1
|
Park K, Jung S, Ha JH, Jeong Y. Protaetia brevitarsis Hydrolysate Mitigates Muscle Dysfunction and Ectopic Fat Deposition Triggered by a High-Fat Diet in Mice. Nutrients 2025; 17:213. [PMID: 39861343 PMCID: PMC11767481 DOI: 10.3390/nu17020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Obesity is a key factor in metabolic syndrome (MetS) development. Consumption of a high-fat diet (HFD) accelerates the onset of obesity and associated metabolic complications. Protaetia brevitarsis (PB) has been traditionally utilized in Korean medicine for its antioxidant, anti-diabetic, anticancer, and hepatoprotective effects. However, specific effects of PB hydrolysate on skeletal muscles have not been fully elucidated. Therefore, this study sought to assess the influence of PB on HFD-induced MetS, focusing on the lipid metabolism and inflammatory responses mediated by AMP-activated protein kinase activation. METHODS To induce obesity, 6-week-old C57BL/6J mice were maintained on an HFD for 8 weeks, after which PB hydrolysate was orally administered for 16 weeks while the HFD regimen was sustained. A glucose tolerance test was conducted orally to evaluate glucose regulation, and forelimb grip strength was assessed upon completion of the experimental period. Histological assessments, serum biochemical analysis, lipid extraction, Western blot analysis, and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) were performed following euthanasia. RESULTS PB significantly reduced ectopic lipid deposition in skeletal muscles, enhanced muscle strength, and improved insulin sensitivity by increasing fatty acid oxidation via AMP-activated protein kinase/carnitine palmitoyltransferase 1 activation and inhibiting lipogenesis via stearoyl-CoA desaturase 1 gene downregulation. Furthermore, PB alleviated HFD-induced low-grade chronic inflammation by decreasing systemic monocyte chemoattractant protein 1 levels, thereby reducing ectopic fat deposition. CONCLUSIONS This study highlights the potential of PB as a nutraceutical to mitigate MetS in HFD-fed mice.
Collapse
Affiliation(s)
- Kyungeun Park
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea
| | - Sunyoon Jung
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea
- Research Center for Industrialization of Natural Neutralization, Dankook University, Yongin 16890, Republic of Korea
| | - Jung-Heun Ha
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea
- Research Center for Industrialization of Natural Neutralization, Dankook University, Yongin 16890, Republic of Korea
| | - Yoonhwa Jeong
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea
- Research Center for Industrialization of Natural Neutralization, Dankook University, Yongin 16890, Republic of Korea
| |
Collapse
|
2
|
Kim HK, Kim DY, Kang S, Kim H, Kim JM, Go GW. Lean metabolic dysfunction-associated steatotic disease is reversed by betulinic acid, a therapeutic triterpene from birch bark. FOOD BIOSCI 2024; 62:104376. [DOI: 10.1016/j.fbio.2024.104376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Wei SJ, Schell JR, Chocron ES, Varmazyad M, Xu G, Chen WH, Martinez GM, Dong FF, Sreenivas P, Trevino R, Jiang H, Du Y, Saliba A, Qian W, Lorenzana B, Nazarullah A, Chang J, Sharma K, Munkácsy E, Horikoshi N, Gius D. Ketogenic diet induces p53-dependent cellular senescence in multiple organs. SCIENCE ADVANCES 2024; 10:eado1463. [PMID: 38758782 PMCID: PMC11100565 DOI: 10.1126/sciadv.ado1463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
A ketogenic diet (KD) is a high-fat, low-carbohydrate diet that leads to the generation of ketones. While KDs improve certain health conditions and are popular for weight loss, detrimental effects have also been reported. Here, we show mice on two different KDs and, at different ages, induce cellular senescence in multiple organs, including the heart and kidney. This effect is mediated through adenosine monophosphate-activated protein kinase (AMPK) and inactivation of mouse double minute 2 (MDM2) by caspase-2, leading to p53 accumulation and p21 induction. This was established using p53 and caspase-2 knockout mice and inhibitors to AMPK, p21, and caspase-2. In addition, senescence-associated secretory phenotype biomarkers were elevated in serum from mice on a KD and in plasma samples from patients on a KD clinical trial. Cellular senescence was eliminated by a senolytic and prevented by an intermittent KD. These results have important clinical implications, suggesting that the effects of a KD are contextual and likely require individual optimization.
Collapse
Affiliation(s)
- Sung-Jen Wei
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, TX, USA
| | - Joseph R. Schell
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, TX, USA
| | - E. Sandra Chocron
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, TX, USA
| | - Mahboubeh Varmazyad
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, TX, USA
| | - Guogang Xu
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, TX, USA
| | - Wan Hsi Chen
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, TX, USA
| | - Gloria M. Martinez
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, TX, USA
| | - Felix F. Dong
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, TX, USA
| | - Prethish Sreenivas
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, TX, USA
| | - Rolando Trevino
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, TX, USA
| | - Haiyan Jiang
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, TX, USA
| | - Yan Du
- Center for Precision Medicine, UT Health San Antonio, San Antonio, TX, USA
- School of Nursing, UT Health San Antonio, San Antonio, TX, USA
| | - Afaf Saliba
- Center for Precision Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Wei Qian
- Houston Methodist Cancer Center, Houston, TX, USA
- Houston Methodist Research Institute, Houston, TX, USA
| | - Brandon Lorenzana
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, TX, USA
| | - Alia Nazarullah
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, TX, USA
| | - Jenny Chang
- Houston Methodist Cancer Center, Houston, TX, USA
- Houston Methodist Research Institute, Houston, TX, USA
| | - Kumar Sharma
- Center for Precision Medicine, UT Health San Antonio, San Antonio, TX, USA
- Division of Nephrology, Department of Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Erin Munkácsy
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, TX, USA
| | - Nobuo Horikoshi
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, TX, USA
| | - David Gius
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
4
|
Zhang Y, Zhai Y, Wei X, Yang X, Deng C, Li Q, Wang W, Hao R. Effects of grape seed procyanidins on the lipid metabolism of growing-finishing pigs based on transcriptomics and metabolomics analyses. Meat Sci 2024; 213:109504. [PMID: 38555738 DOI: 10.1016/j.meatsci.2024.109504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
This study investigated how lipid metabolism in the longissimus thoracis is influenced by the diet supplemented with grape seed procyanidins (GSPs) in growing-finishing pigs. Forty-eight crossbred pigs were randomly assigned to four groups, each receiving a basal diet, or basal diet added with 150, 200, and 250 mg/kg GSPs. Transcriptomics and metabolomics were employed to explore differential gene and metabolite regulation. The expression of key lipid metabolism-related genes was tested via qRT-PCR, and the lipid and fatty acid composition of the longissimus thoracis were determined. Dietary GSPs at different concentrations upregulated lipoprotein lipase (LPL), which is involved in lipolysis, and significantly increased the mRNA expression levels of carnitine palmitoyltransferase-1B (CPT1B) and cluster of differentiation 36 (CD36), implicated in transmembrane transport of fatty acids. Dietary supplementation of GSPs at 200 or 250 mg/kg markedly reduced total cholesterol and triglyceride content in longissimus thoracis. Dietary GSPs significantly decreased the contents of low-density lipoprotein cholesterol and saturated fatty acids, while increasing unsaturated fatty acids. In conclusion, GSPs may regulate lipid metabolism, reducing cholesterol level, and improving fatty acid composition in the longissimus thoracis of growing-finishing pigs. Our findings provide evidence for the beneficial effects of GSPs as pig feed additives for improving lipid composition.
Collapse
Affiliation(s)
- Yue Zhang
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Yan Zhai
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Xinxin Wei
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Xu Yang
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Chao Deng
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Qinghong Li
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Weiwei Wang
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Ruirong Hao
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China; Key Laboratory of Farm Animal Genetic Resources Exploration and Breeding of Shanxi Province, Taigu 030801, China.
| |
Collapse
|
5
|
Babu VS, Mallipatna A, Dudeja G, Shetty R, Nair AP, Tun SBB, Ho CEH, Chaurasia SS, Bhattacharya SS, Verma NK, Lakshminarayanan R, Guha N, Heymans S, Barathi VA, Ghosh A. Depleted hexokinase1 and lack of AMPKα activation favor OXPHOS-dependent energetics in retinoblastoma tumors. Transl Res 2023; 261:41-56. [PMID: 37419277 DOI: 10.1016/j.trsl.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/03/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023]
Abstract
Lack of retinoblastoma (Rb) protein causes aggressive intraocular retinal tumors in children. Recently, Rb tumors have been shown to have a distinctly altered metabolic phenotype, such as reduced expression of glycolytic pathway proteins alongside altered pyruvate and fatty acid levels. In this study, we demonstrate that loss of hexokinase 1(HK1) in tumor cells rewires their metabolism allowing enhanced oxidative phosphorylation-dependent energy production. We show that rescuing HK1 or retinoblastoma protein 1 (RB1) in these Rb cells reduced cancer hallmarks such as proliferation, invasion, and spheroid formation and increased their sensitivity to chemotherapy drugs. Induction of HK1 was accompanied by a metabolic shift of the cells to glycolysis and a reduction in mitochondrial mass. Cytoplasmic HK1 bound Liver Kinase B1 and phosphorylated AMP-activated kinase-α (AMPKα Thr172), thereby reducing mitochondria-dependent energy production. We validated these findings in tumor samples from Rb patients compared to age-matched healthy retinae. HK1 or RB1 expression in Rb-/- cells led to a reduction in their respiratory capacity and glycolytic proton flux. HK1 overexpression reduced tumor burden in an intraocular tumor xenograft model. AMPKα activation by AICAR also enhanced the tumoricidal effects of the chemotherapeutic drug topotecan in vivo. Therefore, enhancing HK1 or AMPKα activity can reprogram cancer metabolism and sensitize Rb tumors to lower doses of existing treatments, a potential therapeutic modality for Rb.
Collapse
Affiliation(s)
- Vishnu Suresh Babu
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India; Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Ashwin Mallipatna
- Retinoblastoma Service, Narayana Nethralaya, Bangalore, Karnataka, India
| | - Gagan Dudeja
- Retinoblastoma Service, Narayana Nethralaya, Bangalore, Karnataka, India
| | - Rohit Shetty
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| | | | | | | | - Shyam S Chaurasia
- Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Shomi S Bhattacharya
- University College London, London, UK; GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| | - Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore; Singapore Eye Research Institute, Singapore
| | | | - Nilanjan Guha
- Agilent Technologies India Pvt Ltd, New Delhi, Delhi, India
| | - Stephane Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, Leuven, Belgium
| | - Veluchamy Amutha Barathi
- Singapore Eye Research Institute, Singapore; The Ophthalmology and Visual Sciences ACP, Duke-NUS Medical School, Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India.
| |
Collapse
|
6
|
Kim J, Lee SK, Jeong SY, You H, Han SD, Park S, Kim S, Kim TM. Multifaceted action of stem cell-derived extracellular vesicles for nonalcoholic steatohepatitis. J Control Release 2023; 364:S0168-3659(23)00706-X. [PMID: 39491172 DOI: 10.1016/j.jconrel.2023.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) is a chronic liver disease associated with metabolic syndrome. Extracellular vesicles (EVs) are essential signaling mediators containing functional biomolecules. EVs are secreted from various cell types, and recent studies have shown that mesenchymal stem cell-derived EVs have therapeutic potential against immune and metabolic diseases. In this study, we investigated whether EVs from induced mesenchymal stem cells (iMSC-EVs) regulate AMPK signaling and lipid metabolism using cell-based studies and two different mouse models of NASH (methionine/choline-deficient diet-induced and ob/ob mice). Protein analysis revealed that iMSC-EVs carry cargo proteins with the potential to regulate lipid metabolism. iMSC-EVs inhibited free fatty acid release from adipose tissues by downregulating the activity of lipolytic genes in NASH. In addition, iMSC-EVs improved hepatic steatosis by modulating AMPK signaling, which plays essential role in metabolic homeostasis in the liver. Moreover, iMSC-EVs reduced CD36 expression, contributing to the blockade of free fatty acid transport to the liver of NASH mice. Finally, iMSC-EVs reduced inflammation, endoplasmic reticulum stress, and apoptosis while promoting hepatic regeneration of the NASH liver. In conclusion, iMSC-EVs can potentially serve as cell-free therapeutics for NASH owing to their multifaceted modality.
Collapse
Affiliation(s)
- Jimin Kim
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul 05855, South Korea
| | - Seul Ki Lee
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul 05855, South Korea
| | - Seon-Yeong Jeong
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul 05855, South Korea
| | - Haedeun You
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul 05855, South Korea
| | - Sang-Deok Han
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul 05855, South Korea
| | - Somi Park
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul 05855, South Korea
| | - Soo Kim
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul 05855, South Korea
| | - Tae Min Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Gangwon-do 25354, South Korea; Institutes of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do 25354, South Korea.
| |
Collapse
|
7
|
Zhang Y, Yao D, Huang H, Zhang M, Sun L, Su L, Zhao L, Guo Y, Jin Y. Probiotics Increase Intramuscular Fat and Improve the Composition of Fatty Acids in Sunit Sheep through the Adenosine 5'-Monophosphate-Activated Protein Kinase (AMPK) Signaling Pathway. Food Sci Anim Resour 2023; 43:805-825. [PMID: 37701743 PMCID: PMC10493559 DOI: 10.5851/kosfa.2023.e37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 09/14/2023] Open
Abstract
This experiment aims to investigate the impact of probiotic feed on growth performance, carcass traits, plasma lipid biochemical parameters, intramuscular fat and triglyceride content, fatty acid composition, mRNA expression levels of genes related to lipid metabolism, and the activity of the enzyme in Sunit sheep. In this experiment, 12 of 96 randomly selected Sunit sheep were assigned to receive the basic diet or the basic diet supplemented with probiotics. The results showed that supplementation with probiotics significantly increased the loin eye area, and decreased plasma triglycerides and free fatty acids, increasing the content of intramuscular fat and triglycerides in the muscle and improving the composition of the fatty acids. The inclusion of probiotics in the diet reduced the expression of adenosine 5'-monophosphate-activated protein kinase alpha 2 (AMPKα2) mRNA and carnitine palmitoyltransferase 1B (CPT1B) mRNA, while increasing the expression of acetyl-CoA carboxylase alpha (ACCα) mRNA, sterol regulatory element-binding protein-1c (SREBP-1c) mRNA, fatty acid synthase mRNA, and stearoyl-CoA desaturase 1 mRNA. The results of this study indicate that supplementation with probiotics can regulate fat deposition and improves the composition of fatty acids in Sunit sheep through the signaling pathways AMPK-ACC-CPT1B and AMPK-SREBP-1c. This regulatory mechanism leads to an increase in intramuscular fat content, a restructuring of muscle composition of the fatty acids, and an enhancement of the nutritional value of meat. These findings contribute to a better understanding of the food science of animal resources and provide valuable references for the production of meat of higher nutritional value.
