1
|
Hoch CR, Klinedinst NJ, Larimer K, Gottlieb SS. Heart failure related fatigue: An exploratory analysis of serum osmolality from the national health and nutrition examination survey. Heart Lung 2024; 68:284-290. [PMID: 39181102 DOI: 10.1016/j.hrtlng.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Fatigue is a prominent symptom of heart failure (HF). However, underlying mechanisms remain poorly understood. Fluid volume status has been suggested as a physiologic mechanism of HF-related fatigue. Serum osmolality may fluctuate with changes in volume status associated with neurohormonal dysregulation. The relationship of fatigue to serum osmolality has not been assessed in adults with HF. OBJECTIVES Describe the relationship between serum osmolality and fatigue in adults with HF. METHODS We analyzed two waves of cross-sectional data from the National Health and Nutrition Examination Survey (2015-2016 and 2017-2018). Adults who self-reported having HF without select co-morbid conditions known to contribute to fatigue were included. Data were weighted to provide US national estimates, and complex sample design used for analyses. Sequential logistic regression was used to isolate the effect of serum osmolality on the odds of having fatigue. RESULTS Data from the sample represented 1.4 million Americans with HF (58.5 % male; median age 68 years), of whom 1,001,589 (67.9 %) reported fatigue. Participants with fatigue had lower serum osmolality compared to those without fatigue (t = -3.04, p = .009). Higher serum osmolality was associated with 8.8 % lower odds of experiencing fatigue when controlling for sex and body mass index (OR = 0.912, p = .007, CI 0.857 - 0.972). CONCLUSIONS HF-related fatigue is associated with lower serum osmolality. Low serum osmolality may indicate excess volume and the presence of a heightened neurohormonal response, both of which may influence fatigue. Alternatively, serum osmolality may directly affect other physiologic changes that may contribute to fatigue.
Collapse
Affiliation(s)
- Christine R Hoch
- Assistant Professor, University of Delaware, School of Nursing, United States.
| | - N Jennifer Klinedinst
- Associate Professor, Department of Organizational Systems and Adult Health, University of Maryland, School of Nursing, United States.
| | - Karen Larimer
- Director of Clinical Operations Cardiosense, United States.
| | - Stephen S Gottlieb
- Professor of Medicine, University of Maryland, School of Medicine, United States.
| |
Collapse
|
2
|
Hasbal NB, Bakir CN, Incir S, Siriopol D, Sanchez-Lozada LG, Lanaspa MA, Johnson RJ, Kanbay M. A study on the early metabolic effects of salt and fructose consumption: the protective role of water. Hypertens Res 2024; 47:1797-1810. [PMID: 38750219 PMCID: PMC11224018 DOI: 10.1038/s41440-024-01686-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/22/2024] [Accepted: 03/17/2024] [Indexed: 07/06/2024]
Abstract
Increasing serum osmolality has recently been linked with acute stress responses, which over time can lead to increased risk for obesity, hypertension, and other chronic diseases. Salt and fructose are two major stimuli that can induce acute changes in serum osmolality. Here we investigate the early metabolic effects of sodium and fructose consumption and determine whether the effects of sodium or fructose loading can be mitigated by blocking the change in osmolality with hydration. Forty-four healthy subjects without disease and medication were recruited into four groups. After overnight fasting, subjects in Group 1 drank 500 mL of salty soup, while those in Group 2 drank 500 mL of soup without salt for 15 min. Subjects in Group 3 drank 500 mL of 100% apple juice in 5 min, while subjects in Group 4 drank 500 mL of 100% apple juice and 500 mL of water in 5 min. Blood pressure (BP), plasma sodium, and glucose levels were measured every 15 min in the first 2 h. Serum and urine osmolarity, serum uric acid, cortisol, fibroblast growth factor 21 (FGF21), aldosterone, adrenocorticotropic hormone (ACTH) level, and plasma renin activity (PRA) were measured at the baseline and 2 h. Both acute intake of salt or fructose increased serum osmolality (maximum ∼4 mOsm/L peaking at 75 min) associated with a rise in systolic and diastolic BP, PRA, aldosterone, ACTH, cortisol, plasma glucose, uric acid, and FGF21. Salt tended to cause greater activation of the renin-angiotensin-system (RAS), while fructose caused a greater rise in glucose and FGF21. In both cases, hydration could prevent the osmolality and largely block the acute stress response. Acute changes in serum osmolality can induce remarkable activation of the ACTH-cortisol, RAS, glucose metabolism, and uric acid axis that is responsive to hydration. In addition to classic dehydration, salt, and fructose-containing sugars can activate these responses. Staying well hydrated may provide benefits despite exposure to sugar and salt. More studies are needed to investigate whether hydration can block the chronic effects of sugar and salt on disease.
Collapse
Affiliation(s)
- Nuri Baris Hasbal
- Division of Nephrology, Department of Internal Medicine, Koc University School of Medicine, İstanbul, Turkey.
| | | | - Said Incir
- Department of Biochemistry, Koc University School of Medicine, Istanbul, Turkey
| | - Dimitrie Siriopol
- Department of Nephrology, "Saint John the New" County Hospital, Stefan cel Mare University, Suceava, Romania
| | - Laura G Sanchez-Lozada
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología "Ignacio Chavez", Mexico City, Mexico
| | - Miguel A Lanaspa
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Richard J Johnson
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Mehmet Kanbay
- Division of Nephrology, Department of Internal Medicine, Koc University School of Medicine, İstanbul, Turkey
| |
Collapse
|
3
|
Jeong S, Hunter SD, Cook MD, Grosicki GJ, Robinson AT. Salty Subjects: Unpacking Racial Differences in Salt-Sensitive Hypertension. Curr Hypertens Rep 2024; 26:43-58. [PMID: 37878224 PMCID: PMC11414742 DOI: 10.1007/s11906-023-01275-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
PURPOSE OF REVIEW To review underlying mechanisms and environmental factors that may influence racial disparities in the development of salt-sensitive blood pressure. RECENT FINDINGS Our group and others have observed racial differences in diet and hydration, which may influence salt sensitivity. Dietary salt elicits negative alterations to the gut microbiota and immune system, which may increase hypertension risk, but little is known regarding potential racial differences in these physiological responses. Antioxidant supplementation and exercise offset vascular dysfunction following dietary salt, including in Black adults. Furthermore, recent work proposes the role of racial differences in exposure to social determinants of health, and differences in health behaviors that may influence risk of salt sensitivity. Physiological and environmental factors contribute to the mechanisms that manifest in racial differences in salt-sensitive blood pressure. Using this information, additional work is needed to develop strategies that can attenuate racial disparities in salt-sensitive blood pressure.
