1
|
Kim HY, Jang HJ, Muthamil S, Shin UC, Lyu JH, Kim SW, Go Y, Park SH, Lee HG, Park JH. Novel insights into regulators and functional modulators of adipogenesis. Biomed Pharmacother 2024; 177:117073. [PMID: 38981239 DOI: 10.1016/j.biopha.2024.117073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024] Open
Abstract
Adipogenesis is a process that differentiates new adipocytes from precursor cells and is tightly regulated by several factors, including many transcription factors and various post-translational modifications. Recently, new roles of adipogenesis have been suggested in various diseases. However, the molecular mechanisms and functional modulation of these adipogenic genes remain poorly understood. This review summarizes the regulatory factors and modulators of adipogenesis and discusses future research directions to identify novel mechanisms regulating adipogenesis and the effects of adipogenic regulators in pathological conditions. The master adipogenic transcriptional factors PPARγ and C/EBPα were identified along with other crucial regulatory factors such as SREBP, Kroxs, STAT5, Wnt, FOXO1, SWI/SNF, KLFs, and PARPs. These transcriptional factors regulate adipogenesis through specific mechanisms, depending on the adipogenic stage. However, further studies related to the in vivo role of newly discovered adipogenic regulators and their function in various diseases are needed to develop new potent therapeutic strategies for metabolic diseases and cancer.
Collapse
Affiliation(s)
- Hyun-Yong Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea; New Drug Development Center, Osong Medical Innovation Foundation, 123, Osongsaengmyeong-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea.
| | - Hyun-Jun Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea; Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea.
| | - Subramanian Muthamil
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea.
| | - Ung Cheol Shin
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea.
| | - Ji-Hyo Lyu
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea.
| | - Seon-Wook Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea.
| | - Younghoon Go
- Korean Medicine (KM)-application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea.
| | - Seong-Hoon Park
- Genetic and Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34141, Republic of Korea.
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea; University of Science & Technology (UST), KIOM campus, Korean Convergence Medicine Major, Daejeon 34054, Republic of Korea.
| |
Collapse
|
2
|
Andrade YMFDS, Castro MVD, Tavares VDS, Souza RDSO, Faccioli LH, Lima JB, Sorgi CA, Borges VM, Araújo-Santos T. Polyunsaturated fatty acids alter the formation of lipid droplets and eicosanoid production in Leishmania promastigotes. Mem Inst Oswaldo Cruz 2023; 118:e220160. [PMID: 36888851 PMCID: PMC9991015 DOI: 10.1590/0074-02760220160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/24/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND The knowledge about eicosanoid metabolism and lipid droplet (LD) formation in the Leishmania is very limited and new approaches are needed to identify which bioactive molecules are produced of them. OBJECTIVES Herein, we compared LDs and eicosanoids biogenesis in distinct Leishmania species which are etiologic agents of different clinical forms of leishmaniasis. METHODS For this, promastigotes of Leishmania amazonensis, L. braziliensis and L. infantum were stimulated with polyunsaturated fatty acids (PUFA) and LD and eicosanoid production was evaluated. We also compared mutations in structural models of human-like cyclooxygenase-2 (GP63) and prostaglandin F synthase (PGFS) proteins, as well as the levels of these enzymes in parasite cell extracts. FINDINGS PUFAs modulate the LD formation in L. braziliensis and L. infantum. Leishmania spp with equivalent tissue tropism had same protein mutations in GP63 and PGFS. No differences in GP63 production were observed among Leishmania spp, however PGFS production increased during the parasite differentiation. Stimulation with arachidonic acid resulted in elevated production of hydroxyeicosatetraenoic acids compared to prostaglandins. MAIN CONCLUSIONS Our data suggest LD formation and eicosanoid production are distinctly modulated by PUFAS dependent of Leishmania species. In addition, eicosanoid-enzyme mutations are more similar between Leishmania species with same host tropism.
Collapse
Affiliation(s)
| | - Monara Viera de Castro
- Universidade Federal do Oeste da Bahia, Centro das Ciências Biológicas e da Saúde, Núcleo de Estudos de Agentes Infecciosos e Vetores, Barreiras, BA, Brasil
| | - Victor de Souza Tavares
- Universidade Federal do Oeste da Bahia, Centro das Ciências Biológicas e da Saúde, Núcleo de Estudos de Agentes Infecciosos e Vetores, Barreiras, BA, Brasil
| | - Rayane da Silva Oliveira Souza
- Universidade Federal do Oeste da Bahia, Centro das Ciências Biológicas e da Saúde, Núcleo de Estudos de Agentes Infecciosos e Vetores, Barreiras, BA, Brasil
| | - Lúcia Helena Faccioli
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Ribeirão Preto, SP, Brasil
| | - Jonilson Berlink Lima
- Fundação Oswaldo Cruz-Fiocruz, Instituto Gonçalo Moniz, Salvador, BA, Brasil.,Universidade Federal do Oeste da Bahia, Centro das Ciências Biológicas e da Saúde, Núcleo de Estudos de Agentes Infecciosos e Vetores, Barreiras, BA, Brasil.,Universidade Federal da Bahia, Faculdade de Medicina, Salvador, BA, Brasil
| | | | - Valéria M Borges
- Fundação Oswaldo Cruz-Fiocruz, Instituto Gonçalo Moniz, Salvador, BA, Brasil.,Universidade Federal da Bahia, Faculdade de Medicina, Salvador, BA, Brasil
| | - Théo Araújo-Santos
- Fundação Oswaldo Cruz-Fiocruz, Instituto Gonçalo Moniz, Salvador, BA, Brasil.,Universidade Federal do Oeste da Bahia, Centro das Ciências Biológicas e da Saúde, Núcleo de Estudos de Agentes Infecciosos e Vetores, Barreiras, BA, Brasil
| |
Collapse
|
3
|
Civelek E, Ozen G. The biological actions of prostanoids in adipose tissue in physiological and pathophysiological conditions. Prostaglandins Leukot Essent Fatty Acids 2022; 186:102508. [PMID: 36270150 DOI: 10.1016/j.plefa.2022.102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/29/2022] [Accepted: 10/06/2022] [Indexed: 12/29/2022]
Abstract
Adipose tissue has been established as an endocrine organ that plays an important role in maintaining metabolic homeostasis. Adipose tissue releases several bioactive molecules called adipokines. Inflammation, dysregulation of adipokine synthesis, and secretion are observed in obesity and related diseases and cause adipose tissue dysfunction. Prostanoids, belonging to the eicosanoid family of lipid mediators, can be synthesized in adipose tissue and play a critical role in adipose tissue biology. In this review, we summarized the current knowledge regarding the interaction of prostanoids with adipokines, the expression of prostanoid receptors, and prostanoid synthase enzymes in adipose tissues in health and disease. Furthermore, the involvement of prostanoids in the physiological function or dysfunction of adipose tissue including inflammation, lipolysis, adipogenesis, thermogenesis, browning of adipocytes, and vascular tone regulation was also discussed by examining studies using pharmacological approaches or genetically modified animals for prostanoid receptors/synthase enzymes. Overall, the present review provides a perspective on the evidence from literature regarding the biological effects of prostanoids in adipose tissue. Among prostanoids, prostaglandin E2 (PGE2) is prominent in regards to its substantial role in both adipose tissue physiology and pathophysiology. Targeting prostanoids may serve as a potential therapeutic strategy for preventing or treating obesity and related diseases.
Collapse
Affiliation(s)
- Erkan Civelek
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Gulsev Ozen
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
4
|
Effects of PPAR-γ and RXR-α on mouse meibomian gland epithelial cells during inflammation induced by latanoprost. Exp Eye Res 2022; 224:109251. [PMID: 36150542 DOI: 10.1016/j.exer.2022.109251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022]
Abstract
The purpose of this study is to investigate the effects of latanoprost on the secretion of cytokines and chemokines from meibomian gland epithelial cells, and to evaluate the modulation of peroxisome proliferator-activated receptor γ (PPAR-γ) and retinoid X receptor α (RXR-α) during latanoprost-induced inflammation. Mouse meibomian gland epithelial cells were cultured in proliferation and differentiation medium, respectively. Cells were exposed to latanoprost, rosiglitazone (PPAR-γ agonist), or LG100268 (RXR-α agonist), respectively. The expression of IL-6, IL-1β, TNF-α, MMP-9, MCP-1, and CCL-5 were detected by real-time PCR and ELISA. The effect of latanoprost, rosiglitazone, LG100268, and inflammatory cytokines on the differentiation of meibocyte were evaluated by related gene expression and lipid staining. The expression of Keratin-1, 6, 17 protein was detected by western immunoblotting. The results showed that the above cytokines could be induced by latanoprost in meibomian gland epithelial cells. LG100268 and rosiglitazone could inhibit the production of IL-6 and TNF-α induced by latanoprost, respectively. Latanoprost suppressed the expression of differentiation-related mRNA through a positive feedback loop by enhancement of COX-2 expression via FP receptor-activated ERK signaling. The expression of Keratin-17 was upregulated by rosiglitazone and suppressed by LG100268. The application of IL-6 and TNF-α showed negative effects on lipid accumulation in meibomian gland epithelial cells. These results demonstrated that latanoprost could induce inflammation and suppress differentiation of mouse meibomian gland epithelial cells. The activation of PPAR-γ and RXR-α showed an anti-inflammatory effect, showing a potential role to antagonize the effect of latanoprost eyedrops on meibomian gland epithelial cells.
