. In this study, we evaluated the therapeutic effects of Brainon® and its mechanism of action in senescence-accelerated mouse prone 8 (SAMP8) mice. Brainon® (30 or 100 mg/kg/day) was orally treated to six-month-old SAMP8 mice for 12 weeks. Results revealed that Brainon® administration effectually ameliorated cognitive deficits in Y-maze and passive avoidance tests. Following the completion of behavioral testing, western blotting was performed using the cerebral cortex. Results revealed that Brainon® suppressed Aβ1-42 accumulation, Tau hyperphosphorylation, oxidative stress, and inflammation and alleviated apoptosis in SAMP8 mice. Brainon® also promoted synaptic function by downregulating the expression of AChE and upregulating the expression of p-CREB/CREB and BDNF. Furthermore, Brainon® restored SAMP8-reduced expression of ChAT and -dephosphorylated of ERK and also decreased AChE expression in the hippocampus. Furthermore, Brainon® alleviated AD progression by promoting mitophagy/autophagy to maintain normal cellular function as a novel finding of this study. Our data suggest that Brainon® can remarkably improve cognitive deficiency with the potential to be utilized in functional food for improving brain health.
Collapse
|
7
|
Melatonin Prevents Chondrocyte Matrix Degradation in Rats with Experimentally Induced Osteoarthritis by Inhibiting Nuclear Factor-κB via SIRT1. Nutrients 2022; 14:nu14193966. [PMID: 36235621 PMCID: PMC9571821 DOI: 10.3390/nu14193966] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease characterized by an imbalance of cartilage extracellular matrix (ECM) breakdown and anabolism. Melatonin (MT) is one of the hormones secreted by the pineal gland of the brain and has anti-inflammatory, antioxidant, and anti-aging functions. To explore the role of MT in rats, we established an OA model in rats by anterior cruciate ligament transection (ACLT). Safranin O-fast green staining showed that intraperitoneal injection of MT (30 mg/kg) could alleviate the degeneration of articular cartilage in ACLT rats. Immunohistochemical (IHC) analysis found that MT could up-regulate the expression levels of collagen type II and Aggrecan and inhibit the expression levels of matrix metalloproteinase-3 (MMP-3), matrix metalloproteinase-13 (MMP-13), and ADAM metallopeptidase with thrombospondin type 1 motif 4 (ADAMTS-4) in ACLT rats. To elucidate the mechanism of MT in protecting the ECM in inflammatory factor-induced rat chondrocytes, we conducted in vitro experiments by co-culturing MT with a culture medium. Western blot (WB) showed that MT could promote the expression levels of transforming growth factor-beta 1 (TGF-β1)/SMAD family member 2 (Smad2) and sirtuin 2-related enzyme 1 (SIRT1) and inhibit the expression of levels of phosphorylated nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibi-tor (p-p65) and phosphorylated IκB kinase-α (p-IκBα). In addition, WB and real-time PCR (qRT-PCR) results showed that MT could inhibit the expression levels of MMP-3, MMP-13, ADAMTS-4, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) in chondrocytes induced by interleukin-1β (IL-1β), and up-regulate the expression of chondroprotective protein type II collagen. We found that in vivo, MT treatment protected articular cartilage in the rat ACLT model. In IL-1β-induced rat chondrocytes, MT could reduce chondrocyte matrix degradation by up-regulating nuclear factor-kB (NF-κB) signaling pathway-dependent expression of SIRT1 and protecting chondrocyte by activating the TGF-β1/Smad2 pathway.
Collapse
|
8
|
Cachán-Vega C, Vega-Naredo I, Potes Y, Bermejo-Millo JC, Rubio-González A, García-González C, Antuña E, Bermúdez M, Gutiérrez-Rodríguez J, Boga JA, Coto-Montes A, Caballero B. Chronic Treatment with Melatonin Improves Hippocampal Neurogenesis in the Aged Brain and Under Neurodegeneration. Molecules 2022; 27:molecules27175543. [PMID: 36080336 PMCID: PMC9457692 DOI: 10.3390/molecules27175543] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/19/2022] Open
Abstract
Adult hippocampal neurogenesis is altered during aging and under different neuropsychiatric and neurodegenerative diseases. Melatonin shows neurogenic and neuroprotective properties during aging and neuropathological conditions. In this study, we evaluated the effects of chronic treatment with melatonin on different markers of neurodegeneration and hippocampal neurogenesis using immunohistochemistry in the aged and neurodegenerative brains of SAMP8 mice, which is an animal model of accelerated senescence that mimics aging-related Alzheimer’s pathology. Neurodegenerative processes observed in the brains of aged SAMP8 mice at 10 months of age include the presence of damaged neurons, disorganization in the layers of the brain cortex, alterations in neural processes and the length of neuronal prolongations and β-amyloid accumulation in the cortex and hippocampus. This neurodegeneration may be associated with neurogenic responses in the hippocampal dentate gyrus of these mice, since we observed a neurogenic niche of neural stem and progenitor/precursors cells in the hippocampus of SAMP8 mice. However, hippocampal neurogenesis seems to be compromised due to alterations in the cell survival, migration and/or neuronal maturation of neural precursor cells due to the neurodegeneration levels in these mice. Chronic treatment with melatonin for 9 months decreased these neurodegenerative processes and the neurodegeneration-induced neurogenic response. Noticeably, melatonin also induced recovery in the functionality of adult hippocampal neurogenesis in aged SAMP8 mice.
Collapse
Affiliation(s)
- Cristina Cachán-Vega
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Ignacio Vega-Naredo
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
| | - Yaiza Potes
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
| | - Juan Carlos Bermejo-Millo
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
| | - Adrian Rubio-González
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
| | - Claudia García-González
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Eduardo Antuña
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Manuel Bermúdez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Hospital Monte Naranco, 33012 Oviedo, Asturias, Spain
| | - José Gutiérrez-Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Hospital Monte Naranco, 33012 Oviedo, Asturias, Spain
| | - José Antonio Boga
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Ana Coto-Montes
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
| | - Beatriz Caballero
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
- Correspondence: ; Tel.: +34-98-510-2784
| |
Collapse
|
9
|
Brazão V, Colato RP, Santello FH, Duarte A, Goulart A, Sampaio PA, Pacheco Silva CB, Tirapelli CR, Costa RM, Tostes RC, do Prado JC. Melatonin regulates antioxidant defense and inflammatory response by activating Nrf2-dependent mechanisms and inhibiting NFkappaB expression in middle-aged T. cruzi infected rats. Exp Gerontol 2022; 167:111895. [PMID: 35843349 DOI: 10.1016/j.exger.2022.111895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/29/2022]
Abstract
Oxidative stress with higher levels of leptin and inflammatory response are key processes related to pathogenesis of both T. cruzi infection and aging. Nuclear factor erythroid 2-related factor 2 (Nrf2) controls the expression of several genes implicated in the oxidative stress response in many pathological conditions. Melatonin is a pleiotropic hormone with, antioxidant, anti-inflammatory and anti-aging actions. Then, we hypothesized that Nrf2 response is impaired during the acute T. cruzi (9 days) infection and that melatonin rescues Nrf2 responses. Young (5 weeks-old) and middle-aged (18 months-old) male Wistar rats were infected with T. cruzi. Nrf2 translocation and markers of inflammation and oxidative stress were analyzed in blood and spleen. Increased apoptosis levels and oxidative stress indicators were observed in the rat spleen during T. cruzi infection. These responses were accompanied by decreased Nrf2 expression and increased expression of nuclear factor kappa B (NFκB). Melatonin (5 mg/kg/day; p.o. gavage) attenuated the superoxide anion (O2-) and hydrogen peroxide (H2O2) production induced by T. cruzi infection. Increased expressions of catalase and superoxide dismutase (SOD) were detected in the spleen of melatonin-treated rats infected with T. cruzi. Melatonin treatment inhibited the spleen NF-κB activation and downregulates the levels of circulating interleukin (IL)-4, IL-10 and tumor necrosis factor (TNF)-α in T. cruzi middle-aged infected rats. Increased levels of the chemokine CXCL1 in middle-aged control rats was observed, confirming that aging alters the production of this chemokine. In T. cruzi infected young animals, CXCL1 was up-regulated when compared to non-infected young ones. For young or middle-aged animals, melatonin treatment had no significant effect on CXCL1 levels. Our findings demonstrate an important role for Nrf2/NF-kB regulation as a possible mechanism by which melatonin attenuates oxidative stress, and provide new insights for further studies of this indoleamine as a therapeutic co-adjuvant agent against T. cruzi infection.
Collapse
Affiliation(s)
- Vânia Brazão
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Rafaela Pravato Colato
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fabricia Helena Santello
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Andressa Duarte
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Amanda Goulart
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Pedro Alexandre Sampaio
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carla B Pacheco Silva
- Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Carlos Renato Tirapelli
- Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Rafael M Costa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, SP, Brazil; Special Academic Unit of Health Sciences, Federal University of Jatai, Jatai, GO, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, SP, Brazil
| | - José Clóvis do Prado
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
10
|
Roy J, Wong KY, Aquili L, Uddin MS, Heng BC, Tipoe GL, Wong KH, Fung ML, Lim LW. Role of melatonin in Alzheimer's disease: From preclinical studies to novel melatonin-based therapies. Front Neuroendocrinol 2022; 65:100986. [PMID: 35167824 DOI: 10.1016/j.yfrne.2022.100986] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/21/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022]
Abstract
Melatonin and novel melatonin-based therapies such as melatonin-containing hybrid molecules, melatonin analogues, and melatonin derivatives have been investigated as potential therapeutics against Alzheimer's disease (AD) pathogenesis. In this review, we examine the developmental trends of melatonin therapies for AD from 1997 to 2021. We then highlight the neuroprotective mechanisms of melatonin therapy derived from preclinical studies. These mechanisms include the alleviation of amyloid-related burden, neurofibrillary tangle accumulation, oxidative stress, neuroinflammation, apoptosis, mitochondrial dysfunction, and impaired neuroplasticity and neurotransmission. We further illustrate the beneficial effects of melatonin on behavior in animal models of AD. Next, we discuss the clinical effects of melatonin on sleep, cognition, behavior, psychiatric symptoms, electroencephalography findings, and molecular biomarkers in patients with mild cognitive impairment and AD. We then explore the effectiveness of novel melatonin-based therapies. Lastly, we discuss the limitations of current melatonin therapies for AD and suggest two emerging research themes for future study.
