1
|
Wen X, Hu J. Targeting STAT3 signaling pathway in the treatment of Alzheimer's disease with compounds from natural products. Int Immunopharmacol 2024; 141:112936. [PMID: 39163684 DOI: 10.1016/j.intimp.2024.112936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is difficult to cure and of global concern. Neuroinflammation is closely associated with the onset and progression of AD, making its treatment increasingly important. Compounds from natural products, with fewer side effects than synthetic drugs, are of high research interest. STAT3, a multifunctional transcription factor, is involved in various cellular processes including inflammation, cell growth, and apoptosis. Its activation and inhibition can have different effects under various pathological conditions. In AD, the STAT3 protein plays a crucial role in promoting neuroinflammation and contributing to disease progression. This occurs primarily through the JAK2-STAT3 signaling pathway, which impacts microglia, astrocytes, and hippocampal neurons. This paper reviews the STAT3 signaling pathway in AD and 25 compounds targeting STAT3 up to 2024. Notably, Rutin, Paeoniflorin, and Geniposide up-regulate STAT3 in hippocampal and cortex neurons, showing neuroprotective effects in various AD models. Other 23 compounds downregulate AD by suppressing neuroinflammation through inhibition of STAT3 activation in microglia and astrocytes. These findings highlight the potential of compounds from natural products in improving AD by targeting STAT3, offering insights into the prevention and management of AD.
Collapse
Affiliation(s)
- Xiyue Wen
- Department of Clinical Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
| | - Jinyue Hu
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China.
| |
Collapse
|
2
|
Afzal A, Afzal Z, Bizink S, Davis A, Makahleh S, Mohamed Y, Coniglio SJ. Phagocytosis Checkpoints in Glioblastoma: CD47 and Beyond. Curr Issues Mol Biol 2024; 46:7795-7811. [PMID: 39194679 DOI: 10.3390/cimb46080462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 08/29/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the deadliest human cancers with very limited treatment options available. The malignant behavior of GBM is manifested in a tumor which is highly invasive, resistant to standard cytotoxic chemotherapy, and strongly immunosuppressive. Immune checkpoint inhibitors have recently been introduced in the clinic and have yielded promising results in certain cancers. GBM, however, is largely refractory to these treatments. The immune checkpoint CD47 has recently gained attention as a potential target for intervention as it conveys a "don't eat me" signal to tumor-associated macrophages (TAMs) via the inhibitory SIRP alpha protein. In preclinical models, the administration of anti-CD47 monoclonal antibodies has shown impressive results with GBM and other tumor models. Several well-characterized oncogenic pathways have recently been shown to regulate CD47 expression in GBM cells and glioma stem cells (GSCs) including Epidermal Growth Factor Receptor (EGFR) beta catenin. Other macrophage pathways involved in regulating phagocytosis including TREM2 and glycan binding proteins are discussed as well. Finally, chimeric antigen receptor macrophages (CAR-Ms) could be leveraged for greatly enhancing the phagocytosis of GBM and repolarization of the microenvironment in general. Here, we comprehensively review the mechanisms that regulate the macrophage phagocytosis of GBM cells.
Collapse
Affiliation(s)
- Amber Afzal
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
| | - Zobia Afzal
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
| | - Sophia Bizink
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
| | - Amanda Davis
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
| | - Sara Makahleh
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
| | - Yara Mohamed
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
| | - Salvatore J Coniglio
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
- Department of Biological Sciences, Kean University, Union, NJ 07083, USA
| |
Collapse
|
3
|
Gardner RS, Kyle M, Hughes K, Zhao LR. Single-Cell RNA Sequencing Reveals Immunomodulatory Effects of Stem Cell Factor and Granulocyte Colony-Stimulating Factor Treatment in the Brains of Aged APP/PS1 Mice. Biomolecules 2024; 14:827. [PMID: 39062541 PMCID: PMC11275138 DOI: 10.3390/biom14070827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD) leads to progressive neurodegeneration and dementia. AD primarily affects older adults with neuropathological changes including amyloid-beta (Aβ) deposition, neuroinflammation, and neurodegeneration. We have previously demonstrated that systemic treatment with combined stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) (SCF+G-CSF) reduces the Aβ load, increases Aβ uptake by activated microglia and macrophages, reduces neuroinflammation, and restores dendrites and synapses in the brains of aged APPswe/PS1dE9 (APP/PS1) mice. However, the mechanisms underlying SCF+G-CSF-enhanced brain repair in aged APP/PS1 mice remain unclear. This study used a transcriptomic approach to identify the potential mechanisms by which SCF+G-CSF treatment modulates microglia and peripheral myeloid cells to mitigate AD pathology in the aged brain. After injections of SCF+G-CSF for 5 consecutive days, single-cell RNA sequencing was performed on CD11b+ cells isolated from the brains of 28-month-old APP/PS1 mice. The vast majority of cell clusters aligned with transcriptional profiles of microglia in various activation states. However, SCF+G-CSF treatment dramatically increased a cell population showing upregulation of marker genes related to peripheral myeloid cells. Flow cytometry data also revealed an SCF+G-CSF-induced increase of cerebral CD45high/CD11b+ active phagocytes. SCF+G-CSF treatment robustly increased the transcription of genes implicated in immune cell activation, including gene sets that regulate inflammatory processes and cell migration. The expression of S100a8 and S100a9 was robustly enhanced following SCF+G-CSF treatment in all CD11b+ cell clusters. Moreover, the topmost genes differentially expressed with SCF+G-CSF treatment were largely upregulated in S100a8/9-positive cells, suggesting a well-conserved transcriptional profile related to SCF+G-CSF treatment in resident and peripherally derived CD11b+ immune cells. This S100a8/9-associated transcriptional profile contained notable genes related to pro-inflammatory and anti-inflammatory responses, neuroprotection, and Aβ plaque inhibition or clearance. Altogether, this study reveals the immunomodulatory effects of SCF+G-CSF treatment in the aged brain with AD pathology, which will guide future studies to further uncover the therapeutic mechanisms.
Collapse
Affiliation(s)
| | | | | | - Li-Ru Zhao
- Department of Neurosurgery, State University of New York Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| |
Collapse
|
4
|
Feng B, Zheng J, Cai Y, Han Y, Han Y, Wu J, Feng J, Zheng K. An Epigenetic Manifestation of Alzheimer's Disease: DNA Methylation. ACTAS ESPANOLAS DE PSIQUIATRIA 2024; 52:365-374. [PMID: 38863055 PMCID: PMC11190457 DOI: 10.62641/aep.v52i3.1595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Alzheimer's disease (AD), the most common form of dementia, has a complex pathogenesis. The number of AD patients has increased in recent years due to population aging, while a trend toward a younger age of onset has arisen, imposing a substantial burden on society and families, and garnering extensive attention. DNA methylation has recently been revealed to play an important role in AD onset and progression. DNA methylation is a critical mechanism regulating gene expression, and alterations in this mechanism dysregulate gene expression and disrupt important pathways, including oxidative stress responses, inflammatory reactions, and protein degradation processes, eventually resulting in disease. Studies have revealed widespread changes in AD patients' DNA methylation in the peripheral blood and brain tissues, affecting multiple signaling pathways and severely impacting neuronal cell and synaptic functions. This review summarizes the role of DNA methylation in the pathogenesis of AD, aiming to provide a theoretical basis for its early prevention and treatment.
Collapse
Affiliation(s)
- Boyi Feng
- Department of Chronic Disease, Longhua District Center for Chronic Disease Control/Mental Health, 510080 Shenzhen, Guangdong, China
- Shenzhen Guangming District People's Hospital, 518107 Shenzhen, Guangdong, China
| | - Junli Zheng
- Department of Chronic Disease, Longhua District Center for Chronic Disease Control/Mental Health, 510080 Shenzhen, Guangdong, China
| | - Ying Cai
- Public Health Service Center, Bao'an District, 518100 Shenzhen, Guangdong, China
| | - Yaguang Han
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150000 Harbin, Heilongjiang, China
| | - Yanhua Han
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150000 Harbin, Heilongjiang, China
| | - Jiaqi Wu
- Department of Chronic Disease, Longhua District Center for Chronic Disease Control/Mental Health, 510080 Shenzhen, Guangdong, China
| | - Jun Feng
- Department of Chronic Disease, Longhua District Center for Chronic Disease Control/Mental Health, 510080 Shenzhen, Guangdong, China
| | - Kai Zheng
- Department of Chronic Disease, Longhua District Center for Chronic Disease Control/Mental Health, 510080 Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Lee HJ, Choi HJ, Jeong YJ, Na YH, Hong JT, Han JM, Hoe HS, Lim KH. Developing theragnostics for Alzheimer's disease: Insights from cancer treatment. Int J Biol Macromol 2024; 269:131925. [PMID: 38685540 DOI: 10.1016/j.ijbiomac.2024.131925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
The prevalence of Alzheimer's disease (AD) and its associated economic and societal burdens are on the rise, but there are no curative treatments for AD. Interestingly, this neurodegenerative disease shares several biological and pathophysiological features with cancer, including cell-cycle dysregulation, angiogenesis, mitochondrial dysfunction, protein misfolding, and DNA damage. However, the genetic factors contributing to the overlap in biological processes between cancer and AD have not been actively studied. In this review, we discuss the shared biological features of cancer and AD, the molecular targets of anticancer drugs, and therapeutic approaches. First, we outline the common biological features of cancer and AD. Second, we describe several anticancer drugs, their molecular targets, and their effects on AD pathology. Finally, we discuss how protein-protein interactions (PPIs), receptor inhibition, immunotherapy, and gene therapy can be exploited for the cure and management of both cancer and AD. Collectively, this review provides insights for the development of AD theragnostics based on cancer drugs and molecular targets.
Collapse
Affiliation(s)
- Hyun-Ju Lee
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Hee-Jeong Choi
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Yoo Joo Jeong
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Yoon-Hee Na
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea
| | - Ji Min Han
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea.
| | - Hyang-Sook Hoe
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea.
| | - Key-Hwan Lim
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea.
| |
Collapse
|
6
|
Lei T, Yang Z, Li H, Qin M, Gao H. Interactions between nanoparticles and pathological changes of vascular in Alzheimer's disease. Adv Drug Deliv Rev 2024; 207:115219. [PMID: 38401847 DOI: 10.1016/j.addr.2024.115219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Emerging evidence suggests that vascular pathological changes play a pivotal role in the pathogenesis of Alzheimer's disease (AD). The dysfunction of the cerebral vasculature occurs in the early course of AD, characterized by alterations in vascular morphology, diminished cerebral blood flow (CBF), impairment of the neurovascular unit (NVU), vasculature inflammation, and cerebral amyloid angiopathy. Vascular dysfunction not only facilitates the influx of neurotoxic substances into the brain, triggering inflammation and immune responses but also hampers the efflux of toxic proteins such as Aβ from the brain, thereby contributing to neurodegenerative changes in AD. Furthermore, these vascular changes significantly impact drug delivery and distribution within the brain. Therefore, developing targeted delivery systems or therapeutic strategies based on vascular alterations may potentially represent a novel breakthrough in AD treatment. This review comprehensively examines various aspects of vascular alterations in AD and outlines the current interactions between nanoparticles and pathological changes of vascular.
Collapse
Affiliation(s)
- Ting Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zixiao Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Meng Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Wang S, Xiao Y, An X, Luo L, Gong K, Yu D. A comprehensive review of the literature on CD10: its function, clinical application, and prospects. Front Pharmacol 2024; 15:1336310. [PMID: 38389922 PMCID: PMC10881666 DOI: 10.3389/fphar.2024.1336310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
CD10, a zinc-dependent metalloprotease found on the cell surface, plays a pivotal role in an array of physiological and pathological processes including cardiovascular regulation, immune function, fetal development, pain response, oncogenesis, and aging. Recognized as a biomarker for hematopoietic and tissue stem cells, CD10 has garnered attention for its prognostic potential in the progression of leukemia and various solid tumors. Recent studies underscore its regulatory significance and therapeutic promise in combating Alzheimer's disease (AD), and it is noted for its protective role in preventing heart failure (HF), obesity, and type-2 diabetes. Furthermore, CD10/substance P interaction has also been shown to contribute to the pain signaling regulation and immunomodulation in diseases such as complex regional pain syndrome (CRPS) and osteoarthritis (OA). The emergence of COVID-19 has sparked interest in CD10's involvement in the disease's pathogenesis. Given its association with multiple disease states, CD10 is a prime therapeutic target; inhibitors targeting CD10 are now being advanced as therapeutic agents. This review compiles recent and earlier literature on CD10, elucidating its physicochemical attributes, tissue-specific expression, and molecular functions. Furthermore, it details the association of CD10 with various diseases and the clinical advancements of its inhibitors, providing a comprehensive overview of its growing significance in medical research.
