1
|
Garcia-Rivas V, Soares AR, Thomas MA, Na JJ, Smith A, Picciotto MR, Mineur YS. Alcohol drinking is attenuated by PDE4 inhibition but partial microglia depletion is not sufficient to block stress-induced escalation of alcohol intake in female mice. Alcohol 2024; 122:31-42. [PMID: 39725336 DOI: 10.1016/j.alcohol.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
Stress is a major contributing factor to binge drinking and development of alcohol use disorders (AUD), particularly in women. Both stress and chronic ethanol can enhance neuroinflammatory processes, which may dysregulate limbic circuits involved in ethanol reinforcement. Clinical and preclinical studies have identified sex differences in alcohol intake in response to neuroinflammatory triggers. Since both cyclic AMP (cAMP) signaling and microglial activation contribute to neuroinflammation, we explored their contribution to stress-induced ethanol drinking in mice. To this end, we first trained C57BL/6J male and female mice to volitionally drink ethanol through a modified version of the "Drinking-in-the-Dark" paradigm. We then assessed whether exposure to foot shock stress followed by repeated exposure to the previously stress-paired context might alter volitional ethanol drinking. We observed that stress exposure resulted in a delayed increase in ethanol intake, but only in female mice. The anti-inflammatory drug Apremilast, an inhibitor of phosphodiesterase type 4 (PDE4; the primary enzyme for cAMP degradation in the brain), reduced ethanol intake and decreased preference for ethanol regardless of stress exposure in females. In contrast, a partial pharmacological depletion of microglia via PLX3397 treatment did not significantly alter baseline ethanol drinking or stress-induced ethanol drinking in female mice. This study shows that female mice are more susceptible to stress-induced ethanol drinking than males, and that this occurs even after partial microglial depletion. In addition, modulation of cAMP signaling by Apremilast administration reduced ethanol drinking regardless of stress exposure, supporting the idea that it might be useful for treatment of AUD.
Collapse
Affiliation(s)
- Vernon Garcia-Rivas
- Department of Psychiatry, Yale University, 34 Park Street, 3rd Floor Research, New Haven, CT 06508, USA
| | - Alexa R Soares
- Department of Psychiatry, Yale University, 34 Park Street, 3rd Floor Research, New Haven, CT 06508, USA; Yale Interdepartmental Neuroscience Program, USA
| | - Merrilee A Thomas
- Department of Psychiatry, Yale University, 34 Park Street, 3rd Floor Research, New Haven, CT 06508, USA
| | - Jessica J Na
- Department of Psychiatry, Yale University, 34 Park Street, 3rd Floor Research, New Haven, CT 06508, USA
| | - Asia Smith
- Department of Psychiatry, Yale University, 34 Park Street, 3rd Floor Research, New Haven, CT 06508, USA; Department of Biology, Howard University, Washington DC, USA
| | - Marina R Picciotto
- Department of Psychiatry, Yale University, 34 Park Street, 3rd Floor Research, New Haven, CT 06508, USA; Yale Interdepartmental Neuroscience Program, USA.
| | - Yann S Mineur
- Department of Psychiatry, Yale University, 34 Park Street, 3rd Floor Research, New Haven, CT 06508, USA
| |
Collapse
|
2
|
Pérez-García JM, Suárez-Suárez S, Rodríguez González MS, Rodríguez Holguín S, Cadaveira F, Doallo S. Neurostructural features predict binge drinking in emerging adulthood: Evidence from a 5-year follow-up study. Drug Alcohol Depend 2024; 265:112489. [PMID: 39488939 DOI: 10.1016/j.drugalcdep.2024.112489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Binge drinking (BD) involves consuming large amounts of alcohol within a short timeframe, leading to a blood alcohol concentration of 0.08g/dL or above. This pattern of alcohol consumption is prevalent among young adults and has significant implications for brain structure and subsequent drinking behaviors. METHODS In this prospective longitudinal study, we employed zero-inflated negative binomial regression models to examine whether various neurostructural features (i.e., volume, surface area, cortical thickness) of brain regions involved in executive and emotional/motivational processes at the age of 18-19 could predict number of BD episodes five years later, at ages 23-24, once participants were expected to complete their university degree. Specifically, we recorded magnetic resonance imaging (MRI) data from 68 students who completed both the baseline MRI and follow-up alcohol use assessment, with the aim of analyzing the predictive value of these neurostructural characteristics five years later. RESULTS The analysis revealed that a larger surface area in the caudal division of the right middle frontal gyrus was significantly associated with a higher incidence rate of BD episodes (IRR = 2.24, 95 % CI = 1.28-3.91, p = 0.005). Conversely, a smaller surface area in the right caudal anterior cingulate cortex was associated with a higher incidence rate of BD episodes (IRR = 0.61, 95 % CI = 0.44-0.85, p = 0.004). CONCLUSIONS These findings suggest that specific neurostructural characteristics during adolescence can predict BD behaviors in young adulthood. This highlights the potential of neuroimaging to identify individuals at risk for developing problematic alcohol use.
Collapse
Affiliation(s)
- Jose Manuel Pérez-García
- Department of Educational Psychology and Psychobiology, Faculty of Education, Universidad Internacional de La Rioja, Logroño, Spain.
| | - Samuel Suárez-Suárez
- Department of Clinical Psychology and Psychobiology, Faculty of Psychology, Universidade de Santiago de Compostela, Galicia, Spain; Instituto de Psicoloxía (IPsiUS), Universidade de Santiago de Compostela, Spain.
| | - María Soledad Rodríguez González
- Department of Social, Basic Psychology and Methodology, Faculty of Psychology, Universidade de Santiago de Compostela, Galicia, Spain; Instituto de Psicoloxía (IPsiUS), Universidade de Santiago de Compostela, Spain.
| | - Socorro Rodríguez Holguín
- Department of Clinical Psychology and Psychobiology, Faculty of Psychology, Universidade de Santiago de Compostela, Galicia, Spain; Instituto de Psicoloxía (IPsiUS), Universidade de Santiago de Compostela, Spain.
| | - Fernando Cadaveira
- Department of Clinical Psychology and Psychobiology, Faculty of Psychology, Universidade de Santiago de Compostela, Galicia, Spain; Instituto de Psicoloxía (IPsiUS), Universidade de Santiago de Compostela, Spain.
| | - Sonia Doallo
- Department of Clinical Psychology and Psychobiology, Faculty of Psychology, Universidade de Santiago de Compostela, Galicia, Spain; Instituto de Psicoloxía (IPsiUS), Universidade de Santiago de Compostela, Spain.
| |
Collapse
|
3
|
Liu MY, Xu KH, Liu S, Xiao WJ. Protective Effect and Mechanism of L-Theanine on Acute Alcoholic Liver Injury in Mice. Mol Nutr Food Res 2024; 68:e2400766. [PMID: 39468986 DOI: 10.1002/mnfr.202400766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/15/2024] [Indexed: 10/30/2024]
Abstract
SCOPE Acute alcoholic liver injury (AALI), a global health concern, is exacerbated by excessive episodic drinking. L-theanine (LTA), a compound found in tea leaves, mitigates the AALI-induced liver oxidative stress and inflammation. However, its relationship with alcohol metabolism and its liver-protective mechanism remains unexplored. METHODS AND RESULTS This study investigates the protective mechanisms of LTA against AALI in mice. The results demonstrate that LTA mitigates liver tissue damage and reduces the serum levels of aspartate aminotransferase and alanine aminotransferase, and liver levels of triglycerides, malondialdehyde, reactive oxygen species (ROS), tumor necrosis factor-α, interleukin-6, and interleukin-1β. However, LTA enhances the activity of ethanol-metabolizing enzymes and decreases ethanol and acetaldehyde serum levels. Mechanistically, LTA accelerates alcohol metabolism by upregulating the hepatic expression of ADH6, ALDH1B1, ALDH2, CAT, and ACSS1 mRNA and protein in AALI mice, LTA downregulates the expression of CYP2E1 mRNA and protein and promoting antioxidative activities thus reducing the accumulation of ROS. This attenuated inflammation by inhibiting the phosphorylation of nuclear factor-kappa B inhibitor alpha (IκBα) and downregulating the hepatic expression of NF-κB p65, TNF-α, IL-1β, IL-6 mRNA, and protein. CONCLUSION LTA is a beneficial dietary supplement that protects against AALI by modulating alcohol metabolism and the TNF-α/NF-κB pathway.
Collapse
Affiliation(s)
- Meng-Yuan Liu
- Key Lab of Tea Science of Ministry of, Education, Hunan Agricultural University, Changsha, Hunan, 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Kai-Hang Xu
- Key Lab of Tea Science of Ministry of, Education, Hunan Agricultural University, Changsha, Hunan, 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Sha Liu
- Key Lab of Tea Science of Ministry of, Education, Hunan Agricultural University, Changsha, Hunan, 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Wen-Jun Xiao
- Key Lab of Tea Science of Ministry of, Education, Hunan Agricultural University, Changsha, Hunan, 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, Hunan, 410128, China
| |
Collapse
|
4
|
Che C, Zhou T, Peng SY, Peng YM. Alcohol exposure induces cortical activity change during quiescent state. Neurosci Lett 2024; 843:138012. [PMID: 39419198 DOI: 10.1016/j.neulet.2024.138012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/23/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Alcohol Use Disorder (AUD) is a significant global mental health issue that impacts both the central and peripheral systems, leading to widespread cognitive and motor dysfunctions. The primary motor cortex (M1) plays a critical role in motor planning, control, and execution, yet the effects of chronic alcohol exposure on M1 remain underexplored, particularly during quiescent states. This study investigates the functional changes in M1 due to chronic alcohol exposure using high-resolution Neuropixels electrode recordings in a mouse model. Our findings reveal alterations in neuronal firing mode, particularly in layer V, highlighting disruptions in the excitatory/inhibitory (E/I) balance. Despite similar overall firing rates, changes in firing interval distributions suggest altered temporal dynamics of neuronal activity due to alcohol exposure. These results align with existing literature on cortical disruptions caused by alcohol and provide new insights into the specific neuronal dynamics within M1, especially in quiescent states.
Collapse
Affiliation(s)
- Chang Che
- School of Life Sciences, Westlake Institute for Advanced Study, Westlake University, Hangzhou, China; College of Life Science, Zhejiang University, Hangzhou, China
| | - Tong Zhou
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shi-Yu Peng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| | - Yan-Min Peng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Colom-Rocha C, Bis-Humbert C, García-Fuster MJ. Cannabidiol or ketamine for preventing the impact of adolescent early drug initiation on voluntary ethanol consumption in adulthood. Front Pharmacol 2024; 15:1448170. [PMID: 39257392 PMCID: PMC11384591 DOI: 10.3389/fphar.2024.1448170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024] Open
Abstract
Background Few studies have previously evaluated the long-term impact of initiating the combined use of alcohol and cocaine early-in-life during adolescence. Our preclinical study characterized changes in affective-like behavior and/or voluntary ethanol consumption emerging later on in adulthood induced by a prior adolescent drug exposure, as well as tested therapeutical interventions (i.e., cannabidiol or ketamine) to prevent the observed effects. Methods We performed three independent studies with male and female Sprague-Dawley rats, treated in adolescence (postnatal days, PND 29-38) with non-contingent paradigms of ethanol, cocaine, their combination or vehicle. Later on, adult rats were (1) scored for their affective-like state (forced-swim, elevated-plus maze, novelty-suppressed feeding, sucrose preference), (2) allowed to freely drink ethanol for 6 weeks (two-bottle choice), or (3) treated with cannabidiol or ketamine before given access to ethanol in adulthood. Results No signs of increased negative affect were observed in adulthood following the adolescent treatments. However, adolescent ethanol exposure was a risk-factor for later developing an increased voluntary ethanol consumption in adulthood, both for male and female rats. This risk was similar when ethanol was combined with adolescent cocaine exposure, since cocaine alone showed no effects on later ethanol intake. Finally, rats exposed to adolescent ethanol and pretreated in adulthood with cannabidiol (and/or ketamine, but just for females) reduced their ethanol voluntary consumption. Conclusion Our data provided two therapeutical options capable of preventing the impact of an early drug initiation during adolescence by decreasing voluntary ethanol consumption in adult rats.
Collapse
Affiliation(s)
- Carles Colom-Rocha
- University Research Institute of Health Sciences, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Medicine, University of the Balearic Islands, Palma, Spain
| | - Cristian Bis-Humbert
- University Research Institute of Health Sciences, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - M Julia García-Fuster
- University Research Institute of Health Sciences, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Medicine, University of the Balearic Islands, Palma, Spain
| |
Collapse
|
6
|
Wen W, Li H, Lauffer M, Hu D, Zhang Z, Lin H, Wang Y, Leidinger M, Luo J. Sex-specific effects of alcohol on neurobehavioral performance and endoplasmic reticulum stress: an analysis using neuron-specific MANF deficient mice. Front Pharmacol 2024; 15:1407576. [PMID: 39130640 PMCID: PMC11310019 DOI: 10.3389/fphar.2024.1407576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
Excessive alcohol exposure can cause neurobehavioral deficits and structural alterations in the brain. Emerging research evidence suggests that endoplasmic reticulum (ER) stress plays an important role in alcohol-induced neurotoxicity. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an ER stress inducible protein and is responsible to maintain ER homeostasis. MANF is highly expressed in both the developing and mature brain. We have previously shown that MANF deficiency exacerbated alcohol induced neurodegeneration and ER stress in the developing brain. However, little is known regarding the role of MANF in alcohol induced neuronal damage in the adult brain. In this study, we used a neuron-specific MANF knockout (KO) mouse model to investigate the effect of MANF deficiency on acute binge alcohol exposure-induced neurobehavioral deficits and ER stress. Adult male and female MANF KO mice and littermate controls received daily alcohol gavage (5 g/kg) for 10 days and then subjected to a battery of neurobehavioral tests including rotarods, balance beam, DigiGait, open field, elevated plus maze, Barnes maze, and three-chamber sociability task. Female MANF KO animals were more susceptible to alcohol-induced body weight loss. Alcohol exposure did not affect motor function, however female but not male MANF KO mice exhibited an increased locomotor activity in open field test. Learning and memory was not significantly impaired, but it was altered by MANF deficiency in females while it was affected by alcohol treatment in males. Both alcohol-exposed male and female MANF KO mice displayed increased sociability. Alcohol induced the expression of ER chaperones GRP78 and GRP94 and altered the levels of several unfolded protein response (UPR) and neuroinflammation markers in MANF KO mice in a sex-specific manner. The expression of MANF interacting proteins neuroplastin, PDIA1, and PDIA6 was increased in MANF KO mice, and was further induced by alcohol. In conclusion, alcohol exposure and neuronal MANF deficiency interacted to alter neurobehavioral outcomes, ER homeostasis and neuroinflammation in a sex-specific manner.