Collapse
|
5
|
Fujimori K. Prostaglandin D<sub>2</sub> and F<sub>2α</sub> as Regulators of Adipogenesis and Obesity. Biol Pharm Bull 2022; 45:985-991. [DOI: 10.1248/bpb.b22-00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ko Fujimori
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| |
Collapse
|
6
|
Ziemanski JF, Wilson L, Barnes S, Nichols KK. Prostaglandin E2 and F2α Alter Expression of Select Cholesteryl Esters and Triacylglycerols Produced by Human Meibomian Gland Epithelial Cells. Cornea 2022; 41:95-105. [PMID: 34483274 PMCID: PMC8648972 DOI: 10.1097/ico.0000000000002835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/10/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE PGF2α analogs are commonly used to treat glaucoma and are associated with higher rates of meibomian gland dysfunction (MGD). The purpose of this study was to evaluate the physiological effects of PGF2α and PGE2 on immortalized human meibomian gland epithelial cells (HMGECs). METHODS HMGECs were immunostained for the 4 PGE2 receptors (EP1, EP2, EP3, and EP4) and 1 PGF2α receptor (FP) and imaged. Rosiglitazone-differentiated HMGECs were exposed to PGF2α and PGE2 (10-9 to 10-6 M) for 3 hours. Cell viability was assessed by an adenosine triphosphate-based luminescent assay, and lipid extracts were analyzed for cholesteryl esters (CEs), wax esters (WEs), and triacylglycerols (TAGs) by ESI-MSMSALL in positive ion mode by a Triple TOF 5600 Mass Spectrometer using SCIEX LipidView 1.3. RESULTS HMGECs expressed 3 PGE2 receptors (EP1, EP2, and EP4) and the 1 PGF2α receptor (FP). Neither PGE2 nor PGF2α showed signs of cytotoxicity at any of the concentrations tested. WEs were not detected from any of the samples, but both CEs and TAGs exhibited a diverse and dynamic profile. PGE2 suppressed select CEs (CE 22:1, CE 26:0, CE 28:1, and CE 30:1). PGF2α dose dependently increased several CEs (CE 20:2, CE 20:1, CE 22:1, and CE 24:0) yet decreased others. Both prostaglandins led to nonspecific TAG remodeling. CONCLUSIONS PGE2 and PGF2α showed minimal effect on HMGEC viability. PGF2α influences lipid expression greater than PGE2 and may do so by interfering with meibocyte differentiation. This work may provide insight into the mechanism of MGD development in patients with glaucoma treated with PGF2α analogs.
Collapse
Affiliation(s)
- Jillian F. Ziemanski
- University of Alabama at Birmingham, School of Optometry, Department of Optometry Vision Science, Birmingham, AL, USA
| | - Landon Wilson
- University of Alabama at Birmingham, School of Medicine, Department of Pharmacology Toxicology, Birmingham, AL, USA
| | - Stephen Barnes
- University of Alabama at Birmingham, School of Medicine, Department of Pharmacology Toxicology, Birmingham, AL, USA
| | - Kelly K. Nichols
- University of Alabama at Birmingham, School of Optometry, Department of Optometry Vision Science, Birmingham, AL, USA
| |
Collapse
|
7
|
Hikage F, Ichioka H, Watanabe M, Umetsu A, Ohguro H, Ida Y. Addition of ROCK inhibitors to prostaglandin derivative (PG) synergistically affects adipogenesis of the 3D spheroids of human orbital fibroblasts (HOFs). Hum Cell 2021; 35:125-132. [PMID: 34591280 DOI: 10.1007/s13577-021-00623-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022]
Abstract
To study the additive effects of Rho-associated coiled-coil containing protein kinase inhibitors, ripasudil (Rip) to bimatoprost acid (BIM-A) on orbital adipose tissue, three-dimensional (3D) cultures of human orbital fibroblasts (HOFs) were prepared and the physical properties including the 3D spheroid size and stiffness, lipid staining by BODIPY and the mRNA expression of adipogenesis-related genes, PPARγ and AP2, and extracellular matrix (ECM) including collagen (COL)1, 4 and 6, and fibronectin (FN) were analyzed. Adipogenesis (DIF+) induced (1) enlargement and increasing stiffness of the 3D HOFs spheroid, (2) increased lipid staining, the expression of adipogenesis-related gene expressions, and (3) the down-regulation of COL1 and FN and up-regulation of COL4 and COL6. In the presence of BIM-A, (1) such DIF+-induced changes in 3D spheroid size and stiffness were significantly inhibited or enhanced, respectively, (2) the lipid staining and its related gene expressions were significantly down-regulated, and (3) the expression of COL1 and COL6 were up-regulated. By the addition of Rip to BIM-A, the above BIM-A-induced effects were all inhibited, except for the up-regulation of COL6 and FN expression, that is, enlarging and decreasing stiffness, enhancement of lipid staining and its related gene expression, and down-regulation of COL1 expression. Our present study indicates that Rip significantly suppressed BIM-A-induced effects toward 3D HOFs spheroids.
Collapse
Affiliation(s)
- Fumihito Hikage
- Departments of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Hanae Ichioka
- Departments of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Megumi Watanabe
- Departments of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Araya Umetsu
- Departments of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Hiroshi Ohguro
- Departments of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Yosuke Ida
- Departments of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan.
| |
Collapse
|
8
|
Wu L, Liang Y, Song N, Wang X, Jiang C, Chen X, Qin B, Sun X, Liu G, Zhao C. Differential expression and alternative splicing of transcripts in orbital adipose/connective tissue of thyroid-associated ophthalmopathy. Exp Biol Med (Maywood) 2021; 246:1990-2006. [PMID: 34078122 DOI: 10.1177/15353702211017292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Thyroid-associated ophthalmopathy is a typical autoimmune disease of orbital tissues. Alternative splicing significantly influences many diseases progression, including cancer, age-related macular degeneration, and multiple sclerosis, by modulating the expression of transcripts. However, its role in thyroid-associated ophthalmopathy is still unclear. In this study, differential expression transcripts and differential alternative splicing genes in orbital adipose/connective tissues of thyroid-associated ophthalmopathy patients were detected using RNA sequencing, Cuffdiff, and replicate multivariate analysis of transcript splicing. Three thousand ninety six differential expression transcripts and 2355 differential alternative splicing genes were screened out, while functional enrichment analysis indicated that differential expression transcript and differential alternative splicing genes were associated with immune modulation, extracellular matrix remodeling, and adipogenesis. The expression of the SORBS1, SEPT2, COL12A1, and VCAN gene transcripts was verified by qRT-PCR. In conclusion, prevalent alternative splicing is involved in the disease development in thyroid-associated ophthalmopathy. More attention should be paid to the mechanism of alternative splicing to explore more potential therapeutic targets in thyroid-associated ophthalmopathy.