Collapse
Affiliation(s)
- Soolim Jeong
- Neurovascular Physiology Laboratory (NVPL), School of Kinesiology, Auburn University, Auburn, AL, 36849, USA
| | - Stacy D Hunter
- Department of Health & Human Performance, Texas State University, San Marcos, TX, 78666, USA
| | - Marc D Cook
- Department of Kinesiology, North Carolina Agriculture and Technology State University, Greensboro, NC, 27411, USA
| | - Gregory J Grosicki
- Biodynamics and Human Performance Center, Georgia Southern University (Armstrong Campus), Savannah, GA, 31419, USA
| | - Austin T Robinson
- Neurovascular Physiology Laboratory (NVPL), School of Kinesiology, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
4
|
Copur S, Peltek IB, Mutlu A, Tanriover C, Kanbay M. A new immune disease: systemic hypertension. Clin Kidney J 2023; 16:1403-1419. [PMID: 37664577 PMCID: PMC10469084 DOI: 10.1093/ckj/sfad059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Indexed: 09/05/2023] Open
Abstract
Systemic hypertension is the most common medical comorbidity affecting the adult population globally, with multiple associated outcomes including cerebrovascular diseases, cardiovascular diseases, vascular calcification, chronic kidney disease, metabolic syndrome and mortality. Despite advancements in the therapeutic field approximately one in every five adult patients with hypertension is classified as having treatment-resistant hypertension, indicating the need for studies to provide better understanding of the underlying pathophysiology and the need for more therapeutic targets. Recent pre-clinical studies have demonstrated the role of the innate and adaptive immune system including various cell types and cytokines in the pathophysiology of hypertension. Moreover, pre-clinical studies have indicated the potential beneficial effects of immunosuppressant medications in the control of hypertension. Nevertheless, it is unclear whether such pathophysiological mechanisms and therapeutic alternatives are applicable to human subjects, while this area of research is undoubtedly a rapidly growing field.
Collapse
Affiliation(s)
- Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Ibrahim B Peltek
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Ali Mutlu
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Cem Tanriover
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Mehmet Kanbay
- Department of Medicine, Section of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
5
|
Sánchez-Lozada LG, Madero M, Mazzali M, Feig DI, Nakagawa T, Lanaspa MA, Kanbay M, Kuwabara M, Rodriguez-Iturbe B, Johnson RJ. Sugar, salt, immunity and the cause of primary hypertension. Clin Kidney J 2023; 16:1239-1248. [PMID: 37529651 PMCID: PMC10387395 DOI: 10.1093/ckj/sfad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 08/03/2023] Open
Abstract
Despite its discovery more than 150 years ago, the cause of primary hypertension remains unknown. Most studies suggest that hypertension involves genetic, congenital or acquired risk factors that result in a relative inability of the kidney to excrete salt (sodium chloride) in the kidneys. Here we review recent studies that suggest there may be two phases, with an initial phase driven by renal vasoconstriction that causes low-grade ischemia to the kidney, followed by the infiltration of immune cells that leads to a local autoimmune reaction that maintains the renal vasoconstriction. Evidence suggests that multiple mechanisms could trigger the initial renal vasoconstriction, but one way may involve fructose that is provided in the diet (such as from table sugar or high fructose corn syrup) or produced endogenously. The fructose metabolism increases intracellular uric acid, which recruits NADPH oxidase to the mitochondria while inhibiting AMP-activated protein kinase. A drop in intracellular ATP level occurs, triggering a survival response. Leptin levels rise, triggering activation of the sympathetic central nervous system, while vasopressin levels rise, causing vasoconstriction in its own right and stimulating aldosterone production via the vasopressin 1b receptor. Low-grade renal injury and autoimmune-mediated inflammation occur. High-salt diets can amplify this process by raising osmolality and triggering more fructose production. Thus, primary hypertension may result from the overactivation of a survival response triggered by fructose metabolism. Restricting salt and sugar and hydrating with ample water may be helpful in the prevention of primary hypertension.
Collapse
Affiliation(s)
- Laura G Sánchez-Lozada
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chavez”, Mexico City, Mexico
| | - Magdalena Madero
- Division of Nephrology, Department of Medicine, Instituto Nacional de Cardiología “Ignacio Chavez”, Mexico City, Mexico
| | - Marilda Mazzali
- Division of Nephrology, University of Campinas, São Paulo, Brazil
| | - Daniel I Feig
- Division of Pediatric Nephrology, University of Alabama, Birmingham, AL, USA
| | | | - Miguel A Lanaspa
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Mehmet Kanbay
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | | | - Bernardo Rodriguez-Iturbe
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City
| | - Richard J Johnson
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| |
Collapse
|
6
|
Stocker SD. Altered Neuronal Discharge in the Organum Vasculosum of the Lamina Terminalis Contributes to Dahl Salt-Sensitive Hypertension. Hypertension 2023; 80:872-881. [PMID: 36752103 PMCID: PMC10023399 DOI: 10.1161/hypertensionaha.122.20798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND Salt-sensitive hypertension in humans and experimental models is associated with higher plasma and cerebrospinal fluid sodium chloride (NaCl) concentrations. Changes in extracellular NaCl concentrations are sensed by specialized neurons in the organum vasculosum of the lamina terminalis (OVLT). Stimulation of OVLT neurons increases sympathetic nerve activity (SNA) and arterial blood pressure (ABP), whereas chronic activation produces hypertension. Therefore, the present study tested whether OVLT neuronal activity was elevated and contributed to SNA and ABP in salt-sensitive hypertension. METHODS Male Dahl salt-sensitive (Dahl S) and Dahl salt-resistant (Dahl R) rats were fed 0.1% or 4.0% NaCl diets for 3 to 4 weeks and used for single-unit recordings of OVLT neurons or simultaneous recording of multiple sympathetic nerves during pharmacological inhibition of the OVLT. RESULTS Plasma and cerebrospinal fluid Na+ and Cl- concentrations were higher in Dahl S rats fed 4% versus 0.1% or Dahl R rats fed either diet. In vivo single-unit recordings revealed a significantly higher discharge of NaCl-responsive OVLT neurons in Dahl S rats fed 4% versus 0.1% or Dahl R rats. Interestingly, intracarotid infusion of hypertonic NaCl evoked greater increases in OVLT neuronal discharge of Dahl S versus Dahl R rats regardless of NaCl diet. The activity of non-NaCl-responsive OVLT neurons was not different across strain or diets. Finally, inhibition of OVLT neurons by local injection of the gamma-aminobutyric acid agonist muscimol produced a greater decrease in renal SNA, splanchnic SNA, and ABP of Dahl S rats fed 4% versus 0.1% or Dahl R rats. CONCLUSIONS A high salt diet activates NaCl-responsive OVLT neurons to increase SNA and ABP in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Sean D Stocker
- Department of Neurobiology, University of Pittsburgh School of Medicine, PA
| |
Collapse
|
7
|
