1
|
Tumurbaatar B, Ogawa S, Nakamura N, Yamada T, Minato T, Mori Y, Saiki T, Matsubara T, Naruse K, Suda H. The effect of hydrogen gas on the oxidative stress response in adipose tissue. Sci Rep 2024; 14:21425. [PMID: 39271809 PMCID: PMC11399153 DOI: 10.1038/s41598-024-72626-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024] Open
Abstract
Oxidative stress in adipose tissue may alter the secretion pattern of adipocytokines and potentially promote atherosclerosis. However, the therapeutic role of hydrogen in adipose tissue under oxidative stress remains unclear. In this study, subcutaneous adipose tissue (SCAT) was collected from the mid-thoracic wounds of 12 patients who underwent open-heart surgery with a mid-thoracic incision. The adipose tissue was then immersed in a culture medium dissolved with hydrogen, which was generated using a hydrogen-generating device. The weight of the adipose tissue was measured before and after hydrogenation, and the tissue was immunostained for nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and superoxide dismutase (SOD), which are markers of oxidative stress. The immunostaining results showed that HO-1 and Nrf2 expression levels were significantly decreased in the hydrogenated group, whereas SOD expression levels increased, but did not attain statistical significance. Image analysis of adipose tissue revealed that a reduction in adipocyte size. Furthermore, hydrogenated adipose tissue showed a trend toward increased gene expression levels of adiponectin and decreased gene expression levels of chemerin, an adipocytokine involved in adipogenesis. These results demonstrated the therapeutic potential of hydrogen gas for oxidative stress in adipose tissue and for reducing adipocyte size.
Collapse
Affiliation(s)
- Batkhishig Tumurbaatar
- Department of Cardiovascular Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467- 8601, Japan
| | - Shinji Ogawa
- Department of Cardiovascular Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467- 8601, Japan
- Department of Cardiovascular Surgery, Toyokawa City Hospital, Toyokawa, 442-8561, Japan
| | - Nobuhisa Nakamura
- Department of Cardiovascular Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467- 8601, Japan.
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, 464-8651, Japan.
| | - Toshiyuki Yamada
- Department of Cardiovascular Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467- 8601, Japan
- Department of Cardiovascular Surgery, Nagoya City University Midori Municipal Hospital, Nagoya, 458-0037, Japan
| | - Tomomi Minato
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, 464-8651, Japan
- Department of Clinical Laboratory, Aichi Gakuin University Dental Hospital, Nagoya, 464-8651, Japan
| | - Yoshiharu Mori
- Department of Cardiovascular Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467- 8601, Japan
- Department of Cardiovascular Surgery, Toyokawa City Hospital, Toyokawa, 442-8561, Japan
| | - Tomokazu Saiki
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, 464-8651, Japan
- Department of Pharmacy, Aichi Gakuin University Dental Hospital, Nagoya, 464-8651, Japan
| | - Tatsuaki Matsubara
- Faculty of Human Sciences, Aichi Mizuho College, Nagoya, 467-0867, Japan
| | - Keiko Naruse
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, 464-8651, Japan
| | - Hisao Suda
- Department of Cardiovascular Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467- 8601, Japan
| |
Collapse
|
2
|
Arauna D, Navarrete S, Albala C, Wehinger S, Pizarro-Mena R, Palomo I, Fuentes E. Understanding the Role of Oxidative Stress in Platelet Alterations and Thrombosis Risk among Frail Older Adults. Biomedicines 2024; 12:2004. [PMID: 39335518 PMCID: PMC11429027 DOI: 10.3390/biomedicines12092004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Frailty and cardiovascular diseases are increasingly prevalent in aging populations, sharing common pathological mechanisms, such as oxidative stress. The evidence shows that these factors predispose frail individuals to cardiovascular diseases but also increase the risk of thrombosis. Considering this background, this review aims to explore advances regarding the relationship between oxidative stress, platelet alterations, and cardiovascular diseases in frailty, examining the role of reactive oxygen species overproduction in platelet activation and thrombosis. The current evidence shows a bidirectional relationship between frailty and cardiovascular diseases, emphasizing how frailty not only predisposes individuals to cardiovascular diseases but also accelerates disease progression through oxidative damage and increased platelet function. Thus, oxidative stress is the central axis in the increase in platelet activation and secretion and the inadequate response to acetylsalicylic acid observed in frail people by mitochondrial mechanisms. Also, key biomarkers of oxidative stress, such as isoprostanes and derivate reactive oxygen metabolites, can be optimal predictors of cardiovascular risk and potential targets for therapeutic intervention. The potential of antioxidant therapies in mitigating oxidative stress and improving cardiovascular clinical outcomes such as platelet function is promising in frailty, although further research is necessary to establish the efficacy of these therapies. Understanding these mechanisms could prove essential in improving the health and quality of life of an aging population faced with the dual burden of frailty and cardiovascular diseases.