Collapse
Affiliation(s)
- Yue Zhang
- College of Food Science and Engineering,
Inner Mongolia Agricultural University, Hohhot 010018,
China
- Integrative Research Base of Beef and Lamb
Processing Technology, Ministry of Agriculture and Rural Affairs of the
People’s Republic of China, Hohhot 010018, China
| | - Duo Yao
- Inner Mongolia Institute of Quality and
Standardization, Hohhot 010070, China
| | - Huan Huang
- College of Food Science and Engineering,
Inner Mongolia Agricultural University, Hohhot 010018,
China
| | - Min Zhang
- College of Food Science and Engineering,
Inner Mongolia Agricultural University, Hohhot 010018,
China
- Integrative Research Base of Beef and Lamb
Processing Technology, Ministry of Agriculture and Rural Affairs of the
People’s Republic of China, Hohhot 010018, China
| | - Lina Sun
- College of Food Science and Engineering,
Inner Mongolia Agricultural University, Hohhot 010018,
China
- Integrative Research Base of Beef and Lamb
Processing Technology, Ministry of Agriculture and Rural Affairs of the
People’s Republic of China, Hohhot 010018, China
| | - Lin Su
- College of Food Science and Engineering,
Inner Mongolia Agricultural University, Hohhot 010018,
China
- Integrative Research Base of Beef and Lamb
Processing Technology, Ministry of Agriculture and Rural Affairs of the
People’s Republic of China, Hohhot 010018, China
| | - LiHua Zhao
- College of Food Science and Engineering,
Inner Mongolia Agricultural University, Hohhot 010018,
China
- Integrative Research Base of Beef and Lamb
Processing Technology, Ministry of Agriculture and Rural Affairs of the
People’s Republic of China, Hohhot 010018, China
| | - Yueying Guo
- College of Food Science and Engineering,
Inner Mongolia Agricultural University, Hohhot 010018,
China
- Integrative Research Base of Beef and Lamb
Processing Technology, Ministry of Agriculture and Rural Affairs of the
People’s Republic of China, Hohhot 010018, China
| | - Ye Jin
- College of Food Science and Engineering,
Inner Mongolia Agricultural University, Hohhot 010018,
China
- Integrative Research Base of Beef and Lamb
Processing Technology, Ministry of Agriculture and Rural Affairs of the
People’s Republic of China, Hohhot 010018, China
| |
Collapse
|
8
|
Rodriguez-Lopez C, Santalla A, Valenzuela PL, Real-Martínez A, Villarreal-Salazar M, Rodriguez-Gomez I, Pinós T, Ara I, Lucia A. Muscle glycogen unavailability and fat oxidation rate during exercise: Insights from McArdle disease. J Physiol 2023; 601:551-566. [PMID: 36370371 PMCID: PMC10099855 DOI: 10.1113/jp283743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Carbohydrate availability affects fat metabolism during exercise; however, the effects of complete muscle glycogen unavailability on maximal fat oxidation (MFO) rate remain unknown. Our purpose was to examine the MFO rate in patients with McArdle disease, comprising an inherited condition caused by complete blockade of muscle glycogen metabolism, compared to healthy controls. Nine patients (three women, aged 36 ± 12 years) and 12 healthy controls (four women, aged 40 ± 13 years) were studied. Several molecular markers of lipid transport/metabolism were also determined in skeletal muscle (gastrocnemius) and white adipose tissue of McArdle (Pygm p.50R*/p.50R*) and wild-type male mice. Peak oxygen uptake ( V ̇ O 2 peak ${\dot V_{{{\rm{O}}_{\rm{2}}}{\rm{peak}}}}$ ), MFO rate, the exercise intensity eliciting MFO rate (FATmax) and the MFO rate-associated workload were determined by indirect calorimetry during an incremental cycle-ergometer test. Despite having a much lower V ̇ O 2 peak ${\dot V_{{{\rm{O}}_{\rm{2}}}{\rm{peak}}}}$ (24.7 ± 4 vs. 42.5 ± 11.4 mL kg-1 min-1 , respectively; P < 0.0001), patients showed considerably higher values for the MFO rate (0.53 ± 0.12 vs. 0.33 ± 0.10 g min-1 , P = 0.001), and for the FATmax (94.4 ± 7.2 vs. 41.3 ± 9.1 % of V ̇ O 2 peak ${\dot V_{{{\rm{O}}_{\rm{2}}}{\rm{peak}}}}$ , P < 0.0001) and MFO rate-associated workload (1.33 ± 0.35 vs. 0.81 ± 0.54 W kg-1 , P = 0.020) than controls. No between-group differences were found overall in molecular markers of lipid transport/metabolism in mice. In summary, patients with McArdle disease show an exceptionally high MFO rate, which they attained at near-maximal exercise capacity. Pending more mechanistic explanations, these findings support the influence of glycogen availability on MFO rate and suggest that these patients develop a unique fat oxidation capacity, possibly as an adaptation to compensate for the inherited blockade in glycogen metabolism, and point to MFO rate as a potential limiting factor of exercise tolerance in this disease. KEY POINTS: Physically active McArdle patients show an exceptional fat oxidation capacity. Maximal fat oxidation rate occurs near-maximal exercise capacity in these patients. McArdle patients' exercise tolerance might rely on maximal fat oxidation rate capacity. Hyperpnoea might cloud substrate oxidation measurements in some patients. An animal model revealed overall no higher molecular markers of lipid transport/metabolism.
Collapse
Affiliation(s)
- Carlos Rodriguez-Lopez
- Department of Geriatrics, Hospital General Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Alfredo Santalla
- Department of Sport and Computer Science, Section of Physical Education and Sports, Faculty of Sport, Universidad Pablo de Olavide, Seville, Spain.,EVOPRED Research Group, Universidad Europea de Canarias, Tenerife, Spain
| | - Pedro L Valenzuela
- Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain
| | - Alberto Real-Martínez
- Mitochondrial and Neuromuscular Disorders Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain.,CIBER for rare disease (CIBERER), Madrid, Spain
| | - Mónica Villarreal-Salazar
- Mitochondrial and Neuromuscular Disorders Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain.,CIBER for rare disease (CIBERER), Madrid, Spain
| | - Irene Rodriguez-Gomez
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Tomàs Pinós
- Mitochondrial and Neuromuscular Disorders Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain.,CIBER for rare disease (CIBERER), Madrid, Spain
| | - Ignacio Ara
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Alejandro Lucia
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain.,Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain.,Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
9
|
Jiang HY, Gao HY, Li J, Zhou TY, Wang ST, Yang JB, Hao RR, Pang F, Wei F, Liu ZG, Kuang L, Ma SC, He JM, Jin HT. Integrated spatially resolved metabolomics and network toxicology to investigate the hepatotoxicity mechanisms of component D of Polygonum multiflorum Thunb. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115630. [PMID: 35987407 DOI: 10.1016/j.jep.2022.115630] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/25/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The liver toxicity of Reynoutria multiflora (Thunb.) Moldenke. (Polygonaceae) (Polygonum multiflorum Thunb, PM) has always attracted much attention, but the related toxicity materials and mechanisms have not been elucidated due to multi-component and multi-target characteristics. In previous hepatotoxicity screening, different components of PM were first evaluated and the hepatotoxicity of component D [95% ethanol (EtOH) elution] in a 70% EtOH extract of PM (PM-D) showed the highest hepatotoxicity. Furthermore, the main components of PM-D were identified and their hepatotoxicity was evaluated based on a zebrafish embryo model. However, the hepatotoxicity mechanism of PM-D is unknown. AIM OF THE STUDY This work is to explore the hepatotoxicity mechanisms of PM-D by integrating network toxicology and spatially resolved metabolomics strategy. MATERIALS AND METHODS A hepatotoxicity interaction network of PM-D was constructed based on toxicity target prediction for eight key toxic ingredients and a hepatotoxicity target collection. Then the key signaling pathways were enriched, and molecular docking verification was implemented to evaluate the ability of toxic ingredients to bind to the core targets. The pathological changes of liver tissues and serum biochemical assays of mice were used to evaluate the liver injury effect of mice with oral administration of PM-D. Furthermore, spatially resolved metabolomics was used to visualize significant differences in metabolic profiles in mice after drug administration, to screen hepatotoxicity-related biomarkers and analyze metabolic pathways. RESULTS The contents of four key toxic compounds in PM-D were detected. Network toxicology identified 30 potential targets of liver toxicity of PM-D. GO and KEGG enrichment analyses indicated that the hepatotoxicity of PM-D involved multiple biological activities, including cellular response to endogenous stimulus, organonitrogen compound metabolic process, regulation of the apoptotic process, regulation of kinase, regulation of reactive oxygen species metabolic process and signaling pathways including PI3K-Akt, AMPK, MAPK, mTOR, Ras and HIF-1. The molecular docking confirmed the high binding activity of 8 key toxic ingredients with 10 core targets, including mTOR, PIK3CA, AKT1, and EGFR. The high distribution of metabolites of PM-D in the liver of administrated mice was recognized by mass spectrometry imaging. Spatially resolved metabolomics results revealed significant changes in metabolic profiles after PM-D administration, and metabolites such as taurine, taurocholic acid, adenosine, and acyl-carnitines were associated with PM-D-induced liver injury. Enrichment analyses of metabolic pathways revealed tht linolenic acid and linoleic acid metabolism, carnitine synthesis, oxidation of branched-chain fatty acids, and six other metabolic pathways were significantly changed. Comprehensive analysis revealed that the hepatotoxicity caused by PM-D was closely related to cholestasis, mitochondrial damage, oxidative stress and energy metabolism, and lipid metabolism disorders. CONCLUSIONS In this study, the hepatotoxicity mechanisms of PM-D were comprehensively identified through an integrated spatially resolved metabolomics and network toxicology strategy, providing a theoretical foundation for the toxicity mechanisms of PM and its safe clinical application.
Collapse
Affiliation(s)
- Hai-Yan Jiang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hui-Yu Gao
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Jie Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tian-Yu Zhou
- College of Pharmacy, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Shu-Ting Wang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jian-Bo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Rui-Rui Hao
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fei Pang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Feng Wei
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Zhi-Gang Liu
- School of Biological Science and Engineering, South China University of Technology, Guangzhou, China
| | - Lian Kuang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuang-Cheng Ma
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China.
| | - Jiu-Ming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing, China.
| | - Hong-Tao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing, China; NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing, China.
| |
Collapse
|
10
|
Jung TW, Kim H, Park SY, Cho W, Oh H, Lee HJ, Abd El-Aty AM, Hacimuftuoglu A, Jeong JH. Stachydrine alleviates lipid-induced skeletal muscle insulin resistance via AMPK/HO-1-mediated suppression of inflammation and endoplasmic reticulum stress. J Endocrinol Invest 2022; 45:2181-2191. [PMID: 35834165 DOI: 10.1007/s40618-022-01866-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
OBJECTIVE Insulin resistance develops due to skeletal muscle inflammation and endoplasmic reticulum (ER) stress. Stachydrine (STA), extracted from Leonurus heterophyllus, has been shown to suppress proliferation and induce apoptosis in breast cancer cells and exert anti-inflammatory properties in the brain, heart, and liver. However, the roles of STA in insulin signaling in skeletal muscle remain unclear. Herein, we examined the impacts of STA on insulin signaling in skeletal muscle under hyperlipidemic conditions and its related molecular mechanisms. METHODS Various protein expression levels were determined by Western blotting. Levels of mouse serum cytokines were measured by ELISA. RESULTS We found that STA-ameliorated inflammation and ER stress, leading to attenuation of insulin resistance in palmitate-treated C2C12 myocytes. STA dose-dependently enhanced AMPK phosphorylation and HO-1 expression. Administration of STA attenuated not only insulin resistance but also inflammation and ER stress in the skeletal muscle of high-fat diet (HFD)-fed mice. Additionally, STA-ameliorated glucose tolerance and insulin sensitivity, as well as serum TNFα and MCP-1, in mice fed a HFD. Small interfering (si) RNA-associated suppression of AMPK or HO-1 expression abolished the effects of STA in C2C12 myocytes. CONCLUSIONS These results suggest that STA activates AMPK/HO-1 signaling, resulting in reduced inflammation and ER stress, thereby improving skeletal muscle insulin resistance. Using STA as a natural ingredient, this research successfully treated insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- T W Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - H Kim
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - S Y Park
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - W Cho
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - H Oh
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - H J Lee
- Department of Anatomy and Cell Biology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240, Erzurum, Türkiye
| | - A Hacimuftuoglu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240, Erzurum, Türkiye
| | - J H Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Mann G, Riddell MC, Adegoke OAJ. Effects of Acute Muscle Contraction on the Key Molecules in Insulin and Akt Signaling in Skeletal Muscle in Health and in Insulin Resistant States. DIABETOLOGY 2022; 3:423-446. [DOI: 10.3390/diabetology3030032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Insulin signaling plays a key role in glucose uptake, glycogen synthesis, and protein and lipid synthesis. In insulin-resistant states like obesity and type 2 diabetes mellitus, these processes are dysregulated. Regular physical exercise is a potential therapeutic strategy against insulin resistance, as an acute bout of exercise increases glucose disposal during the activity and for hours into recovery. Chronic exercise increases the activation of proteins involved in insulin signaling and increases glucose transport, even in insulin resistant states. Here, we will focus on the effect of acute exercise on insulin signaling and protein kinase B (Akt) pathways. Activation of proximal proteins involved in insulin signaling (insulin receptor, insulin receptor substrate-1 (IRS-1), phosphoinoside-3 kinase (PI3K)) are unchanged in response to acute exercise/contraction, while activation of Akt and of its substrates, TBC1 domain family 1 (TBC1D1), and TBC domain family 4 (TBC1D4) increases in response to such exercise/contraction. A wide array of Akt substrates is also regulated by exercise. Additionally, AMP-activated protein kinase (AMPK) seems to be a main mediator of the benefits of exercise on skeletal muscle. Questions persist on how mTORC1 and AMPK, two opposing regulators, are both upregulated after an acute bout of exercise.