Collapse
Affiliation(s)
- Lianqun Wu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China
| | - Yu Liang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China
| | - Nan Song
- Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Xiying Wang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China
| | - Chao Jiang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China
| | - Xinxin Chen
- Department of Ophthalmology, Changzheng Hospital, Second Military Medical University, Shanghai 20003, China
| | - Bing Qin
- Department of Ophthalmology, Suqian First Hospital, Suqian 223800, China
| | - Xiantao Sun
- Department of Ophthalmology, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou 450053, China
| | - Guohua Liu
- Department of Ophthalmology, Qilu Children's Hospital of Shandong University, Jinan 250022, China
| | - Chen Zhao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China
| |
Collapse
|
9
|
Loss of ADAMTS15 Promotes Browning in 3T3-L1 White Adipocytes via Activation of β3-adrenergic Receptor. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-021-0036-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Simard M, Rioux G, Morin S, Martin C, Guérin SL, Flamand N, Julien P, Fradette J, Pouliot R. Investigation of Omega-3 Polyunsaturated Fatty Acid Biological Activity in a Tissue-Engineered Skin Model Involving Psoriatic Cells. J Invest Dermatol 2021; 141:2391-2401.e13. [PMID: 33857488 DOI: 10.1016/j.jid.2021.02.755] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022]
Abstract
Clinical studies have shown that diets enriched with omega-3 (also know as n-3) polyunsaturated fatty acids could relieve the symptoms of patients with psoriasis. However, the mechanisms involved remain poorly understood. The aim of this study was to investigate the effects of α-linolenic acid (ALA) on the proliferation and differentiation of psoriatic keratinocytes in a three-dimensional skin model. Skin models featuring healthy (healthy substitute) or psoriatic (psoriatic substitute) cells were engineered by the self-assembly method of tissue engineering using a culture medium supplemented with 10 μM ALA in comparison with the regular unsupplemented medium. ALA decreased keratinocyte proliferation and improved psoriatic substitute epidermal differentiation, as measured by decreased Ki67 staining and increased protein expression of FLG and loricrin. The added ALA was notably incorporated into the epidermal phospholipids and metabolized into long-chain n-3 polyunsaturated fatty acids, mainly eicosapentaenoic acid and n-3 docosapentaenoic acid. ALA supplementation led to increased levels of eicosapentaenoic acid derivatives (15-hydroxyeicosapentaenoic acid and 18-hydroxyeicosapentaenoic acid) as well as a decrease in levels of omega-6 (also know as n-6) polyunsaturated fatty acid lipid mediators (9-hydroxyoctadecadienoic acid, 12-hydroxyeicosatetraenoic acid, and leukotriene B4). Furthermore, the signal transduction mediators extracellular signal‒regulated kinases 1 and 2 were the kinases most activated after ALA supplementation. Taken together, these results show that ALA decreases the pathologic phenotype of psoriatic substitutes by normalizing keratinocyte proliferation and differentiation in vitro.
Collapse
Affiliation(s)
- Mélissa Simard
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, Québec, Canada; Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada; Faculté de pharmacie, Université Laval, Québec, Québec, Canada
| | - Geneviève Rioux
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, Québec, Canada; Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada; Faculté de pharmacie, Université Laval, Québec, Québec, Canada
| | - Sophie Morin
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, Québec, Canada; Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada; Faculté de pharmacie, Université Laval, Québec, Québec, Canada
| | - Cyril Martin
- Centre de recherche de l'institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada; Département de médecine, Faculté de médecine, Université Laval, Québec, Québec, Canada
| | - Sylvain L Guérin
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, Québec, Canada; Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada; CUO-Recherche, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada; Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec, Canada
| | - Nicolas Flamand
- Centre de recherche de l'institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada; Département de médecine, Faculté de médecine, Université Laval, Québec, Québec, Canada
| | - Pierre Julien
- Département de médecine, Faculté de médecine, Université Laval, Québec, Québec, Canada; Axe Endocrinologie et Néphrologie, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
| | - Julie Fradette
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, Québec, Canada; Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada; Département de chirurgie, Faculté de médecine, Université Laval, Québec, Québec, Canada
| | - Roxane Pouliot
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, Québec, Canada; Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada; Faculté de pharmacie, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
11
|
Sasaki Y, Kuwata H, Akatsu M, Yamakawa Y, Ochiai T, Yoda E, Nakatani Y, Yokoyama C, Hara S. Involvement of prostacyclin synthase in high-fat-diet-induced obesity. Prostaglandins Other Lipid Mediat 2021; 153:106523. [PMID: 33383181 DOI: 10.1016/j.prostaglandins.2020.106523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 01/01/2023]
Abstract
Prostacyclin (PGI2) synthase (PGIS) functions downstream of inducible cyclooxygenase COX-2 in the PGI2 biosynthetic pathway. Although COX-2 and PGI2 receptor (IP) are known to be involved in adipogenesis and obesity, the involvement of PGIS has not been fully elucidated. In this study, we examined the role of PGIS in adiposity by using PGIS-deficient mice. Although PGIS deficiency did not affect in vitro adipocyte differentiation, when fed a high-fat diet (HFD), PGIS knockout (KO) mice showed reductions in both body weight gain and epididymal fat mass relative to wild-type (WT) mice. PGIS deficiency might reduce HFD-induced obesity by suppressing PGI2 production. We further found that additional gene deletion of microsomal prostaglandin (PG) E synthase-1 (mPGES-1), one of the other PG terminal synthases that also functions downstream of COX-2, emphasized the metabolic phenotypes of PGIS-deficient mice. More marked reduction in obesity and improved insulin resistance were observed in PGIS/mPGES-1 double KO (DKO) mice. Since an additive increase in PGF2α level in epididymal fat was observed in DKO mice, mPGES-1 deficiency might affect adiposity by enhancing the production of PGF2α. Our immunohistochemical analysis further revealed that in adipose tissues, PGIS was expressed in vascular and stromal cells but not in adipocytes. These results suggested that PGI2 produced from PGIS-expressed stromal tissues might enhance HFD-induced obesity by acting on IP expressed in adipocytes. The balance of expressions of PG terminal synthases and the subsequent production of prostanoids might be critical for adiposity.
Collapse
Affiliation(s)
- Yuka Sasaki
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan
| | - Hiroshi Kuwata
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan
| | - Moe Akatsu
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan
| | - Yuri Yamakawa
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan
| | - Tsubasa Ochiai
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan
| | - Emiko Yoda
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan
| | - Yoshihito Nakatani
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan
| | - Chieko Yokoyama
- Kanagawa Institute of Technology, Atsugi, Kanagawa, 243-0292, Japan
| | - Shuntaro Hara
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan.
| |
Collapse
|
12
|
Protection of 6-OHDA neurotoxicity by PGF 2α through FP-ERK-Nrf2 signaling in SH-SY5Y cells. Toxicology 2021; 450:152686. [PMID: 33486071 DOI: 10.1016/j.tox.2021.152686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/07/2021] [Accepted: 01/16/2021] [Indexed: 12/26/2022]
Abstract
6-Hydroxydopamine (6-OHDA) is a neurotoxin that destroy dopaminergic neurons and widely used to establish animal models of Parkinson's disease. Prostaglandins (PGs) are involved in various cellular processes, including the damage and repair of neuronal cells. However, the function of PGF2α in neuronal cells remains unclear. In this study, we investigated the effects of PGF2α against 6-OHDA-mediated toxicity in human neuroblastoma SH-SY5Y cells and elucidated its underlying molecular mechanism. When the cells were treated with 6-OHDA (50 μM) for 6 h, the expression levels of PGF2α synthetic enzymes; cyclooxygenase-2 and aldo-keto reductase 1C3 as PGF2α synthase were enhanced in an incubation-time-dependent manner. In addition, the production of PGF2α was increased in 6-OHDA-treated cells. Fluprostenol, a PGF2α receptor (FP) agonist (500 nM), suppressed 6-OHDA-induced cell death by decreasing the production of reactive oxygen species (ROS) and increasing the expression of the anti-oxidant genes. These fluprostenol-mediated effects were inhibited by co-treatment with AL8810, an FP receptor antagonist (1 μM) or transfection with FP siRNA (20 nM). Moreover, 6-OHDA-induced phosphorylation of extracellular signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase family, was inhibited by co-incubation with AL8810. Furthermore, fluprostenol itself enhanced ERK phosphorylation and further elevated the 6-OHDA-induced phosphorylation of ERK. In addition, 6-OHDA induced nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2), activating anti-oxidant gene expression, was repressed by co-culturing with AL8810. These results indicate that PGF2α suppressed 6-OHDA-induced neuronal cell death by enhancing anti-oxidant gene expression via the FP receptor-ERK-Nrf2 signaling. Thus, FP receptor is a potential target for inhibition of ROS-mediated neuronal cell death.