Collapse
Affiliation(s)
- Diego Arauna
- Thrombosis Research and Healthy Aging Center, Department of Clinical Biochemistry and Immunohematology, Interuniversity Center for Healthy Aging (CIES), Interuniversity Network of Healthy Aging in Latin America and Caribbean (RIES-LAC), Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile
| | - Simón Navarrete
- Thrombosis Research and Healthy Aging Center, Department of Clinical Biochemistry and Immunohematology, Interuniversity Center for Healthy Aging (CIES), Interuniversity Network of Healthy Aging in Latin America and Caribbean (RIES-LAC), Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile
| | - Cecilia Albala
- Unidad de Nutrición Pública, Instituto de Nutrición y Tecnología de los Alimentos, Interuniversity Center for Healthy Aging, Universidad de Chile, Santiago 7810000, Chile
| | - Sergio Wehinger
- Thrombosis Research and Healthy Aging Center, Department of Clinical Biochemistry and Immunohematology, Interuniversity Center for Healthy Aging (CIES), Interuniversity Network of Healthy Aging in Latin America and Caribbean (RIES-LAC), Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile
| | - Rafael Pizarro-Mena
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Sede Los Leones, Santiago 7500000, Chile
- Interuniversity Network of Healthy Aging in Latin America and Caribbean (RIES-LAC), Santiago 7810000, Chile
| | - Iván Palomo
- Thrombosis Research and Healthy Aging Center, Department of Clinical Biochemistry and Immunohematology, Interuniversity Center for Healthy Aging (CIES), Interuniversity Network of Healthy Aging in Latin America and Caribbean (RIES-LAC), Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile
| | - Eduardo Fuentes
- Thrombosis Research and Healthy Aging Center, Department of Clinical Biochemistry and Immunohematology, Interuniversity Center for Healthy Aging (CIES), Interuniversity Network of Healthy Aging in Latin America and Caribbean (RIES-LAC), Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile
| |
Collapse
|
3
|
Nabil MA, Rychlik L, Nicholson A, Cheung P, Olsovsky GD, Molden J, Tripuraneni A, Hajivandi SS, Banchs JE. Dietary interventions in the management of atrial fibrillation. Front Cardiovasc Med 2024; 11:1418059. [PMID: 39149585 PMCID: PMC11324562 DOI: 10.3389/fcvm.2024.1418059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
Atrial fibrillation (AF) represents the most common cardiac arrhythmia with significant morbidity and mortality implications. It is a common cause of hospital admissions, significantly impacts quality of life, increases morbidity and decreases life expectancy. Despite advancements in treatment options, prevalence of AF remains exceptionally high. AF is a challenging disease to manage, not just clinically but also financially. Evidence suggests lifestyle modification, including dietary changes, plays a significant role in the treatment of AF. This review aims to analyze the existing literature on the effects of dietary modifications on the incidence, progression, and outcomes of atrial fibrillation. It examines various dietary components, including alcohol, caffeine, omega-3 polyunsaturated fatty acids and minerals, and their impact on AF incidence, progression, and outcomes. The evidence surrounding the effects of dietary patterns, such as the Mediterranean and low carbohydrate diets, on AF is also evaluated. Overall, this review underscores the importance of dietary interventions as part of a comprehensive approach to AF management and highlights the need for further research in this emerging field.