Collapse
Affiliation(s)
- Wen Wen
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Hui Li
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Marisol Lauffer
- Neural Circuits and Behavior Core, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Di Hu
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Zuohui Zhang
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Hong Lin
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Yongchao Wang
- Vanderbilt Memory and Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Mariah Leidinger
- Comparative Pathology Laboratory, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jia Luo
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Iowa City VA Health Care System, Iowa City, IA, United States
| |
Collapse
|
7
|
Sharma R, Chischolm A, Parikh M, Kempuraj D, Thakkar M. Cholinergic Interneurons in the Accumbal Shell Region Regulate Binge Alcohol Self-Administration in Mice: An In Vivo Calcium Imaging Study. Brain Sci 2024; 14:484. [PMID: 38790462 PMCID: PMC11120271 DOI: 10.3390/brainsci14050484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Recently, we and others have shown that manipulating the activity of cholinergic interneurons (CIN) present in the NAc can modulate binge alcohol consumption. The present study is designed to examine the relationship between binge alcohol consumption and the activity of the CIN in real time by using an in vivo microendoscopic technique. We hypothesized that mice exposed to Drinking in the Dark (DID)-a recognized mouse model for binge drinking-would exhibit increased activity in the accumbal shell region (NAcSh). To test this hypothesis, male mice expressing Cre-recombinase in the cholinergic neurons were exposed to binge alcohol consumption (alcohol group), employing the DID method, and utilized in vivo calcium imaging to observe CIN activity in real time during alcohol consumption. The control (sucrose) group was exposed to 10% (w/v) sucrose. As compared to sucrose, mice in the alcohol group displayed a significant increase in the frequency and amplitude of discharge activity, which was measured using calcium transients in the CIN present in the NAcSh. In summary, our findings suggest that the activity of CIN in the NAcSh plays a crucial role in alcohol self-administration. These results emphasize the potential significance of targeting CIN activity as a therapeutic approach for addressing AUD.
Collapse
Affiliation(s)
| | | | | | | | - Mahesh Thakkar
- Harry S. Truman Memorial Veterans Hospital, Department of Neurology, University of Missouri, Columbia, MO 65201, USA; (R.S.); (A.C.); (M.P.); (D.K.)
| |
Collapse
|
8
|
Sharma R, Chischolm A, Parikh M, Thakkar M. Cholinergic interneurons in the shell region of the nucleus accumbens regulate binge alcohol consumption: A chemogenetic and genetic lesion study. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:827-842. [PMID: 38549545 PMCID: PMC11073918 DOI: 10.1111/acer.15295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/11/2024] [Accepted: 02/20/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Binge drinking, characterized by heavy episodic alcohol consumption, poses significant health hazards and increases the likelihood of developing an alcohol use disorder (AUD). Given the growing prevalence of this behavior and its negative consequences, there is a need to explore novel therapeutic targets. Accumulating evidence suggests that cholinergic interneurons (CIN) within the shell region of the nucleus accumbens (NAcSh) play a critical role in reward and addiction. However, their specific involvement in binge alcohol administration remains unclear. We hypothesized that CIN in the NAcSh regulates binge alcohol consumption. METHODS To test this hypothesis, we used male ChAT-cre mice expressing Cre-recombinase in cholinergic neurons. We performed chemogenetic manipulation using Designer Receptor Exclusively Activated by Designer Drugs (DREADD) to examine the activity, and genetic ablation of CIN in the NAcSh to examine the amount of alcohol consumed in mice exposed to binge alcohol consumption using the 4-Days Drinking-in-Dark (DID) paradigm. The impact of CIN manipulations in the NAcSh on sucrose self-administration was used to control for taste and caloric effects. Additionally, in a separate group of mice, c-Fos immunofluorescence was employed to verify chemogenetic activation or inhibition. Histological and immunohistochemical techniques were used to verify microinfusion sites, DREADD expression in CINs, and genetic ablation. RESULTS We found that, while chemogenetic activation of CIN in the NAcSh caused a significant increase in alcohol consumption, chemogenetic inhibition or genetic ablation of CIN significantly reduced the amount of alcohol consumed without affecting sucrose self-administration. The chemogenetic inhibition caused a significant reduction, whereas activation caused a significant increase, in the number of c-Fos-labeled CIN in the NAcSh. CONCLUSIONS Our findings highlight the crucial involvement of CIN in the NAcSh in modulating binge alcohol consumption, suggesting that targeting these neurons could serve to modify alcohol-related behaviors.
Collapse
Affiliation(s)
- Rishi Sharma
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, Missouri, USA
| | - Abigail Chischolm
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, Missouri, USA
| | - Meet Parikh
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, Missouri, USA
| | - Mahesh Thakkar
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
9
|
Kalelkar A, Sipe G, Castro E Costa AR, Lorenzo IM, Nguyen M, Linares-Garcia I, Vazey E, Huda R. A paradigm for ethanol consumption in head-fixed mice during prefrontal cortical two-photon calcium imaging. Neuropharmacology 2024; 245:109800. [PMID: 38056524 PMCID: PMC11292593 DOI: 10.1016/j.neuropharm.2023.109800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/06/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
The prefrontal cortex (PFC) is a hub for cognitive behaviors and is a key target for neuroadaptations in alcohol use disorders. Recent advances in genetically encoded sensors and functional microscopy allow multimodal in vivo PFC activity recordings at subcellular and cellular scales. While these methods could enable a deeper understanding of the relationship between alcohol and PFC function/dysfunction, they typically require animals to be head-fixed. Here, we present a method in mice for binge-like ethanol consumption during head-fixation. Male and female mice were first acclimated to ethanol by providing home cage access to 20% ethanol (v/v) for 4 or 8 days. After home cage drinking, mice consumed ethanol from a lick spout during head-fixation. We used two-photon calcium imaging during the head-fixed drinking paradigm to record from a large population of PFC neurons (>1000) to explore how acute ethanol affects their activity. Drinking exerted temporally heterogeneous effects on PFC activity at single neuron and population levels. Intoxication modulated the tonic activity of some neurons while others showed phasic responses around ethanol receipt. Population level activity did not show tonic or phasic modulation but tracked ethanol consumption over the minute-timescale. Network level interactions assessed through between-neuron pairwise correlations were largely resilient to intoxication at the population level while neurons with increased tonic activity showed higher synchrony by the end of the drinking period. By establishing a method for binge-like drinking in head-fixed mice, we lay the groundwork for leveraging advanced microscopy technologies to study alcohol-induced neuroadaptations in PFC and other brain circuits. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Anagha Kalelkar
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University - New Brunswick, 604 Allison Road, Piscataway, NJ, 08904, USA
| | - Grayson Sipe
- Department of Brain and Cognitive Science, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA, 02139, USA
| | - Ana Raquel Castro E Costa
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University - New Brunswick, 604 Allison Road, Piscataway, NJ, 08904, USA
| | - Ilka M Lorenzo
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University - New Brunswick, 604 Allison Road, Piscataway, NJ, 08904, USA
| | - My Nguyen
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University - New Brunswick, 604 Allison Road, Piscataway, NJ, 08904, USA
| | - Ivan Linares-Garcia
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University - New Brunswick, 604 Allison Road, Piscataway, NJ, 08904, USA
| | - Elena Vazey
- Department of Biology, The University of Massachusetts Amherst, 611 North Pleasant Street, Amherst, MA, 01003, USA
| | - Rafiq Huda
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University - New Brunswick, 604 Allison Road, Piscataway, NJ, 08904, USA.
| |
Collapse
|
10
|
Becker HC, Lopez MF. Animal Models of Excessive Alcohol Consumption in Rodents. Curr Top Behav Neurosci 2024. [PMID: 38340255 DOI: 10.1007/7854_2024_461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The development of animal models that demonstrate excessive levels of alcohol consumption has played an important role in advancing our knowledge about neurobiological underpinnings and environmental circumstances that engender such maladaptive behavior. The use of these preclinical models has also provided valuable opportunities for discovering new and novel therapeutic targets that may be useful in the treatment of alcohol use disorder (AUD). While no single model can fully capture the complexities of AUD, the goal is to develop animal models that closely approximate characteristics of heavy alcohol drinking in humans to enhance their translational value and utility. A variety of experimental approaches have been employed to produce the desired phenotype of interest-robust and reliable excessive levels of alcohol drinking. Here we provide an updated review of five animal models that are commonly used. The models entail procedural manipulations of scheduled access to alcohol (time of day, duration, frequency), periods of time when access to alcohol is withheld, and history of alcohol exposure. Specially, the models involve (a) scheduled access to alcohol, (b) scheduled periods of alcohol deprivation, (c) scheduled intermittent access to alcohol, (d) scheduled-induced polydipsia, and (e) chronic alcohol (dependence) and withdrawal experience. Each of the animal models possesses unique experimental features that engender excessive levels of alcohol consumption. Both advantages and disadvantages of each model are described along with discussion of future work to be considered in developing more optimal models. Ultimately, the validity and utility of these models will lie in their ability to aid in the discovery of new and novel potential therapeutic targets as well as serve as a platform to evaluate treatment strategies that effectively reduce excessive levels of alcohol consumption associated with AUD.
Collapse
Affiliation(s)
- Howard C Becker
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, USA.
- Departments of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA.
- Departments of Psychiatry and Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- RHJ Veterans Administration Health Care System, Medical University of South Carolina, Charleston, SC, USA.
| | - Marcelo F Lopez
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, USA
- Departments of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
11
|
Timme NM, Ardinger CE, Weir SDC, Zelaya-Escobar R, Kruger R, Lapish CC. Non-consummatory behavior signals predict aversion-resistant alcohol drinking in head-fixed mice. Neuropharmacology 2024; 242:109762. [PMID: 37871677 PMCID: PMC10872650 DOI: 10.1016/j.neuropharm.2023.109762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023]
Abstract
A key facet of alcohol use disorder is continuing to drink alcohol despite negative consequences (so called "aversion-resistant drinking"). In this study, we sought to assess the degree to which head-fixed mice exhibit aversion-resistant drinking and to leverage behavioral analysis techniques available in head-fixture to relate non-consummatory behaviors to aversion-resistant drinking. We assessed aversion-resistant drinking in head-fixed female and male C57BL/6 J mice. We adulterated 20% (v/v) alcohol with varying concentrations of the bitter tastant quinine to measure the degree to which mice would continue to drink despite this aversive stimulus. We recorded high-resolution video of the mice during head-fixed drinking, tracked body parts with machine vision tools, and analyzed body movements in relation to consumption. Female and male head-fixed mice exhibited heterogenous levels of aversion-resistant drinking. Additionally, non-consummatory behaviors, such as paw movement and snout movement, were related to the intensity of aversion-resistant drinking. These studies demonstrate that head-fixed mice exhibit aversion-resistant drinking and that non-consummatory behaviors can be used to assess perceived aversiveness in this paradigm. Furthermore, these studies lay the groundwork for future experiments that will utilize advanced electrophysiological techniques to record from large populations of neurons during aversion-resistant drinking to understand the neurocomputational processes that drive this clinically relevant behavior. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Nicholas M Timme
- Department of Psychology, Indiana University - Purdue University Indianapolis, 402 N. Blackford St, LD 124, Indianapolis, IN, 46202, USA.
| | - Cherish E Ardinger
- Department of Psychology, Indiana University - Purdue University Indianapolis, 402 N. Blackford St, LD 124, Indianapolis, IN, 46202, USA
| | - Seth D C Weir
- Department of Psychology, Indiana University - Purdue University Indianapolis, 402 N. Blackford St, LD 124, Indianapolis, IN, 46202, USA
| | - Rachel Zelaya-Escobar
- Department of Psychology, Indiana University - Purdue University Indianapolis, 402 N. Blackford St, LD 124, Indianapolis, IN, 46202, USA
| | - Rachel Kruger
- Department of Psychology, Indiana University - Purdue University Indianapolis, 402 N. Blackford St, LD 124, Indianapolis, IN, 46202, USA
| | - Christopher C Lapish
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, 635 Barnhill Drive, MSB 5035, Indianapolis, IN, 46202, USA; Stark Neuroscience Institute, Indiana University School of Medicine, 320 W. 15th St, NB 414, Indianapolis, IN, 46202, USA
| |
Collapse
|
12
|
Pinson MR, Bake S, Hurst DA, Samiya NT, Sohrabji F, Miranda RC. Prenatal alcohol alters inflammatory signatures in enteric portal tissues following adult-onset cerebrovascular ischemic stroke. iScience 2023; 26:107920. [PMID: 37810225 PMCID: PMC10550726 DOI: 10.1016/j.isci.2023.107920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 07/24/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Prenatal alcohol exposure (PAE) impairs recovery from cerebrovascular ischemic stroke in adult rodents. Since the gut becomes dysbiotic following stroke, we assessed links between PAE and enteric portal inflammation. Adult control and PAE rat offspring received a unilateral endothelin-1-induced occlusion of the middle cerebral artery. Post-stroke behavioral disabilities and brain cytokines were assessed. Mesenteric adipose and liver transcriptomes were assessed from stroke-exposed and stroke-naive offspring. We identified, in the liver of stroke-naive animals, a moderate correlation between PAE and a gene network for inflammatory necroptosis. PAE inhibited the acute-phase brain inflammatory cytokine response to stroke. Post-stroke neurological function was correlated with an adipose gene network associated with B-lymphocyte differentiation and nuclear factor κB (NF-κB) signaling and with a liver pro-inflammatory gene network. Collectively, PAE inhibits brain inflammation but results in an inflammatory signature in enteric portal tissues after stroke, suggesting that PAE persistently and adversely impacts the gut-brain axis following adult-onset disease.