Collapse
Affiliation(s)
- Gagandeep Mann
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada
| | - Michael C. Riddell
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada
| | | |
Collapse
|
12
|
Vincent A, Dessauge F, Gondret F, Lebret B, Le Floc'h N, Louveau I, Lefaucheur L. Poor hygiene of housing conditions influences energy metabolism in a muscle type-dependent manner in growing pigs differing in feed efficiency. Sci Rep 2022; 12:7991. [PMID: 35568703 PMCID: PMC9107456 DOI: 10.1038/s41598-022-12050-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/03/2022] [Indexed: 11/28/2022] Open
Abstract
The ability of pigs to cope with inflammatory challenges may by modified by selection for residual feed intake (RFI), a measure of feed efficiency. In the current study, we evaluated skeletal muscle metabolic responses to degraded hygiene conditions in pigs divergently selected for RFI. At 82 d of age, low RFI and high RFI pigs were housed in either poor or good hygiene conditions. After a 6-week challenge, the poor hygiene conditions induced a decrease in growth performance (P < 0.001) and in plasma IGF-I concentrations (P < 0.003) in both lines. In the slow-twitch oxidative semispinalis muscle, poor hygiene conditions induced a shift towards a more oxidative metabolism and an activation of the AMPK pathway in pigs of both RFI lines. In the fast-twitch glycolytic longississimus muscle, poor hygiene conditions were associated to a less glycolytic metabolism in the HRFI line only. Poor hygiene conditions also increased the protein level of lipidation of microtubule-associated protein 1 light-chain 3β (LC3-II) in both RFI lines, suggesting an activation of the autophagy pathway. Altogether, the data revealed muscle-type specific metabolic adaptations to poor hygiene conditions, which may be related to different strategies to fuel the activated immune system.
Collapse
Affiliation(s)
- Annie Vincent
- PEGASE, INRAE, Institut Agro, 35590, Saint-Gilles, France.
| | | | | | | | | | | | | |
Collapse
|
13
|
Wu Z, Li Q, Yang S, Zheng T, Shao J, Guan W, Chen F, Zhang S. Energy deprivation-induced AMPK activation inhibits milk synthesis by targeting PrlR and PGC-1α. Cell Commun Signal 2022; 20:25. [PMID: 35248054 PMCID: PMC8898430 DOI: 10.1186/s12964-022-00830-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/09/2022] [Indexed: 02/06/2023] Open
Abstract
Background The mammary gland is responsible for milk production and secretion, which is critical for neonatal health during lactation. Lactation efficiency is largely affected by energy status with unclear mechanism. Results In the current study, we found that synthesis of milk fat and protein was significantly inhibited under energy-deficient conditions, which is accompanied with AMP-activated protein kinase (AMPK) activation. Modulating the AMPK signaling pathway directly or indirectly affects the synthesis of milk fat and protein. Besides mammalian target of rapamycin complex 1 (mTORC1) signaling in the regulation of milk synthesis, we discovered that AMPK mainly regulates the synthesis of milk protein through prolactin signaling. Mechanistically, AMPK triggers the ubiquitination of prolactin receptor (PrlR) through regulating the activity of β-transducin repeat-containing protein (β-TrCP, an E3 ligase). Subsequently, PrlR is degraded by the endocytosis process of lysosomes, which further attenuates prolactin signaling. In addition, our results revealed that AMPK activation inhibits milk fat synthesis through decreasing and accelerating de novo synthesis and β-oxidation of fatty acids, respectively. To be precise, AMPK activation inhibits rate limiting enzymes and transcriptional regulatory factors involved in de novo fatty acid synthesis and decreases the acetylation process of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) to strengthen the oxidation of fatty acids. Conclusions Taken together, AMPK regulates the synthesis of milk not only depends on canonical mTORC1 signaling and key rate-limiting enzymes, but also through manipulating the degradation of PrlR and the acetylation of PGC-1α. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00830-6.
Collapse
|
14
|
Phull AR, Ahmed M, Park HJ. Cordyceps militaris as a Bio Functional Food Source: Pharmacological Potential, Anti-Inflammatory Actions and Related Molecular Mechanisms. Microorganisms 2022; 10:microorganisms10020405. [PMID: 35208860 PMCID: PMC8875674 DOI: 10.3390/microorganisms10020405] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 12/11/2022] Open
Abstract
Cordyceps militaris (C. militaris) is a medicinal mushroom possessing a variety of biofunctionalities. It has several biologically important components such as polysaccharides and others. The diverse pharmacological potential of C. militaris has generated interest in reviewing the current scientific literature, with a particular focus on prevention and associated molecular mechanisms in inflammatory diseases. Due to rising global demand, research on C. militaris has continued to increase in recent years. C. militaris has shown the potential for inhibiting inflammation-related events, both in in vivo and in vitro experiments. Inflammation is a multifaceted biological process that contributes to the development and severity of diseases, including cancer, colitis, and allergies. These functions make C. militaris a suitable functional food for inhibiting inflammatory responses such as the regulation of proinflammatory cytokines. Therefore, on the basis of existing information, the current study provides insights towards the understanding of anti-inflammatory activity-related mechanisms. This article presents a foundation for clinical use, and analyzes the roadmap for future studies concerning the medical use of C. militaris and its constituents in the next generation of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Abdul-Rehman Phull
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam 13120, Korea;
| | - Madiha Ahmed
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan;
| | - Hye-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam 13120, Korea;
- Correspondence:
| |
Collapse
|
15
|
Boone-Villa D, Ventura-Sobrevilla J, Aguilera-Méndez A, Jiménez-Villarreal J. The effect of adenosine monophosphate-activated protein kinase on lipolysis in adipose tissue: an historical and comprehensive review. Arch Physiol Biochem 2022; 128:7-23. [PMID: 35143739 DOI: 10.1080/13813455.2019.1661495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
CONTEXT Lipolysis is one of the most important pathways for energy management, its control in the adipose tissue (AT) is a potential therapeutic target for metabolic diseases. Adenosine Mono Phosphate-activated Protein Kinase (AMPK) is a key regulatory enzyme in lipids metabolism and a potential target for diabetes and obesity treatment. OBJECTIVE The aim of this work is to analyse the existing information on the relationship of AMPK and lipolysis in the AT. METHODS A thorough search of bibliography was performed in the databases Scopus and Web of Knowledge using the terms lipolysis, adipose tissue, and AMPK, the unrelated publications were excluded, and the documents were analysed. RESULTS Sixty-three works were found and classified in 3 categories: inhibitory effects, stimulatory effect, and diverse relationships; remarkably, the newest researches support an upregulating relationship of AMPK over lipolysis. CONCLUSION The most probable reality is that the relationship AMPK-lipolysis depends on the experimental conditions.
Collapse
Affiliation(s)
- Daniel Boone-Villa
- School of Medicine Northern Unit, Universidad Autonoma de Coahuila, Piedras Negras, México
| | | | - Asdrúbal Aguilera-Méndez
- Institute of Biological Chemistry Research, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México
| | | |
Collapse
|
16
|
SHARMA SHIVANI, MADAAN KASHISH, KAUR RAVNEET. Cordycepin: A hidden metabolite with pharmacological potential. Int J Med Mushrooms 2022; 24:1-20. [DOI: 10.1615/intjmedmushrooms.2022044442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Chen M, Zhou L, Chen S, Shangguan R, Qu Y, Sun J. Acute and chronic effects of high-intensity interval training (HIIT) on postexercise intramuscular lipid metabolism in rats. Physiol Res 2021; 70:735-743. [PMID: 34505529 DOI: 10.33549/physiolres.934722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Recovery from exercise refers to the period between the end of a bout of exercise and the subsequent return to a resting or recovered state. It is a dynamic period in which many physiological changes occur. A large amount of research has evaluated the effect of training on intramuscular lipid metabolism. However, data are limited regarding intramuscular lipid metabolism during the recovery period. In this study, lipid metabolism-related proteins were examined after a single bout of exercise in a time-dependent way to explore the mechanism of how exercise induces intramuscular lipid metabolism adaptation. Firstly, all rats in the exercise group underwent a five-week training protocol (HIIT, five times/week), and then performed a more intense HIIT session after 72 h of the last-time five-week training. After that, rats were sampled in a time-dependent way, including 0 h, 6 h, 12 h, 24 h, 48 h, 72 h, and 96 h following the acute training session. Our results discovered that five weeks of HIIT increased the content of intramuscular triglyceride (IMTG) and enhanced the lipolytic and lipogenesis-related proteins in skeletal muscle. Furthermore, IMTG content decreased immediately post HIIT and gradually increased to baseline levels 48 h postexercise, continuing to over-recover up to 96 h postexercise. Following acute exercise, lipolytic-related proteins showed an initial increase (6-12 h) before decreasing during recovery. Conversely, lipogenesis-related proteins decreased following exercise (6-12 h), then increased in the recovery period. Based on the changes, we speculate that skeletal muscle is predominated by lipid oxidative at the first 12 h postexercise. After this period, lipid synthesis-related proteins increased, which may be the result of body recovery. Together, these results may provide insight into how the lipid metabolism-related signaling changes after chronic and acute HIIT and how protein levels lipid metabolism correlates to IMTG recovery.
Collapse
Affiliation(s)
- M Chen
- Institute of Sports Science, Sichuan University, Chengdu, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
18
|
Ghzaiel I, Zarrouk A, Nury T, Libergoli M, Florio F, Hammouda S, Ménétrier F, Avoscan L, Yammine A, Samadi M, Latruffe N, Biressi S, Levy D, Bydlowski SP, Hammami S, Vejux A, Hammami M, Lizard G. Antioxidant Properties and Cytoprotective Effect of Pistacia lentiscus L. Seed Oil against 7β-Hydroxycholesterol-Induced Toxicity in C2C12 Myoblasts: Reduction in Oxidative Stress, Mitochondrial and Peroxisomal Dysfunctions and Attenuation of Cell Death. Antioxidants (Basel) 2021; 10:antiox10111772. [PMID: 34829643 PMCID: PMC8615043 DOI: 10.3390/antiox10111772] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 01/18/2023] Open
Abstract
Aging is characterized by a progressive increase in oxidative stress, which favors lipid peroxidation and the formation of cholesterol oxide derivatives, including 7β-hydroxycholesterol (7β-OHC). This oxysterol, which is known to trigger oxidative stress, inflammation, and cell death, could contribute to the aging process and age-related diseases, such as sarcopenia. Identifying molecules or mixtures of molecules preventing the toxicity of 7β-OHC is therefore an important issue. This study consists of determining the chemical composition of Tunisian Pistacia lentiscus L. seed oil (PLSO) used in the Tunisian diet and evaluating its ability to counteract the cytotoxic effects induced by 7β-OHC in murine C2C12 myoblasts. The effects of 7β-OHC (50 µM; 24 h), associated or not with PLSO, were studied on cell viability, oxidative stress, and on mitochondrial and peroxisomal damages induction. α-Tocopherol (400 µM) was used as the positive control for cytoprotection. Our data show that PLSO is rich in bioactive compounds; it contains polyunsaturated fatty acids, and several nutrients with antioxidant properties: phytosterols, α-tocopherol, carotenoids, flavonoids, and phenolic compounds. When associated with PLSO (100 µg/mL), the 7β-OHC-induced cytotoxic effects were strongly attenuated. The cytoprotection was in the range of those observed with α-tocopherol. This cytoprotective effect was characterized by prevention of cell death and organelle dysfunction (restoration of cell adhesion, cell viability, and plasma membrane integrity; prevention of mitochondrial and peroxisomal damage) and attenuation of oxidative stress (reduction in reactive oxygen species overproduction in whole cells and at the mitochondrial level; decrease in lipid and protein oxidation products formation; and normalization of antioxidant enzyme activities: glutathione peroxidase (GPx) and superoxide dismutase (SOD)). These results provide evidence that PLSO has similar antioxidant properties than α-tocopherol used at high concentration and contains a mixture of molecules capable to attenuate 7β-OHC-induced cytotoxic effects in C2C12 myoblasts. These data reinforce the interest in edible oils associated with the Mediterranean diet, such as PLSO, in the prevention of age-related diseases, such as sarcopenia.
Collapse
Affiliation(s)
- Imen Ghzaiel
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; (I.G.); (T.N.); (A.Y.); (N.L.); (A.V.)
- Lab-NAFS ‘Nutrition—Functional Food & Vascular Health’, Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia; (S.H.); (S.H.); (M.H.)
- Faculty of Sciences of Tunis, University Tunis-El Manar, Tunis 2092, Tunisia
| | - Amira Zarrouk
- Lab-NAFS ‘Nutrition—Functional Food & Vascular Health’, Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia; (S.H.); (S.H.); (M.H.)
