1
|
Yerra VG, Connelly KA. Extrarenal Benefits of SGLT2 Inhibitors in the Treatment of Cardiomyopathies. Physiology (Bethesda) 2024; 39:0. [PMID: 38888433 DOI: 10.1152/physiol.00008.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors have emerged as pivotal medications for heart failure, demonstrating remarkable cardiovascular benefits extending beyond their glucose-lowering effects. The unexpected cardiovascular advantages have intrigued and prompted the scientific community to delve into the mechanistic underpinnings of these novel actions. Preclinical studies have generated many mechanistic theories, ranging from their renal and extrarenal effects to potential direct actions on cardiac muscle cells, to elucidate the mechanisms linking these drugs to clinical cardiovascular outcomes. Despite the strengths and limitations of each theory, many await validation in human studies. Furthermore, whether SGLT2 inhibitors confer therapeutic benefits in specific subsets of cardiomyopathies akin to their efficacy in other heart failure populations remains unclear. By examining the shared pathological features between heart failure resulting from vascular diseases and other causes of cardiomyopathy, certain specific molecular actions of SGLT2 inhibitors (particularly those targeting cardiomyocytes) would support the concept that these medications will yield therapeutic benefits across a broad range of cardiomyopathies. This article aims to discuss the important mechanisms of SGLT2 inhibitors and their implications in hypertrophic and dilated cardiomyopathies. Furthermore, we offer insights into future research directions for SGLT2 inhibitor studies, which hold the potential to further elucidate the proposed biological mechanisms in greater detail.
Collapse
Affiliation(s)
- Veera Ganesh Yerra
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - Kim A Connelly
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| |
Collapse
|
2
|
Koirala S, Sunnaa M, Bernier T, Oktay AA. The Role of Obesity as a Cardiac Disease Risk Factor in Patients with Type 2 Diabetes. Curr Cardiol Rep 2024; 26:1309-1320. [PMID: 39235729 DOI: 10.1007/s11886-024-02129-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 09/06/2024]
Abstract
PURPOSE OF REVIEW Cardiovascular disease (CVD) is the leading cause of death globally and is closely associated with obesity and type 2 diabetes mellitus (T2DM). This review examines the interplay between obesity, T2DM, and CVD, highlighting the increasing prevalence and economic burden of these conditions. RECENT FINDINGS Pharmacologic therapies, particularly glucagon-like peptide-1 receptor agonists, show promise in substantial weight loss and subsequent reduction of adverse cardiovascular events in obese individuals with and without diabetes. Obesity significantly contributes to the development of insulin resistance and T2DM, further escalating CVD risk. The common co-occurrence of these three conditions may involve several other pathophysiological mechanisms, such as chronic inflammation, increased visceral adiposity, and endothelial dysfunction. Until recently, lifestyle modifications and bariatric surgery had been the primary methods for weight loss and mitigating obesity-associated cardiovascular risk. Newer pharmacological options have led to a paradigm shift in our approach to obesity management as they provide substantial benefits in weight loss, glycemic control, and cardiovascular risk reduction.
Collapse
Affiliation(s)
- Sushant Koirala
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Michael Sunnaa
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Thomas Bernier
- Division of Cardiology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Ahmet Afsin Oktay
- Division of Cardiology, Rush University Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
3
|
Rakic D, Jakovljevic V, Zivkovic V, Jakovljevic Uzelac J, Jovic N, Muric M, Pindovic B, Dimitrijevic A, Arsenijevic P, Rakic J, Mitrovic S, Vulovic T, Joksimovic Jovic J. Multiple Benefits of Empagliflozin in PCOS: Evidence from a Preclinical Rat Model. PATHOPHYSIOLOGY 2024; 31:559-582. [PMID: 39449523 PMCID: PMC11503319 DOI: 10.3390/pathophysiology31040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common complex endocrinological condition of women that is associated with infertility and metabolic disorders during the reproductive period. Recently, a great deal of research has focused on the etiopathogenesis of this disorder and the modulation of therapeutic approaches. There are still many controversies in the choice of therapy, and metformin is one of the most commonly used agents in the treatment of PCOS. Considering the link between metabolic disorders and PCOS, glycemic status is crucial in these patients, and sodium-glucose cotransporter type 2 inhibitors (SGLT2is) represent a potentially promising new therapeutic approach. These drugs have been shown to improve glucose metabolism, reduce adipose tissue, decrease oxidative stress, and protect the cardiovascular system. These data prompted us to investigate the effects of empagliflozin (EMPA) in a PCOS rat model and compare them with the effects of metformin. We confirmed that EMPA positively affects somatometric parameters, glucose and lipid metabolism, and the levels of sex hormones, as well as reduces oxidative stress and improves ovarian function and morphology. Administration of EMPA at doses of 5 mg/kg, 15 mg/kg, and 45 mg/kg during a 4-week treatment period improved, as induced by estradiol valerate and a high-fat diet, the metabolic and reproductive statuses in a PCOS rat model. The best effects, which were comparable to the effects of metformin, were achieved in groups receiving the middle and highest applied doses of EMPA. These results may prompt further clinical research on the use of EMPA in patients with PCOS.
Collapse
Affiliation(s)
- Dejana Rakic
- Department of Gynecology and Obstetrics, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (D.R.); (N.J.); (A.D.); (P.A.)
- University Clinical Center Kragujevac, Zmaj Jovina 30, 34000 Kragujevac, Serbia; (M.M.); (S.M.); (T.V.)
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (V.J.); (V.Z.); (B.P.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Vladimir Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (V.J.); (V.Z.); (B.P.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia
- Department of Pharmacology, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Jovana Jakovljevic Uzelac
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Nikola Jovic
- Department of Gynecology and Obstetrics, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (D.R.); (N.J.); (A.D.); (P.A.)
- University Clinical Center Kragujevac, Zmaj Jovina 30, 34000 Kragujevac, Serbia; (M.M.); (S.M.); (T.V.)
| | - Maja Muric
- University Clinical Center Kragujevac, Zmaj Jovina 30, 34000 Kragujevac, Serbia; (M.M.); (S.M.); (T.V.)
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (V.J.); (V.Z.); (B.P.)
| | - Bozidar Pindovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (V.J.); (V.Z.); (B.P.)
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Aleksandra Dimitrijevic
- Department of Gynecology and Obstetrics, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (D.R.); (N.J.); (A.D.); (P.A.)
- University Clinical Center Kragujevac, Zmaj Jovina 30, 34000 Kragujevac, Serbia; (M.M.); (S.M.); (T.V.)
| | - Petar Arsenijevic
- Department of Gynecology and Obstetrics, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (D.R.); (N.J.); (A.D.); (P.A.)
- University Clinical Center Kragujevac, Zmaj Jovina 30, 34000 Kragujevac, Serbia; (M.M.); (S.M.); (T.V.)
| | - Jovan Rakic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Slobodanka Mitrovic
- University Clinical Center Kragujevac, Zmaj Jovina 30, 34000 Kragujevac, Serbia; (M.M.); (S.M.); (T.V.)
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Tatjana Vulovic
- University Clinical Center Kragujevac, Zmaj Jovina 30, 34000 Kragujevac, Serbia; (M.M.); (S.M.); (T.V.)
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Jovana Joksimovic Jovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (V.J.); (V.Z.); (B.P.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia
| |
Collapse
|
4
|
Haywood LMB, Sheahan BJ. A Review of Epithelial Ion Transporters and Their Roles in Equine Infectious Colitis. Vet Sci 2024; 11:480. [PMID: 39453072 PMCID: PMC11512231 DOI: 10.3390/vetsci11100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 10/26/2024] Open
Abstract
Equine colitis is a devastating disease with a high mortality rate. Infectious pathogens associated with colitis in the adult horse include Clostridioides difficile, Clostridium perfringens, Salmonella spp., Neorickettsia risticii/findlaynesis, and equine coronavirus. Antimicrobial-associated colitis can be associated with the presence of infectious pathogens. Colitis can also be due to non-infectious causes, including non-steroidal anti-inflammatory drug administration, sand ingestion, and infiltrative bowel disease. Current treatments focus on symptomatic treatment (restoring fluid and electrolyte balance, preventing laminitis and sepsis). Intestinal epithelial ion channels are key regulators of electrolyte (especially sodium and chloride) and water movement into the lumen. Dysfunctional ion channels play a key role in the development of diarrhea. Infectious pathogens, including Salmonella spp. and C. difficile, have been shown to regulate ion channels in a variety of ways. In other species, there has been an increased interest in ion channel manipulation as an anti-diarrheal treatment. While targeting ion channels also represents a promising way to manage diarrhea associated with equine colitis, ion channels have not been well studied in the equine colon. This review provides an overview of what is known about colonic ion channels and their known or putative role in specific types of equine colitis due to various pathogens.
Collapse
Affiliation(s)
| | - Breanna J. Sheahan
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA;
| |
Collapse
|
5
|
Almalki A, Arjun S, Harding I, Jasem H, Kolatsi-Joannou M, Jafree DJ, Pomeranz G, Long DA, Yellon DM, Bell RM. SGLT1 contributes to glucose-mediated exacerbation of ischemia-reperfusion injury in ex vivo rat heart. Basic Res Cardiol 2024; 119:733-749. [PMID: 39088085 PMCID: PMC11461679 DOI: 10.1007/s00395-024-01071-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Hyperglycaemia is common during acute coronary syndromes (ACS) irrespective of diabetic status and portends excess infarct size and mortality, but the mechanisms underlying this effect are poorly understood. We hypothesized that sodium/glucose linked transporter-1 (SGLT1) might contribute to the effect of high-glucose during ACS and examined this using an ex-vivo rodent heart model of ischaemia-reperfusion injury. Langendorff-perfused rat hearts were subjected to 35 min ischemia and 2 h reperfusion, with variable glucose and reciprocal mannitol given during reperfusion in the presence of pharmacological inhibitors of SGLT1. Myocardial SGLT1 expression was determined in rat by rtPCR, RNAscope and immunohistochemistry, as well as in human by single-cell transcriptomic analysis. High glucose in non-diabetic rat heart exacerbated reperfusion injury, significantly increasing infarct size from 45 ± 3 to 65 ± 4% at 11-22 mmol/L glucose, respectively (p < 0.01), an association absent in diabetic heart (32 ± 1-37 ± 5%, p = NS). Rat heart expressed SGLT1 RNA and protein in vascular endothelium and cardiomyocytes, with similar expression found in human myocardium by single-nucleus RNA-sequencing. Rat SGLT1 expression was significantly reduced in diabetic versus non-diabetic heart (0.608 ± 0.08 compared with 1.116 ± 0.13 probe/nuclei, p < 0.01). Pharmacological inhibitors phlorizin, canagliflozin or mizagliflozoin in non-diabetic heart revealed that blockade of SGLT1 but not SGLT2, abrogated glucose-mediated excess reperfusion injury. Elevated glucose is injurious to the rat heart during reperfusion, exacerbating myocardial infarction in non-diabetic heart, whereas the diabetic heart is resistant to raised glucose, a finding which may be explained by lower myocardial SGLT1 expression. SGLT1 is expressed in vascular endothelium and cardiomyocytes and inhibiting SGLT1 abrogates excess glucose-mediated infarction. These data highlight SGLT1 as a potential clinical translational target to improve morbidity/mortality outcomes in hyperglycemic ACS patients.
Collapse
Affiliation(s)
- Alhanoof Almalki
- Hatter Cardiovascular Institute, Institute for Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Sapna Arjun
- Hatter Cardiovascular Institute, Institute for Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Idris Harding
- Hatter Cardiovascular Institute, Institute for Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Hussain Jasem
- Hatter Cardiovascular Institute, Institute for Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Maria Kolatsi-Joannou
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Daniyal J Jafree
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
- UCL MB/PhD Programme, Faculty of Medical Sciences, University College London, London, UK
| | - Gideon Pomeranz
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
| | - David A Long
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
| | - Derek M Yellon
- Hatter Cardiovascular Institute, Institute for Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Robert M Bell
- Hatter Cardiovascular Institute, Institute for Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
6
|
Pang S, Li X. Early use of SGLT2 inhibitors reduces the progression of diabetic kidney disease: a retrospective cohort study. Am J Transl Res 2024; 16:4967-4978. [PMID: 39398587 PMCID: PMC11470299 DOI: 10.62347/arya8831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/29/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE To evaluate the potential of sodium-glucose cotransporter 2 (SGLT2) inhibitors in preventing the progression of diabetic kidney disease and to provide guidance for clinical practice to improve renal health management strategies for diabetic patients. METHODS A retrospective analysis was conducted on 178 patients with diabetic kidney disease admitted to Baoji High Tech Hospital from March 2023 to March 2024. Of these, 88 patients who received early treatment with the SGLT2 inhibitor dapagliflozin were included in the early SGLT2-i group, while 90 patients receiving later treatment with SGLT2 inhibitor dapagliflozin were included in the late SGLT2-i group. Clinical data, overall effectiveness, adverse reactions, blood glucose, renal function, lipid levels, and inflammatory markers were compared between the two groups. RESULTS Prior to treatment, there were no differences in blood glucose indicators between the two groups (all P > 0.05). Following treatment, both groups showed reductions in 2-hour postprandial blood glucose (2hPG), fasting plasma glucose (FPG), and glycosylated hemoglobin (HbA1c), with the early SGLT2-i group demonstrating significantly lower values compared to the late SGLT2-i group (all P < 0.05). Similarly, there were no differences in renal function indicators between the two groups before treatment (all P > 0.05). However, following treatment, the early SGLT2-i group showed more noticeable improvements compared to the late SGLT2-i group (P < 0.05). Inflammatory markers and lipid levels followed similar patterns. The overall effectiveness of the early SGLT2-i group was higher than that of the late SGLT2-i group (92.05% vs. 78.89%, P < 0.05), while the incidence of adverse reactions did not differ statistically between the two groups (6.82% vs. 10.00%, P > 0.05). CONCLUSION Early use of SGLT2 inhibitors in diabetic kidney disease patients effectively controls blood glucose and lipid levels, improves renal function, reduces inflammatory responses, and exhibits a low incidence of adverse reactions. This demonstrates high safety and an important role in delaying disease progression. Therefore, it is worth considering clinical promotion and use for this patient population.
