1
|
Abstract
Introduction: Neurotensin is a gut-brain peptide hormone, a 13 amino acid neuropeptide found in the central nervous system and in the GI tract. The neurotensinergic system is implicated in various physiological and pathological processes related to neuropsychiatric and metabolic machineries, cancer growth, food, and drug intake. NT mediates its functions through its two G protein-coupled receptors: neurotensin receptor 1 (NTS1/NTSR1) and neurotensin receptor 2 (NTS2/NTSR2). Over the past decade, the role of NTS3/NTSR3/sortilin has also gained importance in human pathologies. Several approaches have appeared dealing with the discovery of compounds able to modulate the functions of this neuropeptide through its receptors for therapeutic gain.Areas covered: The article provides an overview of over four decades of research and details the drug discovery approaches and patented strategies targeting NTSR in the past decade.Expert opinion: Neurotensin is an important neurotransmitter that enables crosstalk with various neurotransmitter and neuroendocrine systems. While significant efforts have been made that have led to selective agonists and antagonists with promising in vitro and in vivo activities, the therapeutic potential of compounds targeting the neurotensinergic system is still to be fully harnessed for successful clinical translation of compounds for the treatment of several pathologies.
Collapse
Affiliation(s)
- Malliga R Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
2
|
Beneficial Effects of Neurotensin in Murine Model of Hapten-Induced Asthma. Int J Mol Sci 2019; 20:ijms20205025. [PMID: 31614422 PMCID: PMC6834300 DOI: 10.3390/ijms20205025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/20/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023] Open
Abstract
Neurotensin (NT) demonstrates ambiguous activity on inflammatory processes. The present study was undertaken to test the potential anti-inflammatory activity of NT in a murine model of non-atopic asthma and to establish the contribution of NTR1 receptors. Asthma was induced in BALB/c mice by skin sensitization with dinitrofluorobenzene followed by intratracheal hapten provocation. The mice were treated intraperitoneally with NT, SR 142948 (NTR1 receptor antagonist) + NT or NaCl. Twenty-four hours after the challenge, airway responsiveness to nebulized methacholine was measured. Bronchoalveolar lavage fluid (BALF) and lungs were collected for biochemical and immunohistological analysis. NT alleviated airway hyperreactivity and reduced the number of inflammatory cells in BALF. These beneficial effects were inhibited by pretreatment with the NTR1 antagonist. Additionally, NT reduced levels of IL-13 and TNF-α in BALF and IL-17A, IL12p40, RANTES, mouse mast cell protease and malondialdehyde in lung homogenates. SR 142948 reverted only a post-NT TNF-α decrease. NT exhibited anti-inflammatory activity in the hapten-induced asthma. Reduced leukocyte accumulation and airway hyperresponsiveness indicate that this beneficial NT action is mediated through NTR1 receptors. A lack of effect by the NTR1 blockade on mast cell activation, oxidative stress marker and pro-inflammatory cytokine production suggests that other pathways can be involved, which requires further research.
Collapse
|
3
|
Schroeder LE, Furdock R, Quiles CR, Kurt G, Perez-Bonilla P, Garcia A, Colon-Ortiz C, Brown J, Bugescu R, Leinninger GM. [Not Available]. Neuropeptides 2019; 76:101930. [PMID: 31079844 PMCID: PMC7721284 DOI: 10.1016/j.npep.2019.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 12/11/2022]
Abstract
Neurotensin (Nts) is a neuropeptide implicated in the regulation of many facets of physiology, including cardiovascular tone, pain processing, ingestive behaviors, locomotor drive, sleep, addiction and social behaviors. Yet, there is incomplete understanding about how the various populations of Nts neurons distributed throughout the brain mediate such physiology. This knowledge gap largely stemmed from the inability to simultaneously identify Nts cell bodies and manipulate them in vivo. One means of overcoming this obstacle is to study NtsCre mice crossed onto a Cre-inducible green fluorescent reporter line (NtsCre;GFP mice), as these mice permit both visualization and in vivo modulation of specific populations of Nts neurons (using Cre-inducible viral and genetic tools) to reveal their function. Here we provide a comprehensive characterization of the distribution and relative densities of the Nts-GFP populations observed throughout the male NtsCre;GFP mouse brain, which will pave the way for future work to define their physiologic roles. We also compared the distribution of Nts-GFP neurons with Nts-In situ Hybridization (Nts-ISH) data from the adult mouse brain. By comparing these data sets we can distinguish Nts-GFP populations that may only transiently express Nts during development but not in the mature brain, and hence which populations may not be amenable to Cre-mediated manipulation in adult NtsCre;GFP mice. This atlas of Nts-GFP neurons will facilitate future studies using the NtsCre;GFP line to describe the physiological functions of individual Nts populations and how modulating them may be useful to treat disease.
Collapse
Affiliation(s)
- Laura E Schroeder
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Ryan Furdock
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Cristina Rivera Quiles
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Gizem Kurt
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Patricia Perez-Bonilla
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Angela Garcia
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Crystal Colon-Ortiz
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Juliette Brown
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Raluca Bugescu
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Gina M Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States.
| |
Collapse
|
4
|
Carey LM, Rice RJ, Prus AJ. The Neurotensin NTS 1 Receptor Agonist PD149163 Produces Antidepressant-Like Effects in the Forced Swim Test: Further Support for Neurotensin as a Novel Pharmacologic Strategy for Antidepressant Drugs. Drug Dev Res 2017; 78:196-202. [PMID: 28736839 DOI: 10.1002/ddr.21393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/11/2017] [Indexed: 11/09/2022]
Abstract
Preclinical Research Neurotensin is a nonbrain penetrant neuropeptide neurotransmitter that alters dopaminergic and serotonergic neurotransmission. Previous animal behavioral studies have demonstrated that intra-ventral tegmental administration of neurotensin and system administration of the selective neurotensin NTS1 receptor agonist, PD149163 produce antidepressant-like effects in a forced swim test and a differential reinforcement of low rate task, respectively. The present study sought to expand upon these past findings by assessing systemic administration of PD149163 in a forced swim test, a primary antidepressant preclinical screening model, in mice. The tricyclic antidepressant drug imipramine was tested for comparison, and both compounds were also assessed in an open field test. Both PD149163 and imipramine reduced time spent immobile, an antidepressant-like effect, in the forced swim test. The highest dose of each compound significantly reduced locomotor activity. These findings provide further evidence for the putative antidepressant effects for PD149163 and suggest that NTS1 receptor activation may be a novel pharmacologic strategy for antidepressant drug development. Drug Dev Res 78 : 196-202, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lawrence M Carey
- Department of Psychological Science, Northern Michigan University, Marquette, MI, 49855
| | - Remington J Rice
- Department of Psychological Science, Northern Michigan University, Marquette, MI, 49855
| | - Adam J Prus
- Department of Psychological Science, Northern Michigan University, Marquette, MI, 49855
| |
Collapse
|
5
|
Rosin C, López Ordieres MG, Rodríguez de Lores Arnaiz G. Changes in [ 3H]-ouabain and [ 3H]-neurotensin binding to rat cerebral cortex membranes after administration of antipsychotic drugs haloperidol and clozapine. Peptides 2017; 89:82-89. [PMID: 27586561 DOI: 10.1016/j.peptides.2016.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/08/2016] [Accepted: 08/29/2016] [Indexed: 11/17/2022]
Abstract
Evidences indicate the relationship between neurotensinergic and dopaminergic systems. Neurotensin inhibits synaptosomal membrane Na+, K+-ATPase activity, an effect blocked by SR 48692, antagonist for high affinity neurotensin receptor (NTS1) type. Assays of high affinity [3H]-ouabain binding (to analyze K+ site of Na+, K+-ATPase) show that in vitro addition of neurotensin decreases binding. Herein potential interaction between NTS1 receptor, dopaminergic D2 receptor and Na+, K+-ATPase was studied. To test the involvement of dopaminergic D2 receptors in [3H]-ouabain binding inhibition by neurotensin, Wistar rats were administered i.p.with antipsychotic drugs haloperidol (2mg/kg) and clozapine (3, 10 and 30mg/kg). Animals were sacrificed 18h later, cerebral cortices harvested, membrane fractions prepared and high affinity [3H]-ouabain binding assayed in the absence or presence of neurotensin at a 10 micromolar concentration. No differences versus controls for basal binding or for binding inhibition by neurotensin were recorded, except after 10mg/kg clozapine. Rats were administered with neurotensin (3, 10y 30μg, i.c.v.) and 60min later, animals were sacrificed, cerebral cortices harvested and processed to obtain membrane fractions for high affinity [3H]-ouabain binding assays. Results showed a slight but statistically significant decrease in binding with the 30μg neurotensin dose. To analyze the interaction between dopaminergic D2 and NTS1 receptors, [3H]-neurotensin binding to cortical membranes from rats injected with haloperidol (2mg/kg, i.p.) or clozapine (10mg/kg) was assayed. Saturation curves and Scatchard transformation showed that the only statistically significant change occurred in Bmax after haloperidol administration. Hill number was close to the unit in all cases. Results indicated that typical and atypical antipsychotic drugs differentially modulate the interaction between neurotensin and Na+, K+-ATPase. At the same time, support the notion of an interaction among dopaminergic and neurotensinergic systems and Na+, K+-ATPase at central synapses.