Collapse
Affiliation(s)
- Jaydeep Roy
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kan Yin Wong
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Luca Aquili
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; College of Science, Health, Engineering and Education, Discipline of Psychology, Murdoch University, Perth, Australia
| | - Md Sahab Uddin
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Boon Chin Heng
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Peking University School of Stomatology, Beijing, China
| | - George Lim Tipoe
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kah Hui Wong
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Man Lung Fung
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
11
|
Evaluation of a novel melatonin-loaded gelatin sponge as a wound dressing. JOURNAL OF VASCULAR NURSING 2022; 40:2-10. [DOI: 10.1016/j.jvn.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/23/2021] [Accepted: 09/26/2021] [Indexed: 11/24/2022]
|
12
|
Lwin T, Yang JL, Ngampramuan S, Viwatpinyo K, Chancharoen P, Veschsanit N, Pinyomahakul J, Govitrapong P, Mukda S. Melatonin ameliorates methamphetamine-induced cognitive impairments by inhibiting neuroinflammation via suppression of the TLR4/MyD88/NFκB signaling pathway in the mouse hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110109. [PMID: 32941923 DOI: 10.1016/j.pnpbp.2020.110109] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/01/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023]
Abstract
Methamphetamine (METH) is a highly addictive psychostimulant that causes significant health issues due to high prevalence of its illegal use. Chronic use of METH is associated with cognitive impairments in both human and animal studies, but the underlying mechanism remains unclear. METH-induced neuroinflammation is, potentially, one of the factors that causes cognitive impairments. Therefore, the present study aimed to assess whether melatonin could provide protection against inflammation, in a manner comparable to the anti-inflammatory agent, minocycline, with consequent improvements of METH-induced cognitive impairments and associated abnormalities in the mouse hippocampus. Results from the Morris water maze (MWM) test and the novel object recognition test (NORT) showed that melatonin given after METH injections could ameliorate both METH-induced spatial and recognition memory impairments. These memory impairments are associated with changes in the neuroinflammatory profiles, including IL-6, IL-1β, and TNF-α, both in the blood serum and hippocampus of adult mice. METH-treated mice also exhibited reactive astrocytes and activated microglia in the hippocampus. METH-induced activation of glial cells is associated with the activation of the TLR4/MyD88/NFκB signaling pathway. Moreover, melatonin administration led to recovery of these METH-induced markers to control levels. Thus, we conclude that melatonin could potentially be used as a cognitive enhancer and anti-inflammatory agent in the treatment of METH use disorder in humans.
Collapse
Affiliation(s)
- Thit Lwin
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand; Department of Anatomy, Defence Services Medical Academy, Mingalardon, Yangon 11021, Myanmar
| | - Jenq-Lin Yang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Sukonthar Ngampramuan
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Kittikun Viwatpinyo
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Pongrung Chancharoen
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand; Faculty of Allied Health Sciences, Burapha University, Seansuk, Chonburi 20131, Thailand
| | - Nisarath Veschsanit
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Jitrapa Pinyomahakul
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand; Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Sujira Mukda
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
13
|
Lu KH, Lu PWA, Lu EWH, Tang CH, Su SC, Lin CW, Yang SF. The potential remedy of melatonin on osteoarthritis. J Pineal Res 2021; 71:e12762. [PMID: 34435392 DOI: 10.1111/jpi.12762] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA), the most common arthritis worldwide, is a degenerative joint disease characterized by progressive cartilage breakdown, subchondral remodeling, and synovial inflammation. Although conventional pharmaceutical therapies aimed to prevent further cartilage loss and joint dysfunction, there are no ideal strategies that target the pathogenesis of OA. Melatonin exhibits a variety of regulatory properties by binding to specific receptors and downstream molecules and exerts a myriad of receptor-independent actions via intracellular targets as a chondrocyte protector, an anti-inflammation modulator, and a free radical scavenger. Melatonin also modulates cartilage regeneration and degradation by directly/indirectly regulating the expression of main circadian clock genes, such as transcriptional activators [brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein (Bmal) and circadian locomotor output cycles kaput (Clock)], transcriptional repressors [period circadian regulator (Per)1/2, cryptochrome (Cry)1/2, and Dec2], and nuclear hormone receptors [Rev-Erbs and retinoid acid-related orphan receptors (Rors)]. Owing to its effects on cartilage homeostasis, we propose a potential role for melatonin in the prevention and therapy of OA via the modulation of circadian clock genes, mitigation of chondrocyte apoptosis, anti-inflammatory activity, and scavenging of free radicals.
Collapse
Affiliation(s)
- Ko-Hsiu Lu
- Department of Orthopedics, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | | | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Linkou and Keelung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital 402, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
14
|
Babagana M, Oh KS, Chakraborty S, Pacholewska A, Aqdas M, Sung MH. Hedgehog dysregulation contributes to tissue-specific inflammaging of resident macrophages. Aging (Albany NY) 2021; 13:19207-19229. [PMID: 34390567 PMCID: PMC8386529 DOI: 10.18632/aging.203422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022]
Abstract
Age-associated low-grade sterile inflammation, commonly referred to as inflammaging, is a recognized hallmark of aging, which contributes to many age-related diseases. While tissue-resident macrophages are innate immune cells that secrete many types of inflammatory cytokines in response to various stimuli, it is not clear whether they have a role in driving inflammaging. Here we characterized the transcriptional changes associated with physiological aging in mouse resident macrophage populations across different tissues and sexes. Although the age-related transcriptomic signatures of resident macrophages were strikingly tissue-specific, the differentially expressed genes were collectively enriched for those with important innate immune functions such as antigen presentation, cytokine production, and cell adhesion. The brain-resident microglia had the most wide-ranging age-related alterations, with compromised expression of tissue-specific genes and relatively exaggerated responses to endotoxin stimulation. Despite the tissue-specific patterns of aging transcriptomes, components of the hedgehog (Hh) signaling pathway were decreased in aged macrophages across multiple tissues. In vivo suppression of Hh signaling in young animals increased the expression of pro-inflammatory cytokines, while in vitro activation of Hh signaling in old macrophages, in turn, suppressed the expression of these inflammatory cytokines. This suggests that hedgehog signaling could be a potential intervention axis for mitigating age-associated inflammation and related diseases. Overall, our data represent a resourceful catalog of tissue-specific and sex-specific transcriptomic changes in resident macrophages of peritoneum, liver, and brain, during physiological aging.
Collapse
Affiliation(s)
- Mahamat Babagana
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kyu-Seon Oh
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Sayantan Chakraborty
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Alicja Pacholewska
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.,Present Address: Institute for Translational Epigenetics, University Hospital Cologne, Cologne, Germany
| | - Mohammad Aqdas
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Myong-Hee Sung
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
15
|
O'Connor KM, Ashoori M, Dias ML, Dempsey EM, O'Halloran KD, McDonald FB. Influence of innate immune activation on endocrine and metabolic pathways in infancy. Am J Physiol Endocrinol Metab 2021; 321:E24-E46. [PMID: 33900849 DOI: 10.1152/ajpendo.00542.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prematurity is the leading cause of neonatal morbidity and mortality worldwide. Premature infants often require extended hospital stays, with increased risk of developing infection compared with term infants. A picture is emerging of wide-ranging deleterious consequences resulting from innate immune system activation in the newborn infant. Those who survive infection have been exposed to a stimulus that can impose long-lasting alterations into later life. In this review, we discuss sepsis-driven alterations in integrated neuroendocrine and metabolic pathways and highlight current knowledge gaps in respect of neonatal sepsis. We review established biomarkers for sepsis and extend the discussion to examine emerging findings from human and animal models of neonatal sepsis that propose novel biomarkers for early identification of sepsis. Future research in this area is required to establish a greater understanding of the distinct neonatal signature of early and late-stage infection, to improve diagnosis, curtail inappropriate antibiotic use, and promote precision medicine through a biomarker-guided empirical and adjunctive treatment approach for neonatal sepsis. There is an unmet clinical need to decrease sepsis-induced morbidity in neonates, to limit and prevent adverse consequences in later life and decrease mortality.
Collapse
Affiliation(s)
- K M O'Connor
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - M Ashoori
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
- Irish Centre for Maternal and Child Health Research (INFANT), University College Cork, Cork, Ireland
| | - M L Dias
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - E M Dempsey
- Irish Centre for Maternal and Child Health Research (INFANT), University College Cork, Cork, Ireland
- Department of Paediatrics and Child Health, School of Medicine, College of Medicine and Health, Cork University Hospital, Wilton, Cork, Ireland
| | - K D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
- Irish Centre for Maternal and Child Health Research (INFANT), University College Cork, Cork, Ireland
| | - F B McDonald
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
- Irish Centre for Maternal and Child Health Research (INFANT), University College Cork, Cork, Ireland
| |
Collapse
|
16
|
Hosseini A, Esmaeili Gouvarchin Ghaleh H, Aghamollaei H, Fasihi Ramandi M, Alishiri G, Shahriary A, Hassanpour K, Tat M, Farnoosh G. Evaluation of Th1 and Th2 mediated cellular and humoral immunity in patients with COVID-19 following the use of melatonin as an adjunctive treatment. Eur J Pharmacol 2021; 904:174193. [PMID: 34015316 PMCID: PMC8127523 DOI: 10.1016/j.ejphar.2021.174193] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/30/2021] [Accepted: 05/12/2021] [Indexed: 12/26/2022]
Abstract
Coronavirus (SARS-CoV-2) is spreading rapidly in the world and is still taking a heavy toll. Studies show that cytokine storms and imbalances in T-helper (Th)1/Th2 play a significant role in most acute cases of the disease. A number of medications have been suggested to treat or control the disease but have been discontinued due to their side effects. Melatonin, as an intrinsic molecule, possesses pharmacological anti-inflammatory and antioxidant properties that decreases in concentration with age; as a result, older people are more prone to various diseases. In this study, patients who were hospitalized with a diagnosis of coronavirus disease 2019 (COVID-19) were given a melatonin adjuvant (9 mg daily, orally) for fourteen days. In order to measure markers of Th1 and Th2 inflammatory cytokines (such as interleukin (IL)-2, IL-4, and interferon (IFN)-γ) as well as the expression of Th1 and Th2 regulatory genes (signal transducer and activator of transcription (STAT)4, STAT6, GATA binding protein 3 (GATA3), and T-box expressed in T cell (T-bet)), blood samples were taken from patients at the beginning and end of the treatment. Adjuvant therapy with melatonin controlled and reduced inflammatory cytokines in patients with COVID-19. Melatonin also controlled and modulated the dysregulated genes that regulate the humoral and cellular immune systems mediated by Th1 and Th2. In this study, it was shown for the first time that melatonin can be used as a medicinal adjuvant with anti-inflammatory mechanism to reduce and control inflammatory cytokines by regulating the expression of Th1 and Th2 regulatory genes in patients with COVID-19.