Collapse
Affiliation(s)
- Marisa R Pinson
- Department of Neuroscience and Experimental Therapeutics, Texas A&M School of Medicine, Bryan, TX, USA
| | - Shameena Bake
- Department of Neuroscience and Experimental Therapeutics, Texas A&M School of Medicine, Bryan, TX, USA
- Women's Health in Neuroscience Program, Texas A&M University School of Medicine, Bryan, TX, USA
| | - David A Hurst
- Department of Neuroscience and Experimental Therapeutics, Texas A&M School of Medicine, Bryan, TX, USA
| | - Nadia T Samiya
- Department of Neuroscience and Experimental Therapeutics, Texas A&M School of Medicine, Bryan, TX, USA
| | - Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, Texas A&M School of Medicine, Bryan, TX, USA
- Women's Health in Neuroscience Program, Texas A&M University School of Medicine, Bryan, TX, USA
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M School of Medicine, Bryan, TX, USA
- Women's Health in Neuroscience Program, Texas A&M University School of Medicine, Bryan, TX, USA
| |
Collapse
|
13
|
Timme NM, Ardinger CE, Weir SDC, Zelaya-Escobar R, Kruger R, Lapish CC. Non-Consummatory Behavior Signals Predict Aversion-Resistant Alcohol Drinking in Head-Fixed Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.20.545767. [PMID: 37873153 PMCID: PMC10592797 DOI: 10.1101/2023.06.20.545767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A key facet of alcohol use disorder is continuing to drink alcohol despite negative consequences (so called "aversion-resistant drinking"). In this study, we sought to assess the degree to which head-fixed mice exhibit aversion-resistant drinking and to leverage behavioral analysis techniques available in head-fixture to relate non-consummatory behaviors to aversion-resistant drinking. We assessed aversion-resistant drinking in head-fixed female and male C57BL/6J mice. We adulterated 20% (v/v) alcohol with varying concentrations of the bitter tastant quinine to measure the degree to which mice would continue to drink despite this aversive stimulus. We recorded high-resolution video of the mice during head-fixed drinking, tracked body parts with machine vision tools, and analyzed body movements in relation to consumption. Female and male head-fixed mice exhibited heterogenous levels of aversion-resistant drinking. Additionally, non-consummatory behaviors, such as paw movement and snout movement, were related to the intensity of aversion-resistant drinking. These studies demonstrate that head-fixed mice exhibit aversion-resistant drinking and that non-consummatory behaviors can be used to assess perceived aversiveness in this paradigm. Furthermore, these studies lay the groundwork for future experiments that will utilize advanced electrophysiological techniques to record from large populations of neurons during aversion-resistant drinking to understand the neurocomputational processes that drive this clinically relevant behavior.
Collapse
Affiliation(s)
- Nicholas M. Timme
- Department of Psychology, Indiana University – Purdue University Indianapolis, 402 N. Blackford St, LD 124, Indianapolis, IN, 46202, USA
| | - Cherish E. Ardinger
- Department of Psychology, Indiana University – Purdue University Indianapolis, 402 N. Blackford St, LD 124, Indianapolis, IN, 46202, USA
| | - Seth D. C. Weir
- Department of Psychology, Indiana University – Purdue University Indianapolis, 402 N. Blackford St, LD 124, Indianapolis, IN, 46202, USA
| | - Rachel Zelaya-Escobar
- Department of Psychology, Indiana University – Purdue University Indianapolis, 402 N. Blackford St, LD 124, Indianapolis, IN, 46202, USA
| | - Rachel Kruger
- Department of Psychology, Indiana University – Purdue University Indianapolis, 402 N. Blackford St, LD 124, Indianapolis, IN, 46202, USA
| | - Christopher C. Lapish
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, 635 Barnhill Drive, MSB 5035, Indianapolis, IN, 46202, USA
- Stark Neuroscience Institute, Indiana University School of Medicine, 320 W. 15 St, NB 414, Indianapolis, IN 46202, USA
| |
Collapse
|
14
|
Kalelkar A, Sipe G, Costa ARCE, Lorenzo IM, Nguyen M, Linares-Garcia I, Vazey E, Huda R. A paradigm for ethanol consumption in head-fixed mice during prefrontal cortical two-photon calcium imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.20.549846. [PMID: 37503061 PMCID: PMC10370124 DOI: 10.1101/2023.07.20.549846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The prefrontal cortex (PFC) is a hub for higher-level cognitive behaviors and is a key target for neuroadaptations in alcohol use disorders. Preclinical models of ethanol consumption are instrumental for understanding how acute and repeated drinking affects PFC structure and function. Recent advances in genetically encoded sensors of neuronal activity and neuromodulator release combined with functional microscopy (multiphoton and one-photon widefield imaging) allow multimodal in-vivo PFC recordings at subcellular and cellular scales. While these methods could enable a deeper understanding of the relationship between alcohol and PFC function/dysfunction, they require animals to be head-fixed. Here, we present a method in mice for binge-like ethanol consumption during head-fixation. Male and female mice were first acclimated to ethanol by providing home cage access to 20% ethanol (v/v) for 4 or 8 days. After home cage drinking, mice consumed ethanol from a lick spout during head-fixation. We used two-photon calcium imaging during the head-fixed drinking paradigm to record from a large population of PFC neurons (>1000) to explore how acute ethanol affects their activity. Drinking modulated activity rates in a subset of neurons on slow (minutes) and fast (seconds) time scales but the majority of neurons were unaffected. Moreover, ethanol intake did not significantly affect network level interactions in the PFC as assessed through inter-neuronal pairwise correlations. By establishing a method for binge-like drinking in head-fixed mice, we lay the groundwork for leveraging advanced microscopy technologies to study alcohol-induced neuroadaptations in PFC and other brain circuits.
Collapse
Affiliation(s)
- Anagha Kalelkar
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University – New Brunswick, 604 Allison Road, Piscataway NJ, 08904, USA
| | - Grayson Sipe
- Department of Brain and Cognitive Science, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge MA, 02139, USA
| | - Ana Raquel Castro E Costa
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University – New Brunswick, 604 Allison Road, Piscataway NJ, 08904, USA
| | - Ilka M. Lorenzo
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University – New Brunswick, 604 Allison Road, Piscataway NJ, 08904, USA
| | - My Nguyen
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University – New Brunswick, 604 Allison Road, Piscataway NJ, 08904, USA
| | - Ivan Linares-Garcia
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University – New Brunswick, 604 Allison Road, Piscataway NJ, 08904, USA
| | - Elena Vazey
- Department of Biology, The University of Massachusetts Amherst, 611 North Pleasant Street, Amherst MA, 01003, USA
| | - Rafiq Huda
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University – New Brunswick, 604 Allison Road, Piscataway NJ, 08904, USA
| |
Collapse
|
15
|
León BE, Peyton L, Essa H, Wieden T, Marion N, Childers WE, Abou-Gharbia M, Choi DS. A novel monobactam lacking antimicrobial activity, MC-100093, reduces sex-specific ethanol preference and depressive-like behaviors in mice. Neuropharmacology 2023; 232:109515. [PMID: 37001726 PMCID: PMC10144181 DOI: 10.1016/j.neuropharm.2023.109515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/24/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Several β-lactam derivatives upregulate astrocytic glutamate transporter type 1expression and are known to improve measures in models of mood and alcohol use disorders (AUD) through normalizing glutamatergic states. However, long-term, and high doses of β-lactams may cause adverse side effects for treating mood disorders and AUD. Studies suggest that MC-100093, a novel β-lactam lacking antimicrobial activity, rescues GLT1 expression. Thus, we sought to investigate whether MC-100093 improves affective behaviors and reduces voluntary ethanol drinking. We intraperitoneally administered MC-100093 (50 mg/kg) or vehicle once per day to C57BL/6J male and female mice (8-10 weeks old) over 6 days. We employed the open field test and the elevated plus maze to examine the effect of MC-100093 on anxiety-like behaviors. We assayed MC-100093's effects on depressive-like behaviors using the tail suspension and forced swim tests. Next, utilizing a separate cohort of male and female C57BL6 mice, we assessed the effects MC100093 treatment on voluntary ethanol drinking utilizing the 2-bottle choice continuous access drinking paradigm. After screening and selecting high-drinking mice, we systematically administered MC-100093 (50 mg/kg) or vehicle to the high-drinking mice over 6 days. Overall, we found that MC-100093 treatment resulted in sex-specific pharmacological effects with female mice displaying reduced innate depressive-like behaviors during the tail suspension and force swim testing juxtaposed with male treated mice who displayed no changes in tail suspension and a paradoxical increased depressive-like behavior during the forced swim testing. Additionally, we found that MC100093 treatment reduced female preference for 10% EtOH during the 2-bottle choice continuous access drinking with no effects of MC100093 treatment detected in male mice. Overall, this data suggests sex-specific regulation of innate depressive-like behavior and voluntary EtOH drinking by MC100093 treatment. Western blot analysis of the medial prefrontal cortex and hippocampus revealed no changes in male or female GLT1 protein abundance relative to GAPDH.
Collapse
Affiliation(s)
- Brandon Emanuel León
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA; Regenerative Sciences Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lee Peyton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Hesham Essa
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Tia Wieden
- Neuroscience Program, Mayo Clinic College of Medicine and Science, MN, 55905, USA
| | - Nicole Marion
- Neuroscience Program, Mayo Clinic College of Medicine and Science, MN, 55905, USA
| | - Wayne E Childers
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, 19140, USA
| | - Magid Abou-Gharbia
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, 19140, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA; Neuroscience Program, Mayo Clinic College of Medicine and Science, MN, 55905, USA; Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, 59905, USA.
| |
Collapse
|
16
|
Xiao T, Chen Y, Boisvert A, Cole M, Kimbrough A. Chronic Intermittent Ethanol Vapor Exposure Paired with Two-Bottle Choice to Model Alcohol Use Disorder. J Vis Exp 2023:10.3791/65320. [PMID: 37427930 PMCID: PMC11164185 DOI: 10.3791/65320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023] Open
Abstract
Alcohol use disorder (AUD) is a chronic alcohol-related disorder that typically presents as uncontrolled drinking and preoccupation with alcohol. A key component of AUD research is using translationally relevant preclinical models. Over the past several decades, a variety of animal models have been used to study AUD. One prominent model of AUD is the chronic intermittent ethanol vapor exposure (CIE) model, which is a well-established approach for inducing alcohol dependence in rodents through repeated cycles of ethanol exposure via inhalation. To model AUD in mice, the CIE exposure is paired with a voluntary two-bottle choice (2BC) of alcohol drinking and water to measure the escalation of alcohol drinking. The 2BC/CIE procedure involves alternating weeks of 2BC drinking and CIE, which repeat until the escalation of alcohol drinking is achieved. In the present study, we outline the procedures for performing 2BC/CIE, including the daily use of the CIE vapor chamber, and provide an example of escalated alcohol drinking in C57BL/6J mice using this approach.
Collapse
Affiliation(s)
- Tiange Xiao
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University
| | - Yueyi Chen
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University
| | - Alyssa Boisvert
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University
| | | | - Adam Kimbrough
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University; Purdue Institute for Integrative Neuroscience; Weldon School of Biomedical Engineering, Purdue University; Purdue Institute of Inflammation, Immunology, and Infectious Disease;
| |
Collapse
|
17
|
Pirino BE, Kelley AM, Karkhanis AN, Barson JR. A critical review of effects on ethanol intake of the dynorphin/kappa opioid receptor system in the extended amygdala: From inhibition to stimulation. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1027-1038. [PMID: 37042026 PMCID: PMC10289127 DOI: 10.1111/acer.15078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/13/2023]
Abstract
The dynorphin (DYN)/kappa opioid receptor (KOR) system has increasingly been investigated as a possible pharmacotherapeutic target for alcohol use disorder, but findings on the direction of its effects have been mixed. Activation of KORs by DYN has been shown to elicit dysphoric effects, and the DYN/KOR system has canonically been considered particularly important in driving alcohol intake through negative reinforcement in dependent states. However, this review also highlights its activity in opposing the positive reinforcement that drives alcohol intake at earlier stages. Both DYN and KORs are concentrated in the extended amygdala, a set of interconnected regions that includes the bed nucleus of the stria terminalis, central nucleus of the amygdala, and nucleus accumbens shell. This review focuses on the role of the DYN/KOR system in the extended amygdala in ethanol use. It begins by examining the effects of ethanol on the expression of DYN/KOR in the extended amygdala, expression of DYN/KOR in alcohol-preferring and alcohol-avoiding animals, and the effects of knocking out DYN/KOR genes on ethanol intake. Then, it examines the effects on ethanol use in both dependent and nondependent states from systemic pharmacological manipulations of DYN/KOR and from specific manipulation of this system in regions of the extended amygdala. We propose that greater expression and binding of DYN/KOR, by reducing the positive reinforcement that drives early stages of intake, initially acts to prevent the escalation of ethanol drinking. However, prolonged, binge-like, or intermittent ethanol intake enhances levels of DYN/KOR in the extended amygdala such that the system ultimately facilitates the negative reinforcement that drives later stages of ethanol drinking. This review highlights the potential of the DYN/KOR system as a target that can affect different outcomes across different stages of ethanol drinking and the development of alcohol use disorder.
Collapse
Affiliation(s)
- Breanne E. Pirino
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, P.A. 19129
| | - Abigail M. Kelley
- Department of Psychology, Binghamton University – SUNY, Binghamton, N.Y. 13902
| | | | - Jessica R. Barson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, P.A. 19129
| |
Collapse
|
18
|
Heinsbroek JA, Giannotti G, Bonilla J, Olson DE, Peters J. Tabernanthalog Reduces Motivation for Heroin and Alcohol in a Polydrug Use Model. PSYCHEDELIC MEDICINE (NEW ROCHELLE, N.Y.) 2023; 1:111-119. [PMID: 37360328 PMCID: PMC10286262 DOI: 10.1089/psymed.2023.0009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Background The potential use of psychedelic drugs as therapeutics for neuropsychiatric disorders has been limited by their hallucinogenic properties. To overcome this limitation, we developed and characterized tabernanthalog (TBG), a novel analogue of the indole alkaloids ibogaine and 5-methoxy-N,N-dimethyltryptamine with reduced cardiac arrhythmogenic risk and a lack of classical psychedelic drugs-induced sensory alterations. We previously demonstrated that TBG has therapeutic efficacy in a preclinical model of opioid use disorder (OUD) in rats and in a binge model of alcohol drinking in mice. Alcohol is commonly co-used in ∼35-50% of individuals with OUD, and yet, preclinical models that recapitulate this comorbidity are lacking. Methodology Here we employed a polydrug model of heroin and alcohol couse to screen the therapeutic efficacy of TBG on metrics of both opioid and alcohol seeking. We first exposed rats to alcohol (or control sucrose-fade solution) in the home-cage (HC), using a two-bottle binge protocol, over a period of 1 month. Rats were then split into two groups that underwent self-administration training for either intravenous heroin or oral alcohol, so that we could assess the impact of HC alcohol exposure on the self-administration of each substance separately. Thereafter, rats began self-administering both heroin and alcohol in the same sessions. Finally, we tested the effects of TBG on break points for heroin and alcohol in a progressive ratio test, where the number of lever presses required to obtain a single reward increased exponentially. Results and Conclusion TBG effectively reduced motivation for heroin and alcohol in this test, indicating its efficacy is preserved in animals with a history of heroin and alcohol polydrug use.