- Faculty of Medicine, University of Sousse, Sousse 4000, Tunisia
- Correspondence: (A.Z.); (G.L.); Tel.: +216-94-837-999 or +1-212-241 9304 (A.Z.); +33-380-396-256 (G.L.)
| | - Thomas Nury
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; (I.G.); (T.N.); (A.Y.); (N.L.); (A.V.)
| | - Michela Libergoli
- Department of Cellular, Computational and Integrative Biology (CIBio) and Dulbecco Telethon Institute, University of Trento, 38123 Trento, Italy; (M.L.); (F.F.); (S.B.)
| | - Francesca Florio
- Department of Cellular, Computational and Integrative Biology (CIBio) and Dulbecco Telethon Institute, University of Trento, 38123 Trento, Italy; (M.L.); (F.F.); (S.B.)
| | - Souha Hammouda
- Lab-NAFS ‘Nutrition—Functional Food & Vascular Health’, Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia; (S.H.); (S.H.); (M.H.)
| | - Franck Ménétrier
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21065 Dijon, France;
| | - Laure Avoscan
- Agroécologie, AgroSup Dijon, CNRS, INRAE, University Bourgogne Franche-Comté, Plateforme DimaCell, 21000 Dijon, France;
| | - Aline Yammine
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; (I.G.); (T.N.); (A.Y.); (N.L.); (A.V.)
| | - Mohammad Samadi
- LCPMC-A2, ICPM, Department of Chemistry, University Lorraine, Metz Technopôle, 57070 Metz, France;
| | - Norbert Latruffe
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; (I.G.); (T.N.); (A.Y.); (N.L.); (A.V.)
| | - Stefano Biressi
- Department of Cellular, Computational and Integrative Biology (CIBio) and Dulbecco Telethon Institute, University of Trento, 38123 Trento, Italy; (M.L.); (F.F.); (S.B.)
| | - Débora Levy
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-900, Brazil; (D.L.); (S.P.B.)
| | - Sérgio Paulo Bydlowski
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-900, Brazil; (D.L.); (S.P.B.)
- National Institute of Science and Technology in Regenerative Medicine (INCT-Regenera), CNPq, Rio de Janeiro 21941-902, Brazil
| | - Sonia Hammami
- Lab-NAFS ‘Nutrition—Functional Food & Vascular Health’, Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia; (S.H.); (S.H.); (M.H.)
| | - Anne Vejux
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; (I.G.); (T.N.); (A.Y.); (N.L.); (A.V.)
| | - Mohamed Hammami
- Lab-NAFS ‘Nutrition—Functional Food & Vascular Health’, Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia; (S.H.); (S.H.); (M.H.)
| | - Gérard Lizard
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; (I.G.); (T.N.); (A.Y.); (N.L.); (A.V.)
- Correspondence: (A.Z.); (G.L.); Tel.: +216-94-837-999 or +1-212-241 9304 (A.Z.); +33-380-396-256 (G.L.)
| |
Collapse
|
19
|
Dogra S, Neelakantan D, Patel MM, Griesel B, Olson A, Woo S. Adipokine Apelin/APJ Pathway Promotes Peritoneal Dissemination of Ovarian Cancer Cells by Regulating Lipid Metabolism. Mol Cancer Res 2021; 19:1534-1545. [PMID: 34172534 PMCID: PMC11486291 DOI: 10.1158/1541-7786.mcr-20-0991] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/05/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022]
Abstract
Adipose tissue, which can provide adipokines and nutrients to tumors, plays a key role in promoting ovarian cancer metastatic lesions in peritoneal cavity. The adipokine apelin promotes ovarian cancer metastasis and progression through its receptor APJ, which regulates cell proliferation, energy metabolism, and angiogenesis. The objective of this study was to investigate the functional role and mechanisms of the apelin-APJ pathway in ovarian cancer metastasis, especially in context of tumor cell-adipocyte interactions. When co-cultured in the conditioned media (AdipoCM) derived from 3T3-L1 adipocytes, which express and secrete high apelin, human ovarian cancer cells with high APJ expression showed significant increases in migration and invasion in vitro. We also found that cells expressing high levels of APJ had increased cell adhesion to omentum ex vivo, and preferentially "home-in" on the omentum in vivo. These apelin-induced pro-metastatic effects were reversed by APJ antagonist F13A in a dose-dependent manner. Apelin-APJ activation increased lipid droplet accumulation in ovarian cancer cells, which was further intensified in the presence of AdipoCM and reversed by F13A or APJ knockdown. Mechanistically, this increased lipid uptake was mediated by CD36 upregulation via APJ-STAT3 activation, and the lipids were utilized in promoting fatty acid oxidation via activation of AMPK-CPT1a axis. Together, our studies demonstrate that adipocyte-derived apelin activates APJ-expressing tumor cells in a paracrine manner, promoting lipid uptake and utilization and providing energy for ovarian cancer cell survival at the metastatic sites. Hence, the apelin-APJ pathway presents a novel therapeutic target to curb ovarian cancer metastasis. IMPLICATIONS: Targeting the APJ pathway in high-grade serous ovarian carcinoma is a novel strategy to inhibit peritoneal metastasis.
Collapse
Affiliation(s)
- Samrita Dogra
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Deepika Neelakantan
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Maulin M Patel
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Cardiovascular Biology Department, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Beth Griesel
- Department of Biochemistry and Molecular Biology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ann Olson
- Department of Biochemistry and Molecular Biology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
20
|
Li Y, Guo S, Yang F, Liu L, Chen Z. Huayu Tongluo Recipe Attenuates Renal Oxidative Stress and Inflammation through the Activation of AMPK/Nrf2 Signaling Pathway in Streptozotocin- (STZ-) Induced Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5873007. [PMID: 34367305 PMCID: PMC8337136 DOI: 10.1155/2021/5873007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/07/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
Diabetic nephropathy (DN), a severe microvascular complication of diabetes, is one of the leading causes of end-stage renal disease. Huayu Tongluo Recipe (HTR) has been widely used in the clinical treatment of DN in China, and its efficacy is reliable. This study aimed to explore the renoprotective effect of HTR and the underlying mechanism. Male Sprague-Dawley rats were fed with high sugar and fat diet combined with an intraperitoneal injection of STZ to establish the diabetic model. Rats in each group were respectively given drinking water, HTR, and irbesartan by gavage for 16 weeks. 24-hour urine samples were collected every 4 weeks to detect the content of total protein and 8-OHdG. Blood samples were taken to detect biochemical indicators and inflammatory markers at the end of 16th week. Renal tissue was collected to investigate pathological changes and to detect oxidative stress and inflammatory markers. AMPK/Nrf2 signaling pathway and fibrosis-related proteins were detected by immunohistochemistry, immunofluorescence, real-time PCR, and western blot. 24h urine total protein (24h UTP), serum creatinine (Scr), blood urea nitrogen (BUN), total cholesterol (TC), and triglyceride (TG) were decreased in the rats treated with HTR, while there was no noticeable change of blood glucose. HTR administration decreased malondialdehyde (MDA) content and increased superoxide dismutase (SOD) activity in kidneys, complying with reduced 8-OHdG in the urine. The levels of TNF-α, IL-1β, and MCP1 and the expression of nuclear NFκB were also lower after HTR treatment. Furthermore, HTR alleviated pathological renal injury and reduced the accumulation of extracellular matrix (ECM). Besides, HTR enhanced the AMPK/Nrf2 signaling and increased the expression of HO-1 while it inhibited the Nox4/TGF-β1 signaling in the kidneys of STZ-induced diabetic rats. HTR can inhibit renal oxidative stress and inflammation to reduce ECM accumulation and protect the kidney through activating the AMPK/Nrf2 signaling pathway in DN.
Collapse
Affiliation(s)
- Yachun Li
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Shuai Guo
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Fan Yang
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Lifei Liu
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Zhiqiang Chen
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China
- Hebei Hospital of Traditional Chinese Medicine, Shijiazhuang 050091, China
| |
Collapse
|
21
|
Lee IK, Kim G, Kim DH, Kim BB. PEG-BHD1028 Peptide Regulates Insulin Resistance and Fatty Acid β-Oxidation, and Mitochondrial Biogenesis by Binding to Two Heterogeneous Binding Sites of Adiponectin Receptors, AdipoR1 and AdipoR2. Int J Mol Sci 2021; 22:ijms22020884. [PMID: 33477324 PMCID: PMC7830917 DOI: 10.3390/ijms22020884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/17/2022] Open
Abstract
Adiponectin plays multiple critical roles in modulating various physiological processes by binding to its receptors. The functions of PEG-BHD1028, a potent novel peptide agonist to AdipoRs, was evaluated using in vitro and in vivo models based on the reported action spectrum of adiponectin. To confirm the design concept of PEG-BHD1028, the binding sites and their affinities were analyzed using the SPR (Surface Plasmon Resonance) assay. The results revealed that PEG-BHD1028 was bound to two heterogeneous binding sites of AdipoR1 and AdipoR2 with a relatively high affinity. In C2C12 cells, PEG-BHD1028 significantly activated AMPK and subsequent pathways and enhanced fatty acid β-oxidation and mitochondrial biogenesis. Furthermore, it also facilitated glucose uptake by lowering insulin resistance in insulin-resistant C2C12 cells. PEG-BHD1028 significantly reduced the fasting plasma glucose level in db/db mice following a single s.c. injection of 50, 100, and 200 μg/Kg and glucose tolerance at a dose of 50 μg/Kg with significantly decreased insulin production. The animals received 5, 25, and 50 μg/Kg of PEG-BHD1028 for 21 days significantly lost their weight after 18 days in a range of 5-7%. These results imply the development of PEG-BHD1028 as a potential adiponectin replacement therapeutic agent.
Collapse
Affiliation(s)
| | | | | | - Brian B. Kim
- Correspondence: ; Tel.: +82-31-360-3132; Fax: +82-31-360-3133
| |
Collapse
|
22
|
Miller VJ, LaFountain RA, Barnhart E, Sapper TS, Short J, Arnold WD, Hyde PN, Crabtree CD, Kackley ML, Kraemer WJ, Villamena FA, Volek JS. A ketogenic diet combined with exercise alters mitochondrial function in human skeletal muscle while improving metabolic health. Am J Physiol Endocrinol Metab 2020; 319:E995-E1007. [PMID: 32985255 DOI: 10.1152/ajpendo.00305.2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Animal data indicate that ketogenic diets are associated with improved mitochondrial function, but human data are lacking. We aimed to characterize skeletal muscle mitochondrial changes in response to a ketogenic diet combined with exercise training in healthy individuals. Twenty-nine physically active adults completed a 12-wk supervised exercise program after self-selection into a ketogenic diet (KD, n = 15) group or maintenance of their habitual mixed diet (MD, n = 14). Measures of metabolic health and muscle biopsies (vastus lateralis) were obtained before and after the intervention. Mitochondria were isolated from muscle and studied after exposure to carbohydrate (pyruvate), fat (palmitoyl-l-carnitine), and ketone (β-hydroxybutyrate+acetoacetate) substrates. Compared with MD, the KD resulted in increased whole body resting fat oxidation (P < 0.001) and decreased fasting insulin (P = 0.019), insulin resistance [homeostatic model assessment of insulin resistance (HOMA-IR), P = 0.022], and visceral fat (P < 0.001). The KD altered mitochondrial function as evidenced by increases in mitochondrial respiratory control ratio (19%, P = 0.009), ATP production (36%, P = 0.028), and ATP/H2O2 (36%, P = 0.033) with the fat-based substrate. ATP production with the ketone-based substrate was four to eight times lower than with other substrates, indicating minimal oxidation. The KD resulted in a small decrease in muscle glycogen (14%, P = 0.035) and an increase in muscle triglyceride (81%, P = 0.006). These results expand our understanding of human adaptation to a ketogenic diet combined with exercise. In conjunction with weight loss, we observed altered skeletal muscle mitochondrial function and efficiency, an effect that may contribute to the therapeutic use of ketogenic diets in various clinical conditions, especially those associated with insulin resistance.
Collapse
Affiliation(s)
- Vincent J Miller
- OSU Interdisciplinary PhD Program in Nutrition, Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | | | - Emily Barnhart
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - Teryn S Sapper
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - Jay Short
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - W David Arnold
- Department of Neurology, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Parker N Hyde
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | | | - Madison L Kackley
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - William J Kraemer
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - Frederick A Villamena
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio
| | - Jeff S Volek
- OSU Interdisciplinary PhD Program in Nutrition, Department of Human Sciences, The Ohio State University, Columbus, Ohio
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| |
Collapse
|
23
|
Nemec M, Vernerová L, Laiferová N, Balážová M, Vokurková M, Kurdiová T, Oreská S, Kubínová K, Klein M, Špiritović M, Tomčík M, Vencovský J, Ukropec J, Ukropcová B. Altered dynamics of lipid metabolism in muscle cells from patients with idiopathic inflammatory myopathy is ameliorated by 6 months of training. J Physiol 2020; 599:207-229. [PMID: 33063873 DOI: 10.1113/jp280468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/13/2020] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Regular exercise improves muscle functional capacity and clinical state of patients with idiopathic inflammatory myopathy (IIM). In our study, we used an in vitro model of human primary muscle cell cultures, derived from IIM patients before and after a 6-month intensive supervised training intervention to assess the impact of disease and exercise on lipid metabolism dynamics. We provide evidence that muscle cells from IIM patients display altered dynamics of lipid metabolism and impaired adaptive response to saturated fatty acid load compared to healthy controls. A 6-month intensive supervised exercise training intervention in patients with IIM mitigated disease effects in their cultured muscle cells, improving or normalizing their capacity to handle lipids. These findings highlight the putative role of intrinsic metabolic defects of skeletal muscle in the pathogenesis of IIM and the positive impact of exercise, maintained in vitro by yet unknown epigenetic mechanisms. ABSTRACT Exercise improves skeletal muscle function, clinical state and quality of life in patients with idiopathic inflammatory myopathy (IIM). Our aim was to identify disease-related metabolic perturbations and the impact of exercise in skeletal muscle cells of IIM patients. Patients underwent a 6-month intensive supervised training intervention. Muscle function, anthropometric and metabolic parameters were examined and muscle cell cultures were established (m. vastus lateralis; Bergström needle biopsy) before and after training from patients and sedentary age/sex/body mass index-matched controls. [14 C]Palmitate was used to determine fat oxidation and lipid synthesis (thin layer chromatography). Cells were exposed to a chronic (3 days) and acute (3 h) metabolic challenge (the saturated fatty acid palmitate, 100 μm). Reduced oxidative (intermediate metabolites, -49%, P = 0.034) and non-oxidative (diglycerides, -38%, P = 0.013) lipid metabolism was identified in palmitate-treated muscle cells from IIM patients compared to controls. Three days of palmitate exposure elicited distinct regulation of oxidative phosphorylation (OxPHOS) complex IV and complex V/ATP synthase (P = 0.012/0.005) and adipose triglyceride lipase in patients compared to controls (P = 0.045) (immunoblotting). Importantly, 6 months of training in IIM patients improved lipid metabolism (CO2 , P = 0.010; intermediate metabolites, P = 0.041) and activation of AMP kinase (P = 0.007), and nearly normalized palmitate-induced changes in OxPHOS proteins in myotubes from IIM patients, in parallel with improvements of patients' clinical state. Myotubes from IIM patients displayed altered dynamics of lipid metabolism and impaired response to metabolic challenge with saturated fatty acid. Our observations suggest that metabolic defects intrinsic to skeletal muscle could represent non-immune pathomechanisms, which can contribute to muscle weakness in IIM. A 6-month training intervention mitigated disease effects in muscle cells in vitro, indicating the existence of epigenetic regulatory mechanisms.