Collapse
Affiliation(s)
- Abdolkarim Hosseini
- Applied Biotechnology Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | | | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mahdi Fasihi Ramandi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Gholamhossein Alishiri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Kazem Hassanpour
- Sabzevar University of Medical Sciences, School of Medicine, Sabzevar, Iran.
| | - Mahdi Tat
- Applied Biotechnology Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Gholamreza Farnoosh
- Applied Biotechnology Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Differential role of melatonin in healthy brain aging: a systematic review and meta-analysis of the SAMP8 model. Aging (Albany NY) 2021; 13:9373-9397. [PMID: 33811754 PMCID: PMC8064193 DOI: 10.18632/aging.202894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/14/2021] [Indexed: 12/16/2022]
Abstract
The relationship between oxidative stress (OS) and cellular senescence (CS) is an important research topic because of the rapidly aging global population. Melatonin (MT) is associated with aging and plays a pivotal role in redox homeostasis, but its role in maintaining physiological stability in the brain (especially in OS-induced senescence) remains elusive. Here, we systematically reviewed the differential role of MT on OS-induced senescence in the SAMP8 mouse model. Major electronic databases were searched for relevant studies. Pooled mean differences (MDs)/standardized mean differences (SMDs) with 95% confidence intervals (CIs) were calculated to estimate the effect size. Overall, 10 studies met the inclusion criteria. MT treatment was associated with the reduction of lipid peroxidation (SMD = -2.00, 95% CI [-2.91, -1.10]; p < 0.0001) and carbonylated protein (MD = -5.74, 95% CI [-11.03, -0.44]; p = 0.03), and with enhancement of the reduced-glutathione/oxidized-glutathione ratio (MD = 1.12, 95% CI [0.77, 1.47]; p < 0.00001). No differences were found in catalase and superoxide dismutase activities between MT-treated and vehicle-treated groups. Furthermore, nuclear-factor-κB, cyclin-dependent kinase-5, and p53 were regulated by MT administration. MT may improve physiological stability during aging by regulating interactions in brain senescence, but acts differentially on the antioxidant system.
Collapse
|
18
|
Buijink MR, Michel S. A multi-level assessment of the bidirectional relationship between aging and the circadian clock. J Neurochem 2021; 157:73-94. [PMID: 33370457 PMCID: PMC8048448 DOI: 10.1111/jnc.15286] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022]
Abstract
The daily temporal order of physiological processes and behavior contribute to the wellbeing of many organisms including humans. The central circadian clock, which coordinates the timing within our body, is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Like in other parts of the brain, aging impairs the SCN function, which in turn promotes the development and progression of aging-related diseases. We here review the impact of aging on the different levels of the circadian clock machinery-from molecules to organs-with a focus on the role of the SCN. We find that the molecular clock is less effected by aging compared to other cellular components of the clock. Proper rhythmic regulation of intracellular signaling, ion channels and neuronal excitability of SCN neurons are greatly disturbed in aging. This suggests a disconnection between the molecular clock and the electrophysiology of these cells. The neuronal network of the SCN is able to compensate for some of these cellular deficits. However, it still results in a clear reduction in the amplitude of the SCN electrical rhythm, suggesting a weakening of the output timing signal. Consequently, other brain areas and organs not only show aging-related deficits in their own local clocks, but also receive a weaker systemic timing signal. The negative spiral completes with the weakening of positive feedback from the periphery to the SCN. Consequently, chronotherapeutic interventions should aim at strengthening overall synchrony in the circadian system using life-style and/or pharmacological approaches.
Collapse
Affiliation(s)
- M. Renate Buijink
- Department of Cellular and Chemical BiologyLaboratory for NeurophysiologyLeiden University Medical CenterLeidenthe Netherlands
| | - Stephan Michel
- Department of Cellular and Chemical BiologyLaboratory for NeurophysiologyLeiden University Medical CenterLeidenthe Netherlands
| |
Collapse
|
19
|
Gao X, Huang C, Geng T, Chen X, Wang J, Liu J, Duan K, Cao L, Wang Z, Xiao W. Serum and urine metabolomics based on UPLC-Q-TOF/MS reveals the antipyretic mechanism of Reduning injection in a rat model. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112429. [PMID: 31812644 DOI: 10.1016/j.jep.2019.112429] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Reduning injection (RDN), a patented traditional Chinese medicine, has the obvious antipyretic effect and has been widely used in China. Although some previous studies proved its antipyretic effect by animal efficacy experiment or clinical observation, its holistic mechanism in vivo was still unclear. AIM OF THE STUDY To comprehensively elucidate the antipyretic mechanism of RDN, the investigation of fever-related potential biomarkers and metabolic pathways in the rat fever model is described in this paper. MATERIALS AND METHODS Rat fever model was established by dry yeast. A large number of endogenous metabolites in serum and urine were detected by UPLC-Q-TOF/MS, and fever-related potential biomarkers were screened and identified by multivariate analysis and metabolite databases. The reliability and biological significance of the largely disturbed biomarkers was verified by the metabolic network and the correlation with pharmacodynamic indicators, which contained IL-1β, IL-6, TNF-α, PGE2 and cAMP. RESULTS The established UPLC-Q-TOF/MS analytical method afforded satisfactory results in terms of precision, repeatability and stability, which met the requirements of biological sample determination. A total of 32 potential biomarkers associated with fever were screened and identified, among which 22 species could be adjusted by RDN. The metabolism pathway analysis revealed that valine, leucine and isoleucine biosynthesis, and sphingolipid metabolism were greatly disturbed. Their biomarkers involved L-leucine, L-valine, sphinganine and phytosphingosine, all of which showed a callback trend after RDN was given. These 4 biomarkers had a certain correlation with some known fever-related small molecules and pharmacodynamic indicators, which indicated that the selected fever-related biomarkers had certain reliability and biological significance. CONCLUSIONS RDN has a good regulation of the metabolic disorder of endogenous components in dry yeast-induced fever rats. Its antipyretic mechanism is mainly related to the regulation of amino acid, lipid and energy metabolism. The study is useful to better understand and analyze the pharmacodynamic mechanism of complex systems, such as traditional Chinese medicine.
Collapse
Affiliation(s)
- Xia Gao
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China
| | - Chaojie Huang
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China; China Pharmaceutical University, Nanjing, 210009, China
| | - Ting Geng
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China
| | - Xialin Chen
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China
| | - Jiajia Wang
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China
| | - Jingying Liu
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China; China Pharmaceutical University, Nanjing, 210009, China
| | - Kun Duan
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liang Cao
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China
| | - Zhenzhong Wang
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China
| | - Wei Xiao
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China.
| |
Collapse
|
20
|
Olayaki L, Adeyemi W, Alabi Q, Okeleji L, Shoyoye A, Sampson E, Sulaiman F, Abdul-Azeez AR, Omoniyi J. Melatonin ameliorates some biochemical alterations following ketoconazole administration in rats. J Basic Clin Physiol Pharmacol 2020; 31:/j/jbcpp.ahead-of-print/jbcpp-2019-0155/jbcpp-2019-0155.xml. [PMID: 31926082 DOI: 10.1515/jbcpp-2019-0155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 10/22/2019] [Indexed: 12/24/2022]
Abstract
Background Ketoconazole (Keto), an antifungal drug and a common therapeutic option in the treatment of advanced prostate cancer, is known to cause reproductive dysfunctions. Like Keto, melatonin has antifungal and anticarcinogenic actions. Moreover, the hormone has been used to reverse the damaging effects of different toxicants on the reproductive system. Therefore, this study investigated the effects of Keto with/without melatonin on selected biomarkers in rats. Methods Forty rats of 10 animals per group were used in this study, which lasted for 6 weeks. The control group was administered with saline (0.1 mL/day), while group 2 was administered with Keto during the last 3 weeks of experiment; however, in groups 3 and 4, Keto was administered during the first 3 weeks; thereafter, they were administered with saline and melatonin, respectively, during the subsequent 3 weeks. Keto and melatonin were administered at 100 and 10 mg/kg b.w./day (p.o.), respectively. Results The central effects of Keto are independent of the follicle stimulating hormone (FSH) and prolactin; however, relative to the control group, the drug significantly decreased the gonadotrophin releasing hormone (GNRH) and the luteinizing hormone (LH), substantiated by the corresponding significant decreases in sperm count and sperm morphology. Keto caused significant elevations in malondialdehyde (MDA) and lactate dehydrogenase (LDH) and a significant decrease in catalase (CAT) compared with the control group. Moreover, the drug triggered pro-inflammatory events. In group 3 (Keto recovery), MDA and uric acid levels were returned to the baseline (i.e. control), but not GNRH, LH, C-reactive protein (CRP), LDH, and CAT. Treatment with melatonin after Keto administration caused significant increases in FSH, LH, superoxide dismutase, total antioxidant capacity (TAC), sperm count, and sperm morphology but significant decreases in MDA and CRP, relative to groups 2 and 3. Conclusions Melatonin ameliorates some biochemical alterations following ketoconazole administration.
Collapse
Affiliation(s)
- Luqman Olayaki
- Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Wale Adeyemi
- Department of Physiology, Redeemer's University, Ede, Osun State, Nigeria, Phone: +2348062599755
| | - Quadri Alabi
- Department of Physiology, Adeleke University, Ede, Osun State, Nigeria
| | - Lateef Okeleji
- Department of Physiology, Adeleke University, Ede, Osun State, Nigeria
| | - Adeola Shoyoye
- Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Elshaddai Sampson
- Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Fatima Sulaiman
- Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Abdul-Rahman Abdul-Azeez
- Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Julius Omoniyi
- Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| |
Collapse
|
21
|
Physiological and Pathological Role of Circadian Hormones in Osteoarthritis: Dose-Dependent or Time-Dependent? J Clin Med 2019; 8:jcm8091415. [PMID: 31500387 PMCID: PMC6781184 DOI: 10.3390/jcm8091415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/27/2019] [Accepted: 09/04/2019] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis (OA), the most common form of arthritis, may be triggered by improper secretion of circadian clock-regulated hormones, such as melatonin, thyroid-stimulating hormone (TSH), or cortisol. The imbalance of these hormones alters the expression of pro-inflammatory cytokines and cartilage degenerative enzymes in articular cartilage, resulting in cartilage erosion, synovial inflammation, and osteophyte formation, the major hallmarks of OA. In this review, we summarize the effects of circadian melatonin, TSH, and cortisol on OA, focusing on how different levels of these hormones affect OA pathogenesis and recovery with respect to the circadian clock. We also highlight the effects of melatonin, TSH, and cortisol at different concentrations both in vivo and in vitro, which may help to elucidate the relationship between circadian hormones and OA.