Collapse
Affiliation(s)
- Shudong Wang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yinghui Xiao
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xingna An
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ling Luo
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Kejian Gong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dehai Yu
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
8
|
Horibe S, Emoto T, Mizoguchi T, Tanaka T, Kawauchi S, Sasaki N, Yamashita T, Ikeda K, Emoto N, Hirata KI, Rikitake Y. Endothelial senescence alleviates cognitive impairment in a mouse model of Alzheimer's disease. Glia 2024; 72:51-68. [PMID: 37610154 DOI: 10.1002/glia.24461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
Alzheimer's disease (AD) is among the most prevalent age-related neurodegenerative diseases. Endothelial cell (EC) senescence was discovered in the AD brain, but its function in AD pathogenesis was unidentified. Here we created an AD mouse model with EC senescence (APP/PS1;TERF2DN mice) by intercrossing APP/PS1 mice with Tie2 promoter-driven dominant negative telomeric repeat-binding factor 2 transgenic mice (TERF2DN-Tg mice). We evaluated cognitive functions and AD brain pathology in APP/PS1;TERF2DN mice. Surprisingly, compared with the control APP/PS1 mice, APP/PS1;TERF2DN mice demonstrated the attenuation of cognitive impairment and amyloid-β (Aβ) pathology, accompanied by the compaction of Aβ plaques with increased microglial coverage and reduced neurite dystrophy. Moreover, we evaluated whether EC senescence could affect microglial morphology and phagocytosis of Aβ. Compared with wild-type mice, microglia in TERF2DN-Tg mice display increased numbers of endpoints (a morphometric parameter to quantify the number of processes) and Aβ phagocytosis and related gene expression. Single-cell RNA-sequencing analysis showed that compared with APP/PS1 mouse microglia, APP/PS1;TERF2DN mouse microglia displayed a modest decline in disease-associated microglia, accompanied by an altered direction of biological process branching from antigen synthesis and arrangement to ribonucleoprotein complex biogenesis. Our outcomes indicate that EC senescence alters microglia toward a protective phenotype with a rise in phagocytic and barrier roles, and may offer a clue to create a novel preventive/therapeutic method to treat AD.
Collapse
Affiliation(s)
- Sayo Horibe
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Japan
| | - Takuo Emoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Taiji Mizoguchi
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Japan
| | - Toru Tanaka
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Japan
| | - Shoji Kawauchi
- Comprehensive Education and Research Center, Kobe Pharmaceutical University, Kobe, Japan
| | - Naoto Sasaki
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Japan
| | - Tomoya Yamashita
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology, and Innovation, Kobe, Japan
| | - Koji Ikeda
- Department of Epidemiology for Longevity and Regional Health, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Noriaki Emoto
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshiyuki Rikitake
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
9
|
Bauer C, Duplan E, Saint-George-Hyslop P, Checler F. Potentially Pathogenic SORL1 Mutations Observed in Autosomal-Dominant Cases of Alzheimer's Disease Do Not Modulate APP Physiopathological Processing. Cells 2023; 12:2802. [PMID: 38132122 PMCID: PMC10742224 DOI: 10.3390/cells12242802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
The SORL1 gene encodes LR11/SorLA, a protein that binds β-amyloid precursor protein (APP) and drives its intracellular trafficking. SORL1 mutations, occurring frequently in a subset of familial cases of Alzheimer's disease (AD), have been documented, but their pathogenic potential is not yet clear and questions remain concerning their putative influence on the physiopathological processing of APP. We have assessed the influence of two SORL1 mutations that were described as likely disease-causing and that were associated with either benign (SorLA924) or severe (SorLA511) AD phenotypes. We examined the influence of wild-type and mutants SorLA in transiently transfected HEK293 cells expressing either wild-type or Swedish mutated APP on APP expression, secreted Aβ and sAPPα levels, intracellular Aβ 40 and Aβ42 peptides, APP-CTFs (C99 and C83) expressions, α-, β- and γ-secretases expressions and activities as well as Aβ and CTFs-degrading enzymes. These paradigms were studied in control conditions or after pharmacological proteasomal modulation. We also established stably transfected CHO cells expressing wild-type SorLA and established the colocalization of APP and either wild-type or mutant SorLA. SorLA mutations partially disrupt co-localization of wild-type sorLA with APP. Overall, although we mostly confirmed previous data concerning the influence of wild-type SorLA on APP processing, we were unable to evidence significant alterations triggered by our set of SorLA mutants, whatever the cells or pharmacological conditions examined. Our study , however, does not rule out the possibility that other AD-linked SORL1 mutations could indeed affect APP processing, and that pathogenic mutations examined in the present study could interfere with other cellular pathways/triggers in AD.
Collapse
Affiliation(s)
- Charlotte Bauer
- INSERM, CNRS, IPMC, Team Labeled “Laboratory of Excellence (LABEX) Distalz”, Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Valbonne, France; (C.B.); (E.D.)
| | - Eric Duplan
- INSERM, CNRS, IPMC, Team Labeled “Laboratory of Excellence (LABEX) Distalz”, Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Valbonne, France; (C.B.); (E.D.)
| | - Peter Saint-George-Hyslop
- Center for Research in Neurodegenerative Diseases, Department of Medicine, Toronto Western Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada;
| | - Frédéric Checler
- INSERM, CNRS, IPMC, Team Labeled “Laboratory of Excellence (LABEX) Distalz”, Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Valbonne, France; (C.B.); (E.D.)
| |
Collapse
|
10
|
Hampel H, Elhage A, Cho M, Apostolova LG, Nicoll JAR, Atri A. Amyloid-related imaging abnormalities (ARIA): radiological, biological and clinical characteristics. Brain 2023; 146:4414-4424. [PMID: 37280110 PMCID: PMC10629981 DOI: 10.1093/brain/awad188] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
Excess accumulation and aggregation of toxic soluble and insoluble amyloid-β species in the brain are a major hallmark of Alzheimer's disease. Randomized clinical trials show reduced brain amyloid-β deposits using monoclonal antibodies that target amyloid-β and have identified MRI signal abnormalities called amyloid-related imaging abnormalities (ARIA) as possible spontaneous or treatment-related adverse events. This review provides a comprehensive state-of-the-art conceptual review of radiological features, clinical detection and classification challenges, pathophysiology, underlying biological mechanism(s) and risk factors/predictors associated with ARIA. We summarize the existing literature and current lines of evidence with ARIA-oedema/effusion (ARIA-E) and ARIA-haemosiderosis/microhaemorrhages (ARIA-H) seen across anti-amyloid clinical trials and therapeutic development. Both forms of ARIA may occur, often early, during anti-amyloid-β monoclonal antibody treatment. Across randomized controlled trials, most ARIA cases were asymptomatic. Symptomatic ARIA-E cases often occurred at higher doses and resolved within 3-4 months or upon treatment cessation. Apolipoprotein E haplotype and treatment dosage are major risk factors for ARIA-E and ARIA-H. Presence of any microhaemorrhage on baseline MRI increases the risk of ARIA. ARIA shares many clinical, biological and pathophysiological features with Alzheimer's disease and cerebral amyloid angiopathy. There is a great need to conceptually link the evident synergistic interplay associated with such underlying conditions to allow clinicians and researchers to further understand, deliberate and investigate on the combined effects of these multiple pathophysiological processes. Moreover, this review article aims to better assist clinicians in detection (either observed via symptoms or visually on MRI), management based on appropriate use recommendations, and general preparedness and awareness when ARIA are observed as well as researchers in the fundamental understanding of the various antibodies in development and their associated risks of ARIA. To facilitate ARIA detection in clinical trials and clinical practice, we recommend the implementation of standardized MRI protocols and rigorous reporting standards. With the availability of approved amyloid-β therapies in the clinic, standardized and rigorous clinical and radiological monitoring and management protocols are required to effectively detect, monitor, and manage ARIA in real-world clinical settings.
Collapse
Affiliation(s)
- Harald Hampel
- Eisai Inc., Alzheimer’s Disease and Brain Health, Nutley, NJ 07110, USA
| | - Aya Elhage
- Eisai Inc., Alzheimer’s Disease and Brain Health, Nutley, NJ 07110, USA
| | - Min Cho
- Eisai Inc., Alzheimer’s Disease and Brain Health, Nutley, NJ 07110, USA
| | - Liana G Apostolova
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - James A R Nicoll
- Division of Clinical Neurosciences, Clinical and Experimental Sciences, University of Southampton, Southampton SO16 6YD, UK
- Department of Cellular Pathology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Alireza Atri
- Banner Sun Health Research Institute, Banner Health, Sun City, AZ 85351, USA
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
11
|
Tundo GR, Grasso G, Persico M, Tkachuk O, Bellia F, Bocedi A, Marini S, Parravano M, Graziani G, Fattorusso C, Sbardella D. The Insulin-Degrading Enzyme from Structure to Allosteric Modulation: New Perspectives for Drug Design. Biomolecules 2023; 13:1492. [PMID: 37892174 PMCID: PMC10604886 DOI: 10.3390/biom13101492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/17/2023] [Indexed: 10/29/2023] Open
Abstract
The insulin-degrading enzyme (IDE) is a Zn2+ peptidase originally discovered as the main enzyme involved in the degradation of insulin and other amyloidogenic peptides, such as the β-amyloid (Aβ) peptide. Therefore, a role for the IDE in the cure of diabetes and Alzheimer's disease (AD) has been long envisaged. Anyway, its role in degrading amyloidogenic proteins remains not clearly defined and, more recently, novel non-proteolytic functions of the IDE have been proposed. From a structural point of view, the IDE presents an atypical clamshell structure, underscoring unique enigmatic enzymological properties. A better understanding of the structure-function relationship may contribute to solving some existing paradoxes of IDE biology and, in light of its multifunctional activity, might lead to novel therapeutic approaches.
Collapse
Affiliation(s)
- Grazia Raffaella Tundo
- Department of Clinical Science and Traslational Medicine, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy; (G.R.T.)
| | - Giuseppe Grasso
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy;
| | - Marco Persico
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy; (M.P.); (O.T.)
| | - Oleh Tkachuk
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy; (M.P.); (O.T.)
| | - Francesco Bellia
- Institute of Crystallography, CNR, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Alessio Bocedi
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Stefano Marini
- Department of Clinical Science and Traslational Medicine, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy; (G.R.T.)
| | | | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Caterina Fattorusso
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy; (M.P.); (O.T.)
| | | |
Collapse
|
12
|
Ullah R, Lee EJ. Advances in Amyloid-β Clearance in the Brain and Periphery: Implications for Neurodegenerative Diseases. Exp Neurobiol 2023; 32:216-246. [PMID: 37749925 PMCID: PMC10569141 DOI: 10.5607/en23014] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/25/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
This review examines the role of impaired amyloid-β clearance in the accumulation of amyloid-β in the brain and the periphery, which is closely associated with Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA). The molecular mechanism underlying amyloid-β accumulation is largely unknown, but recent evidence suggests that impaired amyloid-β clearance plays a critical role in its accumulation. The review provides an overview of recent research and proposes strategies for efficient amyloid-β clearance in both the brain and periphery. The clearance of amyloid-β can occur through enzymatic or non-enzymatic pathways in the brain, including neuronal and glial cells, blood-brain barrier, interstitial fluid bulk flow, perivascular drainage, and cerebrospinal fluid absorption-mediated pathways. In the periphery, various mechanisms, including peripheral organs, immunomodulation/immune cells, enzymes, amyloid-β-binding proteins, and amyloid-β-binding cells, are involved in amyloid-β clearance. Although recent findings have shed light on amyloid-β clearance in both regions, opportunities remain in areas where limited data is available. Therefore, future strategies that enhance amyloid-β clearance in the brain and/or periphery, either through central or peripheral clearance approaches or in combination, are highly encouraged. These strategies will provide new insight into the disease pathogenesis at the molecular level and explore new targets for inhibiting amyloid-β deposition, which is central to the pathogenesis of sporadic AD (amyloid-β in parenchyma) and CAA (amyloid-β in blood vessels).
Collapse
Affiliation(s)
- Rahat Ullah
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Neurology, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Eun Jeong Lee
- Department of Brain Science, Ajou University School of Medicine, Suwon 16499, Korea
| |
Collapse
|
13
|
Saiyed N, Yilmaz A, Vishweswariah S, Maiti AK, Ustun I, Bartolone S, Brown-Hughes T, Thorpe RJ, Osentoski T, Ruff S, Pai A, Maddens M, Imam K, Graham SF. Urinary Cytokines as Potential Biomarkers of Mild Cognitive Impairment and Alzheimer's Disease: A Pilot Study. J Alzheimers Dis Rep 2023; 7:649-657. [PMID: 37483327 PMCID: PMC10357120 DOI: 10.3233/adr-220081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/13/2023] [Indexed: 07/25/2023] Open
Abstract
Background Alzheimer's disease (AD) is the most common form of dementia, accounting for 80% of all cases. Mild cognitive impairment (MCI) is a transitional state between normal aging and AD. Early detection is crucial, as irreversible brain damage occurs before symptoms manifest. Objective This study aimed to identify potential biomarkers for early detection of AD by analyzing urinary cytokine concentrations. We investigated 37 cytokines in AD, MCI, and cognitively normal individuals (NC), assessing their associations with AD development. Methods Urinary cytokine concentrations were measured in AD (n = 25), MCI (n = 25), and NC (n = 26) patients. IL6ST and MMP-2 levels were compared between AD and NC, while TNFRSF8, IL6ST, and IL-19 were assessed in AD versus MCI. Diagnostic models distinguished AD from NC, and in-silico analysis explored molecular mechanisms related to AD. Results Significant perturbations in IL6ST and MMP-2 concentrations were observed in AD urine compared to NC, suggesting their potential as biomarkers. TNFRSF8, IL6ST, and IL-19 differed significantly between AD and MCI, implicating them in disease progression. Diagnostic models exhibited promising performance (AUC: 0.59-0.79, sensitivity: 0.72-0.80, specificity: 0.56-0.78) in distinguishing AD from NC. In-silico analysis revealed molecular insights, including relevant non-coding RNAs, microRNAs, and transcription factors. Conclusion This study establishes significant associations between urinary cytokine concentrations and AD and MCI. IL6ST, MMP-2, TNFRSF8, IL6ST, and IL-19 emerge as potential biomarkers for early detection of AD. In-silico analysis enhances understanding of molecular mechanisms in AD. Further validation and exploration of these biomarkers in larger cohorts are warranted to assess their clinical utility.