Collapse
Affiliation(s)
- M Nemec
- Biomedical Research Centre, Slovak Academy of Sciences, Institute of Experimental Endocrinology, Bratislava, Slovakia
| | - L Vernerová
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - N Laiferová
- Biomedical Research Centre, Slovak Academy of Sciences, Institute of Experimental Endocrinology, Bratislava, Slovakia.,Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - M Balážová
- Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - M Vokurková
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - T Kurdiová
- Biomedical Research Centre, Slovak Academy of Sciences, Institute of Experimental Endocrinology, Bratislava, Slovakia
| | - S Oreská
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - K Kubínová
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - M Klein
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - M Špiritović
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Physiotherapy, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - M Tomčík
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - J Vencovský
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - J Ukropec
- Biomedical Research Centre, Slovak Academy of Sciences, Institute of Experimental Endocrinology, Bratislava, Slovakia
| | - B Ukropcová
- Biomedical Research Centre, Slovak Academy of Sciences, Institute of Experimental Endocrinology, Bratislava, Slovakia.,Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
24
|
Schmeisser S, Li S, Bouchard B, Ruiz M, Des Rosiers C, Roy R. Muscle-Specific Lipid Hydrolysis Prolongs Lifespan through Global Lipidomic Remodeling. Cell Rep 2020; 29:4540-4552.e8. [PMID: 31875559 DOI: 10.1016/j.celrep.2019.11.090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 09/20/2019] [Accepted: 11/21/2019] [Indexed: 12/20/2022] Open
Abstract
A growing body of evidence suggests that changes in fat metabolism may have a significant effect on lifespan. Accumulation of lipid deposits in non-adipose tissue appears to be critical for age-related pathologies and may also contribute to the aging process itself. We established a model of lipid storage in muscle cells of C. elegans to reveal a mechanism that promotes longevity non-cell-autonomously. Here, we describe how muscle-specific activation of adipose triglyceride lipase (ATGL) and the phospholipase A2 (PLA2) ortholog IPLA-7 collectively affect inter-tissular communication and systemic adaptation that requires the activity of AMP-dependent protein kinase (AMPK) and a highly conserved nuclear receptor outside of the muscle. Our data suggest that muscle-specific bioactive lipid signals, or "lipokines," are generated following triglyceride breakdown and that these signals impinge on a complex network of genes that modify the global lipidome, consequently extending the lifespan.
Collapse
Affiliation(s)
| | - Shaolin Li
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Bertrand Bouchard
- Montreal Heart Institute, Research Center, Montreal, QC H1T 1C8, Canada
| | - Matthieu Ruiz
- Montreal Heart Institute, Research Center, Montreal, QC H1T 1C8, Canada; Department of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Christine Des Rosiers
- Montreal Heart Institute, Research Center, Montreal, QC H1T 1C8, Canada; Department of Nutrition, University of Montreal, Montreal, QC H2T 1A8, Canada
| | - Richard Roy
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada.
| |
Collapse
|
25
|
Brown DR, Warner AR, Deb SK, Gough LA, Sparks SA, McNaughton LR. The effect of astaxanthin supplementation on performance and fat oxidation during a 40 km cycling time trial. J Sci Med Sport 2020; 24:92-97. [PMID: 32660833 DOI: 10.1016/j.jsams.2020.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/25/2020] [Accepted: 06/28/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVES This study aimed to investigate whether supplementation with 12 mg⋅day-1 astaxanthin for 7 days can improve exercise performance and metabolism during a 40 km cycling time trial. DESIGN A randomised, double-blind, crossover design was employed. METHODS Twelve recreationally trained male cyclists (VO2peak: 56.5 ± 5.5 mL⋅kg-1⋅min-1, Wmax: 346.8 ± 38.4 W) were recruited. Prior to each experimental trial, participants were supplemented with either 12 mg⋅day-1 astaxanthin or an appearance-matched placebo for 7 days (separated by 14 days of washout). On day 7 of supplementation, participants completed a 40 km cycling time trial on a cycle ergometer, with indices of exercise metabolism measured throughout. RESULTS Time to complete the 40 km cycling time trial was improved by 1.2 ± 1.7% following astaxanthin supplementation, from 70.76 ± 3.93 min in the placebo condition to 69.90 ± 3.78 min in the astaxanthin condition (mean improvement = 51 ± 71 s, p = 0.029, g = 0.21). Whole-body fat oxidation rates were also greater (+0.09 ± 0.13 g⋅min-1, p = 0.044, g = 0.52), and the respiratory exchange ratio lower (-0.03 ± 0.04, p = 0.024, g = 0.60) between 39-40 km in the astaxanthin condition. CONCLUSIONS Supplementation with 12 mg⋅day-1 astaxanthin for 7 days provided an ergogenic benefit to 40 km cycling time trial performance in recreationally trained male cyclists and enhanced whole-body fat oxidation rates in the final stages of this endurance-type performance event.
Collapse
Affiliation(s)
- Daniel R Brown
- Department of Higher Education Sport, Loughborough College, United Kingdom.
| | - Ashley R Warner
- Department of Sport, Health and Exercise Science, University of Hull, United Kingdom
| | - Sanjoy K Deb
- School of Life Sciences, University of Westminster, United Kingdom
| | - Lewis A Gough
- School of Health Sciences, Birmingham City University, United Kingdom
| | - S Andy Sparks
- Sport Nutrition and Performance Research Group, Department of Sport and Physical Activity, Edge Hill University, United Kingdom
| | - Lars R McNaughton
- Sport Nutrition and Performance Research Group, Department of Sport and Physical Activity, Edge Hill University, United Kingdom; Department of Sport and Movement Studies, University of Johannesburg, South Africa
| |
Collapse
|
26
|
Cordycepin for Health and Wellbeing: A Potent Bioactive Metabolite of an Entomopathogenic Cordyceps Medicinal Fungus and Its Nutraceutical and Therapeutic Potential. Molecules 2020; 25:molecules25122735. [PMID: 32545666 PMCID: PMC7356751 DOI: 10.3390/molecules25122735] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022] Open
Abstract
Cordyceps is a rare naturally occurring entomopathogenic fungus usually found at high altitudes on the Himalayan plateau and a well-known medicinal mushroom in traditional Chinese medicine. Cordyceps contains various bioactive components, out of which, cordycepin is considered most vital, due to its utmost therapeutic as well as nutraceutical potential. Moreover, the structure similarity of cordycepin with adenosine makes it an important bioactive component, with difference of only hydroxyl group, lacking in the 3′ position of its ribose moiety. Cordycepin is known for various nutraceutical and therapeutic potential, such as anti-diabetic, anti-hyperlipidemia, anti-fungal, anti-inflammatory, immunomodulatory, antioxidant, anti-aging, anticancer, antiviral, hepato-protective, hypo-sexuality, cardiovascular diseases, antimalarial, anti-osteoporotic, anti-arthritic, cosmeceutical etc. which makes it a most valuable medicinal mushroom for helping in maintaining good health. In this review, effort has been made to bring altogether the possible wide range of cordycepin’s nutraceutical potential along with its pharmacological actions and possible mechanism. Additionally, it also summarizes the details of cordycepin based nutraceuticals predominantly available in the market with expected global value. Moreover, this review will attract the attention of food scientists, nutritionists, pharmaceutical and food industries to improve the use of bioactive molecule cordycepin for nutraceutical purposes with commercialization to aid and promote healthy lifestyle, wellness and wellbeing.
Collapse
|
27
|
Ferreira MDR, Oliva ME, Aiassa V, D'Alessandro ME. Salvia hispanica L. (chia) seed improves skeletal muscle lipotoxicity and insulin sensitivity in rats fed a sucrose-rich diet by modulating intramuscular lipid metabolism. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
28
|
Elesela S, Morris SB, Narayanan S, Kumar S, Lombard DB, Lukacs NW. Sirtuin 1 regulates mitochondrial function and immune homeostasis in respiratory syncytial virus infected dendritic cells. PLoS Pathog 2020; 16:e1008319. [PMID: 32106265 PMCID: PMC7046194 DOI: 10.1371/journal.ppat.1008319] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/15/2020] [Indexed: 12/22/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the major cause of lower respiratory tract infection in children worldwide. Sirtuin 1 (SIRT1), a NAD+ dependent deacetylase, has been associated with induction of autophagy, reprogramming cellular metabolism, and regulating immune mediators. In this study, we investigated the role of SIRT1 in bone marrow dendritic cell (BMDC) function during RSV infection. SIRT1 deficient (SIRT1 -/-) BMDC showed a defect in mitochondrial membrane potential (Δ⍦m) that worsens during RSV infection. This defect in Δ⍦m caused the generation of elevated levels of reactive oxygen species (ROS). Furthermore, the oxygen consumption rate (OCR) was reduced as assessed in Seahorse assays, coupled with lower levels of ATP in SIRT1-/- DC. These altered responses corresponded to altered innate cytokine responses in the SIRT1-/- DC in response to RSV infection. Reverse Phase Protein Array (RPPA) functional proteomics analyses of SIRT1-/- and WT BMDC during RSV infection identified a range of differentially regulated proteins involved in pathways that play a critical role in mitochondrial metabolism, autophagy, oxidative and ER stress, and DNA damage. We identified an essential enzyme, acetyl CoA carboxylase (ACC1), which plays a central role in fatty acid synthesis and had significantly increased expression in SIRT1-/- DC. Blockade of ACC1 resulted in metabolic reprogramming of BMDC that ameliorated mitochondrial dysfunction and reduced pathologic innate immune cytokines in DC. The altered DC responses attenuated Th2 and Th17 immunity allowing the appropriate generation of anti-viral Th1 responses both in vitro and in vivo during RSV infection thus reducing the enhanced pathogenic responses. Together, these studies identify pathways critical for appropriate DC function and innate immunity that depend on SIRT1-mediated regulation of metabolic processes.
Collapse
Affiliation(s)
- Srikanth Elesela
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Mary H. Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Susan B. Morris
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Samanthi Narayanan
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Surinder Kumar
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David B. Lombard
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Institute of Gerontology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nicholas W. Lukacs
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Mary H. Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
29
|
Yong-Quan Ng G, Yang-Wei Fann D, Jo DG, Sobey CG, Arumugam TV. Dietary Restriction and Epigenetics: Part I. CONDITIONING MEDICINE 2019; 2:284-299. [PMID: 32039345 PMCID: PMC7007115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Biological aging occurs concomitantly with chronological aging and is commonly burdened by the development of age-related conditions, such as neurodegenerative, cardiovascular, and a myriad of metabolic diseases. With a current global shift in disease epidemiology associated with aging and the resultant social, economic, and healthcare burdens faced by many countries, the need to achieve successful aging has fueled efforts to address this problem. Aging is a complex biological phenomenon that has confounded much of the historical research effort to understand it, with still limited knowledge of the underlying molecular mechanisms. Interestingly, dietary restriction (DR) is one intervention that produces anti-aging effects from simple organisms to mammals. Research into DR has revealed robust systemic effects that can result in attenuation of age-related diseases via a myriad of molecular mechanisms. Given that numerous age-associated diseases are often polygenic and affect individuals differently, it is possible that they are confounded by interactions between environmental influences and the genome, a process termed 'epigenetics'. In part one of the review, we summarize the different variants of DR regimens and their corresponding mechanism(s) and resultant effects, as well as in-depth analysis of current knowledge of the epigenetic landscape.
Collapse
Affiliation(s)
- Gavin Yong-Quan Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - David Yang-Wei Fann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Christopher G. Sobey
- Department of Physiology, Anatomy & Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Thiruma V. Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Physiology, Anatomy & Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
30
|
Talman V, Teppo J, Pöhö P, Movahedi P, Vaikkinen A, Karhu ST, Trošt K, Suvitaival T, Heikkonen J, Pahikkala T, Kotiaho T, Kostiainen R, Varjosalo M, Ruskoaho H. Molecular Atlas of Postnatal Mouse Heart Development. J Am Heart Assoc 2019; 7:e010378. [PMID: 30371266 PMCID: PMC6474944 DOI: 10.1161/jaha.118.010378] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background The molecular mechanisms mediating postnatal loss of cardiac regeneration in mammals are not fully understood. We aimed to provide an integrated resource of mRNA, protein, and metabolite changes in the neonatal heart for identification of metabolism‐related mechanisms associated with cardiac regeneration. Methods and Results Mouse ventricular tissue samples taken on postnatal day 1 (P01), P04, P09, and P23 were analyzed with RNA sequencing and global proteomics and metabolomics. Gene ontology analysis, KEGG pathway analysis, and fuzzy c‐means clustering were used to identify up‐ or downregulated biological processes and metabolic pathways on all 3 levels, and Ingenuity pathway analysis (Qiagen) was used to identify upstream regulators. Differential expression was observed for 8547 mRNAs and for 1199 of 2285 quantified proteins. Furthermore, 151 metabolites with significant changes were identified. Differentially regulated metabolic pathways include branched chain amino acid degradation (upregulated at P23), fatty acid metabolism (upregulated at P04 and P09; downregulated at P23) as well as the HMGCS (HMG‐CoA [hydroxymethylglutaryl‐coenzyme A] synthase)–mediated mevalonate pathway and ketogenesis (transiently activated). Pharmacological inhibition of HMGCS in primary neonatal cardiomyocytes reduced the percentage of BrdU‐positive cardiomyocytes, providing evidence that the mevalonate and ketogenesis routes may participate in regulating the cardiomyocyte cell cycle. Conclusions This study is the first systems‐level resource combining data from genomewide transcriptomics with global quantitative proteomics and untargeted metabolomics analyses in the mouse heart throughout the early postnatal period. These integrated data of molecular changes associated with the loss of cardiac regeneration may open up new possibilities for the development of regenerative therapies.
