1
|
Li J, Li Y, Zhao J, Li L, Wang Y, Chen F, Li Y, Cheng R, He F, Ze X, Shen X. Effects of Bifidobacterium breve 207-1 on regulating lifestyle behaviors and mental wellness in healthy adults based on the microbiome-gut-brain axis: a randomized, double-blind, placebo-controlled trial. Eur J Nutr 2024; 63:2567-2585. [PMID: 38869657 DOI: 10.1007/s00394-024-03447-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/23/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE Our study aimed to explore the efficacy of Bifidobacterium breve 207-1 on specific neurotransmitters and hormones and the ability to regulate lifestyle behaviors in healthy adults. METHODS In total, 120 healthy adults with high mental stress, overweight, insomnia, and constipation were randomly assigned to receive low-dose B. breve 207-1 (LD, n = 40), high-dose B. breve 207-1 (HD, n = 40), or placebo (n = 40) for 28 days. Fecal and blood samples were collected and questionnaires were answered before and after the trial. Neurotransmitters and serum hormones were detected using enzyme-linked immunosorbent assay. The gut microbiota composition was assessed using 16 S rRNA sequencing. Short-chain fatty acids (SCFAs) concentrations were determined via gas chromatography-mass spectrometry (GC-MS). RESULTS The primary outcome of our study was changes in mental wellness, including neurotransmitters, the hypothalamic-pituitary-adrena (HPA) axis hormones, and the psychological scales. The results showed that γ-aminobutyric acid (GABA) increased significantly and the HPA axis hormones were suppressed overall in the probiotic groups while 5-hydroxytryptamine (5-HT) did not change significantly. However, there was no significant change in mood scale scores. The secondary outcome focused on the ability of 207-1 to regulate the body and lifestyle of healthy adults (e.g., sleep, diet, exercise, etc.). The PSQI scores in the probiotics groups significantly decreased, indicating improved sleep quality. Meanwhile, the probiotic groups had a slight increase in exercise consumption while dietary intake stabilized. By physical examination, the participants showed weight loss although no statistically significant difference was observed between the groups. Then, validated by gut microbiota, changes in the gut microbiota were observed under the effective intervention of 207-1 while short-chain fatty acids (SCFAs) increased in the LD group, particularly acetic and propionic acids. There was a slight decrease in alpha-diversity in the HD group. CONCLUSION Bifidobacterium breve 207-1 entered the organism and affected neurotransmitter and the HPA axis hormone levels via the microbiome-gut-brain axis. Meanwhile, 207-1 supplementation improved daily lifestyle behaviors in healthy adults, which may in turn lead to changes in their bodies (e.g. weight and lipid metabolism). However, this study did not find significant mood-modulating efficacy. The mechanism of the overall study is unclear, but we hypothesize that SCFAs may be the key pathway, and more experiments are needed for validation in the future. TRIAL REGISTRATION This trial was retrospectively registered in the Chinese Clinical Trial Registry under the accession number ChiCTR2300069453 on March 16, 2023.
Collapse
Affiliation(s)
- Jinxing Li
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd Section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Yapeng Li
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd Section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Jincheng Zhao
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd Section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Liang Li
- BYHEALTH Institute of Nutrition & Health, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Science City, Huangpu District, Guangzhou, 510663, China
| | - Yunyi Wang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd Section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Fei Chen
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd Section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Yuchen Li
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610044, Sichuan, China
| | - Ruyue Cheng
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd Section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Fang He
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd Section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Xiaolei Ze
- BYHEALTH Institute of Nutrition & Health, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Science City, Huangpu District, Guangzhou, 510663, China.
| | - Xi Shen
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd Section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Madani WAM, Ramos Y, Cubillos-Ruiz JR, Morales DK. Enterococcal-host interactions in the gastrointestinal tract and beyond. FEMS MICROBES 2024; 5:xtae027. [PMID: 39391373 PMCID: PMC11466040 DOI: 10.1093/femsmc/xtae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/05/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
The gastrointestinal tract (GIT) is typically considered the natural niche of enterococci. However, these bacteria also inhabit extraintestinal tissues, where they can disrupt organ physiology and cause life-threatening infections. Here, we discuss how enterococci, primarily Enterococcus faecalis, interact with the intestine and other host anatomical locations such as the oral cavity, heart, liver, kidney, and vaginal tract. The metabolic flexibility of these bacteria allows them to quickly adapt to new environments, promoting their persistence in diverse tissues. In transitioning from commensals to pathogens, enterococci must overcome harsh conditions such as nutrient competition, exposure to antimicrobials, and immune pressure. Therefore, enterococci have evolved multiple mechanisms to adhere, colonize, persist, and endure these challenges in the host. This review provides a comprehensive overview of how enterococci interact with diverse host cells and tissues across multiple organ systems, highlighting the key molecular pathways that mediate enterococcal adaptation, persistence, and pathogenic behavior.
Collapse
Affiliation(s)
- Wiam Abdalla Mo Madani
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, NY 10065, United States
| | - Yusibeska Ramos
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
| | - Juan R Cubillos-Ruiz
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, NY 10065, United States
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, NY 10065, United States
| | - Diana K Morales
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
| |
Collapse
|
3
|
Liang J, Wang S, Kou S, Chen C, Zhang W, Nie C. Clostridium butyricum Prevents Diarrhea Incidence in Weaned Piglets Induced by Escherichia coli K88 through Rectal Bacteria-Host Metabolic Cross-Talk. Animals (Basel) 2024; 14:2287. [PMID: 39199821 PMCID: PMC11350811 DOI: 10.3390/ani14162287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
This study aimed to evaluate the effects of Clostridium butyricum (C. butyricum) on the prevention of the diarrhea rates and growth performances of weaned piglets induced by Escherichia coli K88 (E. coli K88). Twenty-four weaned piglets (6.92 ± 0.11 kg) were randomly assigned to one of three treatment groups for a period of 21 days. Each group consisted of eight pigs, with each pig being housed in an individual pen. Group I received the control diet along with normal saline, Group II received the control diet along with E. coli K88, and Group III received the control diet supplemented with 5 × 108 CFU/kg of C. butyricum and E. coli K88. We examined alterations in rectal microbiota and metabolites, analyzed the incidence of diarrhea, and investigated the interactions between microbiota and metabolites through the application of Illumina MiSeq sequencing and liquid chromatography-mass spectrometry. The results showed that, from days 14 to 21, the diarrhea incidence in Group III decreased significantly by 83.29% compared to Group II (p < 0.05). Over the entire experimental duration, the average daily feed intake of Group III decreased significantly by 11.13% compared to Group I (p < 0.05), while the diarrhea incidence in Group III decreased by 71.46% compared to Group II (p < 0.05). The predominant microbial flora in the rectum consisted of Firmicutes (57.32%), Bacteroidetes (41.03%), and Proteobacteria (0.66%). Administering E. coli K88 orally can elevate the relative abundance of Megasphaera (p < 0.05). Conversely, the supplementation of C. butyricum in the diet reduced the relative abundance of Megasphaera (p < 0.05), while increasing the relative abundance of unclassified_f_Lachnospiraceae (p < 0.05). Rectal metabolomics analysis revealed that supplementing C. butyricum in the feed significantly altered the amino acids and fatty acids of the piglets infected with E. coli K88 (p < 0.05). The correlation analysis showed that the occurrence of diarrhea was inversely related to adipic acid (p < 0.05) and positively associated with (5-hydroxyindol-3-YL) acetic acid and L-aspartic acid (p < 0.05). Prevotella_1 exhibited a negative correlation with octadecanoic acid (p < 0.05). Prevotellaceae_UCG-005 showed a negative correlation with (5-hydroxyindol-3-YL) acetic acid (p < 0.05). The findings from this research study aid in probiotic development and the enhancement of healthy growth in weaned piglets.
Collapse
Affiliation(s)
- Jing Liang
- College of Life Science, Yulin University, Yulin 719000, China; (J.L.); (S.W.)
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (S.K.); (C.C.)
| | - Sihu Wang
- College of Life Science, Yulin University, Yulin 719000, China; (J.L.); (S.W.)
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Shasha Kou
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (S.K.); (C.C.)
| | - Cheng Chen
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (S.K.); (C.C.)
| | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (S.K.); (C.C.)
| | - Cunxi Nie
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (S.K.); (C.C.)
| |
Collapse
|
4
|
Di Chiara M, Lazzaro A, Scribano D, Trancassini M, Pietropaolo V, Sonnessa M, De Luca C, Prota R, Onestà E, Laccetta G, Terrin G. Reduced Gut Bacterial Diversity in Early Life Predicts Feeding Intolerance in Preterm Neonates. Trop Med Infect Dis 2024; 9:174. [PMID: 39195612 PMCID: PMC11359060 DOI: 10.3390/tropicalmed9080174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024] Open
Abstract
Microbiota plays a crucial role in intestinal maturation in preterm newborns. The clinical manifestation of the immaturity of the gastro-intestinal tract is called feeding intolerance (FI). This condition may resolve spontaneously or dramatically evolve into necrotizing enterocolitis. One of the most challenging tasks for the neonatologist is to identify those neonates that will develop the disease early in order to adequately provide nutrition to these patients, from the very first hours of life. A close interplay between the maturity of the gastro-intestinal tract and gut microbiota has been described; however, in preterm neonates, this relationship is still undefined. We analyzed the bacterial composition of stool samples, collected early in life, from 30 preterm newborns classified as intolerant or tolerant according to the degree of readiness of the gastro-intestinal tract to receive enteral nutrition. The Pielou evenness index was significantly increased in intolerant compared with tolerant newborns. Data corrected for confounding variables confirmed that the occurrence of gut maturation was independently influenced by Pielou evenness at birth. A lower bacterial diversity very early in life is associated with improved feeding tolerance in preterm newborns. The abundance analysis showed that neonates not ready to receive enteral nutrition for feeding intolerance show, after birth, an increased abundance of Proteobacteria, Lachnospiracae, Enterobacter and Acinetobacter. We can argue that those are the taxa that prevent the establishment of pioneer bacteria. A lower alpha-diversity, in the first days of life, may facilitate the seeding of beneficial pioneer bacteria that, in turn, drive healthy microbial colonization during neonatal life.
Collapse
Affiliation(s)
- Maria Di Chiara
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy (G.L.)
| | - Alessandro Lazzaro
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (A.L.); (D.S.); (M.T.)
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (A.L.); (D.S.); (M.T.)
| | - Maria Trancassini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (A.L.); (D.S.); (M.T.)
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (A.L.); (D.S.); (M.T.)
| | | | - Chiara De Luca
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy (G.L.)
| | - Rita Prota
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy (G.L.)
| | - Elisa Onestà
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy (G.L.)
| | - Gianluigi Laccetta
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy (G.L.)
| | - Gianluca Terrin
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy (G.L.)
| |
Collapse
|
5
|
Su H, Yang S, Chen S, Chen X, Guo M, Zhu L, Xu W, Liu H. What Happens in the Gut during the Formation of Neonatal Jaundice-Underhand Manipulation of Gut Microbiota? Int J Mol Sci 2024; 25:8582. [PMID: 39201270 PMCID: PMC11354725 DOI: 10.3390/ijms25168582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Jaundice is a symptom of high blood bilirubin levels affecting about 80% of neonates. In neonates fed with breast milk, jaundice is particularly prevalent and severe, which is likely multifactorial. With the development of genomics and metagenomics, a deeper understanding of the neonatal gut microbiota has been achieved. We find there are accumulating evidence to indicate the importance of the gut microbiota in the mechanism of jaundice. In this paper, we present new comprehensive insight into the relationship between the microbiota and jaundice. In the new perspective, the gut is a crucial crossroad of bilirubin excretion, and bacteria colonizing the gut could play different roles in the excretion of bilirubin, including Escherichia coli as the main traffic jam causers, some Clostridium and Bacteroides strains as the traffic police, and most probiotic Bifidobacterium and Lactobacillus strains as bystanders with no effect or only a secondary indirect effect on the metabolism of bilirubin. This insight could explain why breast milk jaundice causes a longer duration of blood bilirubin and why most probiotics have limited effects on neonatal jaundice. With the encouragement of breastmilk feeding, our perspective could guide the development of new therapy methods to prevent this side effect of breastfeeding.