Collapse
|
22
|
Ge WB, Xiao LF, Duan HW, Li ZS, Jiang YT, Yang SS, Hu JJ, Zhang Y, Zhao XX. Melatonin protects against lipopolysaccharide-induced epididymitis in sheep epididymal epithelial cells in vitro. Immunol Lett 2019; 214:45-51. [PMID: 31491433 DOI: 10.1016/j.imlet.2019.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 11/18/2022]
Abstract
Melatonin has protective effects against inflammation but its role in epididymitis is unknown. We addressed this in the present study using lipopolysaccharide (LPS)-stimulated sheep epididymal epithelial cells as an in vitro inflammation model. We found that interleukin (IL)-1β, IL-6, tumor necrosis factor α, and cyclooxygenase (COX)-2 mRNA levels; COX-2 and Toll-like receptor (TLR)-4 protein levels; and nuclear factor (NF)-κB p65 phosphorylation were increased by LPS treatment. These effects were reversed in a dose-dependent manner by melatonin (10-11-10-7 M). Quantitative reverse transcription PCR and immunofluorescence analyses showed that the melatonin receptors MT1 and MT2 were expressed in sheep epididymal epithelial cells. The inhibitory effect of melatonin on inflammation was abrogated by the MT1 and MT2 receptor antagonist luzindole and the MT2 ligand 4-phenyl-2-propanamide tetraldehyde. Thus, melatonin exerted anti-inflammatory effect in epididymal epithelial cells by inhibiting TLR4/NF-κB signaling, suggesting its potential as an effective drug for the treatment of epididymitis in sheep.
Collapse
Affiliation(s)
- Wen-Bo Ge
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Long-Fei Xiao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Hong-Wei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Zong-Shuai Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yu-Ting Jiang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Shan-Shan Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jun-Jie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xing-Xu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
23
|
Chen X, Xi Z, Liang H, Sun Y, Zhong Z, Wang B, Bian L, Sun Q. Melatonin Prevents Mice Cortical Astrocytes From Hemin-Induced Toxicity Through Activating PKCα/Nrf2/HO-1 Signaling in vitro. Front Neurosci 2019; 13:760. [PMID: 31404262 PMCID: PMC6669962 DOI: 10.3389/fnins.2019.00760] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/09/2019] [Indexed: 12/30/2022] Open
Abstract
Secondary injuries mediated by oxidative stress lead to deterioration of neurological functions after intracerebral hemorrhage (ICH). Cortical astrocytes are among the most important cells in the central nervous system (CNS), and play key roles in maintaining redox homeostasis by providing oxidative stress defense. Hemin is a product of hemoglobin degradation, which has strong toxicity and can induce reactive oxygen species (ROS). Melatonin (Mel) and its metabolites are well tolerated without toxicity, prevent tissue damage as well as effectively assist in scavenging free radicals. We evaluated the hemin neurotoxicity to astrocytes and the resistance of Mel-treated astrocytes to hemin neurotoxicity. And we found Mel induced PKCα phosphorylation (p-PKC), nuclear translocation of Nrf2 in astrocytes, and upregulation of HO-1, which contributed to the reduction of ROS accumulation and cell apoptosis. Nrf2 and HO1 protein expression upregulated by Mel were decreased after administration of PKC inhibitor, Ro 31-8220 (Ro 31). Luzindole (Luz), a melatonin receptor inhibitor, suppressed p-PKCα, HO-1, and Nrf2 expression upregulated by Mel and increased cell apoptosis rate. The upregulation of HO-1 induced by Mel was depressed by knocking down Nrf2 expression by siRNA, which also decreased the resistance of astrocytes to toxicity of hemin. Mel activates astrocytes through PKCα/Nrf2/HO-1 signaling pathway to acquire resistance to toxicity of hemin and resist from oxidative stress and apoptosis. The positive effect of Mel on PKCα/Nrf2/HO-1 signaling pathway may become a new target for neuroprotection after intracerebral hemorrhage.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiyu Xi
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huaibin Liang
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhao Sun
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhihong Zhong
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Baofeng Wang
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liuguan Bian
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingfang Sun
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurosurgery, Ruijin Hospital Luwan Branch, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Adeyemi WJ, Omoniyi JA, Olayiwola A, Ibrahim M, Ogunyemi O, Olayaki LA. Elevated reproductive toxicity effects of diclofenac after withdrawal: Investigation of the therapeutic role of melatonin. Toxicol Rep 2019; 6:571-577. [PMID: 31293902 PMCID: PMC6595233 DOI: 10.1016/j.toxrep.2019.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 01/15/2023] Open
Abstract
Although there are several reports on the toxic actions of sodium diclofenac (DF), there is dearth information on its effect on the male reproductive system. Therefore, the study investigated the effects of DF and melatonin in male rats. Twenty rats were used in this study, which lasted for 6 weeks. The control group (vehicle treated) received normal saline (0.1 ml/day, p.o.). In the experimental groups, DF was administered during the first (group 2) and last (group 3) three weeks of the study. However, in group 4, melatonin was administered for 3 weeks, after 3 weeks of treatment with DF. DF and melatonin were administered at 1 and 10 mg/kg b.w./day (p.o.) respectively. The results showed that unlike melatonin, DF had no effect on gonadotrophins; however, it caused significant decreases in GNRH and testosterone, but a significant increase in prolactin. Melatonin attenuated the pro-antioxidant and pro-inflammatory effects of DF, which caused significant decreases in SOD, TAC, CAT, but significant elevations in LDH, MDA, uric acid and CRP. Moreover, the hormone reversed the adverse effect of DF on sperm count, sperm motility and sperm morphology. There were slight evidence of the precipitation of imbalance in lipid metabolism by DF and the antidyslipidaemic action of melatonin. Compared to DF, DF recovery showed more adverse effects on prolactin, testosterone, LDH, MDA, UA, CRP, semen parameters (except sperm motility), TC, LDL-c, HDL-c and phospholipid. The histological results agreed with the biochemical assays. In conclusion, the reproductive toxicity effects of DF seem to escalate after withdrawal; however, these effects could be attenuated by treatment with melatonin.
Collapse
Affiliation(s)
- Wale J Adeyemi
- Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Julius A Omoniyi
- Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Aluko Olayiwola
- Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Mariam Ibrahim
- Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Olatinbo Ogunyemi
- Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Luqman A Olayaki
- Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
25
|
Eid RS, Chaiton JA, Lieblich SE, Bodnar TS, Weinberg J, Galea LAM. Early and late effects of maternal experience on hippocampal neurogenesis, microglia, and the circulating cytokine milieu. Neurobiol Aging 2019; 78:1-17. [PMID: 30825663 DOI: 10.1016/j.neurobiolaging.2019.01.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/03/2019] [Accepted: 01/21/2019] [Indexed: 01/13/2023]
Abstract
The maternal brain displays considerable plasticity, and motherhood is associated with changes in affective and cognitive function. Motherhood can alter the trajectory of brain aging, including modifications to neuroplasticity and cognition. Here, we investigated the short- and long-term effects of motherhood on hippocampal neurogenesis, microglial density and morphology, and circulating cytokines, domains known to be altered with age and implicated in cognition and mood. Female rats were bred then euthanized during gestation or at various postpartum time points, culminating in middle age, and nulliparous rats served as age-matched controls. Hippocampal neurogenesis was significantly suppressed during gestation and the postpartum period. Interestingly, neurogenesis declined significantly in middle-aged nulliparous rats but increased in primiparous rats across the same period. Transient postpartum adaptations to the neuroimmune environment of the hippocampus were evidenced, as Iba-1-immunoreactive microglia assumed a deramified morphology followed by increased density. Intriguingly, aging-related changes in circulating cytokines were dependent on parity. These adaptations in neurogenic and immune processes may have ramifications for maternal mood and cognition across the peripartum period and beyond.
Collapse
Affiliation(s)
- Rand S Eid
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica A Chaiton
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada; Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephanie E Lieblich
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada; Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tamara S Bodnar
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joanne Weinberg
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada; Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
26
|
Garrido A, Cruces J, Ceprián N, Vara E, de la Fuente M. Oxidative-Inflammatory Stress in Immune Cells from Adult Mice with Premature Aging. Int J Mol Sci 2019; 20:ijms20030769. [PMID: 30759732 PMCID: PMC6387005 DOI: 10.3390/ijms20030769] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/29/2019] [Accepted: 02/08/2019] [Indexed: 11/16/2022] Open
Abstract
Oxidative and inflammatory stresses are closely related processes, which contribute to age-associated impairments that affect the regulatory systems such as the immune system and its immunosenescence. Therefore, the aim of this work was to confirm whether an oxidative/inflammatory stress occurs in immune cells from adult mice with premature aging, similar to that shown in leukocytes from chronologically old animals, and if this results in immunosenescence. Several oxidants/antioxidants and inflammatory/anti-inflammatory cytokines were analyzed in peritoneal leukocytes from adult female CD1 mice in two models of premature aging—(a) prematurely aging mice (PAM) and (b) mice with the deletion of a single allele (hemi-zygotic: HZ) of the tyrosine hydroxylase (th) gene (TH-HZ), together with cells from chronologically old animals. Several immune function parameters were also studied in peritoneal phagocytes and lymphocytes. The same oxidants and antioxidants were also analyzed in spleen and thymus leukocytes. The results showed that the immune cells of PAM and TH-HZ mice presented lower values of antioxidant defenses and higher values of oxidants/pro-inflammatory cytokines than cells from corresponding controls, and similar to those in cells from old animals. Moreover, premature immunosenescence in peritoneal leukocytes from both PAM and TH-HZ mice was also observed. In conclusion, adult PAM and TH-HZ mice showed oxidative stress in their immune cells, which would explain their immunosenescence.