Collapse
Affiliation(s)
- Carina Rosin
- Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis", Facultad de Medicina, CONICET-UBA, Universidad de Buenos Aires, Paraguay 2155, 1121-Buenos Aires, Argentina; Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113-Buenos Aires, Argentina
| | - María Graciela López Ordieres
- Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis", Facultad de Medicina, CONICET-UBA, Universidad de Buenos Aires, Paraguay 2155, 1121-Buenos Aires, Argentina; Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113-Buenos Aires, Argentina
| | - Georgina Rodríguez de Lores Arnaiz
- Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis", Facultad de Medicina, CONICET-UBA, Universidad de Buenos Aires, Paraguay 2155, 1121-Buenos Aires, Argentina.
| |
Collapse
|
6
|
Tóth F, Mallareddy JR, Tourwé D, Lipkowski AW, Bujalska-Zadrozny M, Benyhe S, Ballet S, Tóth G, Kleczkowska P. Synthesis and binding characteristics of [(3)H]neuromedin N, a NTS2 receptor ligand. Neuropeptides 2016; 57:15-20. [PMID: 26707235 DOI: 10.1016/j.npep.2015.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/25/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022]
Abstract
Neurotensin (NT) and its analog neuromedin N (NN) are formed by the processing of a common precursor in mammalian brain tissue and intestines. The biological effects mediated by NT and NN (e.g. analgesia, hypothermia) result from the interaction with G protein-coupled receptors. The goal of this study consisted of the synthesis and radiolabeling of NN, as well as the determination of the binding characteristics of [(3)H]NN and G protein activation by the cold ligand. In homologous displacement studies a weak affinity was determined for NN, with IC50 values of 454nM in rat brain and 425nM in rat spinal cord membranes. In saturation binding experiments the Kd value proved to be 264.8±30.18nM, while the Bmax value corresponded to 3.8±0.2pmol/mg protein in rat brain membranes. The specific binding of [(3)H]NN was saturable, interacting with a single set of homogenous binding sites. In sodium sensitivity experiments, a very weak inhibitory effect of Na(+) ions was observed on the binding of [(3)H]NN, resulting in an IC50 of 150.6mM. In [(35)S]GTPγS binding experiments the Emax value was 112.3±1.4% in rat brain and 112.9±2.4% in rat spinal cord membranes and EC50 values of 0.7nM and 0.79nM were determined, respectively. NN showed moderate agonist activities in stimulating G proteins. The stimulatory effect of NN could be maximally inhibited via use of the NTS2 receptor antagonist levocabastine, but not by the opioid receptor specific antagonist naloxone, nor by the NTS1 antagonist SR48692. These observations allow us to conclude that [(3)H]NN labels NTS2 receptors in rat brain membranes.
Collapse
Affiliation(s)
- Fanni Tóth
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt 62, 6726 Szeged, Hungary
| | - Jayapal Reddy Mallareddy
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt 62, 6726 Szeged, Hungary
| | - Dirk Tourwé
- Research Group of Organic Chemistry, Department of Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Andrzej W Lipkowski
- Department of Neuropeptides, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02106 Warsaw, Poland
| | - Magdalena Bujalska-Zadrozny
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, 1B Banacha Str., 02-106 Warsaw, Poland
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt 62, 6726 Szeged, Hungary
| | - Steven Ballet
- Research Group of Organic Chemistry, Department of Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Géza Tóth
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt 62, 6726 Szeged, Hungary
| | - Patrycja Kleczkowska
- Department of Neuropeptides, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02106 Warsaw, Poland; Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, 1B Banacha Str., 02-106 Warsaw, Poland.
| |
Collapse
|
7
|
Feifel D, Shilling PD, Fazlinejad AA, Melendez G. Antipsychotic drug-like facilitation of latent inhibition by a brain-penetrating neurotensin-1 receptor agonist. J Psychopharmacol 2016; 30:312-7. [PMID: 26783230 DOI: 10.1177/0269881115625360] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Latent inhibition (LI) is a measure of cognitive gating and refers to reduced conditioned learning when there is pre-exposure to the conditioned stimulus (CS) before it is paired with the unconditioned stimulus (US). Dysregulation of LI is associated with some neuropsychiatric disorders, including schizophrenia, and the ability to facilitate LI in rodents is a reasonably good predictive test for antipsychotic drugs. Converging evidence supports neurotensin-1 receptor (NTS1) agonists as novel drugs for schizophrenia. Therefore, we investigated the ability of a brain-penetrating, selective NTS1 agonist, PD149163, to facilitate LI in heterozygous Brattleboro rats, a strain that exhibits naturally low LI. Conditioned taste aversion to flavored water (FW; 0.1% saccharin) was induced by pairing it with malaise-inducing injections of lithium chloride (LiCl). Prior to LiCl-FW pairing, rats received subcutaneous injections of saline, or PD149163 (100 µg/kg or 200 µg/kg). Half the rats in each drug group had been allowed to drink FW the day before the LiCl-FW pairing (pre-exposed rats). Two days after pairing, the amount of FW each rat consumed was recorded. LI, defined as significantly greater FW drinking in the pre-exposed group compared with the non pre-exposed group, was exhibited only among rats that received 200 µg/kg of PD149163. These results further support NTS1 agonists as potentially novel drugs for the treatment of schizophrenia.
Collapse
Affiliation(s)
- D Feifel
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - P D Shilling
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - A A Fazlinejad
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - G Melendez
- Department of Psychiatry, University of California, San Diego, CA, USA
| |
Collapse
|
8
|
Positive reinforcing effect of neurotensin microinjection into the ventral pallidum in conditioned place preference test. Behav Brain Res 2015; 278:470-5. [DOI: 10.1016/j.bbr.2014.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/14/2014] [Accepted: 10/18/2014] [Indexed: 12/23/2022]
|
9
|
Activation of neurotensin receptor type 1 attenuates locomotor activity. Neuropharmacology 2014; 85:482-92. [PMID: 24929110 DOI: 10.1016/j.neuropharm.2014.05.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 05/28/2014] [Accepted: 05/30/2014] [Indexed: 12/16/2022]
Abstract
Intracerebroventricular administration of neurotensin (NT) suppresses locomotor activity. However, the brain regions that mediate the locomotor depressant effect of NT and receptor subtype-specific mechanisms involved are unclear. Using a brain-penetrating, selective NT receptor type 1 (NTS1) agonist PD149163, we investigated the effect of systemic and brain region-specific NTS1 activation on locomotor activity. Systemic administration of PD149163 attenuated the locomotor activity of C57BL/6J mice both in a novel environment and in their homecage. However, mice developed tolerance to the hypolocomotor effect of PD149163 (0.1 mg/kg, i.p.). Since NTS1 is known to modulate dopaminergic signaling, we examined whether PD149163 blocks dopamine receptor-mediated hyperactivity. Pretreatment with PD149163 (0.1 or 0.05 mg/kg, i.p.) inhibited D2R agonist bromocriptine (8 mg/kg, i.p.)-mediated hyperactivity. D1R agonist SKF-81297 (8 mg/kg, i.p.)-induced hyperlocomotion was only inhibited by 0.1 mg/kg of PD149163. Since the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) have been implicated in the behavioral effects of NT, we examined whether microinjection of PD149163 into these regions reduces locomotion. Microinjection of PD149163 (2 pmol) into the NAc, but not the mPFC suppressed locomotor activity. In summary, our results indicate that systemic and intra-NAc activation of NTS1 is sufficient to reduce locomotion and NTS1 activation inhibits D2R-mediated hyperactivity. Our study will be helpful to identify pharmacological factors and a possible therapeutic window for NTS1-targeted therapies for movement disorders.
Collapse
|
10
|
Neurotensin and neurotensin receptors: characteristic, structure-activity relationship and pain modulation--a review. Eur J Pharmacol 2013; 716:54-60. [PMID: 23500196 DOI: 10.1016/j.ejphar.2013.03.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 02/23/2013] [Accepted: 03/03/2013] [Indexed: 12/14/2022]
Abstract
Neurotensin (NT) is a tridecapeptide, which - since its discovery in 1973--has been demonstrated to be involved in the control of various physiological activities in both the central nervous system and in the periphery. Its biological effects are mediated by four receptor types. Exogenously administered NT exerts different behavioral effects, including antinociception. Structure-activity relationship studies performed in recent years resulted in development of several peptidomimetic receptor agonists and non-peptidic receptor antagonists that are useful tools for studies of NT mechanisms in tissue and on cellular level. This may result in design of new generation of analgesics based on neurotensin. NT antinociceptive effects are distinct from opioid analgesia. This creates opportunity of development of hybride analgesics that may simultaneously activate both opioid and NT antinociceptive pathways.
Collapse
|
11
|
Abstract
Appetite has recently received the attention of researchers in developing countries due to the increasing prevalence of obesity. There are multiple complex mechanisms involved in food intake. The satiety level and the physiological state of a person are responsible for appetite expression. Specific manipulations of macronutrients have the potential to affect appetite control. Certain pharmaceutical formulations and sensitizer compounds/chemicals can also be used as appetite suppressants either orally or intravenously. Several aspects related to appetite control and obesity have been briefly reviewed in view of the current scientific and commercial trends.