Collapse
Affiliation(s)
- Jasper A. Heinsbroek
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Giuseppe Giannotti
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| | - Joel Bonilla
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David E. Olson
- Department of Chemistry, University of California, Davis, Davis, California, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, California, USA
- Center for Neuroscience, University of California, Davis, Davis, California, USA
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, California, USA
| | - Jamie Peters
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
19
|
Colom-Rocha C, Bis-Humbert C, García-Fuster MJ. Evaluating signs of hippocampal neurotoxicity induced by a revisited paradigm of voluntary ethanol consumption in adult male and female Sprague-Dawley rats. Pharmacol Rep 2023; 75:320-330. [PMID: 36807777 DOI: 10.1007/s43440-023-00464-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Binge alcohol drinking is considered a prominent risk factor for the development of alcohol-use disorders, and could be model in rodents through the standard two-bottle preference choice test. The goal was to recreate an intermittent use of alcohol during 3 consecutive days each week to ascertain its potential impact on hippocampal neurotoxicity (neurogenesis and other neuroplasticity markers), and including sex as a biological variable, given the well-known sex differences in alcohol consumption. METHODS Ethanol access was granted to adult Sprague-Dawley rats for 3 consecutive days per week, followed by 4 days of withdrawal, during 6 weeks, mimicking the most common pattern of intake in people, drinking over the weekends in an intensive manner. Hippocampal samples were collected to evaluate signs of neurotoxicity. RESULTS Female rats consumed significantly more ethanol than males, although intake did not escalate over time. Ethanol preference levels remained below 40% over time and did not differ between sexes. Moderate signs of ethanol neurotoxicity were observed in hippocampus at the level of decreased neuronal progenitors (NeuroD + cells), and these effects were independent of sex. No other signs of neurotoxicity were induced by ethanol voluntary consumption when measured through several key cell fate markers (i.e., FADD, Cyt c, Cdk5, NF-L) by western blot analysis. CONCLUSIONS Overall, the present results suggest that even though we modeled a situation where no escalation in ethanol intake occurred across time, mild signs of neurotoxicity emerged, suggesting that even the use of ethanol during adulthood in a recreational way could lead to certain brain harm.
Collapse
Affiliation(s)
- Carles Colom-Rocha
- IUNICS, University of the Balearic Islands, Cra. de Valldemossa Km 7.5, 07122, Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Cristian Bis-Humbert
- IUNICS, University of the Balearic Islands, Cra. de Valldemossa Km 7.5, 07122, Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,Psychobiology of Drug Addiction, Neurocentre Magendie, INSERM U1215, Bordeaux, France
| | - M Julia García-Fuster
- IUNICS, University of the Balearic Islands, Cra. de Valldemossa Km 7.5, 07122, Palma, Spain. .,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.
| |
Collapse
|
20
|
Gimenez-Gomez P, Le T, Martin GE. Modulation of neuronal excitability by binge alcohol drinking. Front Mol Neurosci 2023; 16:1098211. [PMID: 36866357 PMCID: PMC9971943 DOI: 10.3389/fnmol.2023.1098211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/19/2023] [Indexed: 02/16/2023] Open
Abstract
Drug use poses a serious threat to health systems throughout the world. The number of consumers rises every year being alcohol the drug of abuse most consumed causing 3 million deaths (5.3% of all deaths) worldwide and 132.6 million disability-adjusted life years. In this review, we present an up-to-date summary about what is known regarding the global impact of binge alcohol drinking on brains and how it affects the development of cognitive functions, as well as the various preclinical models used to probe its effects on the neurobiology of the brain. This will be followed by a detailed report on the state of our current knowledge of the molecular and cellular mechanisms underlying the effects of binge drinking on neuronal excitability and synaptic plasticity, with an emphasis on brain regions of the meso-cortico limbic neurocircuitry.
Collapse
Affiliation(s)
- Pablo Gimenez-Gomez
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, United States
- The Brudnick Neuropsychiatric Research Institute, Worcester, MA, United States
| | - Timmy Le
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, United States
- The Brudnick Neuropsychiatric Research Institute, Worcester, MA, United States
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, United States
| | - Gilles E. Martin
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, United States
- The Brudnick Neuropsychiatric Research Institute, Worcester, MA, United States
| |
Collapse
|
21
|
Thoen RU, Longo L, Leonhardt LC, Pereira MHM, Rampelotto PH, Cerski CTS, Álvares-da-Silva MR. Alcoholic liver disease and intestinal microbiota in an experimental model: Biochemical, inflammatory, and histologic parameters. Nutrition 2023; 106:111888. [PMID: 36436334 DOI: 10.1016/j.nut.2022.111888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Alcoholic liver disease (ALD) is the leading cause of alcohol-related deaths worldwide. Experimental ALD models are expensive and difficult to reproduce. A low-cost, reproducible ALD model was developed, and liver damage compared with the gut microbiota. The aims of this study were to develop an experimental model of ALD, through a high-fat diet, the chronic use of ethanol, and intragastric alcohol binge; and to evaluate the composition of the gut microbiota and its correlation with markers of inflammatory and liver disease progression in this model. METHODS Adult male Wistar rats were randomized (N = 24) to one of three groups: control (standard diet and water + 0.05% saccharin), ALC4 and ALC8 (sunflower seed, 10% ethanol + 0.05% saccharin for 4 and 8 wk, respectively). On the last day, ALC4/8 received alcoholic binge (5 g/kg). Clinical, nutritional, biochemical, inflammatory, pathologic, and gut microbiota data were analyzed. RESULTS ALC4/8 animals consumed more alcohol and lipids (P < 0.01) and less total energy, liquids, solids, carbohydrates, and proteins (P < 0.01), and gained less weight (P < 0.01) than controls. ALC8 had lower Lee index scores than controls and ALC4 (P < 0.01). Aminotransferases increased and albumin diminished in ALC4/8 but not in the control group (P < 0.03 for all). Glucose and aspartate transaminase/alanine aminotransaminase ratios were higher in the ALC8 rats than in the controls (P < 0.03). Cholesterol was higher in ALC4 and lower in ALC8 compared with controls (P < 0.03). Albumin and high-density lipoprotein cholesterol levels were lower in ALC8 (P < 0.03). Hepatic concentration of triacylglycerols was higher in ALC8 than in ALC4 and controls (P < 0.05). ALC4/8 presented microvesicular grade 2 and 3 steatosis, respectively, and macrovesicular grade 1. No change in the gene expression of inflammatory markers between groups was seen. ALC4/8 had lower fecal bacterial α-diversity and relative abundance of Firmicutes (P < 0.005) and greater Bacterioidetes (P < 0.0007) and Protobacteria (P < 0.001) than controls. Gut microbiota correlated with serum and liver lipids, steatosis, albumin, and aminotransferases (P < 0.01 for all). CONCLUSION The model induced nutritional, biochemical, histologic, and gut microbiota changes, and appears to be useful in the study of therapeutic targets.
Collapse
Affiliation(s)
- Rutiane Ullmann Thoen
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Larisse Longo
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Luiza Cecília Leonhardt
- Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Matheus Henrique Mariano Pereira
- Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Pabulo Henrique Rampelotto
- Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlos Thadeu Schmidt Cerski
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Unit of Surgical Pathology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Mário Reis Álvares-da-Silva
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Division of Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| |
Collapse
|
22
|
Kolpakova J, van der Vinne V, Gimenez-Gomez P, Le T, Martin GE. Binge alcohol drinking alters the differential control of cholinergic interneurons over nucleus accumbens D1 and D2 medium spiny neurons. Front Cell Neurosci 2022; 16:1010121. [PMID: 36589290 PMCID: PMC9797504 DOI: 10.3389/fncel.2022.1010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/27/2022] [Indexed: 12/23/2022] Open
Abstract
Animals studies support the notion that striatal cholinergic interneurons (ChIs) play a central role in basal ganglia function by regulating associative learning, reward processing, and motor control. In the nucleus accumbens (NAc), a brain region that mediates rewarding properties of substance abuse, acetylcholine regulates glutamatergic, dopaminergic, and GABAergic neurotransmission in naïve mice. However, it is unclear how ChIs orchestrate the control of these neurotransmitters/modulators to determine the synaptic excitability of medium spiny neurons (MSNs), the only projecting neurons that translate accumbens electrical activity into behavior. Also unknown is the impact of binge alcohol drinking on the regulation of dopamine D1- and D2 receptor-expressing MSNs (D1- and D2-MSNs, respectively) by ChIs. To investigate this question, we optogenetically stimulated ChIs while recording evoked and spontaneous excitatory postsynaptic currents (sEPSCs) in nucleus accumbens core D1- and D2-MSN of ChAT.ChR2.eYFPxDrd1.tdtomato mice. In alcohol-naïve mice, we found that stimulating NAc ChIs decreased sEPSCs frequency in both D1- and D2-MSNs, presumably through a presynaptic mechanism. Interestingly, ChI stimulation decreased MSN synaptic excitability through different mechanisms in D1- vs. D2-MSNs. While decrease of ChI-mediated sEPSCs frequency in D1-MSNs was mediated by dopamine, the same effect in D2-MSNs resulted from a direct control of glutamate release by ChIs. Interestingly, after 2 weeks of binge alcohol drinking, optogenetic stimulation of ChIs enhanced glutamate release in D1-MSNs, while its effect on D2-MSNs remained unchanged. Taken together, these data suggest that cholinergic interneurons could be a key target for regulation of NAc circuitry and for alcohol consumption.
Collapse
Affiliation(s)
- Jenya Kolpakova
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, United States,Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | | | - Pablo Gimenez-Gomez
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Timmy Le
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, United States,Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Gilles E. Martin
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, United States,*Correspondence: Gilles E. Martin,
| |
Collapse
|
23
|
Arumugam MK, Chava S, Perumal SK, Paal MC, Rasineni K, Ganesan M, Donohue TM, Osna NA, Kharbanda KK. Acute ethanol-induced liver injury is prevented by betaine administration. Front Physiol 2022; 13:940148. [PMID: 36267591 PMCID: PMC9577233 DOI: 10.3389/fphys.2022.940148] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Binge drinking is the most common form of excessive alcohol use. Repeated episodes of binge drinking cause multiple organ injuries, including liver damage. We previously demonstrated that chronic ethanol administration causes a decline in the intrahepatic ratio of S-adenosylmethionine (SAM) to S-adenosylhomocysteine (SAH). This decline causes impairments in essential methylation reactions that result in alcohol-induced fatty liver (steatosis) and other features of alcohol-associated liver disease (ALD). Co-treatment with betaine during chronic ethanol feeding, normalizes hepatocellular SAM:SAH ratio and alleviates many features of liver damage including steatosis. Here, we sought to examine whether betaine treatment similarly protects against liver injury in an alcohol binge-drinking model. We hypothesized that ethanol binge with prior or simultaneous betaine administration would prevent or attenuate acute alcohol-induced liver damage. Male C57Bl/6 mice were gavaged twice, 12 h apart, with either 6 g ethanol/kg BW or with an equal volume/kg BW of 0.9% NaCl. Two separate groups of mice (n = 5/group) were gavaged with 4 g betaine/kg BW, either 2 h before or simultaneously with the ethanol or saline gavages. All mice were sacrificed 8 h after the last gavage and serum and liver parameters were quantified. Ethanol binges caused a 50% decrease in hepatic SAM:SAH ratio and a >3-fold rise in liver triglycerides (p ≤ 0.05). These latter changes were accompanied by elevated serum AST and ALT activities and blood alcohol concentrations (BAC) that were ∼three-times higher than the legal limit of intoxication in humans. Mice that were treated with betaine 2 h before or simultaneously with the ethanol binges exhibited similar BAC as in mice given ethanol-alone. Both betaine treatments significantly elevated hepatic SAM levels thereby normalizing the SAM:SAH ratio and attenuating hepatic steatosis and other injury parameters, compared with mice given ethanol alone. Simultaneous betaine co-administration with ethanol was more effective in preventing or attenuating liver injury than betaine given before ethanol gavage. Our findings confirm the potential therapeutic value of betaine administration in preventing liver injury after binge drinking in an animal model.
Collapse
Affiliation(s)
- Madan Kumar Arumugam
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Srinivas Chava
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Sathish Kumar Perumal
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Matthew C. Paal
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Karuna Rasineni
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Terrence M. Donohue
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
24
|
Thyden NH, Schmidt NM, Joshi S, Kim H, Nelson TF, Osypuk TL. Housing mobility protects against alcohol use for children with socioemotional health vulnerabilities: An experimental design. Alcohol Clin Exp Res 2022; 46:1695-1709. [PMID: 36121443 PMCID: PMC9509446 DOI: 10.1111/acer.14911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE Neighborhood context may influence alcohol use, but effects may be heterogeneous, and prior evidence is threatened by confounding. We leveraged a housing voucher experiment to test whether housing vouchers' effects on alcohol use differed for families of children with and without socioemotional health or socioeconomic vulnerabilities. TRIAL DESIGN In the Moving to Opportunity (MTO) study, low-income families in public housing in five US cities were randomized in 1994 to 1998 to receive one of three treatments: (1) a housing voucher redeemable in a low-poverty neighborhood plus housing counseling, (2) a housing voucher without locational restriction, or (3) no voucher (control). Alcohol use was assessed 10 to 15 years later (2008 to 2010) in youth ages 13 to 20, N = 4600, and their mothers, N = 3200. METHODS Using intention-to-treat covariate-adjusted regression models, we interacted MTO treatment with baseline socioemotional health vulnerabilities, testing modifiers of treatment on alcohol use. RESULTS We found treatment effect modification by socioemotional factors. For youth, MTO voucher treatment, compared with controls, reduced the odds of ever drinking alcohol if youth had behavior problems (OR = 0.26, 95% CI [0.09, 0.72]) or problems at school (OR = 0.46, [0.26, 0.82]). MTO low-poverty treatment (vs. controls) also reduced the number of drinks if their health required special medicine/equipment (OR = 0.50 [0.32, 0.80]). Yet treatment effects were nonsignificant among youth without socioemotional vulnerabilities. Among mothers of children with learning problems, MTO voucher treatment (vs. controls) reduced past-month drinking (OR = 0.69 [0.47, 0.99]), but was harmful otherwise (OR = 1.22 [0.99, 1.45]). CONCLUSIONS For low-income adolescents with special needs/socioemotional problems, housing vouchers protect against alcohol use.