Zhang W, Wu B, Wu W, Cui X, Li D, Gao F, Li T, Zhu L, Geng Y, Zhang L, Hu Y, Luo X. An optimal dietary sodium chloride supplemental level of broiler chicks fed a corn-soybean meal diet from 1 to 21 days of age. Front Vet Sci 2022; 9:1077750. [PMID: 36561393 PMCID: PMC9767365 DOI: 10.3389/fvets.2022.1077750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Sodium chloride (NaCl) is usually added to diets to meet the Na and Cl requirements of broilers in the Chinese poultry industry, but the optimal dietary NaCl supplemental level was not well-established. The present study was conducted to estimate the optimal dietary NaCl supplemental level of broilers fed a corn-soybean meal diet from 1 to 21 days of age. A total of 490, 1-day-old Arbor Acres male broilers were fed a NaCl-unsupplemented corn-soybean meal basal diet (control) and the basal diet supplemented with 0.10, 0.20, 0.30, 0.40, 0.50 or 0.60% NaCl for 21 days. Regression analysis was conducted to evaluate the optimal dietary NaCl level using the best fitted broken-line or asymptotic models. As dietary supplemental NaCl levels increased, average daily gain (ADG), average daily feed intake (ADFI), blood partial pressure of CO2, total CO2, base excess and anion gap, blood concentrations of HCO3, Na and Cl, serum Na concentration, jejunal villus height (VH) and tibia ash content increased linearly and quadratically (P < 0.05), while feed/gain ratio, relative weights of heart, liver and kidney, blood K concentration, serum concentrations of K, uric acid and glucose, and osmotic pressure decreased linearly and quadratically (P < 0.05). The estimates of optimal dietary NaCl levels were 0.20-0.22% based on the best fitted broken-line or asymptotic models (P < 0.0001) of ADG, ADFI and feed/gain ratio, and 0.08-0.24% based on the best fitted broken-line or asymptotic models (P < 0.0001) of blood gas indices, serum parameters, jejunal VH, tibia ash content and organ indices. These results suggested that the optimal dietary NaCl supplemental level would be 0.24% for broilers fed the corn-soybean meal diet from 1 to 21 days of age, which is lower than the current dietary NaCl supplemental level (0.30%) in the Chinese broiler production.
Collapse
Affiliation(s)
- Weiyun Zhang
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Bingxin Wu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wei Wu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaoyan Cui
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ding Li
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Feiyu Gao
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tingting Li
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ling Zhu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yanqiang Geng
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Liyang Zhang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yun Hu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China,*Correspondence: Yun Hu
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China,Xugang Luo
| |
Collapse
|
8
|
Role of high-salt diet in non-alcoholic fatty liver disease: a mini-review of the evidence. Eur J Clin Nutr 2022; 76:1053-1059. [PMID: 34773093 DOI: 10.1038/s41430-021-01044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/11/2021] [Accepted: 10/22/2021] [Indexed: 11/08/2022]
Abstract
With the rising incidence of both obesity and diabetes, non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide. However, lifestyle intervention remains to be an effective approach for NAFLD due to lack of therapeutic medication. Recently, salt, an essential micronutrient free of calories, has raised a global concern owing to its wide-range healthy relevance. Accumulated evidence has suggested that a long-term high-salt diet (HSD) independently increases the risk of NAFLD. In the past decades, a number of studies have been reported regarding the mechanism of much investigation concerning HSD-induced NAFLD. Here, we review the updates in epidemiology and molecular mechanism of HSD-induced NAFLD and provide a novel insight into the role of HSD in the regulation of lipid metabolism.
Collapse
|
9
|
Affiliation(s)
- Bailong Hu
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Li
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Haiyan Zhou
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
10
|
Zhang J, Zhang N, Liu S, Du S, Ma G. Young Adults with Higher Salt Intake Have Inferior Hydration Status: A Cross-Sectional Study. Nutrients 2022; 14:nu14020287. [PMID: 35057468 PMCID: PMC8778661 DOI: 10.3390/nu14020287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 11/28/2022] Open
Abstract
The body’s water and sodium balances are tightly regulated and monitored by the brain. Few studies have explored the relationship between water and salt intake, and whether sodium intake with different levels of fluid intake leads to changes in hydration status remains unknown. The aim of the present study was to determine the patterns of water intake and hydration status among young adults with different levels of daily salt intakes. Participants’ total drinking fluids and water from food were determined by a 7-day 24-h fluid intake questionnaire for 7 days (from Day 1 to Day 7) and duplicate portion method (Day 5, Day 6 and Day 7). Urine of 24 h for 3 days (Day 5, Day 6 and Day 7) was collected and tested for the osmolality, the urine-specific gravity (USG), the concentrations of electrolytes, pH, creatinine, uric acid and the urea. The fasting blood samples for 1 day (Day 6) were collected and measured for the osmolality and the concentrations of electrolytes. The salt intakes of the participants were evaluated from the concentrations of Na of 24 h urine of 3 days (Day 5, Day 6 and Day 7). Participants were divided into four groups according to the quartile of salt intake, including the low salt intake (LS1), LS2, high salt intake (HS1) and HS2 groups. In total, 156 participants (including 80 male and 76 female young adults) completed the study. The salt intakes were 7.6, 10.9, 14.7 and 22.4 g among participants in the four groups (LS1, LS2, HS1 and HS2 groups, respectively), which differed significantly in all groups (F = 252.020; all p < 0.05). Compared to the LS1 and LS2 groups, the HS2 group had 310–381, 250–358 and 382–655 mL more amounts of water from the total water intake (TWI), total drinking fluids and water from food (all p < 0.05), respectively. Participants in the HS2 group had 384–403, 129–228 and 81–114 mL more in the water, water from dishes and staple foods, respectively, than those in the groups of LS1 and LS2 (p < 0.05). The HS2 group excreted 386–793 mL more urine than those in the groups of LS1 and LS2 (p < 0.05). However, regarding urine osmolality, the percentage of participants with optimal hydration status decreased from 41.0% in LS1 and LS2 to 25.6% in the HS2 group (p < 0.05). Participants with higher salt intake had higher TWI, total drinking fluids and water from food. Nevertheless, they had inferior hydration status. A reduction in salt intake should be encouraged among young adults to maintain optimal hydration status.
Collapse
Affiliation(s)
- Jianfen Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 38 Xue Yuan Road, Haidian District, Beijing 100191, China; (J.Z.); (G.M.)
- Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, 38 Xue Yuan Road, Haidian District, Beijing 100191, China
| | - Na Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 38 Xue Yuan Road, Haidian District, Beijing 100191, China; (J.Z.); (G.M.)
- Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, 38 Xue Yuan Road, Haidian District, Beijing 100191, China
- Correspondence: ; Tel./Fax: +86-10-8280-5266
| | - Shufang Liu
- School of Public Health, Hebei University Health Science Center, 342 Yuhua Road, Lianchi District, Baoding 071000, China;
| | - Songming Du
- Chinese Nutrition Society, Room 1405, Beijing Broadcasting Building, No. 14 Jianguomenwai Street, Chaoyang District, Beijing 100053, China;
| | - Guansheng Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 38 Xue Yuan Road, Haidian District, Beijing 100191, China; (J.Z.); (G.M.)
- Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, 38 Xue Yuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
11
|
Agbaraolorunpo F, Oloyo AK, Ogunnowo SA, Anigbogu CN, Sofola O. Effect of Angiotensin receptor blockade on Plasma Osmolality and Neurohumoral Responses to High Environmental Temperature in Rats Fed a High Salt Diet. Niger J Physiol Sci 2021; 36:149-157. [PMID: 35947735 DOI: 10.54548/njps.v36i2.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 06/15/2023]
Abstract
Plasma osmolality (pOsmol) and neurohumoral signals play important roles in the pathophysiology of cardiovascular diseases. Our study investigated the effect of high environmental temperature (HET) on neurohumoral responses and pOsmol in rats fed a high salt diet (HSD), with and without angiotensin II receptor blockade (ARB), using telmisartan. Fifty-six male 8-week old Sprague-Dawley rats (95-110g) were randomly assigned into seven groups of 8 rats. These included control rats (I) fed with 0.3% NaCl diet (normal diet, ND); salt-loaded rats (II) fed with 8% NaCl (high salt) diet; ND rats (III) exposed to HET (38.5±0.5oC ) 4 hours daily per week; rats (IV) fed with 8% NaCl diet and exposed to HET daily. Others included rats (V) fed with 8% NaCl diet and treated with telmisartan (30mg/kg); ND rats (VI) exposed to HET and treated with telmisartan; rats (VI) fed with 8% NaCl diet, exposed to HET and treated with telmisartan. Plasma angiotensin II, aldosterone, vasopressin and norepinephrine (NE) concentrations were determined by ELISA technique; pOsmol from plasma K+, Na+ and Urea. HSD combined with HET in rats synergistically increased pOsmol (P<0.001) with an associated non-synergistic rise in fluid intake (P<0.001), fluid balance (P<0.001), plasma angiotensin II (P<0.01) and aldosterone (P<0.05), NE (P<0.001) and vasopressin (P<0.05) concentrations compared to control. Telmisartan did not alter pOsmol in all the treated-rats, but normalized fluid intake levels and plasma vasopressin in the rats exposed to either HSD or HEt alone. Prolonged exposure of rats to hot environment exacerbated the effect of excess dietary salt on pOsmol, with no effect on angiotensin II-mediated neurohumoral responses.
Collapse
|
12
|
Volek JS, Phinney SD, Krauss RM, Johnson RJ, Saslow LR, Gower B, Yancy WS, King JC, Hecht FM, Teicholz N, Bistrian BR, Hamdy O. Alternative Dietary Patterns for Americans: Low-Carbohydrate Diets. Nutrients 2021; 13:3299. [PMID: 34684300 PMCID: PMC8537012 DOI: 10.3390/nu13103299] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022] Open
Abstract
The decades-long dietary experiment embodied in the Dietary Guidelines for Americans (DGA) focused on limiting fat, especially saturated fat, and higher carbohydrate intake has coincided with rapidly escalating epidemics of obesity and type 2 diabetes (T2D) that are contributing to the progression of cardiovascular disease (CVD) and other diet-related chronic diseases. Moreover, the lack of flexibility in the DGA as it pertains to low carbohydrate approaches does not align with the contemporary trend toward precision nutrition. We argue that personalizing the level of dietary carbohydrate should be a high priority based on evidence that Americans have a wide spectrum of metabolic variability in their tolerance to high carbohydrate loads. Obesity, metabolic syndrome, and T2D are conditions strongly associated with insulin resistance, a condition exacerbated by increased dietary carbohydrate and improved by restricting carbohydrate. Low-carbohydrate diets are grounded across the time-span of human evolution, have well-established biochemical principles, and are now supported by multiple clinical trials in humans that demonstrate consistent improvements in multiple established risk factors associated with insulin resistance and cardiovascular disease. The American Diabetes Association (ADA) recently recognized a low carbohydrate eating pattern as an effective approach for patients with diabetes. Despite this evidence base, low-carbohydrate diets are not reflected in the DGA. As the DGA Dietary Patterns have not been demonstrated to be universally effective in addressing the needs of many Americans and recognizing the lack of widely available treatments for obesity, metabolic syndrome, and T2D that are safe, effective, and sustainable, the argument for an alternative, low-carbohydrate Dietary Pattern is all the more compelling.
Collapse
Affiliation(s)
- Jeff S. Volek
- Department of Human Sciences, Ohio State University, Columbus, OH 43017, USA
| | | | - Ronald M. Krauss
- Departments of Pediatrics and Medicine, University of California, San Francisco, CA 94143, USA;
| | - Richard J. Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Laura R. Saslow
- Department of Behavior & Biological Sciences, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Barbara Gower
- Department of Nutrition Sciences, University of Alabama, Birmingham, AL 35233, USA;
| | - William S. Yancy
- Department of Medicine, Lifestyle and Weight Management Center, Duke University, Durham, NC 27705, USA;
| | - Janet C. King
- Department of Nutritional Sciences & Toxicology, University of California, Berkley, CA 94720, USA;
| | - Frederick M. Hecht
- Osher Center for Integrative Medicine, University of California San Francisco, San Francisco, CA 94115, USA;
| | | | | | - Osama Hamdy
- Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA;
| |
Collapse
|
13
|
Günen Yılmaz S, Yılmaz F. Evaluation of demographic and clinical risk factors for high interdialytic weight gain. Ther Apher Dial 2021; 26:613-623. [PMID: 34533275 DOI: 10.1111/1744-9987.13738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 11/27/2022]
Abstract
Xerostomia and hyposalivation are highly prevalent in hemodialysis (HD) patients and this is effective in increased fluid intake. The aim of this study is to determine the demographic and clinical risk factors associated with high interdialytic weight gain (IDWG) in nondiabetic HD patients. In total, 52 eligible HD patients were recruited in this cross-sectional study. Patients were divided into two groups according to % IDWG: Group 1: High IDWG (≥3%) and Group 2: normal IDWG (<3%). Plasma osmolarity (POsm), unstimulated salivary flow rate (USFR), xerostomia inventory (XI), and dialysis thirst inventory (DTI) were evaluated. The mean age of the patients was 53.7 ± 15.7 years. The prevalence of xerostomia was 53.8%, and hyposalivation was in 40.3% in the patients. High IDWG was positively correlated with XI and DTI while it was negatively correlated with POsm and USFR. The area under the receiver-operating characteristics curve for POsm for high IDWG was 0.661, with sensitivity of 63.8% and specificity of 72.7% for a cut-off point of 297.4 mOsm/L. Logistic regression analysis showed that advanced age odds ratio (OR: 1.215, p = 0.019), pill burden (OR: 1.162, p = 0.031), C-reactive protein (CRP; OR: 1.308, p = 0.042), and low POsm (OR: 0.768, p = 0.046) were independently related to high IDWG. The prevalence of xerostomia and thirst was higher in HD patients with high IDWG compared to the normal IDWG group. Age, CRP, low POsm, and pill burden were independently associated with high IDWG.