Collapse
Affiliation(s)
- Muhammad Ahad Nabil
- Department of Medicine, Division of Cardiology, Baylor Scott & White Health, Round Rock, TX, United States
| | - Leanne Rychlik
- Department of Medicine, Division of Cardiology, Baylor Scott & White Health, Temple, TX, United States
| | - Audrey Nicholson
- Department of Medicine, Division of Cardiology, Baylor Scott & White Health, Round Rock, TX, United States
| | - Peter Cheung
- Department of Medicine, Division of Cardiology, Baylor Scott & White Health, Round Rock, TX, United States
| | - Gregory D Olsovsky
- Department of Medicine, Division of Cardiology, Baylor Scott & White Health, Temple, TX, United States
| | - Jaime Molden
- Department of Medicine, Division of Cardiology, Baylor Scott & White Health, Temple, TX, United States
| | - Ajay Tripuraneni
- Department of Medicine, Division of Cardiology, Baylor Scott & White Health, Temple, TX, United States
| | - Shayan-Salehi Hajivandi
- Department of Medicine, Division of Cardiology, Baylor Scott & White Health, Round Rock, TX, United States
| | - Javier E Banchs
- Department of Medicine, Division of Cardiology, Baylor Scott & White Health, Temple, TX, United States
| |
Collapse
|
4
|
Gauer JS, Ajanel A, Kaselampao LM, Candir I, MacCannell AD, Roberts LD, Campbell RA, Ariëns RA. Plant-derived compounds normalize platelet bioenergetics and function in hyperglycemia. Res Pract Thromb Haemost 2024; 8:102548. [PMID: 39309231 PMCID: PMC11416496 DOI: 10.1016/j.rpth.2024.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/16/2024] [Accepted: 08/08/2024] [Indexed: 09/25/2024] Open
Abstract
Background Polyphenols have been shown to decrease oxidative stress and modulate glycemic response. Nevertheless, their effect on platelet bioenergetics and clot structure in diabetes and hyperglycemia is unknown. Objectives To investigate the effect of polyphenols on human platelet bioenergetics and its subsequent effect on clot structure in normoglycemia vs acute hyperglycemia in vitro. Methods Four polyphenols (resveratrol, hesperetin, epigallocatechin gallate [EGCG], and quercetin) were selected for initial analysis. Healthy volunteers' isolated platelets/platelet-rich plasma were treated with 5 or 25 mM glucose to represent normoglycemia and acute hyperglycemia, respectively. Platelet-derived reactive oxygen species (ROS), citrate synthase activity (mitochondrial density), mitochondrial calcium flux, and mitochondrial respiration were performed following exposure to polyphenols (20 µM, 1 hour) to determine their effects on platelet bioenergetics. Procoagulant platelets (annexin V) and fibrin fiber density (Alexa Fluor-488 fibrinogen; Invitrogen) were analyzed by laser scanning confocal microscopy, while clot porosity was determined using platelet-rich plasma following exposure to polyphenols (20 µM, 20 minutes). Results Acute hyperglycemia increased ROS, mitochondrial calcium flux, maximal respiration, and procoagulant platelet number. Resveratrol, quercetin, and EGCG reduced platelet ROS in normoglycemic and acute hyperglycemic conditions. Mitochondrial density was decreased by quercetin and EGCG in normoglycemia. Resveratrol and EGCG reduced mitochondrial calcium flux in acute hyperglycemia. Resveratrol also decreased procoagulant platelet number and attenuated oxygen consumption rate in normoglycemia and acute hyperglycemia. No effect of hyperglycemia or polyphenols was observed on fibrin fiber density or clot pore size. Conclusion Our results suggest polyphenols attenuate increased platelet activity stemming from hyperglycemia and may benefit thrombosis-preventative strategies in patients with diabetes.