Collapse
Affiliation(s)
- Shaowei Pang
- Nephrology Department, Baoji High Tech Hospital Baoji 721000, Shaanxi, China
| | - Xiaoli Li
- Nephrology Department, Baoji High Tech Hospital Baoji 721000, Shaanxi, China
| |
Collapse
|
7
|
Ahwin P, Martinez D. The relationship between SGLT2 and systemic blood pressure regulation. Hypertens Res 2024; 47:2094-2103. [PMID: 38783146 PMCID: PMC11298408 DOI: 10.1038/s41440-024-01723-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
The sodium-glucose cotransporter 2 (SGLT2) is a glucose transporter that is located within the proximal tubule of the kidney's nephrons. While it is typically associated with the kidney, it was later identified in various areas of the central nervous system, including areas modulating cardiorespiratory regulation like blood pressure. In the kidney, SGLT2 functions by reabsorbing glucose from the nephron's tubule into the bloodstream. SGLT2 inhibitors are medications that hinder the function of SGLT2, thus preventing the absorption of glucose and allowing for its excretion through the urine. While SGLT2 inhibitors are not the first-line choice, they are given in conjunction with other pharmaceutical interventions to manage hyperglycemia in individuals with diabetes mellitus. SGLT2 inhibitors also have a surprising secondary effect of decreasing blood pressure independent of blood glucose levels. The implication of SGLT2 inhibitors in lowering blood pressure and its presence in the central nervous system brings to question the role of SGLT2 in the brain. Here, we evaluate and review the function of SGLT2, SGLT2 inhibitors, their role in blood pressure control, the future of SGLT2 inhibitors as antihypertensive agents, and the possible mechanisms of SGLT2 blood pressure control in the central nervous system.
Collapse
Affiliation(s)
- Priscilla Ahwin
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, 401 South Broadway, Camden, NJ, 08103, USA
| | - Diana Martinez
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, 401 South Broadway, Camden, NJ, 08103, USA.
| |
Collapse
|
8
|
Siddiqui Z, Rasouli N, Felder E, Frishman WH. A Review of Sotagliflozin: The First Dual SGLT-1/2 Inhibitor. Cardiol Rev 2024:00045415-990000000-00307. [PMID: 39072631 DOI: 10.1097/crd.0000000000000760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Sotagliflozin (trade name INFEPA) is a novel dual sodium-glucose cotransporter-1 and -2 (SGLT-1/2) inhibitor that was developed by Lexicon Pharmaceuticals. It has emerged as a promising therapy for managing heart failure and other cardiovascular complications associated with type 2 diabetes mellitus (T2DM). Its dual inhibition of SGLT-1 and SGLT-2 receptors uniquely decreases glucose absorption in the intestine in addition to decreasing renal glucose reabsorption, leading to improved glycemic control and cardio-reno protection. Clinical trials have demonstrated its efficacy in reducing cardiovascular death, heart failure hospitalizations, and urgent visits, particularly in T2DM patients with chronic kidney disease (CKD). The drug was approved in 2023 by the Food and Drug Administration for reducing cardiovascular death and heart failure in T2DM patients with CKD and those with heart failure, irrespective of diabetic status or ejection fraction. However, despite its considerable therapeutic potential, sotagliflozin does pose notable adverse effects, including diabetic ketoacidosis, genital infections, and diarrhea. As a result, it has faced regulatory challenges in certain regions, notably the United States. The Food and Drug Administration has so far withheld approval for sotagliflozin in the treatment of type 1 diabetes due to concerns about its safety profile, specifically the risk of diabetic ketoacidosis, although Lexicon Pharmaceuticals plans to submit another new drug application for this use in 2024. Further investigation and clinical trials are warranted to fully elucidate sotagliflozin's impact on diabetes and CKD.
Collapse
Affiliation(s)
- Zoya Siddiqui
- From the Department of Medicine, New York Medical College, Valhalla, NY
| | - Niloofar Rasouli
- From the Department of Medicine, New York Medical College, Valhalla, NY
| | - Eliana Felder
- From the Department of Medicine, New York Medical College, Valhalla, NY
| | - William H Frishman
- From the Department of Medicine, New York Medical College, Valhalla, NY
- Departments of Medicine and Cardiology, Westchester Medical Center, Valhalla, NY
| |
Collapse
|
9
|
Ionică LN, Lința AV, Bătrîn AD, Hâncu IM, Lolescu BM, Dănilă MD, Petrescu L, Mozoș IM, Sturza A, Muntean DM. The Off-Target Cardioprotective Mechanisms of Sodium-Glucose Cotransporter 2 Inhibitors: An Overview. Int J Mol Sci 2024; 25:7711. [PMID: 39062954 PMCID: PMC11277154 DOI: 10.3390/ijms25147711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i), a novel class of glucose-lowering drugs, have revolutionized the management of heart failure with reduced and preserved ejection fraction, regardless of the presence of diabetes, and are currently incorporated in the heart failure guidelines. While these drugs have consistently demonstrated their ability to decrease heart failure hospitalizations in several landmark clinical trials, their cardioprotective effects are far from having been completely elucidated. In the past decade, a growing body of experimental research has sought to address the molecular and cellular mechanisms of SGLT2i in order to provide a better understanding of the off-target acute and chronic cardiac benefits, beyond the on-target renal effect responsible for blood glucose reduction. The present narrative review addresses the direct cardioprotective effects of SGLT2i, delving into the off-target mechanisms of the drugs currently approved for heart failure therapy, and provides insights into future perspectives.
Collapse
Affiliation(s)
- Loredana N. Ionică
- Department of Internal Medicine-Medical Semiotics, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania;
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.D.B.); (I.M.H.); (B.M.L.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
| | - Adina V. Lința
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.D.B.); (I.M.H.); (B.M.L.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
- Department of Functional Sciences-Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Alina D. Bătrîn
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.D.B.); (I.M.H.); (B.M.L.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
| | - Iasmina M. Hâncu
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.D.B.); (I.M.H.); (B.M.L.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
- Department of Functional Sciences-Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Bogdan M. Lolescu
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.D.B.); (I.M.H.); (B.M.L.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
| | - Maria D. Dănilă
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
- Department of Functional Sciences-Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Lucian Petrescu
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
| | - Ioana M. Mozoș
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
- Department of Functional Sciences-Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Adrian Sturza
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
- Department of Functional Sciences-Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Danina M. Muntean
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
- Department of Functional Sciences-Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| |
Collapse
|
10
|
Das BB. Unlocking the Potential: Angiotensin Receptor Neprilysin and Sodium Glucose Co-Transporter 2 Inhibitors for Right Ventricle Dysfunction in Heart Failure. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1112. [PMID: 39064541 PMCID: PMC11279219 DOI: 10.3390/medicina60071112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
This review article examines the mechanism of action of Angiotensin Receptor-Neprilysin Inhibitors (ARNIs) and Sodium-Glucose Co-Transporter 2 Inhibitors (SGLT2is) in managing chronic right ventricular (RV) dysfunction. Despite advancements in heart failure (HF) treatment, RV dysfunction remains a significant contributor to morbidity and mortality. This article explores the The article explores the impact of ARNIs and SGLT2is on RV function based on clinical and preclinical evidence, and the potential benefits of combined therapy. It highlights the need for further research to optimize patient outcomes and suggests that RV function should be considered in future clinical trials as part of risk stratification for HF therapies. This review underscores the importance of the early initiation of ARNIs and SGLT2is as per guideline-directed medical therapy for eligible HFrEF and HFpEF patients to improve co-existing RV dysfunction.
Collapse
Affiliation(s)
- Bibhuti B Das
- Heart Failure and Transplant Program, Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
11
|
Ontawong A, Pengnet S, Thim-Uam A, Vaddhanaphuti CS, Munkong N, Phatsara M, Kuntakhut K, Inchai J, Amornlerdpison D, Rattanaphot T. Red rice bran aqueous extract ameliorate diabetic status by inhibiting intestinal glucose transport in high fat diet/STZ-induced diabetic rats. J Tradit Complement Med 2024; 14:391-402. [PMID: 39035687 PMCID: PMC11259718 DOI: 10.1016/j.jtcme.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/14/2023] [Accepted: 12/24/2023] [Indexed: 07/23/2024] Open
Abstract
Red rice (Oryza sativa L.) consumption has grown recently, partly due to its potential health benefits in several disease prevention. The impact of red rice bran aqueous extract (RRBE) on intestinal glucose uptake and diabetes mellitus (DM) progression has not been thoroughly investigated. This study aimed to evaluate the effect of RRBE on ex vivo intestinal glucose absorption and its potential as an antihyperglycemic compound using a high-fat diet and streptozotocin (STZ)-induced diabetic rats. High-fat diet/STZ-induced diabetic rats were supplemented with either 1000 mg/kg body weight (BW) of RRBE, 70 mg/kg BW of metformin (Met), or a combination of RRBE and Met for 3 months. Plasma parameters, intestinal glucose transport, morphology, liver and soleus muscle glycogen accumulation were assessed. Treatment with RRBE, metformin, or combination markedly reversed hyperglycemia, hypertriglyceridemia, insulin resistance, and pancreatic morphology changes associated with T2DM. Correspondingly, all supplements effectively downregulated glucose transporters, resulting in a reduction of intestinal glucose transport-additionally, liver and soleus muscle glycogen accumulation was reduced in RRBE + Met treated group. Taken together, RRBE potentially suppressed intestinal glucose transporters' function and expression, reducing diabetic status.
Collapse
Affiliation(s)
- Atcharaporn Ontawong
- Division of Physiology, School of Medical Sciences, University of Phayao, 19 Moo 2 Mae-Ka District, Muang, Phayao, 56000, Thailand
| | - Sirinat Pengnet
- Division of Physiology, School of Medical Sciences, University of Phayao, 19 Moo 2 Mae-Ka District, Muang, Phayao, 56000, Thailand
| | - Arthid Thim-Uam
- Division of Biochemistry, School of Medical Sciences, University of Phayao, 19 Moo 2 Mae-Ka District, Muang, Phayao, 56000, Thailand
| | - Chutima S. Vaddhanaphuti
- Faculty of Medicine, Chiang Mai University, 110 Faculty of Medicine, CMU, Inthawarorot Rd., Sri Phum, Muang, Chiang Mai, 50200, Thailand
| | - Narongsuk Munkong
- Department of Pathology, School of Medicine, University of Phayao, 19 Moo 2 Mae-Ka District, Muang, Phayao, 56000, Thailand
| | - Manussaborn Phatsara
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 52000, Thailand
| | - Kullanat Kuntakhut
- Center of Excellence in Agricultural Innovation for Graduate Entrepreneur, Maejo University, 63, Sansai-Phrao Street, Sansai, Chiang Mai, 50290, Thailand
| | - Jakkapong Inchai
- Faculty of Medicine, Chiang Mai University, 110 Faculty of Medicine, CMU, Inthawarorot Rd., Sri Phum, Muang, Chiang Mai, 50200, Thailand
| | - Doungporn Amornlerdpison
- Center of Excellence in Agricultural Innovation for Graduate Entrepreneur, Maejo University, 63, Sansai-Phrao Street, Sansai, Chiang Mai, 50290, Thailand
- Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai, 50290, Thailand
| | - Teerawat Rattanaphot
- Center of Excellence in Agricultural Innovation for Graduate Entrepreneur, Maejo University, 63, Sansai-Phrao Street, Sansai, Chiang Mai, 50290, Thailand
| |
Collapse
|
12
|
Pallarés-Carratalá V, Ruiz-García A, Serrano-Cumplido A, Fragoso AS, Fernández-Pascual V, Sánchez-Sánchez B, Cervera-Pérez MI, Alonso-Moreno FJ, Arranz-Martínez E, Barquilla-García A, Rey-Aldana D, García JP, Cinza-Sanjurjo S. Comparison of baseline clinical characteristics among people with type 2 diabetes on second-line therapy previously added with dapagliflozin or another oral glucose-lowering drug: AGORA study. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2024:S0214-9168(24)00043-3. [PMID: 38910079 DOI: 10.1016/j.arteri.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION Type 2 diabetes mellitus (T2D) has acquired epidemic proportions worldwide. In recent years, new oral glucose-lowering drugs (OGLD) have emerged that improve the cardiovascular-kidney-metabolic control in T2D people. OBJECTIVES To compare the baseline clinical-biological characteristics among T2D people to whom had added-on dapagliflozin (DAPA group) or another OGLD (SOC group) second-line hypoglycaemic therapies among the AGORA study population. METHODS This is a multicentre cross-sectional observational study of the baseline characteristics of T2D people recruited through competitive sampling among 46 primary care health centres in Spain for the AGORA study. The inclusion and exclusion criteria of participants, and justification of the sample size are reported. After verifying the data necessary to be evaluated and informed consent, 317 subjects were included to the DAPA group and 288 to the SOC group. Both categorical and continuous variables were analysed and compared with the usual statistics. Cohen's d was used to assess the standardised difference in means. RESULTS Six hundred and five patients with T2D were assessed (mean age 63.5 [SD±8.1] years, 61.8% men), whom 17.4% were smokers, 47.6% had obesity, 74.8% hypertension, 87.3% dyslipidaemia, and 41.7% reported physical inactivity, with no significant differences between both comparison groups. The mean (SD) evolution time of T2D was 10.1 (5.6) years. Most baseline clinical-biological characteristics at recruitment were similar in both groups. However, DAPA group was younger (2.9 years), and had lower systolic blood pressure (SBP) (2.8mmHg), higher body weight (BW) (3.7kg), and higher glycated haemoglobin A1c (HbA1c) (0.3%) than SOC group. Only 11.5% of participants had poor glycaemic control (HbA1c>8%) at recruitment, 54.9% had good glycaemic control (HbA1c<7%), being significantly lower in the DAPA group (47.3%) than in the SOC group (63.4%). The percentage of T2D patients with high vascular risk (VR) was 46.3%, and 53.7% with very high VR, being significantly higher in the DAPA group (57.4%) than in the SOC group (49.6%). CONCLUSIONS Most baseline cardiovascular-kidney-metabolic characteristics were similar in T2D patients whom had added dapagliflozin on second-line hypoglycaemic therapy as those whom had added-on another OGLD. However, patients whom had added-on dapagliflozin had higher VR, lower SBP, higher BW, and slightly worse HbA1c control. Future research is necessary to explain the causes of these differences in cardiometabolic control.