Collapse
Affiliation(s)
- Naomi H. Thyden
- Division of Epidemiology and Community Health, School of Public HealthUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Nicole M. Schmidt
- Minnesota Population CenterUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Spruha Joshi
- Division of Epidemiology and Community Health, School of Public HealthUniversity of MinnesotaMinneapolisMinnesotaUSA,New York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Huiyun Kim
- Minnesota Population CenterUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Toben F. Nelson
- Division of Epidemiology and Community Health, School of Public HealthUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Theresa L. Osypuk
- Division of Epidemiology and Community Health, School of Public HealthUniversity of MinnesotaMinneapolisMinnesotaUSA,Minnesota Population CenterUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
25
|
Conte R, Zangirolame CMS, Gobbo DR, Pereira LDAS, Panfilio CE, Reginato RD, Maluf LLS, Scerni DA, Céspedes IC. Effects of moderate alcohol consumption on behavior and neural systems of Wistar rats. AN ACAD BRAS CIENC 2022; 94:e20210673. [PMID: 35857964 DOI: 10.1590/0001-3765202220210673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/09/2021] [Indexed: 11/21/2022] Open
Abstract
Chronic alcohol consumption affects various neurotransmitters, especially those implicated in the transitioning to alcohol use disorders (particularly dopaminergic and CRFergic systems). Few studies have investigated moderate alcohol consumption and its harmful consequences. The objective of this work was to analyze behavioral and neurochemical (dopaminergic and CRFergic systems) alterations during chronic moderate alcohol consumption. Twelve male Wistar rats were submitted to an intermittent alcohol ingestion protocol (alcohol group) for four weeks. The control group consisted of six rats. Open Field and Elevated Plus Maze tests were used for analysis of motor and anxiety-like behaviors. Immunohistochemistry analysis was performed in dopaminergic and CRFergic systems. Animals exposed to alcohol consumed moderate doses, chronic and intermittently. Behavioral tests detected fewer fecal boli in the alcohol exposed group, and immunohistochemical analysis indicated fewer dopamine-immunoreactive cells in the ventral tegmental area, and more CRF-immunoreactive cells in the anterior cingulate cortex and dorsolateral septum in this group. Thus we concluded that Wistar rats that consumed moderate doses of alcohol voluntarily and chronically showed a discreet anxiolytic effect in behavior, and a hypodopaminergic and hyperCRFergic neurochemical condition, which together are strong inducers of alcohol consumption predisposing to the development of alcohol use disorder (AUD).
Collapse
Affiliation(s)
- Rafael Conte
- Universidade Federal de São Paulo/UNIFESP, Escola Paulista de Medicina, Departamento de Morfologia e Genética, Rua Botucatu, 740, 1º andar do Edifício Leitão da Cunha, 04023-900 São Paulo, SP, Brazil
| | - Carolline M S Zangirolame
- Universidade Federal de São Paulo/UNIFESP, Instituto de Saúde e Sociedade, Departamento de Biociências, Rua Silva Jardim, 136, Vila Matias, 11015-020 Santos, SP, Brazil
| | - Denise R Gobbo
- Universidade Federal de São Paulo/UNIFESP, Escola Paulista de Medicina, Departamento de Morfologia e Genética, Rua Botucatu, 740, 1º andar do Edifício Leitão da Cunha, 04023-900 São Paulo, SP, Brazil
| | - Laís DA S Pereira
- Universidade Federal de São Paulo/UNIFESP, Escola Paulista de Medicina, Departamento de Morfologia e Genética, Rua Botucatu, 740, 1º andar do Edifício Leitão da Cunha, 04023-900 São Paulo, SP, Brazil
| | - Carlos E Panfilio
- Universidade Municipal de São Caetano do Sul/USCS, Escola da Saúde, Rua Santo Antônio, 50, Centro, 09521-160 São Caetano do Sul, SP, Brazil
| | - Rejane D Reginato
- Universidade Federal de São Paulo/UNIFESP, Escola Paulista de Medicina, Departamento de Morfologia e Genética, Rua Botucatu, 740, 1º andar do Edifício Leitão da Cunha, 04023-900 São Paulo, SP, Brazil
| | - Luciana L S Maluf
- Universidade Federal de São Paulo/UNIFESP, Instituto de Saúde e Sociedade, Departamento de Biociências, Rua Silva Jardim, 136, Vila Matias, 11015-020 Santos, SP, Brazil
| | - Debora A Scerni
- Universidade Federal de São Paulo/UNIFESP, Escola Paulista de Medicina, Departamento de Neurologia e Neurocirurgia, Rua Pedro De Toledo, 669, Vila Clementino, 04039-032 São Paulo, SP, Brazil
| | - Isabel C Céspedes
- Universidade Federal de São Paulo/UNIFESP, Escola Paulista de Medicina, Departamento de Neurologia e Neurocirurgia, Rua Pedro De Toledo, 669, Vila Clementino, 04039-032 São Paulo, SP, Brazil
| |
Collapse
|
26
|
Marinkovic K, Alderson Myers AB, Arienzo D, Sereno MI, Mason GF. Cortical GABA levels are reduced in young adult binge drinkers: Association with recent alcohol consumption and sex. Neuroimage Clin 2022; 35:103091. [PMID: 35753236 PMCID: PMC9240858 DOI: 10.1016/j.nicl.2022.103091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/10/2022] [Accepted: 06/18/2022] [Indexed: 01/12/2023]
Abstract
Binge drinking refers to a pattern of alcohol intake that raises blood alcohol concentration to or above legal intoxication levels. It is common among young adults and is associated with health risks that scale up with alcohol intake. Acute intoxication depresses neural activity via complex signaling mechanisms by enhancing inhibition mediated by gamma-amino butyric acid (GABA), and by decreasing excitatory glutamatergic effects. Evidence primarily rooted in animal research indicates that the brain compensates for the acute depressant effects under the conditions of habitual heavy use. These neuroadaptive changes are reflected in neural hyperexcitability via downregulated inhibitory signaling, which becomes apparent as withdrawal symptoms. However, human evidence on the compensatory reduction in GABA signaling is scant. The neurochemical aspect of this mechanistic model was evaluated in the present study with proton magnetic resonance spectroscopy (1H-MRS) which is sensitive to GABA plus macromolecule signal (GABA + ). Furthermore, we examined sex differences in GABA + levels as a function of a recent history of binge drinking, given interactions between endogenous neurosteroids, GABA signaling, and alcohol. The study recruited young adult women and men (22.2 ± 2.8 years of age) who were classified as binge drinkers (BDs, N = 52) if they reported ≥ 5 binge episodes in the previous six months. Light drinkers (LDs, N = 49) reported drinking regularly, but not exceeding ≤ 2 binge episodes in the past six months. GABA-edited 1H-MR spectra were acquired from the occipital cortex at 3 T with the MEGA-PRESS sequence. GABA + signal was analyzed relative to water and total creatine (Cr) levels as a function of binge drinking history and sex. Controlling for within-voxel tissue composition, both GABA + indices showed decreased GABA + levels in BDs relative to LDs. The reduced GABA + concentration was associated with occasional high-intensity drinking in the BD group. This evidence is consistent with compensatory GABA downregulation that accompanies alcohol misuse, tipping the excitation/inhibition balance towards hyperexcitability. Analysis of the time course of GABA + neuroplasticity indicated that GABA + was lowest when measured one day after the last drinking occasion in BDs. While the BD vs LD differences were primarily driven by LD women, there was no interaction between Sex and a history of binge drinking. GABA + was higher in LD women compared to LD men. Aligned with the allostasis model, the mechanistic compensatory GABA downregulation observed in young emerging adults engaging in occasional binge drinking complements direct neural measures of hyperexcitability in BDs. Notably, these results suggest that neuroadaptation to alcohol is detectable at the levels of consumption that are within a normative range, and may contribute to adverse health outcomes.
Collapse
Affiliation(s)
- Ksenija Marinkovic
- Department of Psychology, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA; Department of Radiology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA.
| | - Austin B Alderson Myers
- Department of Psychology, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA.
| | - Donatello Arienzo
- Department of Psychology, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA
| | - Martin I Sereno
- Department of Psychology, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA.
| | - Graeme F Mason
- Department of Radiology and Biomedical Imaging, Department of Psychiatry, Department of Biomedical Engineering, Yale University, N-141 TAC-MRRC, 300 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
27
|
Rath M, Figueroa AM, Zhang P, Stevens SM, Liu B. Establishment of a Simple and Versatile Evaporation Compensation Model for in vitro Chronic Ethanol Treatment: Impact on Neuronal Viability. NEUROGLIA (BASEL, SWITZERLAND) 2022; 3:61-72. [PMID: 37981908 PMCID: PMC10655227 DOI: 10.3390/neuroglia3020004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Alcohol overconsumption is a major cause of preventable mental disorders and death in the United States and around the world. The pathogenesis of alcohol dependence, abuse, and toxicity to the central nervous system remains incompletely understood. In vitro and cell culture-based models have been highly valuable in studying the molecular and cellular mechanisms underlying the contribution of individual CNS cell types to ethanol's effects on the brain. However, conventional cell culture model systems carry the inherent disadvantage of rapid loss of ethanol due to evaporation following a bolus addition at the start of the treatment. We have established a multi-well cell culture plate-based ethanol evaporation compensation model that utilizes the inter-well space as a reservoir to compensate for the evaporative loss of ethanol in the cell treatment wells. Following a single bolus addition at the start of the treatment, ethanol concentration rapidly decreased over time. Through compensation using the multi-well plate platform, maintenance of ethanol concentrations ranging from 10-100 mM was achieved for up to 72 hours in a cell-free system. Greater effects in ethanol-induced decrease in neuronal cell viability were observed with than without compensation. Our method effectively compensates for the evaporative loss of ethanol typically observed in the traditional method. This method provides an economic, simple and effective in vitro model system for ethanol treatment over an extended timeframe where maintenance of a relatively constant concentration of ethanol is desired.
Collapse
Affiliation(s)
- Meera Rath
- Department of Pharmacodynamics, University of Florida, Gainesville, FL 32610
| | - Ariana M. Figueroa
- Department of Pharmacodynamics, University of Florida, Gainesville, FL 32610
| | - Ping Zhang
- Department of Pharmacodynamics, University of Florida, Gainesville, FL 32610
| | - Stanley M. Stevens
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620
| | - Bin Liu
- Department of Pharmacodynamics, University of Florida, Gainesville, FL 32610
| |
Collapse
|
28
|
Sharma R, Parikh M, Mishra V, Zuniga A, Sahota P, Thakkar M. Sleep, sleep homeostasis and arousal disturbances in alcoholism. Brain Res Bull 2022; 182:30-43. [PMID: 35122900 DOI: 10.1016/j.brainresbull.2022.01.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/12/2022] [Accepted: 01/29/2022] [Indexed: 12/11/2022]
Abstract
The effects of alcohol on human sleep were first described almost 70 years ago. Since then, accumulating evidences suggest that alcohol intake at bed time immediately induces sleep [reduces the time to fall asleep (sleep onset latency), and consolidates and enhances the quality (delta power) and the quantity of sleep]. Such potent sleep promoting activity makes alcohol as one of the most commonly used "over the counter" sleep aid. However, the somnogenic effects, after alcohol intake, slowly wane off and often followed by sleep disruptions during the rest of the night. Repeated use of alcohol leads to the development of rapid tolerance resulting into an alcohol abuse. Moreover, chronic and excessive alcohol intake leads to the development of alcohol use disorder (AUD). Alcoholics, both during drinking periods and during abstinences, suffer from a multitude of sleep disruptions manifested by profound insomnia, excessive daytime sleepiness, and altered sleep architecture. Furthermore, subjective and objective indicators of sleep disturbances are predictors of relapse. Finally, within the USA, it is estimated that societal costs of alcohol-related sleep disorders exceed $18 billion. Thus, although alcohol associated sleep problems have significant economic and clinical consequences, very little is known about how and where alcohol acts to affect sleep. In this review, a conceptual framework and clinical research focused on understanding the relationship between alcohol and sleep is first described. In the next section, our new and exciting preclinical studies, to understand the cellular and molecular mechanism of how acute and chronic alcohol affects sleep, are described. In the end, based on observations from our recent findings and related literature, opportunities for the development of innovative strategies to prevent and treat AUD are proposed.
Collapse
Affiliation(s)
- Rishi Sharma
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia MO 65201, USA
| | - Meet Parikh
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia MO 65201, USA
| | - Vaibhav Mishra
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia MO 65201, USA
| | - Abigail Zuniga
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia MO 65201, USA
| | - Pradeep Sahota
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia MO 65201, USA
| | - Mahesh Thakkar
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia MO 65201, USA.
| |
Collapse
|
29
|
Dose-response effects of alcohol on biochemical markers of bone turnover in non-human primates: Effects of species, sex and age of onset of drinking. Bone Rep 2022; 16:101159. [PMID: 34977281 PMCID: PMC8683688 DOI: 10.1016/j.bonr.2021.101159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 01/11/2023] Open
Abstract
Purpose Alcohol consumption suppressed bone turnover in male non-human primates; however, it is unclear the extent to which this effect depends upon biological variables. Using archived plasma samples, we investigated whether sex, age of onset of alcohol intake, and species influence the effects of graded increases in alcohol consumption on bone turnover markers. Methods 91 male and female macaques (rhesus and cynomolgus), ranging in age from 4 years (adolescent) to 10 years (adult) were required to increase their consumption of ethanol in 30-day increments: 0 g/kg/day, followed by 0.5 g/kg/day, 1.0 g/kg/day, and, finally, 1.5 g/kg/day. Plasma osteocalcin (formation), plasma CTX (resorption) and osteocalcin to CTX ratio (turnover balance) were measured during these intervals to assess the dose-response effects of alcohol. Results We detected no relationship between dose and osteocalcin when all monkeys were combined, but there was a significant effect of sex (lower levels in females) and interactions between alcohol dose and sex (osteocalcin levels increased with dose in rhesus females). In contrast, we detected a negative linear dose-response relationship for ethanol and CTX. We did not detect a relationship between dose and osteocalcin to CTX ratio overall, but there was a significant positive relationship detected in females (no change in males). Increased age predicted lower biomarker levels for both osteocalcin and CTX. Species was a significant predictor for osteocalcin and the osteocalcin to CTX ratio in these models. Conclusion These findings indicate that age, sex, and species influence bone turnover and support the concept that factors beyond quantity of alcohol affect skeletal response to alcohol consumption. Age, sex, and species influenced markers of bone turnover in non-human primates. Ethanol consumption resulted in a dose-dependent reduction in CTX. Ethanol consumption resulted in increased osteocalcin in rhesus females.
Collapse
|
30
|
Abstract
Preclinical research over the past several decades has demonstrated a role for the γ-aminobutyric acidB (GABAB) receptor in alcohol use disorder (AUD). This chapter offers an examination of preclinical evidence on the role of the GABAB receptor on alcohol-related behaviors with a particular focus on the GABAB receptor agonist baclofen, for which effects have been most extensively studied, and positive allosteric modulators (PAMs) of the GABAB receptor. Studies employing rodent and non-human primate models have shown that activation of the GABAB receptor can reduce (1) stimulating and rewarding effects of alcohol; (2) signs of alcohol withdrawal in rats made physically dependent on alcohol; (3) acquisition and maintenance of alcohol drinking under a two-bottle alcohol versus water choice procedure; (4) alcohol intake under oral operant self-administration procedures; (5) motivational properties of alcohol measured using extinction and progressive ratio procedures; (6) the increase in alcohol intake after a period of alcohol abstinence (the alcohol deprivation effect or ADE); and (7) the ability of alcohol cues and stress to reinstate alcohol seeking when alcohol is no longer available. Baclofen and GABAB PAMs reduce the abovementioned behaviors across different preclinical models, which provides strong evidence for a significant role of the GABAB receptor in alcohol-related behaviors and supports development of medications targeting GABAB receptors for the treatment of AUD. This chapter highlights the value of examining mechanisms of alcohol-related behaviors across multiple animal models to increase the confidence in identification of new therapeutic targets.