Collapse
Affiliation(s)
- Nazia Saiyed
- Beaumont Research Institute, Metabolomics Department, Royal Oak, MI, USA
| | - Ali Yilmaz
- Beaumont Research Institute, Metabolomics Department, Royal Oak, MI, USA
- Oakland University-William Beaumont School of Medicine, Rochester, MI, USA
| | | | - Amit K. Maiti
- Department of Genetics and Genomics, Mydnavar, Southfield, MI, USA
| | - Ilyas Ustun
- College of Computing and Digital Media, DePaul University, Chicago, IL, USA
| | - Sarah Bartolone
- Department of Urology, Beaumont Research Institute, Royal Oak, MI, USA
| | | | - Roland J. Thorpe
- Department of Health, Behavior, and Society, Program for Research on Men’s Health, Hopkins Center for Health Disparities Solutions, Johns Hopkins Alzheimer’s Disease Resource Center for Minority Aging Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Tammy Osentoski
- Department of Alzheimer’s Research, Beaumont Health, Royal Oak, MI, USA
| | - Stacey Ruff
- Beaumont Health, Geriatric Medicine, Berkley, MI, USA
| | - Amita Pai
- Beaumont Health, Geriatric Medicine, Berkley, MI, USA
| | | | - Khaled Imam
- Beaumont Health, Geriatric Medicine, Berkley, MI, USA
| | - Stewart F. Graham
- Beaumont Research Institute, Metabolomics Department, Royal Oak, MI, USA
- Oakland University-William Beaumont School of Medicine, Rochester, MI, USA
| |
Collapse
|
14
|
Kelly L, Sharp MM, Thomas I, Brown C, Schrag M, Antunes LV, Solopova E, Martinez-Gonzalez J, Rodríguez C, Carare RO. Targeting lysyl-oxidase (LOX) may facilitate intramural periarterial drainage for the treatment of Alzheimer's disease. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 5:100171. [PMID: 37457664 PMCID: PMC10338210 DOI: 10.1016/j.cccb.2023.100171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
Alzheimer's disease is the commonest form of dementia. It is likely that a lack of clearance of amyloid beta (Aβ) results in its accumulation in the parenchyma as Aβ oligomers and insoluble plaques, and within the walls of blood vessels as cerebral amyloid angiopathy (CAA). The drainage of Aβ along the basement membranes of blood vessels as intramural periarterial drainage (IPAD), could be improved if the driving force behind IPAD could be augmented, therefore reducing Aβ accumulation. There are alterations in the composition of the vascular basement membrane in Alzheimer's disease. Lysyl oxidase (LOX) is an enzyme involved in the remodelling of the extracellular matrix and its expression and function is altered in various disease states. The expression of LOX is increased in Alzheimer's disease, but it is unclear whether this is a contributory factor in the impairment of IPAD in Alzheimer's disease. The pharmacological inhibition of LOX may be a strategy to improve IPAD and reduce the accumulation of Aβ in the parenchyma and within the walls of blood vessels.
Collapse
Affiliation(s)
- Louise Kelly
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom, UK
| | | | | | - Christopher Brown
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom, UK
| | - Matthew Schrag
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA
| | - Lissa Ventura Antunes
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA
| | - Elena Solopova
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA
| | - José Martinez-Gonzalez
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Cristina Rodríguez
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | | |
Collapse
|
15
|
Vervuurt M, de Kort AM, Jäkel L, Kersten I, Abdo WF, Schreuder FHBM, Rasing I, Terwindt GM, Wermer MJH, Greenberg SM, Klijn CJM, Kuiperij HB, Verbeek MM. Decreased ratios of matrix metalloproteinases to tissue-type inhibitors in cerebrospinal fluid in sporadic and hereditary cerebral amyloid angiopathy. Alzheimers Res Ther 2023; 15:26. [PMID: 36717932 PMCID: PMC9885599 DOI: 10.1186/s13195-023-01171-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023]
Abstract
BACKGROUND To evaluate the potential of cerebrospinal fluid (CSF) levels of matrix metalloproteinases and tissue-type inhibitors (MMP; TIMP), and ratios of MMPs to TIMPs, to function as biomarkers for sporadic or hereditary cerebral amyloid angiopathy (CAA). METHODS CSF concentrations of the matrix metalloproteinases MMP-2, MMP-9 and MMP-14, as well as the tissue inhibitors of metalloproteinases TIMP-1, TIMP-2 and TIMP-3, were determined using immunoassays. These assays were applied to two, independent study groups of sporadic CAA (sCAA) (n = 28/43) and control subjects (n = 40/40), as well as to groups of pre-symptomatic (n = 11) and symptomatic hereditary Dutch-CAA (D-CAA) patients (n = 12), and age-matched controls (n = 22/28, respectively). RESULTS In the sCAA/control cohorts, inconsistent differences were found for individual MMPs and TIMPs, but MMP-2/TIMP-2 (discovery/validation: p = 0.004; p = 0.02) and MMP-14/TIMP-2 ratios (discovery/validation: p < 0.001; p = 0.04) were consistently decreased in sCAA, compared to controls. Moreover, MMP-14 was decreased in symptomatic D-CAA (p = 0.03), compared to controls. The MMP-14/TIMP-1 (p = 0.03) and MMP-14/TIMP-2 (p = 0.04) ratios were decreased in symptomatic D-CAA compared to controls and also compared to pre-symptomatic D-CAA (p = 0.004; p = 0.005, respectively). CONCLUSION CSF MMP-2/TIMP-2 and MMP-14/TIMP-2 were consistently decreased in sCAA, compared to controls. Additionally, MMP-14/TIMP-2 levels were also decreased in symptomatic D-CAA, compared to both pre-symptomatic D-CAA and controls, and can therefore be considered a biomarker for sporadic and late-stage hereditary forms of CAA.
Collapse
Affiliation(s)
- Marc Vervuurt
- Department of Neurology, Cognition and Behaviour, Donders Institute for Brain, Radboud University Medical Center, P.O. Box 9101, 6500 HB , 830 TML, Nijmegen, The Netherlands
| | - Anna M de Kort
- Department of Neurology, Cognition and Behaviour, Donders Institute for Brain, Radboud University Medical Center, P.O. Box 9101, 6500 HB , 830 TML, Nijmegen, The Netherlands
| | - Lieke Jäkel
- Department of Neurology, Cognition and Behaviour, Donders Institute for Brain, Radboud University Medical Center, P.O. Box 9101, 6500 HB , 830 TML, Nijmegen, The Netherlands
| | - Iris Kersten
- Department of Neurology, Cognition and Behaviour, Donders Institute for Brain, Radboud University Medical Center, P.O. Box 9101, 6500 HB , 830 TML, Nijmegen, The Netherlands
| | - Wilson F Abdo
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Floris H B M Schreuder
- Department of Neurology, Cognition and Behaviour, Donders Institute for Brain, Radboud University Medical Center, P.O. Box 9101, 6500 HB , 830 TML, Nijmegen, The Netherlands
| | - Ingeborg Rasing
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marieke J H Wermer
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Catharina J M Klijn
- Department of Neurology, Cognition and Behaviour, Donders Institute for Brain, Radboud University Medical Center, P.O. Box 9101, 6500 HB , 830 TML, Nijmegen, The Netherlands
| | - H Bea Kuiperij
- Department of Neurology, Cognition and Behaviour, Donders Institute for Brain, Radboud University Medical Center, P.O. Box 9101, 6500 HB , 830 TML, Nijmegen, The Netherlands
| | - Marcel M Verbeek
- Department of Neurology, Cognition and Behaviour, Donders Institute for Brain, Radboud University Medical Center, P.O. Box 9101, 6500 HB , 830 TML, Nijmegen, The Netherlands.
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
16
|
Neuroprotective Effects of the Psychoactive Compound Biatractylolide (BD) in Alzheimer's Disease. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238294. [PMID: 36500385 PMCID: PMC9737891 DOI: 10.3390/molecules27238294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Mitochondria play a central role in the survival or death of neuronal cells, and they are regulators of energy metabolism and cell death pathways. Many studies support the role of mitochondrial dysfunction and oxidative damage in the pathogenesis of Alzheimer's disease. Biatractylolide (BD) is a kind of internal symmetry double sesquiterpene novel ester compound isolated from the Chinese medicinal plant Baizhu, has neuroprotective effects in Alzheimer's disease. We developed a systematic pharmacological model based on chemical pharmacokinetic and pharmacological data to identify potential compounds and targets of Baizhu. The neuroprotective effects of BD in PC12 (rat adrenal pheochromocytoma cells) and SH-SY5Y (human bone marrow neuroblastoma cells) were evaluated by in vitro experiments. Based on the predicted results, we selected 18 active compounds, which were associated with 20 potential targets and 22 signaling pathways. Compound-target, target-disease and target-pathway networks were constructed using Cytoscape 3.2.1. And verified by in vitro experiments that BD could inhibit Aβ by reducing oxidative stress and decreasing CytC release induced mPTP opening. This study provides a theoretical basis for the development of BD as an anti-Alzheimer's disease drug.
Collapse
|
17
|
Reduced Expression of Voltage-Gated Sodium Channel Beta 2 Restores Neuronal Injury and Improves Cognitive Dysfunction Induced by A β1-42. Neural Plast 2022; 2022:3995227. [PMID: 36406589 PMCID: PMC9671742 DOI: 10.1155/2022/3995227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 11/12/2022] Open
Abstract
Voltage-gated sodium channel beta 2 (Nav2.2 or Navβ2, coded by SCN2B mRNA), a gene involved in maintaining normal physiological functions of the prefrontal cortex and hippocampus, might be associated with prefrontal cortex aging and memory decline. This study investigated the effects of Navβ2 in amyloid-β 1-42- (Aβ1-42-) induced neural injury model and the potential underlying molecular mechanism. The results showed that Navβ2 knockdown restored neuronal viability of Aβ1-42-induced injury in neurons; increased the contents of brain-derived neurotrophic factor (BDNF), enzyme neprilysin (NEP) protein, and NEP enzyme activity; and effectively altered the proportions of the amyloid precursor protein (APP) metabolites including Aβ42, sAPPα, and sAPPβ, thus ameliorating cognitive dysfunction. This may be achieved through regulating NEP transcription and APP metabolism, accelerating Aβ degradation, alleviating neuronal impairment, and regulating BDNF-related signal pathways to repair neuronal synaptic efficiency. This study provides novel evidence indicating that Navβ2 plays crucial roles in the repair of neuronal injury induced by Aβ1-42 both in vivo and in vitro.
Collapse
|
18
|
Sun ZD, Hu JX, Wu JR, Zhou B, Huang YP. Toxicities of amyloid-beta and tau protein are reciprocally enhanced in the Drosophila model. Neural Regen Res 2022; 17:2286-2292. [PMID: 35259851 PMCID: PMC9083152 DOI: 10.4103/1673-5374.336872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Extracellular aggregation of amyloid-beta (Aβ) and intracellular tau tangles are two major pathogenic hallmarks and critical factors of Alzheimer’s disease. A linear interaction between Aβ and tau protein has been characterized in several models. Aβ induces tau hyperphosphorylation through a complex mechanism; however, the master regulators involved in this linear process are still unclear. In our study with Drosophila melanogaster, we found that Aβ regulated tau hyperphosphorylation and toxicity by activating c-Jun N-terminal kinase. Importantly, Aβ toxicity was dependent on tau hyperphosphorylation, and flies with hypophosphorylated tau were insulated against Aβ-induced toxicity. Strikingly, tau accumulation reciprocally interfered with Aβ degradation and correlated with the reduction in mRNA expression of genes encoding Aβ-degrading enzymes, including dNep1, dNep3, dMmp2, dNep4, and dIDE. Our results indicate that Aβ and tau protein work synergistically to further accelerate Alzheimer’s disease progression and may be considered as a combined target for future development of Alzheimer’s disease therapeutics.
Collapse
Affiliation(s)
- Zhen-Dong Sun
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang Province, China
| | - Jia-Xin Hu
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang Province, China
| | - Jia-Rui Wu
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang Province, China
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yun-Peng Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang Province, China
| |
Collapse
|
19
|
Banerjee S, Manisha C, Bharathi J J, Kumar AP, Justin A, Ramanathan M. Structural dynamics and catalytic modulations of Aβ regulating enzymes as future outlook for Alzheimer's. Biochem Biophys Res Commun 2022; 631:1-8. [PMID: 36162324 DOI: 10.1016/j.bbrc.2022.09.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022]
Abstract
Aβ cascade hypothesis being considered most evident event in AD pathology and even today it holds good. Dysregulation of catalytic events of Aβ regulating enzymes can possibly cause faulty Aβ trafficking; inequity of Aβ formation and clearance resulting in misfolded protein accumulation, neurodegeneration and cognitive impairment. Many novel approaches have been made on this pathway to discover new molecules, unfortunately couldn't reach the terminal phases of clinical trials. Over decades, studies have been more focused on enzyme chemistry and explored the relationship between structural features and catalytic function of Aβ regulating enzymes. However, the modulations of catalytic mechanisms of those enzymes have not been imposed so far to reduce the Aβ load. Hence, in this review, we have critically detailed the knowledge of basic structural dynamics and possible catalytic modulations of enzymes responsible for Aβ formation and clearance that will impart new perspectives in drug discovery process.