Collapse
Affiliation(s)
- Virpi Talman
- 1 Drug Research Program and Division of Pharmacology and Pharmacotherapy Faculty of Pharmacy University of Helsinki Finland
| | - Jaakko Teppo
- 2 Drug Research Program and Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Finland.,3 Institute of Biotechnology and HiLIFE Helsinki Institute of Life Science University of Helsinki Finland
| | - Päivi Pöhö
- 2 Drug Research Program and Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Finland
| | - Parisa Movahedi
- 4 Department of Future Technologies Faculty of Mathematics and Natural Sciences University of Turku Finland
| | - Anu Vaikkinen
- 2 Drug Research Program and Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Finland
| | - S Tuuli Karhu
- 1 Drug Research Program and Division of Pharmacology and Pharmacotherapy Faculty of Pharmacy University of Helsinki Finland
| | | | | | - Jukka Heikkonen
- 4 Department of Future Technologies Faculty of Mathematics and Natural Sciences University of Turku Finland
| | - Tapio Pahikkala
- 4 Department of Future Technologies Faculty of Mathematics and Natural Sciences University of Turku Finland
| | - Tapio Kotiaho
- 2 Drug Research Program and Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Finland.,6 Department of Chemistry Faculty of Science University of Helsinki Finland
| | - Risto Kostiainen
- 2 Drug Research Program and Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Finland
| | - Markku Varjosalo
- 3 Institute of Biotechnology and HiLIFE Helsinki Institute of Life Science University of Helsinki Finland
| | - Heikki Ruskoaho
- 1 Drug Research Program and Division of Pharmacology and Pharmacotherapy Faculty of Pharmacy University of Helsinki Finland
| |
Collapse
|
31
|
Han HJ, Song X, Yadav D, Hwang MS, Lee JH, Lee CH, Kim TH, Lee JJ, Kwon J. Ulmus macrocarpa Hance modulates lipid metabolism in hyperlipidemia via activation of AMPK pathway. PLoS One 2019; 14:e0217112. [PMID: 31120956 PMCID: PMC6532881 DOI: 10.1371/journal.pone.0217112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/03/2019] [Indexed: 11/18/2022] Open
Abstract
Ulmus macrocarpa Hance as an oriental medicinal plant has shown enormous potential for the treatment of several metabolic disorders in Korea. Hyperlipidemia, which is characterized by the excess accumulation of lipid contents in the bloodstream, may lead to several cardiovascular diseases. Therefore, in this study, anti-hyperlipidemic potential of U. macrocarpa water extract (UME) was examined in vitro and in vivo using HepG2 cells and experimental rats, respectively. The hyperlipidemia in experimental rats was induced by the high-cholesterol diet (HCD) followed by oral administration of various concentrations (25, 50 and 100 mg/kg) of UME for 6 weeks. As a result, the UME significantly improved the biochemical parameters such as increased the level of triglyceride, total cholesterol, and low-density lipoprotein cholesterol as well as reduced the high-density lipoprotein cholesterol in the HCD-fed rats. In addition, UME also prevented lipid accumulation through regulating AMPK activity and lipid metabolism proteins (ACC, SREBP1 and HMGCR) in the HCD-fed rats as compared to the controls. Moreover, similar pattern of gene expression levels was confirmed in oleic acid (OA)-treated HepG2 cells. Taken together, our results indicate that UME prevents hyperlipidemia via activating the AMPK pathway and regulates lipid metabolism. Thus, based on the above findings, it is estimated that UME could be a potential therapeutic agent for preventing the hyperlipidemia.
Collapse
Affiliation(s)
- Hye-Ju Han
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Xinjie Song
- Department of Food Science and Technology, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, Republic of Korea
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, Republic of Korea
| | - Mi Sun Hwang
- Korea Nanotechnology Center and Center for Anti-Aging Industry, Pusan National University, Geumjeong-gu, Busan, Republic of Korea
| | - Joo Hee Lee
- Korea Nanotechnology Center and Center for Anti-Aging Industry, Pusan National University, Geumjeong-gu, Busan, Republic of Korea
| | - Chang Hoon Lee
- Korea Nanotechnology Center and Center for Anti-Aging Industry, Pusan National University, Geumjeong-gu, Busan, Republic of Korea
| | - Tae Hee Kim
- Naturetech Co. Ltd., Chopyeong-myeon, Jincheon-gun, Chungbuk, Republic of Korea
| | - Jeong Jun Lee
- Naturetech Co. Ltd., Chopyeong-myeon, Jincheon-gun, Chungbuk, Republic of Korea
| | - Jungkee Kwon
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
- * E-mail:
| |
Collapse
|
32
|
Cheng STW, Li SYT, Leung PS. Fibroblast Growth Factor 21 Stimulates Pancreatic Islet Autophagy via Inhibition of AMPK-mTOR Signaling. Int J Mol Sci 2019; 20:ijms20102517. [PMID: 31121855 PMCID: PMC6567208 DOI: 10.3390/ijms20102517] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Islet autophagy plays a role in glucose/lipid metabolism in type 2 diabetes mellitus. Meanwhile, fibroblast growth factor 21 (FGF21) has been found to regulate insulin sensitivity and glucose homeostasis. Whether FGF21 induces islet autophagy, remains to be elucidated. This study aimed to explore the physiological roles and signaling pathways involved in FGF21-stimulated islet autophagy under glucolipotoxic conditions. Methods: C57/BL6J mice were fed a standard diet or high-fat diet (HFD) for 12 weeks, and islets were isolated from normal and FGF21 knockout (KO) mice. Isolated islets and INS-1E cells were exposed to normal and high-concentration glucose and palmitic acid with/without FGF21 or AMPK inhibitor compound C. Real-time PCR, Western blot and immunohistochemistry/transmission electron microscopy were performed for the expression of targeted genes/proteins. Results: HFD-treated mice showed increases in fasting plasma glucose, body weight and impaired glucose tolerance; islet protein expression of FGF21 was induced after HFD treatment. Protein expression levels of FGF21 and LC3-II (autophagy marker) were induced in mouse islets treated with high concentrations of palmitic acid and glucose, while phosphorylation of AMPK was reduced, compared with controls. In addition, induction of LC3-II protein expression was reduced in islets isolated from FGF21 KO mice. Furthermore, exogenous administration of FGF21 diminished phosphorylation of AMPK and stimulated protein expression of LC3-II. Consistently, compound C significantly induced increased expression of LC3-II protein. Conclusions: Our data indicate that glucolipotoxicity-induced FGF21 activation mediates islet autophagy via AMPK inhibition, and further consolidate the evidence for the FGF21/analog being a pharmacotherapeutic target for obesity and its related T2DM.
Collapse
Affiliation(s)
- Sam Tsz Wai Cheng
- School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China.
| | - Stephen Yu Ting Li
- School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China.
| | - Po Sing Leung
- School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
33
|
Videla LA. Combined docosahexaenoic acid and thyroid hormone supplementation as a protocol supporting energy supply to precondition and afford protection against metabolic stress situations. IUBMB Life 2019; 71:1211-1220. [PMID: 31091354 DOI: 10.1002/iub.2067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023]
Abstract
Liver preconditioning (PC) refers to the development of an enhanced tolerance to injuring stimuli. For example, the protection from ischemia-reperfusion (IR) in the liver that is obtained by previous maneuvers triggering beneficial molecular and functional changes. Recently, we have assessed the PC effects of thyroid hormone (T3; single dose of 0.1 mg/kg) and n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs; daily doses of 450 mg/kg for 7 days) that abrogate IR injury to the liver. This feature is also achieved by a combined T3 and the n-3 LCPUFA docosahexaenoic acid (DHA) using a reduced period of supplementation of the FA (daily doses of 300 mg/kg for 3 days) and half of the T3 dosage (0.05 mg/kg). T3 -dependent protective mechanisms include (i) the reactive oxygen species (ROS)-dependent activation of transcription factors nuclear factor-κB (NF-κB), AP-1, signal transducer and activator of transcription 3, and nuclear factor erythroid-2-related factor 2 (Nrf2) upregulating the expression of protective proteins. (ii) ROS-induced endoplasmic reticulum stress affording proper protein folding. (iii) The autophagy response to produce FAs for oxidation and ATP supply and amino acids for protein synthesis. (iv) Downregulation of inflammasome nucleotide-bonding oligomerization domain leucine-rich repeat containing family pyrin containing 3 and interleukin-1β expression to prevent inflammation. N-3 LCPUFAs induce antioxidant responses due to Nrf2 upregulation, with inflammation resolution being related to production of oxidation products and NF-κB downregulation. Energy supply to achieve liver PC is met by the combined DHA plus T3 protocol through upregulation of AMPK coupled to peroxisome proliferator-activated receptor-γ coactivator 1α signaling. In conclusion, DHA plus T3 coadministration favors hepatic bioenergetics and lipid homeostasis that is of crucial importance in acute and clinical conditions such as IR, which may be extended to long-term or chronic situations including steatosis in obesity and diabetes. © 2019 IUBMB Life, 71(9):1211-1220, 2019.
Collapse
Affiliation(s)
- Luis A Videla
- Molecular and Clinical Pharmacology Program, Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
34
|
Yoshida GJ, Azuma A, Miura Y, Orimo A. Activated Fibroblast Program Orchestrates Tumor Initiation and Progression; Molecular Mechanisms and the Associated Therapeutic Strategies. Int J Mol Sci 2019; 20:ijms20092256. [PMID: 31067787 PMCID: PMC6539414 DOI: 10.3390/ijms20092256] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 02/07/2023] Open
Abstract
: Neoplastic epithelial cells coexist in carcinomas with various non-neoplastic stromal cells, together creating the tumor microenvironment. There is a growing interest in the cross-talk between tumor cells and stromal fibroblasts referred to as carcinoma-associated fibroblasts (CAFs), which are frequently present in human carcinomas. CAF populations extracted from different human carcinomas have been shown to possess the ability to influence the hallmarks of cancer. Indeed, several mechanisms underlying CAF-promoted tumorigenesis are elucidated. Activated fibroblasts in CAFs are characterized as alpha-smooth muscle actin-positive myofibroblasts and actin-negative fibroblasts, both of which are competent to support tumor growth and progression. There are, however, heterogeneous CAF populations presumably due to the diverse sources of their progenitors in the tumor-associated stroma. Thus, molecular markers allowing identification of bona fide CAF populations with tumor-promoting traits remain under investigation. CAFs and myofibroblasts in wound healing and fibrosis share biological properties and support epithelial cell growth, not only by remodeling the extracellular matrix, but also by producing numerous growth factors and inflammatory cytokines. Notably, accumulating evidence strongly suggests that anti-fibrosis agents suppress tumor development and progression. In this review, we highlight important tumor-promoting roles of CAFs based on their analogies with wound-derived myofibroblasts and discuss the potential therapeutic strategy targeting CAFs.
Collapse
Affiliation(s)
- Go J Yoshida
- Department of Molecular Pathogenesis, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Arata Azuma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 1138603, Japan.
| | - Yukiko Miura
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 1138603, Japan.
| | - Akira Orimo
- Department of Molecular Pathogenesis, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
35
|
Seene T, Alev K, Kaasik P. Adaptation of Skeletal Muscle to Prolonged Activity: Role of Myosin. Health (London) 2019. [DOI: 10.4236/health.2019.112017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Cardinale DA, Larsen FJ, Schiffer TA, Morales-Alamo D, Ekblom B, Calbet JAL, Holmberg HC, Boushel R. Superior Intrinsic Mitochondrial Respiration in Women Than in Men. Front Physiol 2018; 9:1133. [PMID: 30174617 PMCID: PMC6108574 DOI: 10.3389/fphys.2018.01133] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/30/2018] [Indexed: 11/25/2022] Open
Abstract
Sexual dimorphism is apparent in humans, however, to date no studies have investigated mitochondrial function focusing on intrinsic mitochondrial respiration (i.e., mitochondrial respiration for a given amount of mitochondrial protein) and mitochondrial oxygen affinity (p50mito) in relation to biological sex in human. A skeletal muscle biopsy was donated by nine active women, and ten men matched for maximal oxygen consumption (VO2max) and by nine endurance trained men. Intrinsic mitochondrial respiration, assessed in isolated mitochondria, was higher in women compared to men when activating complex I (CIP) and complex I+II (CI+IIP) (p < 0.05), and was similar to trained men (CIP, p = 0.053; CI+IIP, p = 0.066). Proton leak and p50mito were higher in women compared to men independent of VO2max. In conclusion, significant novel differences in mitochondrial oxidative function, intrinsic mitochondrial respiration and p50mito exist between women and men. These findings may represent an adaptation in the oxygen cascade in women to optimize muscle oxygen uptake to compensate for a lower oxygen delivery during exercise.