Collapse
Affiliation(s)
- Sevcihan Günen Yılmaz
- Department of Maxillofacial Radiology, Faculty of Dentistry, Akdeniz University, Antalya, Turkey
| | - Fatih Yılmaz
- Department of Nephrology, Antalya Atatürk State Hospital, Antalya, Turkey
| |
Collapse
|
14
|
Escalante G, Stevenson SW, Barakat C, Aragon AA, Schoenfeld BJ. Peak week recommendations for bodybuilders: an evidence based approach. BMC Sports Sci Med Rehabil 2021; 13:68. [PMID: 34120635 PMCID: PMC8201693 DOI: 10.1186/s13102-021-00296-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/02/2021] [Indexed: 01/10/2023]
Abstract
Bodybuilding is a competitive endeavor where a combination of muscle size, symmetry, "conditioning" (low body fat levels), and stage presentation are judged. Success in bodybuilding requires that competitors achieve their peak physique during the day of competition. To this end, competitors have been reported to employ various peaking interventions during the final days leading to competition. Commonly reported peaking strategies include altering exercise and nutritional regimens, including manipulation of macronutrient, water, and electrolyte intake, as well as consumption of various dietary supplements. The primary goals for these interventions are to maximize muscle glycogen content, minimize subcutaneous water, and reduce the risk abdominal bloating to bring about a more aesthetically pleasing physique. Unfortunately, there is a dearth of evidence to support the commonly reported practices employed by bodybuilders during peak week. Hence, the purpose of this article is to critically review the current literature as to the scientific support for pre-contest peaking protocols most commonly employed by bodybuilders and provide evidence-based recommendations as safe and effective strategies on the topic.
Collapse
Affiliation(s)
- Guillermo Escalante
- Department of Kinesiology, California State University- San Bernardino, CA San Bernardino, USA
| | | | - Christopher Barakat
- Competitive Breed LLC, FL Tampa, USA
- Human Performance Laboratory, The University of Tampa, FL Tampa, USA
| | - Alan A. Aragon
- Department of Family and Consumer Sciences, California State University- Northridge, Los Angeles, CA USA
| | | |
Collapse
|
15
|
Kanbay M, Guler B, Ertuglu LA, Dagel T, Afsar B, Incir S, Baygul A, Covic A, Andres-Hernando A, Sánchez-Lozada LG, Lanaspa MA, Johnson RJ. The Speed of Ingestion of a Sugary Beverage Has an Effect on the Acute Metabolic Response to Fructose. Nutrients 2021; 13:nu13061916. [PMID: 34199607 PMCID: PMC8228203 DOI: 10.3390/nu13061916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The consumption of sweetened beverages is associated with increased risk of metabolic syndrome, cardiovascular disease, and type 2 diabetes mellitus. OBJECTIVE We hypothesized that the metabolic effects of fructose in sugary beverages might be modulated by the speed of ingestion in addition to the overall amount. DESIGN Thirty healthy subjects free of any disease and medication were recruited into two groups. After overnight fasting, subjects in group 1 drank 500 mL of apple juice over an hour by drinking 125 mL every 15 min, while subjects in group 2 drank 500 mL of apple juice over 5 min. Blood samples were collected at time zero and 15, 30, 60, and 120 min after ingestion to be analyzed for serum glucose, insulin, homeostatic model assessment (HOMA-IR) score, fibroblast growth factor 21, copeptin, osmolarity, sodium, blood urea nitrogen (BUN), lactate, uric acid, and phosphate levels. RESULTS Serum glucose, insulin, HOMA-IR, fibroblast growth factor 21, copeptin, osmolarity, sodium, BUN, and lactate levels increased following apple juice ingestion. The increases were greater in the fast-drinking group, which were more significant after 15 min and 30 min compared to baseline. The changes in uric acid were not statistically different between the groups. Phosphate levels significantly increased only in the fast-drinking group. CONCLUSION Fast ingestion of 100% apple juice causes a significantly greater metabolic response, which may be associated with negative long-term outcomes. Our findings suggest that the rate of ingestion must be considered when evaluating the metabolic impacts of sweetened beverage consumption.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul 34010, Turkey;
- Correspondence: or ; Tel.: +90-21-2250-8250
| | - Begum Guler
- Department of Medicine, Koc University School of Medicine, Istanbul 34450, Turkey; (B.G.); (L.A.E.)
| | - Lale A. Ertuglu
- Department of Medicine, Koc University School of Medicine, Istanbul 34450, Turkey; (B.G.); (L.A.E.)
| | - Tuncay Dagel
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul 34010, Turkey;
| | - Baris Afsar
- Division of Nephrology, Department of Internal Medicine, Suleyman Demirel University School of Medicine, Isparta 32260, Turkey;
| | - Said Incir
- Department of Biochemistry, Koc University School of Medicine, Istanbul 34010, Turkey;
| | - Arzu Baygul
- Department of Bioistastics, Koc University School of Medicine, Istanbul 34010, Turkey;
| | - Adrian Covic
- Department of Nephrology, Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania;
| | - Ana Andres-Hernando
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO 80045, USA; (A.A.-H.); (M.A.L.); (R.J.J.)
| | | | - Miguel A. Lanaspa
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO 80045, USA; (A.A.-H.); (M.A.L.); (R.J.J.)
| | - Richard J. Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO 80045, USA; (A.A.-H.); (M.A.L.); (R.J.J.)
| |
Collapse
|
16
|
Andres-Hernando A, Jensen TJ, Kuwabara M, Orlicky DJ, Cicerchi C, Li N, Roncal-Jimenez CA, Garcia GE, Ishimoto T, Maclean PS, Bjornstad P, Sanchez-Lozada LG, Kanbay M, Nakagawa T, Johnson RJ, Lanaspa MA. Vasopressin mediates fructose-induced metabolic syndrome by activating the V1b receptor. JCI Insight 2021; 6:140848. [PMID: 33320834 PMCID: PMC7821599 DOI: 10.1172/jci.insight.140848] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
Subjects with obesity frequently have elevated serum vasopressin levels, noted by measuring the stable analog, copeptin. Vasopressin acts primarily to reabsorb water via urinary concentration. However, fat is also a source of metabolic water, raising the possibility that vasopressin might have a role in fat accumulation. Fructose has also been reported to stimulate vasopressin. Here, we tested the hypothesis that fructose-induced metabolic syndrome is mediated by vasopressin. Orally administered fructose, glucose, or high-fructose corn syrup increased vasopressin (copeptin) concentrations and was mediated by fructokinase, an enzyme specific for fructose metabolism. Suppressing vasopressin with hydration both prevented and ameliorated fructose-induced metabolic syndrome. The vasopressin effects were mediated by the vasopressin 1b receptor (V1bR), as V1bR-KO mice were completely protected, whereas V1a-KO mice paradoxically showed worse metabolic syndrome. The mechanism is likely mediated in part by de novo expression of V1bR in the liver that amplifies fructokinase expression in response to fructose. Thus, our studies document a role for vasopressin in water conservation via the accumulation of fat as a source of metabolic water. Clinically, they also suggest that increased water intake may be a beneficial way to both prevent or treat metabolic syndrome.