Collapse
Affiliation(s)
- D D Wadikar
- Defence Food Research Laboratory, DRDO Siddarthanagar, Mysore, Karnataka, India.
| | | |
Collapse
|
12
|
Li J, Chen C, Chen C, He Q, Li H, Li J, Moyzis RK, Xue G, Dong Q. Neurotensin receptor 1 gene (NTSR1) polymorphism is associated with working memory. PLoS One 2011; 6:e17365. [PMID: 21394204 PMCID: PMC3048867 DOI: 10.1371/journal.pone.0017365] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 02/01/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Recent molecular genetics studies showed significant associations between dopamine-related genes (including genes for dopamine receptors, transporters, and degradation) and working memory, but little is known about the role of genes for dopamine modulation, such as those related to neurotensin (NT), in working memory. A recent animal study has suggested that NT antagonist administration impaired working memory in a learning task. The current study examined associations between NT genes and working memory among humans. METHODS Four hundred and sixty healthy undergraduate students were assessed with a 2-back working memory paradigm. 5 SNPs in the NTSR1 gene were genotyped. 5 ANOVA tests were conducted to examine whether and how working memory differed by NTSR1 genotype, with each SNP variant as the independent variable and the average accuracy on the working memory task as the dependent variable. RESULTS ANOVA results suggested that two SNPs in the NTSR1 gene (rs4334545 and rs6090453) were significantly associated with working memory. These results survived corrections for multiple comparisons. CONCLUSIONS Our results demonstrated that NTSR1 SNP polymorphisms were significantly associated with variance in working memory performance among healthy adults. This result extended previous rodent studies showing that the NT deficiency impairs the working memory function. Future research should replicate our findings and extend to an examination of other dopamine modulators.
Collapse
Affiliation(s)
- Jin Li
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
- Department of Psychology and Social Behavior, University of California Irvine, Irvine, California, United States of America
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of California Irvine, Irvine, California, United States of America
| | - Chunhui Chen
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
| | - Qinghua He
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
- Department of Psychology, University of Southern California, Los Angeles, California, United States of America
| | - He Li
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
| | - Jun Li
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
| | - Robert K. Moyzis
- Department of Biological Chemistry, University of California Irvine, Irvine, California, United States of America
| | - Gui Xue
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
- Department of Psychology, University of Southern California, Los Angeles, California, United States of America
| | - Qi Dong
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
| |
Collapse
|
13
|
Liang Y, Boules M, Li Z, Williams K, Miura T, Oliveros A, Richelson E. Hyperactivity of the dopaminergic system in NTS1 and NTS2 null mice. Neuropharmacology 2010; 58:1199-205. [PMID: 20211191 DOI: 10.1016/j.neuropharm.2010.02.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 01/18/2010] [Accepted: 02/19/2010] [Indexed: 11/29/2022]
Abstract
Neurotensin (NT) is a tridecapeptide that acts as a neuromodulator in the central nervous system mainly through two NT receptors, NTS1 and NTS2. The functional-anatomical interactions between NT, the mesotelencephalic dopamine system, and structures targeted by dopaminergic projections have been studied. The present study was conducted to determine the effects of NT receptor subtypes on dopaminergic function with the use of mice lacking either NTS1 (NTS1(-/-)) or NTS2 (NTS2(-/-)). Basal and amphetamine-stimulated locomotor activity was determined. In vivo microdialysis in freely moving mice, coupled with HPLC-ECD, was used to detect basal and d-amphetamine-stimulated striatal extracellular dopamine levels. In vitro radioligand binding and synaptosomal uptake assays for the dopamine transporters were conducted to test for the expression and function of the striatal pre-synaptic dopamine transporter. NTS1(-/-) and NTS2(-/-) mice had higher baseline locomotor activity and higher basal extracellular dopamine levels in striatum. NTS1(-/-) mice showed higher locomotor activity and exaggerated dopamine release in response to d-amphetamine. Both NTS1(-/-) and NTS2(-/-) mice exhibited lower dopamine D(1) receptor mRNA expression in the striatum relative to wild type mice. Dopamine transporter binding and dopamine reuptake in striatum were not altered. Therefore, lack of either NTS1 or NTS2 alters the dopaminergic system. The possibility that the dysregulation of dopamine transmission might stem from a deficiency in glutamate neurotransmission is discussed. The data strengthen the hypothesis that NT receptors are involved in the pathogenesis of schizophrenia and provide a potential model for the biochemical changes of the disease.
Collapse
Affiliation(s)
- Yanqi Liang
- Neuropsychopharmacology Laboratory, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Norman C, Beckett SRG, Spicer CH, Ashton D, Langlois X, Bennett GW. Effects of chronic infusion of neurotensin and a neurotensin NT1 selective analogue PD149163 on amphetamine-induced hyperlocomotion. J Psychopharmacol 2008; 22:300-7. [PMID: 18208905 DOI: 10.1177/0269881107083838] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neurotensin (NT) has been proposed as an endogenous antipsychotic based in part on the similarity in behavioural effects to antipsychotic drugs, for example, attenuation of both amphetamine-induced hyperlocomotion (AH) and amphetamine disrupted pre-pulse inhibition in the rat. However, there is some evidence that repeated administration of NT or an analogue produces behavioural tolerance to such effects. The present experiments sought to confirm and extend these findings by testing the effects on AH of 7 days central administration of NT and the NT1 selective analogue PD 149163 and the effects of 21 days central administration of NT. NT and PD149163 continuously administered for 7 days produced no effect on AH (in contrast to attenuation with a single injection here and previously reported), whereas 21 days of NT administration potentiated AH. Together, these studies report that the effects of NT or a NT analogue on AH depends on the duration of administration of peptide. The results are discussed in comparison with the reported antipsychotic properties of acute administration of NT and possible mechanisms involving NT1 receptors.
Collapse
Affiliation(s)
- C Norman
- Division of Psychology, Nottingham Trent University, Burton Street, Nottingham, UK.
| | | | | | | | | | | |
Collapse
|
15
|
Boules M, Iversen I, Oliveros A, Shaw A, Williams K, Robinson J, Fredrickson P, Richelson E. The neurotensin receptor agonist NT69L suppresses sucrose-reinforced operant behavior in the rat. Brain Res 2007; 1127:90-8. [PMID: 17113052 DOI: 10.1016/j.brainres.2006.10.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 10/02/2006] [Accepted: 10/04/2006] [Indexed: 10/23/2022]
Abstract
NT69L is a neurotensin analog that can be administered peripherally. It blocks amphetamine- and cocaine-induced hyperactivity in rats. It also blocks nicotine-induced locomotor activity and has shown sustained efficacy in a rat model of nicotine-induced sensitization. The present study tested the effect of NT69L on responding for sucrose reinforcement on a continuous reinforcement schedule (CRF) and incrementing (FR1-FR5) discrimination schedule. Male Sprague-Dawley rats, on restricted food intake, were trained to press a lever for sucrose pellets on a CRF and incrementing discrimination schedule of reinforcement. On the following day, the testing session was followed by an extinction session, where lever pressing was not reinforced. Immediately after extinction, a reversal to CRF was implemented to test for relapse. Trained rats were injected with NT69L (1 mg/kg) or saline 30 min before each testing session. Dopamine, tyrosine 3-hydroxylase, and dopamine receptor mRNA levels were determined. NT69L significantly suppressed the lever pressing behavior for sucrose reinforcement on CRF which measures the "hedonic" value of the reward. NT69L also suppressed sucrose self-administration on the incrementing discrimination schedule of reinforcement (FR3-FR5) that is analogous to the motivational incentive. Reversal to CRF was significantly reduced by pretreatment with NT69L. The suppression of sucrose self-administration behavior by pretreatment with NT69L had a pattern similar to that for extinction. The effect of NT69L on dopamine, tyrosine 3-hydroxylase, and dopamine receptor mRNA levels is discussed relative to changes occurring during extinction.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Brain/drug effects
- Brain/metabolism
- Conditioning, Operant/drug effects
- Conditioning, Operant/physiology
- Dopamine/metabolism
- Extinction, Psychological/drug effects
- Extinction, Psychological/physiology
- Food Deprivation/physiology
- Male
- Neurotensin/analogs & derivatives
- Neurotensin/metabolism
- Neurotensin/pharmacology
- Peptide Fragments/pharmacology
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine/metabolism
- Receptors, Neurotensin/agonists
- Receptors, Neurotensin/metabolism
- Reinforcement, Psychology
- Self Administration
- Sucrose/pharmacology
- Tyrosine 3-Monooxygenase/genetics
- Tyrosine 3-Monooxygenase/metabolism
Collapse
Affiliation(s)
- Mona Boules
- Mayo Foundation for Medical Education and Research and Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Samadi P, Rouillard C, Bédard PJ, Di Paolo T. Functional neurochemistry of the basal ganglia. HANDBOOK OF CLINICAL NEUROLOGY 2007; 83:19-66. [DOI: 10.1016/s0072-9752(07)83002-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Arora S. Role of neuropeptides in appetite regulation and obesity--a review. Neuropeptides 2006; 40:375-401. [PMID: 16935329 DOI: 10.1016/j.npep.2006.07.001] [Citation(s) in RCA: 296] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 06/17/2006] [Accepted: 07/07/2006] [Indexed: 01/27/2023]
Abstract
Obesity represents the most prevalent nutritional problem worldwide which in the long run predisposes to development of diabetes mellitus, hypertension, endometrial carcinoma, osteoarthritis, gall stones and cardiovascular diseases. Despite significant reductions in dietary fat consumption, the prevalence of obesity is on a rise and is taking on pandemic proportions. Obesity develops when energy intake exceeds energy expenditure over time. Recently, a close evolutionary relationship between the peripheral and hypothalamic neuropeptides has become apparent. The hypothalamus being the central feeding organ mediates regulation of short-term and long-term dietary intake via synthesis of various orexigenic and anorectic neuropeptides. The structure and function of many hypothalamic peptides (neuropeptide Y (NPY), melanocortins, agouti-related peptide (AGRP), cocaine and amphetamine regulated transcript (CART), melanin concentrating hormone (MCH), orexins have been characterized in rodent models The peripheral neuropeptides such as cholecystokinin (CCK), ghrelin, peptide YY (PYY3-36), amylin, bombesin regulate important gastrointestinal functions such as motility, secretion, absorption, provide feedback to the central nervous system on availability of nutrients and may play a part in regulating food intake. The pharmacological potential of several endogenous peripheral peptides released prior to, during and/or after feeding are being explored. Long-term regulation is provided by the main circulating hormones leptin and insulin. These systems implicated in hypothalamic appetite regulation provide potential targets for treatment of obesity which could potentially pass into clinical development in the next 5 years. This review summarizes various effects and interrelationship of these central and peripheral neuropeptides in metabolism, obesity and their potential role as targets for treatment of obesity.