Collapse
Affiliation(s)
| | - Antonio Ruiz-García
- Specialist in Family and Community Medicine, Pinto University Health Center, Lipids and Cardiovascular Prevention Unit, Pinto, Madrid, Spain; Department of Medicine, European University of Madrid, Villaviciosa de Odón, Madrid, Spain
| | | | | | | | | | | | | | | | | | - Daniel Rey-Aldana
- Specialist in Family and Community Medicine, A Estrada Health Center, Pontevedra, Spain
| | - José Polo García
- Specialist in Family and Community Medicine, Casar de Cáceres Health Center, Cáceres, Spain
| | - Sergio Cinza-Sanjurjo
- Milladoiro Health Centre, Health Area of Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain; Networking Biomedical Research, Centre-Cardiovascular Diseases (CIBERCV), Santiago de Compostela, Spain
| |
Collapse
|
13
|
Liu Z, Wang J, Tian P, Liu Y, Xing L, Fu C, Huang X, Liu P. Sodium-glucose cotransporter 1 promotes the biofunctions of perivascular preadipocytes mediated by Akt/mTOR/p70S6K signaling pathway. Am J Physiol Cell Physiol 2024; 326:C1611-C1624. [PMID: 38646789 PMCID: PMC11371362 DOI: 10.1152/ajpcell.00606.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/23/2024]
Abstract
The influence of SGLT-1 on perivascular preadipocytes (PVPACs) and vascular remodeling is not well understood. This study aimed to elucidate the role and mechanism of SGLT-1-mediated PVPACs bioactivity. PVPACs were cultured in vitro and applied ex vivo to the carotid arteries of mice using a lentivirus-based thermosensitive in situ gel (TISG). The groups were treated with Lv-SGLT1 (lentiviral vector, overexpression), Lv-siSGLT1 (RNA interference, knockdown), or specific signaling pathway inhibitors. Assays were conducted to assess changes in cell proliferation, apoptosis, glucose uptake, adipogenic differentiation, and vascular remodeling in the PVPACs. Protein expression was analyzed by Western blotting, immunocytochemistry, and/or immunohistochemistry. The methyl thiazolyl tetrazolium (MTT) assay and Hoechst 33342 staining indicated that SGLT-1 overexpression significantly promoted PVPACs proliferation and inhibited apoptosis in vitro. Conversely, SGLT-1 knockdown exerted the opposite effect. Oil Red O staining revealed that SGLT-1 overexpression facilitated adipogenic differentiation, while its inhibition mitigated these effects. 3H-labeled glucose uptake experiments demonstrated that SGLT-1 overexpression enhanced glucose uptake by PVPACs, whereas RNA interference-mediated SGLT-1 inhibition had no significant effect on glucose uptake. Moreover, RT-qPCR, Western blotting, and immunofluorescence analyses revealed that SGLT-1 overexpression upregulated FABP4 and VEGF-A levels and activated the Akt/mTOR/p70S6K signaling pathway, whereas SGLT-1 knockdown produced the opposite effects. In vivo studies corroborated these findings and indicated that SGLT-1 overexpression facilitated carotid artery remodeling. Our study demonstrates that SGLT-1 activation of the Akt/mTOR/p70S6K signaling pathway promotes PVPACs proliferation, adipogenesis, glucose uptake, glucolipid metabolism, and vascular remodeling.NEW & NOTEWORTHY SGLT-1 is expressed in PVPACs and can affect preadipocyte glucolipid metabolism and vascular remodeling. SGLT-1 promotes the biofunctions of PVPACs mediated by Akt/mTOR/p70S6K signaling pathway. Compared with caudal vein or intraperitoneal injection, the external application of lentivirus-based thermal gel around the carotid artery is an innovative attempt at vascular remodeling model, it may effectively avoid the transfection of lentiviral vector into the whole body of mice and the adverse effect on experimental results.
Collapse
Affiliation(s)
- Zhiquan Liu
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
- Division of Life Sciences and Medicine, Department of Cardiology, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Jiayu Wang
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Peiqing Tian
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Yixuan Liu
- Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Liyun Xing
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Caihua Fu
- Department of Cardiology, Jinan Central Hospital Affiliated Shandong University, Jinan, China
| | - Xianwei Huang
- Department of Emergency, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Ping Liu
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
14
|
Tamarit-Rodriguez J. Regulatory Role of Fatty Acid Metabolism on Glucose-Induced Changes in Insulin and Glucagon Secretion by Pancreatic Islet Cells. Int J Mol Sci 2024; 25:6052. [PMID: 38892240 PMCID: PMC11172437 DOI: 10.3390/ijms25116052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
A detailed study of palmitate metabolism in pancreatic islets subject to different experimental conditions, like varying concentrations of glucose, as well as fed or starved conditions, has allowed us to explore the interaction between the two main plasma nutrients and its consequences on hormone secretion. Palmitate potentiates glucose-induced insulin secretion in a concentration-dependent manner, in a physiological range of both palmitate (0-2 mM) and glucose (6-20 mM) concentrations; at glucose concentrations lower than 6 mM, no metabolic interaction with palmitate was apparent. Starvation (48 h) increased islet palmitate oxidation two-fold, and the effect was resistant to its inhibition by glucose (6-20 mM). Consequently, labelled palmitate and glucose incorporation into complex lipids were strongly suppressed, as well as glucose-induced insulin secretion and its potentiation by palmitate. 2-bromostearate, a palmitate oxidation inhibitor, fully recovered the synthesis of complex lipids and insulin secretion. We concluded that palmitate potentiation of the insulin response to glucose is not attributable to its catabolic mitochondrial oxidation but to its anabolism to complex lipids: islet lipid biosynthesis is dependent on the uptake of plasma fatty acids and the supply of α-glycerol phosphate from glycolysis. Islet secretion of glucagon and somatostatin showed a similar dependence on palmitate anabolism as insulin. The possible mechanisms implicated in the metabolic coupling between glucose and palmitate were commented on. Moreover, possible mechanisms responsible for islet gluco- or lipotoxicity after a long-term stimulation of insulin secretion were also discussed. Our own data on the simultaneous stimulation of insulin, glucagon, and somatostatin by glucose, as well as their modification by 2-bromostearate in perifused rat islets, give support to the conclusion that increased FFA anabolism, rather than its mitochondrial oxidation, results in a potentiation of their stimulated release. Starvation, besides suppressing glucose stimulation of insulin secretion, also blocks the inhibitory effect of glucose on glucagon secretion: this suggests that glucagon inhibition might be an indirect or direct effect of insulin, but not of glucose. In summary, there seems to exist three mechanisms of glucagon secretion stimulation: 1. glucagon stimulation through the same secretion coupling mechanism as insulin, but in a different range of glucose concentrations (0 to 5 mM). 2. Direct or indirect inhibition by secreted insulin in response to glucose (5-20 mM). 3. Stimulation by increased FFA anabolism in glucose intolerance or diabetes in the context of hyperlipidemia, hyperglycemia, and hypo-insulinemia. These conclusions were discussed and compared with previous published data in the literature. Specially, we discussed the mechanism for inhibition of glucagon release by glucose, which was apparently contradictory with the secretion coupling mechanism of its stimulation.
Collapse
|
15
|
Wang D, Zhang Q, Dong W, Ren S, Wang X, Su C, Lin X, Zheng Z, Xue Y. SGLT2 knockdown restores the Th17/Treg balance and suppresses diabetic nephropathy in db/db mice by regulating SGK1 via Na . Mol Cell Endocrinol 2024; 584:112156. [PMID: 38278341 DOI: 10.1016/j.mce.2024.112156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/03/2024] [Accepted: 01/06/2024] [Indexed: 01/28/2024]
Abstract
The imbalance between T helper 17 (Th17) and regulatory T (Treg) cells is an important mechanism in the pathogenesis of diabetic nephropathy (DN). Serum/glucocorticoid regulated kinase 1 (SGK1) is a serine-threonine kinase critical for stabilizing the Th17 cell phenotype. Sodium-glucose cotransporter 2 (SGLT2) is a glucose transporter that serves as a treatment target for diabetes. Our study investigated the regulatory role of SGLT2 in the development of DN. The results revealed that SGLT2 knockdown suppressed high glucose-induced excessive secretion of sodium (Na+) and inflammatory cytokines in mouse renal tubular epithelial TCMK-1 cells. High Na+ content induced Th17 differentiation and upregulated SGK1, phosphorylated forkhead box protein O1 (p-FoxO1), and the interleukin 23 receptor (IL-23 R) in primary mouse CD4+ T cells. Co-culture of CD4+ T cells with the culture medium of TCMK-1 cells with insufficient SGLT2 expression significantly suppressed cell migration ability, reduced the production of pro-inflammatory cytokines, and inhibited Th17 differentiation possibly by downregulating SGK1, p-FoxO1, and IL-23 R. In addition, in vivo data demonstrated that SGLT2 knockdown markedly downregulated SGK1 in db/db mice. Insufficient SGLT2 or SGK1 expression also ameliorated the Th17/Treg imbalance, suppressed the development of DN, and regulated the expression of IL-23 R and p-FoxO1. In conclusion, this study showed that SGLT2 knockdown restored the Th17/Treg balance and suppressed DN possibly by regulating the SGK1/p-FoxO1/IL-23 R axis by altering Na+ content in the local environment. These findings highlight the potential use of SGLT2 and SGK1 for the management of DN.
Collapse
Affiliation(s)
- Dan Wang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qian Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenhui Dong
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shijing Ren
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiangyu Wang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Cailin Su
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaochun Lin
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zongji Zheng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yaoming Xue
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
16
|
Li Z, Li Y, Zhao Y, Wang G, Liu R, Li Y, Aftab Q, Sun Z, Zhong Q. Effects of the kinetic pattern of dietary glucose release on nitrogen utilization, the portal amino acid profile, and nutrient transporter expression in intestinal enterocytes in piglets. J Anim Sci Biotechnol 2024; 15:49. [PMID: 38500230 PMCID: PMC10946174 DOI: 10.1186/s40104-024-01000-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/17/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Promoting the synchronization of glucose and amino acid release in the digestive tract of pigs could effectively improve dietary nitrogen utilization. The rational allocation of dietary starch sources and the exploration of appropriate dietary glucose release kinetics may promote the dynamic balance of dietary glucose and amino acid supplies. However, research on the effects of diets with different glucose release kinetic profiles on amino acid absorption and portal amino acid appearance in piglets is limited. This study aimed to investigate the effects of the kinetic pattern of dietary glucose release on nitrogen utilization, the portal amino acid profile, and nutrient transporter expression in intestinal enterocytes in piglets. METHODS Sixty-four barrows (15.00 ± 1.12 kg) were randomly allotted to 4 groups and fed diets formulated with starch from corn, corn/barley, corn/sorghum, or corn/cassava combinations (diets were coded A, B, C, or D respectively). Protein retention, the concentrations of portal amino acid and glucose, and the relative expression of amino acid and glucose transporter mRNAs were investigated. In vitro digestion was used to compare the dietary glucose release profiles. RESULTS Four piglet diets with different glucose release kinetics were constructed by adjusting starch sources. The in vivo appearance dynamics of portal glucose were consistent with those of in vitro dietary glucose release kinetics. Total nitrogen excretion was reduced in the piglets in group B, while apparent nitrogen digestibility and nitrogen retention increased (P < 0.05). Regardless of the time (2 h or 4 h after morning feeding), the portal total free amino acids content and contents of some individual amino acids (Thr, Glu, Gly, Ala, and Ile) of the piglets in group B were significantly higher than those in groups A, C, and D (P < 0.05). Cluster analysis showed that different glucose release kinetic patterns resulted in different portal amino acid patterns in piglets, which decreased gradually with the extension of feeding time. The portal His/Phe, Pro/Glu, Leu/Val, Lys/Met, Tyr/Ile and Ala/Gly appeared higher similarity among the diet treatments. In the anterior jejunum, the glucose transporter SGLT1 was significantly positively correlated with the amino acid transporters B0AT1, EAAC1, and CAT1. CONCLUSIONS Rational allocation of starch resources could regulate dietary glucose release kinetics. In the present study, group B (corn/barley) diet exhibited a better glucose release kinetic pattern than the other groups, which could affect the portal amino acid contents and patterns by regulating the expression of amino acid transporters in the small intestine, thereby promoting nitrogen deposition in the body, and improving the utilization efficiency of dietary nitrogen.
Collapse
Affiliation(s)
- Zexi Li
- Jilin Province Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun City, Jilin Province, People's Republic of China
| | - Yunfei Li
- Jilin Province Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun City, Jilin Province, People's Republic of China
| | - Yufei Zhao
- Jilin Province Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun City, Jilin Province, People's Republic of China
| | - Guifu Wang
- Jilin Province Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun City, Jilin Province, People's Republic of China
| | - Rujie Liu
- Jilin Province Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun City, Jilin Province, People's Republic of China
| | - Yue Li
- Dongfeng County Sika Deer Industry Development Service Center, Dongfeng County, Liaoyuan City, Jilin Province, China
| | - Qamar Aftab
- Jilin Province Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun City, Jilin Province, People's Republic of China
| | - Zewei Sun
- Jilin Province Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun City, Jilin Province, People's Republic of China.
| | - Qingzhen Zhong
- Jilin Province Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun City, Jilin Province, People's Republic of China.
| |
Collapse
|
17
|
Kang TH, Lee SI. Establishment of a chicken intestinal organoid culture system to assess deoxynivalenol-induced damage of the intestinal barrier function. J Anim Sci Biotechnol 2024; 15:30. [PMID: 38369477 PMCID: PMC10874546 DOI: 10.1186/s40104-023-00976-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/12/2023] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Deoxynivalenol (DON) is a mycotoxin that has received recognition worldwide because of its ability to cause growth delay, nutrient malabsorption, weight loss, emesis, and a reduction of feed intake in livestock. Since DON-contaminated feedstuff is absorbed in the gastrointestinal tract, we used chicken organoids to assess the DON-induced dysfunction of the small intestine. RESULTS We established a culture system using chicken organoids and characterized the organoids at passages 1 and 10. We confirmed the mRNA expression levels of various cell markers in the organoids, such as KI67, leucine-rich repeat containing G protein-coupled receptor 5 (Lgr5), mucin 2 (MUC2), chromogranin A (CHGA), cytokeratin 19 (CK19), lysozyme (LYZ), and microtubule-associated doublecortin-like kinase 1 (DCLK1), and compared the results to those of the small intestine. Our results showed that the organoids displayed functional similarities in permeability compared to the small intestine. DON damaged the tight junctions of the organoids, which resulted in increased permeability. CONCLUSIONS Our organoid culture displayed topological, genetic, and functional similarities with the small intestine cells. Based on these similarities, we confirmed that DON causes small intestine dysfunction. Chicken organoids offer a practical model for the research of harmful substances.