Collapse
Affiliation(s)
- August F Holtyn
- Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Elise M Weerts
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
31
|
Schiller B, Heinrichs M, Beste C, Stock A. Acute alcohol intoxication modulates the temporal dynamics of resting electroencephalography networks. Addict Biol 2021; 26:e13034. [PMID: 33951257 DOI: 10.1111/adb.13034] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 01/05/2023]
Abstract
This study aimed to provide a currently missing link between general intoxication-induced changes in overall brain activity and the multiple cognitive control deficits typically observed during acute alcohol intoxication. For that purpose, we analyzed the effects of acute alcohol intoxication (1.1‰) on the four archetypal electroencephalography (EEG) resting networks (i.e., microstates A-D) and their temporal dynamics (e.g., coverage and transitions from one microstate to another), as well as on self-reported resting-state cognition in n = 22 healthy young males using a counterbalanced within-subject design. Our microstate analyses indicated that alcohol increased the coverage of the visual processing-related microstate B at the expense of the autonomic processing-related microstate C. Add-on exploratory analyses revealed that alcohol increased transitions from microstate C to microstate B and decreased bidirectional transitions between microstate C and the attention-related microstate D. In line with the observed alcohol-induced decrease of the autonomic processing-related microstate C, participants reported decreases of their somatic awareness during intoxication, which were positively associated with more transitions from microstate C to microstate B. In sum, the observed effects provide mechanistic insights into how alcohol might hamper cognitive processing by generally prioritizing the bottom-up processing of visual stimuli over top-down internal information processing. The fact that this was found during the resting state further proves that alcohol-induced changes in brain activity are continuously present and do not only emerge during demanding situations or tasks.
Collapse
Affiliation(s)
- Bastian Schiller
- Laboratory for Biological and Personality Psychology, Department of Psychology University of Freiburg Freiburg Germany
- Freiburg Brain Imaging Center, University Medical Center University of Freiburg Freiburg Germany
| | - Markus Heinrichs
- Laboratory for Biological and Personality Psychology, Department of Psychology University of Freiburg Freiburg Germany
- Freiburg Brain Imaging Center, University Medical Center University of Freiburg Freiburg Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine Technical University of Dresden Dresden Germany
| | - Ann‐Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine Technical University of Dresden Dresden Germany
- Biopsychology, Department of Psychology, School of Science Technical University of Dresden Dresden Germany
| |
Collapse
|
32
|
Simmons KE, Healey KL, Li Q, Moore SD, Klein RC. Effects of sex and genotype in human APOE-targeted replacement mice on alcohol self-administration measured with the automated IntelliCage system before and after repeated mild traumatic brain injury. Alcohol Clin Exp Res 2021; 45:2231-2245. [PMID: 34585391 DOI: 10.1111/acer.14717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Few studies have examined the association between APOE genotype and alcohol use. Although some of these studies have reported outcomes associated with a history of drinking, none have examined alcohol-seeking behavior. In addition, no preclinical studies have examined alcohol use as a function of APOE genotype with or without traumatic brain injury. METHODS Male and female human APOE3- and APOE4-targeted replacement (TR) mice were used to assess voluntary alcohol seeking longitudinally using a 2-bottle choice paradigm conducted within the automated IntelliCage system prior to and following repeated mild TBI (rmTBI). Following an acquisition phase in which the concentration of ethanol (EtOH) was increased to 12%, a variety of drinking paradigms that included extended alcohol access (EAA1 and EAA2), alcohol deprivation effect (ADE), limited access drinking in the dark (DID), and progressive ratio (PR) were used to assess alcohol-seeking behavior. Additional behavioral tasks were performed to measure cognitive function and anxiety-like behavior. RESULTS All groups readily consumed increasing concentrations of EtOH (4-12%) during the acquisition phase. During the EAA1 period (12% EtOH), there was a significant genotype effect in both males and females for EtOH preference. Following a 3-week abstinence period, mice received sham or rmTBI resulting in a genotype- and sex-independent main effect of rmTBI on the recovery of righting reflex and a main effect of rmTBI on spontaneous home-cage activity in females only. Reintroduction of 12% EtOH (EAA2) resulted in a significant effect genotype for alcohol preference in males with APOE4 mice displaying increased preference and motivation for alcohol compared with APOE3 mice independent of TBI while in females, there was a significant genotype × TBI interaction under the ADE and DID paradigms. Finally, there was a main effect of rmTBI on increased risk-seeking behavior in both sexes, but no effect on spatial learning or cognitive flexibility. CONCLUSION These results suggest that sex and APOE genotype play a significant role in alcohol consumption and may subsequently influence long-term recovery following traumatic brain insults.
Collapse
Affiliation(s)
- Kathryn E Simmons
- Trinity College of Arts and Sciences, Duke University, Durham, North Carolina, USA
| | - Kati L Healey
- Department of Psychiatry, Duke University Medical Center, Durham, North Carolina, USA
| | - Qiang Li
- Department of Psychiatry, Duke University Medical Center, Durham, North Carolina, USA
| | - Scott D Moore
- Department of Psychiatry, Duke University Medical Center, Durham, North Carolina, USA.,Durham Veterans Affairs Medical Center, Durham, North Carolina, USA
| | - Rebecca C Klein
- Department of Psychiatry, Duke University Medical Center, Durham, North Carolina, USA.,Durham Veterans Affairs Medical Center, Durham, North Carolina, USA
| |
Collapse
|
33
|
Nieto SJ, Grodin EN, Aguirre CG, Izquierdo A, Ray LA. Translational opportunities in animal and human models to study alcohol use disorder. Transl Psychiatry 2021; 11:496. [PMID: 34588417 PMCID: PMC8481537 DOI: 10.1038/s41398-021-01615-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/20/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022] Open
Abstract
Animal and human laboratory paradigms offer invaluable approaches to study the complex etiologies and mechanisms of alcohol use disorder (AUD). We contend that human laboratory models provide a "bridge" between preclinical and clinical studies of AUD by allowing for well-controlled experimental manipulations in humans with AUD. As such, examining the consilience between experimental models in animals and humans in the laboratory provides unique opportunities to refine the translational utility of such models. The overall goal of the present review is to provide a systematic description and contrast of commonly used animal paradigms for the study of AUD, as well as their human laboratory analogs if applicable. While there is a wide breadth of animal species in AUD research, the paradigms discussed in this review rely predominately on rodent research. The overarching goal of this effort is to provide critical analysis of these animal models and to link them to human laboratory models of AUD. By systematically contrasting preclinical and controlled human laboratory models, we seek to identify opportunities to enhance their translational value through forward and reverse translation. We provide future directions to reconcile differences between animal and human work and to improve translational research for AUD.
Collapse
Affiliation(s)
- Steven J. Nieto
- grid.19006.3e0000 0000 9632 6718Department of Psychology, University of California at Los Angeles, Los Angeles, CA USA
| | - Erica N. Grodin
- grid.19006.3e0000 0000 9632 6718Department of Psychology, University of California at Los Angeles, Los Angeles, CA USA
| | - Claudia G. Aguirre
- grid.19006.3e0000 0000 9632 6718Department of Psychology, University of California at Los Angeles, Los Angeles, CA USA
| | - Alicia Izquierdo
- grid.19006.3e0000 0000 9632 6718Department of Psychology, University of California at Los Angeles, Los Angeles, CA USA
| | - Lara A. Ray
- grid.19006.3e0000 0000 9632 6718Department of Psychology, University of California at Los Angeles, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA USA
| |
Collapse
|
34
|
Faccidomo S, Cogan ES, Hon OJ, Hoffman JL, Saunders BL, Eastman VR, Kim M, Taylor SM, McElligott ZA, Hodge CW. Calcium-permeable AMPA receptor activity and GluA1 trafficking in the basolateral amygdala regulate operant alcohol self-administration. Addict Biol 2021; 26:e13049. [PMID: 33955100 DOI: 10.1111/adb.13049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/16/2021] [Indexed: 12/22/2022]
Abstract
Addiction is viewed as maladaptive glutamate-mediated neuroplasticity that is regulated, in part, by calcium-permeable AMPA receptor (CP-AMPAR) activity. However, the contribution of CP-AMPARs to alcohol-seeking behavior remains to be elucidated. We evaluated CP-AMPAR activity in the basolateral amygdala (BLA) as a potential target of alcohol that also regulates alcohol self-administration in C57BL/6J mice. Operant self-administration of sweetened alcohol increased spontaneous EPSC frequency in BLA neurons that project to the nucleus accumbens as compared with behavior-matched sucrose controls indicating an alcohol-specific upregulation of synaptic activity. Bath application of the CP-AMPAR antagonist NASPM decreased evoked EPSC amplitude only in alcohol self-administering mice indicating alcohol-induced synaptic insertion of CP-AMPARs in BLA projection neurons. Moreover, NASPM infusion in the BLA dose-dependently decreased the rate of operant alcohol self-administration providing direct evidence for CP-AMPAR regulation of alcohol reinforcement. As most CP-AMPARs are GluA1-containing, we asked if alcohol alters the activation state of GluA1-containing AMPARs. Immunocytochemistry results showed elevated GluA1-S831 phosphorylation in the BLA of alcohol as compared with sucrose mice. To investigate mechanistic regulation of alcohol self-administration by GluA1-containing AMPARs, we evaluated the necessity of GluA1 trafficking using a TET-ON AAV encoding a dominant-negative GluA1 c-terminus (GluA1ct) that blocks activity-dependent synaptic delivery of native GluA1-containing AMPARs. GluA1ct expression in the BLA reduced alcohol self-administration with no effect on sucrose controls. These results show that CP-AMPAR activity and GluA1 trafficking in the BLA mechanistically regulate the reinforcing effects of sweetened alcohol. Pharmacotherapeutic targeting these mechanisms of maladaptive neuroplasticity may aid medical management of alcohol use disorder.
Collapse
Affiliation(s)
- Sara Faccidomo
- Bowles Center for Alcohol Studies The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
- Department of Psychiatry The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Elizabeth S. Cogan
- Bowles Center for Alcohol Studies The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Olivia J. Hon
- Bowles Center for Alcohol Studies The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
- Neuroscience Curriculum The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Jessica L. Hoffman
- Bowles Center for Alcohol Studies The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Briana L. Saunders
- Bowles Center for Alcohol Studies The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Vallari R. Eastman
- Bowles Center for Alcohol Studies The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Michelle Kim
- Bowles Center for Alcohol Studies The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Seth M. Taylor
- Bowles Center for Alcohol Studies The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Zoe A. McElligott
- Bowles Center for Alcohol Studies The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
- Department of Psychiatry The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
- Department of Pharmacology The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Clyde W. Hodge
- Bowles Center for Alcohol Studies The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
- Department of Psychiatry The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
- Department of Pharmacology The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| |
Collapse
|
35
|
Farooq A, Richman CM, Swain SM, Shahid RA, Vigna SR, Liddle RA. The Role of Phosphate in Alcohol-Induced Experimental Pancreatitis. Gastroenterology 2021; 161:982-995.e2. [PMID: 34051238 PMCID: PMC8380702 DOI: 10.1053/j.gastro.2021.05.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/05/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Heavy alcohol consumption is a common cause of acute pancreatitis; however, alcohol abuse does not always result in clinical pancreatitis. As a consequence, the factors responsible for alcohol-induced pancreatitis are not well understood. In experimental animals, it has been difficult to produce pancreatitis with alcohol. Clinically, alcohol use predisposes to hypophosphatemia, and hypophosphatemia has been observed in some patients with acute pancreatitis. Because of abundant protein synthesis, the pancreas has high metabolic demands, and reduced mitochondrial function leads to organelle dysfunction and pancreatitis. We proposed, therefore, that phosphate deficiency might limit adenosine triphosphate synthesis and thereby contribute to alcohol-induced pancreatitis. METHODS Mice were fed a low-phosphate diet (LPD) before orogastric administration of ethanol. Direct effects of phosphate and ethanol were evaluated in vitro in isolated mouse pancreatic acini. RESULTS LPD reduced serum phosphate levels. Intragastric administration of ethanol to animals maintained on an LPD caused severe pancreatitis that was ameliorated by phosphate repletion. In pancreatic acinar cells, low-phosphate conditions increased susceptibility to ethanol-induced cellular dysfunction through decreased bioenergetic stores, specifically affecting total cellular adenosine triphosphate and mitochondrial function. Phosphate supplementation prevented ethanol-associated cellular injury. CONCLUSIONS Phosphate status plays a critical role in predisposition to and protection from alcohol-induced acinar cell dysfunction and the development of acute alcohol-induced pancreatitis. This finding may explain why pancreatitis develops in only some individuals with heavy alcohol use and suggests a potential novel therapeutic approach to pancreatitis. Finally, an LPD plus ethanol provides a new model for studying alcohol-associated pancreatic injury.
Collapse
Affiliation(s)
- Ahmad Farooq
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Courtney M Richman
- School of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Sandip M Swain
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Rafiq A Shahid
- Department of Pathology, Brown University, Providence, Rhode Island
| | - Steven R Vigna
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Rodger A Liddle
- Department of Medicine, Duke University Medical Center, Durham, North Carolina; Department of Veterans Affairs Health Care System, Durham, North Carolina.
| |
Collapse
|
36
|
Hoffman JL, Faccidomo S, Saunders BL, Taylor SM, Kim M, Hodge CW. Inhibition of AMPA receptors (AMPARs) containing transmembrane AMPAR regulatory protein γ-8 with JNJ-55511118 shows preclinical efficacy in reducing chronic repetitive alcohol self-administration. Alcohol Clin Exp Res 2021; 45:1424-1435. [PMID: 34086361 DOI: 10.1111/acer.14639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/27/2021] [Accepted: 05/14/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND A prominent therapeutic indication for alcohol use disorder (AUD) is reduction in chronic repetitive alcohol use. Glutamate α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPARs) regulate chronic alcohol self-administration in preclinical models. Recent evidence indicates that the expression and function of AMPARs require the transmembrane AMPAR regulatory protein γ-8 (TARP γ-8). This study evaluated the preclinical efficacy of JNJ-55511118, a novel, selective, high-affinity inhibitor of TARP γ-8-bound AMPARs, in reducing chronic operant alcohol self-administration. METHODS Separate groups of male and female C57BL/6J mice (n = 8/sex/group) were trained to lever press for sweetened alcohol (9% v/v + sucrose 2% w/v) or sucrose only (2% w/v) in operant conditioning chambers using an FR-4 schedule of reinforcement. After a 40-day baseline, JNJ-55511118 (0, 1, and 10 mg/kg, p.o.) was administered in randomized order 1 h before self-administration sessions. Parameters of operant behavior including response rate, total reinforcers, and head entries in the drinking troughs were computer recorded. RESULTS During baseline, responding to alcohol, but not sucrose, was greater in female than male mice. In male mice, both doses of JNJ-55511118 decreased multiple parameters of alcohol self-administration but did not reduce behavior-matched sucrose-only self-administration. JNJ-55511118 had no effect on sweetened alcohol or sucrose self-administration in female mice. Subsequent tests of motor function showed that the lowest effective dose of JNJ-55511118 (1 mg/kg) had no effect on open-field activity in male mice. CONCLUSIONS This study shows for the first time that TARP γ-8-bound AMPARs regulate a behavioral pathology associated with addiction. The preclinical efficacy of JNJ-55511118 in reducing alcohol self-administration in male mice suggests that inhibition of TARP γ-8-bound AMPARs is a novel and highly significant neural target for developing medications to treat AUD and other forms of addiction.