Collapse
Affiliation(s)
- Hongfei Su
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (H.S.); (S.C.); (X.C.); (H.L.)
| | - Shuran Yang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit, China National Center for Food Safety Risk Assessment, Beijing 100022, China;
| | - Shijing Chen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (H.S.); (S.C.); (X.C.); (H.L.)
| | - Xiaolin Chen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (H.S.); (S.C.); (X.C.); (H.L.)
| | - Mingzhang Guo
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (H.S.); (S.C.); (X.C.); (H.L.)
| | - Longjiao Zhu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China;
| | - Wentao Xu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China;
| | - Huilin Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (H.S.); (S.C.); (X.C.); (H.L.)
| |
Collapse
|
6
|
Di Mattia M, Sallese M, Neri M, Lopetuso LR. Hypoxic Functional Regulation Pathways in the GI Tract: Focus on the HIF-1α and Microbiota's Crosstalk. Inflamm Bowel Dis 2024; 30:1406-1418. [PMID: 38484200 DOI: 10.1093/ibd/izae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 08/02/2024]
Abstract
Hypoxia is an essential gastrointestinal (GI) tract phenomenon that influences both physiologic and pathologic states. Hypoxia-inducible factors (HIFs), the primary drivers of cell adaptation to low-oxygen environments, have been identified as critical regulators of gut homeostasis: directly, through the induction of different proteins linked to intestinal barrier stabilization (ie, adherent proteins, tight junctions, mucins, integrins, intestinal trefoil factor, and adenosine); and indirectly, through the regulation of several immune cell types and the modulation of autophagy and inflammatory processes. Furthermore, hypoxia and HIF-related sensing pathways influence the delicate relationship existing between bacteria and mammalian host cells. In turn, gut commensals establish and maintain the physiologic hypoxia of the GI tract and HIF-α expression. Based on this premise, the goals of this review are to (1) highlight hypoxic molecular pathways in the GI tract, both in physiologic and pathophysiologic settings, such as inflammatory bowel disease; and (2) discuss a potential strategy for ameliorating gut-related disorders, by targeting HIF signaling, which can alleviate inflammatory processes, restore autophagy correct mechanisms, and benefit the host-microbiota equilibrium.
Collapse
Affiliation(s)
- Miriam Di Mattia
- Department of Medicine and Ageing Sciences, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Michele Sallese
- Department of Medicine and Ageing Sciences, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Matteo Neri
- Department of Medicine and Ageing Sciences, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Loris Riccardo Lopetuso
- Department of Medicine and Ageing Sciences, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell'Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| |
Collapse
|
7
|
Mpakosi A, Sokou R, Theodoraki M, Kaliouli-Antonopoulou C. Neonatal Gut Mycobiome: Immunity, Diversity of Fungal Strains, and Individual and Non-Individual Factors. Life (Basel) 2024; 14:902. [PMID: 39063655 PMCID: PMC11278438 DOI: 10.3390/life14070902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The human gastrointestinal ecosystem, or microbiome (comprising the total bacterial genome in an environment), plays a crucial role in influencing host physiology, immune function, metabolism, and the gut-brain axis. While bacteria, fungi, viruses, and archaea are all present in the gastrointestinal ecosystem, research on the human microbiome has predominantly focused on the bacterial component. The colonization of the human intestine by microbes during the first two years of life significantly impacts subsequent composition and diversity, influencing immune system development and long-term health. Early-life exposure to pathogens is crucial for establishing immunological memory and acquired immunity. Factors such as maternal health habits, delivery mode, and breastfeeding duration contribute to gut dysbiosis. Despite fungi's critical role in health, particularly for vulnerable newborns, research on the gut mycobiome in infants and children remains limited. Understanding early-life factors shaping the gut mycobiome and its interactions with other microbial communities is a significant research challenge. This review explores potential factors influencing the gut mycobiome, microbial kingdom interactions, and their connections to health outcomes from childhood to adulthood. We identify gaps in current knowledge and propose future research directions in this complex field.
Collapse
Affiliation(s)
- Alexandra Mpakosi
- Department of Microbiology, General Hospital of Nikaia “Agios Panteleimon”, 18454 Piraeus, Greece
| | - Rozeta Sokou
- Neonatal Intensive Care Unit, General Hospital of Nikaia “Agios Panteleimon”, 18454 Piraeus, Greece;
- Neonatal Department, National and Kapodistrian University of Athens, Aretaieio Hospital, 11528 Athens, Greece
| | - Martha Theodoraki
- Neonatal Intensive Care Unit, General Hospital of Nikaia “Agios Panteleimon”, 18454 Piraeus, Greece;
| | | |
Collapse
|
8
|
Kumar B, Lorusso E, Fosso B, Pesole G. A comprehensive overview of microbiome data in the light of machine learning applications: categorization, accessibility, and future directions. Front Microbiol 2024; 15:1343572. [PMID: 38419630 PMCID: PMC10900530 DOI: 10.3389/fmicb.2024.1343572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Metagenomics, Metabolomics, and Metaproteomics have significantly advanced our knowledge of microbial communities by providing culture-independent insights into their composition and functional potential. However, a critical challenge in this field is the lack of standard and comprehensive metadata associated with raw data, hindering the ability to perform robust data stratifications and consider confounding factors. In this comprehensive review, we categorize publicly available microbiome data into five types: shotgun sequencing, amplicon sequencing, metatranscriptomic, metabolomic, and metaproteomic data. We explore the importance of metadata for data reuse and address the challenges in collecting standardized metadata. We also, assess the limitations in metadata collection of existing public repositories collecting metagenomic data. This review emphasizes the vital role of metadata in interpreting and comparing datasets and highlights the need for standardized metadata protocols to fully leverage metagenomic data's potential. Furthermore, we explore future directions of implementation of Machine Learning (ML) in metadata retrieval, offering promising avenues for a deeper understanding of microbial communities and their ecological roles. Leveraging these tools will enhance our insights into microbial functional capabilities and ecological dynamics in diverse ecosystems. Finally, we emphasize the crucial metadata role in ML models development.
Collapse
Affiliation(s)
- Bablu Kumar
- Università degli Studi di Milano, Milan, Italy
- Department of Biosciences, Biotechnology and Environment, University of Bari A. Moro, Bari, Italy
| | - Erika Lorusso
- Department of Biosciences, Biotechnology and Environment, University of Bari A. Moro, Bari, Italy
- National Research Council, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| | - Bruno Fosso
- Department of Biosciences, Biotechnology and Environment, University of Bari A. Moro, Bari, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnology and Environment, University of Bari A. Moro, Bari, Italy
- National Research Council, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| |
Collapse
|
9
|
Zhang Y, Zhao M, He J, Chen L, Wang W. In vitro and in vivo immunomodulatory activity of acetylated polysaccharides from Cyclocarya paliurus leaves. Int J Biol Macromol 2024; 259:129174. [PMID: 38181912 DOI: 10.1016/j.ijbiomac.2023.129174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 12/04/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
In this study, we aimed to investigate the immunomodulatory effects of polysaccharides from Cyclocarya paliurus leaves after acetylation modification (Ac-CPP0.1) on dendritic cells (DCs) and immunosuppressed mice. In vitro, Ac-CPP0.1 promoted phenotypic and functional maturation of DCs. Specifically, it increased the expression of costimulatory molecules (CD80, CD86, and MHC II) and the secretion of cytokines (TNF-α, IL-6, IL-1β, IL-10, IL-12p70) of DCs. In vivo, Ac-CPP0.1 significantly improved immunosuppression of mice, which was manifested by increased body weight and immune organ index, up-regulated cytokines (IL-4, IL-17, TGF-β3, and TNF-α), and restored short-chain fatty acid (SCFAs) levels of intestinal. The immunoactivation of Ac-CPP0.1 in DCs and in mice is linked to the activation of the TLR4/NF-κB signaling pathway. Furthermore, Ac-CPP0.1 reversed intestinal flora imbalance caused by cyclophosphamide. At the species level, Ac-CPP0.1 increased the abundance of unclassified_Muribaculaceae, unclassified_Desulfovibrio, Bacteroides_acidifaciens and Faecalibaculum_rodentium, decreased the level of Lactobacillus_johnsonii, unclassified_g_Staphylococcus and Staphylococcus_nepalensis. In summary, Ac-CPP0.1 has considerable immunomodulatory potential, which is beneficial to the future utilization and development of Cyclocarya paliurus.
Collapse
Affiliation(s)
- Yang Zhang
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Meng Zhao
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jing He
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lingli Chen
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenjun Wang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
10
|
Trivedi A, Teo E, Walker KS. Probiotics for the postoperative management of term neonates after gastrointestinal surgery. Cochrane Database Syst Rev 2024; 1:CD012265. [PMID: 38258877 PMCID: PMC10804440 DOI: 10.1002/14651858.cd012265.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
BACKGROUND The intestinal microflora has an essential role in providing a barrier against colonisation of pathogens, facilitating important metabolic functions, stimulating the development of the immune system, and maintaining intestinal motility. Probiotics are live microorganisms that can be administered to supplement the gut flora. Neonates who have undergone gastrointestinal surgery are particularly susceptible to infectious complications in the postoperative period. This may be partly due to a disruption of the integrity of the gut and its intestinal microflora. There may be a role for probiotics in reducing the incidence of sepsis and improving intestinal motility, thus reducing morbidity and mortality and improving enteral feeding in neonates in the postoperative period. OBJECTIVES To evaluate the efficacy and safety of administering probiotics after gastrointestinal surgery for the postoperative management of neonates born from 35 weeks of gestation. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, and trial registries in August 2023. We checked reference lists of included studies and relevant systematic reviews for additional studies. SELECTION CRITERIA We included randomised controlled trials (RCTs) that investigated the postoperative administration of oral probiotics versus placebo or no treatment in neonates born from 35 weeks of gestation who had one or more gastrointestinal surgical procedures. We applied no restrictions regarding the type or dosage of probiotics or the duration of treatment. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods, and we used GRADE to assess the certainty of evidence. MAIN RESULTS We identified one RCT that recruited 61 neonates with a gestational age of 35 weeks or more. All infants were admitted to a neonatal intensive care unit and had surgery for gastrointestinal pathologies. There may be little or no difference in proven sepsis (positive bacterial culture, local or systemic) between infants who receive probiotics compared with those who receive placebo (odds ratio (OR) 0.64, 95% confidence interval (CI) 0.16 to 2.55; 61 infants; low-certainty evidence). Probiotics compared to placebo may have little or no effect on time to full enteral feeds (mean difference (MD) 0.63 days, 95% CI -4.02 to 5.28; 61 infants; low-certainty evidence). There were no reported deaths prior to discharge from hospital in either study arm. Two weeks after supplementation, the infants who received probiotics had a substantially higher relative abundance of non-pathogenic intestinal microflora (Bifidobacteriaceae) than those who received placebo (MD 38.22, 95% CI 28.40 to 48.04; 39 infants; low-certainty evidence). AUTHORS' CONCLUSIONS This review provides low-certainty evidence from one small RCT that probiotics compared to placebo have little or no effect on the risk of proven sepsis (positive bacterial culture, local or systemic) or time to full-enteral feeds in neonates who have undergone gastrointestinal surgery. Probiotics may substantially increase the abundance of beneficial bacterial in the intestine of these neonates, but the clinical implications of this finding are unknown. There is a need for adequately powered RCTs to assess the role of probiotics in this population. We identified two ongoing studies. As neither reported the gestational age of prospective study participants, we are unsure if they will be eligible for inclusion in this review.
Collapse
Affiliation(s)
- Amit Trivedi
- Grace Centre for Newborn Intensive Care, The Children's Hospital at Westmead, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Edward Teo
- Emergency Department, Concord Repatriation General Hospital, Sydney, Australia
| | - Karen S Walker
- Neonatal intensive Care Unit, Royal Prince Alfred hospital, Sydney, Australia
| |
Collapse
|
11
|
Izquierdo VS, Cappellozza BI, Silva JVL, Santos GCM, Miranda A, Bittar JHJ, Pickett A, Mackey S, Cooke RF, Vendramini JMB, Moriel P. Maternal pre- and postpartum supplementation of a Bacillus-based DFM enhanced cow and calf performance. J Anim Sci 2024; 102:skae110. [PMID: 38647379 PMCID: PMC11077610 DOI: 10.1093/jas/skae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
This study evaluated the effects of maternal supplementation of a Bacillus-based direct-fed microbial (DFM) on the physiology and growth performance of Bos indicus-influenced cow-calf pairs. On day 0 (~139 d before expected calving date), 72 fall-calving, Brangus crossbred beef heifers (20 to 22 mo of age) pregnant with first offspring were stratified by their initial body weight (BW; 431 ± 31 kg) and body condition score (BCS; 6.0 ± 0.36; scale 1 to 9), and randomly allocated into 1 of 12 bahiagrass pastures (1 ha and six heifers per pasture). Treatments were randomly assigned to pastures (six pastures per treatment) and consisted of heifers supplemented with 1 kg/d of soybean hulls (dry matter, DM) that was added (BAC) or not (CON) with DFM containing Bacillus subtilis and B. licheniformis (Bovacillus; Chr. Hansen A/S, Hørsholm, Denmark). Treatments were provided from days 0 to 242 (139 ± 4 d prepartum to 104 ± 4 d postpartum). Calves were weaned on day 242 (96 ± 30 d of age) and then allocated into 1 of 16 drylot pens and fed the same concentrate at 3.25% of BW (DM) until day 319. Maternal treatment effects were not detected (P ≥ 0.29) for herbage allowance and forage chemical composition. Heifer BCS on days 39 and 63 tended (P ≤ 0.09) to be greater for BAC vs. CON heifers, whereas heifer BCS on day 91 was greater (P = 0.01) for BAC vs. CON heifers. Heifer BCS did not differ (P ≥ 0.20) between treatments on days 179 and 242. Plasma glucose concentration did not differ from days 0 to 63 (P ≥ 0.14) but were greater (P < 0.01) on day 179 and tended (P = 0.09) to be greater on day 242 for BAC vs. CON heifers. Calf BW at birth, ADG from birth to weaning, and BW at weaning did not differ (P ≥ 0.19) between treatments, but calf BW at drylot exit (day 319) was greater (P = 0.05) for BAC vs. CON calves. Maternal treatment effects were not detected (P ≥ 0.42) for calf serum concentration of IgG at birth and postvaccination plasma concentrations of glucose, cortisol, and haptoglobin. Serum titers against bovine respiratory syncytial virus (BRSV) were greater (P = 0.04) for BAC vs. CON calves on day 287, whereas seroconversion against parainfluenza-3 virus (PI-3) was greater (P < 0.01) for BAC vs. CON calves on day 271. Thus, maternal supplementation of a Bacillus-based DFM increased prepartum BCS gain and postpartum plasma glucose concentration of heifers and led to positive carryover effects on postweaning BW gain and humoral immune response in their offspring.