Collapse
|
13
|
Maehara T, Higashitarumi F, Kondo R, Fujimori K. Prostaglandin F 2α receptor antagonist attenuates LPS-induced systemic inflammatory response in mice. FASEB J 2020; 34:15197-15207. [PMID: 32985737 DOI: 10.1096/fj.202001481r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 11/11/2022]
Abstract
Although it is known that prostaglandin (PG) F2α level is elevated in the plasma of patients with sepsis, the roles of PGF2α is still unknown. We aimed to clarify the roles of PGF2α in the regulation of lipopolysaccharide (LPS)-induced systemic inflammation. At 24 hours after LPS administration, neutrophil infiltration in peritoneal cavity, the mRNA expression of pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and macrophage inflammatory protein-2, and tissue damages in lung, liver, and kidney were all increased. Inhibition of FP receptors significantly decreased LPS-induced neutrophil infiltration and lowered the mRNA expression of the pro-inflammatory cytokines. At 6 hour after LPS administration, the level of anti-inflammatory cytokine, IL-10 in peritoneal lavage fluid was higher than that in naïve mice. Inhibition of FP receptors in these mice increased IL-10 level further. Stimulation of isolated peritoneal neutrophils by LPS increased the gene expression of IL-10, which was further increased by AL8810 treatment. Administration of an anti-IL-10 antibody antagonized the AL8810-decreased mRNA expression of pro-inflammatory cytokines and tissue damages. These results indicate that inhibition of FP receptors by AL8810 attenuated LPS-induced systemic inflammation in mice via enhanced IL-10 production.
Collapse
Affiliation(s)
- Toko Maehara
- Department of Pathobiochemistry, Osaka University of Pharmaceutical Sciences
| | | | - Risa Kondo
- Department of Pathobiochemistry, Osaka University of Pharmaceutical Sciences
| | - Ko Fujimori
- Department of Pathobiochemistry, Osaka University of Pharmaceutical Sciences
| |
Collapse
|
14
|
Bodhale N, Ohms M, Ferreira C, Mesquita I, Mukherjee A, André S, Sarkar A, Estaquier J, Laskay T, Saha B, Silvestre R. Cytokines and metabolic regulation: A framework of bidirectional influences affecting Leishmania infection. Cytokine 2020; 147:155267. [PMID: 32917471 DOI: 10.1016/j.cyto.2020.155267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Leishmania, a protozoan parasite inflicting the complex of diseases called Leishmaniases, resides and replicates as amastigotes within mammalian macrophages. As macrophages are metabolically highly active and can generate free radicals that can destroy this parasite, Leishmania also devise strategies to modulate the host cell metabolism. However, the metabolic changes can also be influenced by the anti-leishmanial immune response mediated by cytokines. This bidirectional, dynamic and complex metabolic coupling established between Leishmania and its host is the result of a long co-evolutionary process. Due to the continuous alterations imposed by the host microenvironment, such metabolic coupling continues to be dynamically regulated. The constant pursuit and competition for nutrients in the host-Leishmania duet alter the host metabolic pathways with major consequences for its nutritional reserves, eventually affecting the phenotype and functionality of the host cell. Altered phenotype and functions of macrophages are particularly relevant to immune cells, as perturbed metabolic fluxes can crucially affect the activation, differentiation, and functions of host immune cells. All these changes can deterministically direct the outcome of an infection. Cytokines and metabolic fluxes can bidirectionally influence each other through molecular sensors and regulators to dictate the final infection outcome. Our studies along with those from others have now identified the metabolic nodes that can be targeted for therapy.
Collapse
Affiliation(s)
- Neelam Bodhale
- National Centre for Cell Science, 411007 Pune, India; Jagadis Bose National Science Talent Search (JBNSTS), Kolkata 700107 India
| | - Mareike Ohms
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck 23538, Germany
| | - Carolina Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Inês Mesquita
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Sónia André
- INSERM U1124, Université Paris Descartes, 75006 Paris, France
| | - Arup Sarkar
- Trident Academy of Creative Technology, Bhubaneswar, Odisha 751024, India
| | - Jérôme Estaquier
- INSERM U1124, Université Paris Descartes, 75006 Paris, France; Centre de Recherche du CHU de Québec - Université Laval, Québec, Canada
| | - Tamás Laskay
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck 23538, Germany
| | - Bhaskar Saha
- National Centre for Cell Science, 411007 Pune, India; Trident Academy of Creative Technology, Bhubaneswar, Odisha 751024, India
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
15
|
Contribution of FP receptors in M1 macrophage polarization via IL-10-regulated nuclear translocation of NF-κB p65. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158654. [DOI: 10.1016/j.bbalip.2020.158654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/23/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023]
|
16
|
L-PGDS-produced PGD 2 in premature, but not in mature, adipocytes increases obesity and insulin resistance. Sci Rep 2019; 9:1931. [PMID: 30760783 PMCID: PMC6374461 DOI: 10.1038/s41598-018-38453-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 12/28/2018] [Indexed: 12/12/2022] Open
Abstract
Lipocalin-type prostaglandin (PG) D synthase (L-PGDS) is responsible for the production of PGD2 in adipocytes and is selectively induced by a high-fat diet (HFD) in adipose tissue. In this study, we investigated the effects of HFD on obesity and insulin resistance in two distinct types of adipose-specific L-PGDS gene knockout (KO) mice: fatty acid binding protein 4 (fabp4, aP2)-Cre/L-PGDSflox/flox and adiponectin (AdipoQ)-Cre/L-PGDSflox/flox mice. The L-PGDS gene was deleted in adipocytes in the premature stage of the former strain and after maturation of the latter strain. The L-PGDS expression and PGD2 production levels decreased in white adipose tissue (WAT) under HFD conditions only in the aP2-Cre/L-PGDSflox/flox mice, but were unchanged in the AdipoQ-Cre/L-PGDSflox/flox mice. When fed an HFD, aP2-Cre/L-PGDSflox/flox mice significantly reduced body weight gain, adipocyte size, and serum cholesterol and triglyceride levels. In WAT of the HFD-fed aP2-Cre/L-PGDSflox/flox mice, the expression levels of the adipogenic, lipogenic, and M1 macrophage marker genes were decreased, whereas those of the lipolytic and M2 macrophage marker genes were enhanced or unchanged. Insulin sensitivity was improved in the HFD-fed aP2-Cre/L-PGDSflox/flox mice. These results indicate that PGD2 produced by L-PGDS in premature adipocytes is involved in the regulation of body weight gain and insulin resistance under nutrient-dense conditions.
Collapse
|
17
|
Maurer SF, Dieckmann S, Kleigrewe K, Colson C, Amri EZ, Klingenspor M. Fatty Acid Metabolites as Novel Regulators of Non-shivering Thermogenesis. Handb Exp Pharmacol 2019; 251:183-214. [PMID: 30141101 DOI: 10.1007/164_2018_150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fatty acids are essential contributors to adipocyte-based non-shivering thermogenesis by acting as activators of uncoupling protein 1 and serving as fuel for mitochondrial heat production. Novel evidence suggests a contribution to this thermogenic mechanism by their conversion to bioactive compounds. Mammalian cells produce a plethora of oxylipins and endocannabinoids, some of which have been identified to affect the abundance or thermogenic activity of brown and brite adipocytes. These effectors are produced locally or at distant sites and signal toward thermogenic adipocytes via a direct interaction with these cells or indirectly via secondary mechanisms. These interactions are evoked by the activation of receptor-mediated pathways. The endogenous production of these compounds is prone to modulation by the dietary intake of the respective precursor fatty acids. The effect of nutritional interventions on uncoupling protein 1-derived thermogenesis may thus at least in part be conferred by the production of a supportive oxylipin and endocannabinoid profile. The manipulation of this system in future studies will help to elucidate the physiological potential of these compounds as novel, endogenous regulators of non-shivering thermogenesis.
Collapse
Affiliation(s)
- Stefanie F Maurer
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany.