Collapse
Affiliation(s)
- Sayani Banerjee
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, 643 001, India
| | - Chennu Manisha
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, 643 001, India
| | - Jeyaram Bharathi J
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, 643 001, India
| | - Ashwini Prem Kumar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, 643 001, India
| | - Antony Justin
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, 643 001, India.
| | - Muthiah Ramanathan
- Department of Pharmacology, PSG College of Pharmacy, Coimbatore, Tamil Nadu, 641 004, India
| |
Collapse
|
20
|
N-terminally truncated Aβ4-x proteoforms and their relevance for Alzheimer's pathophysiology. Transl Neurodegener 2022; 11:30. [PMID: 35641972 PMCID: PMC9158284 DOI: 10.1186/s40035-022-00303-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/21/2022] [Indexed: 01/22/2023] Open
Abstract
Background The molecular heterogeneity of Alzheimer’s amyloid-β (Aβ) deposits extends well beyond the classic Aβ1-40/Aβ1-42 dichotomy, substantially expanded by multiple post-translational modifications that increase the proteome diversity. Numerous truncated fragments consistently populate the brain Aβ peptidome, and their homeostatic regulation and potential contribution to disease pathogenesis are largely unknown. Aβ4-x peptides have been reported as major components of plaque cores and the limited studies available indicate their relative abundance in Alzheimer’s disease (AD). Methods Immunohistochemistry was used to assess the topographic distribution of Aβ4-x species in well-characterized AD cases using custom-generated monoclonal antibody 18H6—specific for Aβ4-x species and blind for full-length Aβ1-40/Aβ1-42—in conjunction with thioflavin-S and antibodies recognizing Aβx-40 and Aβx-42 proteoforms. Circular dichroism, thioflavin-T binding, and electron microscopy evaluated the biophysical and aggregation/oligomerization properties of full-length and truncated synthetic homologues, whereas stereotaxic intracerebral injections of monomeric and oligomeric radiolabeled homologues in wild-type mice were used to evaluate their brain clearance characteristics. Results All types of amyloid deposits contained the probed Aβ epitopes, albeit expressed in different proportions. Aβ4-x species showed preferential localization within thioflavin-S-positive cerebral amyloid angiopathy and cored plaques, strongly suggesting poor clearance characteristics and consistent with the reduced solubility and enhanced oligomerization of their synthetic homologues. In vivo clearance studies demonstrated a fast brain efflux of N-terminally truncated and full-length monomeric forms whereas their oligomeric counterparts—particularly of Aβ4-40 and Aβ4-42—consistently exhibited enhanced brain retention. Conclusions The persistence of aggregation-prone Aβ4-x proteoforms likely contributes to the process of amyloid formation, self-perpetuating the amyloidogenic loop and exacerbating amyloid-mediated pathogenic pathways.
Collapse
|
21
|
Brezovakova V, Sykova E, Jadhav S. Astrocytes Derived from Familial and Sporadic Alzheimer's Disease iPSCs Show Altered Calcium Signaling and Respond Differently to Misfolded Protein Tau. Cells 2022; 11:cells11091429. [PMID: 35563735 PMCID: PMC9101114 DOI: 10.3390/cells11091429] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/22/2022] Open
Abstract
Astrocytes regulate important functions in the brain, and their dysregulation has been linked to the etiology of neurodegenerative diseases, such as Alzheimer’s disease (AD). The role of astroglia in human AD remains enigmatic, owing to the limitations of animal models, which, while recreating some pathological aspects of the disease, do not fully mirror its course. In addition, the recognition of major structural and functional differences between human and mouse astrocytes has also prompted research into human glial cells. In the current study, astrocytes were generated using human iPSCs from patients with sporadic Alzheimer’s disease (sAD), familial Alzheimer’s disease (fAD) and non-demented controls (NDC). All clones gained astrocyte-specific morphological and proteomic characteristics upon in vitro differentiation, without considerable inter-clonal variances. In comparison to NDC, AD astrocytes displayed aberrant calcium dynamics in response to glutamate. When exposed to monomeric and aggregated tau, AD astrocytes demonstrated hypertrophy and elevated GFAP expression, differential expression of select signaling and receptor proteins, and the enhanced production of metalloproteinases (MMPs). Moreover, astrocytic secretomes were able to degrade tau in both monomeric and pathologically aggregated forms, which was mediated by MMP-2 and -9. The capacity to neutralize tau varied considerably between clones, with fAD astrocytes having the lowest degradability relative to sAD and healthy astrocytes. Importantly, when compared to aggregated tau alone, astrocytic secretome pretreatment of tau differentially reduced its detrimental effects on neurons. Our results show crucial differences in sporadic and familial AD astrocytes and suggests that these cells may play distinctive roles in the pathogenesis of early and late onset Alzheimer’s disease.
Collapse
|
22
|
Machhi J, Yeapuri P, Markovic M, Patel M, Yan W, Lu Y, Cohen JD, Hasan M, Abdelmoaty MM, Zhou Y, Xiong H, Wang X, Mosley RL, Gendelman HE, Kevadiya BD. Europium-Doped Cerium Oxide Nanoparticles for Microglial Amyloid Beta Clearance and Homeostasis. ACS Chem Neurosci 2022; 13:1232-1244. [PMID: 35312284 PMCID: PMC9227977 DOI: 10.1021/acschemneuro.1c00847] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder. Pathologically, the disease is characterized by the deposition of amyloid beta (Aβ) plaques and the presence of neurofibrillary tangles. These drive microglia neuroinflammation and consequent neurodegeneration. While the means to affect Aβ plaque accumulation pharmacologically was achieved, how it affects disease outcomes remains uncertain. Cerium oxide (CeO2) reduces Aβ plaques, oxidative stress, inflammation, and AD signs and symptoms. In particular, CeO2 nanoparticles (CeO2NPs) induce free-radical-scavenging and cell protective intracellular signaling. This can ameliorate the pathobiology of an AD-affected brain. To investigate whether CeO2NPs affect microglia neurotoxic responses, a novel formulation of europium-doped CeO2NPs (EuCeO2NPs) was synthesized. We then tested EuCeO2NPs for its ability to generate cellular immune homeostasis in AD models. EuCeO2NPs attenuated microglia BV2 inflammatory activities after Aβ1-42 exposure by increasing the cells' phagocytic and Aβ degradation activities. These were associated with increases in the expression of the CD36 scavenger receptor. EuCeO2NPs facilitated Aβ endolysosomal trafficking and abrogated microglial inflammatory responses. We posit that EuCeO2NPs may be developed as an AD immunomodulator.
Collapse
Affiliation(s)
- Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Pravin Yeapuri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Milica Markovic
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Milankumar Patel
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Wenhui Yan
- Department of Pharmacology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061, China
| | - Yaman Lu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Jacob D. Cohen
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Mahmudul Hasan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Mai Mohamed Abdelmoaty
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Giza 12622, Egypt
| | - You Zhou
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Huangui Xiong
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Xinglong Wang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - R. Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Bhavesh D. Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
23
|
Zhou C, Ni W, Zhu T, Dong S, Sun P, Hua F. Cellular Reprogramming and Its Potential Application in Alzheimer's Disease. Front Neurosci 2022; 16:884667. [PMID: 35464309 PMCID: PMC9023048 DOI: 10.3389/fnins.2022.884667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) has become the most common age-related dementia in the world and is currently incurable. Although many efforts have been made, the underlying mechanisms of AD remain unclear. Extracellular amyloid-beta deposition, intracellular tau hyperphosphorylation, neuronal death, glial cell activation, white matter damage, blood-brain barrier disruption, and other mechanisms all take part in this complicated disease, making it difficult to find an effective therapy. In the study of therapeutic methods, how to restore functional neurons and integrate myelin becomes the main point. In recent years, with the improvement and maturity of induced pluripotent stem cell technology and direct cell reprogramming technology, it has become possible to induce non-neuronal cells, such as fibroblasts or glial cells, directly into neuronal cells in vitro and in vivo. Remarkably, the induced neurons are functional and capable of entering the local neural net. These encouraging results provide a potential new approach for AD therapy. In this review, we summarized the characteristics of AD, the reprogramming technique, and the current research on the application of cellular reprogramming in AD. The existing problems regarding cellular reprogramming and its therapeutic potential for AD were also reviewed.
Collapse
Affiliation(s)
- Chao Zhou
- Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wanyan Ni
- Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Taiyang Zhu
- Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shuyu Dong
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, China
| | - Ping Sun
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fang Hua
- Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
24
|
Fanni AM, Okoye D, Monge FA, Hammond J, Maghsoodi F, Martin TD, Brinkley G, Phipps ML, Evans DG, Martinez JS, Whitten DG, Chi EY. Controlled and Selective Photo-oxidation of Amyloid-β Fibrils by Oligomeric p-Phenylene Ethynylenes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14871-14886. [PMID: 35344326 PMCID: PMC10452927 DOI: 10.1021/acsami.1c22869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) has been explored as a therapeutic strategy to clear toxic amyloid aggregates involved in neurodegenerative disorders such as Alzheimer's disease. A major limitation of PDT is off-target oxidation, which can be lethal for the surrounding cells. We have shown that a novel class of oligo-p-phenylene ethynylenes (OPEs) exhibit selective binding and fluorescence turn-on in the presence of prefibrillar and fibrillar aggregates of disease-relevant proteins such as amyloid-β (Aβ) and α-synuclein. Concomitant with fluorescence turn-on, OPE also photosensitizes singlet oxygen under illumination through the generation of a triplet state, pointing to the potential application of OPEs as photosensitizers in PDT. Herein, we investigated the photosensitizing activity of an anionic OPE for the photo-oxidation of Aβ fibrils and compared its efficacy to the well-known but nonselective photosensitizer methylene blue (MB). Our results show that, while MB photo-oxidized both monomeric and fibrillar conformers of Aβ40, OPE oxidized only Aβ40 fibrils, targeting two histidine residues on the fibril surface and a methionine residue located in the fibril core. Oxidized fibrils were shorter and more dispersed but retained the characteristic β-sheet rich fibrillar structure and the ability to seed further fibril growth. Importantly, the oxidized fibrils displayed low toxicity. We have thus discovered a class of novel theranostics for the simultaneous detection and oxidization of amyloid aggregates. Importantly, the selectivity of OPE's photosensitizing activity overcomes the limitation of off-target oxidation of traditional photosensitizers and represents an advancement of PDT as a viable strategy to treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Adeline M. Fanni
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131
- Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, NM. 87131
| | - Daniel Okoye
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131
| | - Florencia A. Monge
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131
- Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, NM. 87131
| | - Julia Hammond
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM. 87131
- Rose-Hulman Institute of Technology, Terre Haute, IN 47803
| | - Fahimeh Maghsoodi
- Nanoscience and Microsystems Engineering Graduate Program, University of New Mexico, Albuquerque, NM 87131
| | - Tye D. Martin
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131
- Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, NM. 87131
| | - Gabriella Brinkley
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM. 87131
- Chemical Engineering Department, University of Minnesota, Duluth, MN 55812
| | - M. Lisa Phipps
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Deborah G. Evans
- Department of Chemistry and Chemical Biology, University of New Mexico, NM 87131
| | - Jennifer S. Martinez
- Center for Materials Interfaces in Research and Applications, Northern Arizona University, Flagstaff, AZ 86011
- Department of Applied Physics and Materials Science, Northern Arizona University, Flagstaff, AZ 86011
| | - David G. Whitten
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM. 87131
| | - Eva Y. Chi
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM. 87131
| |
Collapse
|
25
|
Li Y, Rusinek H, Butler T, Glodzik L, Pirraglia E, Babich J, Mozley PD, Nehmeh S, Pahlajani S, Wang X, Tanzi EB, Zhou L, Strauss S, Carare RO, Theise N, Okamura N, de Leon MJ. Decreased CSF clearance and increased brain amyloid in Alzheimer's disease. Fluids Barriers CNS 2022; 19:21. [PMID: 35287702 PMCID: PMC8919541 DOI: 10.1186/s12987-022-00318-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/21/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND In sporadic Alzheimer's disease (AD), brain amyloid-beta (Aβ) deposition is believed to be a consequence of impaired Aβ clearance, but this relationship is not well established in living humans. CSF clearance, a major feature of brain glymphatic clearance (BGC), has been shown to be abnormal in AD murine models. MRI phase contrast and intrathecally delivered contrast studies have reported reduced CSF flow in AD. Using PET and tau tracer 18F-THK5117, we previously reported that the ventricular CSF clearance of the PET tracer was reduced in AD and associated with elevated brain Aβ levels. METHODS In the present study, we use two PET tracers, 18F-THK5351 and 11C-PiB to estimate CSF clearance calculated from early dynamic PET frames in 9 normal controls and 15 AD participants. RESULTS we observed that the ventricular CSF clearance measures were correlated (r = 0.66, p < 0.01), with reductions in AD of 18 and 27%, respectively. We also replicated a significant relationship between ventricular CSF clearance (18F-THK5351) and brain Aβ load (r = - 0.64, n = 24, p < 0.01). With a larger sample size, we extended our observations to show that reduced CSF clearance is associated with reductions in cortical thickness and cognitive performance. CONCLUSIONS Overall, the findings support the hypothesis that failed CSF clearance is a feature of AD that is related to Aβ deposition and to the pathology of AD. Longitudinal studies are needed to determine whether failed CSF clearance is a predictor of progressive amyloidosis or its consequence.