Collapse
Affiliation(s)
- Antonio Garrido
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), School of Biology, Complutense University of Madrid (UCM), 28040 Madrid, Spain.
- Institute of Investigation of Hospital 12 de Octubre (i+12), 28041 Madrid, Spain.
| | - Julia Cruces
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), School of Biology, Complutense University of Madrid (UCM), 28040 Madrid, Spain.
- Institute of Investigation of Hospital 12 de Octubre (i+12), 28041 Madrid, Spain.
| | - Noemí Ceprián
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), School of Biology, Complutense University of Madrid (UCM), 28040 Madrid, Spain.
- Institute of Investigation of Hospital 12 de Octubre (i+12), 28041 Madrid, Spain.
| | - Elena Vara
- Department of Biochemistry and Molecular Biology III, School of Medicine, Complutense University of Madrid (UCM), 28040 Madrid, Spain.
| | - Mónica de la Fuente
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), School of Biology, Complutense University of Madrid (UCM), 28040 Madrid, Spain.
- Institute of Investigation of Hospital 12 de Octubre (i+12), 28041 Madrid, Spain.
| |
Collapse
|
27
|
Peace AC, Kumar S, Wills R, Mackin A, Hoh CM, Archer T. Pharmacodynamic evaluation of the effects of oral melatonin on expression of the T‐cell cytokines interleukin‐2 and interferon gamma in the dog. J Vet Pharmacol Ther 2019; 42:278-284. [DOI: 10.1111/jvp.12749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 09/24/2018] [Accepted: 12/25/2018] [Indexed: 11/30/2022]
Affiliation(s)
| | - Santosh Kumar
- Department of Clinical SciencesCollege of Veterinary MedicineMississippi State University Mississippi State Mississippi
| | - Robert Wills
- Department of Pathobiology and Population MedicineCollege of Veterinary MedicineMississippi State University Mississippi State Mississippi
| | - Andrew Mackin
- Department of Clinical SciencesCollege of Veterinary MedicineMississippi State University Mississippi State Mississippi
| | - Crystal M. Hoh
- BluePearl Veterinary Partners Overland Park Kansas
- Heart of Texas Veterinary Specialty Center Round Rock Texas
| | - Todd Archer
- Department of Clinical SciencesCollege of Veterinary MedicineMississippi State University Mississippi State Mississippi
| |
Collapse
|
28
|
Fan W, He Y, Guan X, Gu W, Wu Z, Zhu X, Huang F, He H. Involvement of the nitric oxide in melatonin-mediated protection against injury. Life Sci 2018; 200:142-147. [DOI: 10.1016/j.lfs.2018.03.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 01/04/2023]
|
29
|
Favero G, Franceschetti L, Bonomini F, Rodella LF, Rezzani R. Melatonin as an Anti-Inflammatory Agent Modulating Inflammasome Activation. Int J Endocrinol 2017; 2017:1835195. [PMID: 29104591 PMCID: PMC5643098 DOI: 10.1155/2017/1835195] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/27/2017] [Indexed: 12/22/2022] Open
Abstract
Inflammation may be defined as the innate response to harmful stimuli such as pathogens, injury, and metabolic stress; its ultimate function is to restore the physiological homeostatic state. The exact aetiology leading to the development of inflammation is not known, but a combination of genetic, epigenetic, and environmental factors seems to play an important role in the pathogenesis of many inflammation-related clinical conditions. Recent studies suggest that the pathogenesis of different inflammatory diseases also involves the inflammasomes, intracellular multiprotein complexes that mediate activation of inflammatory caspases thereby inducing the secretion of proinflammatory cytokines. Melatonin, an endogenous indoleamine, is considered an important multitasking molecule with fundamental clinical applications. It is involved in mood modulation, sexual behavior, vasomotor control, and immunomodulation and influences energy metabolism; moreover, it acts as an oncostatic and antiaging molecule. Melatonin is an important antioxidant and also a widespread anti-inflammatory molecule, modulating both pro- and anti-inflammatory cytokines in different pathophysiological conditions. This review, first, gives an overview concerning the growing importance of melatonin in the inflammatory-mediated pathological conditions and, then, focuses on its roles and its protective effects against the activation of the inflammasomes and, in particular, of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Lorenzo Franceschetti
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Francesca Bonomini
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
- Interdepartmental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, Brescia, Italy
| | - Luigi Fabrizio Rodella
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
- Interdepartmental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, Brescia, Italy
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
- Interdepartmental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, Brescia, Italy
| |
Collapse
|
30
|
El-Gendy FM, El-Hawy MA, Hassan MG. Beneficial effect of melatonin in the treatment of neonatal sepsis. J Matern Fetal Neonatal Med 2017; 31:2299-2303. [DOI: 10.1080/14767058.2017.1342794] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Fady M. El-Gendy
- Pediatrics Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Mahmoud A. El-Hawy
- Pediatrics Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | | |
Collapse
|
31
|
Liu WC, Wang X, Zhang X, Chen X, Jin X. Melatonin Supplementation, a Strategy to Prevent Neurological Diseases through Maintaining Integrity of Blood Brain Barrier in Old People. Front Aging Neurosci 2017; 9:165. [PMID: 28596733 PMCID: PMC5442221 DOI: 10.3389/fnagi.2017.00165] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/10/2017] [Indexed: 12/17/2022] Open
Abstract
Blood brain barrier (BBB) plays a crucial role in maintaining homeostasis of microenvironment that is essential to neural function of the central nervous system (CNS). When facing various extrinsic or intrinsic stimuli, BBB is damaged which is an early event in pathogenesis of a variety of neurological diseases in old patients including acute and chronic cerebral ischemia, Alzheimer’s disease and etc. Treatments that could maintain the integrity of BBB may prevent neurological diseases following various stimuli. Old people often face a common stress of sepsis, during which lipopolysaccharide (LPS) is released into circulation and the integrity of BBB is damaged. Of note, there is a significant decrease of melatonin level in old people and animal. Melatonin has been shown to preserves BBB integrity and permeability via a variety of pathways: inhibition of matrix metalloproteinase-9 (MMP-9), inhibition of NADPH oxidase-2, and impact on silent information regulator 1 (SIRT1) and nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome. More important, a recent study showed that melatonin supplementation alleviates LPS-induced BBB damage in old mice through activating AMP-activated protein kinase (AMPK) and inhibiting gp91phox, suggesting that melatonin supplementation may help prevent neurological diseases through maintaining the integrity of BBB in old people.
Collapse
Affiliation(s)
- Wen-Cao Liu
- Department of Emergency, Shanxi Provincial People's HospitalTaiyuan, China
| | - Xiaona Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Department of Neurology, the Second Affiliated Hospital of Soochow UniversitySuzhou, China.,School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai UniversityYantai, China
| | - Xinyu Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Department of Neurology, the Second Affiliated Hospital of Soochow UniversitySuzhou, China.,School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai UniversityYantai, China
| | - Xi Chen
- Department of Core Facility, the People's Hospital of Baoan ShenzhenShenzhen, China
| | - Xinchun Jin
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Department of Neurology, the Second Affiliated Hospital of Soochow UniversitySuzhou, China.,School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai UniversityYantai, China
| |
Collapse
|
32
|
Wang X, Xue GX, Liu WC, Shu H, Wang M, Sun Y, Liu X, Sun YE, Liu CF, Liu J, Liu W, Jin X. Melatonin alleviates lipopolysaccharide-compromised integrity of blood-brain barrier through activating AMP-activated protein kinase in old mice. Aging Cell 2017; 16:414-421. [PMID: 28156052 PMCID: PMC5334533 DOI: 10.1111/acel.12572] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2016] [Indexed: 11/26/2022] Open
Abstract
Blood–brain barrier (BBB) dysfunction is considered to be an early event in the pathogenesis of a variety of neurological diseases in old patients, and this could occur in old people even when facing common stress. However, the mechanism remains to be defined. In this study, we tested the hypothesis that decreased melatonin levels may account for the BBB disruption in old mice challenged with lipopolysaccharide (LPS), which mimicked the common stress of sepsis. Mice (24–28 months of age) received melatonin (10 mg kg−1 day−1, intraperitoneally, i.p.) or saline for one week before exposing to LPS (1 mg kg−1, i.p.). Evan's blue dye (EB) and immunoglobulin G (IgG) leakage were used to assess BBB permeability. Immunostaining and Western blot were used to detect protein expression and distribution. Our results showed that LPS significantly increased BBB permeability in old mice accompanied by the degradation of tight junction proteins occludin and claudin‐5, suppressed AMP‐activated protein kinase (AMPK) activation, and elevated gp91phox protein expression. Interestingly, administration of melatonin for one week significantly decreased LPS‐induced BBB disruption, AMPK suppression, and gp91phox upregualtion. Moreover, activation of AMPK with metformin significantly inhibited LPS‐induced gp91phox upregualtion in endothelial cells. Taken together, our findings demonstrate that melatonin alleviates LPS‐induced BBB disruption through activating AMPK and inhibiting gp91phox upregulation in old mice.