- ZIEL Institute for Food and Health, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
| | - Sebastian Dieckmann
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
- ZIEL Institute for Food and Health, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany
| | | | | | - Martin Klingenspor
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
- ZIEL Institute for Food and Health, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
18
|
Rahman MS. Prostacyclin: A major prostaglandin in the regulation of adipose tissue development. J Cell Physiol 2018; 234:3254-3262. [PMID: 30431153 DOI: 10.1002/jcp.26932] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/13/2018] [Indexed: 12/19/2022]
Abstract
Prostaglandins (PGs) belong to the group lipid mediators and can act as local hormones. They contain 20 carbon atoms, including a 5-carbon ring, and are biosynthesized from membrane phospholipid derived arachidonic acid through the arachidonate cyclooxygenase (COX) pathway with the help of various terminal synthase enzymes. Prostacyclin (prostaglandin I2 ) is one of the major prostanoids produced with the help of prostacyclin synthase (prostaglandin I2 synthase) enzyme and rapidly hydrolyzed into 6-keto-PGF1α in biological fluids. Obesity indicates an excess of body adiposity, which is globally considered as one of the major health disasters responsible for developing complex pathological situations in the human body. Adipose tissues can produce various PGs, and thus, the level and the molecular activity of these endogenously synthesized PGs are considered critical for the development of obesity. In this regard, the involvement of prostacyclin in adipogenesis has been studied in the last few decades. The current review, along with the background of other related PGs, presents the several molecular aspects of endogenous prostaglandin I2 in adipose tissue development. Especially, the regulation of life cycle of adipocytes, impact on terminal differentiation, activity through prostacyclin receptor (IP), autocrine-paracrine manner, thermogenic adipose tissue remodeling and some future experimental aspects of prostacyclin have been focused upon in this study. This discussion might assist to develop new drug molecules acting on the signaling pathways of prostacyclin and devise therapeutic strategies for treating obesity.
Collapse
Affiliation(s)
- Mohammad Sharifur Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
19
|
Yoda T, Kikuchi K, Miki Y, Onodera Y, Hata S, Takagi K, Nakamura Y, Hirakawa H, Ishida T, Suzuki T, Ohuchi N, Sasano H, McNamara KM. 11β-Prostaglandin F2α, a bioactive metabolite catalyzed by AKR1C3, stimulates prostaglandin F receptor and induces slug expression in breast cancer. Mol Cell Endocrinol 2015; 413:236-47. [PMID: 26170067 DOI: 10.1016/j.mce.2015.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 06/30/2015] [Accepted: 07/07/2015] [Indexed: 01/24/2023]
Abstract
Prostaglandins are a group of lipid compounds involved in inflammation and cancer. We focused on PGF2α and its stereoisomer 11β-PGF2α and examined the expression and functions of their cognate receptor (FP receptor) and metabolizing enzymes (AKR1B1 and AKR1C3 respectively) in breast cancer. In immunohistochemical analysis FP receptor status associated with adverse clinical outcome only in the AKR1C3 positive cases. Therefore, we studied FP receptor-mediated functions of 11β-PGF2α using FP receptor expressed MCF-7 cell line (MCF-FP). 11β-PGF2α treatment phosphorylated ERK and CREB and induced Slug expression through FP receptor in MCF-FP, and MCF-FP cells demonstrated decreased chemosensitivity compared to parental controls. Finally, the correlation between FP receptor and Slug was also confirmed immunohistochemically in breast cancer cases. Overall these results indicated that the actions of AKR1C3 can produce FP receptor ligands whose activation results in carcinoma cell survival in breast cancer.
Collapse
Affiliation(s)
- Tomomi Yoda
- Department of Pathology, Tohoku University School of Medicine, Sendai, Japan
| | - Kyoko Kikuchi
- Department of Pathology, Tohoku University School of Medicine, Sendai, Japan
| | - Yasuhiro Miki
- Department of Pathology, Tohoku University School of Medicine, Sendai, Japan
| | - Yoshiaki Onodera
- Department of Pathology, Tohoku University School of Medicine, Sendai, Japan
| | - Shuko Hata
- Department of Pathology, Tohoku University School of Medicine, Sendai, Japan
| | - Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University School of Medicine, Sendai, Japan
| | - Yasuhiro Nakamura
- Department of Pathology, Tohoku University School of Medicine, Sendai, Japan
| | | | - Takanori Ishida
- Department of Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University School of Medicine, Sendai, Japan
| | - Noriaki Ohuchi
- Department of Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, Japan
| | - Keely May McNamara
- Department of Pathology, Tohoku University School of Medicine, Sendai, Japan.
| |
Collapse
|
20
|
Huang N, Wang J, Xie W, Lyu Q, Wu J, He J, Qiu W, Xu N, Zhang Y. MiR-378a-3p enhances adipogenesis by targeting mitogen-activated protein kinase 1. Biochem Biophys Res Commun 2014; 457:37-42. [PMID: 25529446 DOI: 10.1016/j.bbrc.2014.12.055] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 12/11/2014] [Indexed: 01/28/2023]
Abstract
Previous studies showed that miR-378a plays important roles in adipogenesis and obesity; however, the precise mechanisms of action remain unknown. Here, we found that miR-378a-3p expression is up-regulated in adipose tissues of high fat diet-induced obese mice, as well as during the differentiation of 3T3-L1 preadipocytes. Mir-378a-3p induced adipogenesis by targeting mitogen-activated protein kinase 1 (MAPK1). Overexpression of miR-378a-3p or silencing MAPK1 reduced MAPK1 expression and enhanced adipogenesis, whereas blockage of endogenous miR-378a-3p had the opposite effect, suggesting that miR-378a-3p promotes the adipogenesis of 3T3-L1 cells by targeting MAPK1.
Collapse
Affiliation(s)
- Nunu Huang
- School of Life Sciences, Tsinghua University, Beijing 100084, PR China; Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Jiu Wang
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Weidong Xie
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Qing Lyu
- School of Life Sciences, Tsinghua University, Beijing 100084, PR China; Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Jiangbin Wu
- School of Life Sciences, Tsinghua University, Beijing 100084, PR China; Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Jie He
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Wei Qiu
- School of Life Sciences, Tsinghua University, Beijing 100084, PR China; Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Naihan Xu
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China.
| | - Yaou Zhang
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
21
|
Nikolopoulou E, Papacleovoulou G, Jean-Alphonse F, Grimaldi G, Parker MG, Hanyaloglu AC, Christian M. Arachidonic acid-dependent gene regulation during preadipocyte differentiation controls adipocyte potential. J Lipid Res 2014; 55:2479-90. [PMID: 25325755 PMCID: PMC4242441 DOI: 10.1194/jlr.m049551] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Arachidonic acid (AA) is a major PUFA that has been implicated in the regulation of adipogenesis. We examined the effect of a short exposure to AA at different stages of 3T3-L1 adipocyte differentiation. AA caused the upregulation of fatty acid binding protein 4 (FABP4/aP2) following 24 h of differentiation. This was mediated by the prostaglandin F2α (PGF2α), as inhibition of cyclooxygenases or PGF2α receptor signaling counteracted the AA-mediated aP2 induction. In addition, calcium, protein kinase C, and ERK are all key elements of the pathway through which AA induces the expression of aP2. We also show that treatment with AA during the first 24 h of differentiation upregulates the expression of the transcription factor Fos-related antigen 1 (Fra-1) via the same pathway. Finally, treatment with AA for 24 h at the beginning of the adipocyte differentiation is sufficient to inhibit the late stages of adipogenesis through a Fra-1-dependent pathway, as Fra-1 knockdown rescued adipogenesis. Our data show that AA is able to program the differentiation potential of preadipocytes by regulating gene expression at the early stages of adipogenesis.
Collapse
Affiliation(s)
- Evanthia Nikolopoulou
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | | | - Frederic Jean-Alphonse
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Giulia Grimaldi
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Malcolm G Parker
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Aylin C Hanyaloglu
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Mark Christian
- Division of Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
22
|
Pisani DF, Ghandour RA, Beranger GE, Le Faouder P, Chambard JC, Giroud M, Vegiopoulos A, Djedaini M, Bertrand-Michel J, Tauc M, Herzig S, Langin D, Ailhaud G, Duranton C, Amri EZ. The ω6-fatty acid, arachidonic acid, regulates the conversion of white to brite adipocyte through a prostaglandin/calcium mediated pathway. Mol Metab 2014; 3:834-47. [PMID: 25506549 PMCID: PMC4264041 DOI: 10.1016/j.molmet.2014.09.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 12/01/2022] Open
Abstract
Objective Brite adipocytes are inducible energy-dissipating cells expressing UCP1 which appear within white adipose tissue of healthy adult individuals. Recruitment of these cells represents a potential strategy to fight obesity and associated diseases. Methods/Results Using human Multipotent Adipose-Derived Stem cells, able to convert into brite adipocytes, we show that arachidonic acid strongly inhibits brite adipocyte formation via a cyclooxygenase pathway leading to secretion of PGE2 and PGF2α. Both prostaglandins induce an oscillatory Ca++ signaling coupled to ERK pathway and trigger a decrease in UCP1 expression and in oxygen consumption without altering mitochondriogenesis. In mice fed a standard diet supplemented with ω6 arachidonic acid, PGF2α and PGE2 amounts are increased in subcutaneous white adipose tissue and associated with a decrease in the recruitment of brite adipocytes. Conclusion Our results suggest that dietary excess of ω6 polyunsaturated fatty acids present in Western diets, may also favor obesity by preventing the “browning” process to take place.