Collapse
Affiliation(s)
- Sarika Arora
- Department of Biochemistry, Lady Hardinge Medical College, Shaheed Bhagat Singh Marg, Connaught Place, New Delhi, Delhi 110 001, India.
| |
Collapse
|
18
|
Boules M, Fredrickson P, Richelson E. Neurotensin agonists as an alternative to antipsychotics. Expert Opin Investig Drugs 2006; 14:359-69. [PMID: 15882113 DOI: 10.1517/13543784.14.4.359] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neurotensin (NT) is a 13 amino acid neuropeptide that is found in the central nervous system and in the gastrointestinal tract. In brain, this peptide is prominently associated anatomically with dopaminergic, as well as other neurotransmitter systems. Based on animal studies, already decades old, researchers have hypothesised that NT receptor agonists will have antipsychotic properties in patients. However, to date no one has obtained a non-peptide NT receptor agonist. Therefore, there has been great interest in obtaining peptide analogues of NT, that, unlike NT resist degradation by peptidases and cross the blood-brain barrier, yet have the pharmacological characteristics of native NT, for therapeutic use in the treatment of schizophrenia, as well as other neuropsychiatric diseases such as Parkinson's disease and addiction to psychostimulants. In this review, we present the rationale for development of NT receptor agonists for treatment of certain central nervous system diseases, as well as a review of those peptide agonists that are in early stages of development.
Collapse
Affiliation(s)
- Mona Boules
- Neuropsychopharmacology Laboratory and Nicotine Dependence Center, Mayo Foundation for Medical Education and Research, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | | | | |
Collapse
|
19
|
Fredrickson P, Boules M, Lin SC, Richelson E. Neurobiologic basis of nicotine addiction and psychostimulant abuse: a role for neurotensin? Psychiatr Clin North Am 2005; 28:737-51, 746. [PMID: 16122577 DOI: 10.1016/j.psc.2005.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Addiction to psychostimulant drugs such as nicotine, amphetamine, and cocaine is a serious public health problem for which there is a paucity of accepted forms of pharmacotherapy. Nicotine dependence has become more frequently associated with psychiatric illness in recent decades, and patients who have schizophrenia are at highest risk and have the poorest prognosis for stopping their addiction. Possible mechanisms for this association include self-medication, with nicotine attenuating attentional deficits and negative symptoms. Neurotensin has been postulated to be an endogenous neuroleptic, and the performance of neurotensin analogues in animal models of addiction makes such compounds intriguing candidates for treatment of addiction in high-risk psychiatric populations.
Collapse
Affiliation(s)
- Paul Fredrickson
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA.
| | | | | | | |
Collapse
|
20
|
Casti P, Marchese G, Casu G, Ruiu S, Pani L. Blockade of neurotensin receptors affects differently hypo-locomotion and catalepsy induced by haloperidol in mice. Neuropharmacology 2004; 47:128-35. [PMID: 15165840 DOI: 10.1016/j.neuropharm.2004.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Revised: 01/26/2004] [Accepted: 03/01/2004] [Indexed: 11/24/2022]
Abstract
Antipsychotic drug treatment increases neurotensin (NT) neurotransmission, and the exogenous administration of NT produces antipsychotic-like effects in rodents. In order to investigate whether "endogenous" NT may act as a natural occurring antipsychotic or may mediate antipsychotic drug activity, the effects of the selective NT receptor antagonists SR 48692 and SR 142948A were analyzed in different behavioural tests of locomotor activity using vehicle, amphetamine, or haloperidol in mice. SR 48692 (0.1-1 mg/kg, i.p.) and SR 142948A (0.03-0.1 mg/kg, i.p.) failed to affect mouse spontaneous locomotor activity and amphetamine-induced (2.5 mg/kg, i.p.) hyper-locomotion. However, SR 48692 (0.1 and 0.3 mg/kg, i.p.) and SR 142948A (0.03 and 0.05 mg/kg, i.p.) significantly alleviated the reduction of locomotor activity elicited by haloperidol (0.01 and 0.04 mg/kg, s.c.) in vehicle- or amphetamine-treated mice. Finally, SR 48692 (0.3 mg/kg, i.p.) and SR 142948A (0.05 and 0.1 mg/kg, i.p.) increased mouse catalepsy produced by haloperidol (0.3 mg/kg, s.c.). The present results indicate that while endogenous NT is not involved in the modulation of either mouse spontaneous locomotor activity or amphetamine-induced hyper-locomotion, it might act by enhancing the therapeutic effects of haloperidol and by attenuating the extrapyramidal side effects elicited by this antipsychotic.
Collapse
|
21
|
Desautels A, Turecki G, Xiong L, Rochefort D, Montplaisir J, Rouleau GA. Mutational analysis of neurotensin in familial restless legs syndrome. Mov Disord 2003; 19:90-4. [PMID: 14743366 DOI: 10.1002/mds.10617] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A susceptibility locus for restless legs syndrome (RLS) has been identified recently on chromosome 12q. This region contains several transcribed genes including neurotensin (NTS), which, as an important modulator of the dopaminergic transmission, represents a strong functional and positional candidate in the context of RLS. In this study, NTS was evaluated for mutational analysis. A panel of 19 individuals from 4 families supporting linkage to 12q was investigated using a combined denaturing high-performance liquid chromatography (dHPLC) and direct sequencing method. Analysis of the NTS genomic sequence revealed 2 intronic polymorphisms and 1 variant located in the 5' untranslated region (UTR). None of the observed variants co-segregated with RLS and no disease-associated polymorphisms were detected in any of the analyzed families. Based on these results, it is unlikely that NTS is the gene responsible for RLS in chromosome 12-linked families.
Collapse
Affiliation(s)
- Alex Desautels
- Centre d'étude du sommeil, Hôpital du Sacré-Coeur de Montréal and Centre de recherche en sciences neurologiques, Université de Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Fredrickson P, Boules M, Yerbury S, Richelson E. Blockade of nicotine-induced locomotor sensitization by a novel neurotensin analog in rats. Eur J Pharmacol 2003; 458:111-8. [PMID: 12498914 DOI: 10.1016/s0014-2999(02)02689-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Neurotensin is a tridecapeptide with anatomic and functional relationships to dopaminergic neurons. Previously we showed that one of our brain-penetrating neurotensin analogs, NT69L (N-met-L-Arg, L-Lys, L-Pro, L-neo-Trp, L-tert-Leu, L-Leu), blocks cocaine- and D-amphetamine-induced hyperactivity in rats. We have now performed a similar study in rats sensitized to nicotine over 15 days of administration. Male Sprague-Dawley rats were randomly assigned to receive daily injections for 15 days with one of the following combinations: saline/nicotine (0.35 mg/kg), NT69L (1 mg/kg)/nicotine, saline/saline, or NT69L/saline with a 30-min period between injections. On day 15 each group was given saline/nicotine or NT69L/nicotine and tested in an activity chamber. One-time administration of NT69L attenuated nicotine-induced activity with an ED(50) of 1.6 microg/kg. Rats injected with nicotine over the 15 days had a significant increase in locomotor activity, consistent with nicotine-induced locomotor sensitization. A single injection of NT69L on day 15 prior to nicotine markedly decreased nicotine-induced hyperactivity. Although daily injections of NT69L lessened its effect, statistically significant reductions in hyperactivity to nicotine persisted throughout the study. There was no significant difference in activity between rats injected with NT69L/saline and saline/saline. Thus, the activity reduction was not due to sedation. Acute and chronic nicotine injection caused an increase in cytisine binding in prefrontal cortex. NT69L significantly reduced the increase caused by acute but not chronic injection of nicotine. Nicotine injection resulted in an increase in dopamine levels in the striatum and dopamine and norepinephrine levels in the prefrontal cortex. NT69L lowered the norepinephrine and dopamine levels in the prefrontal cortex but did not affect striatal dopamine. The present study is the first report, to our knowledge, of a possible role for neurotensin in the development of nicotine dependence, and suggests that neurotensin analogs such as NT69L may be explored as treatment for nicotine and other psychostimulant abuse.
Collapse
Affiliation(s)
- Paul Fredrickson
- Nicotine Dependence Center, Mayo Foundation for Medical Education and Research, and Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | | | | | | |
Collapse
|
23
|
Hertel P, Olsen CK, Arnt J. Repeated administration of the neurotensin analogue NT69L induces tolerance to its suppressant effect on conditioned avoidance behaviour. Eur J Pharmacol 2002; 439:107-11. [PMID: 11937099 DOI: 10.1016/s0014-2999(02)01414-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although acute neurotensin receptor stimulation exerts diverse behavioural effects that resemble those seen after administration of antipsychotic drugs, data on effects after repeated exposure to neurotensin receptor agonism is relatively sparse. Here, we demonstrate that repeated administration of the novel neurotensin-(8-13) analogue NT69L [(N-methyl-Arg), Lys, Pro, L-neo-Trp, tert-Leu, Leu] induce tolerance to its suppressant effect on conditioned avoidance behaviour in rats, a predictive assay for antipsychotic activity. In contrast, the inhibitory effect of haloperidol on this behaviour was sustained despite repeated administration of this classical antipsychotic drug. These findings indicate that repeated exposure to neurotensin receptor stimulation induces tolerance to the antipsychotic-like effects of neurotensin receptor agonists.