Collapse
Affiliation(s)
- Xiaona Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience; The Second Affiliated Hospital of Soochow University; Suzhou 215004 China
| | - Gai-Xiu Xue
- Suzhou Municipal Hospital; Suzhou 215002 China
| | - Wen-Cao Liu
- Department of Emergency; Shanxi Provincial People's Hospital; Taiyuan 030001 China
| | - Hui Shu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience; The Second Affiliated Hospital of Soochow University; Suzhou 215004 China
| | - Mengwei Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience; The Second Affiliated Hospital of Soochow University; Suzhou 215004 China
| | - Yanyun Sun
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience; The Second Affiliated Hospital of Soochow University; Suzhou 215004 China
| | - Xiaojing Liu
- Translational Center for Stem Cell Research; Tongji Hospital; Stem Cell Research Center; Tongji University School of Medicine; Shanghai 200065 China
| | - Yi Eve Sun
- Translational Center for Stem Cell Research; Tongji Hospital; Stem Cell Research Center; Tongji University School of Medicine; Shanghai 200065 China
- Department of Psychiatry and Biobehavioral Sciences; David Geffen School of Medicine; University of California, Los Angeles; Los Angeles CA 90095 USA
| | - Chun-Feng Liu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience; The Second Affiliated Hospital of Soochow University; Suzhou 215004 China
- Department of Neurology; Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases; The Second Affiliated Hospital of Soochow University; Soochow University; Suzhou 215004 China
| | - Jie Liu
- Translational Center for Stem Cell Research; Tongji Hospital; Stem Cell Research Center; Tongji University School of Medicine; Shanghai 200065 China
| | - Wenlan Liu
- The Central Laboratory; Shenzhen Second People's Hospital; the First Affiliated Hospital of Shenzhen University; Shenzhen 518035 China
| | - Xinchun Jin
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience; The Second Affiliated Hospital of Soochow University; Suzhou 215004 China
| |
Collapse
|
33
|
Kleszczyński K, Zillikens D, Fischer TW. Melatonin enhances mitochondrial ATP synthesis, reduces reactive oxygen species formation, and mediates translocation of the nuclear erythroid 2-related factor 2 resulting in activation of phase-2 antioxidant enzymes (γ-GCS, HO-1, NQO1) in ultraviolet radiation-treated normal human epidermal keratinocytes (NHEK). J Pineal Res 2016; 61:187-97. [PMID: 27117941 DOI: 10.1111/jpi.12338] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/21/2016] [Indexed: 12/20/2022]
Abstract
Melatonin is an ubiquitous molecule with a variety of functions including potent antioxidative properties. Due to its lipophilic character, it easily crosses cellular and intracellular membranes and reaches all subcellular organelles. Because of its ability to scavenge free radicals, melatonin protects against oxidative stress, for example, induced by ultraviolet radiation (UVR). Here, we investigated, in a dose-dependent (0, 10, 25, and 50 mJ/cm(2) ) and time-dependent (0, 4, 24, 48 hr post-UVR) manner, whether melatonin prevents the UVR-mediated alterations in ATP synthesis and the generation of reactive oxygen species (ROS) in normal human epidermal keratinocytes (NHEK). Additionally, we evaluated the molecular mechanism of action of melatonin with regard to activation of phase-2 antioxidative enzymes via nuclear erythroid 2-related factor (Nrf2). We found that (i) melatonin counteracted UVR-induced alterations in the ATP synthesis and reduced free radical formation; (ii) melatonin induced the translocation of Nrf2 transcription factor from the cytosol into the nucleus resulting in, (iii) melatonin enhanced gene expression of phase-2 antioxidative enzymes including γ-glutamylcysteine synthetase (γ-GCS), heme oxygenase-1 (HO-1), and NADPH: quinone dehydrogenase-1 (NQO1) representing an elevated antioxidative response of keratinocytes. These results suggest that melatonin not only directly scavenges ROS, but also significantly induces the activation of phase-2 antioxidative enzymes via the Nrf2 pathway uncovering a new action mechanism that supports the ability of keratinocytes to protect themselves from UVR-mediated oxidative stress.
Collapse
Affiliation(s)
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Tobias W Fischer
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
34
|
Cai B, Ma W, Bi C, Yang F, Zhang L, Han Z, Huang Q, Ding F, Li Y, Yan G, Pan Z, Yang B, Lu Y. Long noncoding RNA H19 mediates melatonin inhibition of premature senescence of c-kit(+) cardiac progenitor cells by promoting miR-675. J Pineal Res 2016; 61:82-95. [PMID: 27062045 DOI: 10.1111/jpi.12331] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/05/2016] [Indexed: 12/11/2022]
Abstract
Melatonin, a hormone secreted by the pineal gland, possesses multiple biological activities such as antitumor, antioxidant, and anti-ischemia. C-kit(+) cardiac progenitor cells (CPCs) have emerged as a promising tool for the treatment of heart diseases. However, the senescence of CPCs due to pathological stimuli leads to the decline of CPCs' functions and regenerative potential. This study was conducted to demonstrate whether melatonin antagonizes the senescence of CPCs in response to oxidative stress. Here, we found that the melatonin treatment markedly inhibited the senescent characteristics of CPCs after exposed to sublethal concentration of H2 O2 , including the increase in senescence-associated β-galactosidase (SA-β-gal)-positive CPCs, senescence-associated heterochromatin loci (SAHF), secretory IL-6 level, and the upregulation of p53 and p21 proteins. Senescence-associated proliferation reduction was also attenuated by melatonin in CPCs. Luzindole, the melatonin membrane receptor blocker, may block the melatonin-mediated suppression of premature senescence in CPCs. Interestingly, we found that long noncoding RNA H19 and its derived miR-675 were downregulated by H2 O2 in CPCs, but melatonin treatment could counter this alteration. Furthermore, knockdown of H19 or miR-675 blocked antisenescence actions of melatonin on H2 O2 -treated CPCs. It was further verified that H19-derived miR-675 targeted at the 3'UTR of USP10, which resulted in the downregulation of p53 and p21 proteins. In summary, melatonin antagonized premature senescence of CPCs via H19/miR-675/USP10 pathway, which provides new insights into pharmacological actions and potential applications of melatonin on the senescence of CPCs.
Collapse
Affiliation(s)
- Benzhi Cai
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Wenya Ma
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Chongwei Bi
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Fan Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Lai Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Zhenbo Han
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Qi Huang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Fengzhi Ding
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Yuan Li
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Gege Yan
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Zhenwei Pan
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Baofeng Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
- Department of Pharmacology and Therapeutics, Melbourne School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Vic., Australia
| | - Yanjie Lu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
- The Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin Medical University, Harbin, China
| |
Collapse
|
35
|
Sreedhar R, Giridharan VV, Arumugam S, Karuppagounder V, Palaniyandi SS, Krishnamurthy P, Quevedo J, Watanabe K, Konishi T, Thandavarayan RA. Role of MAPK-mediated endoplasmic reticulum stress signaling in the heart during aging in senescence-accelerated prone mice. Biofactors 2016; 42:368-75. [PMID: 27087487 DOI: 10.1002/biof.1280] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 02/28/2016] [Accepted: 03/01/2016] [Indexed: 01/01/2023]
Abstract
Heart failure is typically related to aging as there is a definite relationship between age-related changes in the heart and the pathogenesis of heart failure. We have previously reported the involvement of p38 mitogen-activated protein kinase protein in cardiac function using animal models of heart failure. To further understand its relationship with aging-induced heart failure, we have compared its expression in the hearts of senescence accelerated-prone (SAMP8) mice and their control (SAMR1) with normal aging behavior. We have identified its activation along with reduced expression of 14-3-3η protein in SAMP8 mice hearts than in SAMR1 mice. To reveal the downstream signaling, we have measured the endoplasmic reticulum stress marker proteins along with some inflammatory and apoptosis markers and identified a significant increase in SAMP8 mice hearts than that of SAMR1. In addition, we have performed comet assay and revealed a significant DNA damage in the cardiomyocytes of SAMP8 mice when compared with SAMR1 mice. All these results demonstrate the role of 14-3-3η protein and the downstream mitogen-activated protein kinase-mediated endoplasmic reticulum stress, and apoptosis and DNA damage in aging-induced cardiac malfunction in SAMP8 mice. Thus targeting this signaling might be effective in treating age-related cardiac dysfunction. © 2016 BioFactors, 42(4):368-375, 2016.
Collapse
Affiliation(s)
- Remya Sreedhar
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata City, Japan
| | - Vijayasree V Giridharan
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX
| | - Somasundaram Arumugam
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata City, Japan
| | - Vengadeshprabhu Karuppagounder
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata City, Japan
| | - Suresh S Palaniyandi
- Division of Hypertension and Vascular Research, Henry Ford Health System, Detroit, MI
| | - Prasanna Krishnamurthy
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX
| | - Joao Quevedo
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX
| | - Kenichi Watanabe
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata City, Japan
| | - Tetsuya Konishi
- NUPALS Liaison R/D Center, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
- International Collaborative Research Center, Changchun University of Chinese Medicine, Jingyue Economic Development District, Changchun, China
| | - Rajarajan A Thandavarayan
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata City, Japan
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX
| |
Collapse
|
36
|
Volt H, García JA, Doerrier C, Díaz-Casado ME, Guerra-Librero A, López LC, Escames G, Tresguerres JA, Acuña-Castroviejo D. Same molecule but different expression: aging and sepsis trigger NLRP3 inflammasome activation, a target of melatonin. J Pineal Res 2016; 60:193-205. [PMID: 26681113 DOI: 10.1111/jpi.12303] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/11/2015] [Indexed: 12/13/2022]
Abstract
The connection between the innate immune system, clock genes, and mitochondrial bioenergetics was analyzed during aging and sepsis in mouse heart. Our results suggest that the sole NF-κB activation does not explain the inflammatory process underlying aging; the former also triggers the NLRP3 inflammasome that enhances caspase-1-dependent maturation of IL-1β. In this way, aged mice enter into a vicious cycle as IL-1β further activates the NF-κB/NLRP3 inflammasome link. The origin of NF-κB activation was related to the age-dependent Bmal1/Clock/RORα/Rev-Erbα loop disruption, which lowers NAD(+) levels, reducing the SIRT1 deacetylase ability to inactivate NF-κB. Consequently, NF-κB binding to DNA increases, raising the formation of proinflammatory mediators and inducing mitochondrial impairment. The cycle is then closed with the subsequent NLRP3 inflammasome activation. This paired contribution of the innate immune pathways serves as a catalyst to magnify the response to sepsis in aged compared with young mice. Melatonin administration blunted the septic response, reducing inflammation and oxidative stress, and enhancing mitochondrial function at the levels of nonseptic aged mice, but it did not counteract the age-related inflammation. Together, our results suggest that, although with different strengths, chronoinflammaging constitutes the biochemical substrate of aging and sepsis, and identifies the NLRP3 inflammasome as a new molecular target for melatonin, providing a rationale for its use in NLRP3-dependent diseases.