Collapse
Affiliation(s)
- Yi Li
- Department of Radiology, Weill Cornell Medicine, Cornell University, Brain Health Imaging Institute, 407 East 61 Street, New York, NY, 10021, USA.
| | - Henry Rusinek
- Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Tracy Butler
- Department of Radiology, Weill Cornell Medicine, Cornell University, Brain Health Imaging Institute, 407 East 61 Street, New York, NY, 10021, USA
| | - Lidia Glodzik
- Department of Radiology, Weill Cornell Medicine, Cornell University, Brain Health Imaging Institute, 407 East 61 Street, New York, NY, 10021, USA
| | - Elizabeth Pirraglia
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - John Babich
- Department of Radiology, Weill Cornell Medicine, Cornell University, Brain Health Imaging Institute, 407 East 61 Street, New York, NY, 10021, USA
| | - P David Mozley
- Department of Radiology, Weill Cornell Medicine, Cornell University, Brain Health Imaging Institute, 407 East 61 Street, New York, NY, 10021, USA
| | - Sadek Nehmeh
- Department of Radiology, Weill Cornell Medicine, Cornell University, Brain Health Imaging Institute, 407 East 61 Street, New York, NY, 10021, USA
| | - Silky Pahlajani
- Department of Radiology, Weill Cornell Medicine, Cornell University, Brain Health Imaging Institute, 407 East 61 Street, New York, NY, 10021, USA
| | - Xiuyuan Wang
- Department of Radiology, Weill Cornell Medicine, Cornell University, Brain Health Imaging Institute, 407 East 61 Street, New York, NY, 10021, USA
| | - Emily B Tanzi
- Department of Radiology, Weill Cornell Medicine, Cornell University, Brain Health Imaging Institute, 407 East 61 Street, New York, NY, 10021, USA
| | - Liangdong Zhou
- Department of Radiology, Weill Cornell Medicine, Cornell University, Brain Health Imaging Institute, 407 East 61 Street, New York, NY, 10021, USA
| | - Sara Strauss
- Department of Radiology, Weill Cornell Medicine, Cornell University, Brain Health Imaging Institute, 407 East 61 Street, New York, NY, 10021, USA
| | - Roxana O Carare
- Department of Clinical Neuroanatomy, University of Southampton, Southampton, UK
| | - Neil Theise
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Nobuyuki Okamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Mony J de Leon
- Department of Radiology, Weill Cornell Medicine, Cornell University, Brain Health Imaging Institute, 407 East 61 Street, New York, NY, 10021, USA.
| |
Collapse
|
26
|
Insulin-Degrading Enzyme Is a Non Proteasomal Target of Carfilzomib and Affects the 20S Proteasome Inhibition by the Drug. Biomolecules 2022; 12:biom12020315. [PMID: 35204815 PMCID: PMC8869475 DOI: 10.3390/biom12020315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/12/2022] [Accepted: 01/27/2022] [Indexed: 02/07/2023] Open
Abstract
Carfilzomib is a last generation proteasome inhibitor (PI) with proven clinical efficacy in the treatment of relapsed/refractory multiple myeloma. This drug is considered to be extremely specific in inhibiting the chymotrypsin-like activity of the 20S proteasome, encoded by the β5 subunit, overcoming some bortezomib limitations, the first PI approved for multiple myeloma therapy which is however burdened by a significant toxicity profile, due also to its off-target effects. Here, molecular approaches coupled with molecular docking studies have been used to unveil that the Insulin-Degrading Enzyme, a ubiquitous and highly conserved Zn2+ peptidase, often found to associate with proteasome in cell-based models, is targeted by carfilzomib in vitro. The drug behaves as a modulator of IDE activity, displaying an inhibitory effect over 10-fold lower than for the 20S. Notably, the interaction of IDE with the 20S enhances in vitro the inhibitory power of carfilzomib on proteasome, so that the IDE-20S complex is an even better target of carfilzomib than the 20S alone. Furthermore, IDE gene silencing after delivery of antisense oligonucleotides (siRNA) significantly reduced carfilzomib cytotoxicity in rMC1 cells, a validated model of Muller glia, suggesting that, in cells, the inhibitory activity of this drug on cell proliferation is somewhat linked to IDE and, possibly, also to its interaction with proteasome.
Collapse
|
27
|
Long-term caffeine treatment of Alzheimer mouse models ameliorates behavioural deficits and neuron loss and promotes cellular and molecular markers of neurogenesis. Cell Mol Life Sci 2021; 79:55. [PMID: 34913091 PMCID: PMC8738505 DOI: 10.1007/s00018-021-04062-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 01/04/2023]
Abstract
Epidemiological studies indicate that the consumption of caffeine, the most commonly ingested psychoactive substance found in coffee, tea or soft drinks, reduces the risk of developing Alzheimer’s disease (AD). Previous treatment studies with transgenic AD mouse models reported a reduced amyloid plaque load and an amelioration of behavioral deficits. It has been further shown that moderate doses of caffeine have the potential to attenuate the health burden in preclinical mouse models of a variety of brain disorders (reviewed in Cunha in J Neurochem 139:1019–1055, 2016). In the current study, we assessed whether long-term caffeine consumption affected hippocampal neuron loss and associated behavioral deficits in the Tg4-42 mouse model of AD. Treatment over a 4-month period reduced hippocampal neuron loss, rescued learning and memory deficits, and ameliorated impaired neurogenesis. Neuron-specific RNA sequencing analysis in the hippocampus revealed an altered expression profile distinguished by the up-regulation of genes linked to synaptic function and processes, and to neural progenitor proliferation. Treatment of 5xFAD mice, which develop prominent amyloid pathology, with the same paradigm also rescued behavioral deficits but did not affect extracellular amyloid-β (Aβ) levels or amyloid precursor protein (APP) processing. These findings challenge previous assumptions that caffeine is anti-amyloidogenic and indicate that the promotion of neurogenesis might play a role in its beneficial effects.
Collapse
|
28
|
Ullah R, Park TJ, Huang X, Kim MO. Abnormal amyloid beta metabolism in systemic abnormalities and Alzheimer's pathology: Insights and therapeutic approaches from periphery. Ageing Res Rev 2021; 71:101451. [PMID: 34450351 DOI: 10.1016/j.arr.2021.101451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is an age-associated, multifactorial neurodegenerative disorder that is incurable. Despite recent success in treatments that partially improve symptomatic relief, they have failed in most clinical trials. Re-holding AD for accurate diagnosis and treatment is widely known as a challenging task. Lack of knowledge of basic molecular pathogenesis might be a possible reason for ineffective AD treatment. Historically, a majority of therapy-based studies have investigated the role of amyloid-β (Aβ peptide) in the central nervous system (CNS), whereas less is known about Aβ peptide in the periphery in AD. In this review, we provide a comprehensive summary of the current understanding of Aβ peptide metabolism (anabolism and catabolism) in the brain and periphery. We show that the abnormal metabolism of Aβ peptide is significantly linked with central-brain and peripheral abnormalities; the interaction between peripheral Aβ peptide metabolism and peripheral abnormalities affects central-brain Aβ peptide metabolism, suggesting the existence of significant communication between these two pathways of Aβ peptide metabolism. This close interaction between the central brain and periphery in abnormal Aβ peptide metabolism plays a key role in the development and progression of AD. In conclusion, we need to obtain a full understanding of the dynamic roles of Aβ peptide at the molecular level in both the brain and periphery in relation to the pathology of AD. This will not only provide new information regarding the complex disease pathology, but also offer potential new clues to improve therapeutic strategies and diagnostic biomarkers for the successful treatment of AD.
Collapse
|
29
|
Sasaki Y, Kimura N, Aso Y, Yabuuchi K, Aikawa M, Matsubara E. Relationship between Cerebrospinal Fluid Matrix Metalloproteinases Levels and Brain Amyloid Deposition in Mild Cognitive Impairment. Biomolecules 2021; 11:biom11101496. [PMID: 34680129 PMCID: PMC8533797 DOI: 10.3390/biom11101496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/19/2022] Open
Abstract
This study aimed to explore whether cerebrospinal fluid (CSF) levels of matrix metalloproteinases (MMPs), and their inhibitors (TIMPs) were associated with brain amyloid deposition, cortical glucose metabolism, and white matter lesions (WMLs) in individuals with amnestic mild cognitive impairment (MCI). A total of 33 individuals with amnestic MCI (mean age, 75.6 years) underwent 11C-Pittsburgh compound B positron emission tomography (PiB-PET), 18F-fluorodeoxyglucose positron emission tomography, magnetic resonance imaging or computed tomography, and CSF analysis. PET uptake of the frontal and temporoparietal lobes and posterior cingulate gyrus was assessed using the cerebellar cortex as the reference region. WMLs were assessed by the Fazekas scale. CSF levels of MMPs and TIMPs were measured with bead-based multiplex assays. After adjusting for covariates, multiple linear regression analysis showed that CSF levels of MMP-2 were negatively correlated with global PiB uptake (p = 0.035), especially in the parietotemporal lobe and posterior cingulate gyrus (p = 0.016 and p = 0.041, respectively). Moreover, CSF levels of MMP-7 were positively correlated with the severity of WMLs (p = 0.033). CSF levels of MMP-2 and MMP-7 are associated with brain amyloid deposition and severity of WMLs, respectively. These findings provide valuable insights into the role of MMPs in amyloid β catabolism and blood-brain barrier integration at the MCI stage.
Collapse
Affiliation(s)
- Yuuki Sasaki
- Department of Neurology, Faculty of Medicine, Oita University, Oita 879-5593, Japan; (Y.S.); (Y.A.); (K.Y.); (E.M.)
| | - Noriyuki Kimura
- Department of Neurology, Faculty of Medicine, Oita University, Oita 879-5593, Japan; (Y.S.); (Y.A.); (K.Y.); (E.M.)
- Correspondence: ; Tel.: +81-97-586-5814
| | - Yasuhiro Aso
- Department of Neurology, Faculty of Medicine, Oita University, Oita 879-5593, Japan; (Y.S.); (Y.A.); (K.Y.); (E.M.)
| | - Kenichi Yabuuchi
- Department of Neurology, Faculty of Medicine, Oita University, Oita 879-5593, Japan; (Y.S.); (Y.A.); (K.Y.); (E.M.)
| | - Miki Aikawa
- Kameda Medical Center, Chiba 296-8602, Japan;
| | - Etsuro Matsubara
- Department of Neurology, Faculty of Medicine, Oita University, Oita 879-5593, Japan; (Y.S.); (Y.A.); (K.Y.); (E.M.)
| |
Collapse
|
30
|
Gadhave K, Kumar D, Uversky VN, Giri R. A multitude of signaling pathways associated with Alzheimer's disease and their roles in AD pathogenesis and therapy. Med Res Rev 2021; 41:2689-2745. [PMID: 32783388 PMCID: PMC7876169 DOI: 10.1002/med.21719] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
The exact molecular mechanisms associated with Alzheimer's disease (AD) pathology continue to represent a mystery. In the past decades, comprehensive data were generated on the involvement of different signaling pathways in the AD pathogenesis. However, the utilization of signaling pathways as potential targets for the development of drugs against AD is rather limited due to the immense complexity of the brain and intricate molecular links between these pathways. Therefore, finding a correlation and cross-talk between these signaling pathways and establishing different therapeutic targets within and between those pathways are needed for better understanding of the biological events responsible for the AD-related neurodegeneration. For example, autophagy is a conservative cellular process that shows link with many other AD-related pathways and is crucial for maintenance of the correct cellular balance by degrading AD-associated pathogenic proteins. Considering the central role of autophagy in AD and its interplay with many other pathways, the finest therapeutic strategy to fight against AD is the use of autophagy as a target. As an essential step in this direction, this comprehensive review represents recent findings on the individual AD-related signaling pathways, describes key features of these pathways and their cross-talk with autophagy, represents current drug development, and introduces some of the multitarget beneficial approaches and strategies for the therapeutic intervention of AD.
Collapse
Affiliation(s)
- Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Deepak Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| |
Collapse
|
31
|
Fasae KD, Abolaji AO, Faloye TR, Odunsi AY, Oyetayo BO, Enya JI, Rotimi JA, Akinyemi RO, Whitworth AJ, Aschner M. Metallobiology and therapeutic chelation of biometals (copper, zinc and iron) in Alzheimer's disease: Limitations, and current and future perspectives. J Trace Elem Med Biol 2021; 67:126779. [PMID: 34034029 DOI: 10.1016/j.jtemb.2021.126779] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 04/03/2021] [Accepted: 05/10/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent cause of cognitive impairment and dementia worldwide. The pathobiology of the disease has been studied in the form of several hypotheses, ranging from oxidative stress, amyloid-beta (Aβ) aggregation, accumulation of tau forming neurofibrillary tangles (NFT) through metal dysregulation and homeostasis, dysfunction of the cholinergic system, and to inflammatory and autophagic mechanism. However, none of these hypotheses has led to confirmed diagnostics or approved cure for the disease. OBJECTIVE This review is aimed as a basic and an encyclopedic short course into metals in AD and discusses the advances in chelation strategies and developments adopted in the treatment of the disease. Since there is accumulating evidence of the role of both biometal dyshomeostasis (iron (Fe), copper (Cu), and zinc (Zn)) and metal-amyloid interactions that lead to the pathogenesis of AD, this review focuses on unraveling therapeutic chelation strategies that have been considered in the treatment of the disease, aiming to sequester free and protein-bound metal ions and reducing cerebral metal burden. Promising compounds possessing chemically modified moieties evolving as multi-target ligands used as anti-AD drug candidates are also covered. RESULTS AND CONCLUSION Several multidirectional and multifaceted studies on metal chelation therapeutics show the need for improved synthesis, screening, and analysis of compounds to be able to effectively present chelating anti-AD drugs. Most drug candidates studied have limitations in their physicochemical properties; some enhance redistribution of metal ions, while others indirectly activate signaling pathways in AD. The metal chelation process in vivo still needs to be established and the design of potential anti-AD compounds that bi-functionally sequester metal ions as well as inhibit the Aβ aggregation by competing with the metal ions and reducing metal-induced oxidative damage and neurotoxicity may signal a bright end in chelation-based therapeutics of AD.