Collapse
Affiliation(s)
- Peter Hertel
- Psychopharmacological Research, H. Lundbeck A/S, Ottiliavej 9, DK-2500 -Valby, Copenhagen, Denmark.
| | | | | |
Collapse
|
24
|
Binder EB, Kinkead B, Owens MJ, Nemeroff CB. The role of neurotensin in the pathophysiology of schizophrenia and the mechanism of action of antipsychotic drugs. Biol Psychiatry 2001; 50:856-72. [PMID: 11743941 DOI: 10.1016/s0006-3223(01)01211-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It has become increasingly clear that schizophrenia does not result from the dysfunction of a single neurotransmitter system, but rather pathologic alterations of several interacting systems. Targeting of neuropeptide neuromodulator systems, capable of concomitantly regulating several transmitter systems, represents a promising approach for the development of increasingly effective and side effect-free antipsychotic drugs. Neurotensin (NT) is a neuropeptide implicated in the pathophysiology of schizophrenia that specifically modulates neurotransmitter systems previously demonstrated to be dysregulated in this disorder. Clinical studies in which cerebrospinal fluid (CSF) NT concentrations have been measured revealed a subset of schizophrenic patients with decreased CSF NT concentrations that are restored by effective antipsychotic drug treatment. Considerable evidence also exists concordant with the involvement of NT systems in the mechanism of action of antipsychotic drugs. The behavioral and biochemical effects of centrally administered NT remarkably resemble those of systemically administered antipsychotic drugs, and antipsychotic drugs increase NT neurotransmission. This concatenation of findings led to the hypothesis that NT functions as an endogenous antipsychotic. Moreover, typical and atypical antipsychotic drugs differentially alter NT neurotransmission in nigrostriatal and mesolimbic dopamine (DA) terminal regions, and these effects are predictive of side effect liability and efficacy, respectively. This review summarizes the evidence in support of a role for the NT system in both the pathophysiology of schizophrenia and the mechanism of action of antipsychotic drugs.
Collapse
Affiliation(s)
- E B Binder
- Max Planck Institute for Psychiatry, Munich, Germany
| | | | | | | |
Collapse
|
25
|
Najimi M, Hermans E, Rostène W, Forgez P. Transcriptional regulation of the tyrosine hydroxylase gene by neurotensin in human neuroblastoma CHP212 cells. Metab Brain Dis 2001; 16:165-74. [PMID: 11769329 DOI: 10.1023/a:1012588927052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The human neuroblastoma cell line CHP212 was found to express functional high affinity neurotensin (NTS-1) receptor subtype. Based on the functional interactions between neurotensin and dopamine transmission, we have used this cell line to investigate the short- and long-term modulation of tyrosine hydroxylase gene expression by the stable neurotensin agonist JMV 449. After exposure of the cells to 1 microM JMV 449 for 5 or 72 h, tyrosine hydroxylase protein and mRNA levels were significantly increased as detected by western blot analysis and quantitative RT-PCR, respectively. Transfection of CHP212 cells with a plasmid containing the luciferase reporter gene under the control of a limited proximal region of the cloned tyrosine hydroxylase promoter, revealed that the effect of JMV 449 results from an increase in the transcriptional activity of the TH gene. These results indicate that modulation of tyrosine hydroxylase gene expression may constitute one of the mechanisms involved in the control of dopamine transmission by neurotensin. Such neurotensin-mediated changes in tyrosine hydroxylase expression may also participate in multiple adaptation processes within the central nervous system to environmental conditions where neurotensin is released such as stress and food intake.
Collapse
Affiliation(s)
- M Najimi
- Laboratoire de pharmacologie, Université catholique de Louvain, Brussels, Belgium.
| | | | | | | |
Collapse
|
26
|
Boules M, Warrington L, Fauq A, McCormick D, Richelson E. Antiparkinson-like effects of a novel neurotensin analog in unilaterally 6-hydroxydopamine lesioned rats. Eur J Pharmacol 2001; 428:227-33. [PMID: 11675040 DOI: 10.1016/s0014-2999(01)01260-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Parkinson's disease is a neuropathological disorder involving the degeneration of dopamine neurons in the substantia nigra, with the resultant loss of their terminals in the striatum. This dopamine loss causes most of the motor disturbances associated with the disease. One animal model of Parkinson's disease involves destruction of the nigrostriatal pathway with a neurotoxin (6-hydroxydopamine) injected into this pathway. In unilaterally lesioned animals, injection of D-amphetamine causes rotation towards the lesioned side, while injection of apomorphine acting upon supersensitive postsynaptic dopamine receptors causes rotation away from the lesioned side. In this study, we tested the effects of acute and subchronic injection of a neurotensin analog (NT69L) on the rotational behavior induced by D-amphetamine (5 mg/kg) or apomorphine (600 microg/kg) in unilaterally 6-hydroxydopamine lesioned rats. Pretreatment of animals with intraperitoneal injections of NT69L (1 mg/kg) resulted in a significant reduction of apomorphine-induced contralateral rotation and D-amphetamine-induced ipsilateral rotation in these lesioned rats with an ED(50) of 40 and 80 microg/kg, respectively. After three daily injections of NT69L, its effects on this rotational behavior were unchanged, suggesting that no tolerance develops to this effect of NT69L.
Collapse
Affiliation(s)
- M Boules
- Neuropsychopharmacology Laboratory, Mayo Foundation for Medical Education and Research, and Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | | | | | | | | |
Collapse
|
27
|
Brun P, Leonetti M, Sotty F, Steinberg R, Soubrié P, Renaud B, Suaud-Chagny MF. Endogenous neurotensin down-regulates dopamine efflux in the nucleus accumbens as revealed by SR-142948A, a selective neurotensin receptor antagonist. J Neurochem 2001; 77:1542-52. [PMID: 11413237 DOI: 10.1046/j.1471-4159.2001.00353.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SR-142948A belongs to the second generation of potent, selective, non-peptide antagonists of neurotensin receptors. It was used to investigate the role of endogenous neurotensin in the regulation of dopamine efflux in the nucleus accumbens and striatum of anaesthetized and pargyline-treated rats. All the data were obtained using in vivo electrochemistry. Electrically evoked (20 Hz, 10 s) dopamine efflux was monitored by differential pulse amperometry, whereas variations in basal (tonic) dopamine efflux were monitored by differential normal pulse voltammetry. Like the first-generation compound SR-48692, SR-142948A did not affect the tonic and evoked dopamine efflux, but dose-dependently enhanced haloperidol (50 microg/kg, i.p.) induced facilitation of the electrically evoked dopamine release in the nucleus accumbens. In contrast to SR-48692, SR-142948A dose-dependently potentiated haloperidol (50 microg/kg, i.p.) induced increase in the basal dopamine level in the nucleus accumbens. This potentiating effect did not appear in the striatum. When dopaminergic and/or neurotensinergic transmissions were modified by a higher dose of haloperidol (0.5 mg/kg, i.p.), apomorphine, amphetamine or nomifensine, SR-142948A pre-treatment affected only the effect of apomorphine on the basal dopamine level in the nucleus accumbens. These results strengthen the hypothesis that endogenous neurotensin could exert a negative control on mesolimbic dopamine efflux.
Collapse
Affiliation(s)
- P Brun
- INSERM U 512, Laboratoire de Neuropharmacologie et Neurochimie, Université Claude Bernard, Lyon, France Sanofi-Synthélabo, Montpellier, France.
| | | | | | | | | | | | | |
Collapse
|
28
|
Souazé F. Maintaining cell sensitivity to G-protein coupled receptor agonists: neurotensin and the role of receptor gene activation. J Neuroendocrinol 2001; 13:473-9. [PMID: 11328459 DOI: 10.1046/j.1365-2826.2001.00658.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the last few years, a number of studies have brought new insights into the fundamental mechanisms of cell desensitization and internalization of G-protein coupled receptors. Such studies have demonstrated that cells remain desensitized from a few minutes to several hours, after exposure to high concentrations of agonist. However, in vivo, agonists such as hormones are always present, even in small amounts, and such long desensitization is not conceivable, since constant stimulation of cells is required for physiological responses. Under such circumstances, cells would require a means to permanently maintain sensitivity to various internal or external stimuli. In the present review, we have taken as an example the expression of the high affinity neurotensin receptor, a seven transmembrane G-protein coupled receptor, upon prolonged exposure to its agonist, and observed that cells remained sensitive only if the receptor gene was activated by the agonist. Consequently, new receptors were synthesized, and either delivered to the cell surface or accumulated in submembrane pools. This regulation takes place only after prolonged and intense agonist stimulation. Under these conditions, it is proposed that receptor turnover is accelerated in proportion to the agonist concentration in order to allow the cells to produce an adapted cellular response to external stimuli. Such mechanisms thus play a key role in cell sensitivity to hormones.