Collapse
Affiliation(s)
- Vinicius S Izquierdo
- Range Cattle Research and Education Center, IFAS, University of Florida, Ona, FL 33865, USA
| | | | - João V L Silva
- Range Cattle Research and Education Center, IFAS, University of Florida, Ona, FL 33865, USA
| | - Giovanna C M Santos
- Range Cattle Research and Education Center, IFAS, University of Florida, Ona, FL 33865, USA
| | - André Miranda
- Range Cattle Research and Education Center, IFAS, University of Florida, Ona, FL 33865, USA
| | - João H J Bittar
- College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Autumn Pickett
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Shea Mackey
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Reinaldo F Cooke
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - João M B Vendramini
- Range Cattle Research and Education Center, IFAS, University of Florida, Ona, FL 33865, USA
| | - Philipe Moriel
- Range Cattle Research and Education Center, IFAS, University of Florida, Ona, FL 33865, USA
| |
Collapse
|
12
|
Sereme Y, Toumi E, Saifi E, Faury H, Skurnik D. Maternal immune factors involved in the prevention or facilitation of neonatal bacterial infections. Cell Immunol 2024; 395-396:104796. [PMID: 38104514 DOI: 10.1016/j.cellimm.2023.104796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Newborns, whether born prematurely or at term, have a fully formed but naive immune system that must adapt to the extra-uterine environment to prevent infections. Maternal immunity, transmitted through the placenta and breast milk, protects newborns against infections, primarily via immunoglobulins (IgG and IgA) and certain maternal immune cells also known as microchimeric cells. Recently, it also appeared that the maternal gut microbiota played a vital role in neonatal immune maturation via microbial compounds impacting immune development and the establishment of immune tolerance. In this context, maternal vaccination is a powerful tool to enhance even more maternal and neonatal health. It involves the transfer of vaccine-induced antibodies to protect both mother and child from infectious diseases. In this work we review the state of the art on maternal immune factors involved in the prevention of neonatal bacterial infections, with particular emphasis on the role of maternal vaccination in protecting neonates against bacterial disease.
Collapse
Affiliation(s)
- Youssouf Sereme
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Eya Toumi
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Estelle Saifi
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Helène Faury
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades, F-75015 Paris, France; Department of Microbiology, Necker Hospital, University de Paris, Paris, France
| | - David Skurnik
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades, F-75015 Paris, France; Department of Microbiology, Necker Hospital, University de Paris, Paris, France; FHU PREMA, Paris, France.
| |
Collapse
|
13
|
Li H, Ma X, Li Y, Liu Q, Tian Q, Yang X, Zhou Z, Ren J, Sun B, Feng X, Zhang H, Yin X, Li H, Ding X. The metagenomic and metabolomic profile of the gut microbes in Chinese full-term and late preterm infants treated with Clostridium butyricum. Sci Rep 2023; 13:18775. [PMID: 37907561 PMCID: PMC10618524 DOI: 10.1038/s41598-023-45586-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 10/21/2023] [Indexed: 11/02/2023] Open
Abstract
The present study investigated the composition, abundance, and diversity of gut microbes in full-term and late-preterm infants from a medical center in eastern China. A total of 144 genomes of stool samples were captured for 16S rRNA metagenomic analyses. A high abundance of commensal intestinal bacteria was detected in these samples such as Phocaeicola vulgatus, Escherichia coli, and Faecalibacterium prausnitzii, indicating a relatively consistent diversity of gut microbes in the present full-term infants aged 38-40 weeks. However, late preterm infants (n = 50) with mandatory antimicrobials feeding exhibited lower diversity but a higher composition of opportunistic pathogens such as Enterococcus species. Centralized on the situation, we explored the regulatory effect of Clostridium butyricum as probiotics on these late preterm infants. The consumption of C. butyricum did not restore the composition of gut microbes altered by antimicrobials to normal levels, although several opportunistic pathogens decreased significantly after probiotic therapy including Staphylococcus aureus, Sphingomonas echinoides, and Pseudomonas putida. We also compared the effects of day-fed versus night-fed probiotics. Intriguingly, the nighttime feeding showed a higher proportion of C. butyricum compared with probiotic day-feeding. Finally, fecal metabolome and metabolites were analyzed in late preterm infants with (n = 20) or without probiotic therapy (n = 20). The KEGG enrichment analysis demonstrated that vitamin digestion and absorption, synaptic vesicle cycle, and biotin metabolism were significantly increased in the probiotic-treated group, while MSEA indicated that a series of metabolism were significantly enriched in probiotic-treated infants including glycerolipid, biotin, and lysine, indicating the complex effects of probiotic therapy on glutathione metabolism and nutrients digestion and absorption in late preterm infants. Overall, this study provided metagenomic and metabolomic profile of the gut microbes in full-term newborns and late preterm infants in eastern China. Further studies are needed to support and elucidate the role of probiotic feeding in late preterm infants with mandatory antimicrobial treatment.
Collapse
Affiliation(s)
- Hong Li
- Soochow Key Laboratory of Prevention and Treatment of Child Brain Injury, Children's Hospital of Soochow University, #303 Jingde Road, Gusu District, Suzhou, 215003, Jiangsu, China
| | - Xingling Ma
- Soochow Key Laboratory of Prevention and Treatment of Child Brain Injury, Children's Hospital of Soochow University, #303 Jingde Road, Gusu District, Suzhou, 215003, Jiangsu, China
| | - Yongfu Li
- Neonatology Department, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu, China
| | - Qin Liu
- Neonatology Department, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu, China
- Pediatric Department, Suzhou New District Yangshan Community Health Service Center, Suzhou, China
| | - Qiuyan Tian
- Soochow Key Laboratory of Prevention and Treatment of Child Brain Injury, Children's Hospital of Soochow University, #303 Jingde Road, Gusu District, Suzhou, 215003, Jiangsu, China
| | - Xiaofeng Yang
- Soochow Key Laboratory of Prevention and Treatment of Child Brain Injury, Children's Hospital of Soochow University, #303 Jingde Road, Gusu District, Suzhou, 215003, Jiangsu, China
| | - Zhemin Zhou
- Pasteurien College, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Jing Ren
- Soochow Key Laboratory of Prevention and Treatment of Child Brain Injury, Children's Hospital of Soochow University, #303 Jingde Road, Gusu District, Suzhou, 215003, Jiangsu, China
| | - Bin Sun
- Soochow Key Laboratory of Prevention and Treatment of Child Brain Injury, Children's Hospital of Soochow University, #303 Jingde Road, Gusu District, Suzhou, 215003, Jiangsu, China
| | - Xing Feng
- Soochow Key Laboratory of Prevention and Treatment of Child Brain Injury, Children's Hospital of Soochow University, #303 Jingde Road, Gusu District, Suzhou, 215003, Jiangsu, China
| | - Hong Zhang
- Taixing People's Hospital, Taizhou, Jiangsu, China
| | - Xiaoping Yin
- Taixing People's Hospital, Taizhou, Jiangsu, China
| | - Heng Li
- Pasteurien College, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China.
| | - Xin Ding
- Soochow Key Laboratory of Prevention and Treatment of Child Brain Injury, Children's Hospital of Soochow University, #303 Jingde Road, Gusu District, Suzhou, 215003, Jiangsu, China.
| |
Collapse
|
14
|
Mazur-Kuśnirek M, Lipiński K, Jørgensen JN, Hansen LHB, Antoszkiewicz Z, Zabielski R, Konieczka P. The Effect of a Bacillus-Based Probiotic on Sow and Piglet Performance in Two Production Cycles. Animals (Basel) 2023; 13:3163. [PMID: 37893887 PMCID: PMC10603631 DOI: 10.3390/ani13203163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this study was to assess the impact of Bacillus-based probiotic diets on reproduction performance, fecal scores, microflora, and economic factors in lactating sows and suckling piglets across two productive cycles. A total of 96 sows, reared in a continuous farrowing system for two full cycles, were divided into two groups: a control group and an experimental group. Sows were fed a basal diet without the probiotic or a diet supplemented with viable bacterial spores. At seven days of age, control group piglets were offered standard creep feed, whereas piglets in the experimental (probiotic) group received a diet containing the probiotic fed to their dams. Sows receiving probiotic-supplemented diets were characterized by significantly higher (p ≤ 0.05) average daily feed intake in lactation, lower (p ≤ 0.01) body weight (BW) loss during lactation, and reduced loss of backfat thickness as well as higher body condition score after lactation. Dietary probiotic supplementation increased (p ≤ 0.01) birth weight, total creep feed consumption, litter weight gain, and piglet weaning weight. The probiotic also improved (p ≤ 0.01) overall fecal scores, decreased total E. coli count on day seven and Clostridium perfringens count (trend) in sucking piglets. The total feed cost per weaned piglet was lower in the experimental (probiotic) group. Supplementing the diet with a probiotic containing Bacillus strains improved the reproductive performance of sows and the performance and health of piglets.
Collapse
Affiliation(s)
- Magdalena Mazur-Kuśnirek
- Department of Animal Nutrition, Feed Science and Cattle Breeding, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland; (K.L.); (Z.A.)
| | - Krzysztof Lipiński
- Department of Animal Nutrition, Feed Science and Cattle Breeding, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland; (K.L.); (Z.A.)
| | - Jens Noesgaard Jørgensen
- Chr. Hansen A/S, Animal and Plant Health & Nutrition, 2970 Hoersholm, Denmark; (J.N.J.); (L.H.B.H.)
| | - Lea Hübertz Birch Hansen
- Chr. Hansen A/S, Animal and Plant Health & Nutrition, 2970 Hoersholm, Denmark; (J.N.J.); (L.H.B.H.)
| | - Zofia Antoszkiewicz
- Department of Animal Nutrition, Feed Science and Cattle Breeding, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland; (K.L.); (Z.A.)
| | - Romuald Zabielski
- Center of Translational Medicine, Warsaw University of Life Sciences, ul. Nowoursynowska 100, 02-797 Warszawa, Poland;
| | - Paweł Konieczka
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| |
Collapse
|
15
|
Healy D, Wang S, Grimaud G, Warda AK, Ross P, Stanton C, Dempsey EM. Longitudinal observational study protocol - Preterm Infants: Microbiome Establishment, Neuro-CrossTalk and Origins (PIMENTO). BMJ Open 2023; 13:e075060. [PMID: 37748849 PMCID: PMC10533688 DOI: 10.1136/bmjopen-2023-075060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/17/2023] [Indexed: 09/27/2023] Open
Abstract
INTRODUCTION Very preterm infants are at risk of abnormal microbiome colonisation in the first weeks to months of life. Several important associated factors have been identified including gestational age, mode of delivery, antibiotic exposure and feeding. Preterm infants are at risk of a number of pathologies for which the microbiome may play a central role, including necrotising enterocolitis and sepsis. The objective of this study is to determine detailed microbiome changes that occur around implementation of different management practices including empiric antibiotic use, advancement of feeds and administration of probiotics during admission to the neonatal intensive care unit. METHODS AND ANALYSIS A single-site, longitudinal observational study of infants born less than 32 weeks gestation, including collection of maternal samples around delivery and breastmilk and infant samples from admission through discharge from the neonatal unit. ETHICS AND DISSEMINATION The protocol was approved by the Clinical Research Ethics Committee of the Cork Teaching Hospitals.The findings from this study will be disseminated in peer-reviewed journals, during scientific conferences, and directly to the study participants. Sequencing data will be deposited in public databases. TRIAL REGISTRATION NUMBER NCT05803577.