Collapse
Affiliation(s)
- Daniele A Cardinale
- Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Filip J Larsen
- Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Tomas A Schiffer
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - David Morales-Alamo
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - Björn Ekblom
- Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), Las Palmas de Gran Canaria, Gran Canaria, Spain.,School of Kinesiology, Faculty of Education, The University of British Columbia, Vancouver, BC, Canada
| | - Hans-Christer Holmberg
- School of Kinesiology, Faculty of Education, The University of British Columbia, Vancouver, BC, Canada.,Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Robert Boushel
- School of Kinesiology, Faculty of Education, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
37
|
Suryawan A, Davis TA. Amino Acid- and Insulin-Induced Activation of mTORC1 in Neonatal Piglet Skeletal Muscle Involves Sestin2-GATOR2, Rag A/C-mTOR, and RHEB-mTOR Complex Formation. J Nutr 2018; 148:825-833. [PMID: 29796625 PMCID: PMC6669959 DOI: 10.1093/jn/nxy044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/14/2018] [Indexed: 12/18/2022] Open
Abstract
Background Feeding stimulates protein synthesis in skeletal muscle of neonates and this response is regulated through activation of mechanistic target of rapamycin complex 1 (mTORC1). The identity of signaling components that regulate mTORC1 activation in neonatal muscle has not been fully elucidated. Objective We investigated the independent effects of the rise in amino acids (AAs) and insulin after a meal on the abundance and activation of potential regulators of mTORC1 in muscle and whether the responses are modified by development. Methods Overnight-fasted 6- and 26-d-old pigs were infused for 2 h with saline (control group) or with a balanced AA mixture (AA group) or insulin (INS group) to achieve fed levels while insulin or AAs, respectively, and glucose were maintained at fasting levels. Muscles were analyzed for potential mTORC1 regulatory mechanisms and results were analyzed by 2-factor ANOVA followed by Tukey's post hoc test. Results The abundances of DEP domain-containing mTOR-interacting protein (DEPTOR), growth factor receptor bound protein 10 (GRB10), and regulated in development and DNA damage response 2 (REDD2) were lower (65%, 73%, and 53%, respectively; P < 0.05) and late endosomal/lysosomal adaptor, MAPK and mTOR activator 1/2 (LAMTOR1/2), vacuolar H+-ATPase (V-ATPase), and Sestrin2 were higher (94%, 141%, 145%, and 127%, respectively; P < 0.05) in 6- than in 26-d-old pigs. Both AA and INS groups increased phosphorylation of GRB10 (P < 0.05) compared with control in 26- but not in 6-d-old pigs. Formation of Ras-related GTP-binding protein A (RagA)-mTOR, RagC-mTOR, and Ras homolog enriched in brain (RHEB)-mTOR complexes was increased (P < 0.05) and Sestrin2-GTPase activating protein activity towards Rags 2 (GATOR2) complex was decreased (P < 0.05) by both AA and INS groups and these responses were greater (P < 0.05) in 6- than in 26-d-old pigs. Conclusion The results suggest that formation of RagA-mTOR, RagC-mTOR, RHEB-mTOR, and Sestrin2-GATOR2 complexes may be involved in the AA- and INS-induced activation of mTORC1 in skeletal muscle of neonates after a meal and that enhanced activation of the mTORC1 signaling pathway in neonatal muscle is in part due to regulation by DEPTOR, GRB10, REDD2, LAMTOR1/2, V-ATPase, and Sestrin2.
Collapse
Affiliation(s)
- Agus Suryawan
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Teresa A Davis
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX,Address correspondence to TAD (e-mail: )
| |
Collapse
|
38
|
Perrin L, Loizides-Mangold U, Chanon S, Gobet C, Hulo N, Isenegger L, Weger BD, Migliavacca E, Charpagne A, Betts JA, Walhin JP, Templeman I, Stokes K, Thompson D, Tsintzas K, Robert M, Howald C, Riezman H, Feige JN, Karagounis LG, Johnston JD, Dermitzakis ET, Gachon F, Lefai E, Dibner C. Transcriptomic analyses reveal rhythmic and CLOCK-driven pathways in human skeletal muscle. eLife 2018; 7:34114. [PMID: 29658882 PMCID: PMC5902165 DOI: 10.7554/elife.34114] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/04/2018] [Indexed: 02/06/2023] Open
Abstract
Circadian regulation of transcriptional processes has a broad impact on cell metabolism. Here, we compared the diurnal transcriptome of human skeletal muscle conducted on serial muscle biopsies in vivo with profiles of human skeletal myotubes synchronized in vitro. More extensive rhythmic transcription was observed in human skeletal muscle compared to in vitro cell culture as a large part of the in vivo mRNA rhythmicity was lost in vitro. siRNA-mediated clock disruption in primary myotubes significantly affected the expression of ~8% of all genes, with impact on glucose homeostasis and lipid metabolism. Genes involved in GLUT4 expression, translocation and recycling were negatively affected, whereas lipid metabolic genes were altered to promote activation of lipid utilization. Moreover, basal and insulin-stimulated glucose uptake were significantly reduced upon CLOCK depletion. Our findings suggest an essential role for the circadian coordination of skeletal muscle glucose homeostasis and lipid metabolism in humans.
Collapse
Affiliation(s)
- Laurent Perrin
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| | - Ursula Loizides-Mangold
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| | | | - Cédric Gobet
- Nestlé Institute of Health Sciences, Lausanne, Switzerland.,School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nicolas Hulo
- Institute of Genetics and Genomics of Geneva, Geneva, Switzerland.,Service for Biomathematical and Biostatistical Analyses, Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | - Laura Isenegger
- Service for Biomathematical and Biostatistical Analyses, Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | | | | | | | - James A Betts
- Department for Health, University of Bath, Bath, United Kingdom
| | | | - Iain Templeman
- Department for Health, University of Bath, Bath, United Kingdom
| | - Keith Stokes
- Department for Health, University of Bath, Bath, United Kingdom
| | - Dylan Thompson
- Department for Health, University of Bath, Bath, United Kingdom
| | - Kostas Tsintzas
- MRC/ARUK Centre for Musculoskeletal Ageing, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Maud Robert
- Department of Digestive and Bariatric Surgery, Edouard Herriot University Hospital, Lyon, France
| | - Cedric Howald
- Institute of Genetics and Genomics of Geneva, Geneva, Switzerland.,Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Howard Riezman
- Department of Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Jerome N Feige
- Nestlé Institute of Health Sciences, Lausanne, Switzerland.,School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Leonidas G Karagounis
- Experimental Myology and Integrative Biology Research Cluster, Faculty of Sport and Health Sciences, University of St Mark and St John, Plymouth, United Kingdom.,Institute of Nutritional Science, Nestlé Research Centre, Lausanne, Switzerland
| | - Jonathan D Johnston
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Emmanouil T Dermitzakis
- Institute of Genetics and Genomics of Geneva, Geneva, Switzerland.,Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Frédéric Gachon
- Nestlé Institute of Health Sciences, Lausanne, Switzerland.,School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Charna Dibner
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| |
Collapse
|
39
|
Yu Y, Mendoza TM, Ribnicky DM, Poulev A, Noland RC, Mynatt RL, Raskin I, Cefalu WT, Floyd ZE. An Extract of Russian Tarragon Prevents Obesity-Related Ectopic Lipid Accumulation. Mol Nutr Food Res 2018; 62:e1700856. [PMID: 29476602 PMCID: PMC5929974 DOI: 10.1002/mnfr.201700856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/13/2018] [Indexed: 11/08/2022]
Abstract
SCOPE The primary disorder underlying metabolic syndrome is insulin resistance due to excess body weight and abdominal visceral fat accumulation. In this study, it is asked if dietary intake of an ethanolic extract from Russian tarragon (Artemisia dracunculus L., termed PMI5011), shown to improve glucose utilization by enhancing insulin signaling in skeletal muscle, could prevent obesity-induced insulin resistance, skeletal muscle metabolic inflexibility, and ectopic lipid accumulation in the skeletal muscle and liver. METHODS AND RESULTS Male wild-type mice are fed a high-fat diet alone or supplemented with PMI5011 (1% w/w) over 3 months. Dietary intake of PMI5011 improved fatty acid oxidation and metabolic flexibility in the skeletal muscle, reduced insulin levels, and enhanced insulin signaling in the skeletal muscle and liver independent of robust changes in expression of factors that control fatty acid oxidation. This corresponds with significantly reduced lipid accumulation in the skeletal muscle and liver, although body weight gain is comparable to a high-fat diet alone. CONCLUSION Previous studies showed that PMI5011 enhances insulin sensitivity in the setting of established obesity-induced insulin resistance. The current study demonstrates that dietary intake of PMI5011 prevents high-fat diet-induced insulin resistance, metabolic dysfunction, and ectopic lipid accumulation in the skeletal muscle and liver without reducing body weight.
Collapse
Affiliation(s)
- Yongmei Yu
- Pennington Biomedical Research Center, Baton Rouge, LA
| | | | - David M Ribnicky
- Department of Plant Biology, Rutgers University, New Brunswick, NJ
| | - Alexander Poulev
- Department of Plant Biology, Rutgers University, New Brunswick, NJ
| | | | | | - Ilya Raskin
- Department of Plant Biology, Rutgers University, New Brunswick, NJ
| | | | | |
Collapse
|
40
|
Kjøbsted R, Hingst JR, Fentz J, Foretz M, Sanz MN, Pehmøller C, Shum M, Marette A, Mounier R, Treebak JT, Wojtaszewski JFP, Viollet B, Lantier L. AMPK in skeletal muscle function and metabolism. FASEB J 2018; 32:1741-1777. [PMID: 29242278 PMCID: PMC5945561 DOI: 10.1096/fj.201700442r] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skeletal muscle possesses a remarkable ability to adapt to various physiologic conditions. AMPK is a sensor of intracellular energy status that maintains energy stores by fine-tuning anabolic and catabolic pathways. AMPK’s role as an energy sensor is particularly critical in tissues displaying highly changeable energy turnover. Due to the drastic changes in energy demand that occur between the resting and exercising state, skeletal muscle is one such tissue. Here, we review the complex regulation of AMPK in skeletal muscle and its consequences on metabolism (e.g., substrate uptake, oxidation, and storage as well as mitochondrial function of skeletal muscle fibers). We focus on the role of AMPK in skeletal muscle during exercise and in exercise recovery. We also address adaptations to exercise training, including skeletal muscle plasticity, highlighting novel concepts and future perspectives that need to be investigated. Furthermore, we discuss the possible role of AMPK as a therapeutic target as well as different AMPK activators and their potential for future drug development.—Kjøbsted, R., Hingst, J. R., Fentz, J., Foretz, M., Sanz, M.-N., Pehmøller, C., Shum, M., Marette, A., Mounier, R., Treebak, J. T., Wojtaszewski, J. F. P., Viollet, B., Lantier, L. AMPK in skeletal muscle function and metabolism.
Collapse
Affiliation(s)
- Rasmus Kjøbsted
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Janne R Hingst
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Fentz
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Marc Foretz
- INSERM, Unité 1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maria-Nieves Sanz
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland, and.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Christian Pehmøller
- Internal Medicine Research Unit, Pfizer Global Research and Development, Cambridge, Massachusetts, USA
| | - Michael Shum
- Axe Cardiologie, Quebec Heart and Lung Research Institute, Laval University, Québec, Canada.,Institute for Nutrition and Functional Foods, Laval University, Québec, Canada
| | - André Marette
- Axe Cardiologie, Quebec Heart and Lung Research Institute, Laval University, Québec, Canada.,Institute for Nutrition and Functional Foods, Laval University, Québec, Canada
| | - Remi Mounier
- Institute NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM Unité 1217, CNRS UMR, Villeurbanne, France
| | - Jonas T Treebak
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Benoit Viollet
- INSERM, Unité 1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA.,Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
41
|
Davis RAH, Halbrooks JE, Watkins EE, Fisher G, Hunter GR, Nagy TR, Plaisance EP. High-intensity interval training and calorie restriction promote remodeling of glucose and lipid metabolism in diet-induced obesity. Am J Physiol Endocrinol Metab 2017; 313:E243-E256. [PMID: 28588097 PMCID: PMC5582888 DOI: 10.1152/ajpendo.00445.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 01/03/2023]
Abstract
Calorie restriction (CR) decreases adiposity, but the magnitude and defense of weight loss is less than predicted due to reductions in total daily energy expenditure (TEE). The purpose of the current investigation was to determine whether high-intensity interval training (HIIT) would increase markers of sympathetic activation in white adipose tissue (WAT) and rescue CR-mediated reductions in EE to a greater extent than moderate-intensity aerobic exercise training (MIT). Thirty-two 5-wk-old male C57BL/6J mice were placed on ad libitum HFD for 11 wk, followed by randomization to one of four groups (n = 8/group) for an additional 15 wk: 1) CON (remain on HFD), 2) CR (25% lower energy intake), 3) CR + HIIT (25% energy deficit created by 12.5% CR and 12.5% EE through HIIT), and 4) CR + MIT (25% energy deficit created by 12.5% CR and 12.5% EE through MIT). Markers of adipose thermogenesis (Ucp1, Prdm16, Dio2, and Fgf21) were unchanged in either exercise group in inguinal or epididymal WAT, whereas CR + HIIT decreased Ucp1 expression in retroperitoneal WAT and brown adipose tissue. HIIT rescued CR-mediated reductions in lean body mass (LBM) and resting energy expenditure (REE), and both were associated with improvements in glucose/insulin tolerance. Improvements in glucose metabolism in the CR + HIIT group appear to be linked to a molecular signature that enhances glucose and lipid storage in skeletal muscle. Exercise performed at either moderate or high intensity does not increase markers of adipose thermogenesis when performed in the presence of CR but remodels skeletal muscle metabolic and thermogenic capacity.
Collapse
Affiliation(s)
- Rachel A H Davis
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jacob E Halbrooks
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, Alabama
| | - Emily E Watkins
- Department of Biomedical Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gordon Fisher
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama
- Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Gary R Hunter
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama
- Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Tim R Nagy
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama
- Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Eric P Plaisance
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, Alabama;
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama
- Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
42
|
Tse MCL, Herlea-Pana O, Brobst D, Yang X, Wood J, Hu X, Liu Z, Lee CW, Zaw AM, Chow BKC, Ye K, Chan CB. Tumor Necrosis Factor-α Promotes Phosphoinositide 3-Kinase Enhancer A and AMP-Activated Protein Kinase Interaction to Suppress Lipid Oxidation in Skeletal Muscle. Diabetes 2017; 66:1858-1870. [PMID: 28404596 PMCID: PMC5482076 DOI: 10.2337/db16-0270] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/29/2017] [Indexed: 12/12/2022]
Abstract
Tumor necrosis factor-α (TNF-α) is an inflammatory cytokine that plays a central role in obesity-induced insulin resistance. It also controls cellular lipid metabolism, but the underlining mechanism is poorly understood. We report in this study that phosphoinositide 3-kinase enhancer A (PIKE-A) is a novel effector of TNF-α to facilitate its metabolic modulation in the skeletal muscle. Depletion of PIKE-A in C2C12 myotubes diminished the inhibitory activities of TNF-α on mitochondrial respiration and lipid oxidation, whereas PIKE-A overexpression exacerbated these cellular responses. We also found that TNF-α promoted the interaction between PIKE-A and AMP-activated protein kinase (AMPK) to suppress its kinase activity in vitro and in vivo. As a result, animals with PIKE ablation in the skeletal muscle per se display an upregulation of AMPK phosphorylation and a higher preference to use lipid as the energy production substrate under high-fat diet feeding, which mitigates the development of diet-induced hyperlipidemia, ectopic lipid accumulation, and muscle insulin resistance. Hence, our data reveal PIKE-A as a new signaling factor that is important for TNF-α-initiated metabolic changes in skeletal muscle.