Collapse
Affiliation(s)
| | - Thomas J Jensen
- Division of Endocrine, Diabetes, and Metabolism, University of Colorado Denver, Aurora, Colorado, USA
| | | | - David J Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | - Nanxing Li
- Division of Renal Diseases and Hypertension and
| | | | | | - Takuji Ishimoto
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Paul S Maclean
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | - Petter Bjornstad
- Division of Renal Diseases and Hypertension and.,Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| | | | | | | |
Collapse
|
17
|
Peng W, Xie Y, Liu K, Qi H, Liu Z, Xia J, Cao H, Guo C, Sun Y, Liu X, Li B, Wen F, Zhang F, Zhang L. Discrepant acute effect of saline loading on blood pressure, urinary sodium and potassium according to salt intake level: EpiSS study. J Clin Hypertens (Greenwich) 2020; 23:289-300. [PMID: 33220161 PMCID: PMC8029760 DOI: 10.1111/jch.14106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 11/28/2022]
Abstract
Acute dietary salt intake may cause an elevation in blood pressure (BP). The study aimed to assess the acute effect of saline loading on BP in subjects with different levels of salt intake. This study is based on the baseline survey of systemic epidemiology of salt sensitivity study. The sodium excretion in the 24-hour urine was calculated for estimating the level of salt intake. Subjects were performed an acute oral saline loading test (1 L), and data of 2019 participants were included for analyses. Multivariate linear regression and stratified analyses were performed to identify associations between 24-hour urinary sodium (24hUNa) with BP changes. Due to saline loading, systolic BP (SBP), pulse pressure, and urinary sodium concentration were significantly increased, while diastolic BP, heart rate, and urinary potassium concentration were significantly decreased. The SBP increments were more significant in subjects with lower salt intake, normotensives, elders, males, smokers, and drinkers. There was a significant linear negative dose-response association between SBP increment with 24hUNa (β = -0.901, 95% CI: -1.253, -0.548), especially in lower salt intake individuals (β = -1.297, 95% CI: -2.338, -0.205) and hypertensive patients (β = -1.502, 95% CI: -2.037, -0.967). After excluding patients who received antidiabetic or antihypertensive medicines, the effects of negative associations weakened but remained significantly. In conclusion, acute salt loading leads to an increment in SBP, and the increased SBP was negatively related with 24hUNa. This study indicated avoiding acute salt loading was important for escaping acute BP changes, especially in lower salt intake populations.
Collapse
Affiliation(s)
- Wenjuan Peng
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Yunyi Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Kuo Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Han Qi
- The National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, The Advanced Innovation Center for Human Brain Protection, Beijing Anding Hospital, School of Mental Health, Capital Medical University, Beijing, China
| | - Zheng Liu
- Science Department, Peking University People's Hospital, Beijing, China
| | - Juan Xia
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Han Cao
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Chunyue Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Yanyan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Xiaohui Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Bingxiao Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Fuyuan Wen
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Fengxu Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Ling Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Valenzuela PL, Carrera-Bastos P, Gálvez BG, Ruiz-Hurtado G, Ordovas JM, Ruilope LM, Lucia A. Lifestyle interventions for the prevention and treatment of hypertension. Nat Rev Cardiol 2020; 18:251-275. [PMID: 33037326 DOI: 10.1038/s41569-020-00437-9] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
Hypertension affects approximately one third of the world's adult population and is a major cause of premature death despite considerable advances in pharmacological treatments. Growing evidence supports the use of lifestyle interventions for the prevention and adjuvant treatment of hypertension. In this Review, we provide a summary of the epidemiological research supporting the preventive and antihypertensive effects of major lifestyle interventions (regular physical exercise, body weight management and healthy dietary patterns), as well as other less traditional recommendations such as stress management and the promotion of adequate sleep patterns coupled with circadian entrainment. We also discuss the physiological mechanisms underlying the beneficial effects of these lifestyle interventions on hypertension, which include not only the prevention of traditional risk factors (such as obesity and insulin resistance) and improvements in vascular health through an improved redox and inflammatory status, but also reduced sympathetic overactivation and non-traditional mechanisms such as increased secretion of myokines.
Collapse
Affiliation(s)
| | - Pedro Carrera-Bastos
- Centre for Primary Health Care Research, Lund University/Region Skane, Skane University Hospital, Malmö, Sweden
| | - Beatriz G Gálvez
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Gema Ruiz-Hurtado
- Research Institute of the Hospital Universitario 12 de Octubre (imas12), Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - José M Ordovas
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.,IMDEA Alimentacion, Madrid, Spain
| | - Luis M Ruilope
- Research Institute of the Hospital Universitario 12 de Octubre (imas12), Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain. .,Research Institute of the Hospital Universitario 12 de Octubre (imas12), Madrid, Spain.
| |
Collapse
|
19
|
Johnson RJ, Gomez-Pinilla F, Nagel M, Nakagawa T, Rodriguez-Iturbe B, Sanchez-Lozada LG, Tolan DR, Lanaspa MA. Cerebral Fructose Metabolism as a Potential Mechanism Driving Alzheimer's Disease. Front Aging Neurosci 2020; 12:560865. [PMID: 33024433 PMCID: PMC7516162 DOI: 10.3389/fnagi.2020.560865] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
The loss of cognitive function in Alzheimer's disease is pathologically linked with neurofibrillary tangles, amyloid deposition, and loss of neuronal communication. Cerebral insulin resistance and mitochondrial dysfunction have emerged as important contributors to pathogenesis supporting our hypothesis that cerebral fructose metabolism is a key initiating pathway for Alzheimer's disease. Fructose is unique among nutrients because it activates a survival pathway to protect animals from starvation by lowering energy in cells in association with adenosine monophosphate degradation to uric acid. The fall in energy from fructose metabolism stimulates foraging and food intake while reducing energy and oxygen needs by decreasing mitochondrial function, stimulating glycolysis, and inducing insulin resistance. When fructose metabolism is overactivated systemically, such as from excessive fructose intake, this can lead to obesity and diabetes. Herein, we present evidence that Alzheimer's disease may be driven by overactivation of cerebral fructose metabolism, in which the source of fructose is largely from endogenous production in the brain. Thus, the reduction in mitochondrial energy production is hampered by neuronal glycolysis that is inadequate, resulting in progressive loss of cerebral energy levels required for neurons to remain functional and viable. In essence, we propose that Alzheimer's disease is a modern disease driven by changes in dietary lifestyle in which fructose can disrupt cerebral metabolism and neuronal function. Inhibition of intracerebral fructose metabolism could provide a novel way to prevent and treat this disease.