Collapse
Affiliation(s)
- Tae Hong Kang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeong-Sangbuk-Do, 37224, Republic of Korea
| | - Sang In Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeong-Sangbuk-Do, 37224, Republic of Korea.
- Research Institute for Innovative Animal Science, Kyungpook National University, 37224, Sangju, Gyeong-Sangbuk-Do, Republic of Korea.
| |
Collapse
|
18
|
Porth R, Oelerich K, Sivanandy MS. The Role of Sodium-Glucose Cotransporter-2 Inhibitors in the Treatment of Polycystic Ovary Syndrome: A Review. J Clin Med 2024; 13:1056. [PMID: 38398368 PMCID: PMC10889251 DOI: 10.3390/jcm13041056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in reproductive-age women impacting their reproductive, mental, and metabolic health. Insulin resistance is a major driver of the pathophysiology of PCOS. There are several challenges with the management of this complex disorder including insufficient treatment options. Over the past 88 years, multiple hormonal and non-hormonal medications have been tried to treat the various components of this syndrome and there is no FDA (Food and Drug Administration)-approved medication specifically for PCOS yet. Sodium-glucose cotransporter-2 (SGLT-2) inhibitors have a unique mechanism of inhibiting the coupled reabsorption of sodium and glucose in renal proximal convoluted tubules. This review aims to examine the efficacy and side-effect profile of SGLT-2 inhibitors in patients with PCOS. In a limited number of studies, SGLT-2 inhibitors appear to be effective in improving menstrual frequency, reducing body weight and total fat mass, lowering total testosterone and DHEAS levels, and improving some glycemic indices in women with PCOS. SGLT2 inhibitors are generally well tolerated. With future research, it is possible that SGLT-2 inhibitors could become a key therapeutic option for PCOS.
Collapse
Affiliation(s)
- Rachel Porth
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (R.P.); (K.O.)
| | - Karina Oelerich
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (R.P.); (K.O.)
| | - Mala S. Sivanandy
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (R.P.); (K.O.)
- PCOS Center, Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
19
|
Elian V, Popovici V, Karampelas O, Pircalabioru GG, Radulian G, Musat M. Risks and Benefits of SGLT-2 Inhibitors for Type 1 Diabetes Patients Using Automated Insulin Delivery Systems-A Literature Review. Int J Mol Sci 2024; 25:1972. [PMID: 38396657 PMCID: PMC10888162 DOI: 10.3390/ijms25041972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/27/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
The primary treatment for autoimmune Diabetes Mellitus (Type 1 Diabetes Mellitus-T1DM) is insulin therapy. Unfortunately, a multitude of clinical cases has demonstrated that the use of insulin as a sole therapeutic intervention fails to address all issues comprehensively. Therefore, non-insulin adjunct treatment has been investigated and shown successful results in clinical trials. Various hypoglycemia-inducing drugs such as Metformin, glucagon-like peptide 1 (GLP-1) receptor agonists, dipeptidyl peptidase-4 (DPP-4) inhibitors, amylin analogs, and Sodium-Glucose Cotransporters 2 (SGLT-2) inhibitors, developed good outcomes in patients with T1DM. Currently, SGLT-2 inhibitors have remarkably improved the treatment of patients with diabetes by preventing cardiovascular events, heart failure hospitalization, and progression of renal disease. However, their pharmacological potential has not been explored enough. Thus, the substantial interest in SGLT-2 inhibitors (SGLT-2is) underlines the present review. It begins with an overview of carrier-mediated cellular glucose uptake, evidencing the insulin-independent transport system contribution to glucose homeostasis and the essential roles of Sodium-Glucose Cotransporters 1 and 2. Then, the pharmacological properties of SGLT-2is are detailed, leading to potential applications in treating T1DM patients with automated insulin delivery (AID) systems. Results from several studies demonstrated improvements in glycemic control, an increase in Time in Range (TIR), a decrease in glycemic variability, reduced daily insulin requirements without increasing hyperglycemic events, and benefits in weight management. However, these advantages are counterbalanced by increased risks, particularly concerning Diabetic Ketoacidosis (DKA). Several clinical trials reported a higher incidence of DKA when patients with T1DM received SGLT-2 inhibitors such as Sotagliflozin and Empagliflozin. On the other hand, patients with T1DM and a body mass index (BMI) of ≥27 kg/m2 treated with Dapagliflozin showed similar reduction in hyperglycemia and body weight and insignificantly increased DKA incidence compared to the overall trial population. Additional multicenter and randomized studies are required to establish safer and more effective long-term strategies based on patient selection, education, and continuous ketone body monitoring for optimal integration of SGLT-2 inhibitors into T1DM therapeutic protocol.
Collapse
Affiliation(s)
- Viviana Elian
- Department of Diabetes, Nutrition and Metabolic Diseases, “Carol Davila” University of Medicine and Pharmacy, 5-7 Ion Movila Street, 020475 Bucharest, Romania; (V.E.); (G.R.)
- Department of Diabetes, Nutrition and Metabolic Diseases, “N. C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 020475 Bucharest, Romania
| | - Violeta Popovici
- “Costin C. Kiriţescu” National Institute of Economic Research—Center for Mountain Economics (INCE-CEMONT) of Romanian Academy, 725700 Vatra-Dornei, Romania
| | - Oana Karampelas
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania;
| | - Gratiela Gradisteanu Pircalabioru
- eBio-Hub Research Centre, National University of Science and Technology Politehnica Bucharest, 061344 Bucharest, Romania;
- Research Institute, University of Bucharest, 061344 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Gabriela Radulian
- Department of Diabetes, Nutrition and Metabolic Diseases, “Carol Davila” University of Medicine and Pharmacy, 5-7 Ion Movila Street, 020475 Bucharest, Romania; (V.E.); (G.R.)
- Department of Diabetes, Nutrition and Metabolic Diseases, “N. C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 020475 Bucharest, Romania
| | - Madalina Musat
- eBio-Hub Research Centre, National University of Science and Technology Politehnica Bucharest, 061344 Bucharest, Romania;
- Department of Endocrinology, “Carol Davila” University of Medicine and Pharmacy, 030167 Bucharest, Romania
- Department of Endocrinology IV, “C. I. Parhon” National Institute of Endocrinology, 011863 Bucharest, Romania
| |
Collapse
|
20
|
Lee J, Hong SW, Kim MJ, Lim YM, Moon SJ, Kwon H, Park SE, Rhee EJ, Lee WY. Inhibition of Sodium-Glucose Cotransporter-2 during Serum Deprivation Increases Hepatic Gluconeogenesis via the AMPK/AKT/FOXO Signaling Pathway. Endocrinol Metab (Seoul) 2024; 39:98-108. [PMID: 38171209 PMCID: PMC10901661 DOI: 10.3803/enm.2023.1786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGRUOUND Sodium-dependent glucose cotransporter 2 (SGLT2) mediates glucose reabsorption in the renal proximal tubules, and SGLT2 inhibitors are used as therapeutic agents for treating type 2 diabetes mellitus. This study aimed to elucidate the effects and mechanisms of SGLT2 inhibition on hepatic glucose metabolism in both serum deprivation and serum supplementation states. METHODS Huh7 cells were treated with the SGLT2 inhibitors empagliflozin and dapagliflozin to examine the effect of SGLT2 on hepatic glucose uptake. To examine the modulation of glucose metabolism by SGLT2 inhibition under serum deprivation and serum supplementation conditions, HepG2 cells were transfected with SGLT2 small interfering RNA (siRNA), cultured in serum-free Dulbecco's modified Eagle's medium for 16 hours, and then cultured in media supplemented with or without 10% fetal bovine serum for 8 hours. RESULTS SGLT2 inhibitors dose-dependently decreased hepatic glucose uptake. Serum deprivation increased the expression levels of the gluconeogenesis genes peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α), glucose 6-phosphatase (G6pase), and phosphoenolpyruvate carboxykinase (PEPCK), and their expression levels during serum deprivation were further increased in cells transfected with SGLT2 siRNA. SGLT2 inhibition by siRNA during serum deprivation induces nuclear localization of the transcription factor forkhead box class O 1 (FOXO1), decreases nuclear phosphorylated-AKT (p-AKT), and p-FOXO1 protein expression, and increases phosphorylated-adenosine monophosphate-activated protein kinase (p-AMPK) protein expression. However, treatment with the AMPK inhibitor, compound C, reversed the reduction in the protein expression levels of nuclear p- AKT and p-FOXO1 and decreased the protein expression levels of p-AMPK and PEPCK in cells transfected with SGLT2 siRNA during serum deprivation. CONCLUSION These data show that SGLT2 mediates glucose uptake in hepatocytes and that SGLT2 inhibition during serum deprivation increases gluconeogenesis via the AMPK/AKT/FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Jinmi Lee
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seok-Woo Hong
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Min-Jeong Kim
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yu-Mi Lim
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun Joon Moon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyemi Kwon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se Eun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun-Jung Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won-Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Markousis-Mavrogenis G, Baumhove L, Al-Mubarak AA, Aboumsallem JP, Bomer N, Voors AA, van der Meer P. Immunomodulation and immunopharmacology in heart failure. Nat Rev Cardiol 2024; 21:119-149. [PMID: 37709934 DOI: 10.1038/s41569-023-00919-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/16/2023]
Abstract
The immune system is intimately involved in the pathophysiology of heart failure. However, it is currently underused as a therapeutic target in the clinical setting. Moreover, the development of novel immunomodulatory therapies and their investigation for the treatment of patients with heart failure are hampered by the fact that currently used, evidence-based treatments for heart failure exert multiple immunomodulatory effects. In this Review, we discuss current knowledge on how evidence-based treatments for heart failure affect the immune system in addition to their primary mechanism of action, both to inform practising physicians about these pleiotropic actions and to create a framework for the development and application of future immunomodulatory therapies. We also delineate which subpopulations of patients with heart failure might benefit from immunomodulatory treatments. Furthermore, we summarize completed and ongoing clinical trials that assess immunomodulatory treatments in heart failure and present several therapeutic targets that could be investigated in the future. Lastly, we provide future directions to leverage the immunomodulatory potential of existing treatments and to foster the investigation of novel immunomodulatory therapeutics.
Collapse
Affiliation(s)
- George Markousis-Mavrogenis
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lukas Baumhove
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ali A Al-Mubarak
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Joseph Pierre Aboumsallem
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Cardiology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Nils Bomer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Adriaan A Voors
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| |
Collapse
|
22
|
Rahman A, Nishiyama A. Inhibiting SGLTs diminishes sympathetic output by reducing rostral ventrolateral medulla (RVLM) neuron activity. Hypertens Res 2024; 47:571-572. [PMID: 37989914 DOI: 10.1038/s41440-023-01522-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/23/2023]
Affiliation(s)
- Asadur Rahman
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
23
|
Albaik M, Sheikh Saleh D, Kauther D, Mohammed H, Alfarra S, Alghamdi A, Ghaboura N, Sindi IA. Bridging the gap: glucose transporters, Alzheimer's, and future therapeutic prospects. Front Cell Dev Biol 2024; 12:1344039. [PMID: 38298219 PMCID: PMC10824951 DOI: 10.3389/fcell.2024.1344039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
Glucose is the major source of chemical energy for cell functions in living organisms. The aim of this mini-review is to provide a clearer and simpler picture of the fundamentals of glucose transporters as well as the relationship of these transporters to Alzheimer's disease. This study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Electronic databases (PubMed and ScienceDirect) were used to search for relevant studies mainly published during the period 2018-2023. This mini-review covers the two main types of glucose transporters, facilitated glucose transporters (GLUTs) and sodium-glucose linked transporters (SGLTs). The main difference between these two types is that the first type works through passive transport across the glucose concentration gradient. The second type works through active co-transportation to transport glucose against its chemical gradient. Fluctuation in glucose transporters translates into a disturbance of normal functioning, such as Alzheimer's disease, which may be caused by a significant downregulation of GLUTs most closely associated with insulin resistance in the brain. The first sign of Alzheimer's is a lack of GLUT4 translocation. The second sign is tau hyperphosphorylation, which is caused by GLUT1 and 3 being strongly upregulated. The current study focuses on the use of glucose transporters in treating diseases because of their proven therapeutic potential. Despite this, studies remain insufficient and inconclusive due to the complex and intertwined nature of glucose transport processes. This study recommends further understanding of the mechanisms related to these vectors for promising future therapies.
Collapse
Affiliation(s)
- Mai Albaik
- Department of Chemistry Preparatory Year Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | | | - Dana Kauther
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Hajira Mohammed
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Shurouq Alfarra
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Adel Alghamdi
- Department of Biology Preparatory Year Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmacy Practice Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Ikhlas A. Sindi
- Department of Biology, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
24
|
Oshima N, Onimaru H, Yamashiro A, Goto H, Tanoue K, Fukunaga T, Sato H, Uto A, Matsubara H, Imakiire T, Kumagai H. SGLT2 and SGLT1 inhibitors suppress the activities of the RVLM neurons in newborn Wistar rats. Hypertens Res 2024; 47:46-54. [PMID: 37710035 DOI: 10.1038/s41440-023-01417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 09/16/2023]
Abstract
Hypertension is well-known to often coexist with diabetes mellitus (DM) in humans. Treatment with sodium-glucose cotransporter 2 (SGLT2) inhibitors has been shown to decrease both the blood glucose and the blood pressure (BP) in such patients. Some reports show that SGLT2 inhibitors improve the BP by decreasing the activities of the sympathetic nervous system. Therefore, we hypothesized that SGLT2 inhibitors might alleviate hypertension via attenuating sympathetic nervous activity. Combined SGLT2/SGLT1 inhibitor therapy is also reported as being rather effective for decreasing the BP. In this study, we examined the effects of SGLT2 and SGLT1 inhibitors on the bulbospinal neurons of the rostral ventrolateral medulla (RVLM). To investigate whether bulbospinal RVLM neurons are sensitive to SGLT2 and SGLT1 inhibitors, we examined the changes in the neuronal membrane potentials (MPs) of these neurons using the whole-cell patch-clamp technique during superfusion of the cells with the SGLT2 and SGLT1 inhibitors. A brainstem-spinal cord preparation was used for the experiments. Our results showed that superfusion of the RVLM neurons with SGLT2 and SGLT1 inhibitor solutions induced hyperpolarization of the neurons. Histological examination revealed the presence of SGLT2s and SGLT1s in the RVLM neurons, and also colocalization of SGLT2s with SGLT1s. These results suggest the involvement of SGLT2s and SGLT1s in regulating the activities of the RVLM neurons, so that SGLT2 and SGLT1 inhibitors may inactivate the RVLM neurons hyperpolarized by empagliflozin. SGLT2 and SGLT1 inhibitors suppressed the activities of the bulbospinal RVLM neurons in the brainstem-spinal preparations, suggesting the possibilities of lowering BP by decreasing the sympathetic nerve activities. RVLM, rostral ventrolateral medulla. IML, intralateral cell column. aCSF, artificial cerebrospinal fluid.