Collapse
Affiliation(s)
- David Healy
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Shuo Wang
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Alicja Katarzyna Warda
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre Moorepark, Moorepark, Ireland
| | - Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre Moorepark, Moorepark, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre Moorepark, Moorepark, Ireland
| | - Eugene M Dempsey
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
| |
Collapse
|
16
|
Barone M, Ramayo-Caldas Y, Estellé J, Tambosco K, Chadi S, Maillard F, Gallopin M, Planchais J, Chain F, Kropp C, Rios-Covian D, Sokol H, Brigidi P, Langella P, Martín R. Gut barrier-microbiota imbalances in early life lead to higher sensitivity to inflammation in a murine model of C-section delivery. MICROBIOME 2023; 11:140. [PMID: 37394428 PMCID: PMC10316582 DOI: 10.1186/s40168-023-01584-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/25/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Most interactions between the host and its microbiota occur at the gut barrier, and primary colonizers are essential in the gut barrier maturation in the early life. The mother-offspring transmission of microorganisms is the most important factor influencing microbial colonization in mammals, and C-section delivery (CSD) is an important disruptive factor of this transfer. Recently, the deregulation of symbiotic host-microbe interactions in early life has been shown to alter the maturation of the immune system, predisposing the host to gut barrier dysfunction and inflammation. The main goal of this study is to decipher the role of the early-life gut microbiota-barrier alterations and its links with later-life risks of intestinal inflammation in a murine model of CSD. RESULTS The higher sensitivity to chemically induced inflammation in CSD mice is related to excessive exposure to a too diverse microbiota too early in life. This early microbial stimulus has short-term consequences on the host homeostasis. It switches the pup's immune response to an inflammatory context and alters the epithelium structure and the mucus-producing cells, disrupting gut homeostasis. This presence of a too diverse microbiota in the very early life involves a disproportionate short-chain fatty acids ratio and an excessive antigen exposure across the vulnerable gut barrier in the first days of life, before the gut closure. Besides, as shown by microbiota transfer experiments, the microbiota is causal in the high sensitivity of CSD mice to chemical-induced colitis and in most of the phenotypical parameters found altered in early life. Finally, supplementation with lactobacilli, the main bacterial group impacted by CSD in mice, reverts the higher sensitivity to inflammation in ex-germ-free mice colonized by CSD pups' microbiota. CONCLUSIONS Early-life gut microbiota-host crosstalk alterations related to CSD could be the linchpin behind the phenotypic effects that lead to increased susceptibility to an induced inflammation later in life in mice. Video Abstract.
Collapse
Affiliation(s)
- M. Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Y. Ramayo-Caldas
- INRAE, AgroParisTech, GABI, Paris-Saclay University, 78350 Jouy-en-Josas, France
- Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| | - J. Estellé
- INRAE, AgroParisTech, GABI, Paris-Saclay University, 78350 Jouy-en-Josas, France
| | - K. Tambosco
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
| | - S. Chadi
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
| | - F. Maillard
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
| | - M. Gallopin
- CNRS, CEA, l’Institut de Biologie Intégrative de La Cellule (I2BC), Paris-Saclay University, 91405 Orsay, France
| | - J. Planchais
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
| | - F. Chain
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
| | - C. Kropp
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
| | - D. Rios-Covian
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
| | - H. Sokol
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
- Gastroenterology Department, Centre de Recherche Saint-Antoine, Centre de Recherche Saint-Antoine, CRSA, AP-HP, INSERM, Saint Antoine Hospital, Sorbonne Université, 75012 Paris, France
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - P. Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - P. Langella
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - R. Martín
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
| |
Collapse
|
17
|
Uwaezuoke SN, Odimegwu CL, Mbanefo NR, Eneh CI, Arodiwe IO, Muoneke UV, Ogbuka FN, Ndiokwelu CO, Akwue AT. Vitamin D 3 supplementation as an adjunct in the management of childhood infectious diarrhea: a systematic review. BMC Infect Dis 2023; 23:159. [PMID: 36918811 PMCID: PMC10015675 DOI: 10.1186/s12879-023-08077-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/13/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Some studies have reported the possible role of vitamin D3 in ameliorating disease outcomes in childhood infectious diarrhea. However, findings about its effectiveness and the association of serum vitamin D levels with diarrhea risk appear inconsistent. We aimed to determine the efficacy of oral vitamin D3 as an adjunct in managing childhood infectious diarrhea and the relationship between vitamin D status and the disease. METHODS We searched the PubMed and Google Scholar electronic databases for relevant articles without limiting their year of publication. We selected primary studies that met the review's inclusion criteria, screened their titles and abstracts, and removed duplicates. We extracted data items from selected studies using a structured data-extraction form. We conducted a quality assessment of randomized controlled trials (RCTs) and non-randomized studies with the Cochrane collaboration tool and the Newcastle Ottawa Scale, respectively. We assessed the strength of the relationship between serum vitamin D levels and diarrhea using the correlation model. We estimated the I2 and tau2 values to assess between-study heterogeneity. RESULTS Nine full-text articles were selected, consisting of one RCT, three cross-sectional studies, two cohort studies, two longitudinal/prospective studies, and one case-control study. A total of 5,545 participants were evaluated in the nine studies. Six non-randomized studies provided weak evidence of the relationship between vitamin D levels and diarrhea risk as there was no correlation between the two variables. The only RCT failed to demonstrate any beneficial role of vitamin D3 in reducing the risk of recurrent diarrhea. The calculated I2 and tau2 values of 86.5% and 0.03, respectively suggested a high between-study heterogeneity which precluded a meta-analysis of study results. CONCLUSION Oral vitamin D3 may not be an effective adjunct in managing childhood infectious diarrhea. Additionally, the relationship between vitamin D status and infectious diarrhea appears weak. We recommend more adequately-powered RCTs to determine the effectiveness of vitamin D3 as an adjunct therapy in infectious diarrhea.
Collapse
Affiliation(s)
- Samuel N Uwaezuoke
- Department of Pediatrics, The University of Nigeria Teaching Hospital Ituku-Ozalla Enugu, Enugu, Nigeria.
| | - Chioma L Odimegwu
- Department of Pediatrics, The University of Nigeria Teaching Hospital Ituku-Ozalla Enugu, Enugu, Nigeria
| | - Ngozi R Mbanefo
- Department of Pediatrics, The University of Nigeria Teaching Hospital Ituku-Ozalla Enugu, Enugu, Nigeria
| | - Chizoma I Eneh
- Department of Pediatrics, Enugu State University Teaching Hospital, Enugu, Nigeria
| | - Ijeoma O Arodiwe
- Department of Pediatrics, The University of Nigeria Teaching Hospital Ituku-Ozalla Enugu, Enugu, Nigeria
| | - Uzoamaka V Muoneke
- Department of Pediatrics, The University of Nigeria Teaching Hospital Ituku-Ozalla Enugu, Enugu, Nigeria
| | - Francis N Ogbuka
- Department of Pediatrics, Enugu State University Teaching Hospital, Enugu, Nigeria
| | - Chibuzo O Ndiokwelu
- Department of Pediatrics, The University of Nigeria Teaching Hospital Ituku-Ozalla Enugu, Enugu, Nigeria
| | - Anthony T Akwue
- Emergency Department, ASEER field Hospital, Mecca, Kingdom of Saudi Arabia
| |
Collapse
|
18
|
Wu S, Ren L, Li J, Shen X, Zhou Q, Miao Z, Jia W, He F, Cheng R. Breastfeeding might partially contribute to gut microbiota construction and stabilization of propionate metabolism in cesarean-section infants. Eur J Nutr 2023; 62:615-631. [PMID: 36173468 DOI: 10.1007/s00394-022-03020-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/22/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE This study was aimed to determine how delivery mode and feeding pattern influence the infant's gut microbiota construction and the variation of fecal microbial metabolites from a birth cohort. METHODS Fecal samples collected from 61 full-term born Chinese infants at four time points: day 0, day 7, month 1, and month 3. Based on delivery mode (vaginal delivery [V] or cesarean section [C]) and feeding pattern (breastfeeding [B] or mixed feeding [M]), infants were divided into four groups, namely VB, CB, VM, and CM groups. The gut microbiota composition and bacterial diversity were assessed using 16S rRNA sequencing. Short-chain fatty acid (SCFA) concentrations were determined via gas chromatography-mass spectrometry (GC-MS). RESULTS The CM group had a significantly higher relative abundance of Firmicutes (day 0 and month 1), Enterococcaceae (month 3), and Enterococcus (month 3) than the VB group and a significantly higher abundance of Firmicutes (month 1) and Blautia (month 3) than the CB group. The VB and CB groups exhibited a stable SCFA variation and a significantly lower level of propionate compared with the VM and CM groups. All groups showed an intense transition of enterotypes within 1 month and became stable at 3 months. The correlation between SCFA and enterotypes showed a significant positive correlation between Bifidobacteriaceae and acetate in the CB group (day 7 and month 3) and a significant positive correlation between Clostridiaceae and butyrate in the CB and VB groups (day 7 and month 3), respectively. CONCLUSION These results indicated that C-section was associated with higher abundance of the phylum Firmicutes and family Enterococcaceae, and intense fluctuation of SCFA, at least propionate. And breastfeeding might partially contribute to gut microbiota construction and stabilization propionate metabolism in cesarean-section infants.
Collapse
Affiliation(s)
- Simou Wu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd Section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, People's Republic of China
| | - Lei Ren
- Hebei Inatural Bio-Tech Co.,Ltd., Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Jinxing Li
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd Section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xi Shen
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd Section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, People's Republic of China
| | - Qingqing Zhou
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd Section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, People's Republic of China
| | - Zhonghua Miao
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd Section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, People's Republic of China
| | - Wen Jia
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd Section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, People's Republic of China
| | - Fang He
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd Section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Ruyue Cheng
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd Section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
19
|
Ganz J, Ratcliffe EM. Who's talking to whom: microbiome-enteric nervous system interactions in early life. Am J Physiol Gastrointest Liver Physiol 2023; 324:G196-G206. [PMID: 36625480 PMCID: PMC9988524 DOI: 10.1152/ajpgi.00166.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
The enteric nervous system (ENS) is the intrinsic nervous system of the gastrointestinal tract (GI) and regulates important GI functions, including motility, nutrient uptake, and immune response. The development of the ENS begins during early organogenesis and continues to develop once feeding begins, with ongoing plasticity into adulthood. There has been increasing recognition that the intestinal microbiota and ENS interact during critical periods, with implications for normal development and potential disease pathogenesis. In this review, we focus on insights from mouse and zebrafish model systems to compare and contrast how each model can serve in elucidating the bidirectional communication between the ENS and the microbiome. At the end of this review, we further outline implications for human disease and highlight research innovations that can lead the field forward.
Collapse
Affiliation(s)
- Julia Ganz
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, United States
| | | |
Collapse
|
20
|
Núñez-Sánchez MA, Herisson FM, Keane JM, García-González N, Rossini V, Pinhiero J, Daly J, Bustamante-Garrido M, Hueston CM, Patel S, Canela N, Herrero P, Claesson MJ, Melgar S, Nally K, Caplice NM, Gahan CG. Microbial bile salt hydrolase activity influences gene expression profiles and gastrointestinal maturation in infant mice. Gut Microbes 2022; 14:2149023. [PMID: 36420990 PMCID: PMC9704388 DOI: 10.1080/19490976.2022.2149023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The mechanisms by which early microbial colonizers of the neonate influence gut development are poorly understood. Bacterial bile salt hydrolase (BSH) acts as a putative colonization factor that influences bile acid signatures and microbe-host signaling pathways and we considered whether this activity can influence infant gut development. In silico analysis of the human neonatal gut metagenome confirmed that BSH enzyme sequences are present as early as one day postpartum. Gastrointestinal delivery of cloned BSH to immature gnotobiotic mice accelerated shortening of the colon and regularized gene expression profiles, with monocolonised mice more closely resembling conventionally raised animals. In situ expression of BSH decreased markers of cell proliferation (Ki67, Hes2 and Ascl2) and strongly increased expression of ALPI, a marker of cell differentiation and barrier function. These data suggest an evolutionary paradigm whereby microbial BSH activity potentially influences bacterial colonization and in-turn benefits host gastrointestinal maturation.
Collapse
Affiliation(s)
- María A. Núñez-Sánchez
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Florence M. Herisson
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
| | - Jonathan M. Keane
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland
| | - Natalia García-González
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland
| | - Valerio Rossini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jorge Pinhiero
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland
| | - Jack Daly
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland
| | | | - Cara M. Hueston
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Shriram Patel
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland
| | - Nuria Canela
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira I Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Reus, Spain
| | - Pol Herrero
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira I Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Reus, Spain
| | - Marcus J. Claesson
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland
| | - Silvia Melgar
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ken Nally
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Biochemistry & Cell Biology, University College Cork, Cork, Ireland
| | - Noel M. Caplice
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
| | - Cormac G.M. Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland,School of Pharmacy, University College Cork, Cork, Ireland,CONTACT Cormac G.M. Gahan APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
21
|
Enterotoxin tilimycin from gut-resident Klebsiella promotes mutational evolution and antibiotic resistance in mice. Nat Microbiol 2022; 7:1834-1848. [PMID: 36289400 PMCID: PMC9613472 DOI: 10.1038/s41564-022-01260-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 09/29/2022] [Indexed: 11/20/2022]
Abstract
Klebsiella spp. that secrete the DNA-alkylating enterotoxin tilimycin colonize the human intestinal tract. Numbers of toxigenic bacteria increase during antibiotic use, and the resulting accumulation of tilimycin in the intestinal lumen damages the epithelium via genetic instability and apoptosis. Here we examine the impact of this genotoxin on the gut ecosystem. 16S rRNA sequencing of faecal samples from mice colonized with Klebsiella oxytoca strains and mechanistic analyses show that tilimycin is a pro-mutagenic antibiotic affecting multiple phyla. Transient synthesis of tilimycin in the murine gut antagonized niche competitors, reduced microbial richness and altered taxonomic composition of the microbiota both during and following exposure. Moreover, tilimycin secretion increased rates of mutagenesis in co-resident opportunistic pathogens such as Klebsiella pneumoniae and Escherichia coli, as shown by de novo acquisition of antibiotic resistance. We conclude that tilimycin is a bacterial mutagen, and flares of genotoxic Klebsiella have the potential to drive the emergence of resistance, destabilize the gut microbiota and shape its evolutionary trajectory. Production of the enterotoxin tilimycin by gut-resident Klebsiella species can alter gut microbiota composition, induce mutational evolution and drive the emergence of antibiotic resistance in mice.