Collapse
Affiliation(s)
- Huayqui Volt
- Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - José A García
- Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Carolina Doerrier
- Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - María E Díaz-Casado
- Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Ana Guerra-Librero
- Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Luis C López
- Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Germaine Escames
- Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Jesús A Tresguerres
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Darío Acuña-Castroviejo
- Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Unidad de Gestión Clínica de Laboratorios, Hospital Universitario San Cecilio, Granada, Spain
| |
Collapse
|
37
|
Adikwu E, Nelson B, Atuboyedia Obianime W. Beneficial effects of melatonin and alpha lipoic acid on lopinavir/ ritonavir-induced alterations in serum lipid and glucose levels of male albino rats. MAKEDONSKO FARMACEVTSKI BILTEN 2016. [DOI: 10.33320/maced.pharm.bull.2016.62.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The use of lopinavir/ritonavir (LPV/r) has been associated with alterations in serum lipid and glucose levels. This study was designed to investigate the effects of melatonin (MT) and alpha lipoic acid (ALA) on LPV/r-induced changes in serum levels of triglycerides (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), very low density lipoprotein cholesterol (VLDL-C) and glucose (GL) levels in male albino rats. Rats in group A1 (placebo control) and group A2 (solvent control) were orally treated with normal saline and 1% ethanol respectively. Groups B-F contained 15 rats each which were divided into 3 groups of 5 rats each. Rats in group B were orally treated with MT (10 mg kg-1/day), ALA (10 mg kg-1/day) and a combination of MT and ALA, accordingly. Rats in group C were orally treated with 22.9/5.71, 45.6/11.4 and 91.4/22.9 mg kg-1/day of LPV/r, accordingly. Rats in groups D-F were orally treated with MT (10 mg kg-1/ day), ALA (10 mg kg-1/day) and combined doses of ALA and MT before oral treatment with 22.9/5.71, 45.6/11.4 and 91.4/22.9 mg kg-1/day of LPV/r, accordingly. All rats were treated for 30 days and at the end of the drug treatment, the serum levels of lipid fractions and glucose were evaluated. Treatment with MT and ALA significantly (p<0.05) decreased baseline serum levels of TG, TC, VLDL-C, LDL-C and GL, but these parameters were significantly (p<0.05) increased in a dose-dependent manner in LPV/r-treated rats when compared to placebo control. Administration of MT and ALA prior to treatment with LPV/r significantly (p<0.05) decreased serum levels of TG, TC, VLDL-C, LDL-C and GL when compared to LPV/r-treated rats. However, decreases obtained in rats pretreated with combined doses of MT and ALA were significantly (p<0.05) different when compared to their individual doses. This study showed that MT and ALA can serve as remedies for LPV/r-induced alterations in serum lipid and glucose levels.
Collapse
|
38
|
Forman K, Vara E, García C, Kireev R, Cuesta S, Acuña-Castroviejo D, Tresguerres JAF. Influence of aging and growth hormone on different members of the NFkB family and IkB expression in the heart from a murine model of senescence-accelerated aging. Exp Gerontol 2016; 73:114-20. [PMID: 26581911 DOI: 10.1016/j.exger.2015.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/18/2015] [Accepted: 11/10/2015] [Indexed: 12/12/2022]
Abstract
Inflammation is related to several pathological processes. The aim of this study was to investigate the protein expression of the different subunits of the nuclear factor Kappa b (NFkBp65, p50, p105, p52, p100) and the protein expressions of IkB beta and alpha in the hearts from a murine model of accelerated aging (SAM model) by Western blot. In addition, the translocation of some isoforms of NFkB from cytosol to nuclei (NFkBp65, p50, p52) and ATP level content was studied. In addition we investigated the effect of the chronic administration of growth hormone (GH) on these age-related parameters. SAMP8 and SAMR1 mice of 2 and 10 months of age were used (n = 30). Animals were divided into five experimental groups: 2 old untreated (SAMP8/SAMR1), 2 young control (SAMP8/SAMR1) and one GH treated-old groups (SAMP8). Age-related changes were found in the studied parameters. We were able to see decreases of ATP level contents and the translocation of the nuclear factor kappa B p50, p52 and p65 from cytosol to nuclei in old SAMP8 mice together with a decrease of IKB proteins. However p100 and p105 did not show differences with aging. No significant changes were recorded in SAMR1 animals. GH treatment showed beneficial effects in old SAMP8 mice inducing an increase in ATP levels and inhibiting the translocation of some NFkB subunits such as p52. Our results supported the relation of NFkB activation with enhanced apoptosis and pro-inflammatory status in old SAMP8 mice and suggested a selective beneficial effect of the GH treatment, which was able to partially reduce the incidence of some deleterious changes in the heart of those mice.
Collapse
Affiliation(s)
- K Forman
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Chile; Department of Physiology, Medical School, University Complutense of Madrid, Spain
| | - E Vara
- Department of Biochemistry and Molecular Biology, Medical School, University Complutense of Madrid, Spain
| | - C García
- Department of Biochemistry and Molecular Biology, Medical School, University Complutense of Madrid, Spain
| | - R Kireev
- Department of Physiology, Medical School, University Complutense of Madrid, Spain; Instituto de Investigación Biomédica de Vigo (IBIV), Xerencia de Xestión Integrada de Vigo, SERGAS, Spain
| | - S Cuesta
- Department of Physiology, Medical School, University Complutense of Madrid, Spain
| | - D Acuña-Castroviejo
- Institute of Biotechnology, Center of Biomedical Investigation, Health Sciences Technology Park, University of Granada, Spain
| | - J A F Tresguerres
- Department of Physiology, Medical School, University Complutense of Madrid, Spain
| |
Collapse
|
39
|
Anticonvulsant efficacy of melatonin in an experimental model of hyperthermic febrile seizures. Epilepsy Res 2015; 118:49-54. [DOI: 10.1016/j.eplepsyres.2015.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/03/2015] [Accepted: 11/06/2015] [Indexed: 12/31/2022]
|
40
|
Agil A, Elmahallawy EK, Rodríguez-Ferrer JM, Adem A, Bastaki SM, Al-Abbadi I, Fino Solano YA, Navarro-Alarcón M. Melatonin increases intracellular calcium in the liver, muscle, white adipose tissues and pancreas of diabetic obese rats. Food Funct 2015; 6:2671-8. [PMID: 26134826 DOI: 10.1039/c5fo00590f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Melatonin, a widespread substance with antioxidant and anti-inflammatory properties, has been found to act as an antidiabetic agent in animal models, regulating the release and action of insulin. However, the molecular bases of this antidiabetic action are unknown, limiting its application in humans. Several studies have recently shown that melatonin can modify calcium (Ca(2+)) in diabetic animals, and Ca(2+) has been reported to be involved in glucose homeostasis. The objective of the present study was to assess whether the antidiabetic effect of chronic melatonin at pharmacological doses is established via Ca(2+) regulation in different tissues in an animal model of obesity-related type 2 diabetes, using Zücker diabetic fatty (ZDF) rats and their lean littermates, Zücker lean (ZL) rats. After the treatments, flame atomic absorption spectrometry was used to determine Ca(2+) levels in the liver, muscle, main types of internal white adipose tissue, subcutaneous lumbar fat, pancreas, brain, and plasma. This study reports for the first time that chronic melatonin administration (10 mg per kg body weight per day for 6 weeks) increases Ca(2+) levels in muscle, liver, different adipose tissues, and pancreas in ZDF rats, although there were no significant changes in their brain or plasma Ca(2+) levels. We propose that this additional peripheral dual action mechanism underlies the improvement in insulin sensitivity and secretion previously documented in samples from the same animals. According to these results, indoleamine may be a potential candidate for the treatment of type 2 diabetes mellitus associated with obesity.
Collapse
Affiliation(s)
- A Agil
- Department of Pharmacology and Neurosciences Institute (CIBM), School of Medicine, University of Granada, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Paredes SD, Forman KA, García C, Vara E, Escames G, Tresguerres JAF. Protective actions of melatonin and growth hormone on the aged cardiovascular system. Horm Mol Biol Clin Investig 2015; 18:79-88. [PMID: 25390004 DOI: 10.1515/hmbci-2014-0016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 04/24/2014] [Indexed: 11/15/2022]
Abstract
Epidemiological studies indicate that certain aspects of lifestyle and genetics act as risk factors for a variety of cardiovascular disorders, including coronary disease, hypertension, heart failure and stroke. Aging, however, appears to be the major contributor for morbidity and mortality of the impaired cardiovascular system. Growth hormone (GH) and melatonin seem to prevent cardiac aging, as they contribute to the recovery of several physiological parameters affected by age. These hormones exhibit antioxidant properties and decrease oxidative stress and apoptosis. This paper summarizes a set of studies related to the potential role that therapy with GH and melatonin may play in the protection of the altered cardiac function due to aging, with a focus on experiments performed in our laboratory using the senescence-accelerated mouse as an aging model. In general, we observed significantly increased inflammation, oxidative stress and apoptosis markers in hearts from senescence-accelerated prone 10-month-old animals compared to 2-month-old controls, while anti-inflammatory and antiapoptotic markers as well as endothelial nitric oxide synthase were decreased. Senescence-accelerated resistant animals showed no significant changes with age. GH or melatonin treatment prevented the age-dependent cardiac alterations observed in the senescence-accelerated prone group. Combined administration of GH plus melatonin reduced the age-related changes in senescence-accelerated prone hearts in an additive fashion that was different to that displayed when administered alone. GH and melatonin may be potential agents for counteracting oxidative stress, apoptosis and inflammation in the aging heart.
Collapse
|
42
|
Dragojevic Dikic S, Jovanovic AM, Dikic S, Jovanovic T, Jurisic A, Dobrosavljevic A. Melatonin: a "Higgs boson" in human reproduction. Gynecol Endocrinol 2015; 31:92-101. [PMID: 25377724 DOI: 10.3109/09513590.2014.978851] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
As the Higgs boson could be a key to unlocking mysteries regarding our Universe, melatonin, a somewhat mysterious substance secreted by the pineal gland primarily at night, might be a crucial factor in regulating numerous processes in human reproduction. Melatonin is a powerful antioxidant which has an essential role in controlling several physiological reactions, as well as biological rhythms throughout human reproductive life. Melatonin, which is referred to as a hormone, but also as an autocoid, a chronobiotic, a hypnotic, an immunomodulator and a biological modifier, plays a crucial part in establishing homeostatic, neurohumoral balance and circadian rhythm in the body through synergic actions with other hormones and neuropeptides. This paper aims to analyze the effects of melatonin on the reproductive function, as well as to shed light on immunological and oncostatic properties of one of the most powerful hormones.