Collapse
Affiliation(s)
- F Souazé
- INSERM U339, Hôpital St Antoine, Paris, France.
| |
Collapse
|
29
|
Enhanced neurotensin neurotransmission is involved in the clinically relevant behavioral effects of antipsychotic drugs: evidence from animal models of sensorimotor gating. J Neurosci 2001. [PMID: 11160439 DOI: 10.1523/jneurosci.21-02-00601.2001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To date, none of the available antipsychotic drugs are curative, all have significant side-effect potential, and a receptor-binding profile predictive of superior therapeutic ability has not been determined. It has become increasingly clear that schizophrenia does not result from the dysfunction of a single neurotransmitter system, but rather from an imbalance between several interacting systems. Targeting neuropeptide neuromodulator systems that concertedly regulate all affected neurotransmitter systems could be a promising novel therapeutic approach for schizophrenia. A considerable database is concordant with the hypothesis that antipsychotic drugs act, at least in part, by increasing the synthesis and release of the neuropeptide neurotensin (NT). In this report, we demonstrate that NT neurotransmission is critically involved in the behavioral effects of antipsychotic drugs in two models of antipsychotic drug activity: disrupted prepulse inhibition of the acoustic startle response (PPI) and the latent inhibition (LI) paradigm. Blockade of NT neurotransmission using the NT receptor antagonist 2-[[5-(2,6-dimethoxyphenyl)-1-(4-(N-(3-dimethylaminopropyl)-N-methylcarbamoyl)-2-isopropylphenyl)-1H- pyrazole-3-carbonyl]-amino]-adamantane-2-carboxylic acid, hydrochloride (SR 142948A) prevented the normal acquisition of LI and haloperidol-induced enhancement of LI. In addition, SR 142948A blocked the PPI-restoring effects of haloperidol and the atypical antipsychotic drug quetiapine in isolation-reared animals deficient in PPI. We also provide evidence of deficient NT neurotransmission as well as a left-shifted antipsychotic drug dose-response curve in isolation-reared rats. These novel findings, together with previous observations, suggest that neurotensin receptor agonists may represent a novel class of antipsychotic drugs.
Collapse
|
30
|
Tyler-McMahon BM, Boules M, Richelson E. Neurotensin: peptide for the next millennium. REGULATORY PEPTIDES 2000; 93:125-36. [PMID: 11033059 DOI: 10.1016/s0167-0115(00)00183-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Neurotensin is an endogenous tridecapeptide neurotransmitter (pGlu-Leu-Tyr-Glu-Asn-Lys-Pro-Arg-Arg-Pro-Try-Ile-Leu-OH) that was discovered by Carraway and Leeman in bovine hypothalami in the early 1970s. Since then this peptide has been the subject of a multitude of articles detailing discoveries related to its activity, receptors, localization, synthesis, and interactions with other systems. This review article does not intend to summarize again all the history of this fascinating peptide and its receptors, since this has been done quite well by others. The reader will be directed to these other reviews, where appropriate. Instead, this review attempts to provide a summary of current knowledge about neurotensin, why it is an important peptide to study, and where the field is heading. Special emphasis is placed on the behavioral studies, particularly with reference to agonists, antagonists, and antisense studies, as well as, the interaction of neurotensin with other neurotransmitters.
Collapse
Affiliation(s)
- B M Tyler-McMahon
- Laboratory of Neuropharmacology, Mayo Foundation for Medical and Educational Research, 4500 San Pablo Rd., 32224, Jacksonville, FL, USA.
| | | | | |
Collapse
|
31
|
Austin J, Buckland P, Cardno AG, Williams N, Spurlock G, Hoogendoorn B, Zammit S, Jones G, Sanders R, Jones L, McCarthy G, Jones S, Bray NJ, McGuffin P, Owen MJ, O'Donovan MC. The high affinity neurotensin receptor gene (NTSR1): comparative sequencing and association studies in schizophrenia. Mol Psychiatry 2000; 5:552-7. [PMID: 11032391 DOI: 10.1038/sj.mp.4000761] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neurotensin and its high affinity receptor (NTSR1) localise within dopaminergic neurones in the mesocortical, mesolimbic and nigrostriatal systems and it is now clear that neurotensin can selectively modulate dopaminergic neurotransmission. This has led to the hypothesis that altered neurotensin function contributes to the pathogenesis of schizophrenia and other psychoses. This hypothesis has been supported circumstantially by a number of lines of evidence. (1) Central administration of neurotensin produces effects similar to those produced by the peripheral administration of atypical antipsychotics. (2) Observations of low levels of neurotensin in the CSF of schizophrenics. (3) Reduced numbers of neurotensin receptors in the brains of schizophrenics. Given the above link between neurotensin and dopamine, and the evidence implicating altered neurotensin function in psychosis, we have postulated that DNA sequence variation in neurotensin or its receptors might be associated with schizophrenia. In keeping with this hypothesis, an association has recently been reported between schizophrenia and the gene encoding the neurotensin high affinity receptor (NTSR1). However, caution is required because the associated marker, a tetranucleotide repeat, is located 3 kb away from the 3' end of the gene and there is no evidence that it is functional. Therefore, as a follow-up to our earlier work on neurotensin, we have now sought to test the hypothesis that DNA sequence variants that alter the structure or expression of the NTSR1 gene (VAPSEs) are associated with schizophrenia. However, while we found 14 novel sequence variants in 28 probands with psychosis, none resulted in an amino acid change, and neither direct nor indirect association studies suggested these are involved in susceptibility to schizophrenia.
Collapse
Affiliation(s)
- J Austin
- Division of Psychological Medicine, University of Wales College of Medicine, Heath Park, Cardiff, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Fassio A, Evans G, Grisshammer R, Bolam JP, Mimmack M, Emson PC. Distribution of the neurotensin receptor NTS1 in the rat CNS studied using an amino-terminal directed antibody. Neuropharmacology 2000; 39:1430-42. [PMID: 10818259 DOI: 10.1016/s0028-3908(00)00060-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The distribution of neurotensin receptor 1 immunoreactivity in the rat brain was studied using an antibody against the amino-terminal of the receptor expressed as a fusion protein with glutathione-S transferase. Affinity purified antibodies detected the fusion protein and the complete neurotensin receptor sequence expressed in Escherichia coli. The immunostaining was abolished by preabsorption with the amino-terminal fusion protein. Immunoreactive neurotensin receptor 1 immunoreactivity was detected on cell bodies and their processes in a number of CNS regions. In agreement with previous binding studies neurotensin receptor 1 immunoreactivity was particularly localised in cell bodies in the basal forebrain, nucleus basalis and substantia nigra. At the electron microscope level immunoreactivity was found both in axonal bouton and dendrites and spines in the basal forebrain indicating that neurotensin may act both pre- and post-synaptically. There were several regions such as the substantia gelatinosa, ventral caudate-putamen and the lateral reticular nucleus where the neurotensin receptor 1 positive cells had not previously been reported, indicating that distribution of this receptor is widespread.
Collapse
Affiliation(s)
- A Fassio
- Laboratory of Molecular Neuroscience, Department of Neurobiology, The Babraham Institute, CB2 4AT, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
33
|
Vanakoski J, Mazzanti C, Naukkarinen H, Virkkunen M, Goldman D. An Abundant Proneurotensin Polymorphism, 479A>G, and a Test of Its Association With Alcohol Dependence in a Finnish Population. Alcohol Clin Exp Res 2000. [DOI: 10.1111/j.1530-0277.2000.tb02053.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Lépée-Lorgeoux I, Betancur C, Souazé F, Rostène W, Bérod A, Pélaprat D. Regulation of the neurotensin NT(1) receptor in the developing rat brain following chronic treatment with the antagonist SR 48692. J Neurosci Res 2000; 60:362-9. [PMID: 10797539 PMCID: PMC2556440 DOI: 10.1002/(sici)1097-4547(20000501)60:3<362::aid-jnr11>3.0.co;2-f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The aim of the present study was to investigate the role of neurotensin in the regulation of NT(1) receptors during postnatal development in the rat brain. Characterization of the ontogeny of neurotensin concentration and [(125)I]neurotensin binding to NT(1) receptors in the brain at different embryonic and postnatal stages showed that neurotensin was highly expressed at birth, reaching peak levels at postnatal day 5 (P5) and decreasing thereafter. The transient rise in neurotensin levels preceded the maximal expression of NT(1) receptors, observed at P10, suggesting that neurotensin may influence the developmental profile of NT(1) receptors. Using primary cultures of cerebral cortex neurons from fetal rats, we showed that exposure to the neurotensin agonist JMV 449 (1 nM) decreased (-43%) the amount of NT(1) receptor mRNA measured by reverse transcription-PCR, an effect that was abolished by the nonpeptide NT(1) receptor antagonist SR 48692 (1 microM). However, daily injection of SR 48692 to rat pups from birth for 5, 9, or 15 days did not modify [(125)I]neurotensin binding in brain membrane homogenates. Moreover, postnatal blockade of neurotensin transmission did not alter the density and distribution of NT(1) receptors assessed by quantitative autoradiography nor NT(1) receptor mRNA expression measured by in situ hybridization in the cerebral cortex, caudate-putamen, and midbrain. These results suggest that although NT(1) receptor expression can be regulated in vitro by the agonist at an early developmental stage, neurotensin is not a major factor in the establishment of the ontogenetic pattern of NT receptors in the rat brain.