Collapse
Affiliation(s)
- Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Maria Nagel
- Departments of Neurology and Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | | - Bernardo Rodriguez-Iturbe
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | - Laura G Sanchez-Lozada
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | - Dean R Tolan
- Department of Biology, Boston University, Boston, MA, United States
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
20
|
Cumhur Cure M, Cure E. Comment on "Association of Serum Osmolarity With Contrast-Induced Nephropathy in Patients With ST-Segment Elevation Myocardial Infarction". Angiology 2020; 71:669-670. [PMID: 32013537 DOI: 10.1177/0003319720902953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
| | - Erkan Cure
- Department of Internal Medicine, Ota & Jinemed Hospital, Istanbul, Turkey
| |
Collapse
|
21
|
Diabetes Mellitus and Hypertension-A Case of Sugar and Salt? Int J Mol Sci 2020; 21:ijms21155200. [PMID: 32708014 PMCID: PMC7432106 DOI: 10.3390/ijms21155200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/29/2022] Open
Abstract
The majority of patients with diabetes mellitus (DM) have hypertension (HTN). A specific mechanism for the development of HTN in DM has not been described. In the Zucker, Endothel, und Salz (sugar, endothelium, and salt) study (ZEuS), indices of glucose metabolism and of volume regulation are recorded. An analysis of these parameters shows that glucose concentrations interfere with plasma osmolality and that changes in glycemic control have a significant impact on fluid status and blood pressure. The results of this study are discussed against the background of the striking similarities between the regulation of sugar and salt blood concentrations, introducing the view that DM is probably a sodium-retention disorder that leads to a state of hypervolemia.
Collapse
|
22
|
Kanbay M, Ertuglu LA, Afsar B, Ozdogan E, Siriopol D, Covic A, Basile C, Ortiz A. An update review of intradialytic hypotension: concept, risk factors, clinical implications and management. Clin Kidney J 2020; 13:981-993. [PMID: 33391741 PMCID: PMC7769545 DOI: 10.1093/ckj/sfaa078] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
Intradialytic hypotension (IDH) is a frequent and serious complication of chronic haemodialysis, linked to adverse long-term outcomes including increased cardiovascular and all-cause mortality. IDH is the end result of the interaction between ultrafiltration rate (UFR), cardiac output and arteriolar tone. Thus excessive ultrafiltration may decrease the cardiac output, especially when compensatory mechanisms (heart rate, myocardial contractility, vascular tone and splanchnic flow shifts) fail to be optimally recruited. The repeated disruption of end-organ perfusion in IDH may lead to various adverse clinical outcomes affecting the heart, central nervous system, kidney and gastrointestinal system. Potential interventions to decrease the incidence or severity of IDH include optimization of the dialysis prescription (cool dialysate, UFR, sodium profiling and high-flux haemofiltration), interventions during the dialysis session (midodrine, mannitol, food intake, intradialytic exercise and intermittent pneumatic compression of the lower limbs) and interventions in the interdialysis period (lower interdialytic weight gain and blood pressure–lowering drugs). However, the evidence base for many of these interventions is thin and optimal prevention and management of IDH awaits further clinical investigation. Developing a consensus definition of IDH will facilitate clinical research. We review the most recent findings on risk factors, pathophysiology and management of IDH and, based on this, we call for a new consensus definition of IDH based on clinical outcomes and define a roadmap for IDH research.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| | - Lale A Ertuglu
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Baris Afsar
- Department of Internal Medicine, Division of Nephrology, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Elif Ozdogan
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Dimitrie Siriopol
- Nephrology Clinic, Dialysis and Renal Transplant Center, 'C.I. PARHON' University Hospital, 'Grigore T. Popa' University of Medicine, Iasi, Romania
| | - Adrian Covic
- Nephrology Clinic, Dialysis and Renal Transplant Center, 'C.I. PARHON' University Hospital, 'Grigore T. Popa' University of Medicine, Iasi, Romania
| | - Carlo Basile
- Division of Nephrology, Miulli General Hospital, Acquaviva delle Fonti, Italy.,Associazione Nefrologica Gabriella Sebastio, Martina Franca, Italy
| | - Alberto Ortiz
- Dialysis Unit, School of Medicine, IIS-Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
23
|
Hyperosmolarity and Increased Serum Sodium Concentration Are Risks for Developing Hypertension Regardless of Salt Intake: A Five-Year Cohort Study in Japan. Nutrients 2020; 12:nu12051422. [PMID: 32423124 PMCID: PMC7284783 DOI: 10.3390/nu12051422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 01/23/2023] Open
Abstract
The potential contribution of serum osmolarity in the modulation of blood pressure has not been evaluated. This study was done to examine the relationship between hyperosmolarity and hypertension in a five-year longitudinal design. We enrolled 10,157 normotensive subjects without diabetes who developed hypertension subsequently as determined by annual medical examination in St. Luke's International Hospital, Tokyo, between 2004 and 2009. High salt intake was defined as >12 g/day by a self-answered questionnaire and hyperosmolarity was defined as >293 mOsm/L serum osmolarity, calculated using serum sodium, fasting blood glucose, and blood urea nitrogen. Statistical analyses included adjustments for age, gender, body mass index, smoking, drinking alcohol, dyslipidemia, hyperuricemia, and chronic kidney disease. In the patients with normal osmolarity, the group with high salt intake had a higher cumulative incidence of hypertension than the group with normal salt intake (8.4% versus 6.7%, p = 0.023). In contrast, in the patients with high osmolarity, the cumulative incidence of hypertension was similar in the group with high salt intake and in the group with normal salt intake (13.1% versus 12.9%, p = 0.84). The patients with hyperosmolarity had a higher incidence of hypertension over five years compared to that of the normal osmolarity group (p < 0.001). After multiple adjustments, elevated osmolarity was an independent risk for developing hypertension (OR (odds ratio), 1.025; 95% CI (confidence interval), 1.006-1.044), regardless of the amount of salt intake. When analyzed in relation to each element of calculated osmolarity, serum sodium and fasting blood glucose were independent risks for developing hypertension. Our results suggest that hyperosmolarity is a risk for developing hypertension regardless of salt intake.