Collapse
Affiliation(s)
- Didier F Pisani
- Univ. Nice Sophia Antipolis, iBV, UMR 7277, 06100 Nice, France ; CNRS, iBV, UMR 7277, 06100 Nice, France ; Inserm, iBV, U1091, 06100 Nice, France
| | - Rayane A Ghandour
- Univ. Nice Sophia Antipolis, iBV, UMR 7277, 06100 Nice, France ; CNRS, iBV, UMR 7277, 06100 Nice, France ; Inserm, iBV, U1091, 06100 Nice, France
| | - Guillaume E Beranger
- Univ. Nice Sophia Antipolis, iBV, UMR 7277, 06100 Nice, France ; CNRS, iBV, UMR 7277, 06100 Nice, France ; Inserm, iBV, U1091, 06100 Nice, France
| | - Pauline Le Faouder
- Lipidomic Core Facility, Metatoul Platform, France ; INSERM, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France ; University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Jean-Claude Chambard
- Univ. Nice Sophia Antipolis, iBV, UMR 7277, 06100 Nice, France ; CNRS, iBV, UMR 7277, 06100 Nice, France ; Inserm, iBV, U1091, 06100 Nice, France
| | - Maude Giroud
- Univ. Nice Sophia Antipolis, iBV, UMR 7277, 06100 Nice, France ; CNRS, iBV, UMR 7277, 06100 Nice, France ; Inserm, iBV, U1091, 06100 Nice, France
| | - Alexandros Vegiopoulos
- Joint Division Molecular Metabolic Control, Alliance and Network Aging Research, German Cancer Research Center (DKFZ), Center for Molecular Biology (ZMBH) and University Hospital, Heidelberg University, Heidelberg, Germany
| | - Mansour Djedaini
- Univ. Nice Sophia Antipolis, iBV, UMR 7277, 06100 Nice, France ; CNRS, iBV, UMR 7277, 06100 Nice, France ; Inserm, iBV, U1091, 06100 Nice, France
| | - Justine Bertrand-Michel
- Lipidomic Core Facility, Metatoul Platform, France ; INSERM, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France ; University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Michel Tauc
- Univ. Nice Sophia Antipolis, LP2M, UMR 7370, 06100 Nice, France ; UMR 7370, CNRS-LP2M, 06100 Nice, France
| | - Stephan Herzig
- Joint Division Molecular Metabolic Control, Alliance and Network Aging Research, German Cancer Research Center (DKFZ), Center for Molecular Biology (ZMBH) and University Hospital, Heidelberg University, Heidelberg, Germany
| | - Dominique Langin
- INSERM, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France ; University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France ; Toulouse University Hospitals, Department of Clinical Biochemistry, Toulouse, France
| | - Gérard Ailhaud
- Univ. Nice Sophia Antipolis, iBV, UMR 7277, 06100 Nice, France ; CNRS, iBV, UMR 7277, 06100 Nice, France ; Inserm, iBV, U1091, 06100 Nice, France
| | - Christophe Duranton
- Univ. Nice Sophia Antipolis, LP2M, UMR 7370, 06100 Nice, France ; UMR 7370, CNRS-LP2M, 06100 Nice, France
| | - Ez-Zoubir Amri
- Univ. Nice Sophia Antipolis, iBV, UMR 7277, 06100 Nice, France ; CNRS, iBV, UMR 7277, 06100 Nice, France ; Inserm, iBV, U1091, 06100 Nice, France
| |
Collapse
|
23
|
Araújo-Santos T, Rodríguez NE, Moura-Pontes S, Dixt UG, Abánades DR, Bozza PT, Wilson ME, Borges VM. Role of prostaglandin F2α production in lipid bodies from Leishmania infantum chagasi: insights on virulence. J Infect Dis 2014; 210:1951-61. [PMID: 24850789 DOI: 10.1093/infdis/jiu299] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Lipid bodies (LB; lipid droplets) are cytoplasmic organelles involved in lipid metabolism. Mammalian LBs display an important role in host-pathogen interactions, but the role of parasite LBs in biosynthesis of prostaglandin F2α (PGF2α) has not been investigated. We report herein that LBs increased in abundance during development of Leishmania infantum chagasi to a virulent metacyclic stage, as did the expression of PGF2α synthase (PGFS). The amount of parasite LBs and PGF2α were modulated by exogenous arachidonic acid. During macrophage infection, LBs were restricted to parasites inside the parasitophorous vacuoles (PV). We detected PGF2α receptor (FP) on the Leishmania PV surface. The blockage of FP with AL8810, a selective antagonist, hampered Leishmania infection, whereas the irreversible inhibition of cyclooxygenase with aspirin increased the parasite burden. These data demonstrate novel functions for parasite-derived LBs and PGF2α in the cellular metabolism of Leishmania and its evasion of the host immune response.
Collapse
Affiliation(s)
- Théo Araújo-Santos
- Gonçalo Moniz Research Center, Oswaldo Cruz Foundation (FIOCRUZ) Federal University of Bahia (UFBA), Salvador, Bahia, Brazil University of Iowa and the Iowa City VA Medical Center, Iowa
| | | | - Sara Moura-Pontes
- Gonçalo Moniz Research Center, Oswaldo Cruz Foundation (FIOCRUZ) Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| | | | - Daniel R Abánades
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | - Mary E Wilson
- University of Iowa and the Iowa City VA Medical Center, Iowa
| | - Valéria Matos Borges
- Gonçalo Moniz Research Center, Oswaldo Cruz Foundation (FIOCRUZ) Federal University of Bahia (UFBA), Salvador, Bahia, Brazil Institute for Investigation in Immunology, iii-INCT (National Institute of Science and Technology), São Paulo, Brazil
| |
Collapse
|
24
|
Fujimori K, Yano M, Miyake H, Kimura H. Termination mechanism of CREB-dependent activation of COX-2 expression in early phase of adipogenesis. Mol Cell Endocrinol 2014; 384:12-22. [PMID: 24378735 DOI: 10.1016/j.mce.2013.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 12/07/2013] [Accepted: 12/20/2013] [Indexed: 12/12/2022]
Abstract
We elucidated the molecular mechanism of prostaglandin (PG) E2- and PGF2α-mediated suppression of the early phase of adipogenesis through enhanced COX-2 expression in 3T3-L1 cells. 3-Isobutyl-1-methylxanthine, an inhibitor of phosphodiesterase which catalyzes the conversion of cAMP to AMP, enhanced the activity of protein kinase A (PKA). Dibutyryl cAMP activated PKA and enhanced the phosphorylation of cAMP response element (CRE)-binding protein (CREB). The ability of CREB binding to the CRE of the COX-2 promoter was elevated for enhancement of the expression of the COX-2 gene. CREB siRNA suppressed the expression of the COX-2 gene. Furthermore, okadaic acid, a protein phosphatase (PP) 1/2A inhibitor, suppressed the progression of adipogenesis by preventing PP1/2A-mediated suppression of CREB-dependent COX-2 expression, thus resulting in increased production of anti-adipogenic PGE2 and PGF2α. These results indicate that CREB-dependent expression of COX-2 for the production of anti-adipogenic PGs is critical for the regulation of the early phase of adipogenesis.