Collapse
|
35
|
|
36
|
Austin J, Hoogendoorn B, Buckland P, Speight G, Cardno A, Bowen T, Williams N, Spurlock G, Sanders R, Jones L, Murphy K, McCarthy G, McGuffin P, Owen MJ, O'Donovan MC. Comparative sequencing of the proneurotensin gene and association studies in schizophrenia. Mol Psychiatry 2000; 5:208-12. [PMID: 10822351 DOI: 10.1038/sj.mp.4000693] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neurotensin (NT) is an endogenous tridecapetide1 cleaved from a precursor proneurotensin/ proneuromedin protein. NT localises within dopaminergic neurones in the mesocortical, mesolimbic and nigrostriatal systems1-3 and it is now clear that NT can selectively modulate dopaminergic neurotransmission.2-9 These anatomical and functional connections have led to the hypothesis that NT dysfunction might contribute to the pathogenesis of neuropsychiatric disorders in which disordered dopaminergic neurotransmission is suspected, particularly schizophrenia.3 The latter hypothesis has been supported circumstantially by the observation that central administration of NT produces effects similar to those produced by the peripheral administration of atypical antipsychotics,10,11 and more directly by studies showing levels of NT in cerebral spinal fluid (CSF) is lower in schizophrenics than in controls.12,13 To allow such hypotheses to be tested, we used denaturing high performance liquid chromatography (DHPLC)14 to identify three sequence variants in the neurotensin gene (NTS) that might alter NT structure or expression. However, using a case-control study design and a novel genotyping system based upon a primer extension protocol and HPLC detection,15 we found no evidence to support the hypothesis that variation in the proneurotensin gene contributes to susceptibility to schizophrenia.
Collapse
Affiliation(s)
- J Austin
- Division of Psychological Medicine, University of Wales College of Medicine, Heath Park, Cardiff CF4 4XN, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Cusack B, Boules M, Tyler BM, Fauq A, McCormick DJ, Richelson E. Effects of a novel neurotensin peptide analog given extracranially on CNS behaviors mediated by apomorphine and haloperidol. Brain Res 2000; 856:48-54. [PMID: 10677610 DOI: 10.1016/s0006-8993(99)02363-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neurotensin (NT) is a neuropeptide neurotransmitter in the central nervous system. It has been implicated in the therapeutic and in the adverse effects of neuroleptics. Activity of NT in brain can only be shown by direct injection of the peptide into that organ. However, we have developed a novel analog of NT(8-13), NT69L, which is active upon intraperitoneal (i.p.) injection. Like atypical neuroleptics, NT69L blocked the climbing behavior in rats, but not the licking and sniffing behaviors of a high dose (600 microgram/kg) of the non-selective dopamine agonist apomorphine. Its blockade of climbing was very potent with an ED(50) (effective dose at 50% of maximum) of 16 microgram/kg. Both apomorphine and NT69L caused a long-lasting hypothermia, which was greater with the peptide but not synergistic in combination with apomorphine. The ED(50) of NT69L for hypothermia was 390 microgram/kg. NT69L (up to 5 mg/kg i.p.) did not produce catalepsy. However, when given before haloperidol, NT69L, but not clozapine, completely prevented catalepsy. When given after haloperidol, NT69L, but not clozapine, reversed haloperidol's cataleptic effects with an ED(50) of 260 microg/kg. There was no significant difference between the ED(50)s for hypothermia and anticataleptic effects of NT69L. However, the ED(50) for blocking the effects of apomorphine was significantly lower than the other two. These data suggest that NT69L may have neuroleptic properties in humans and may be useful in the treatment of extrapyramidal side effects caused by typical neuroleptics such as haloperidol.
Collapse
Affiliation(s)
- B Cusack
- Neuropsychopharmacology Laboratory, Mayo Foundation for Medical Education and Research, and Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL, USA
| | | | | | | | | | | |
Collapse
|
38
|
Andrén PE, Caprioli RM. Determination of extracellular release of neurotensin in discrete rat brain regions utilizing in vivo microdialysis/electrospray mass spectrometry. Brain Res 1999; 845:123-9. [PMID: 10536191 DOI: 10.1016/s0006-8993(99)01751-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In vivo microdialysis was used together with structure-specific high sensitivity nano-flow capillary liquid chromatography/micro-electrospray mass spectrometry to quantify and compare extracellular neurotensin from discrete regions of the rat brain. Microdialysis probes were implanted in the hypothalamus or globus pallidus/ventral pallidum in unanesthetized freely moving animals. Utilizing this specific methodology, recovered basal levels of neurotensin were detectable in hypothalamus and globus pallidus/ventral pallidum. The basal level of neurotensin in these regions were slightly higher in hypothalamus (101+/-11 amol/10 microl, n=6) compared to those in the globus pallidus/ventral pallidum region (74+/-12 amol/10 microl, n=8) in samples collected for 30 min at a flow-rate of 0.4 microl/min 150-180 min after the microdialysis probe implantation. After a pulse of 1.0 microl of 100 mM KCl-containing artificial cerebrospinal fluid during the next 30-min sampling period (180-210 min), the recovered neurotensin increased in hypothalamus and globus pallidus/ventral pallidum by 544% (548+/-90 amol/10 microl) and 674% (499+/-99 amol/10 microl), respectively. The basal levels of endogenously released neurotensin in the hypothalamus and globus pallidus/ventral pallidum were lower in the present study compared to those previously reported in the rat brain using in vivo microdialysis and radioimmunoassays. Our data demonstrate the effectiveness of combining in vivo microdialysis and structure-specific micro-electrospray mass spectrometry for the quantitation of basal and stimulated in vivo levels of endogenous neurotensin (NT) in different brain areas.
Collapse
Affiliation(s)
- P E Andrén
- Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591, Biomedicum, SE-75124, Uppsala, Sweden.
| | | |
Collapse
|
39
|
Abstract
The possibility that the neuropeptide neurotensin (NT) may function as an endogenous antipsychotic compound was first hypothesized almost two decades ago. Since that time, considerable effort has been directed towards determining whether NT neurons mediate the effects of antipsychotic drugs (APDs). The anatomic, biochemical, behavioral, and clinical relevance of this hypothesis is reviewed. Although the majority of the available evidence is indirect, the availability of several NT receptor (NTR) antagonists have now made possible the direct examination of the involvement of the NT system in the mechanism of action of APDs. Preliminary studies in our laboratory demonstrate the ability of a selective NTR antagonist to block the effects of APDs in two models of sensory motor gating deficits characteristic of schizophrenia. These data, taken together with a compelling series of studies demonstrating that increases of NT/neuromedin N mRNA expression and NT content in the nucleus accumbens and striatum after chronic administration of APDs are predictive of clinical efficacy and extrapyramidal side effects, respectively, provide direct preclinical evidence for a role of the NT system in the clinical efficacy of APDs. Although effects of selective NTR antagonists in normal volunteers or schizophrenic patients have not been studied, and nonpeptidergic NTR agonists have not yet been identified, these cumulative results provide the groundwork for the use of NT-ergic compounds in the treatment of schizophrenia.
Collapse
Affiliation(s)
- B Kinkead
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
40
|
Goulet M, Morissette M, Grondin R, Falardeau P, Bédard PJ, Rostène W, Di Paolo T. Neurotensin receptors and dopamine transporters: effects of MPTP lesioning and chronic dopaminergic treatments in monkeys. Synapse 1999; 32:153-64. [PMID: 10340626 DOI: 10.1002/(sici)1098-2396(19990601)32:3<153::aid-syn2>3.0.co;2-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The effect of denervation with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) of the dopamine (DA) nigrostriatal pathway on neurotensin (NT) receptor and DA transporter (DAT) in basal ganglia of monkeys (Macaca fascicularis) was investigated. The MPTP lesion induced a marked depletion of DA (90% or more vs. control) in the caudate nucleus and putamen. The densities of NT agonist binding sites labeled with [125I]NT and the NT antagonist binding sites labeled with [3H]SR142948A decreased by half in the caudate-putamen of MPTP-monkeys. In addition, the densities of [125I]NT and [3H]SR142948A binding sites markedly decreased (-77 and -63%, respectively) in the substantia nigra of MPTP-monkeys. Levocabastine did not compete with high affinity for [125I]NT binding in the monkey cingulate cortex, suggesting that only one class of NT receptors was labelled in the monkey brain. An extensive decrease of [3H]GBR12935 DAT binding sites (-92% vs. Control) was observed in the striatum of MPTP-monkeys and an important loss of DAT mRNA(-86% vs. Control) was observed in substantia nigra. Treatments for 1 month with either the D1 agonist SKF-82958 (3 mg/kg/day) or the D2 agonist cabergoline (0.25 mg/kg/day) had no effect on the lesion-induced decrease in NT and DAT binding sites or DAT mRNA levels. The decrease of striatal NT binding sites was less than expected from the decrease of DA content in this nucleus, suggesting only partial localization of NT receptors on nigrostriatal DAergic projections. These data also suggest that under severe DA denervation, treatment with D1 or D2 DA agonists does not modulate NT receptors and DAT density.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- Adamantane/analogs & derivatives
- Adamantane/metabolism
- Animals
- Autoradiography
- Binding Sites/drug effects
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Caudate Nucleus/drug effects
- Caudate Nucleus/metabolism
- Denervation
- Dopamine/metabolism
- Dopamine Agents/metabolism
- Dopamine Agents/pharmacology
- Dopamine Plasma Membrane Transport Proteins
- Dose-Response Relationship, Drug
- Down-Regulation/drug effects
- Imidazoles/metabolism
- In Situ Hybridization
- Macaca fascicularis
- Membrane Glycoproteins
- Membrane Transport Proteins
- Neostriatum/drug effects
- Neostriatum/metabolism
- Nerve Tissue Proteins
- Neurotensin/metabolism
- Piperidines/metabolism
- Putamen/drug effects
- Putamen/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Dopamine/metabolism
- Receptors, Neurotensin/agonists
- Receptors, Neurotensin/antagonists & inhibitors
- Receptors, Neurotensin/metabolism
- Substantia Nigra/drug effects
- Substantia Nigra/metabolism
Collapse
Affiliation(s)
- M Goulet
- Faculty of Pharmacy, Laval University, Québec, Qc, Canada
| | | | | | | | | | | | | |
Collapse
|
41
|
Ward RP, Dorsa DM. Molecular and behavioral effects mediated by Gs-coupled adenosine A2a, but not serotonin 5-Ht4 or 5-Ht6 receptors following antipsychotic administration. Neuroscience 1999; 89:927-38. [PMID: 10199625 DOI: 10.1016/s0306-4522(98)00364-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Typical antipsychotic agents are potent antagonists of Gi-coupled dopamine D2 receptors, but their mechanisms of action following this initial blockade remain poorly understood. We hypothesized that in striatal neurons, interruption of this inhibitory dopamine D2 input would unmask endogenous striatal Gs-coupled receptors. An increase in cAMP levels generated by these unopposed receptors would then lead to the well-described behavioral and molecular effects of antipsychotic administration such as catalepsy and striatal c-fos and neurotensin gene transcription. We examined three striatal Gs-coupled receptor systems (serotonin 5-HT4, serotonin 5-HT6 and adenosine A2a) to assess their potential involvement in the mechanism of action of the typical antipsychotic haloperidol. Antagonists of each of these three receptor systems together with a 1 mg/kg dose of haloperidol were co-administered to Sprague-Dawley rats, and both the degree of catalepsy produced in the animals and the induction of striatal c-fos and neurotensin messenger RNAs were measured. Both the specific adenosine A2a antagonist 8-(3-chlorostyryl)-caffeine and the general adenosine antagonist theophylline reduced haloperidol-dependent induction of striatal neurotensin and c-fos messenger RNA. Administration of these agents also greatly reduced the degree of catalepsy induced by haloperidol. Antagonists of the 5-HT6 receptor failed to block the induction of striatal messenger RNAs, but the 5-HT6 antagonist clozapine (an important atypical antipsychotic agent in its own right) was a potent inhibitor of catalepsy. 5-HT4 agents were unable to alter haloperidol's effects on striatal messenger RNA levels or catalepsy. We conclude that the striatal Gs-coupled adenosine A2a receptor is an important mediator of the molecular and behavioral sequelae following haloperidol administration.