Collapse
Affiliation(s)
- Naoki Oshima
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan.
| | - Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Aoi Yamashiro
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hiroyasu Goto
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Keiko Tanoue
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Tsugumi Fukunaga
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hiroki Sato
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Asuka Uto
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hidehito Matsubara
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Toshihiko Imakiire
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hiroo Kumagai
- Department of Nephrology, Sayama General Clinic, Iruma, Saitama, Japan
| |
Collapse
|
25
|
Numata S, Oishee MJ, McDermott J, Koepsell H, Vallon V, Blanco G. Deletion of the Sodium Glucose Cotransporter 1 (Sglt-1) impairs mouse sperm movement. Mol Reprod Dev 2024; 91:e23723. [PMID: 38282316 DOI: 10.1002/mrd.23723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/25/2023] [Accepted: 12/06/2023] [Indexed: 01/30/2024]
Abstract
The Sodium Glucose Cotransporter Isoform 1 (Sglt-1) is a symporter that moves Na+ and glucose into the cell. While most studies have focused on the role of Sglt-1 in the small intestine and kidney, little is known about this transporter's expression and function in other tissues. We have previously shown that Sglt-1 is expressed in the mouse sperm flagellum and that its inhibition interferes with sperm metabolism and function. Here, we further investigated the importance of Sglt-1 in sperm, using a Sglt-1 knockout mouse (Sglt-1 KO). RNA, immunocytochemistry, and glucose uptake analysis confirmed the ablation of Sglt-1 in sperm. Sglt-1 KO male mice are fertile and exhibit normal sperm counts and morphology. However, Sglt-1 null sperm displayed a significant reduction in total, progressive and other parameters of sperm motility compared to wild type (WT) sperm. The reduction in motility was exacerbated when sperm were challenged to swim in media with higher viscosity. Parameters of capacitation, namely protein tyrosine phosphorylation and acrosomal reaction, were similar in Sglt-1 KO and WT sperm. However, Sglt-1 KO sperm displayed a significant decrease in hyperactivation. The impaired motility of Sglt-1 null sperm was observed in media containing glucose as the only energy substrate. Interestingly, the addition of pyruvate and lactate to the media partially recovered sperm motility of Sglt-1 KO sperm, both in the low and high viscosity media. Altogether, these results support an important role for Sglt-1 in sperm energetics and function, providing sperm with a higher capacity for glucose uptake.
Collapse
Affiliation(s)
- September Numata
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mumtarin Jannat Oishee
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jeffrey McDermott
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hermann Koepsell
- Institute for Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Volker Vallon
- Departments of Medicine and Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Gustavo Blanco
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
26
|
Speedtsberg ES, Tepel M. Narrative review investigating the nephroprotective mechanisms of sodium glucose cotransporter type 2 inhibitors in diabetic and nondiabetic patients with chronic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1281107. [PMID: 38174341 PMCID: PMC10761498 DOI: 10.3389/fendo.2023.1281107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024] Open
Abstract
Background and aims Outcome trials using sodium glucose cotransporter type 2 inhibitors have consistently shown their potential to preserve kidney function in diabetic and nondiabetic patients. Several mechanisms have been introduced which may explain the nephroprotective effect of sodium glucose cotransporter type 2 inhibitors beyond lowering blood glucose. This current narrative review has the objective to describe main underlying mechanisms causing a nephroprotective effect and to show similarities as well as differences between proposed mechanisms which can be observed in patients with diabetic and nondiabetic chronic kidney disease. Methods We performed a narrative review of the literature on Pubmed and Embase. The research string comprised various combinations of items including "chronic kidney disease", "sodium glucose cotransporter 2 inhibitor" and "mechanisms". We searched for original research and review articles published until march, 2022. The databases were searched independently and the agreements by two authors were jointly obtained. Results Sodium glucose cotransporter type 2 inhibitors show systemic, hemodynamic, and metabolic effects. Systemic effects include reduction of blood pressure without compensatory activation of the sympathetic nervous system. Hemodynamic effects include restoration of tubuloglomerular feedback which may improve pathologic hyperfiltration observed in most cases with chronic kidney disease. Current literature indicates that SGLT2i may not improve cortical oxygenation and may reduce medullar oxygenation. Conclusion Sodium glucose cotransporter type 2 inhibitors cause nephroprotective effects by several mechanisms. However, several mediators which are involved in the underlying pathophysiology may be different between diabetic and nondiabetic patients.
Collapse
Affiliation(s)
- Emma S Speedtsberg
- Institute of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
- Institute of Clinical Medicine, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Martin Tepel
- Institute of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
- Institute of Clinical Medicine, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
27
|
Li YL, Tian J, Shi DJ, Dong JX, Yue Z, Li G, Huang WP, Zhang SM, Zhu BL. CdSe/TiO 2NTs Heterojunction-Based Nonenzymatic Photoelectrochemical Sensor for Glucose Detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14935-14944. [PMID: 37842927 DOI: 10.1021/acs.langmuir.3c01685] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Compared with a single semiconductor, the heterojunction formed by two different semiconductors usually has higher light utilization and better photoelectric performance. By using stable TiO2 nanotubes as the main subject, CdSe/TiO2NTs heterojunctions were synthesized by a hydrothermal method. XRD, TEM, SEM, PL, UV-vis, and EIS were used to characterize the fabricated CdSe/TiO2NTs. Under visible light irradiation, CdSe/TiO2NTs heterojunctions exhibited a higher absorption intensity and lower degree of photogenerated carrier recombination than TiO2. The electrons and holes were proven to be effectively separated in this heterojunction via theoretical calculation. Under CdSe/TiO2NTs' optimal conditions, the glucose concentrations (10-90 μM) had a linear relationship with the photocurrent value, and the detection limit was 3.1 μM. Moreover, the CdSe/TiO2NTs sensor exhibited good selectivity and stability. Based on the experimental data and theoretical calculations, its PEC sensing mechanism was also illuminated.
Collapse
Affiliation(s)
- Yue-Liu Li
- State Key Laboratory of Coking Coal Exploitation and Comprehensive Utilization, Pingdingshan 467000, China
- College of Chemistry, The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300071, China
| | - Jing Tian
- College of Chemistry, The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300071, China
| | - Dong-Jie Shi
- National Supercomputer Center in Tianjin, Tianjin 300457, China
| | - Jian-Xun Dong
- State Key Laboratory of Coking Coal Exploitation and Comprehensive Utilization, Pingdingshan 467000, China
- Henan Nylon New Material Industry Research Institute, Pingdingshan 467000, China
| | - Zhao Yue
- Department of Microelectronics, Nankai University, Tianjin 300350, China
| | - Geng Li
- National Supercomputer Center in Tianjin, Tianjin 300457, China
| | - Wei-Ping Huang
- College of Chemistry, The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300071, China
| | - Shou-Min Zhang
- College of Chemistry, The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300071, China
| | - Bao-Lin Zhu
- College of Chemistry, The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
28
|
Manolis AA, Manolis TA, Melita H, Manolis AS. Sodium-glucose cotransporter type 2 inhibitors and cardiac arrhythmias. Trends Cardiovasc Med 2023; 33:418-428. [PMID: 35447305 DOI: 10.1016/j.tcm.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/02/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023]
Abstract
The introduction of sodium-glucose cotransporter 2 (SGLT2) inhibitors as a new and effective class of therapeutic agents for type 2 diabetes (T2D) preventing the reabsorption of glucose in the kidneys and thus facilitating glucose excretion in the urine, but also as agents with cardiovascular benefits, particularly in patients with heart failure (HF), regardless of the diabetic status, has ushered in a new era in treating patients with T2D and/or HF. In addition, data have recently emerged indicating an antiarrhythmic effect of the SGLT2 inhibitors in patients with and without diabetes. Prospective studies, randomized controlled trials and meta-analyses have provided robust evidence for a protective and beneficial effect of these agents against atrial fibrillation, ventricular arrhythmias and sudden cardiac death. The antiarrhythmic mechanisms involved include reverse atrial and ventricular remodeling, amelioration of mitochondrial function, reduction of hypoglycemic episodes with their attendant arrhythmogenic effects, attenuated sympathetic nervous system activity, regulation of sodium and calcium homeostasis, and suppression of prolonged ventricular repolarization. These new data on antiarrhythmic actions of SGLT2 inhibitors are herein reviewed, potential mechanisms involved are discussed and pictorially illustrated, and treatment results on specific arrhythmias are described and tabulated.
Collapse
Affiliation(s)
| | | | | | - Antonis S Manolis
- First Department of Cardiology, Athens University School of Medicine, Athens, Greece.
| |
Collapse
|
29
|
Matthews J, Herat L, Schlaich MP, Matthews V. The Impact of SGLT2 Inhibitors in the Heart and Kidneys Regardless of Diabetes Status. Int J Mol Sci 2023; 24:14243. [PMID: 37762542 PMCID: PMC10532235 DOI: 10.3390/ijms241814243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic Kidney Disease (CKD) and Cardiovascular Disease (CVD) are two devastating diseases that may occur in nondiabetics or individuals with diabetes and, when combined, it is referred to as cardiorenal disease. The impact of cardiorenal disease on society, the economy and the healthcare system is enormous. Although there are numerous therapies for cardiorenal disease, one therapy showing a great deal of promise is sodium-dependent glucose cotransporter 2 (SGLT2) inhibitors. The SGLT family member, SGLT2, is often implicated in the pathogenesis of a range of diseases, and the dysregulation of the activity of SGLT2 markedly effects the transport of glucose and sodium across the luminal membrane of renal cells. Inhibitors of SGLT2 were developed based on the antidiabetic action initiated by inhibiting renal glucose reabsorption, thereby increasing glucosuria. Of great medical significance, large-scale clinical trials utilizing a range of SGLT2 inhibitors have demonstrated both metabolic and biochemical benefits via numerous novel mechanisms, such as sympathoinhibition, which will be discussed in this review. In summary, SGLT2 inhibitors clearly exert cardio-renal protection in people with and without diabetes in both preclinical and clinical settings. This exciting class of inhibitors improve hyperglycemia, high blood pressure, hyperlipidemia and diabetic retinopathy via multiple mechanisms, of which many are yet to be elucidated.
Collapse
Affiliation(s)
- Jennifer Matthews
- Royal Perth Hospital Unit, Dobney Hypertension Centre, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (J.M.); (L.H.)
| | - Lakshini Herat
- Royal Perth Hospital Unit, Dobney Hypertension Centre, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (J.M.); (L.H.)
| | - Markus P. Schlaich
- Royal Perth Hospital Unit, Dobney Hypertension Centre, School of Medicine, University of Western Australia, Crawley, WA 6009, Australia;
- Department of Cardiology and Department of Nephrology, Royal Perth Hospital, Perth, WA 6000, Australia
| | - Vance Matthews
- Royal Perth Hospital Unit, Dobney Hypertension Centre, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (J.M.); (L.H.)
| |
Collapse
|
30
|
Dholariya S, Dutta S, Singh R, Parchwani D, Sonagra A, Kaliya M. Bexagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, for improvement of glycemia in type 2 diabetes mellitus: a systematic review and meta-analysis. Expert Opin Pharmacother 2023; 24:2187-2198. [PMID: 37817422 DOI: 10.1080/14656566.2023.2269854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/09/2023] [Indexed: 10/12/2023]
Abstract
OBJECTIVES This study assessed the clinical safety and efficacy of bexagliflozin, a sodium-glucose cotransporter 2(SGLT2) inhibitor, in managing glycemia among patients with type 2 diabetes mellitus (T2DM). AREAS COVERED We examined RCTs with T2DM comparing the clinical effectiveness and safety of 20 mg once daily oral dose of bexagliflozin with placebo for managing glycemia till 28 May 2023, published on databases like ClinicalTrials.gov, PubMed, Embase, and Cochrane Library. Furthermore, reduction of body weight, fasting plasma sugarr(FPG), systolic blood pressure (SBP) and the percentage of individuals who achieved glycated hemoglobin (HbA1c) of < 7% from baseline were also evaluated. The Review Manager 5 was utilized to investigate the retrieved data. EXPERT OPINION We involved eight RCTs. Bexagliflozin was significantly superior in reducing HbA1c[least squares mean difference(LSMD) = -0.45,95% confidence interval (CI =-0.55 to -0.34,p < 0.00001], FPG [LSMD= -1.37, 95%CI =-1.73 to -1.00, p < 0.00001], body weight (LSMD= -1.77, 95%CI =-2.44 to-1.10, p < 0.00001), and SBP(LSMD= -4.11,95%CI = -6.18 to -2.03,p = 0.0001) in comparison to placebo. The safety outcomes of bexagliflozin were consistent with the placebo arm. This study concluded that bexagliflozin seems to be a promising oral anti-diabetic drug for enhancing glycemic management in adult patients with T2DM.