Collapse
Affiliation(s)
- Ko Fujimori
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Mutsumi Yano
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Haruka Miyake
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Hiroko Kimura
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| |
Collapse
|
25
|
Sodhi K, Puri N, Kim DH, Hinds TD, Stechschulte LA, Favero G, Rodella L, Shapiro JI, Jude D, Abraham NG. PPARδ binding to heme oxygenase 1 promoter prevents angiotensin II-induced adipocyte dysfunction in Goldblatt hypertensive rats. Int J Obes (Lond) 2014; 38:456-65. [PMID: 23779049 PMCID: PMC3950586 DOI: 10.1038/ijo.2013.116] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/20/2013] [Accepted: 05/29/2013] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Renin-angiotensin system (RAS) regulates adipogenic response with adipocyte hypertrophy by increasing oxidative stress. Recent studies have shown the role of peroxisome proliferator-activated receptor-δ (PPARδ) agonist in attenuation of angiotensin II-induced oxidative stress. The aim of this study was to explore a potential mechanistic link between PPARδ and the cytoprotective enzyme heme oxygenase-1 (HO-1) and to elucidate the contribution of HO-1 to the adipocyte regulatory effects of PPARδ agonism in an animal model of enhanced RAS, the Goldblatt 2 kidney 1 clip (2K1C) model. METHOD We first established a direct stimulatory effect of the PPARδ agonist (GW 501516) on the HO-1 gene by demonstrating increased luciferase activity in COS-7 cells transfected with a luciferase-HO-1 promoter construct. Sprague-Dawley rats were divided into four groups: sham-operated animals, 2K1C rats and 2K1C rats treated with GW 501516, in the absence or presence of the HO activity inhibitor, stannous mesoporphyrin (SnMP). RESULTS 2K1C animals had increased visceral adiposity, adipocyte hypertrophy, increased inflammatory cytokines, increased circulatory and adipose tisssue levels of renin and Ang II along with increased adipose tissue gp91 phox expression (P<0.05) when compared with sham-operated animals. Treatment with GW 501516 increased adipose tissue HO-1 and adiponectin levels (P<0.01) along with enhancement of Wnt10b and β-catenin expression. HO-1 induction was accompanied by the decreased expression of Wnt5b, mesoderm specific transcript (mest) and C/EBPα levels and an increased number of small adipocytes (P<0.05). These effects of GW501516 were reversed in 2K1C animals exposed to SnMP (P<0.05). CONCLUSION Taken together, our study demonstrates, for the first time, that increased levels of Ang II contribute towards adipose tissue dysregulation, which is abated by PPARδ-mediated upregulation of the heme-HO system. These findings highlight the pivotal role and symbiotic relationship of HO-1, adiponectin and PPARδ in the regulation of metabolic homeostasis in adipose tissues.
Collapse
Affiliation(s)
- K Sodhi
- Department of Medicine, Joan C Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - N Puri
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, USA
| | - D H Kim
- Department of Medicine, Joan C Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - T D Hinds
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, USA
| | - L A Stechschulte
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, USA
| | - G Favero
- Department of Biomedical Science, Division of Anatomy, University of Brescia, Brescia, Italy
| | - L Rodella
- Department of Biomedical Science, Division of Anatomy, University of Brescia, Brescia, Italy
| | - J I Shapiro
- Department of Medicine, Joan C Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - D Jude
- Department of Medicine, Joan C Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - N G Abraham
- Department of Medicine, Joan C Edwards School of Medicine, Marshall University, Huntington, WV, USA
| |
Collapse
|
26
|
Renal Cyclooxygenase Products are Higher and Lipoxygenase Products are Lower in Early Disease in the pcy Mouse Model of Adolescent Nephronophthisis. Lipids 2013; 49:39-47. [DOI: 10.1007/s11745-013-3859-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 10/21/2013] [Indexed: 12/26/2022]
|
27
|
Yu YH, Chang YC, Su TH, Nong JY, Li CC, Chuang LM. Prostaglandin reductase-3 negatively modulates adipogenesis through regulation of PPARγ activity. J Lipid Res 2013; 54:2391-9. [PMID: 23821743 DOI: 10.1194/jlr.m037556] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adipocyte differentiation is a multistep program under regulation by several factors. Peroxisome proliferator-activated receptor γ (PPARγ) serves as a master regulator of adipogenesis. However, the endogenous ligand for PPARγ remained elusive until 15-keto-PGE2 was identified recently as an endogenous PPARγ ligand. In this study, we demonstrate that zinc-containing alcohol dehydrogenase 2 (ZADH2; here termed prostaglandin reductase-3, PTGR-3) is a new member of prostaglandin reductase family that converts 15-keto-PGE2 to 13,14-dihydro-15-keto-PGE2. Adipogenesis is accelerated when endogenous PTGR-3 is silenced in 3T3-L1 preadipocytes, whereas forced expression of PTGR-3 significantly decreases adipogenesis. PTGR-3 expression decreased during adipocyte differentiation, accompanied by an increased level of 15-keto-PGE2. 15-keto-PGE2 exerts a potent proadipogenic effect by enhancing PPARγ activity, whereas overexpression of PTGR-3 in 3T3-L1 preadipocytes markedly suppressed the proadipogenic effect of 15-keto-PGE2 by repressing PPARγ activity. Taken together, these findings demonstrate for the first time that PTGR-3 is a novel 15-oxoprostaglandin-Δ(13)-reductase and plays a critical role in modulation of normal adipocyte differentiation via regulation of PPARγ activity. Thus, modulation of PTGR-3 might provide a novel avenue for treating obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Yu-Hsiang Yu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | | | | | | | | | | |
Collapse
|
28
|
Silvestri C, Martella A, Poloso NJ, Piscitelli F, Capasso R, Izzo A, Woodward DF, Di Marzo V. Anandamide-derived prostamide F2α negatively regulates adipogenesis. J Biol Chem 2013; 288:23307-21. [PMID: 23801328 DOI: 10.1074/jbc.m113.489906] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lipid mediators variedly affect adipocyte differentiation. Anandamide stimulates adipogenesis via CB1 receptors and peroxisome proliferator-activated receptor γ. Anandamide may be converted by PTGS2 (COX2) and prostaglandin F synthases, such as prostamide/prostaglandin F synthase, to prostaglandin F2α ethanolamide (PGF2αEA), of which bimatoprost is a potent synthetic analog. PGF2αEA/bimatoprost act via prostaglandin F2αFP receptor/FP alt4 splicing variant heterodimers. We investigated whether prostamide signaling occurs in preadipocytes and controls adipogenesis. Exposure of mouse 3T3-L1 or human preadipocytes to PGF2αEA/bimatoprost during early differentiation inhibits adipogenesis. PGF2αEA is produced from anandamide in preadipocytes and much less so in differentiating adipocytes, which express much less PTGS2, FP, and its alt4 splicing variant. Selective antagonism of PGF2αEA receptors counteracts prostamide effects on adipogenesis, as does inhibition of ERK1/2 phosphorylation. Selective inhibition of PGF2αEA versus prostaglandin F2α biosynthesis accelerates adipogenesis. PGF2αEA levels are reduced in the white adipose tissue of high fat diet-fed mice where there is a high requirement for new adipocytes. Prostamides also inhibit zebrafish larval adipogenesis in vivo. We propose that prostamide signaling in preadipocytes is a novel anandamide-derived antiadipogenic mechanism.
Collapse
Affiliation(s)
- Cristoforo Silvestri
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Fujimori K, Shibano M. Avicularin, a plant flavonoid, suppresses lipid accumulation through repression of C/EBPα-activated GLUT4-mediated glucose uptake in 3T3-L1 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:5139-5147. [PMID: 23647459 DOI: 10.1021/jf401154c] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Avicularin (quercetin-3-O-α-L-arabinofuranoside) is a plant flavonoid and a quercetin glycoside. In this study, we found that avicularin suppressed the accumulation of intracellular lipids through repression of glucose transporter 4 (GLUT4)-mediated glucose uptake in mouse adipocytic 3T3-L1 cells. Avicularin was highly purified (purity of more than at least 99%) from Taxillus kaempferi (DC.) Danser (Loranthaceae) by high-performance liquid chromatography, and its structure was determined by nuclear magnetic resonance and mass spectrometry. Avicularin decreased the intracellular triglyceride level along with a reduction in the expression of adipogenic genes such as peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein (C/EBP) α, and aP2 (fatty acid-binding protein 4). In contrast, avicularin did not affect the expression of lipogenic and lipolytic genes. Interestingly, the expression of the GLUT4 gene was significantly suppressed in an avicularin-concentration-dependent manner. Moreover, the binding of C/EBPα to the promoter region of the GLUT4 gene was repressed by adding avicularin to the medium in 3T3-L1 cells, as demonstrated by the results of a chromatin immunoprecipitation assay. These results indicate that avicularin inhibited the accumulation of the intracellular lipids by decreasing C/EBPα-activated GLUT4-mediated glucose uptake in adipocytes.