Collapse
|
22
|
Han Y, Xu J, Yan Y, Zhao X. Dynamics of the gut microbiota in rats after hypobaric hypoxia exposure. PeerJ 2022; 10:e14090. [PMID: 36225905 PMCID: PMC9549897 DOI: 10.7717/peerj.14090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/30/2022] [Indexed: 01/20/2023] Open
Abstract
Background Gut microbiota plays an important role in host health and is influenced by multiple factors. Hypobaric hypoxia usually existing at high altitude conditions can adversely affect normal physiological functions. However, the dynamic changes of gut microbiota influenced by hypobaric hypoxia have not been elucidated. Methods In this study, we collected fecal samples from seven rats at 14 time points from entering the hypobaric chamber (eight time points) to leaving the chamber (six time points) and five rats served as normoxic controls. Metagenome sequencing was performed on all samples and the dynamics of taxa and functions were analyzed. Results We found that the α-diversity was changed in the first 5 days after entering or leaving the hypobaric chamber. The β-diversity analysis revealed that gut microbiota structure was significantly separated among 14 time points. After entering the chamber, the relative abundance of Bacteroides decreased and the most abundant genus turned into Prevotella. The abundance of Firmicutes and Bacteroidetes showed an opposite trend and both have a significant change within 5 days after entering or leaving the hypobaric hypoxia chamber. Some obligate anaerobic bacteria belonging to Desulfovibrio and Alistipes were significantly enriched after entering the chamber for 5 weeks, whereas Probiotics like Bifidobacterium and Lactococcus, and short-chain fatty acids producers like Butyrivibrio and Pseudobutyrivibrio were significantly enriched after leaving the chamber for 3 weeks. Microbial functions like 'Two-component regulatory system', 'beta-carotene biosynthesis' and 'Fatty acid biosynthesis' were significantly enriched after entering the chamber for 5 weeks. Hypobaric hypoxia conditions could deeply affect the diversity and structure of gut microbiota. The alterations of abundance of dominant taxa (Firmicutes and Bacteroidetes), increased anaerobes and decreased probiotics induced by hypobaric hypoxia conditions might affect the host health.
Collapse
Affiliation(s)
- Yang Han
- Translational Medical Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China,Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Jiayu Xu
- Translational Medical Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Yan Yan
- Translational Medical Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Xiaojing Zhao
- Translational Medical Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China,Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
23
|
Exploring the management approaches of cytokines including viral infection and neuroinflammation for neurological disorders. Cytokine 2022; 157:155962. [PMID: 35853395 DOI: 10.1016/j.cyto.2022.155962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/11/2022] [Accepted: 07/07/2022] [Indexed: 12/11/2022]
Abstract
Considerable evidence supports that cytokines are important mediators of pathophysiologic processes within the central nervous system (CNS). Numerous studies have documented the increased production of various cytokines in the human CNS in various neurological and neuropsychiatric disorders. Deciphering cytokine actions in the intact CNS has important implications for our understanding of the pathogenesis and treatment of these disorders. The purpose of this study is to discuss the recent research on treating cytokine storm and amyloids, including stroke, Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's condition, Multi-sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS). Neuroinflammation observed in neurological disorders has a pivotal role in exacerbating Aβ burden and tau hyperphosphorylation, suggesting that stimulating cytokines in response to an undesirable external response could be a checkpoint for treating neurological disorders. Furthermore, the pro-inflammatory cytokines help our immune system through a neuroprotective mechanism in clearing viral infection by recruiting mononuclear cells. This study reveals that cytokine applications may play a vital role in providing novel regulation and methods for the therapeutic approach to neurological disorders and the causes of the deregulation, which is responsible for neuroinflammation and viral infection. However, it needs to be further investigated to clarify better the mechanisms of cytokine release in response to various stimuli, which could be the central point for treating neurological disorders.
Collapse
|
24
|
Kaya Y, Erten T, Vurmaz M, İspirli H, Şimşek Ö, Dertli E. Comparison of the probiotic characteristics of Lactic Acid Bacteria (LAB) isolated from sourdough and infant feces. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
25
|
Elolimy A, Rosa F, Tripp P, Zeineldin M, Bowlin AK, Randolph C, Robeson MS, Yeruva L. Bacterial and Fungal Adaptations in Cecum and Distal Colon of Piglets Fed With Dairy-Based Milk Formula in Comparison With Human Milk. Front Microbiol 2022; 13:801854. [PMID: 35401465 PMCID: PMC8989072 DOI: 10.3389/fmicb.2022.801854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Exclusive breastfeeding is recommended to newborns during the first 6 months of life, whereas dairy-based infant formula is an alternative nutrition source offered to infants. Several studies demonstrated that breastfed infants have a different gut bacterial composition relative to formula-fed infants. In addition, animal models have shown that human milk (HM)–fed piglets had a distinct intestinal bacterial composition compared with milk formula (MF)–fed piglets. However, the gut fungal composition and the interactions with the bacterial community in breastfed compared with formula-fed infants remain to be investigated. In an attempt to evaluate such differences, we used an animal model to perform a shotgun metagenomics analysis on the cecal and distal colon contents of neonatal piglets fed with pasteurized HM or a dairy-based infant formula (MF) during the first 21 days of life. At postnatal day 21 (PND 21), a subset of piglets from each diet group (n = 11 per group) was euthanized. The remaining piglets in each group were weaned to a solid diet and euthanized at PND 51 (n = 13 per group). Large intestine contents (i.e., cecum and distal colon) were subjected to shotgun metagenomics analysis. The differential taxonomic composition of bacteria and fungi and the predicted functional gene profiling were evaluated. Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria are the most abundant bacterial phyla observed in piglets at PND 21 and PND 51. In the large intestine at PND 21 and PND 51, Proteobacteria phylum was significantly higher in MF-fed group, and species Burkholderiales bacterium of phyla was significantly higher in MF group relative to HM group. In addition, in HM group, several Lactobacillus spp. and Bacteroides spp. were higher relative to MF group in the large intestine at PND 21 and PND 51. Fungal genus Aspergillus was higher in MF, whereas Malassezia was lower relative to HM group. Persistent effects of the neonatal diets were observed at PND 51, where alpha- and beta-diversity differences were detected for bacterial and fungal species in the large intestine. Overall, our findings indicate that neonatal diet affects the large intestinal microbial community during the exclusive milk-feeding period, as well as after the introduction of the complementary food.
Collapse
Affiliation(s)
- Ahmed Elolimy
- Arkansas Children’s Nutrition Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Fernanda Rosa
- Arkansas Children’s Nutrition Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
| | - Patricia Tripp
- Arkansas Children’s Nutrition Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Little Rock, AR, United States
| | - Mohamed Zeineldin
- Department of Animal Medicine, College of Veterinary Medicine, Benha University, Banha, Egypt
| | - Anne K. Bowlin
- Arkansas Children’s Nutrition Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Little Rock, AR, United States
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Christopher Randolph
- Center for Translational Pediatric Research, Arkansas Children’s Research Institute, Little Rock, AR, United States
| | - Michael S. Robeson
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Laxmi Yeruva
- Arkansas Children’s Nutrition Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- *Correspondence: Laxmi Yeruva,
| |
Collapse
|
26
|
Freuer D, Linseisen J, Meisinger C. Asthma and the risk of gastrointestinal disorders: a Mendelian randomization study. BMC Med 2022; 20:82. [PMID: 35292014 PMCID: PMC8925069 DOI: 10.1186/s12916-022-02283-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/03/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The question of whether asthma is causally related to gastrointestinal disorders remained unanswered so far. Thus, this study investigated whether there is such a relation and whether the time of onset of asthma plays a role in the occurrence of the following gastrointestinal disorders: peptic ulcer disease (PUD), gastroesophageal reflux disease (GORD), irritable bowel syndrome (IBS), and inflammatory bowel disease (IBD) including the distinction between Crohn's disease (CD) and ulcerative colitis (UC). METHODS Using summary data of genome-wide association studies (GWASs), we ran Mendelian randomization analyses based on up to 456,327 European participants. Outlier assessment, a series of sensitivity analyses and validation of IBD results in a second GWAS were performed to confirm the results. RESULTS Presented ORs represent the average change in the outcome per 2.72-fold increase in the prevalence of the exposure. Genetically predicted childhood-onset asthma was positively associated with PUD, GORD, and IBS with similar odds ratios near 1.003 and adjusted P-values from 0.007 (GORD) to 0.047 (PUD). Furthermore, it was inversely related to IBD (OR = 0.992, 95% CI: 0.986, 0.998, adjusted P = 0.023) and suggestively associated with its UC subtype (OR = 0.990, 95% CI: 0.982, 0.998, adjusted P = 0.059). There were no associations between genetically predicted adult-onset asthma and the mentioned gastrointestinal disorders. CONCLUSIONS This study provides evidence that the presence of asthma onset in childhood increases the risk for GORD, PUD, and IBS but decreases the risk for IBD in adults. The lower risk for IBD may be attributed to a lower risk primarily for UC.
Collapse
Affiliation(s)
- Dennis Freuer
- University of Augsburg, University Hospital Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany. .,Institute for Medical Information Processing, Biometry, and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Jakob Linseisen
- University of Augsburg, University Hospital Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany.,Institute for Medical Information Processing, Biometry, and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany.,Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Christa Meisinger
- University of Augsburg, University Hospital Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
| |
Collapse
|
27
|
Mennella JA, Li Y, Bittinger K, Friedman ES, Zhao C, Li H, Wu GD, Trabulsi JC. The Macronutrient Composition of Infant Formula Produces Differences in Gut Microbiota Maturation That Associate with Weight Gain Velocity and Weight Status. Nutrients 2022; 14:nu14061241. [PMID: 35334900 PMCID: PMC8951061 DOI: 10.3390/nu14061241] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
This proof-of-principle study analyzed fecal samples from 30 infants who participated in a randomized controlled trial on the effects of the macronutrient composition of infant formula on growth and energy balance. In that study, infants randomized to be fed cow milk formula (CMF) had faster weight-gain velocity during the first 4 months and higher weight-for-length Z scores up to 11.5 months than those randomized to an isocaloric extensive protein hydrolysate formula (EHF). Here we examined associations among infant formula composition, gut microbial composition and maturation, and children’s weight status. Fecal samples collected before and monthly up to 4.5 months after randomization were analyzed by shotgun metagenomic sequencing and targeted metabolomics. The EHF group had faster maturation of gut microbiota than the CMF group, and increased alpha diversity driven by Clostridia taxa. Abundance of Ruminococcus gnavus distinguished the two groups after exclusive feeding of the assigned formula for 3 months. Abundance of Clostridia at 3–4 months negatively correlated with prior weight-gain velocity and body weight phenotypes when they became toddlers. Macronutrient differences between the formulas likely led to the observed divergence in gut microbiota composition that was associated with differences in transient rapid weight gain, a well-established predictor of childhood obesity and other comorbidities.
Collapse
Affiliation(s)
| | - Yun Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (Y.L.); (H.L.)
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (K.B.); (C.Z.)
| | - Elliot S. Friedman
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (E.S.F.); (G.D.W.)
| | - Chunyu Zhao
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (K.B.); (C.Z.)
| | - Hongzhe Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (Y.L.); (H.L.)
| | - Gary D. Wu
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (E.S.F.); (G.D.W.)
| | - Jillian C. Trabulsi
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19713, USA
- Correspondence: ; Tel.: +1-302-831-4991
| |
Collapse
|
28
|
Novel Developments on Stimuli-Responsive Probiotic Encapsulates: From Smart Hydrogels to Nanostructured Platforms. FERMENTATION 2022. [DOI: 10.3390/fermentation8030117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Biomaterials engineering and biotechnology have advanced significantly towards probiotic encapsulation with encouraging results in assuring sufficient bioactivity. However, some major challenges remain to be addressed, and these include maintaining stability in different compartments of the gastrointestinal tract (GIT), favoring adhesion only at the site of action, and increasing residence times. An alternative to addressing such challenges is to manufacture encapsulates with stimuli-responsive polymers, such that controlled release is achievable by incorporating moieties that respond to chemical and physical stimuli present along the GIT. This review highlights, therefore, such emerging delivery matrices going from a comprehensive description of addressable stimuli in each GIT compartment to novel synthesis and functionalization techniques to currently employed materials used for probiotic’s encapsulation and achieving multi-modal delivery and multi-stimuli responses. Next, we explored the routes for encapsulates design to enhance their performance in terms of degradation kinetics, adsorption, and mucus and gut microbiome interactions. Finally, we present the clinical perspectives of implementing novel probiotics and the challenges to assure scalability and cost-effectiveness, prerequisites for an eventual niche market penetration.