Collapse
Affiliation(s)
- Margaret Chui Ling Tse
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Oana Herlea-Pana
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Daniel Brobst
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Xiuying Yang
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Drug Screening Center, Institute of Materia Medica, Beijing, People's Republic of China
| | - John Wood
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Xiang Hu
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Zhixue Liu
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Chi Wai Lee
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Aung Moe Zaw
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Billy K C Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Chi Bun Chan
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| |
Collapse
|
43
|
Park S, Yan Z, Choi C, Kim K, Lee H, Oh Y, Jeong J, Lee J, Smith SB, Choi S. Carcass and Meat Characteristics and Gene Expression in Intramuscular Adipose Tissue of Korean Native Cattle Fed Finishing Diets Supplemented with 5% Palm Oil. Korean J Food Sci Anim Resour 2017; 37:168-174. [PMID: 28515640 PMCID: PMC5434203 DOI: 10.5851/kosfa.2017.37.1.168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 12/04/2022] Open
Abstract
We hypothesized that supplementing finishing diets with palm oil would promote adipogenic gene expression but depress stearoyl-CoA desaturase (SCD) gene expression in intramuscular (i.m.) adipose tissues of Hanwoo steers during fattening period (from 16 to 32 mon of age). Fourteen Hanwoo steers were allotted randomly to 2 groups of 7 steers based on initial BW and fed either a basal diet (control) or the basal diet supplemented with 5% palm oil (BDSP). At slaughter, i.m. adipose tissue was harvested for analysis of adipogenic gene expression and fatty acid composition. There were no differences in BW or average daily gain between treatment groups. Supplemental palm oil had no effect on carcass quality traits (carcass weight, backfat thickness, loin muscle area, or marbling scores) or meat color values. Palm oil increased (p<0.05) expression of AMP-activated protein kinase-α and peroxisome proliferator-activated receptor-γ, but decreased (p<0.05) CAAT/enhancer binding protein-β gene expression and tended to decrease stearoyl-CoA desaturase gene expression in i.m. adipose tissue. Palm oil increased total i.m. polyunsaturated fatty acids (p<0.05) compared to the control i.m. adipose tissue, but had no effect on saturated or monounsaturated fatty acids. Although there were significant effects of supplemental palm oil on i.m. adipose tissue gene expression, the absence of negative effects on carcass and meat characteristics indicates that palm oil could be a suitable dietary supplement for the production of Hanwoo beef cattle.
Collapse
Affiliation(s)
- Sungkwon Park
- Department of Food Science and Technology, Sejong University, Seoul 05006, Korea
| | - Zhang Yan
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Changweon Choi
- Department of Animal Resources, Daegu University, Gyeongsan 38453, Korea
| | - Kyounghoon Kim
- Institute of Environmentally Friendly Livestock, Seoul National University, Pyeongchang 25354, Korea
| | - Hyunjeong Lee
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA 55365, Korea
| | - Youngkyoon Oh
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA 55365, Korea
| | - Jinyoung Jeong
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA 55365, Korea
| | - Jonggil Lee
- College of Hospitality and Tourism, Sejong University, Seoul 05000, Korea
| | - Stephen B Smith
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Seongho Choi
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
44
|
Wang K, Feng X, Chai L, Cao S, Qiu F. The metabolism of berberine and its contribution to the pharmacological effects. Drug Metab Rev 2017; 49:139-157. [DOI: 10.1080/03602532.2017.1306544] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kun Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Xinchi Feng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Liwei Chai
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Shijie Cao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| |
Collapse
|
45
|
Yook JS, Cho JY. Treadmill exercise ameliorates the regulation of energy metabolism in skeletal muscle of NSE/PS2mtransgenic mice with Alzheimer's disease. J Exerc Nutrition Biochem 2017; 21:40-47. [PMID: 28712264 PMCID: PMC5508058 DOI: 10.20463/jenb.2017.0046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/05/2017] [Indexed: 11/22/2022] Open
Abstract
[Purpose] Alzheimer’s disease (AD) is classified as a progressive neurological disorder, which not only causes cognitive impairment but also abnormal weight loss, with a reduction of muscle mass related to the accumulation of amyloid-β (Aβ) in skeletal muscle. Thus, we investigated the effect of treadmill exercise on Aβ deposition, and p-AMPK, p-ACC, BDNF, and GLUT4 protein levels the regulation of muscle energy metabolism using an AD mouse. [Methods] At 13 months of age, NSE/PS2m mice (Tg) and control mice (non-Tg) were assigned to non-exercise control (Con) and exercise groups (Exe). The four groups were as follows: non-Tg Con, non-Tg Exe, Tg Con, and Tg Exe. The treadmill exercise was carried out for 12 weeks. [Results] The highest levels of Aβ expression in the skeletal muscle were in the Tg Con group. Aβ expression was significantly reduced in the Tg Exe group, compared to the Tg Con group. Congo red staining showed remarkable diffuse red amyloid deposition in the Tg Con group, while Aβ-deposition in the skeletal was reduced with muscle exercise in the Tg Exe group. Exercise also increased AMPK and ACC phosphorylation and BDNF and GLUT4 expression in the skeletal muscle of non-Tg and Tg mice. [Conclusion] Treadmill exercise reduces Aβ-deposition in the skeletal muscle and improves the regulation of energy metabolism. Thus, collectively, these results suggest that exercise could be a positive therapeutic strategy for skeletal muscle dysfunction in AD patients.
Collapse
Affiliation(s)
- Jang-Soo Yook
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sports Sciences, University of Tsukuba, Tsukuba, Japan
| | - Joon-Yong Cho
- Department of Exercise Biochemistry, Korea National Sport University, Seoul, Republic of Korea
| |
Collapse
|
46
|
Abstract
Premature atherosclerosis in diabetes accounts for much of the decreased life span. New treatments have reduced this risk considerably. This review explores the relationship among the disturbances in glucose, lipid, and bile salt metabolic pathways that occur in diabetes. In particular, excess nutrient intake and starvation have major metabolic effects, which have allowed us new insights into the disturbance that occurs in diabetes. Metabolic regulators such as the forkhead transcription factors, the farnesyl X transcription factors, and the fibroblast growth factors have become important players in our understanding of the dysregulation of metabolism in diabetes and overnutrition. The disturbed regulation of lipoprotein metabolism in both the intestine and the liver has been more clearly defined over the past few years, and the atherogenicity of the triglyceride-rich lipoproteins, and - in tandem - low levels of high-density lipoproteins, is seen now as very important. New information on the apolipoproteins that control lipoprotein lipase activity has been obtained. This is an exciting time in the battle to defeat diabetic atherosclerosis.
Collapse
Affiliation(s)
- GH Tomkin
- Diabetes Institute of Ireland, Beacon Hospital
- Trinity College, University of Dublin, Dublin, Ireland
- Correspondence: GH Tomkin, Diabetes Institute of Ireland, Beacon Hospital, Clontra, Quinns Road, Shankill, Dublin 18, Ireland, Email
| | - D Owens
- Diabetes Institute of Ireland, Beacon Hospital
- Trinity College, University of Dublin, Dublin, Ireland
| |
Collapse
|
47
|
Abstract
INTRODUCTION Drug induced steatohepatitis (DISH), a form of drug induced liver injury (DILI) is characterized by intracellular accumulation of lipids in hepatocytes and subsequent inflammatory events, in some ways similar to the pathology seen with other metabolic, viral and genetic causes of non alcoholic fatty liver disease and steatohepatitis (NAFLD and NASH). Areas covered: This paper provides a comprehensive review of the main underlying mechanisms by which various drugs cause DISH, and outlines existing preclinical tools to predict it and study underlying pathways involved. The translational hurdles of these models are discussed, with the example of an organotypic liver system designed to address them. Finally, we describe the clinical assessment and management of DISH. Expert Opinion: The complexity of the interconnected mechanistic pathways underlying DISH makes it important that preclinical evaluation of drugs is done in a physiologically and metabolically relevant context. Advanced organotypic tissue models, coupled with translational functional biomarkers and next-generational pan-omic measurements, may offer the best shot at gathering mechanistic knowledge and potential of a drug causing steatohepatitis. Ultimately this information could also help predict, detect or guide the development of specific treatments for DISH, which is an unmet need as of today.
Collapse
Affiliation(s)
- Ajit Dash
- a HemoShear Therapeutics LLC , Charlottesville , VA , USA
| | | | - Arun J Sanyal
- b Department of Internal Medicine, School of Medicine , Virginia Commonwealth University , Richmond , VA , USA
| | | |
Collapse
|
48
|
Influence of gestational diabetes mellitus on human umbilical vein endothelial cell miRNA. Clin Sci (Lond) 2016; 130:1955-67. [PMID: 27562513 DOI: 10.1042/cs20160305] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/25/2016] [Indexed: 12/22/2022]
Abstract
We aimed to identify miRNAs whose expression levels in fetal tissues are altered by exposure to a diabetic milieu and elucidate the impact on target protein expression. Gestational diabetes mellitus (GDM) affects both immediate and future disease risk in the offspring. We hypothesized that GDM alters miRNA expression in human umbilical vein endothelial cells (HUVECs) that may influence metabolic processes. A cross-sectional design compared differences in miRNA expression in HUVECs and target protein abundance in placentae between infants of women with GDM (IGDM) and infants born to normoglycaemic controls. miRNAs were identified using microarray profiling and literature review and validated by quantitative PCR (qPCR). In vitro transfection studies explored the impact of the miRNA on target protein expression. Expression of seven miRNA species, miR-30c-5p, miR-452-5p, miR-126-3p, miR-130b-3p, miR-148a-3p, miR-let-7a-5p and miR-let-7g-5p, was higher in the HUVECs of IGDM. Abundance of the catalytic subunit of AMP-activated protein kinase α1 (AMPKα1) was decreased in the HUVECs and BeWo cells (transformed trophoblast cell line) transfected with miR-130b and miR-148a mimics. AMPKα1 expression was also decreased in placental tissues of IGDM. The expression of several miRNAs were altered by in utero exposure to DM in infants of women whose dysglycaemia was very well controlled by current standards. Decreased expression of AMPKα1 as a result of increased levels of miR-130b and miR-148a may potentially explain the decrease in fat oxidation we reported in infants at 1 month of age and, if persistent, may predispose offspring to future metabolic disease.
Collapse
|
49
|
Satapathy SK, Kuwajima V, Nadelson J, Atiq O, Sanyal AJ. Drug-induced fatty liver disease: An overview of pathogenesis and management. Ann Hepatol 2016; 14:789-806. [PMID: 26436351 DOI: 10.5604/16652681.1171749] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the past decades, many drugs have been identified, that can potentially induce steatohepatitis in the predisposed individual. Classically this has been incriminated to amiodarone, perhexiline, and 4,4'-diethylaminoethoxyhexestrol (DH), all of which have been found to independently induce the histologic picture of non-alcoholic steatohepatitis (NASH). Pathogenetic mechanisms of hepatotoxicity although still evolving, demonstrate that mitochondrial dysfunction, deranged ATP production and fatty acid catabolism likely play an important role. Drugs like steroid hormones can exacerbate the pathogenetic mechanisms that lead to NASH, and other drugs like tamoxifen, cisplatin and irenotecan have been shown to precipitate latent fatty liver as well. Further research aiming to elucidate the pathogenesis of drug-induced steatosis and steatohepatitis is needed in order to better design therapeutic targets.
Collapse
Affiliation(s)
- Sanjaya K Satapathy
- Methodist University Hospital Transplant Institute, Division of Surgery, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Vanessa Kuwajima
- Division of Gastroenterology and Hepatology, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Jeffrey Nadelson
- Division of Gastroenterology and Hepatology, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Omair Atiq
- University of Texas Southwestern, Dallas, Texas, USA
| | - Arun J Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University Health System, Richmond, Virginia, USA
| |
Collapse
|
50
|
Prastowo S, Amin A, Rings F, Held E, Wondim DS, Gad A, Neuhoff C, Tholen E, Looft C, Schellander K, Tesfaye D, Hoelker M. Fateful triad of reactive oxygen species, mitochondrial dysfunction and lipid accumulation is associated with expression outline of the AMP-activated protein kinase pathway in bovine blastocysts. Reprod Fertil Dev 2016; 29:RD15319. [PMID: 26907741 DOI: 10.1071/rd15319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 12/17/2015] [Indexed: 12/11/2022] Open
Abstract
Low cryotolerance is considered as the major drawback of in vitro-produced bovine embryos and is frequently associated with a triad encompassing increased cytoplasmic lipid accumulation, enhanced levels of reactive oxygen species (ROS) and mitochondrial dysfunction. The aim of the present study was to explore the role of the AMP-activated protein kinase (AMPK) pathway in the process resulting such phenotypes. Comparative analysis under different environmental conditions revealed downregulation of AMP-activated protein kinase cytalytic subunit 1alpha (AMPKA1), peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1A) and carnitine palmitoyltransferase 1 (CPT1) genes and upregulation of acetyl-CoA carboxylase α (ACC). In contrast, the presence of fatty acids within the culture medium resulted in a distinct molecular profile in the embryo associated with enhanced levels of ROS, mitochondrial dysfunction and elevated lipid accumulation in bovine embryos. Because AMPKA1 regulates PGC1A, CPT1 and ACC, the results of the present study reveal that AMPK in active its form is the key enzyme promoting lipolysis. Because AMPK1 activity is, in turn, controlled by the AMP : ATP ratio, it is possible to speculate that excessive uptake of exogenous free fatty acids could increase cellular ATP levels as a result of the disturbed β-oxidation of these external fatty acids and could therefore bypass that molecular feedback mechanism. Subsequently, this condition would cause enhanced generation of ROS, which negatively affect mitochondrial activity. Both enhanced generation of ROS and low mitochondrial activity are suggested to enhance the accumulation of lipids in bovine embryos.
Collapse
|