Collapse
MESH Headings
- Adenosine/physiology
- Animals
- Antipsychotic Agents/pharmacology
- Behavior, Animal/drug effects
- Caffeine/analogs & derivatives
- Caffeine/pharmacology
- Catalepsy/chemically induced
- Clozapine/pharmacology
- Corpus Striatum/cytology
- Corpus Striatum/drug effects
- Cyclic AMP/physiology
- Dopamine D2 Receptor Antagonists
- GTP-Binding Protein alpha Subunits, Gs/drug effects
- GTP-Binding Protein alpha Subunits, Gs/physiology
- Gene Expression Regulation/drug effects
- Genes, fos/drug effects
- Haloperidol/pharmacology
- Nerve Tissue Proteins/drug effects
- Nerve Tissue Proteins/physiology
- Neurons/drug effects
- Rats
- Rats, Sprague-Dawley
- Receptor, Adenosine A2A
- Receptors, Dopamine D2/physiology
- Receptors, Purinergic P1/drug effects
- Receptors, Purinergic P1/physiology
- Receptors, Serotonin/drug effects
- Receptors, Serotonin/physiology
- Receptors, Serotonin, 5-HT4
- Second Messenger Systems/drug effects
- Serotonin/physiology
- Serotonin Antagonists/pharmacology
- Theophylline/pharmacology
Collapse
Affiliation(s)
- R P Ward
- Department of Psychiatry, University of Washington, Seattle, USA
| | | |
Collapse
|
42
|
|
43
|
Zahm DS, Williams ES, Krause JE, Welch MA, Grosu DS. Distinct and interactive effects of d-amphetamine and haloperidol on levels of neurotensin and its mRNA in subterritories in the dorsal and ventral striatum of the rat. J Comp Neurol 1998; 400:487-503. [PMID: 9786410 DOI: 10.1002/(sici)1096-9861(19981102)400:4<487::aid-cne4>3.0.co;2-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Striatal tissue concentrations of neurotensin, expression of neurotensin/neuromedin N (NT/N) mRNA, and numbers of neurotensin-immunoreactive neurons are increased by d-amphetamine (amph), which stimulates dopamine release in the striatum, and haloperidol (hal), a dopamine receptor antagonist with high affinity for D2-like receptors. The possibility that the effects of these drugs involve distinct subpopulations of striatal neurons was addressed in this study, in which the relative numbers and distributions of striatal neuron profiles containing neurotensin immunoreactivity and/or NT/N mRNA were compared following administrations of hal, amph, hal and amph co-administered, and vehicle. Fourteen striatal subterritories in caudate-putamen, nucleus accumbens, and olfactory tubercle were evaluated. Amph produced increases in the expression of neurotensin preferentially in the ventromedial and caudodorsal subterritories of the caudate-putamen, the rostrobasal cell cluster and lateral shell of the nucleus accumbens, and the olfactory tubercle. Haloperidol produced increased neurotensin expression in much of dorsal and ventral striatum, most prominently in the rostral, dorsomedial and ventrolateral quadrants of the caudate-putamen, and in the rostrobasal cell cluster, rostral pole, medial and lateral shell of the nucleus accumbens and the olfactory tubercle. The numbers of neurons responding to amph and hal in all subterritories following co-administration of the two drugs were significantly less than the summed numbers responding individually to amph and hal. Furthermore, in the subterritories where immunohistochemically detectable responses elicited by amph exceeded those produced by hal, co-administration of the two drugs resulted in responses comparable to those elicited by hal given alone. It is suggested that some of the reported anti-dopaminergic behavioral effects of basal ganglia neurotensin may be attenuated in conditions of reduced dopamine neurotransmission.
Collapse
Affiliation(s)
- D S Zahm
- Department of Anatomy and Neurobiology, St. Louis University School of Medicine, Missouri 63104, USA.
| | | | | | | | | |
Collapse
|
44
|
Zahm DS, Williams ES, Krause JE. Desensitization and enhancement of neurotensin/neuromedin N mRNA responses in subsets of rat caudate-putamen neurons following multiple administrations of haloperidol. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 59:196-204. [PMID: 9729381 DOI: 10.1016/s0169-328x(98)00147-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Striatal neurons that respond to blockade of dopamine receptors with altered expression of neurotensin/neuromedin N mRNA were examined. Injections of haloperidol were given to rats at four or 24 h and both four and 24 h prior to sacrifice. Pair-matched controls were injected with equivalent volumes of vehicle at either 4 or 24 h prior to sacrifice. Sections of striatum were processed non-isotopically with a cRNA neurotensin/neuromedin N probe. Massive numbers of neurons exhibited hybridization in the lateral and dorsolateral caudate-putamen at 4 h. At 24 h, hybridized neurons were few in lateral and dorsolateral parts of the caudate-putamen, but more numerous in the dorsomedial and ventrolateral caudate-putamen than in controls. A second injection of haloperidol 4 h prior to sacrifice enhanced the dorsomedial/ventrolateral response, but failed to elicit substantial numbers of lateral and dorsolateral hybrids, as were observed at 4 h after one injection. Resistance of neurotensin expression to a second injection of haloperidol was selective for the lateral and dorsolateral parts of the caudate-putamen and may reflect residual blockade by haloperidol or altered DA receptors or second messengers. Sections subjected to immunohistochemical processing for neurotensin peptide and in situ hybridization with the neurotensin/neuromedin N mRNA probe exhibited numerous neurons in the dorsomedial and ventrolateral quadrants of the caudate-putamen that were double-labeled with immunoperoxidase and hybridization signals. This suggests that peptide synthesis, as opposed to decreased release of peptide, has a role in the accumulation of neurotensin immunoreactivity by dorsomedial and ventrolateral striatal neurons.
Collapse
Affiliation(s)
- D S Zahm
- Departments of Anatomy and Neurobiology, St. Louis University School of Medicine, 1402 S. Grand Blvd., St. Louis, MO 63104, USA.
| | | | | |
Collapse
|
45
|
Xing L, Karinch AM, Kauffman GL. Mesolimbic expression of neurotensin and neurotensin receptor during stress-induced gastric mucosal injury. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:R38-45. [PMID: 9458896 DOI: 10.1152/ajpregu.1998.274.1.r38] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neurotensin is a neurotransmitter present in the brain and gastrointestinal tract. Intracerebroventricular injection of neurotensin protects rats from gastric mucosal injury caused by cold water restraint (CWR). Direct injection of neurotensin into the nucleus accumbens (NACB), part of the mesolimbic dopamine system, reduces gastric mucosal injury, suggesting that neurotensin confers protection on the mucosa through interaction with the mesolimbic system. The hypothesis is that the concentration of neurotensin in the mesolimbic system decreases during CWR, affecting the expression of neurotensin and the neurotensin receptor. After 1 h of CWR, neurotensin concentration significantly decreased 41% in the NACB and returned toward control concentrations after 2 h of CWR. The concentration of neurotensin mRNA significantly decreased 46% after 1 h CWR and returned toward control after 2 h. In contrast, neurotensin binding sites in the NACB increased from 159 to 228 fmol/mg protein after 1 h of CWR and increased significantly to 280 fmol/mg protein after 2 h CWR, whereas the level of neurotensin receptor mRNA significantly decreased 51 and 50% at 1 and 2 h, respectively. These studies show that neurotensin concentration within the mesolimbic system is transiently reduced by CWR stress and that the number of neurotensin binding sites increases, presumably in response to the decrease in neurotensin.
Collapse
Affiliation(s)
- L Xing
- Department of Surgery, Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | | | |
Collapse
|