Collapse
|
29
|
Jarzynka S, Spott R, Tchatchiashvili T, Ueberschaar N, Martinet MG, Strom K, Kryczka T, Wesołowska A, Pletz MW, Olędzka G, Makarewicz O. Human Milk Oligosaccharides Exhibit Biofilm Eradication Activity Against Matured Biofilms Formed by Different Pathogen Species. Front Microbiol 2022; 12:794441. [PMID: 35069493 PMCID: PMC8767050 DOI: 10.3389/fmicb.2021.794441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022] Open
Abstract
Human milk oligosaccharides (HMOs) have been shown to exhibit plenty of benefits for infants, such as prebiotic activity shaping the gut microbiota and immunomodulatory and anti-inflammatory activity. For some pathogenic bacteria, antimicrobial activity has been proved, but most studies focus on group B streptococci. In the present study, we investigated the antimicrobial and antibiofilm activities of the total and fractionated HMOs from pooled human milk against four common human pathogenic Gram-negative species (Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Burkholderia cenocepacia) and three Gram-positive species (Staphylococcus aureus, Enterococcus faecium, and Enterococcus faecalis). The activity of HMOs against enterococci and B. cenocepacia are addressed here for the first time. We showed that HMOs exhibit a predominant activity against the Gram-positive species, with E. faecalis being the most sensitive to the HMOs, both in planktonic bacteria and in biofilms. In further tests, we could exclude fucosyllactose as the antibacterial component. The biological significance of these findings may lie in the prevention of skin infections of the mother’s breast as a consequence of breastfeeding-induced skin laceration and/or protection of the infants’ nasopharynx and lung from respiratory pathogens such as staphylococci.
Collapse
Affiliation(s)
- Sylwia Jarzynka
- Department of Medical Biology, Medical University of Warsaw, Warsaw, Poland
| | - Riccardo Spott
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany.,IncfectoGnostics Research Campus, Friedrich Schiller University Jena, Jena, Germany
| | - Tinatini Tchatchiashvili
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany.,IncfectoGnostics Research Campus, Friedrich Schiller University Jena, Jena, Germany
| | - Nico Ueberschaar
- Mass Spectrometry Platform, Friedrich Schiller University Jena, Jena, Germany
| | - Mark Grevsen Martinet
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Kamila Strom
- Department of Medical Biology, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Kryczka
- Department of Development of Nursing, Social and Medical Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Wesołowska
- Department of Medical Biology, Laboratory of Human Milk and Lactation Research at Regional Human Milk Bank in Holy Family Hospital, Medical University of Warsaw, Warsaw, Poland
| | - Mathias W Pletz
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany.,IncfectoGnostics Research Campus, Friedrich Schiller University Jena, Jena, Germany
| | - Gabriela Olędzka
- Department of Medical Biology, Medical University of Warsaw, Warsaw, Poland
| | - Oliwia Makarewicz
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany.,IncfectoGnostics Research Campus, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
30
|
Antibiotic treatments to mothers during the perinatal period leaving hidden trouble on infants. Eur J Pediatr 2022; 181:3459-3471. [PMID: 35680662 PMCID: PMC9395442 DOI: 10.1007/s00431-022-04516-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/31/2022] [Indexed: 12/04/2022]
Abstract
UNLABELLED Antibiotic application during the perinatal period is unavoidable in the clinic, but the potential effects on mothers and infants remain unknown. Herein, 25 breast milk samples from mothers who received cefuroxime (CXM) or CXM + cefoxitin (CFX) treatments and fecal samples from their infants were collected to investigate the undesirable effects of antibiotics on the microbiota of mothers and neonates. Furthermore, five fecal samples of infants, whose mothers had antibiotic treatments, were collected at a 6-month postpartum follow-up visit to evaluate the long-term effects on infants' gut microbiota. Moreover, the relative abundance of antibiotic resistance genes (ARGs) in fecal samples was compared to investigate the transfer of ARGs in the infant gut microbiota. The results indicated that the antibiotic treatments had no influence on the microbiota of breast milk. The dominant bacterial phyla in the fecal samples changed to Firmicutes and Proteobacteria after antibiotic treatments, while the bacterial community showed a recuperative trend at the follow-up visits. In addition, the abundance of ARGs in the infant gut microbiota demonstrated a declining trend in the CXM- and CXM + CFX-treated groups, while ARG abundance presented a significant increasing trend after a 6-month recovery period. CONCLUSION Antibiotic treatments for mothers during the perinatal period disturb the gut microbiota in neonates. The infants' gut microbiota would partly return to their initial state after rehabilitation, but the transfer of ARGs would leave the hidden trouble of antibiotic resistance. Overall, the data presented here can help to guide the scientific use of antibiotics during the perinatal period and provide potential approaches to mitigate the negative consequences. WHAT IS KNOWN • Antibiotic application during the perinatal period is unavoidable in the clinic. • Misuse of antibiotics can cause various unintended consequences, especially for antibiotic resistance. WHAT IS NEW • Antibiotic treatments had no influence on the microbiota of breast milk but greatly disturbed the gut microbiota composition in infants. • The gut microbiota in infants would partly return to its initial state after rehabilitation but the transfer of ARGs would leave the hidden trouble of antibiotic resistance.
Collapse
|
31
|
Prenatal versus Postnatal Initial Colonization of Healthy Neonates' Colon Ecosystem by the Enterobacterium Escherichia coli. Microbiol Spectr 2021; 9:e0037921. [PMID: 34817225 PMCID: PMC8612161 DOI: 10.1128/spectrum.00379-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The human colon is a microbial ecosystem whose initial bacterial colonization in neonates is an important step in establishing a beneficial microbiota for the body's health. This study investigated the occurrence of viable culturable Escherichia coli in first-day meconium versus subsequent days' stool to explore the prenatal versus postnatal initial colonization of the colon by E. coli in healthy neonates. E. coli occurrence was investigated on eosin-methylene blue (EMB) agar, followed by morphological and biochemical characterizations and phylogenetic analysis of 16S rRNA-encoding gene sequences. Viable culturable E. coli was not detected in meconium of healthy male or female neonates delivered either vaginally or by cesarean section. Neonates delivered surgically also showed no E. coli colonization on the second and third days, confirming postnatal colonization of the colon by this enterobacterium. E. coli's initial colonization in the colon of neonates delivered vaginally occurred on the second day, which can be attributed to inoculation from the vaginal canal during delivery and, in comparison to the colonization in neonates delivered surgically, leads to the inference that the bacterium is not originally found in meconium. This study suggests no viability of the meconium microbiome in healthy neonates, possibly due to antimicrobial action in the prenatal colon's meconium protecting babies' gut from infection during delivery. IMPORTANCE The results of this study suggest that the initial postnatal colonization of neonates' colon by beneficial bacteria is a naturally controlled process in which the prenatal colon's meconium might play a role in protecting against infection of the babies' gut during delivery.
Collapse
|
32
|
Qv L, Mao S, Li Y, Zhang J, Li L. Roles of Gut Bacteriophages in the Pathogenesis and Treatment of Inflammatory Bowel Disease. Front Cell Infect Microbiol 2021; 11:755650. [PMID: 34900751 PMCID: PMC8656360 DOI: 10.3389/fcimb.2021.755650] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, are chronic, relapsing intestinal inflammatory disorders. Although the molecular mechanisms governing the pathogenesis of IBD are not completely clear, the main factors are presumed to be a complex interaction between genetic predisposition, host immune response and environmental exposure, especially the intestinal microbiome. Currently, most studies have focused on the role of gut bacteria in the onset and development of IBD, whereas little attention has been paid to the enteroviruses. Among of them, viruses that infect prokaryotes, called bacteriophages (phages) occupy the majority (90%) in population. Moreover, several recent studies have reported the capability of regulating the bacterial population in the gut, and the direct and indirect influence on host immune response. The present review highlights the roles of gut phages in IBD pathogenesis and explores the potentiality of phages as a therapeutic target for IBD treatment.
Collapse
Affiliation(s)
- Lingling Qv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Sunbing Mao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yongjun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jia Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Ji D, Sims I, Xu M, Stewart I, Agyei D. Production and identification of galacto-oligosaccharides from lactose using β-D-galactosidases from Lactobacillus leichmannii 313. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
34
|
Microbiota Targeted Interventions of Probiotic Lactobacillus as an Anti-Ageing Approach: A Review. Antioxidants (Basel) 2021; 10:antiox10121930. [PMID: 34943033 PMCID: PMC8750034 DOI: 10.3390/antiox10121930] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022] Open
Abstract
With the implementation of modern scientific protocols, the average human lifespan has significantly improved, but age-related problems remain a challenge. With the advent of ageing, there are alterations in gut microbiota and gut barrier functions, weak immune responses, increased oxidative stress, and other age-related disorders. This review has highlighted and discussed the current understanding on the significance of gut microbiota dysbiosis and ageing and its inherent effects against age-related oxidative stress as well as on the gut health and gut-brain axis. Further, we have discussed the key mechanism of action of Lactobacillus strains in the longevity of life, alleviating gut dysbiosis, and improving oxidative stress and inflammation to provide an outline of the role of Lactobacillus strains in restoration of gut microbiota dysbiosis and alleviating certain conditions during ageing. Microbiota-targeted interventions of some characterized strains of probiotic Lactobacillus for the restoration of gut microbial community are considered as a potential approach to improve several neurological conditions. However, very limited human studies are available on this alarmed issue and recommend further studies to identify the unique Lactobacillus strains with potential anti-ageing properties and to discover its novel core microbiome-association, which will help to increase the therapeutic potential of probiotic Lactobacillus strains to ageing.
Collapse
|
35
|
Milk Formula Diet Alters Bacterial and Host Protein Profile in Comparison to Human Milk Diet in Neonatal Piglet Model. Nutrients 2021; 13:nu13113718. [PMID: 34835974 PMCID: PMC8618976 DOI: 10.3390/nu13113718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022] Open
Abstract
The metaproteome profiling of cecal contents collected from neonatal piglets fed pasteurized human milk (HM) or a dairy-based infant formula (MF) from postnatal day (PND) 2 to 21 were assessed. At PND 21, a subset of piglets from each group (n = 11/group) were euthanized, and cecal contents were collected for further metaproteome analysis. Cecal microbiota composition showed predominantly more Firmicutes phyla and Lachnospiraceae family in the lumen of cecum of HM-fed piglets in comparison to the MF-fed group. Ruminococcus gnavus was the most abundant species from the Firmicutes phyla in the cecal contents of the HM-fed piglets at 21 days of age. A greater number of expressed proteins were identified in the cecal contents of the HM-fed piglets relative to the MF-fed piglets. Greater abundances of proteins potentially expressed by Bacteroides spp. such as glycoside enzymes were noted in the cecal lumen of HM-fed piglets relative to the MF. Additionally, lyases associated with Lachnospiraceae family were abundant in the cecum of the HM group relative to the MF group. Overall, our findings indicate that neonatal diet impacts the gut bacterial taxa and microbial proteins prior to weaning. The metaproteomics data were deposited into PRIDE, PXD025432 and 10.6019/PXD025432.
Collapse
|
36
|
Deidda G, Biazzo M. Gut and Brain: Investigating Physiological and Pathological Interactions Between Microbiota and Brain to Gain New Therapeutic Avenues for Brain Diseases. Front Neurosci 2021; 15:753915. [PMID: 34712115 PMCID: PMC8545893 DOI: 10.3389/fnins.2021.753915] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Brain physiological functions or pathological dysfunctions do surely depend on the activity of both neuronal and non-neuronal populations. Nevertheless, over the last decades, compelling and fast accumulating evidence showed that the brain is not alone. Indeed, the so-called "gut brain," composed of the microbial populations living in the gut, forms a symbiotic superorganism weighing as the human brain and strongly communicating with the latter via the gut-brain axis. The gut brain does exert a control on brain (dys)functions and it will eventually become a promising valuable therapeutic target for a number of brain pathologies. In the present review, we will first describe the role of gut microbiota in normal brain physiology from neurodevelopment till adulthood, and thereafter we will discuss evidence from the literature showing how gut microbiota alterations are a signature in a number of brain pathologies ranging from neurodevelopmental to neurodegenerative disorders, and how pre/probiotic supplement interventions aimed to correct the altered dysbiosis in pathological conditions may represent a valuable future therapeutic strategy.