Collapse
Affiliation(s)
- Kehinde D Fasae
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Amos O Abolaji
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria.
| | - Tolulope R Faloye
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Atinuke Y Odunsi
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Bolaji O Oyetayo
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Joseph I Enya
- Department of Anatomy, University of Ilorin, Kwara State, Nigeria
| | - Joshua A Rotimi
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Rufus O Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | | | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
32
|
Zhao H, Huang X, Tong Z. Formaldehyde-Crosslinked Nontoxic Aβ Monomers to Form Toxic Aβ Dimers and Aggregates: Pathogenicity and Therapeutic Perspectives. ChemMedChem 2021; 16:3376-3390. [PMID: 34396700 DOI: 10.1002/cmdc.202100428] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/14/2021] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease (AD) is characterized by the presence of senile plaques in the brain. However, medicines targeting amyloid-beta (Aβ) have not achieved the expected clinical effects. This review focuses on the formation mechanism of the Aβ dimer (the basic unit of oligomers and fibrils) and its tremendous potential as a drug target. Recently, age-associated formaldehyde and Aβ-derived formaldehyde have been found to crosslink the nontoxic Aβ monomer to form the toxic dimers, oligomers and fibrils. Particularly, Aβ-induced formaldehyde accumulation and formaldehyde-promoted Aβ aggregation form a vicious cycle. Subsequently, formaldehyde initiates Aβ toxicity in both the early-and late-onset AD. These facts also explain why AD drugs targeting only Aβ do not have the desired therapeutic effects. Development of the nanoparticle-based medicines targeting both formaldehyde and Aβ dimer is a promising strategy for improving the drug efficacy by penetrating blood-brain barrier and extracellular space into the cortical neurons in AD patients.
Collapse
Affiliation(s)
- Hang Zhao
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xuerong Huang
- Wenzhou Medical University Affiliated Hospital 3, Department of Neurology, Wenzhou, 325200, China
| | - Zhiqian Tong
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
33
|
Valverde A, Dunys J, Lorivel T, Debayle D, Gay AS, Caillava C, Chami M, Checler F. Dipeptidyl peptidase 4 contributes to Alzheimer's disease-like defects in a mouse model and is increased in sporadic Alzheimer's disease brains. J Biol Chem 2021; 297:100963. [PMID: 34265307 PMCID: PMC8334387 DOI: 10.1016/j.jbc.2021.100963] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 06/25/2021] [Accepted: 07/12/2021] [Indexed: 01/14/2023] Open
Abstract
The amyloid cascade hypothesis, which proposes a prominent role for full-length amyloid β peptides in Alzheimer's disease, is currently being questioned. In addition to full-length amyloid β peptide, several N-terminally truncated fragments of amyloid β peptide could well contribute to Alzheimer's disease setting and/or progression. Among them, pyroGlu3-amyloid β peptide appears to be one of the main components of early anatomical lesions in Alzheimer's disease-affected brains. Little is known about the proteolytic activities that could account for the N-terminal truncations of full-length amyloid β, but they appear as the rate-limiting enzymes yielding the Glu3-amyloid β peptide sequence that undergoes subsequent cyclization by glutaminyl cyclase, thereby yielding pyroGlu3-amyloid β. Here, we investigated the contribution of dipeptidyl peptidase 4 in Glu3-amyloid β peptide formation and the functional influence of its genetic depletion or pharmacological blockade on spine maturation as well as on pyroGlu3-amyloid β peptide and amyloid β 42-positive plaques and amyloid β 42 load in the triple transgenic Alzheimer's disease mouse model. Furthermore, we examined whether reduction of dipeptidyl peptidase 4 could rescue learning and memory deficits displayed by these mice. Our data establish that dipeptidyl peptidase 4 reduction alleviates anatomical, biochemical, and behavioral Alzheimer's disease-related defects. Furthermore, we demonstrate that dipeptidyl peptidase 4 activity is increased early in sporadic Alzheimer's disease brains. Thus, our data demonstrate that dipeptidyl peptidase 4 participates in pyroGlu3-amyloid β peptide formation and that targeting this peptidase could be considered as an alternative strategy to interfere with Alzheimer's disease progression.
Collapse
Affiliation(s)
- Audrey Valverde
- Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Julie Dunys
- Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Thomas Lorivel
- Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Delphine Debayle
- Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Anne-Sophie Gay
- Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Céline Caillava
- Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Mounia Chami
- Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Frédéric Checler
- Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France.
| |
Collapse
|
34
|
Singh RK. Recent Trends in the Management of Alzheimer's Disease: Current Therapeutic Options and Drug Repurposing Approaches. Curr Neuropharmacol 2021; 18:868-882. [PMID: 31989900 PMCID: PMC7569317 DOI: 10.2174/1570159x18666200128121920] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/14/2020] [Accepted: 01/27/2020] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease is one of the most progressive forms of dementia, ultimately leading to death in aged populations. The major hallmarks of Alzheimer's disease include deposition of extracellular amyloid senile plaques and intracellular neurofibrillary tangles in brain neuronal cells. Although there are classical therapeutic options available for the treatment of the diseases, however, they provide only a symptomatic relief and do not modify the molecular pathophysiological course of the disease. Recent research advances in Alzheimer's disease have highlighted the potential role of anti-amyloid, anti-tau, and anti-inflammatory therapies. However, these therapies are still in different phases of pre-clinical/clinical development. In addition, drug repositioning/repurposing is another interesting and promising approach to explore rationalized options for the treatment of Alzheimer's disease. This review discusses the different aspects of the pathophysiological mechanism involved in the progression of Alzheimer's disease along with the limitations of current therapies. Furthermore, this review also highlights emerging investigational drugs along with recent drug repurposing approaches for Alzheimer's disease.
Collapse
Affiliation(s)
- Rakesh K Singh
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Manesar, Gurgaon-122413, Haryana, India,Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research,
Raebareli. Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow-226002, Uttar Pradesh, India
| |
Collapse
|
35
|
Querfurth H, Lee HK. Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration. Mol Neurodegener 2021; 16:44. [PMID: 34215308 PMCID: PMC8252260 DOI: 10.1186/s13024-021-00428-5] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Novel targets to arrest neurodegeneration in several dementing conditions involving misfolded protein accumulations may be found in the diverse signaling pathways of the Mammalian/mechanistic target of rapamycin (mTOR). As a nutrient sensor, mTOR has important homeostatic functions to regulate energy metabolism and support neuronal growth and plasticity. However, in Alzheimer's disease (AD), mTOR alternately plays important pathogenic roles by inhibiting both insulin signaling and autophagic removal of β-amyloid (Aβ) and phospho-tau (ptau) aggregates. It also plays a role in the cerebrovascular dysfunction of AD. mTOR is a serine/threonine kinase residing at the core in either of two multiprotein complexes termed mTORC1 and mTORC2. Recent data suggest that their balanced actions also have implications for Parkinson's disease (PD) and Huntington's disease (HD), Frontotemporal dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS). Beyond rapamycin; an mTOR inhibitor, there are rapalogs having greater tolerability and micro delivery modes, that hold promise in arresting these age dependent conditions.
Collapse
Affiliation(s)
- Henry Querfurth
- Department of Neurology, Tufts Medical Center, Boston, Massachusetts, USA.
| | - Han-Kyu Lee
- Department of Neurology, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Oliveira FFD, de Almeida SS, Smith MC, Bertolucci PHF. Behavioural effects of the ACE insertion/deletion polymorphism in Alzheimer's disease depend upon stratification according to APOE-ϵ4 carrier status. Cogn Neuropsychiatry 2021; 26:293-305. [PMID: 34034613 DOI: 10.1080/13546805.2021.1931085] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: The inherited risk of late-onset Alzheimer's disease (AD) is genetically determined. We aimed to examine associations of genetic variants of APOE and ACE with age at AD onset and with neuropsychiatric symptoms according to each dementia stage.Methods: Consecutive outpatients with AD were assessed for demographic features, Clinical Dementia Rating scores, and the 10-item Neuropsychiatric Inventory, and genotyped for rs7412 and rs429358 (APOE haplotypes, Real-Time Polymerase Chain Reactions), and the ACE insertion/deletion polymorphism (Polymerase Chain Reactions). Combined genetic variants of APOE and ACE were associated with age at dementia onset, and with neuropsychiatric symptoms in each dementia stage (adjusted for sex and age at dementia onset).Results: Over two-thirds of the 238 patients were women, whereas the mean age at dementia onset was 73.82 ± 6.2 years-old. APOE-ϵ4/ϵ4 carriers had earlier dementia onset (p<.001). The ACE insertion/deletion polymorphism was in Hardy-Weinberg equilibrium (p=.37) but was not associated with age at dementia onset, regardless of APOE-ϵ4 carrier status. The only results that survived corrections for false discovery rates were higher scores of dysphoria for APOE-ϵ4 carriers (n=122) who also carried ACE deletion/deletion (p=.031). No results survived corrections for false discovery rates for APOE-ϵ4 non-carriers (n=116).Conclusions: Though only the APOE-ϵ4/ϵ4 haplotype affected AD onset, effects of the ACE insertion/deletion polymorphism over behavioural features might differ according to APOE-ϵ4 carrier status in genetic associations.
Collapse
Affiliation(s)
- Fabricio Ferreira de Oliveira
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Sandro Soares de Almeida
- Department of Biophysics, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Marilia Cardoso Smith
- Department of Morphology and Genetics, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | |
Collapse
|
37
|
Lopes CR, Cunha RA, Agostinho P. Astrocytes and Adenosine A 2A Receptors: Active Players in Alzheimer's Disease. Front Neurosci 2021; 15:666710. [PMID: 34054416 PMCID: PMC8155589 DOI: 10.3389/fnins.2021.666710] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
Astrocytes, through their numerous processes, establish a bidirectional communication with neurons that is crucial to regulate synaptic plasticity, the purported neurophysiological basis of memory. This evidence contributed to change the classic “neurocentric” view of Alzheimer’s disease (AD), being astrocytes increasingly considered a key player in this neurodegenerative disease. AD, the most common form of dementia in the elderly, is characterized by a deterioration of memory and of other cognitive functions. Although, early cognitive deficits have been associated with synaptic loss and dysfunction caused by amyloid-β peptides (Aβ), accumulating evidences support a role of astrocytes in AD. Astrocyte atrophy and reactivity occurring at early and later stages of AD, respectively, involve morphological alterations that translate into functional changes. However, the main signals responsible for astrocytic alterations in AD and their impact on synaptic function remain to be defined. One possible candidate is adenosine, which can be formed upon extracellular catabolism of ATP released by astrocytes. Adenosine can act as a homeostatic modulator and also as a neuromodulator at the synaptic level, through the activation of adenosine receptors, mainly of A1R and A2AR subtypes. These receptors are also present in astrocytes, being particularly relevant in pathological conditions, to control the morphofunctional responses of astrocytes. Here, we will focus on the role of A2AR, since they are particularly associated with neurodegeneration and also with memory processes. Furthermore, A2AR levels are increased in the AD brain, namely in astrocytes where they can control key astrocytic functions. Thus, unveiling the role of A2AR in astrocytes function might shed light on novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Cátia R Lopes
- Center for Neuroscience and Cell Biology, Coimbra, Portugal
| | - Rodrigo A Cunha
- Center for Neuroscience and Cell Biology, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Paula Agostinho
- Center for Neuroscience and Cell Biology, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
38
|
Laval K, Enquist LW. The Potential Role of Herpes Simplex Virus Type 1 and Neuroinflammation in the Pathogenesis of Alzheimer's Disease. Front Neurol 2021; 12:658695. [PMID: 33889129 PMCID: PMC8055853 DOI: 10.3389/fneur.2021.658695] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease affecting ~50 million people worldwide. To date, there is no cure and current therapies have not been effective in delaying disease progression. Therefore, there is an urgent need for better understanding of the pathogenesis of AD and to rethink possible therapies. Herpes simplex virus type 1 (HSV1) has recently received growing attention for its potential role in sporadic AD. The virus is a ubiquitous human pathogen that infects mucosal epithelia and invades the peripheral nervous system (PNS) of its host to establish a reactivable, latent infection. Upon reactivation, HSV1 spreads back to the epithelium and initiates a new infection, causing epithelial lesions. Occasionally, the virus spreads from the PNS to the brain after reactivation. In this review, we discuss current work on the pathogenesis of AD and summarize research results that support a potential role for HSV1 in the infectious hypothesis of AD. We also highlight recent findings on the neuroinflammatory response, which has been proposed to be the main driving force of AD, starting early in the course of the disease. Relevant rodent models to study neuroinflammation in AD and novel therapeutic approaches are also discussed. Throughout this review, we focus on several aspects of HSV1 pathogenesis, including its primary role as an invader of the PNS, that should be considered in the etiology of AD. We also point out some of the contradictory data and remaining knowledge gaps that require further research to finally fully understand the cause of AD in humans.