Collapse
Affiliation(s)
- Ko Fujimori
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | | |
Collapse
|
30
|
Kanno Y, Kawashita E, Kokado A, Okada K, Ueshima S, Matsuo O, Matsuno H. Alpha2-antiplasmin regulates the development of dermal fibrosis in mice by prostaglandin F2αsynthesis through adipose triglyceride lipase/calcium-independent phospholipase A2. ACTA ACUST UNITED AC 2013; 65:492-502. [DOI: 10.1002/art.37767] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 10/18/2012] [Indexed: 11/09/2022]
|
31
|
Kim DH, Puri N, Sodhi K, Falck JR, Abraham NG, Shapiro J, Schwartzman ML. Cyclooxygenase-2 dependent metabolism of 20-HETE increases adiposity and adipocyte enlargement in mesenchymal stem cell-derived adipocytes. J Lipid Res 2013; 54:786-793. [PMID: 23293373 PMCID: PMC3617952 DOI: 10.1194/jlr.m033894] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
20-Hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE), a product of the cytochrome
P450 (CYP)-catalyzed ω-hydroxylation of arachidonic acid, induces
oxidative stress and, in clinical studies, is associated with increased body
mass index (BMI) and the metabolic syndrome. This study was designed to examine
the effects of exogenous 20-HETE on mesenchymal stem cell (MSC)-derived
adipocytes. The expression levels of CYP4A11 and CYP4F2 (major 20-HETE synthases
in humans) in MSCs decreased during adipocyte differentiation; however,
exogenous administration of 20-HETE (0.1–1 μM) increased adipogenesis
in a dose-dependent manner in these cells (P < 0.05). The
inability of a 20-HETE analog to reproduce these effects suggested the
involvement of a metabolic product of 20-HETE in mediating its pro-adipogenic
effects. A cyclooxygenase (COX)-1 selective inhibitor enhanced, whereas a COX-2
selective or a dual COX-1/2 inhibitor attenuated adipogenesis induced by
20-HETE. The COX-derived metabolite of 20-HETE, 20-OH-PGE2, enhanced
adipogenesis and lipid accumulation in MSCs. The pro-adipogenic effects of
20-HETE and 20-OH-PGE2 resulted in the increased expression of the
adipogenic regulators PPARγ and β-catenin in MSC-derived adipocytes.
Taken together we show for the first time that 20-HETE-derived COX-2-dependent
20-OH-PGE2 enhances mature inflamed adipocyte hypertrophy in MSC
undergoing adipogenic differentiation.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV
| | - Nitin Puri
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH
| | - Komal Sodhi
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV
| | - John R Falck
- Department of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center of Dallas, Dallas, TX
| | - Nader G Abraham
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV
| | - Joseph Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV
| | | |
Collapse
|
32
|
Prostaglandins as PPARγ Modulators in Adipogenesis. PPAR Res 2012; 2012:527607. [PMID: 23319937 PMCID: PMC3540890 DOI: 10.1155/2012/527607] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 11/20/2012] [Indexed: 02/01/2023] Open
Abstract
Adipocytes and fat cells play critical roles in the regulation of energy homeostasis. Adipogenesis (adipocyte differentiation) is regulated via a complex process including coordinated changes in hormone sensitivity and gene expression. PPARγ is a ligand-dependent transcription factor and important in adipogenesis, as it enhances the expression of numerous adipogenic and lipogenic genes in adipocytes. Prostaglandins (PGs), which are lipid mediators, are associated with the regulation of PPARγ function in adipocytes. Prostacyclin promotes the differentiation of adipocyte-precursor cells to adipose cells via activation of the expression of C/EBPβ and δ. These proteins are important transcription factors in the activation of the early phase of adipogenesis, and they activate the expression of PPARγ, which event precedes the maturation of adipocytes. PGE2 and PGF2α strongly suppress the early phase of adipocyte differentiation by enhancing their own production via receptor-mediated elevation of the expression of cycloxygenase-2, and they also suppress the function of PPARγ. In contrast, PGD2 and its non-enzymatic metabolite, Δ12-PGJ2, activate the middle-late phase of adipocyte differentiation through both DP2 receptors and PPARγ. This paper focuses on potential roles of PGs as PPARγ modulators in adipogenesis and regulators of obesity.
Collapse
|
33
|
Fujimori K, Yano M, Ueno T. Synergistic suppression of early phase of adipogenesis by microsomal PGE synthase-1 (PTGES1)-produced PGE2 and aldo-keto reductase 1B3-produced PGF2α. PLoS One 2012; 7:e44698. [PMID: 22970288 PMCID: PMC3436788 DOI: 10.1371/journal.pone.0044698] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Accepted: 08/09/2012] [Indexed: 12/30/2022] Open
Abstract
We recently reported that aldo-keto reductase 1B3-produced prostaglandin (PG) F2α suppressed the early phase of adipogenesis. PGE2 is also known to suppress adipogenesis. In this study, we found that microsomal PGE2 synthase (PGES)-1 (mPGES-1; PTGES1) acted as the PGES in adipocytes and that PGE2 and PGF2α synergistically suppressed the early phase of adipogenesis. PGE2 production was detected in preadipocytes and transiently enhanced at 3 h after the initiation of adipogenesis of mouse adipocytic 3T3-L1 cells, followed by a quick decrease; and its production profile was similar to the expression of the cyclooxygenase-2 (PTGS2) gene. When 3T3-L1 cells were transfected with siRNAs for any one of the three major PTGESs, i.e., PTGES1, PTGES2 (mPGES-2), and PTGES3 (cytosolic PGES), only PTGES1 siRNA suppressed PGE2 production and enhanced the expression of adipogenic genes. AE1-329, a PTGER4 (EP4) receptor agonist, increased the expression of the Ptgs2 gene with a peak at 1 h after the initiation of adipogenesis. PGE2-mediated enhancement of the PTGS2 expression was suppressed by the co-treatment with L-161982, a PTGER4 receptor antagonist. Moreover, AE1-329 enhanced the expression of the Ptgs2 gene by binding of the cyclic AMP response element (CRE)-binding protein to the CRE of the Ptgs2 promoter; and its binding was suppressed by co-treatment with L-161982, which was demonstrated by promoter luciferase and chromatin immunoprecipitation assays. Furthermore, when 3T3-L1 cells were caused to differentiate into adipocytes in medium containing both PGE2 and PGF2α, the expression of the adipogenic genes and the intracellular triglyceride level were decreased to a greater extent than in medium containing either of them, revealing that PGE2 and PGF2α independently suppressed adipogenesis. These results indicate that PGE2 was synthesized by PTGES1 in adipocytes and synergistically suppressed the early phase of adipogenesis of 3T3-L1 cells in cooperation with PGF2α through receptor-mediated activation of PTGS2 expression.
Collapse
Affiliation(s)
- Ko Fujimori
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
- * E-mail:
| | - Mutsumi Yano
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Toshiyuki Ueno
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| |
Collapse
|
34
|
Goupil E, Wisehart V, Khoury E, Zimmerman B, Jaffal S, Hébert TE, Laporte SA. Biasing the prostaglandin F2α receptor responses toward EGFR-dependent transactivation of MAPK. Mol Endocrinol 2012; 26:1189-202. [PMID: 22638073 DOI: 10.1210/me.2011-1245] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The G protein-coupled prostaglandin F2α (PGF2α) receptor [F prostanoid (FP) receptor] has been implicated in many physiological events including cardiovascular, respiratory, immune, reproductive, and endocrine responses. Binding of PGF2α to FP receptor elicits inositol production and protein kinase C-dependent MAPK activation through Gα(q) coupling. Here we report that AL-8810, previously characterized as an orthosteric antagonist of PGF2α-dependent, Gα(q)-mediated signaling, potently activates ERK1/2 in a protein kinase C-independent manner. Rather, AL-8810 promoted ERK1/2 activation via an epidermal growth factor receptor transactivation mechanism in both human embryonic kidney 293 cells and in the MG-63 osteoblast-like cells, which express endogenous FP receptors. Neither AL-8810- nor PGF2α-mediated stimulation of FP receptor promoted association with β-arrestins, suggesting that MAPK activation induced by these ligands is independent of β-arrestin's signaling scaffold functions. Interestingly, the spatiotemporal activation of ERK1/2 promoted by AL-8810 and PGF2α showed almost completely opposite responses in the nucleus and the cytosol. Finally, using [(3)H]thymidine incorporation, we noted differential regulation of PGF2α- and AL-8810-induced cell proliferation in MG-63 cells. This study reveals, for the first time, the signaling biased nature of FP receptor orthosteric ligands toward MAPK signaling. Our findings on the specific patterns of ERK1/2 activation promoted by FP receptor ligands may help dissect the distinct roles of MAPK in FP receptor-dependent physiological responses.
Collapse
Affiliation(s)
- Eugénie Goupil
- Polypeptide Hormone Laboratory, Division of Endocrinology, Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada H3A 2B2
| | | | | | | | | | | | | |
Collapse
|