Collapse
Affiliation(s)
- Jessica L Hoffman
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sara Faccidomo
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Briana L Saunders
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Seth M Taylor
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michelle Kim
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Clyde W Hodge
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
37
|
Bauer EE, Shoeman A, Buhr TJ, Daniels KM, Lyte M, Clark PJ. Voluntary binge-patterned alcohol drinking and sex-specific influences on monoamine-related neurochemical signatures in the mouse gut and brain. Alcohol Clin Exp Res 2021; 45:996-1012. [PMID: 33704774 DOI: 10.1111/acer.14592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/30/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Altered monoamine (i.e., serotonin, dopamine, and norepinephrine) activity following episodes of alcohol abuse plays key roles not only in the motivation to ingest ethanol, but also physiological dysfunction related to its misuse. Although monoamine activity is essential for physiological processes that require coordinated communication across the gut-brain axis (GBA), relatively little is known about how alcohol misuse may affect monoamine levels across the GBA. Therefore, we evaluated monoamine activity across the mouse gut and brain following episodes of binge-patterned ethanol drinking. METHODS Monoamine and select metabolite neurochemical concentrations were analyzed by ultra-high-performance liquid chromatography in gut and brain regions of female and male C57BL/6J mice following "Drinking in the Dark" (DID), a binge-patterned ethanol ingestion paradigm. RESULTS First, we found that alcohol access had an overall small effect on gut monoamine-related neurochemical concentrations, primarily influencing dopamine activity. Second, neurochemical patterns between the small intestine and the striatum were correlated, adding to recent evidence of modulatory activity between these areas. Third, although alcohol access robustly influenced activity in brain areas in the mesolimbic dopamine system, binge exposure also influenced monoaminergic activity in the hypothalamic region. Finally, sex differences were observed in the concentrations of neurochemicals within the gut, which was particularly pronounced in the small intestine. CONCLUSION Together, these data provide insights into the influence of alcohol abuse and biological sex on monoamine-related neurochemical changes across the GBA, which could have important implications for GBA function and dysfunction.
Collapse
Affiliation(s)
- Ella E Bauer
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| | - Allyse Shoeman
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| | - Trevor J Buhr
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| | - Karrie M Daniels
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA, USA
| | - Mark Lyte
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA, USA
| | - Peter J Clark
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| |
Collapse
|
38
|
Shin SK, Kaiser EE, West FD. Alcohol Induced Brain and Liver Damage: Advantages of a Porcine Alcohol Use Disorder Model. Front Physiol 2021; 11:592950. [PMID: 33488396 PMCID: PMC7818780 DOI: 10.3389/fphys.2020.592950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/01/2020] [Indexed: 12/30/2022] Open
Abstract
Alcohol is one of the most commonly abused intoxicants with 1 in 6 adults at risk for alcohol use disorder (AUD) in the United States. As such, animal models have been extensively investigated with rodent AUD models being the most widely studied. However, inherent anatomical and physiological differences between rodents and humans pose a number of limitations in studying the complex nature of human AUD. For example, rodents differ from humans in that rodents metabolize alcohol rapidly and do not innately demonstrate voluntary alcohol consumption. Comparatively, pigs exhibit similar patterns observed in human AUD including voluntary alcohol consumption and intoxication behaviors, which are instrumental in establishing a more representative AUD model that could in turn delineate the risk factors involved in the development of this disorder. Pigs and humans also share anatomical similarities in the two major target organs of alcohol- the brain and liver. Pigs possess gyrencephalic brains with comparable cerebral white matter volumes to humans, thus enabling more representative evaluations of susceptibility and neural tissue damage in response to AUD. Furthermore, similarities in the liver result in a comparable rate of alcohol elimination as humans, thus enabling a more accurate extrapolation of dosage and intoxication level to humans. A porcine model of AUD possesses great translational potential that can significantly advance our current understanding of the complex development and continuance of AUD in humans.
Collapse
Affiliation(s)
- Soo K Shin
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Erin E Kaiser
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States.,Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, United States
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States.,Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, United States
| |
Collapse
|
39
|
Caruso MA, Robins MT, Fulenwider HD, Ryabinin AE. Temporal analysis of individual ethanol consumption in socially housed mice and the effects of oxytocin. Psychopharmacology (Berl) 2021; 238:899-911. [PMID: 33404737 PMCID: PMC7786142 DOI: 10.1007/s00213-020-05741-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/01/2020] [Indexed: 01/31/2023]
Abstract
RATIONALE The majority of preclinical studies assessing treatments for alcohol use disorder use singly housed animals. Because social factors affect ethanol intake, studies investigating such treatments in group-housed animals are needed. OBJECTIVES We investigated the effects of repeated oxytocin treatment on ethanol intake in socially housed male and female C57BL/6J mice. METHODS We used the novel "Herdsman" system implementing radiotracking technology to measure individual ethanol intake in group-housed animals. Mice were housed in same-sex groups of 4 per cage and exposed to 3 and 6% ethanol solutions. After baseline drinking was established, half of the animals in each cage received repeated intraperitoneal injections of 3 mg/kg oxytocin. RESULTS During baseline, females consumed more ethanol than males partly due to greater number of ethanol drinks taken by females. We also observed a gradual development of two peaks of ethanol consumption during the dark phase of the circadian cycle. The effects of oxytocin treatment were short-acting and varied across treatment days. Oxytocin significantly decreased ethanol intake on three out the four treatment days. On the fourth treatment day, oxytocin decreased ethanol intake and water intake. CONCLUSION The greater intake of ethanol in female mice is associated with the number of drinks taken. Oxytocin treatments not only cause an acute decrease in ethanol consumption, but can also change in efficacy over time. While the oxytocin system remains a promising therapeutic target for alcoholism, studies investigating longer periods of repeated oxytocin treatment and those using additional oxytocin receptor agonists are warranted.
Collapse
Affiliation(s)
- Maya A. Caruso
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR 97239 USA
| | - Meridith T. Robins
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR 97239 USA
| | - Hannah D. Fulenwider
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR 97239 USA
| | - Andrey E. Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR 97239 USA
| |
Collapse
|
40
|
Nowak AJ, Relja B. The Impact of Acute or Chronic Alcohol Intake on the NF-κB Signaling Pathway in Alcohol-Related Liver Disease. Int J Mol Sci 2020; 21:E9407. [PMID: 33321885 PMCID: PMC7764163 DOI: 10.3390/ijms21249407] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
Ethanol misuse is frequently associated with a multitude of profound medical conditions, contributing to health-, individual- and social-related damage. A particularly dangerous threat from this classification is coined as alcoholic liver disease (ALD), a liver condition caused by prolonged alcohol overconsumption, involving several pathological stages induced by alcohol metabolic byproducts and sustained cellular intoxication. Molecular, pathological mechanisms of ALD principally root in the innate immunity system and are especially associated with enhanced functionality of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. NF-κB is an interesting and convoluted DNA transcription regulator, promoting both anti-inflammatory and pro-inflammatory gene expression. Thus, the abundancy of studies in recent years underlines the importance of NF-κB in inflammatory responses and the mechanistic stimulation of inner molecular motifs within the factor components. Hereby, in the following review, we would like to put emphasis on the correlation between the NF-κB inflammation signaling pathway and ALD progression. We will provide the reader with the current knowledge regarding the chronic and acute alcohol consumption patterns, the molecular mechanisms of ALD development, the involvement of the NF-κB pathway and its enzymatic regulators. Therefore, we review various experimental in vitro and in vivo studies regarding the research on ALD, including the recent active compound treatments and the genetic modification approach. Furthermore, our investigation covers a few human studies.
Collapse
Affiliation(s)
- Aleksander J. Nowak
- Experimental Radiology, University Clinic for Radiology and Nuclear Medicine, Leipziger Strasse 44, 39120 Magdeburg, Germany;
- Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Borna Relja
- Experimental Radiology, University Clinic for Radiology and Nuclear Medicine, Leipziger Strasse 44, 39120 Magdeburg, Germany;
- Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| |
Collapse
|
41
|
Stafford AM, Reed C, Phillips TJ. Non-genetic factors that influence methamphetamine intake in a genetic model of differential methamphetamine consumption. Psychopharmacology (Berl) 2020; 237:3315-3336. [PMID: 32833064 PMCID: PMC7572688 DOI: 10.1007/s00213-020-05614-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022]
Abstract
RATIONALE Genetic and non-genetic factors influence substance use disorders. Our previous work in genetic mouse models focused on genetic factors that influence methamphetamine (MA) intake. The current research examined several non-genetic factors for their potential influence on this trait. OBJECTIVES We examined the impact on MA intake of several non-genetic factors, including MA access schedule, prior forced MA exposure, concomitant ethanol (EtOH) access, and gamma-aminobutyric acid type B (GABAB) receptor activation. Selectively bred MA high drinking (MAHDR) and low drinking (MALDR) mice participated in this research. RESULTS MAHDR, but not MALDR, mice increased MA intake when given intermittent access, compared with continuous access, with a water choice under both schedules. MA intake was not altered by previous exposure to forced MA consumption. Male MAHDR mice given simultaneous access to MA, EtOH, and an EtOH+MA mixture exhibited a strong preference for MA over EtOH and EtOH+MA; MA intake was not affected by EtOH in female MAHDR mice. When independent MAHDR groups were given access to MA, EtOH, or EtOH+MA vs. water in each case, MA intake was reduced in the water vs. EtOH+MA group, compared with the water vs. MA group. The GABAB receptor agonist R(+)-baclofen (BAC) not only reduced MA intake but also reduced water intake and locomotor activity in MAHDR mice. There was a residual effect of BAC, such that MA intake was increased after termination of BAC treatment. CONCLUSIONS These findings demonstrate that voluntary MA intake in MAHDR mice is influenced by non-genetic factors related to MA access schedule and co-morbid EtOH exposure.
Collapse
Affiliation(s)
- A M Stafford
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
| | - C Reed
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
| | - T J Phillips
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA.
- Veterans Affairs Portland Health Care System, Portland, OR, USA.
| |
Collapse
|
42
|
Shin SK, Sneed SE, Nennig SE, Cheek SR, Kinder HA, Solomon MG, Schank JR, West FD. An Adolescent Porcine Model of Voluntary Alcohol Consumption Exhibits Binge Drinking and Motor Deficits in a Two Bottle Choice Test. Alcohol Alcohol 2020; 56:266-274. [PMID: 33123726 DOI: 10.1093/alcalc/agaa105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 01/08/2023] Open
Abstract
AIMS Alcohol is the most commonly abused substance leading to significant economic and medical burdens. Pigs are an attractive model for studying alcohol abuse disorder due to the comparable alcohol metabolism and consumption behavior, which are in stark contrast to rodent models. This study investigates the usage of a porcine model for voluntary binge drinking (BD) and a detailed analysis of gait changes due to motor function deficits during alcohol intoxication. METHODS Adolescent pigs were trained to drink increasing concentration (0-8%) of alcohol mixed in a 0.2% saccharin solution for 1 h in a two bottle choice test for 2 weeks. The training period was followed by a 3-week alcohol testing period, where animals were given free access to 8% alcohol in 0.2% saccharin solution and 0.2% saccharin water solution. Blood alcohol levels were tested and gait analysis was performed pre-alcohol consumption, last day of training, and Day 5 of each testing period. RESULTS Pigs voluntarily consumed alcohol to intoxication at all timepoints with blood alcohol concentration (BAL) ≥80 mg/dl. Spatiotemporal gait parameters including velocity, cadence, cycle time, swing time, stance time, step time, and stride length were perturbed as a result of intoxication. The stratification of the gait data based on BAL revealed that the gait parameters were affected in a dose-dependent manner. CONCLUSION This novel adolescent BD porcine model with inherent anatomical and physiological similarities to humans display similar consumption and intoxication behavior that is likely to yield results that are translatable to human patients.
Collapse
Affiliation(s)
- Soo K Shin
- Regenerative Bioscience Center, University of Georgia, 425 River Road, Athens, GA, 30602, USA.,Department of Pharmaceutical and Biomedical Sciences, Interdisciplinary Toxicology Institute, University of Georgia, 250 W. Green Street, Athens, GA, 30602, USA.,Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, 425 River Road, Athens, GA, 30602, USA
| | - Sydney E Sneed
- Regenerative Bioscience Center, University of Georgia, 425 River Road, Athens, GA, 30602, USA.,Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, 425 River Road, Athens, GA, 30602, USA
| | - Sadie E Nennig
- Department of Physiology and Pharmacy, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA, 30602, USA.,Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, 310 East Campus Road, Athens, GA, 30602, USA
| | - Savannah R Cheek
- Department of Pharmaceutical and Biomedical Sciences, Interdisciplinary Toxicology Institute, University of Georgia, 250 W. Green Street, Athens, GA, 30602, USA
| | - Holly A Kinder
- Regenerative Bioscience Center, University of Georgia, 425 River Road, Athens, GA, 30602, USA.,Department of Pharmaceutical and Biomedical Sciences, Interdisciplinary Toxicology Institute, University of Georgia, 250 W. Green Street, Athens, GA, 30602, USA.,Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, 310 East Campus Road, Athens, GA, 30602, USA
| | - Matthew G Solomon
- Department of Physiology and Pharmacy, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Jesse R Schank
- Department of Physiology and Pharmacy, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA, 30602, USA.,Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, 310 East Campus Road, Athens, GA, 30602, USA
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, 425 River Road, Athens, GA, 30602, USA.,Department of Pharmaceutical and Biomedical Sciences, Interdisciplinary Toxicology Institute, University of Georgia, 250 W. Green Street, Athens, GA, 30602, USA.,Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, 425 River Road, Athens, GA, 30602, USA.,Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, 310 East Campus Road, Athens, GA, 30602, USA
| |
Collapse
|
43
|
Brancato A, Castelli V, Lavanco G, Cannizzaro C. Environmental Enrichment During Adolescence Mitigates Cognitive Deficits and Alcohol Vulnerability due to Continuous and Intermittent Perinatal Alcohol Exposure in Adult Rats. Front Behav Neurosci 2020; 14:583122. [PMID: 33100982 PMCID: PMC7546794 DOI: 10.3389/fnbeh.2020.583122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/25/2020] [Indexed: 12/27/2022] Open
Abstract
Perinatal alcohol exposure affects ontogenic neurodevelopment, causing physical and functional long-term abnormalities with limited treatment options. This study investigated long-term consequences of continuous and intermittent maternal alcohol drinking on behavioral readouts of cognitive function and alcohol vulnerability in the offspring. The effects of environmental enrichment (EE) during adolescence were also evaluated. Female rats underwent continuous alcohol drinking (CAD)—or intermittent alcohol drinking paradigm (IAD), along pregestation, gestation, and lactation periods—equivalent to the whole gestational period in humans. Male offspring were reared in standard conditions or EE until adulthood and were then assessed for declarative memory in the novel object recognition test; spatial learning, cognitive flexibility, and reference memory in the Morris water maze (MWM); alcohol consumption and relapse by a two-bottle choice paradigm. Our data show that perinatal CAD decreased locomotor activity, exploratory behavior, and declarative memory with respect to controls, whereas perinatal IAD displayed impaired declarative memory and spatial learning and memory. Moreover, both perinatal alcohol-exposed offspring showed higher vulnerability to alcohol consummatory behavior than controls, albeit perinatal IAD rats showed a greater alcohol consumption and relapse behavior with respect to perinatal-CAD progeny. EE ameliorated declarative memory in perinatal CAD, while it mitigated spatial learning and reference memory impairment in perinatal-IAD progeny. In addition, EE decreased vulnerability to alcohol in both control and perinatal alcohol-exposed rats. Maternal alcohol consumption produces drinking pattern-related long-term consequences on cognition and vulnerability to alcohol in the offspring. However, increased positive environmental stimuli during adolescence may curtail the detrimental effects of developmental alcohol exposure.