Collapse
Affiliation(s)
- Gabriele Deidda
- The BioArte Limited, Life Sciences Park, San Gwann, Malta
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Manuele Biazzo
- The BioArte Limited, Life Sciences Park, San Gwann, Malta
- SienabioACTIVE, University of Siena, Siena, Italy
| |
Collapse
|
37
|
The Many Faces of Enterococcus spp.-Commensal, Probiotic and Opportunistic Pathogen. Microorganisms 2021; 9:microorganisms9091900. [PMID: 34576796 PMCID: PMC8470767 DOI: 10.3390/microorganisms9091900] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023] Open
Abstract
Enterococcus spp. are Gram-positive, facultative, anaerobic cocci, which are found in the intestinal flora and, less frequently, in the vagina or mouth. Enterococcus faecalis and Enterococcus faecium are the most common species found in humans. As commensals, enterococci colonize the digestive system and participate in the modulation of the immune system in humans and animals. For many years reference enterococcal strains have been used as probiotic food additives or have been recommended as supplements for the treatment of intestinal dysbiosis and other conditions. The use of Enterococcus strains as probiotics has recently become controversial due to the ease of acquiring different virulence factors and resistance to various classes of antibiotics. Enterococci are also seen as opportunistic pathogens. This problem is especially relevant in hospital environments, where enterococcal outbreaks often occur. Their ability to translocate from the gastro-intestinal tract to various tissues and organs as well as their virulence and antibiotic resistance are risk factors that hinder eradication. Due to numerous reports on the plasticity of the enterococcal genome and the acquisition of pathogenic microbial features, we ask ourselves, how far is this commensal genus from acquiring pathogenicity? This paper discusses both the beneficial properties of these microorganisms and the risk factors related to their evolution towards pathogenicity.
Collapse
|
38
|
Li E, Tian X, Zhao R, Wang Y, Wang G. First Report of Enterobacter cloacae Causing Bulb Decay on Garlic in China. PLANT DISEASE 2021; 106:310. [PMID: 34309404 DOI: 10.1094/pdis-05-21-0972-pdn] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Enterobacter cloacae is a symbiotic bacterium, which is one of the species in intestinal microbiota in many humans and animals. In some cases, it causes harmful diseases in humans. More and more studies showed that E. cloacae caused disease on plants, such as macadamia, ginger, mulberry, onion, chili pepper and rice. Garlic (Allium sativum L.) is one of crops with economic importance in the world. It is also widely grown in China. During 2018 to 2020, the naturally infected garlic bulbs from garlic fields in Kaifeng of Henan Province (34.55° N; 114.78° E) showed dry brown discoloration and rot symptoms. The diseased garlic seriously affected its edible value. Voucher specimens collected on June, 2019 were deposited in Plant Disease Laboratory of Tianjin Agricultural University under accession no. PATAU190620. To identify the causal agent of this disease, the bulb tissues of infected garlic were surface-disinfested in 0.6% sodium hypochlorite, dipped in75% ethanol, and then dipped in sterile distilled water. These bulbs were plated on LB medium and incubated at 37℃. A number of white colonies grew on the medium after plating for 16 h. All colonies were round, white, opaque, smooth, and gram-negative, which is a typical characteristic of Enterobacter. To confirm the initial identification of the isolated bacterium, the fragments of 16S rRNA gene and gyrA gene of 6 colonies were amplified, respectively. The PCR products were purified and sequenced. All 16S rRNA and gyrA sequences were identical to each other. The sequences of 16S rRNA gene and gyrA gene were deposited in GenBank with accession numbers MW730711 and MW768876, respectively. BLAST searches were conducted using the sequences of 16S rRNA and gyrA. The results showed 99.72%, and 96.91% identity with the corresponding sequences of E. cloacae strain CBG15936 (CP046116.1), respectively. Phylogenetic trees were performed using the neighbor-joining (NJ) method of MAGA X based on the sequences of 16S rRNA gene and gyrA gene. Phylogenetic tree indicated that isolates are most likely E. cloacae. Pathogenicity tests were performed by puncturing garlic bulbs with a hypodermic needle, followed by dipping in bacterial suspension with the concentration of 2×108 CFU for 5 minutes. As control, the garlic bulbs were treated with sterile water. The inoculated and control were incubated at 30°C. 7 days after inoculation, brown discoloration and rot were developed on all inoculated garlic bulbs. No symptoms were observed in the control group.The symptoms were similar to that observed on the original diseased garlic bulbs. The garlic bulbs in inoculated and control were ten replicates in each independent biological experiments. The pathogenicity tests were conducted three times with similar results. The bacteria were re-isolated from the symptomatic diseased garlics and confirmed as E. cloacae by morphological and sequence analyses as above. The re-isolated bacteria were identified by biochemical and physiological characteristics using API 20E strips. The results of the identification were identical to those of the edible ginger strains and the chili pepper strains. As far as we know, this is the first report of bulb decay on garlic caused by E. cloacae. The results are of great significance not only for the management of garlic bulbs during postharvest handling and storage, but also for the further research of opportunistic human pathogens E. cloacae.
Collapse
Affiliation(s)
- Erfeng Li
- Tianjin Agricultural UniversityTianjin, China, 300392;
| | - Xueliang Tian
- Henan Institute of Science and Technology, 177560, Hualan street, Xinxiang, China, 453003;
| | | | - Yuanhong Wang
- Tianjin Agriculture University, 91633, College of Horticulture and Landscape, No.22, Jinjing Road, Xiqing District, Tianjin City, Tianjin, China, 300384;
| | | |
Collapse
|
39
|
Gars A, Ronczkowski NM, Chassaing B, Castillo-Ruiz A, Forger NG. First Encounters: Effects of the Microbiota on Neonatal Brain Development. Front Cell Neurosci 2021; 15:682505. [PMID: 34168540 PMCID: PMC8217657 DOI: 10.3389/fncel.2021.682505] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
The microbiota plays important roles in host metabolism and immunity, and its disruption affects adult brain physiology and behavior. Although such findings have been attributed to altered neurodevelopment, few studies have actually examined microbiota effects on the developing brain. This review focuses on developmental effects of the earliest exposure to microbes. At birth, the mammalian fetus enters a world teeming with microbes which colonize all body sites in contact with the environment. Bacteria reach the gut within a few hours of birth and cause a measurable response in the intestinal epithelium. In adults, the gut microbiota signals to the brain via the vagus nerve, bacterial metabolites, hormones, and immune signaling, and work in perinatal rodents is beginning to elucidate which of these signaling pathways herald the very first encounter with gut microbes in the neonate. Neural effects of the microbiota during the first few days of life include changes in neuronal cell death, microglia, and brain cytokine levels. In addition to these effects of direct exposure of the newborn to microbes, accumulating evidence points to a role for the maternal microbiota in affecting brain development via bacterial molecules and metabolites while the offspring is still in utero. Hence, perturbations to microbial exposure perinatally, such as through C-section delivery or antibiotic treatment, alter microbiota colonization and may have long-term neural consequences. The perinatal period is critical for brain development and a close look at microbiota effects during this time promises to reveal the earliest, most primary effects of the microbiota on neurodevelopment.
Collapse
Affiliation(s)
- Aviva Gars
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | | | - Benoit Chassaing
- INSERM U1016, Team "Mucosal Microbiota in Chronic Inflammatory Diseases", CNRS UMR 8104, Université de Paris, Paris, France
| | | | - Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
40
|
Do Primocolonizing Bacteria Enable Bacteroides thetaiotaomicron Intestinal Colonization Independently of the Capacity To Consume Oxygen? mSphere 2021; 6:6/3/e00232-19. [PMID: 33952662 PMCID: PMC8103986 DOI: 10.1128/msphere.00232-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Aerobic bacteria are frequent primocolonizers of the human naive intestine. Their generally accepted role is to eliminate oxygen, which would allow colonization by anaerobes that subsequently dominate bacterial gut populations. Aerobic bacteria are frequent primocolonizers of the human naive intestine. Their generally accepted role is to eliminate oxygen, which would allow colonization by anaerobes that subsequently dominate bacterial gut populations. In this hypothesis-based study, we revisited this dogma experimentally in a germfree mouse model as a mimic of the germfree newborn. We varied conditions leading to the establishment of the dominant intestinal anaerobe Bacteroides thetaiotaomicron. Two variables were introduced: Bacteroides inoculum size and preestablishment by bacteria capable or not of consuming oxygen. High Bacteroides inoculum size enabled its primocolonization. At low inocula, we show that bacterial preestablishment was decisive for subsequent Bacteroides colonization. However, even non-oxygen-respiring bacteria, a hemAEscherichia coli mutant and the intestinal obligate anaerobe Clostridium scindens, facilitated Bacteroides establishment. These findings, which are supported by recent reports, revise the long-held assumption that oxygen scavenging is the main role for aerobic primocolonizing bacteria. Instead, we suggest that better survival of aerobic bacteria ex vivo during vectorization between hosts could be a reason for their frequent primocolonization.
Collapse
|
41
|
Tsutaya T, Mackie M, Sawafuji R, Miyabe-Nishiwaki T, Olsen JV, Cappellini E. Faecal proteomics as a novel method to study mammalian behaviour and physiology. Mol Ecol Resour 2021; 21:1808-1819. [PMID: 33720532 PMCID: PMC8360081 DOI: 10.1111/1755-0998.13380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/28/2021] [Accepted: 03/10/2021] [Indexed: 11/30/2022]
Abstract
Mammalian faeces can be collected noninvasively during field research and provide valuable information on the ecology and evolution of the source individuals. Undigested food remains, genome/metagenome, steroid hormones, and stable isotopes obtained from faecal samples provide evidence on diet, host/symbiont genetics, and physiological status of the individuals. However, proteins in mammalian faeces have hardly been studied, which hinders the molecular investigations into the behaviour and physiology of the source individuals. Here, we apply mass spectrometry-based proteomics to faecal samples (n = 10), collected from infant, juvenile, and adult captive Japanese macaques (Macaca fuscata), to describe the proteomes of the source individual, of the food it consumed, and its intestinal microbes. The results show that faecal proteomics is a useful method to: (i) investigate dietary changes along with breastfeeding and weaning, (ii) reveal the taxonomic and histological origin of the food items consumed, and (iii) estimate physiological status inside intestinal tracts. These types of insights are difficult or impossible to obtain through other molecular approaches. Most mammalian species are facing extinction risk and there is an urgent need to obtain knowledge on their ecology and evolution for better conservation strategy. The faecal proteomics framework we present here is easily applicable to wild settings and other mammalian species, and provides direct evidence of their behaviour and physiology.
Collapse
Affiliation(s)
- Takumi Tsutaya
- Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies, Hayama, Japan.,Biogeochemistry Research Center, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Meaghan Mackie
- Evolutionary Genomics Section, The Globe Institute, University of Copenhagen, Copenhagen, Denmark.,Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - Rikai Sawafuji
- Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies, Hayama, Japan
| | | | - Jesper V Olsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - Enrico Cappellini
- Evolutionary Genomics Section, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
42
|
Zhu B, Zheng S, Lin K, Xu X, Lv L, Zhao Z, Shao J. Effects of Infant Formula Supplemented With Prebiotics and OPO on Infancy Fecal Microbiota: A Pilot Randomized Clinical Trial. Front Cell Infect Microbiol 2021; 11:650407. [PMID: 33854983 PMCID: PMC8039316 DOI: 10.3389/fcimb.2021.650407] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/26/2021] [Indexed: 12/15/2022] Open
Abstract
Several lines of evidence suggest that the intestinal microbiota plays crucial roles in infant development, and that it is highly influenced by extrinsic and intrinsic factors. Prebiotic-containing infant formula may increase gastrointestinal tolerance and improve commensal microbiota composition. However, it remains unknown whether supplementation of milk-formulas with prebiotics and 1,3-olein-2-palmitin (OPO) can achieve feeding outcomes similar to those of breastfeeding. In the present study, we investigated the effects of two kinds of infant formula with different additives on the overall diversity and composition of the fecal microbiota, to determine which was closer to breastfeeding. A total of 108 infants were enrolled, including breastfeeding (n=59) and formula feeding group (n=49). The formula feeding infants were prospectively randomly divided into a standard formula group (n=18), and a supplemented formula group(n=31). The fecal samples were collected at 4 months after intervention. Fecal microbiota analysis targeting the V4 region of the 16S rRNA gene was performed using MiSeq sequencing. The overall bacterial diversity and composition, key functional bacteria, and predictive functional profiles in the two different formula groups were compared with breastfeeding group. We found that the alpha diversity of the gut microbiota was not significantly different between the OPO and breastfeeding groups with Chaos 1 index (p=0.346). The relative abundances of Enhydrobacter and Akkermansia in the OPO group were more similar to those of the breastfeeding group than to those of the standard formula group. The gut microbiota metabolism function prediction analysis showed that the supplemented formula group was similar to the breastfeeding group in terms of ureolysis (p=0.297). These findings suggest that, when formula supplemented with prebiotics and OPO was given, the overall bacterial diversity and parts of the composition of the fecal microbiota would be similar to that of breastfeeding infants.
Collapse
Affiliation(s)
- Bingquan Zhu
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Shuangshuang Zheng
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Kexin Lin
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xin Xu
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lina Lv
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zhengyan Zhao
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jie Shao
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
43
|
Administration of β-lactam antibiotics and delivery method correlate with intestinal abundances of Bifidobacteria and Bacteroides in early infancy, in Japan. Sci Rep 2021; 11:6231. [PMID: 33737648 PMCID: PMC7973812 DOI: 10.1038/s41598-021-85670-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
The intestinal microbiome changes dynamically in early infancy. Colonisation by Bifidobacterium and Bacteroides and development of intestinal immunity is interconnected. We performed a prospective observational cohort study to determine the influence of antibiotics taken by the mother immediately before delivery on the intestinal microbiome of 130 healthy Japanese infants. Faecal samples (383) were collected at 1, 3, and 6 months and analysed using next-generation sequencing. Cefazolin was administered before caesarean sections, whereas ampicillin was administered in cases with premature rupture of the membranes and in Group B Streptococcus-positive cases. Bifidobacterium and Bacteroides were dominant (60–70% mean combined occupancy) at all ages. A low abundance of Bifidobacterium was observed in infants exposed to antibiotics at delivery and at 1 and 3 months, with no difference between delivery methods. A lower abundance of Bacteroides was observed after caesarean section than vaginal delivery, irrespective of antibiotic exposure. Additionally, occupancy by Bifidobacterium at 1 and 3 months and by Bacteroides at 3 months differed between infants with and without siblings. All these differences disappeared at 6 months. Infants exposed to intrapartum antibiotics displayed altered Bifidobacterium abundance, whereas abundance of Bacteroides was largely associated with the delivery method. Existence of siblings also significantly influenced the microbiota composition of infants.