Collapse
Affiliation(s)
- Kathlyn Laval
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | | |
Collapse
|
39
|
Navas Guimaraes M, Lopez-Blanco R, Correa J, Fernandez-Villamarin M, Bistué MB, Martino-Adami P, Morelli L, Kumar V, Wempe MF, Cuello AC, Fernandez-Megia E, Bruno MA. Liver X Receptor Activation with an Intranasal Polymer Therapeutic Prevents Cognitive Decline without Altering Lipid Levels. ACS NANO 2021; 15:4678-4687. [PMID: 33666411 PMCID: PMC8488954 DOI: 10.1021/acsnano.0c09159] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The progressive accumulation of amyloid-beta (Aβ) in specific areas of the brain is a common prelude to late-onset of Alzheimer's disease (AD). Although activation of liver X receptors (LXR) with agonists decreases Aβ levels and ameliorates contextual memory deficit, concomitant hypercholesterolemia/hypertriglyceridemia limits their clinical application. DMHCA (N,N-dimethyl-3β-hydroxycholenamide) is an LXR partial agonist that, despite inducing the expression of apolipoprotein E (main responsible of Aβ drainage from the brain) without increasing cholesterol/triglyceride levels, shows nil activity in vivo because of a low solubility and inability to cross the blood brain barrier. Herein, we describe a polymer therapeutic for the delivery of DMHCA. The covalent incorporation of DMHCA into a PEG-dendritic scaffold via carboxylate esters produces an amphiphilic copolymer that efficiently self-assembles into nanometric micelles that exert a biological effect in primary cultures of the central nervous system (CNS) and experimental animals using the intranasal route. After CNS biodistribution and effective doses of DMHCA micelles were determined in nontransgenic mice, a transgenic AD-like mouse model of cerebral amyloidosis was treated with the micelles for 21 days. The benefits of the treatment included prevention of memory deterioration and a significant reduction of hippocampal Aβ oligomers without affecting plasma lipid levels. These results represent a proof of principle for further clinical developments of DMHCA delivery systems.
Collapse
Affiliation(s)
- María
Eugenia Navas Guimaraes
- Instituto
de Ciencias Biomédicas, Facultad de Ciencias Médicas, Universidad Católica de Cuyo, Av. José Ignacio de la Roza
1516, Rivadavia, 5400, San Juan, Argentina
- National
Council of Scientific and Technical Research (CONICET), Godoy Cruz 2290, C1425FQB Ciudad Autónoma de Buenos Aires Argentina
| | - Roi Lopez-Blanco
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS) and Departamento de Química
Orgánica, Universidade de Santiago
de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Juan Correa
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS) and Departamento de Química
Orgánica, Universidade de Santiago
de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Marcos Fernandez-Villamarin
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS) and Departamento de Química
Orgánica, Universidade de Santiago
de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - María Beatriz Bistué
- Instituto
de Ciencias Biomédicas, Facultad de Ciencias Médicas, Universidad Católica de Cuyo, Av. José Ignacio de la Roza
1516, Rivadavia, 5400, San Juan, Argentina
| | - Pamela Martino-Adami
- Laboratory
of Brain Aging and Neurodegeneration, Fundación
Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 C1405BWE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Laura Morelli
- Laboratory
of Brain Aging and Neurodegeneration, Fundación
Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 C1405BWE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Vijay Kumar
- School
of Pharmacy, Department of Pharmaceutical Sciences, University of Colorado, Aurora, Colorado 80045 United States
| | - Michael F. Wempe
- School
of Pharmacy, Department of Pharmaceutical Sciences, University of Colorado, Aurora, Colorado 80045 United States
| | - A. C. Cuello
- Department
of Pharmacology and Therapeutics, McGill
University, McIntyre
Medical Building 3655 Prom. Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Eduardo Fernandez-Megia
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS) and Departamento de Química
Orgánica, Universidade de Santiago
de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
- Eduardo Fernandez-Megia,
| | - Martin A. Bruno
- Instituto
de Ciencias Biomédicas, Facultad de Ciencias Médicas, Universidad Católica de Cuyo, Av. José Ignacio de la Roza
1516, Rivadavia, 5400, San Juan, Argentina
- National
Council of Scientific and Technical Research (CONICET), Godoy Cruz 2290, C1425FQB Ciudad Autónoma de Buenos Aires Argentina
- Martin A. Bruno,
| |
Collapse
|
40
|
Microglial Heterogeneity and Its Potential Role in Driving Phenotypic Diversity of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22052780. [PMID: 33803478 PMCID: PMC7967159 DOI: 10.3390/ijms22052780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 01/03/2023] Open
Abstract
Alzheimer’s disease (AD) is increasingly recognized as a highly heterogeneous disorder occurring under distinct clinical and neuropathological phenotypes. Despite the molecular determinants of such variability not being well defined yet, microglial cells may play a key role in this process by releasing distinct pro- and/or anti-inflammatory cytokines, potentially affecting the expression of the disease. We carried out a neuropathological and biochemical analysis on a series of AD brain samples, gathering evidence about the heterogeneous involvement of microglia in AD. The neuropathological studies showed differences concerning morphology, density and distribution of microglial cells among AD brains. Biochemical investigations showed increased brain levels of IL-4, IL-6, IL-13, CCL17, MMP-7 and CXCL13 in AD in comparison with control subjects. The molecular profiling achieved by measuring the brain levels of 25 inflammatory factors known to be involved in neuroinflammation allowed a stratification of the AD patients in three distinct “neuroinflammatory clusters”. These findings strengthen the relevance of neuroinflammation in AD pathogenesis suggesting, in particular, that the differential involvement of neuroinflammatory molecules released by microglial cells during the development of the disease may contribute to modulate the characteristics and the severity of the neuropathological changes, driving—at least in part—the AD phenotypic diversity.
Collapse
|
41
|
Nizari S, Wells JA, Carare RO, Romero IA, Hawkes CA. Loss of cholinergic innervation differentially affects eNOS-mediated blood flow, drainage of Aβ and cerebral amyloid angiopathy in the cortex and hippocampus of adult mice. Acta Neuropathol Commun 2021; 9:12. [PMID: 33413694 PMCID: PMC7791879 DOI: 10.1186/s40478-020-01108-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/15/2020] [Indexed: 11/18/2022] Open
Abstract
Vascular dysregulation and cholinergic basal forebrain degeneration are both early pathological events in the development of Alzheimer’s disease (AD). Acetylcholine contributes to localised arterial dilatation and increased cerebral blood flow (CBF) during neurovascular coupling via activation of endothelial nitric oxide synthase (eNOS). Decreased vascular reactivity is suggested to contribute to impaired clearance of β-amyloid (Aβ) along intramural periarterial drainage (IPAD) pathways of the brain, leading to the development of cerebral amyloid angiopathy (CAA). However, the possible relationship between loss of cholinergic innervation, impaired vasoreactivity and reduced clearance of Aβ from the brain has not been previously investigated. In the present study, intracerebroventricular administration of mu-saporin resulted in significant death of cholinergic neurons and fibres in the medial septum, cortex and hippocampus of C57BL/6 mice. Arterial spin labelling MRI revealed a loss of CBF response to stimulation of eNOS by the Rho-kinase inhibitor fasudil hydrochloride in the cortex of denervated mice. By contrast, the hippocampus remained responsive to drug treatment, in association with altered eNOS expression. Fasudil hydrochloride significantly increased IPAD in the hippocampus of both control and saporin-treated mice, while increased clearance from the cortex was only observed in control animals. Administration of mu-saporin in the TetOAPPSweInd mouse model of AD was associated with a significant and selective increase in Aβ40-positive CAA. These findings support the importance of the interrelationship between cholinergic innervation and vascular function in the aetiology and/or progression of CAA and suggest that combined eNOS/cholinergic therapies may improve the efficiency of Aβ removal from the brain and reduce its deposition as CAA.
Collapse
|
42
|
Wang H, Xu X, Pan YC, Yan Y, Hu XY, Chen R, Ravoo BJ, Guo DS, Zhang T. Recognition and Removal of Amyloid-β by a Heteromultivalent Macrocyclic Coassembly: A Potential Strategy for the Treatment of Alzheimer's Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006483. [PMID: 33325586 DOI: 10.1002/adma.202006483] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/20/2020] [Indexed: 06/12/2023]
Abstract
The imbalance of amyloid-β (Aβ) production and clearance causes aggregation of Aβ1-42 monomers to form fibrils and amyloid plaques, which is an indispensable process in the pathogenesis of Alzheimer's disease (AD), and eventually leads to pathological changes and cognitive impairment. Consequently, Aβ1-42 is the most important target for the treatment of AD. However, developing a single treatment method that can recognize Aβ1-42 , inhibit Aβ1-42 fibrillation, eliminate amyloid plaques, improve cognitive impairments, and alleviate AD-like pathology is challenging. Here, a coassembly composed of cyclodextrin (CD) and calixarene (CA) is designed, and it is used as an anti-Aβ therapy agent. The CD-CA coassembly is based on the previously reported heteromultivalent recognition strategy and is able to successfully eliminate amyloid plaques and degrade Aβ1-42 monomers in 5xFAD mice. More importantly, the coassembly improves recognition and spatial cognition deficits, and synaptic plasticity impairment in the 5xFAD mice. In addition, the coassembly ameliorates AD-like pathology including prevention of neuronal apoptosis and oxidant stress, and alteration of M1/M2 microglial polarization states. This supramolecular approach makes full use of both molecular recognition and self-assembly of macrocyclic amphiphiles, and is a promising novel strategy for AD treatment.
Collapse
Affiliation(s)
- Hui Wang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - XinXin Xu
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Yu-Chen Pan
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin, 300071, P. R. China
| | - YuXing Yan
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Xin-Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin, 300071, P. R. China
| | - RunWen Chen
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, Münster, 48149, Germany
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin, 300071, P. R. China
| | - Tao Zhang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
43
|
Hao F, Feng Y. Cannabidiol (CBD) enhanced the hippocampal immune response and autophagy of APP/PS1 Alzheimer's mice uncovered by RNA-seq. Life Sci 2020; 264:118624. [PMID: 33096116 DOI: 10.1016/j.lfs.2020.118624] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is a central nervous system disease characterized by dementia, which has now become a major threat to global health. Cannabidiol (CBD) is a natural component extracted from the hemp plant and exhibits multiple mechanisms to improve the pathological process of AD in vitro and in vivo. However, its underlying molecular mechanism is still unclear. This study attempts to reveal its common mechanism through transcriptome sequence. We performed transcriptome sequence in the hippocampus of 6 month old APP/PS1 mice chronically treated with CBD for one month or 30 days. In addition, Aβ plaques were investigated by Immunohistochemistry. Autophagosomes were observed by transmission electron microscopy and the expression of autophagy related proteins was examined by Western blot. GO_BP and KEGG enriched analysis showed that the immune system response was up-regulation significantly. Both KEGG pathway analysis and GSEA analysis showed that autophagy was significantly up-regulated. Finally, the autophagy of hippocampal neurons in APP/PS1 mice treated with CBD was significantly enhanced by transmission electron microscopy. This study illustrated that CBD may improve the pathological process of AD by enhancing immune system response and autophagy pathway.
Collapse
Affiliation(s)
- Fengjin Hao
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, China.
| | - Yueqin Feng
- Department of Ultrasound, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| |
Collapse
|
44
|
Gadhave K, Gehi BR, Kumar P, Xue B, Uversky VN, Giri R. The dark side of Alzheimer's disease: unstructured biology of proteins from the amyloid cascade signaling pathway. Cell Mol Life Sci 2020; 77:4163-4208. [PMID: 31894361 PMCID: PMC11104979 DOI: 10.1007/s00018-019-03414-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/17/2019] [Accepted: 12/04/2019] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is a leading cause of age-related dementia worldwide. Despite more than a century of intensive research, we are not anywhere near the discovery of a cure for this disease or a way to prevent its progression. Among the various molecular mechanisms proposed for the description of the pathogenesis and progression of AD, the amyloid cascade hypothesis, according to which accumulation of a product of amyloid precursor protein (APP) cleavage, amyloid β (Aβ) peptide, induces pathological changes in the brain observed in AD, occupies a unique niche. Although multiple proteins have been implicated in this amyloid cascade signaling pathway, their structure-function relationships are mostly unexplored. However, it is known that two major proteins related to AD pathology, Aβ peptide, and microtubule-associated protein tau belong to the category of intrinsically disordered proteins (IDPs), which are the functionally important proteins characterized by a lack of fixed, ordered three-dimensional structure. IDPs and intrinsically disordered protein regions (IDPRs) play numerous vital roles in various cellular processes, such as signaling, cell cycle regulation, macromolecular recognition, and promiscuous binding. However, the deregulation and misfolding of IDPs may lead to disturbed signaling, interactions, and disease pathogenesis. Often, molecular recognition-related IDPs/IDPRs undergo disorder-to-order transition upon binding to their biological partners and contain specific disorder-based binding motifs, known as molecular recognition features (MoRFs). Knowing the intrinsic disorder status and disorder-based functionality of proteins associated with amyloid cascade signaling pathway may help to untangle the mechanisms of AD pathogenesis and help identify therapeutic targets. In this paper, we have used multiple computational tools to evaluate the presence of intrinsic disorder and MoRFs in 27 proteins potentially relevant to the amyloid cascade signaling pathway. Among these, BIN1, APP, APOE, PICALM, PSEN1 and CD33 were found to be highly disordered. Furthermore, their disorder-based binding regions and associated short linear motifs have also been identified. These findings represent important foundation for the future research, and experimental characterization of disordered regions in these proteins is required to better understand their roles in AD pathogenesis.