Collapse
Affiliation(s)
- Anna Brancato
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Valentina Castelli
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Gianluca Lavanco
- INSERM U1215, NeuroCentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France.,Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Carla Cannizzaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence "G. D'Alessandro", University of Palermo, Palermo, Italy
| |
Collapse
|
44
|
Grandjean J, Duque J. A TMS study of preparatory suppression in binge drinkers. Neuroimage Clin 2020; 28:102383. [PMID: 32828028 PMCID: PMC7451449 DOI: 10.1016/j.nicl.2020.102383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/27/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023]
Abstract
Binge drinking consists in a pattern of consumption characterised by the repeated alternation between massive alcohol intakes and abstinence periods. A continuum hypothesis suggests that this drinking endeavour represents an early stage of alcohol dependence rather than a separate phenomenon. Among the variety of alterations in alcohol-dependent individuals (ADIs), one has to do with the motor system, which does not show a normal pattern of activity during action preparation. In healthy controls (HCs), motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) over primary motor cortex (M1) show both facilitation and suppression effects, depending on the time and setting of TMS during action preparation. A recent study focusing on the suppression component revealed that this aspect of preparatory activity is abnormally weak in ADIs and that this defect scales with the risk of relapse. In the present study, we tested whether binge drinkers (BDs) present a similar deficit. To do so, we recorded MEPs in a set of hand muscles applying TMS in 20 BDs and in 20 matched HCs while they were preparing index finger responses in an instructed-delay choice reaction time task. Consistent with past research, the MEP data in HCs revealed a strong MEP suppression in this task. This effect was evident in all hand muscles, regardless of whether they were relevant or irrelevant in the task. BDs also showed some preparatory suppression, yet this effect was less consistent, especially in the prime mover of the responding hand. These findings suggest abnormal preparatory activity in BDs, similar to alcohol-dependent patients, though some of the current results also raise new questions regarding the significance of these observations.
Collapse
Affiliation(s)
- Julien Grandjean
- CoActions Lab, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium.
| | - Julie Duque
- CoActions Lab, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
45
|
Ericson M, Ulenius L, Andrén A, Jonsson S, Adermark L, Söderpalm B. Different dopamine tone in ethanol high- and low-consuming Wistar rats. Addict Biol 2020; 25:e12761. [PMID: 31099157 DOI: 10.1111/adb.12761] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/18/2019] [Accepted: 03/22/2019] [Indexed: 11/27/2022]
Abstract
Excessive alcohol use causes considerable morbidity and mortality worldwide. Changes in the mesolimbic dopamine system have been postulated as a neurobiological underpinning of excessive alcohol consumption, and recent research also suggests that the amino acid taurine plays a central role in ethanol-induced dopamine elevation. The aim of this study was to further outline the role of dopamine and taurine in regulating alcohol consumption. In this study, a choice between ethanol (20%) and water was administered to Wistar rats in an intermittent manner (three times/week) for seven consecutive weeks. In vivo microdialysis was used to explore baseline levels as well as ethanol-induced increases of extracellular dopamine and taurine, in the nucleus accumbens (nAc) of Wistar rats voluntarily consuming large or small amounts of ethanol. Basal levels of taurine were also measured in cerebrospinal fluid (CSF) and serum in a subset of rats. Ethanol-induced increases in nAc dopamine and taurine did not differ between alcohol-consuming and naïve rats. However, when categorized based on ethanol intake, rats consuming larger amounts of ethanol exhibited a lower dopamine tone in the nucleus accumbens and responded to ethanol with a slower elevation of extracellular taurine levels, as compared with low-consuming animals. Basal levels of taurine in nAc, CSF, or serum did not differ between ethanol high- and low-consuming rats. Our data support previous studies claiming an association between low endogenous dopamine levels and excessive alcohol intake.
Collapse
Affiliation(s)
- Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at University of Gothenburg Gothenburg Sweden
| | - Lisa Ulenius
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at University of Gothenburg Gothenburg Sweden
| | - Anna Andrén
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at University of Gothenburg Gothenburg Sweden
| | - Susanne Jonsson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at University of Gothenburg Gothenburg Sweden
| | - Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at University of Gothenburg Gothenburg Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at University of Gothenburg Gothenburg Sweden
- BeroendeklinikenSahlgrenska University Hospital Gothenburg Sweden
| |
Collapse
|
46
|
Abstract
Binge drinking (BD), characterized by intermittent consumption of large quantities of alcohol in short periods of time, is the main alcohol consumption pattern in adolescents and young adults. BD has serious biomedical consequences, and it is a prominent risk factor for later development of alcohol use disorders. Rodent models offer exceptional power to study these negative consequences of BD. This chapter focuses on one of these BD models: the chronic-intermittent ethanol administration (CIEA) paradigm. Essentially, CIEA consists of the administration in rats or mice of i.p. injections of ethanol (doses: 3-4 g/kg) for several consecutive days each week, in alternation with several days without injections, during several weeks. Due to our interest in the neurobehavioral effects of BD, a combination of the CIEA model with a battery of behavioral tests is described, with emphasis on the effects of alcohol BD on different kinds of memory. The CIEA model, in combination with behavioral tasks, seems to be a useful tool for studying the neurobehavioral effects of BD as well as for developing potential prevention and treatment strategies.
Collapse
|
47
|
Johnson KA, Lovinger DM. Allosteric modulation of metabotropic glutamate receptors in alcohol use disorder: Insights from preclinical investigations. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 88:193-232. [PMID: 32416868 DOI: 10.1016/bs.apha.2020.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are family C G protein-coupled receptors (GPCRs) that modulate neuronal excitability and synaptic transmission throughout the nervous system. Owing to recent advances in development of subtype-selective allosteric modulators of mGlu receptors, individual members of the mGlu receptor family have been proposed as targets for treating a variety of neurological and psychiatric disorders, including substance use disorders. In this chapter, we highlight preclinical evidence that allosteric modulators of mGlu receptors could be useful for reducing alcohol consumption and preventing relapse in alcohol use disorder (AUD). We begin with an overview of the preclinical models that are used to study mGlu receptor involvement in alcohol-related behaviors. Alcohol exposure causes adaptations in both expression and function of various mGlu receptor subtypes, and pharmacotherapies aimed at reversing these adaptations have the potential to reduce alcohol consumption and seeking. Positive allosteric modulators (PAMs) of mGlu2 and negative allosteric modulators of mGlu5 show particular promise for reducing alcohol intake and/or preventing relapse. Finally, this chapter discusses important considerations for translating preclinical findings toward the development of clinically useful drugs, including the potential for PAMs to avoid tolerance issues that are frequently observed with repeated administration of GPCR agonists.
Collapse
Affiliation(s)
- Kari A Johnson
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
48
|
Acute Alcohol Effects on Response Inhibition Depend on Response Automatization, but not on GABA or Glutamate Levels in the ACC and Striatum. J Clin Med 2020; 9:jcm9020481. [PMID: 32050509 PMCID: PMC7073826 DOI: 10.3390/jcm9020481] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Alcohol increases GABAergic signaling and decreases glutamatergic signaling in the brain. Variations in these neurotransmitter levels may modulate/predict executive functioning. Matching this, strong impairments of response inhibition are one of the most consistently reported cognitive/behavioral effects of acute alcohol intoxication. However, it has never been investigated whether baseline differences in these neurotransmitters allow to predict how much alcohol intoxication impairs response inhibition, and whether this is reflected in neurophysiological measures of cognitive control. We used MR spectroscopy to assess baseline (i.e., sober) GABA and glutamate levels in the anterior cingulate cortex (ACC) and striatum in n = 30 healthy young males, who were subsequently tested once sober and once intoxicated (1.01 permille). Inhibition was assessed with the sustained attention to response task (SART). This paradigm also allows to examine the effect of different degrees of response automatization, which is a known modulator for response inhibition, but does not seem to be substantially impaired during acute intoxication. As a neurophysiological correlate of response inhibition and control, we quantified EEG-derived theta band power and located its source using beamforming analyses. We found that alcohol-induced response inhibition deficits only occurred in the case of response automatization. This was reflected by decreased theta band activity in the left supplementary motor area (SMA), which may reflect modulations in the encoding of a surprise signal in response to inhibition cues. However, we did not find that differences in baseline (i.e., sober) GABA or glutamate levels significantly modulated differences in the size of alcohol-induced inhibition deficits.
Collapse
|
49
|
Suárez-Suárez S, Doallo S, Pérez-García JM, Corral M, Rodríguez Holguín S, Cadaveira F. Response Inhibition and Binge Drinking During Transition to University: An fMRI Study. Front Psychiatry 2020; 11:535. [PMID: 32581896 PMCID: PMC7296115 DOI: 10.3389/fpsyt.2020.00535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Binge Drinking (BD), a highly prevalent drinking pattern among youth, has been linked with anomalies in inhibitory control. However, it is still not well characterized whether the neural mechanisms involved in this process are compromised in binge drinkers (BDs). Furthermore, recent findings suggest that exerting inhibitory control to alcohol-related stimuli requires an increased effort in BDs, relative to controls, but the brain regions subserving these effects have also been scarcely investigated. Here we explored the impact of BD on the pattern of neural activity mediating response inhibition and its modulation by the motivational salience of stimuli (alcohol-related content). METHODS Sixty-seven (36 females) first-year university students, classified as BDs (n = 32) or controls (n = 35), underwent fMRI as they performed an alcohol-cued Go/NoGo task in which pictures of alcoholic or non-alcoholic beverages were presented as Go or NoGo stimuli. RESULTS During successful inhibition trials, BDs relative to controls showed greater activity in the bilateral inferior frontal gyrus (IFG), extending to the anterior insula, a brain region usually involved in response inhibition tasks, despite the lack of behavioral differences between groups. Moreover, BDs displayed increased activity in this region restricted to the right hemisphere when inhibiting a prepotent response to alcohol-related stimuli. CONCLUSIONS The increased neural activity in the IFG/insula during response inhibition in BDs, in the absence of behavioral impairments, could reflect a compensatory mechanism. The findings suggest that response inhibition-related activity in the right IFG/insula is modulated by the motivational salience of stimuli and highlight the role of this brain region in suppressing responses to substance-associated cues.
Collapse
Affiliation(s)
- Samuel Suárez-Suárez
- Department of Clinical Psychology and Psychobiology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Sonia Doallo
- Department of Clinical Psychology and Psychobiology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jose Manuel Pérez-García
- Department of Clinical Psychology and Psychobiology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Montserrat Corral
- Department of Clinical Psychology and Psychobiology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Socorro Rodríguez Holguín
- Department of Clinical Psychology and Psychobiology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Fernando Cadaveira
- Department of Clinical Psychology and Psychobiology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
50
|
Odeon MM, Acosta GB. Repeated maternal separation: Alcohol consumption, anxious behavior and corticosterone were reversed by a non-pharmacological treatment. Prog Neuropsychopharmacol Biol Psychiatry 2019; 95:109726. [PMID: 31386878 DOI: 10.1016/j.pnpbp.2019.109726] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/25/2019] [Accepted: 07/28/2019] [Indexed: 02/03/2023]
Abstract
Adverse events in early life have been related to a maladaptive stress response during adulthood, which could predispose individuals to psychiatric and physiological disorders. The purpose of this work was to study the implications of repeated maternal separation (RMS) plus a physical stressor (cold stress), voluntary ethanol consumption and plasmatic levels of corticosterone (Cor) via conflict behavior tests. To this aim, pups were separated daily from their mothers for one hour and subjected to cold stress (4 °C) between postnatal days (PD) 2 and 20. Control groups were left undisturbed with their mothers. Afterwards, all groups were exposed to voluntary ethanol (6%) or dextrose (1%) intake for 7 days. After a 30-day period of environmental enrichment (EE), the animals were again exposed to the voluntary intake protocol for 7 days. At 66 days, they were subjected to different conflict tests. Thereafter, rats were sacrificed by decapitation and blood trunk was collected to determine plasma corticosterone levels. We demonstrated that early RMS increased both voluntary alcohol intake and Cor levels. Moreover, young adult animals showed excessive activity in conflict tests. Whereas in animals exposed to a non-pharmacological treatment, known as environmental enrichment (EE), the effects previously obtained were reversed and/or prevented. In summary, we can conclude that the combination of maternal separation in early life plus cold stress increase both the voluntary exposure to alcohol and disruptive behaviors. This is a risk factor for the development of chronic diseases such as alcoholism and long-term depression. However, we found that an enriched environment may have a beneficial effect with respect to alcohol intake and aggressive behaviors.
Collapse
Affiliation(s)
- María Mercedes Odeon
- Instituto de Investigaciones Farmacológicas (ININFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Junín 956, 5° floor, Ciudad Autónoma de Buenos Aires C1113AAD, Argentina.
| | - Gabriela Beatriz Acosta
- Instituto de Investigaciones Farmacológicas (ININFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Junín 956, 5° floor, Ciudad Autónoma de Buenos Aires C1113AAD, Argentina.
| |
Collapse
|