Collapse
|
44
|
Udayan S, Buttó LF, Rossini V, Velmurugan J, Martinez-Lopez M, Sancho D, Melgar S, O'Toole PW, Nally K. Macrophage cytokine responses to commensal Gram-positive Lactobacillus salivarius strains are TLR2-independent and Myd88-dependent. Sci Rep 2021; 11:5896. [PMID: 33723368 PMCID: PMC7961041 DOI: 10.1038/s41598-021-85347-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 02/26/2021] [Indexed: 01/31/2023] Open
Abstract
The mechanisms through which cells of the host innate immune system distinguish commensal bacteria from pathogens are currently unclear. Toll-like receptors (TLRs) are a class of pattern recognition receptors (PRRs) expressed by host cells which recognize microbe-associated molecular patterns (MAMPs) common to both commensal and pathogenic bacteria. Of the different TLRs, TLR2/6 recognize bacterial lipopeptides and trigger cytokines responses, especially to Gram-positive and Gram-negative pathogens. We report here that TLR2 is dispensable for triggering macrophage cytokine responses to different strains of the Gram-positive commensal bacterial species Lactobacillus salivarius. The L. salivarius UCC118 strain strongly upregulated expression of the PRRs, Mincle (Clec4e), TLR1 and TLR2 in macrophages while downregulating other TLR pathways. Cytokine responses triggered by L. salivarius UCC118 were predominantly TLR2-independent but MyD88-dependent. However, macrophage cytokine responses triggered by another Gram-positive commensal bacteria, Bifidobacterium breve UCC2003 were predominantly TLR2-dependent. Thus, we report a differential requirement for TLR2-dependency in triggering macrophage cytokine responses to different commensal Gram-positive bacteria. Furthermore, TNF-α responses to the TLR2 ligand FSL-1 and L. salivarius UCC118 were partially Mincle-dependent suggesting that PRR pathways such as Mincle contribute to the recognition of MAMPs on distinct Gram-positive commensal bacteria. Ultimately, integration of signals from these different PRR pathways and other MyD88-dependent pathways may determine immune responses to commensal bacteria at the host-microbe interface.
Collapse
Affiliation(s)
- Sreeram Udayan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | | | - Valerio Rossini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Maria Martinez-Lopez
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Silvia Melgar
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul W O'Toole
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Ken Nally
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
| |
Collapse
|
45
|
Amin N, Seifert J. Dynamic progression of the calf's microbiome and its influence on host health. Comput Struct Biotechnol J 2021; 19:989-1001. [PMID: 33613865 PMCID: PMC7868804 DOI: 10.1016/j.csbj.2021.01.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
The first year of a calf's life is a critical phase as its digestive system and immunity are underdeveloped. A high level of stress caused by separation from mothers, transportation, antibiotic treatments, dietary shifts, and weaning can have long-lasting health effects, which can reduce future production parameters, such as milk yield and reproduction, or even increase the mortality of calves. The early succession of microbes throughout the gastrointestinal tract of neonatal calves follows a sequential pattern of colonisation and is greatly influenced by their physiological state, age, diet, and environmental factors; this leads to the establishment of region- and site-specific microbial communities. This review summarises the current information on the various potential factors that may affect the early life microbial colonisation pattern in the gastrointestinal tract of calves. The possible role of host-microbe interactions in the development and maturation of host gut, immune system, and health are described. Additionally, the possibility of improving the health of calves through gut microbiome modulation and using antimicrobial alternatives is discussed. Finally, the trends, challenges, and limitations of the current research are summarised and prospective directions for future studies are highlighted.
Collapse
Affiliation(s)
- Nida Amin
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Jana Seifert
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
46
|
Lyons T, Jahns H, Brady J, O'Hara E, Waters SM, Kenny D, Doyle E, Meade KG. Integrated analyses of the microbiological, immunological and ontological transitions in the calf ileum during early life. Sci Rep 2020; 10:21264. [PMID: 33277514 PMCID: PMC7718239 DOI: 10.1038/s41598-020-77907-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
Aberdeen Angus calves were sacrificed from immediately post-birth up to 96 days of age (DOA) and ileal samples were collected for microbial, histological and immunological analyses. Firmicutes bacteria were established immediately in the ileum of calves after birth and remained the dominant phyla at all time points from birth until 96 DOA. Temporal shifts in phyla reflected significantly increased Bacteroidetes at birth followed by temporal increases in Actinobacteria abundance over time. At a cellular level, a significant increase in cell density was detected in the ileal villi over time. The innate cell compartment at birth was composed primarily of eosinophils and macrophages with a low proportion of adaptive T lymphocytes; whereas an increase in the relative abundance of T cells (including those in the intra-epithelial layer) was observed over time. The ileal intestinal cells were immunologically competent as assessed by expression levels of genes encoding the inflammasome sensor NLRP3, and inflammatory cytokines IL1A, IL1B and IL33-all of which significantly increased from birth. In contrast, a temporal reduction in genes encoding anti-inflammatory cytokine IL10 was detected from birth. This study provides an integrated baseline of microbiological, histological and immunological data on the immune adaptation of the neonatal ileum to microbial colonisation in calves.
Collapse
Affiliation(s)
- Tamsin Lyons
- Environmental Microbiology Group, School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Ireland
| | - Hanne Jahns
- Pathobiology Section, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Joseph Brady
- Pathobiology Section, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Eóin O'Hara
- Animal & Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, County Meath, Ireland.,Department of Agriculture, Food, and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Sinéad M Waters
- Animal & Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, County Meath, Ireland
| | - David Kenny
- Animal & Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, County Meath, Ireland
| | - Evelyn Doyle
- Environmental Microbiology Group, School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Ireland
| | - Kieran G Meade
- Animal & Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, County Meath, Ireland. .,School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
47
|
Evaluation of potential early life risk factors for ulcerative colitis. JOURNAL OF SURGERY AND MEDICINE 2020. [DOI: 10.28982/josam.826501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
48
|
Walrath T, Dyamenahalli KU, Hulsebus HJ, McCullough RL, Idrovo JP, Boe DM, McMahan RH, Kovacs EJ. Age-related changes in intestinal immunity and the microbiome. J Leukoc Biol 2020; 109:1045-1061. [PMID: 33020981 DOI: 10.1002/jlb.3ri0620-405rr] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/19/2022] Open
Abstract
The gastrointestinal (GI) tract is a vitally important site for the adsorption of nutrients as well as the education of immune cells. Homeostasis of the gut is maintained by the interplay of the intestinal epithelium, immune cells, luminal Ags, and the intestinal microbiota. The well-being of the gut is intrinsically linked to the overall health of the host, and perturbations to this homeostasis can have severe impacts on local and systemic health. One factor that causes disruptions in gut homeostasis is age, and recent research has elucidated how critical systems within the gut are altered during the aging process. Intestinal stem cell proliferation, epithelial barrier function, the gut microbiota, and the composition of innate and adaptive immune responses are all altered in advanced age. The aging population continues to expand worldwide, a phenomenon referred to as the "Silver Tsunami," and every effort must be made to understand how best to prevent and treat age-related maladies. Here, recent research about changes observed in the intestinal epithelium, the intestinal immune system, the microbiota, and how the aging gut interacts with and influences other organs such as the liver, lung, and brain are reviewed. Better understanding of these age-related changes and their impact on multi-organ interactions will aid the development of therapies to increase the quality of life for all aged individuals.
Collapse
Affiliation(s)
- Travis Walrath
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Burn Research Program, University of Colorado Denver, Aurora, Colorado, USA
| | - Kiran U Dyamenahalli
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Burn Research Program, University of Colorado Denver, Aurora, Colorado, USA
| | - Holly J Hulsebus
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Burn Research Program, University of Colorado Denver, Aurora, Colorado, USA.,Immunology Graduate Program, University of Colorado Denver, Aurora, Colorado, USA
| | - Rebecca L McCullough
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado, USA.,GI and Liver Innate Immune Program, University of Colorado Denver, Aurora, Colorado, USA
| | - Juan-Pablo Idrovo
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Burn Research Program, University of Colorado Denver, Aurora, Colorado, USA
| | - Devin M Boe
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Burn Research Program, University of Colorado Denver, Aurora, Colorado, USA.,Immunology Graduate Program, University of Colorado Denver, Aurora, Colorado, USA.,Medical Scientist Training Program, University of Colorado Denver, Aurora, Colorado, USA
| | - Rachel H McMahan
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Burn Research Program, University of Colorado Denver, Aurora, Colorado, USA
| | - Elizabeth J Kovacs
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Burn Research Program, University of Colorado Denver, Aurora, Colorado, USA.,Immunology Graduate Program, University of Colorado Denver, Aurora, Colorado, USA.,Medical Scientist Training Program, University of Colorado Denver, Aurora, Colorado, USA.,GI and Liver Innate Immune Program, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
49
|
Meconium microbiome and its relation to neonatal growth and head circumference catch-up in preterm infants. PLoS One 2020; 15:e0238632. [PMID: 32956415 PMCID: PMC7505439 DOI: 10.1371/journal.pone.0238632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
The purpose was identify an association between meconium microbiome, extra-uterine growth restriction, and head circumference catch-up. MATERIALS AND METHODS Prospective study with preterm infants born <33 weeks gestational age (GA), admitted at Neonatal Unit and attending the Follow-Up Preterm Program of a tertiary hospital. Excluded out born infants; presence of congenital malformations or genetic syndromes; congenital infections; HIV-positive mothers; and newborns whose parents or legal guardians did not authorize participation. Approved by the institution's ethics committee. Conducted 16S rRNA sequencing using PGM Ion Torrent meconium samples for microbiota analysis. RESULTS Included 63 newborns, GA 30±2.3 weeks, mean weight 1375.80±462.6 grams, 68.3% adequate weight for GA at birth. Polynucleobacter (p = 0.0163), Gp1 (p = 0.018), and Prevotella (p = 0.038) appeared in greater abundance in meconium of preterm infants with adequate birth weight for GA. Thirty (47.6%) children reached head circumference catch-up before 6 months CA and 33 (52.4%) after 6 months CA. Salmonella (p<0.001), Flavobacterium (p = 0.026), and Burkholderia (p = 0.026) were found to be more abundant in meconium in the group of newborns who achieved catch-up prior to 6th month CA. CONCLUSION Meconium microbiome abundance was related to adequacy of weight for GA. Meconium microbiome differs between children who achieve head circumference catch-up by the 6th month of corrected age or after this period.
Collapse
|
50
|
Garschagen LS, Franke T, Deppenmeier U. An alternative pentose phosphate pathway in human gut bacteria for the degradation of C5 sugars in dietary fibers. FEBS J 2020; 288:1839-1858. [PMID: 32770699 DOI: 10.1111/febs.15511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/13/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022]
Abstract
The microbial degradation of pentoses in the human gut is a crucial factor for the utilization of plant-based dietary fibers. A vast majority of gut microbes are able to use these C5-sugars as a carbon and energy source. However, the underlying metabolic pathways are not fully understood. Bioinformatic analysis showed that a large number of abundant gut bacteria lack genes encoding a transaldolase as a key enzyme of the pentose phosphate pathway. Among them was the important human gut microbe Prevotella copri, which was able to grow in minimal media containing xylose or hemicelluloses as the sole carbon source. Therefore, we looked for an alternative pathway for pentose conversion in P. copri using bioinformatics, enzyme activity assays, and the detection of intermediates of pentose metabolism. It became evident that the organism converted C5-sugars via the sedoheptulose-1,7-bisphosphate pathway (SBPP) to connect pentose metabolism with glycolysis. To circumvent the transaldolase reaction, P. copri uses the combined catalysis of a pyrophosphate-dependent phosphofructokinase and a fructose-bisphosphate aldolase. Furthermore, we present strong evidence that the SBPP is widely distributed in important gut bacteria, including members of the phyla Bacteroides, Firmicutes, Proteobacteria, Verrucomicrobia, and Lentisphaerae.
Collapse
Affiliation(s)
- Laura S Garschagen
- Institute of Microbiology and Biotechnology, University of Bonn, Bonn, Germany
| | - Thomas Franke
- Institute of Microbiology and Biotechnology, University of Bonn, Bonn, Germany
| | - Uwe Deppenmeier
- Institute of Microbiology and Biotechnology, University of Bonn, Bonn, Germany
| |
Collapse
|