Collapse
Affiliation(s)
- Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | | | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Bin Xue
- Department of Cell Biology, Microbiology and Molecular Biology, School of Natural Sciences and Mathematics, College of Arts and Sciences, University of South Florida, Tampa, FL, 33620, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33620, USA.
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia.
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India.
| |
Collapse
|
45
|
tPA Deficiency Underlies Neurovascular Coupling Dysfunction by Amyloid-β. J Neurosci 2020; 40:8160-8173. [PMID: 32928888 DOI: 10.1523/jneurosci.1140-20.2020] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/29/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
The amyloid-β (Aβ) peptide, a key pathogenic factor in Alzheimer's disease, attenuates the increase in cerebral blood flow (CBF) evoked by neural activity (functional hyperemia), a vital homeostatic response in which NMDA receptors (NMDARs) play a role through nitric oxide, and the CBF increase produced by endothelial factors. Tissue plasminogen activator (tPA), which is reduced in Alzheimer's disease and in mouse models of Aβ accumulation, is required for the full expression of the NMDAR-dependent component of functional hyperemia. Therefore, we investigated whether tPA is involved in the neurovascular dysfunction of Aβ. tPA activity was reduced, and the tPA inhibitor plasminogen inhibitor-1 (PAI-1) was increased in male mice expressing the Swedish mutation of the amyloid precursor protein (tg2576). Counteracting the tPA reduction with exogenous tPA or with pharmacological inhibition or genetic deletion of PAI-1 completely reversed the attenuation of the CBF increase evoked by whisker stimulation but did not ameliorate the response to the endothelium-dependent vasodilator acetylcholine. The tPA deficit attenuated functional hyperemia by suppressing NMDAR-dependent nitric oxide production during neural activity. Pharmacological inhibition of PAI-1 increased tPA activity, prevented neurovascular uncoupling, and ameliorated cognition in 11- to 12-month-old tg2576 mice, effects associated with a reduction of cerebral amyloid angiopathy but not amyloid plaques. The data unveil a selective role of the tPA in the suppression of functional hyperemia induced by Aβ and in the mechanisms of cerebral amyloid angiopathy, and support the possibility that modulation of the PAI-1-tPA pathway may be beneficial in diseases associated with amyloid accumulation.SIGNIFICANCE STATEMENT Amyloid-β (Aβ) peptides have profound neurovascular effects that may contribute to cognitive impairment in Alzheimer's disease. We found that Aβ attenuates the increases in blood flow evoked by neural activation through a reduction in tissue plasminogen activator (tPA) caused by upregulation of its endogenous inhibitor plasminogen inhibitor-1 (PAI-1). tPA deficiency prevents NMDA receptors from triggering nitric oxide production, thereby attenuating the flow increase evoked by neural activity. PAI-1 inhibition restores tPA activity, rescues neurovascular coupling, reduces amyloid deposition around blood vessels, and improves cognition in a mouse model of Aβ accumulation. The findings demonstrate a previously unappreciated role of tPA in Aβ-related neurovascular dysfunction and in vascular amyloid deposition. Restoration of tPA activity could be of therapeutic value in diseases associated with amyloid accumulation.
Collapse
|
46
|
Strunz M, Jarrell JT, Cohen DS, Rosin ER, Vanderburg CR, Huang X. Modulation of SPARC/Hevin Proteins in Alzheimer's Disease Brain Injury. J Alzheimers Dis 2020; 68:695-710. [PMID: 30883351 PMCID: PMC6481539 DOI: 10.3233/jad-181032] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alzheimer’s disease (AD) is an age-related progressive form of dementia that features neuronal loss, intracellular tau, and extracellular amyloid-β (Aβ) protein deposition. Neurodegeneration is accompanied by neuroinflammation mainly involving microglia, the resident innate immune cell population of the brain. During AD progression, microglia shift their phenotype, and it has been suggested that they express matricellular proteins such as secreted protein acidic and rich in cysteine (SPARC) and Hevin protein, which facilitate the migration of other immune cells, such as blood-derived dendritic cells. We have detected both SPARC and Hevin in postmortem AD brain tissues and confirmed significant alterations in transcript expression using real-time qPCR. We suggest that an infiltration of myeloid-derived immune cells occurs in the areas of diseased tissue. SPARC is highly expressed in AD brain and collocates to Aβ protein deposits, thus contributing actively to cerebral inflammation and subsequent tissue repair, and Hevin may be downregulated in the diseased state. However, further research is needed to reveal the exact roles of SPARC and Hevin proteins and associated signaling pathways in AD-related neuroinflammation. Nevertheless, normalizing SPARC/Hevin protein expression such as interdicting heightened SPARC protein expression may confer a novel therapeutic opportunity for modulating AD progression.
Collapse
Affiliation(s)
- Maximilian Strunz
- Department of Neurology, Harvard NeuroDiscovery Center, Advanced Tissue Resource Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Juliet T Jarrell
- Department of Psychiatry, Neurochemistry Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - David S Cohen
- Department of Psychiatry, Neurochemistry Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Eric R Rosin
- Department of Psychiatry, Neurochemistry Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Charles R Vanderburg
- Department of Neurology, Harvard NeuroDiscovery Center, Advanced Tissue Resource Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Xudong Huang
- Department of Psychiatry, Neurochemistry Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
47
|
Duffy KB, Ray B, Lahiri DK, Tilmont EM, Tinkler GP, Herbert RL, Greig NH, Ingram DK, Ottinger MA, Mattison JA. Effects of Reducing Norepinephrine Levels via DSP4 Treatment on Amyloid-β Pathology in Female Rhesus Macaques (Macaca Mulatta). J Alzheimers Dis 2020; 68:115-126. [PMID: 30689563 DOI: 10.3233/jad-180487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The degeneration in the locus coeruleus associated with Alzheimer's disease suggests an involvement of the noradrenergic system in the disease pathogenesis. The role of depleted norepinephrine was tested in adult and aged rhesus macaques to develop a potential model for testing Alzheimer's disease interventions. Monkeys were injected with the noradrenergic neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) or vehicle at 0, 3, and 6 months; brains were harvested at 9 months. Reduced norepinephrine in the locus coeruleus was accompanied by decreased dopamine β-hydroxylase staining and increased amyloid-β load in the aged group, and the proportion of potentially toxic amyloid-β42 peptide was increased. Immunohistochemistry revealed no effects on microglia or astrocytes. DSP4 treatment altered amyloid processing, but these changes were not associated with the induction of chronic neuroinflammation. These findings suggest norepinephrine deregulation is an essential component of a nonhuman primate model of Alzheimer's disease, but further refinement is necessary.
Collapse
Affiliation(s)
- Kara B Duffy
- Animal and Avian Sciences Department, University of Maryland, College Park, MD, USA
| | - Balmiki Ray
- Myriad Neuroscience (Assurex Health), Mason, OH, USA (present address).,Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Debomoy K Lahiri
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Edward M Tilmont
- Translational Gerontology Branch, National Institute on Aging, NIH Animal Center, Dickerson, MD, USA
| | - Gregory P Tinkler
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Richard L Herbert
- Clinical Medicine Branch, National Institute of Allergy and Infectious Disease, NIH, Dickerson, MD, USA
| | - Nigel H Greig
- Translational Gerontology Branch, NIA/NIH, Baltimore, MD, USA
| | - Donald K Ingram
- Nutritional Neuroscience and Aging Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Mary Ann Ottinger
- Animal and Avian Sciences Department, University of Maryland, College Park, MD, USA.,Department of Biology and Biochemistry, University of Houston, Houston, TX, USA (present address)
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging, NIH Animal Center, Dickerson, MD, USA
| |
Collapse
|
48
|
Protein kinases A and C regulate amyloid-β degradation by modulating protein levels of neprilysin and insulin-degrading enzyme in astrocytes. Neurosci Res 2020; 166:62-72. [PMID: 32512031 DOI: 10.1016/j.neures.2020.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/02/2020] [Accepted: 05/21/2020] [Indexed: 12/24/2022]
Abstract
The pathology of sporadic Alzheimer's disease is hallmarked by altered signal transduction via the neurotransmitter receptor-G-protein-mediated protein kinase A (PKA) and protein kinase C (PKC) pathways. Because the accumulation of amyloid-β (Aβ) depends on its rates of synthesis and clearance, the metabolic pathway of Aβ in the brain and the entire body warrants exploration. The two major enzymes involved in Aβ degradation in the brain are believed to be the neprilysin and insulin-degrading enzyme (IDE). This study investigated whether PKA and PKC regulate the degradation of Aβ by modulating the protein levels of neprilysin and IDE in astrocytes. Activation of PKA induced a significant decrease in neprilysin protein levels in cultured astrocytes, whereas activation of PKC induced a significant decrease in the protein level of neprilysin and an increase in the protein level of IDE. Following activation of PKC, the reduction of neprilysin was achieved by its secretion into the culture media. Moreover, PKA-activated astrocytes significantly delayed the degradation of exogenous Aβ, whereas PKC-activated astrocytes significantly facilitated its degradation. These results suggest that PKA and PKC regulate Aβ degradation in astrocytes through a decrease in the protein level of neprilysin and an increase in neprilysin secretion and protein levels of IDE, respectively.
Collapse
|
49
|
Dhanavade MJ, Sonawane KD. Amyloid beta peptide-degrading microbial enzymes and its implication in drug design. 3 Biotech 2020; 10:247. [PMID: 32411571 PMCID: PMC7214582 DOI: 10.1007/s13205-020-02240-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic and progressive neurological brain disorder. AD pathophysiology is mainly represented by formation of neuritic plaques and neurofibrillary tangles (NFTs). Neuritic plaques are made up of amyloid beta (Aβ) peptides, which play a central role in AD pathogenesis. In AD brain, Aβ peptide accumulates due to overproduction, insufficient clearance and defective proteolytic degradation. The degradation and cleavage mechanism of Aβ peptides by several human enzymes have been discussed previously. In the mean time, numerous experimental and bioinformatics reports indicated the significance of microbial enzymes having potential to degrade Aβ peptides. Thus, there is a need to shift the focus toward the substrate specificity and structure-function relationship of Aβ peptide-degrading microbial enzymes. Hence, in this review, we discussed in vitro and in silico studies of microbial enzymes viz. cysteine protease and zinc metallopeptidases having ability to degrade Aβ peptides. In silico study showed that cysteine protease can cleave Aβ peptide between Lys16-Cys17; similarly, several other enzymes also showed capability to degrade Aβ peptide at different sites. Thus, this review paves the way to explore the role of microbial enzymes in Aβ peptide degradation and to design new lead compounds for AD treatment.
Collapse
Affiliation(s)
- Maruti J. Dhanavade
- Department of Microbiology, Shivaji University, Kolhapur, Maharashtra 416004 India
| | - Kailas D. Sonawane
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur, Maharashtra 416004 India
- Department of Microbiology, Shivaji University, Kolhapur, Maharashtra 416004 India
| |
Collapse
|
50
|
Investigating APOE, APP-Aβ metabolism genes and Alzheimer's disease GWAS hits in brain small vessel ischemic disease. Sci Rep 2020; 10:7103. [PMID: 32345996 PMCID: PMC7188838 DOI: 10.1038/s41598-020-63183-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/13/2020] [Indexed: 12/24/2022] Open
Abstract
Alzheimer’s disease and small vessel ischemic disease frequently co-exist in the aging brain. However, pathogenic links between these 2 disorders are yet to be identified. Therefore we used Taqman genotyping, exome and RNA sequencing to investigate Alzheimer’s disease known pathogenic variants and pathways: APOE ε4 allele, APP-Aβ metabolism and late-onset Alzheimer’s disease main genome-wide association loci (APOE, BIN1, CD33, MS4A6A, CD2AP, PICALM, CLU, CR1, EPHA1, ABCA7) in 96 early-onset small vessel ischemic disease Caucasian patients and 368 elderly neuropathologically proven controls (HEX database) and in a mouse model of cerebral hypoperfusion. Only a minority of patients (29%) carried APOE ε4 allele. We did not detect any pathogenic mutation in APP, PSEN1 and PSEN2 and report a burden of truncating mutations in APP-Aß degradation genes. The single-variant association test identified 3 common variants with a likely protective effect on small vessel ischemic disease (0.54>OR > 0.32, adj. p-value <0.05) (EPHA1 p.M900V and p.V160A and CD33 p.A14V). Moreover, 5/17 APP-Aß catabolism genes were significantly upregulated (LogFC > 1, adj. p-val<0.05) together with Apoe, Ms4a cluster and Cd33 during brain hypoperfusion and their overexpression correlated with the ischemic lesion size. Finally, the detection of Aβ oligomers in the hypoperfused hippocampus supported the link between brain ischemia and Alzheimer’s disease pathology.
Collapse
|