Collapse
|
24
|
Serum osmolarity as a potential predictor for contrast-induced nephropathy following elective coronary angiography. Int Urol Nephrol 2020; 52:541-547. [PMID: 32008199 DOI: 10.1007/s11255-020-02391-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/13/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND OBJECTIVES Contrast-induced nephropathy (CIN) is a relatively common complication following primary coronary angiography (CAG) or percutaneous coronary intervention (PCI), especially in at-risk patients. The goal of this study is to evaluate the role of pre-procedural serum osmolarity as a risk factor for CIN in patients undergoing elective CAG for stable coronary artery disease (CAD). MATERIALS AND METHODS A total of 356 stable CAD patients scheduled to undergo CAG or PCI were included in this two-center study. Serum osmolarity was calculated on admission. CIN was defined according to the KDIGO criteria. RESULTS There were 45 (12.6%) patients who developed CIN 48-72 h after CAG or PCI. CIN patients had a higher prevalence of diabetes (51.1% in those with CIN vs 24.4% in those without CIN, p < 0.001), higher serum glucose (129 mg/dL in those with CIN vs 108 mg/dL in those without CIN, p < 0.001), blood urea nitrogen (22.4 mg/dL in those with CIN vs 19.0 mg/dL in those without CIN, p = 0.01) and serum osmolarity (294.2 mOsm in those with CIN vs 290.1 mOsm in those without CIN, p < 0.001) levels, had received a higher dose of contrast (250 mL in those with CIN vs 200 mL in those without CIN, p = 0.03) but had lower hemoglobin (12.9 g/dL in those with CIN vs 13.6 g/dL in those without CIN, p = 0.04) level. In multivariate analysis, serum osmolarity [odds ratio (OR) 1.11; 95% confidence interval (CI) 1.04-1.18 for each mOsm/L increase; p = 0.001], diabetes (OR 2.43, 95% CI 1.26-4.71; p = 0.01), C-reactive protein (OR 1.04, 95% CI 1.01-1.08 for each mg/dL increase; p = 0.02) and contrast volume (OR 34.66, 95% CI 1.25-962.22 for each L increase; p = 0.04) remained as independent predictors of CIN. Serum sodium, glucose and blood urea nitrogen contributed to the excess serum osmolarity of CIN patients. CONCLUSION Serum osmolarity is a cheap and widely available marker that can reliably predict CIN after CAG or PCI. Future research should focus on determining a clinically optimal cutoff for serum osmolarity that would warrant preventive interventions. Furthermore, later research may investigate the role of serum osmolarity not only as a risk factor but also as a pathogenetic mechanism underlying CIN.
Collapse
|
25
|
Kanbay M, Yilmaz S, Dincer N, Ortiz A, Sag AA, Covic A, Sánchez-Lozada LG, Lanaspa MA, Cherney DZI, Johnson RJ, Afsar B. Antidiuretic Hormone and Serum Osmolarity Physiology and Related Outcomes: What Is Old, What Is New, and What Is Unknown? J Clin Endocrinol Metab 2019; 104:5406-5420. [PMID: 31365096 DOI: 10.1210/jc.2019-01049] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/25/2019] [Indexed: 12/16/2022]
Abstract
CONTEXT Although the physiology of sodium, water, and arginine vasopressin (AVP), also known as antidiuretic hormone, has long been known, accumulating data suggest that this system operates as a more complex network than previously thought. EVIDENCE ACQUISITION English-language basic science and clinical studies of AVP and osmolarity on the development of kidney and cardiovascular disease and overall outcomes. EVIDENCE SYNTHESIS Apart from osmoreceptors and hypovolemia, AVP secretion is modified by novel factors such as tongue acid-sensing taste receptor cells and brain median preoptic nucleus neurons. Moreover, pharyngeal, esophageal, and/or gastric sensors and gut microbiota modulate AVP secretion. Evidence is accumulating that increased osmolarity, AVP, copeptin, and dehydration are all associated with worse outcomes in chronic disease states such as chronic kidney disease (CKD), diabetes, and heart failure. On the basis of these pathophysiological relationships, an AVP receptor 2 blocker is now licensed for CKD related to polycystic kidney disease. CONCLUSION From a therapeutic perspective, fluid intake may be associated with increased AVP secretion if it is driven by loss of urine concentration capacity or with suppressed AVP if it is driven by voluntary fluid intake. In the current review, we summarize the literature on the relationship between elevated osmolarity, AVP, copeptin, and dehydration with renal and cardiovascular outcomes and underlying classical and novel pathophysiologic pathways. We also review recent unexpected and contrasting findings regarding AVP physiology in an attempt to explain and understand some of these relationships.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Sezen Yilmaz
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Neris Dincer
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Alberto Ortiz
- Dialysis Unit, School of Medicine, IIS-Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alan A Sag
- Division of Vascular and Interventional Radiology, Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Adrian Covic
- Nephrology Department, Dialysis and Renal Transplant Center, "Dr. C. I. Parhon" University Hospital, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Laura G Sánchez-Lozada
- Laboratory of Renal Physiopathology, Department of Nephrology, INC Ignacio Chávez, Mexico City, Mexico
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, School of Medicine, University of Colorado Denver, Aurora, Colorado
| | - David Z I Cherney
- Department of Medicine, Division of Nephrology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, School of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Baris Afsar
- Division of Nephrology, Department of Medicine, Suleyman Demirel University School of Medicine, Isparta, Turkey
| |
Collapse
|
26
|
Fülöp T, Soliman K, Tapolyai M. On blood pressure effect of acute osmolar load. J Clin Hypertens (Greenwich) 2019; 21:438-439. [PMID: 30648788 DOI: 10.1111/jch.13481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tibor Fülöp
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina.,Medical Services, Ralph H. Johnson VA Medical Center, Charleston, South Carolina
| | - Karim Soliman
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Mihály Tapolyai
- Medical Services, Ralph H. Johnson VA Medical Center, Charleston, South Carolina.,Hemodialysis Unit Hatvan, Fresenius Medical Care Hungary Kft, Hatvan, Hungary
| |
Collapse
|
27
|
Armanini D, Bordin L, Dona' G, Andrisani A, Ambrosini G, Sabbadin C. Relationship between water and salt intake, osmolality, vasopressin, and aldosterone in the regulation of blood pressure. J Clin Hypertens (Greenwich) 2018; 20:1455-1457. [PMID: 30232837 DOI: 10.1111/jch.13379] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Decio Armanini
- Department of Medicine - Endocrinology (DIMED), University of Padua, Padua, Italy
| | - Luciana Bordin
- Department of Molecular Medicine - Biological Chemistry, University of Padua, Padua, Italy
| | - Gabriella Dona'
- Department of Molecular Medicine - Biological Chemistry, University of Padua, Padua, Italy
| | | | - Guido Ambrosini
- Department of Women's Health-Salus Pueri, University of Padua, Padua, Italy
| | - Chiara Sabbadin
- Department of Medicine - Endocrinology (DIMED), University of Padua, Padua, Italy
| |
Collapse
|