Collapse
|
43
|
Escames G, Díaz-Casado ME, Doerrier C, Luna-Sánchez M, López LC, Acuña-Castroviejo D. Early gender differences in the redox status of the brain mitochondria with age: effects of melatonin therapy. Horm Mol Biol Clin Investig 2015; 16:91-100. [PMID: 25436750 DOI: 10.1515/hmbci-2013-0026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 06/13/2013] [Indexed: 11/15/2022]
Abstract
Abstract Mitochondrial dysfunction and oxidative/nitrosative stress are common features of senescence, and they explain some of the pathophysiological events during aging. In different animal models of aging, the existence of oxidative stress, inflammation, and mitochondrial dysfunction has been reported. There is no information, however, regarding the age when these symptoms begin and if they account for gender differences in aging. Here we analyzed oxidative/nitrosative stress markers and bioenergetics in the brain mitochondria of normal mice during the first 10 months of life, looking for early signs of senescence. Male and female mice were treated with vehicle or melatonin during the first 9 months of life, starting at weaning. Mice were sacrificed at 5 and 10 months of life, and pure brain mitochondria were prepared and assayed for respiratory chain activity, ATP production, and oxidative/nitrosative stress status. The results showed that the brain mitochondria from male mice have a better glutathione cycle than female mice, whereas female mice have higher electron transport chain activity and ATP production at 5 months old. Five months later, however, oxidative/nitrosative stress markers increased in both male and female mice, thus eliminating the differences between the genders. More importantly, these changes were prevented by chronic melatonin administration, which also restored the gender differences found in 5-month-old mice. Thus, melatonin administration as a single therapy can maintain the full function of the brain mitochondria during the early events of aging, a finding that has important consequences in the pathophysiology of brain senescence.
Collapse
|
44
|
3-Hydroxykynurenic Acid and Type 2 Diabetes: Implications for Aging, Obesity, Depression, Parkinson’s Disease, and Schizophrenia. TRYPTOPHAN METABOLISM: IMPLICATIONS FOR BIOLOGICAL PROCESSES, HEALTH AND DISEASE 2015. [DOI: 10.1007/978-3-319-15630-9_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Alvarez-López MJ, Molina-Martínez P, Castro-Freire M, Cosín-Tomás M, Cristòfol R, Párrizas M, Escorihuela RM, Pallàs M, Sanfeliu C, Kaliman P. Rcor2 underexpression in senescent mice: a target for inflammaging? J Neuroinflammation 2014; 11:126. [PMID: 25051986 PMCID: PMC4128581 DOI: 10.1186/1742-2094-11-126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/07/2014] [Indexed: 12/16/2022] Open
Abstract
Background Aging is characterized by a low-grade systemic inflammation that contributes to the pathogenesis of neurodegenerative disorders such as Alzheimer’s disease (AD). However, little knowledge is currently available on the molecular processes leading to chronic neuroinflammation. In this context, recent studies have described the role of chromatin regulators in inflammation and longevity including the REST corepressor (Rcor)-2 factor, which seems to be involved in an inflammatory suppressive program. Methods To assess the impact of Rcor2 in age-related inflammation, gene expression levels were quantified in different tissues and ages of the spontaneous senescence-accelerated P8 mouse (P8) using the SAMR1 mouse (R1) as a control. Specific siRNA transfection in P8 and R1 astrocyte cultures was used to determine Rcor2 involvement in the modulation of neuroinflammation. The effect of lipopolysaccharide (LPS) treatment on Rcor2 levels and neuroinflammation was analyzed both in vivo and in vitro. Results P8 mice presented a dramatic decrease in Rcor2 gene expression compared with R1 controls in splenocytes, an alteration also observed in the brain cortex, hippocampus and primary astrocytes of these mice. Rcor2 reduction in astrocytes was accompanied by an increased basal expression of the interleukin (Il)-6 gene. Strikingly, intraperitoneal LPS injection in R1 mice downregulated Rcor2 in the hippocampus, with a concomitant upregulation of tumor necrosis factor (Tnf-α), Il1-β and Il6 genes. A negative correlation between Rcor2 and Il6 gene expression was also verified in LPS-treated C6 glioma cells. Knock down of Rcor2 by siRNA transfection (siRcor2) in R1 astrocytes upregulated Il6 gene expression while siRcor2 further increased Il6 expression in P8 astrocytes. Moreover, LPS activation provoked a further downregulation of Rcor2 and an amplified induction of Il6 in siRcor2-tranfected astrocytes. Conclusions Data presented here show interplay between Rcor2 downregulation and increased inflammation and suggest that Rcor2 may be a key regulator of inflammaging.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Perla Kaliman
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Rosellón 149, E-08036 Barcelona, Spain.
| |
Collapse
|
46
|
Son GW, Kim GD, Yang H, Park HR, Park YS. Alteration of gene expression profile by melatonin in endothelial cells. BIOCHIP JOURNAL 2014. [DOI: 10.1007/s13206-014-8204-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
47
|
Schiborr C, Schwamm D, Kocher A, Rimbach G, Eckert GP, Frank J. The senescence-accelerated mouse-prone 8 is not a suitable model for the investigation of cardiac inflammation and oxidative stress and their modulation by dietary phytochemicals. Pharmacol Res 2013; 74:113-20. [DOI: 10.1016/j.phrs.2013.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/22/2013] [Accepted: 06/05/2013] [Indexed: 12/27/2022]
|
48
|
López LC, Cabrera-Vique C, Venegas C, García-Corzo L, Luna-Sánchez M, Acuña-Castroviejo D, Escames G. Argan Oil-contained Antioxidants for Human Mitochondria. Nat Prod Commun 2013. [DOI: 10.1177/1934578x1300800111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The powerful antioxidant capacity of virgin argan oil is attributed to its content of antioxidant molecules. Recent investigations have identified CoQ10 and melatonin as some of these antioxidant molecules. In this review, we summarize the most recent data about the content of CoQ10 and melatonin in virgin argan oil and the differences found in samples extracted by the traditional and half-industrialized methods. We also emphasize the importance of these two molecules for human health, focusing on their actions in mitochondria. Finally, we refer to other abundant antioxidants in virgin argan oil: tocopherols and polyphenols.
Collapse
Affiliation(s)
- Luis C. López
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Carmen Cabrera-Vique
- Departamento de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - Carmen Venegas
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Laura García-Corzo
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Marta Luna-Sánchez
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Darío Acuña-Castroviejo
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Germaine Escames
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| |
Collapse
|
49
|
Xia MZ, Liang YL, Wang H, Chen X, Huang YY, Zhang ZH, Chen YH, Zhang C, Zhao M, Xu DX, Song LH. Melatonin modulates TLR4-mediated inflammatory genes through MyD88- and TRIF-dependent signaling pathways in lipopolysaccharide-stimulated RAW264.7 cells. J Pineal Res 2012; 53:325-34. [PMID: 22537289 DOI: 10.1111/j.1600-079x.2012.01002.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Increasing evidence demonstrates that melatonin has an anti-inflammatory effect. Nevertheless, the molecular mechanisms remain obscure. In this study, we investigated the effect of melatonin on toll-like receptor 4 (TLR4)-mediated molecule myeloid differentiation factor 88 (MyD88)-dependent and TRIF-dependent signaling pathways in lipopolysaccharide (LPS)-stimulated macrophages. RAW264.7 cells were incubated with LPS (2.0 μg/mL) in the absence or presence of melatonin (10, 100, 1000 μm). As expected, melatonin inhibited TLR4-mediated tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, IL-6, IL-8, and IL-10 in LPS-stimulated macrophages. In addition, melatonin significantly attenuated LPS-induced upregulation of cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) in macrophages. Further analysis showed that melatonin inhibited the expression of MyD88 in LPS-stimulated macrophages. Although it had no effect on TLR4-mediated phosphorylation of c-Jun N-terminal kinase (JNK), p38, and extracellular regulated protein kinase (ERK), melatonin significantly attenuated the activation of nuclear factor kappa B (NF-κB) in LPS-stimulated macrophages. In addition, melatonin inhibited TLR4-mediated Akt phosphorylation in LPS-stimulated macrophages. Moreover, melatonin significantly attenuated the elevation of interferon (IFN)-regulated factor-3 (IRF3), which was involved in TLR4-mediated TRIF-dependent signaling pathway, in LPS-stimulated macrophages. Correspondingly, melatonin significantly alleviated LPS-induced IFN-β in macrophages. In conclusion, melatonin modulates TLR4-mediated inflammatory genes through MyD88-dependent and TRIF-dependent signaling pathways.
Collapse
Affiliation(s)
- Mi-Zhen Xia
- Life Science College, Anhui Agricultural University, Hefei, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lim HD, Kim YS, Ko SH, Yoon IJ, Cho SG, Chun YH, Choi BJ, Kim EC. Cytoprotective and anti-inflammatory effects of melatonin in hydrogen peroxide-stimulated CHON-001 human chondrocyte cell line and rabbit model of osteoarthritis via the SIRT1 pathway. J Pineal Res 2012; 53:225-37. [PMID: 22507555 DOI: 10.1111/j.1600-079x.2012.00991.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Melatonin has potent antioxidant, analgesic, and antinociceptive properties. However, the effects of melatonin against oxidative stress-induced cytotoxicity and inflammatory mediators in human chondrocytes remain poorly understood. This study examined the effects and underlying mechanism of melatonin in hydrogen peroxide (H(2) O(2) )-stimulated human chondrocytes and rabbit osteoarthritis (OA) model. Melatonin markedly inhibited hydrogen peroxide (H(2) O(2) )-stimulated cytotoxicity, iNOS, and COX-2 protein and mRNA expression, as well as the downstream products, NO and PGE(2) . Incubation of cells with melatonin decreased H(2) O(2) -induced Sirtuin 1 (SIRT1) mRNA and protein expression. SIRT1 inhibition by sirtinol or Sirt1 siRNA reversed the effects of melatonin on H(2) O(2) -mediated induction of pro-inflammatory cytokines (NO, PGE(2) , TNF-α, IL-1β, and IL-8) and the expression of iNOS, COX-2, and cartilage destruction molecules. Melatonin blocked H(2) O(2) -induced phosphorylation of PI3K/Akt, p38, ERK, JNK, and MAPK, as well as activation of NF-κB, which was reversed by sirtinol and SIRT1 siRNA. In rabbit with OA, intra-articular injection of melatonin significantly reduced cartilage degradation, which was reversed by sirtinol. Taken together, this study shows that melatonin exerts cytoprotective and anti-inflammatory effects in an oxidative stress-stimulated chondrocyte model and rabbit OA model, and that the SIRT1 pathway is strongly involved in this effect.
Collapse
Affiliation(s)
- Hyun-Dae Lim
- Department of Oral Medicine, School of Dentistry, Wonkwang University, Iksan, Korea
| | | | | | | | | | | | | | | |
Collapse
|