Collapse
Affiliation(s)
- Sagar Dholariya
- Department of Biochemistry, All India Institute of Medical Sciences, Rajkot, India
| | - Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, India
| | - Ragini Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Rajkot, India
| | - Deepak Parchwani
- Department of Biochemistry, All India Institute of Medical Sciences, Rajkot, India
| | - Amit Sonagra
- Department of Biochemistry, All India Institute of Medical Sciences, Rajkot, India
| | - Mehul Kaliya
- Department of General Medicine, All India Institute of Medical Sciences, Rajkot, India
| |
Collapse
|
31
|
Li J, Meng L, Wu D, Xu H, Hu X, Hu G, Chen Y, Xu J, Gong T, Liu D. Adrenal SGLT1 or SGLT2 as predictors of atherosclerosis under chronic stress based on a computer algorithm. PeerJ 2023; 11:e15647. [PMID: 37663275 PMCID: PMC10474830 DOI: 10.7717/peerj.15647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/06/2023] [Indexed: 09/05/2023] Open
Abstract
Background Chronic stress promotes the development of atherosclerosis, causing disruptions in the body's hormone levels and changes in the structural function of organs. Objective The purpose of this study was to investigate the pathological changes in the adrenal gland in a model of atherosclerosis under chronic stress and to verify the expression levels of Sodium-glucose cotransporter (SGLT) 1 and SGLT2 in the adrenal gland and their significance in the changes of adrenal gland. Methods The model mice were constructed by chronic unpredictable stress, high-fat diet, and Apoe-/- knockout, and they were tested behaviorally at 0, 4, 8 and 12 weeks. The state of the abdominal artery was examined by ultrasound, and the pathological changes of the aorta and adrenal glands were observed by histological methods, and the expression levels and distribution of SGLT1 and SGLT2 in the adrenal gland were observed and analyzed by immunofluorescence and immunohistochemistry. The predictive value of SGLT1 and SGLT2 expression levels on intima-media thickness, internal diameter and adrenal abnormalities were verified by receiver operating characteristic (ROC) curves, support vector machine (SVM) and back-propagation (BP) neural network. Results The results showed that chronic stress mice had elevated expression levels of SGLT1 and SGLT2. The model mice developed thickening intima-media and smaller internal diameter in the aorta, and edema, reticular fiber rupture, increased adrenal glycogen content in the adrenal glands. More importantly, analysis of ROC, SVM and BP showed that SGLT1 and SGLT2 expression levels in the adrenal glands could predict the above changes in the aorta and were also sensitive and specific predictors of adrenal abnormalities. Conclusion SGLT1 and SGLT2 could be potential biomarkers of adrenal injury in atherosclerosis under chronic stress.
Collapse
Affiliation(s)
- Jianyi Li
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lingbing Meng
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dishan Wu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hongxuan Xu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xing Hu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Gaifeng Hu
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuhui Chen
- Department of Neurology, Beijing Hospital, National Center of Gerontology, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiapei Xu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Tao Gong
- Department of Neurology, Beijing Hospital, National Center of Gerontology, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Deping Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
32
|
Chen S, Song X, Xiao Q, Wang L, Zhu X, Zou Y, Li G. Knockdown of TMEM30A in renal tubular epithelial cells leads to reduced glucose absorption. BMC Nephrol 2023; 24:250. [PMID: 37612668 PMCID: PMC10464243 DOI: 10.1186/s12882-023-03299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 08/16/2023] [Indexed: 08/25/2023] Open
Abstract
The kidney reabsorbs large amounts of glucose through Na+-glucose cotransporter 2 (SGLT2). P4-ATPase acts together with the β-subunit TMEM30A to mediate the asymmetric distribution of phosphatidylserine (PS), phosphatidylethanolamine (PE), and other amino phospholipids, promoting plasma membrane and internal vesicle fusion, and facilitating vesicle protein transport. We observed reduced TMEM30A expression in renal tubules of DKD and IgA patients, suggesting a potential role of TMEM30A in renal tubular cells. To investigate the role of TMEM30A in renal tubules, we constructed a TMEM30A knockdown cell model by transfecting mouse kidney tubular epithelium cells (TCMK-1) with TMEM30A shRNA. Knockdown of TMEM30A in TCMK-1 cells attenuated vesicle transporter protein synthesis, resulting in reduced transport and expression of SGLT2, which in turn reduced glucose absorption. These data suggested that TMEM30A plays a crucial role in renal tubules.
Collapse
Affiliation(s)
- Sipei Chen
- Department of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West 2Nd Duan, 1St Circle Road, Qingyang District, Chengdu, 610072, Sichuan, China
| | - Xinrou Song
- Department of Nephrology, Chengdu Fifth People's Hospital, Chengdu, China
| | - Qiong Xiao
- Department of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West 2Nd Duan, 1St Circle Road, Qingyang District, Chengdu, 610072, Sichuan, China
| | - Li Wang
- Department of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West 2Nd Duan, 1St Circle Road, Qingyang District, Chengdu, 610072, Sichuan, China
| | - Xianjun Zhu
- Department of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West 2Nd Duan, 1St Circle Road, Qingyang District, Chengdu, 610072, Sichuan, China
| | - Yang Zou
- Department of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West 2Nd Duan, 1St Circle Road, Qingyang District, Chengdu, 610072, Sichuan, China
| | - Guisen Li
- Department of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West 2Nd Duan, 1St Circle Road, Qingyang District, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
33
|
Herat LY, Matthews JR, Hibbs M, Rakoczy EP, Schlaich MP, Matthews VB. SGLT1/2 inhibition improves glycemic control and multi-organ protection in type 1 diabetes. iScience 2023; 26:107260. [PMID: 37520739 PMCID: PMC10384225 DOI: 10.1016/j.isci.2023.107260] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/26/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Sodium glucose cotransporters (SGLTs) are transport proteins that are expressed throughout the body. Inhibition of SGLTs is a relatively novel therapeutic strategy to improve glycemic control and has been shown to promote cardiorenal benefits. Dual SGLT1/2 inhibitors (SGLT1/2i) such as sotagliflozin target both SGLT1 and 2 proteins. Sotagliflozin or vehicle was administered to diabetic Akimba mice for 8 weeks at a dose of 25 mg/kg/day. Urine glucose levels, water consumption, and body weight were measured weekly. Serum, kidney, pancreas, and brain tissue were harvested under terminal anesthesia. Tissues were assessed using immunohistochemistry or ELISA techniques. Treatment with sotagliflozin promoted multiple metabolic benefits in diabetic Akimba mice resulting in decreased blood glucose and improved polydipsia. Sotagliflozin also prevented mortalities associated with diabetes. Our data suggests that there is the possibility that combined SGLT1/2i may be superior to SGLT2i in controlling glucose homeostasis and provides protection of multiple organs affected by diabetes.
Collapse
Affiliation(s)
- Lakshini Yasaswi Herat
- Dobney Hypertension Centre, School of Biomedical Sciences – Royal Perth Hospital Unit / Royal Perth Hospital Medical Research Foundation, University of Western Australia, Crawley, WA 6009, Australia
| | - Jennifer Rose Matthews
- Dobney Hypertension Centre, School of Biomedical Sciences – Royal Perth Hospital Unit / Royal Perth Hospital Medical Research Foundation, University of Western Australia, Crawley, WA 6009, Australia
| | - Moira Hibbs
- Research Centre, Royal Perth Hospital, Perth, WA 6000, Australia
| | | | - Markus Peter Schlaich
- Dobney Hypertension Centre, Medical School – Royal Perth Hospital Unit / Royal Perth Hospital Medical Research Foundation, University of Western Australia, Crawley, WA 6009, Australia
- Department of Cardiology and Department of Nephrology, Royal Perth Hospital, Perth, WA 6000, Australia
| | - Vance Bruce Matthews
- Dobney Hypertension Centre, School of Biomedical Sciences – Royal Perth Hospital Unit / Royal Perth Hospital Medical Research Foundation, University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
34
|
Zhao H, Zhao Z, He K, Mi N, Lou K, Dong X, Zhang W, Sun J, Hu X, Pang S, Cheng H, Wen Q. Pharmacokinetics, Pharmacodynamics and Safety of Janagliflozin in Chinese Type 2 Diabetes Mellitus Patients with Renal Impairment. Clin Pharmacokinet 2023; 62:1093-1103. [PMID: 37284974 DOI: 10.1007/s40262-023-01256-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Janagliflozin is a novel sodium-glucose cotransport-2 inhibitor. Despite its remarkable effect in glycemic control, no systematic research has evaluated the effect of renal impairment (RI) on its pharmacokinetics and pharmacodynamics. METHODS Here, patients with T2DM (n = 30) were divided into normal renal function (eGFR ≥ 90 mL/min/1.73 m2), mild RI (eGFR between 60 and 89 mL/min/1.73 m2), moderate RI-I (eGFR between 45 and 59 mL/min/1.73 m2), and moderate RI-II (eGFR between 30 and 44 mL/min/1.73 m2) groups. They were administered 50 mg janagliflozin orally, and plasma and urine samples were collected for the determination of janagliflozin concentration. RESULTS Following oral administration, janagliflozin was rapidly absorbed, with the time to Cmax of 2-6 h for janagliflozin and 3-6 h for its metabolite XZP-5185. Plasma exposure levels were similar for janagliflozin in T2DM patients with or without RI but decreased for the metabolite XZP-5185 in T2DM patients with eGFR between 45 and 89 mL/min/1.73 m2. Janagliflozin significantly promoted the excretion of urinary glucose, even in patients with reduced eGFR. Janagliflozin was well tolerated in patients with T2DM with or without RI, and no serious adverse events (SAEs) occurred during this trial. CONCLUSIONS The exposure levels of janagliflozin in T2DM patients were slightly increased with worsening of RI (i.e., 11% increase in the AUC in patients with moderate RI compared with the normal renal function group). Despite worsening of renal function, janagliflozin exerted a significant pharmacologic effect and was well tolerated, even in patients with moderate RI, implying a promising role in the treatment of patients with in T2DM. REGISTRATION China Drug Trial register ( http://www.chinadrugtrials.org.cn/I ) identifier no.: CTR20192721.
Collapse
Affiliation(s)
- Hengli Zhao
- Department of Clinical Research Center, Central Hospital Affiliated to Shandong First Medical University, No. 105 Jiefang Road, Li Xia District, Jinan, 250013, People's Republic of China
| | - Zhirui Zhao
- Department of Renal Division, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Street, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Kun He
- Department of Clinical Research Center, Central Hospital Affiliated to Shandong First Medical University, No. 105 Jiefang Road, Li Xia District, Jinan, 250013, People's Republic of China
| | - Nianrong Mi
- Department of Endocrinology, Central Hospital Affiliated to Shandong First Medical University, No. 105 Jiefang Road, Li Xia District, Jinan, 250013, People's Republic of China
| | - Kai Lou
- Department of Endocrinology, Central Hospital Affiliated to Shandong First Medical University, No. 105 Jiefang Road, Li Xia District, Jinan, 250013, People's Republic of China
| | - Xiaolin Dong
- Department of Endocrinology, Central Hospital Affiliated to Shandong First Medical University, No. 105 Jiefang Road, Li Xia District, Jinan, 250013, People's Republic of China
| | - Wenyu Zhang
- Department of Clinical Research Center, Central Hospital Affiliated to Shandong First Medical University, No. 105 Jiefang Road, Li Xia District, Jinan, 250013, People's Republic of China
| | - Jingfang Sun
- Jilin Huisheng Biopharmaceutical Co., Ltd., Jilin, 135000, People's Republic of China
| | - Xinyu Hu
- Jilin Huisheng Biopharmaceutical Co., Ltd., Jilin, 135000, People's Republic of China
| | - Shuguang Pang
- Department of Endocrinology, Central Hospital Affiliated to Shandong First Medical University, No. 105 Jiefang Road, Li Xia District, Jinan, 250013, People's Republic of China.
| | - Hong Cheng
- Department of Renal Division, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Street, Chaoyang District, Beijing, 100029, People's Republic of China.
| | - Qing Wen
- Department of Clinical Research Center, Central Hospital Affiliated to Shandong First Medical University, No. 105 Jiefang Road, Li Xia District, Jinan, 250013, People's Republic of China.
| |
Collapse
|
35
|
Witham MD, Granic A, Pearson E, Robinson SM, Sayer AA. Repurposing Drugs for Diabetes Mellitus as Potential Pharmacological Treatments for Sarcopenia - A Narrative Review. Drugs Aging 2023:10.1007/s40266-023-01042-4. [PMID: 37486575 PMCID: PMC10371965 DOI: 10.1007/s40266-023-01042-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 07/25/2023]
Abstract
Sarcopenia, the age-related loss of muscle strength and mass or quality, is a common condition with major adverse consequences. Although the pathophysiology is incompletely understood, there are common mechanisms between sarcopenia and the phenomenon of accelerated ageing seen in diabetes mellitus. Drugs currently used to treat type 2 diabetes mellitus may have mechanisms of action that are relevant to the prevention and treatment of sarcopenia, for those with type 2 diabetes and those without diabetes. This review summarises shared pathophysiology between sarcopenia and diabetes mellitus, including the effects of advanced glycation end products, mitochondrial dysfunction, chronic inflammation and changes to the insulin signalling pathway. Cellular and animal models have generated intriguing, albeit mixed, evidence that supports possible beneficial effects on skeletal muscle function for some classes of drugs used to treat diabetes, including metformin and SGLT2 inhibitors. Most human observational and intervention evidence for the effects of these drugs has been derived from populations with type 2 diabetes mellitus, and there is a need for intervention studies for older people with, and at risk of, sarcopenia to further investigate the balance of benefit and risk in these target populations. Not all diabetes treatments will be safe to use in those without diabetes because of variable side effects across classes. However, some agents [including glucagon-like peptide (GLP)-1 receptor agonists and SGLT2 inhibitors] have already demonstrated benefits in populations without diabetes, and it is these agents, along with metformin, that hold out the most promise for further investigation in sarcopenia.
Collapse
Affiliation(s)
- Miles D Witham
- AGE Research Group, Newcastle University Institute for Translational and Clinical Research, Newcastle Upon Tyne, UK.
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne NHS Foundation Trust and Cumbria, Northumberland and Tyne and Wear NHS Foundation Trust, Newcastle Upon Tyne, UK.
| | - Antoneta Granic
- AGE Research Group, Newcastle University Institute for Translational and Clinical Research, Newcastle Upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne NHS Foundation Trust and Cumbria, Northumberland and Tyne and Wear NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Ewan Pearson
- Division of Population Health and Genomics, Dundee Medical School, University of Dundee, Dundee, UK
| | - Sian M Robinson
- AGE Research Group, Newcastle University Institute for Translational and Clinical Research, Newcastle Upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne NHS Foundation Trust and Cumbria, Northumberland and Tyne and Wear NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Avan A Sayer
- AGE Research Group, Newcastle University Institute for Translational and Clinical Research, Newcastle Upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne NHS Foundation Trust and Cumbria, Northumberland and Tyne and Wear NHS Foundation Trust, Newcastle Upon Tyne, UK
| |
Collapse
|
36
|
Verdile N, Camin F, Pavlovic R, Pasquariello R, Stuknytė M, De Noni I, Brevini TAL, Gandolfi F. Distinct Organotypic Platforms Modulate Rainbow Trout ( Oncorhynchus mykiss) Intestinal Cell Differentiation In Vitro. Cells 2023; 12:1843. [PMID: 37508507 PMCID: PMC10377977 DOI: 10.3390/cells12141843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
In vitro organotypic cell-based intestinal platforms, able to faithfully recapitulate the complex functions of the organ in vivo, would be a great support to search for more sustainable feed ingredients in aquaculture. We previously demonstrated that proliferation or differentiation of rainbow trout intestinal cell lines is dictated by the culture environment. The aim of the present work was to develop a culture platform that can efficiently promote cell differentiation into mature enterocytes. We compared four options, seeding the RTpiMI cell line derived from the proximal intestine on (1) polyethylene terephthalate (PET) culture inserts ThinCert™ (TC), (2) TC coated with the solubilized basement membrane matrix Matrigel® (MM), (3) TC with the rainbow trout fibroblast cell line RTskin01 embedded within the Matrigel® matrix (MMfb), or (4) the highly porous polystyrene scaffold Alvetex® populated with the abovementioned fibroblast cell line (AV). We evaluated the presence of columnar cells with a clear polarization of brush border enzymes, the formation of an efficient barrier with a significant increase in transepithelial electrical resistance (TEER), and its ability to prevent the paracellular flux of large molecules but allow the transit of small compounds (proline and glucose) from the apical to the basolateral compartment. All parameters improved moving from the simplest (TC) through the more complex platforms. The presence of fibroblasts was particularly effective in enhancing epithelial cell differentiation within the AV platform recreating more closely the complexity of the intestinal mucosa, including the presence of extracellular vesicles between fibroblasts and epithelial cells.
Collapse
Affiliation(s)
- Nicole Verdile
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy
| | - Federica Camin
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy
| | - Radmila Pavlovic
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy
- Proteomics and Metabolomics Facility, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Rolando Pasquariello
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy
| | - Milda Stuknytė
- Unitech COSPECT-University Technological Platform, University of Milan, 20133 Milan, Italy
| | - Ivano De Noni
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy
| | - Tiziana A L Brevini
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
37
|
Zhao M, Li N, Zhou H. SGLT1: A Potential Drug Target for Cardiovascular Disease. Drug Des Devel Ther 2023; 17:2011-2023. [PMID: 37435096 PMCID: PMC10332373 DOI: 10.2147/dddt.s418321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/29/2023] [Indexed: 07/13/2023] Open
Abstract
SGLT1 and SGLT2 are the two main members of the sodium-glucose cotransporters (SGLTs), which are mainly responsible for glucose reabsorption in the body. In recent years, many large clinical trials have shown that SGLT2 inhibitors have cardiovascular protection for diabetic and non-diabetic patients independent of lowering blood glucose. However, SGLT2 was barely detected in the hearts of humans and animals, while SGLT1 was highly expressed in myocardium. As SGLT2 inhibitors also have a moderate inhibitory effect on SGLT1, the cardiovascular protection of SGLT2 inhibitors may be due to SGLT1 inhibition. SGLT1 expression is associated with pathological processes such as cardiac oxidative stress, inflammation, fibrosis, and cell apoptosis, as well as mitochondrial dysfunction. The purpose of this review is to summarize the protective effects of SGLT1 inhibition on hearts in various cell types, including cardiomyocytes, endothelial cells, and fibroblasts in preclinical studies, and to highlight the underlying molecular mechanisms of protection against cardiovascular diseases. Selective SGLT1 inhibitors could be considered a class of drugs for cardiac-specific therapy in the future.
Collapse
Affiliation(s)
- Mengnan Zhao
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Na Li
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Hong Zhou
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
38
|
Osmanović Barilar J, Babić Perhoč A, Knezović A, Homolak J, Virag D, Šalković-Petrišić M. The Effect of the Sodium-Glucose Cotransporter Inhibitor on Cognition and Metabolic Parameters in a Rat Model of Sporadic Alzheimer's Disease. Biomedicines 2023; 11:1025. [PMID: 37189641 PMCID: PMC10135566 DOI: 10.3390/biomedicines11041025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Type 2 diabetes mellitus increases the risk of sporadic Alzheimer's disease (sAD), and antidiabetic drugs, including the sodium-glucose cotransporter inhibitors (SGLTI), are being studied as possible sAD therapy. We have explored whether the SGLTI phloridzin may influence metabolic and cognitive parameters in a rat model of sAD. Adult male Wistar rats were randomized to a control (CTR), an sAD-model group induced by intracerebroventricular streptozotocin (STZ-icv; 3 mg/kg), a CTR+SGLTI, or an STZ-icv+SGLTI group. Two-month-long oral (gavage) SGLTI treatment (10 mg/kg) was initiated 1 month after STZ-icv and cognitive performance tested prior to sacrifice. SGLTI treatment significantly decreased plasma glucose levels only in the CTR group and failed to correct STZ-icv-induced cognitive deficit. In both the CTR and STZ-icv groups, SGLTI treatment diminished weight gain, decreased amyloid beta (Aβ) 1-42 in duodenum, and decreased the plasma levels of total glucagon-like peptide 1 (GLP-1), while the levels of active GLP-1, as well as both total and active glucose-dependent insulinotropic polypeptide, remained unchanged, compared to their respective controls. The increment in GLP-1 levels in the cerebrospinal fluid and its effect on Aβ 1-42 in duodenum could be one of the molecular mechanisms by which SGLTIs indirectly induce pleiotropic beneficial effects.
Collapse
Affiliation(s)
- Jelena Osmanović Barilar
- Department of Pharmacology and Croatian, Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | | | | | | | | |
Collapse
|
39
|
Youssef ME, Yahya G, Popoviciu MS, Cavalu S, Abd-Eldayem MA, Saber S. Unlocking the Full Potential of SGLT2 Inhibitors: Expanding Applications beyond Glycemic Control. Int J Mol Sci 2023; 24:ijms24076039. [PMID: 37047011 PMCID: PMC10094124 DOI: 10.3390/ijms24076039] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
The number of diabetic patients has risen dramatically in recent decades, owing mostly to the rising incidence of type 2 diabetes mellitus (T2DM). Several oral antidiabetic medications are used for the treatment of T2DM including, α-glucosidases inhibitors, biguanides, sulfonylureas, meglitinides, GLP-1 receptor agonists, PPAR-γ agonists, DDP4 inhibitors, and SGLT2 inhibitors. In this review we focus on the possible effects of SGLT2 inhibitors on different body systems. Beyond the diabetic state, SGLT2 inhibitors have revealed a demonstrable ability to ameliorate cardiac remodeling, enhance myocardial function, and lower heart failure mortality. Additionally, SGLT2 inhibitors can modify adipocytes and their production of cytokines, such as adipokines and adiponectin, which enhances insulin sensitivity and delays diabetes onset. On the other hand, SGLT2 inhibitors have been linked to decreased total hip bone mineral deposition and increased hip bone resorption in T2DM patients. More data are needed to evaluate the role of SGLT2 inhibitors on cancer. Finally, the effects of SGLT2 inhibitors on neuroprotection appear to be both direct and indirect, according to scientific investigations utilizing various experimental models. SGLT2 inhibitors improve vascular tone, elasticity, and contractility by reducing oxidative stress, inflammation, insulin signaling pathways, and endothelial cell proliferation. They also improve brain function, synaptic plasticity, acetylcholinesterase activity, and reduce amyloid plaque formation, as well as regulation of the mTOR pathway in the brain, which reduces brain damage and cognitive decline.
Collapse
Affiliation(s)
- Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Al Sharqia 44519, Egypt
| | - Mihaela Simona Popoviciu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| | - Marwa A Abd-Eldayem
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| |
Collapse
|
40
|
Wang Z, Wang G, Ren J. Using a Mathematical Modeling To Simulate Pharmacokinetics and Urinary Glucose Excretion of Luseogliflozin and Explore the Role of SGLT1/2 in Renal Glucose Reabsorption. ACS OMEGA 2022; 7:48427-48437. [PMID: 36591124 PMCID: PMC9798748 DOI: 10.1021/acsomega.2c06483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
(1) Purpose: To develop a mathematical model combining physiologically based pharmacokinetic and urinary glucose excretion (PBPK-UGE) to simultaneously predict pharmacokinetic (PK) and UGE changes of luseogliflozin (LUS) as well as to explore the role of sodium-glucose cotransporters (SGLT1 and SGLT2) in renal glucose reabsorption (RGR) in humans. (2) Methods: The PBPK-UGE model was built using physicochemical and biochemical properties, binding kinetics data, affinity to SGLTs for glucose, and physiological parameters of renal tubules. (3) Results: The simulations using this model clarified that SGLT1/2 contributed 15 and 85%, respectively, to RGR in the absence of LUS. However, in the presence of LUS, the contribution proportion of SGLT1 rose to 52-76% in healthy individuals and 55-83% in T2DM patients, and that of SGLT2 reduced to 24-48 and 17-45%, respectively. Furthermore, this model supported the underlying mechanism that only 23-40% inhibition of the total RGR with 5 mg of LUS is resulted from SGLT1's compensatory effect and the reabsorption activity of unbound SGLT2. (4) Conclusion: This PBPK-UGE model can predict PK and UGE in healthy individuals and T2DM patients and can also analyze the contribution of SGLT1/2 to RGR with and without LUS.
Collapse
Affiliation(s)
- Zhongjian Wang
- Pharnexcloud
Digital Technology Co., Ltd., Chengdu, Sichuan610093, China
| | - Guopeng Wang
- Zhongcai
Health (Beijing) Biological Technology Development Co., Ltd., Beijing101500, China
| | - Jiawei Ren
- North
China Electric Power University Hospital, Beijing102206, China
| |
Collapse
|
41
|
Tassopoulou VP, Tzara A, Kourounakis AP. Design of Improved Antidiabetic Drugs: A Journey from Single to Multitarget Agents. ChemMedChem 2022; 17:e202200320. [PMID: 36184571 DOI: 10.1002/cmdc.202200320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/27/2022] [Indexed: 01/14/2023]
Abstract
Multifactorial diseases exhibit a complex pathophysiology with several factors contributing to their pathogenesis and development. Examples of such disorders are neurodegenerative (e. g. Alzheimer's, Parkinson's) and cardiovascular diseases (e. g. atherosclerosis, metabolic syndrome, diabetes II). Traditional therapeutic approaches with single-target drugs have been proven, in many cases, unsatisfactory for the treatment of multifactorial diseases such as diabetes II. The well-established by now strategy of multitarget drugs is constantly gaining interest and momentum, as a more effective approach. The development of pharmacomolecules able to simultaneously modulate multiple relevant-to-the-disease targets has already several successful examples in various fields and has, as such, inspired the design of multitarget antidiabetic agents; this review highlights the design aspect and efficacy of this approach for improved antidiabetics by presenting several examples of successful pharmacophore combinations in (multitarget) agents that modulate two or more molecular targets involved in diabetes II, resulting in a superior antihyperglycemic profile.
Collapse
Affiliation(s)
- Vassiliki-Panagiota Tassopoulou
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Ariadni Tzara
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Angeliki P Kourounakis
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| |
Collapse
|
42
|
Sweed E, Sweed D, Galal N, Abd-Elhafiz HI. Dapagliflozin Protection against Myocardial Ischemia by Modulating Sodium-glucose Transporter 2 Inhibitor, Silent Information Regulator 1, and Fatty Acid Synthase Expressions. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND: The emerging role of sodium-glucose transporter 2 (SGLT2) inhibitors drugs as potential therapeutic agents in myocardial ischemic (MI) injury treatment has raised the concern for possible mechanisms of action.
AIM: The current experimental study aimed to investigate the possible protective effects of dapagliflozin (DAPA) a SGLT2i, on isoproterenol (ISO)-induced MI in rats.
MATERIALS AND METHODS: Thirty Wistar rats were divided randomly and equally into three groups. Group 1 (control group): Received 1.0 mL of normal saline through an orogastric tube for 14 days. Group 2 (ISO group): Received 1.0 mL of normal saline orally through an orogastric tube for 14 days. In the last 2 days (days 13 and 14), ISO (100 mg/kg) was freshly dissolved in normal saline and injected subcutaneously once daily. Group 3 (ISO + DAPA-treated group): Received DAPA 1.0 mg/kg/day orally for 14 days. In the last 2 days (days 13 and 14), ISO (100 mg/kg) was introduced like that described in Group 2.
RESULTS: DAPA protects MI development by reversal of blood pressure changes, electrocardiographic alterations, stabilization of cardiac enzymes, inflammation restoration, oxidative stress, and lipid profile. SGLT2 was overexpressed in the ISO-induced MI, which declined in the ISO + DAPA group. Moreover, DAPA induced silent information regulator 1 (SIRT1)/fatty acid synthase (FASN) overexpression in ISO-induced MI. DAPA could have a potential protective role against acute MI.
CONCLUSION: DAPA protects against acute MI by modulating SIRT1 and FASN expression in cardiac muscles, suppressing oxidative stress, and downregulating inflammatory mediators.
Collapse
|
43
|
Coronary Microvascular Dysfunction in Diabetes Mellitus: Pathogenetic Mechanisms and Potential Therapeutic Options. Biomedicines 2022; 10:biomedicines10092274. [PMID: 36140374 PMCID: PMC9496134 DOI: 10.3390/biomedicines10092274] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic patients are frequently affected by coronary microvascular dysfunction (CMD), a condition consisting of a combination of altered vasomotion and long-term structural change to coronary arterioles leading to impaired regulation of blood flow in response to changing cardiomyocyte oxygen requirements. The pathogenesis of this microvascular complication is complex and not completely known, involving several alterations among which hyperglycemia and insulin resistance play particularly central roles leading to oxidative stress, inflammatory activation and altered barrier function of endothelium. CMD significantly contributes to cardiac events such as angina or infarction without obstructive coronary artery disease, as well as heart failure, especially the phenotype associated with preserved ejection fraction, which greatly impact cardiovascular (CV) prognosis. To date, no treatments specifically target this vascular damage, but recent experimental studies and some clinical investigations have produced data in favor of potential beneficial effects on coronary micro vessels caused by two classes of glucose-lowering drugs: glucagon-like peptide 1 (GLP-1)-based therapy and inhibitors of sodium-glucose cotransporter-2 (SGLT2). The purpose of this review is to describe pathophysiological mechanisms, clinical manifestations of CMD with particular reference to diabetes, and to summarize the protective effects of antidiabetic drugs on the myocardial microvascular compartment.
Collapse
|
44
|
Barta T, Sandtner W, Wachlmayr J, Hannesschlaeger C, Ebert A, Speletz A, Horner A. Modeling of SGLT1 in Reconstituted Systems Reveals Apparent Ion-Dependencies of Glucose Uptake and Strengthens the Notion of Water-Permeable Apo States. Front Physiol 2022; 13:874472. [PMID: 35784872 PMCID: PMC9242095 DOI: 10.3389/fphys.2022.874472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
The reconstitution of secondary active transporters into liposomes shed light on their molecular transport mechanism. The latter are either symporters, antiporters or exchangers, which use the energy contained in the electrochemical gradient of ions to fuel concentrative uptake of their cognate substrate. In liposomal preparations, these gradients can be set by the experimenter. However, due to passive diffusion of the ions and solutes through the membrane, the gradients are not stable and little is known on the time course by which they dissipate and how the presence of a transporter affects this process. Gradient dissipation can also generate a transmembrane potential (VM). Because it is the effective ion gradient, which together with VM fuels concentrative uptake, knowledge on how these parameters change within the time frame of the conducted experiment is key to understanding experimental outcomes. Here, we addressed this problem by resorting to a modelling approach. To this end, we mathematically modeled the liposome in the assumed presence and absence of the sodium glucose transporter 1 (SGLT1). We show that 1) the model can prevent us from reaching erroneous conclusions on the driving forces of substrate uptake and we 2) demonstrate utility of the model in the assignment of the states of SGLT1, which harbor a water channel.
Collapse
Affiliation(s)
- Thomas Barta
- Department of Molecular Biophysics and Membrane Biophysics, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Walter Sandtner
- Center of Physiology and Pharmacology, Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Medical University of Vienna, Vienna, Austria
| | - Johann Wachlmayr
- Department of Molecular Biophysics and Membrane Biophysics, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Christof Hannesschlaeger
- Department of Molecular Biophysics and Membrane Biophysics, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Andrea Ebert
- Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
| | - Armin Speletz
- Department of Molecular Biophysics and Membrane Biophysics, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Andreas Horner
- Department of Molecular Biophysics and Membrane Biophysics, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
45
|
Hansen J, Sealfon R, Menon R, Eadon MT, Lake BB, Steck B, Anjani K, Parikh S, Sigdel TK, Zhang G, Velickovic D, Barwinska D, Alexandrov T, Dobi D, Rashmi P, Otto EA, Rivera M, Rose MP, Anderton CR, Shapiro JP, Pamreddy A, Winfree S, Xiong Y, He Y, de Boer IH, Hodgin JB, Barisoni L, Naik AS, Sharma K, Sarwal MM, Zhang K, Himmelfarb J, Rovin B, El-Achkar TM, Laszik Z, He JC, Dagher PC, Valerius MT, Jain S, Satlin LM, Troyanskaya OG, Kretzler M, Iyengar R, Azeloglu EU. A reference tissue atlas for the human kidney. SCIENCE ADVANCES 2022; 8:eabn4965. [PMID: 35675394 PMCID: PMC9176741 DOI: 10.1126/sciadv.abn4965] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/20/2022] [Indexed: 05/08/2023]
Abstract
Kidney Precision Medicine Project (KPMP) is building a spatially specified human kidney tissue atlas in health and disease with single-cell resolution. Here, we describe the construction of an integrated reference map of cells, pathways, and genes using unaffected regions of nephrectomy tissues and undiseased human biopsies from 56 adult subjects. We use single-cell/nucleus transcriptomics, subsegmental laser microdissection transcriptomics and proteomics, near-single-cell proteomics, 3D and CODEX imaging, and spatial metabolomics to hierarchically identify genes, pathways, and cells. Integrated data from these different technologies coherently identify cell types/subtypes within different nephron segments and the interstitium. These profiles describe cell-level functional organization of the kidney following its physiological functions and link cell subtypes to genes, proteins, metabolites, and pathways. They further show that messenger RNA levels along the nephron are congruent with the subsegmental physiological activity. This reference atlas provides a framework for the classification of kidney disease when multiple molecular mechanisms underlie convergent clinical phenotypes.
Collapse
Affiliation(s)
- Jens Hansen
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Sealfon
- Princeton University, Princeton, NJ, USA
- Flatiron Institute, New York, NY, USA
| | - Rajasree Menon
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | | | - Blue B. Lake
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Becky Steck
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Kavya Anjani
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Samir Parikh
- Ohio State University College of Medicine, Columbus, OH, USA
| | - Tara K. Sigdel
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Guanshi Zhang
- University of Texas–Health San Antonio School of Medicine, San Antonio, TX, USA
| | | | - Daria Barwinska
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Dejan Dobi
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Priyanka Rashmi
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Edgar A. Otto
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Miguel Rivera
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Michael P. Rose
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Christopher R. Anderton
- University of Texas–Health San Antonio School of Medicine, San Antonio, TX, USA
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - John P. Shapiro
- Ohio State University College of Medicine, Columbus, OH, USA
| | - Annapurna Pamreddy
- University of Texas–Health San Antonio School of Medicine, San Antonio, TX, USA
| | - Seth Winfree
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yuguang Xiong
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yongqun He
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Ian H. de Boer
- Schools of Medicine and Public Health, University of Washington, Seattle, WA, USA
| | | | | | - Abhijit S. Naik
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Kumar Sharma
- University of Texas–Health San Antonio School of Medicine, San Antonio, TX, USA
| | - Minnie M. Sarwal
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Kun Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Jonathan Himmelfarb
- Schools of Medicine and Public Health, University of Washington, Seattle, WA, USA
| | - Brad Rovin
- Ohio State University College of Medicine, Columbus, OH, USA
| | | | - Zoltan Laszik
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | | | | | - M. Todd Valerius
- Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Sanjay Jain
- Washington University in Saint Louis School of Medicine, St. Louis, MS, USA
| | - Lisa M. Satlin
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olga G. Troyanskaya
- Princeton University, Princeton, NJ, USA
- Flatiron Institute, New York, NY, USA
| | | | - Ravi Iyengar
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Kidney Precision Medicine Project
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Princeton University, Princeton, NJ, USA
- Flatiron Institute, New York, NY, USA
- University of Michigan School of Medicine, Ann Arbor, MI, USA
- Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- University of California San Francisco School of Medicine, San Francisco, CA, USA
- Ohio State University College of Medicine, Columbus, OH, USA
- University of Texas–Health San Antonio School of Medicine, San Antonio, TX, USA
- Pacific Northwest National Laboratory, Richland, WA, USA
- European Molecular Biology Laboratory, Heidelberg, Germany
- Schools of Medicine and Public Health, University of Washington, Seattle, WA, USA
- Duke University School of Medicine, Durham, NC, USA
- Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USA
- Washington University in Saint Louis School of Medicine, St. Louis, MS, USA
| |
Collapse
|
46
|
Glycaemia dynamics concepts before and after insulin. Biochem Pharmacol 2022; 201:115092. [PMID: 35588854 DOI: 10.1016/j.bcp.2022.115092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
|
47
|
Abioye RO, Okagu IU, Udenigwe CC. Targeting Glucose Transport Proteins for Diabetes Management: Regulatory Roles of Food-Derived Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5284-5290. [PMID: 35439410 DOI: 10.1021/acs.jafc.2c00817] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With the rapid rise in prevalence, diabetes mellitus is one of the leading causes of mortality worldwide. Impaired cellular glucose transport is a major contributor to diabetes progression and, thus, an important target for treatment. Functional foods are a rich source of antidiabetic agents. These compounds target multiple physiological contributors to diabetes with lower risk for side effects. This perspective highlights recent advances in food-derived compounds that regulate the gene expression or activity of glucose transport proteins (SGLT1, SGLT2, GLUT1, GLUT2, and GLUT4) and provides insights for future research on targeting the transporters as a promising antidiabetic mechanism of nutraceutical compounds.
Collapse
Affiliation(s)
- Raliat O Abioye
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Innocent U Okagu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria
| | - Chibuike C Udenigwe
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
48
|
Numata S, McDermott JP, Sanchez G, Mitra A, Blanco G. The sodium-glucose cotransporter isoform 1 (SGLT-1) is important for sperm energetics, motility, and fertility†. Biol Reprod 2022; 106:1206-1217. [PMID: 35420639 PMCID: PMC9199017 DOI: 10.1093/biolre/ioac052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/09/2022] [Accepted: 02/28/2022] [Indexed: 01/10/2023] Open
Abstract
Glucose is a key substrate for supporting sperm energy production and function. Previous studies have demonstrated that sperm glucose uptake is facilitated by several isoforms of the glucose transporters (GLUT). Here, we report that sperm also expresses the Na+-dependent sodium glucose cotransporter (SGLT). This was first suggested by our observation that genetic deletion of the testis-specific Na,K-ATPase α4, which impairs the sperm plasma membrane Na+ gradient, reduces glucose uptake and ATP production. Immunoblot analysis revealed the presence of an SGLT in sperm, with specific expression of isoform 1 (SGLT-1), but not of isoform 2 (SGLT-2). Immunocytochemistry identified SGLT-1 in the mid- and principal piece of the sperm flagellum. Inhibition of SGLT-1 with the isotype-selective inhibitor phlorizin significantly reduced glucose uptake, glycolytic activity, and ATP production in noncapacitated and capacitated sperm from wild-type mice. Phlorizin also decreased total sperm motility, as well as other parameters of sperm movement. In contrast, inhibition of SGLT-1 had no significant effect on sperm hyperactivation, protein tyrosine phosphorylation, or acrosomal reaction. Importantly, phlorizin treatment impaired the fertilizing capacity of sperm. Altogether, these results demonstrate that mouse sperm express a functional SGLT transport system that is important for supporting sperm energy production, motility, and fertility.
Collapse
Affiliation(s)
- September Numata
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jeff P McDermott
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Gladis Sanchez
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Amrita Mitra
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Gustavo Blanco
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
49
|
Tőkés AM, Vári-Kakas S, Kulka J, Törőcsik B. Tumor Glucose and Fatty Acid Metabolism in the Context of Anthracycline and Taxane-Based (Neo)Adjuvant Chemotherapy in Breast Carcinomas. Front Oncol 2022; 12:850401. [PMID: 35433453 PMCID: PMC9008716 DOI: 10.3389/fonc.2022.850401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is characterized by considerable metabolic diversity. A relatively high percentage of patients diagnosed with breast carcinoma do not respond to standard-of-care treatment, and alteration in metabolic pathways nowadays is considered one of the major mechanisms responsible for therapeutic resistance. Consequently, there is an emerging need to understand how metabolism shapes therapy response, therapy resistance and not ultimately to analyze the metabolic changes occurring after different treatment regimens. The most commonly applied neoadjuvant chemotherapy regimens in breast cancer contain an anthracycline (doxorubicin or epirubicin) in combination or sequentially administered with taxanes (paclitaxel or docetaxel). Despite several efforts, drug resistance is still frequent in many types of breast cancer, decreasing patients’ survival. Understanding how tumor cells rapidly rewire their signaling pathways to persist after neoadjuvant cancer treatment have to be analyzed in detail and in a more complex system to enable scientists to design novel treatment strategies that target different aspects of tumor cells and tumor resistance. Tumor heterogeneity, the rapidly changing environmental context, differences in nutrient use among different cell types, the cooperative or competitive relationships between cells pose additional challenges in profound analyzes of metabolic changes in different breast carcinoma subtypes and treatment protocols. Delineating the contribution of metabolic pathways to tumor differentiation, progression, and resistance to different drugs is also the focus of research. The present review discusses the changes in glucose and fatty acid pathways associated with the most frequently applied chemotherapeutic drugs in breast cancer, as well the underlying molecular mechanisms and corresponding novel therapeutic strategies.
Collapse
Affiliation(s)
- Anna Mária Tőkés
- 2nd Department of Pathology, Semmelweis University Budapest, Budapest, Hungary
- *Correspondence: Anna Mária Tőkés,
| | - Stefan Vári-Kakas
- Department of Computers and Information Technology, Faculty of Electrical Engineering and Information Technology, University of Oradea, Oradea, Romania
| | - Janina Kulka
- 2nd Department of Pathology, Semmelweis University Budapest, Budapest, Hungary
| | - Beáta Törőcsik
- Department of Biochemistry, Semmelweis University Budapest, Budapest, Hungary
| |
Collapse
|
50
|
Hirai H, Liang X, Sun Y, Zhang Y, Zhang J, Chen YE, Mou H, Zhao Y, Xu J. The sodium/glucose cotransporters as potential therapeutic targets for CF lung diseases revealed by human lung organoid swelling assay. Mol Ther Methods Clin Dev 2022; 24:11-19. [PMID: 34977268 PMCID: PMC8666609 DOI: 10.1016/j.omtm.2021.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/19/2021] [Indexed: 12/02/2022]
Abstract
Cystic fibrosis (CF) is a lethal autosomal-recessive inherited disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. In the present work, we derived human proximal lung organoids (HLOs) from patient-derived pluripotent stem cells (PSCs) carrying disease-causing CFTR mutations. We evaluated the forskolin (Fsk)-stimulated swellings of these HLOs in the presence of CFTR modulators (VX-770 and/or VX-809) and demonstrated that HLOs respond to CFTR modulators in a mutation-dependent manner. Using this assay, we examined the effects of the sodium-dependent glucose cotransporter 1/2 (SGLT1/2) inhibitor drugs phlorizin and sotagliflozin on the basis of our findings that SGLT1 expression is upregulated in CF HLOs and airway epithelial cells compared with their wild-type counterparts. Unexpectedly, both drugs promoted dF/dF HLO swelling. These results reveal SGLTs, especially SGLT1, as potential therapeutic targets for treating CF lung diseases and demonstrate the use of PSC-derived HLOs as a preclinical tool in CF drug development.
Collapse
Affiliation(s)
- Hiroyuki Hirai
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
- Program for Lung and Vascular Biology, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Division of Critical Care, Department of Pediatrics, Northwestern University Feinberg School of Medicine, 303 E. Superior Street, Chicago, IL 60611, USA
| | - Xiubin Liang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Yifei Sun
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Yihan Zhang
- The Mucosal Immunology & Biology Research Center, Massachusetts General Hospital, 55 Fruit Street, Jackson 1402, Boston, MA 02114, USA
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Y. Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Hongmei Mou
- The Mucosal Immunology & Biology Research Center, Massachusetts General Hospital, 55 Fruit Street, Jackson 1402, Boston, MA 02114, USA
| | - Youyang Zhao
- Program for Lung and Vascular Biology, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Division of Critical Care, Department of Pediatrics, Northwestern University Feinberg School of Medicine, 303 E. Superior Street, Chicago, IL 60611, USA
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| |
Collapse
|