Collapse
Affiliation(s)
- Julia S. Gauer
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Abigail Ajanel
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Lutale M. Kaselampao
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Isabel Candir
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Amanda D.V. MacCannell
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Lee D. Roberts
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Robert A. Campbell
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
- Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA
- Department of Emergency, Washington University, Saint Louis, MO 63110, USA
| | - Robert A.S. Ariëns
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
5
|
Ramani A, Hazra T, Mudgil S, Mudgil D. Emerging potential of whey proteins in prevention of cancer. FOOD AND HUMANITY 2024; 2:100199. [DOI: 10.1016/j.foohum.2023.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Abdillah R, Maulina M, Rahmatika A, Suharti N, Armenia A. Roselle Calyx (Hibiscus sabdariffa L.) Ethyl Acetate Fraction Lowering Malondialdehyde and TNF-α and Reducing Hypercoagulability in Diabetic Model. Pharmacology 2024; 109:243-252. [PMID: 38583417 DOI: 10.1159/000538362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/12/2024] [Indexed: 04/09/2024]
Abstract
INTRODUCTION Traditionally and empirically, Hibiscus sabdariffa L. has been used in treating diabetes mellitus due to its antioxidant activity. This study aimed to investigate the effect of administering the ethyl acetate fraction of hibiscus calyxes (EAFHCs) on malondialdehyde (MDA) levels, tumor necrosis factor-α (TNF-α) levels, bleeding time, and platelet count in male white rats induced with streptozotocin-induced diabetes. METHOD Thirty-six Wistar Kyoto rats were induced with intraperitoneal streptozotocin at 55 mg/kg BW and stabilized for 5 days to obtain diabetic conditions. Diabetic animals were divided into four groups; the diabetic group was given vehicle, the glibenclamide group was given 0.45 mg/kg BW of glibenclamide, and two groups were administered the EAFHCs at doses of 100 mg/kg BW and 200 mg/kg BW for 5 days. Subsequently, the MDA, TNF-α, bleeding time and platelet count levels were examined on days 1, 3, and 5, respectively. All data were analyzed using two-way ANOVA followed by the Duncan Multiple Range Test (DMRT). RESULTS EAFHC significantly reduced MDA and TNF-α levels (p < 0.05). Additionally, this fraction appeared to shorten bleeding time and decrease platelet count in diabetic rats. Administration of the EAFHC for 5 days effectively lowered MDA and TNF-α levels significantly, decreased platelet counts and prolonged coagulation (p < 0.05) in diabetic rats. CONCLUSION This study demonstrates that EAFHC effectively reduces MDA and TNF-α levels and reduces the risk of hypercoagulability in diabetic model.
Collapse
Affiliation(s)
- Rahmad Abdillah
- Departement of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Andalas University, Padang, Indonesia,
| | - Milla Maulina
- Undergraduate Pharmacy Study Program Faculty of Pharmacy Andalas University, Padang, Indonesia
| | - Afni Rahmatika
- Undergraduate Pharmacy Study Program Faculty of Pharmacy Andalas University, Padang, Indonesia
| | - Netty Suharti
- Departement of Pharmaceutical Biology and Natural Product, Faculty of Pharmacy, Andalas University, Padang, Indonesia
| | - Armenia Armenia
- Departement of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Andalas University, Padang, Indonesia
| |
Collapse
|
7
|
Sirca TB, Mureșan ME, Pallag A, Marian E, Jurca T, Vicaș LG, Tunduc IP, Manole F, Ștefan L. The Role of Polyphenols in Modulating PON1 Activity Regarding Endothelial Dysfunction and Atherosclerosis. Int J Mol Sci 2024; 25:2962. [PMID: 38474211 DOI: 10.3390/ijms25052962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/24/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
The incidence and prevalence of cardiovascular diseases are still rising. The principal mechanism that drives them is atherosclerosis, an affection given by dyslipidemia and a pro-inflammatory state. Paraoxonase enzymes have a protective role due to their ability to contribute to antioxidant and anti-inflammatory pathways, especially paraoxonase 1 (PON1). PON1 binds with HDL (high-density lipoprotein), and high serum levels lead to a protective state against dyslipidemia, cardiovascular diseases, diabetes, stroke, nonalcoholic fatty liver disease, and many others. Modulating PON1 expression might be a treatment objective with significant results in limiting the prevalence of atherosclerosis. Lifestyle including diet and exercise can raise its levels, and some beneficial plants have been found to influence PON1 levels; therefore, more studies on herbal components are needed. Our purpose is to highlight the principal roles of Praoxonase 1, its implications in dyslipidemia, cardiovascular diseases, stroke, and other diseases, and to emphasize plants that can modulate PON1 expression, targeting the potential of some flavonoids that could be introduced as supplements in our diet and to validate the hypothesis that flavonoids have any effects regarding PON1 function.
Collapse
Affiliation(s)
- Teodora Bianca Sirca
- Doctoral School of Biomedical Sciences, University of Oradea, No. 1 University Street, 410087 Oradea, Romania
| | - Mariana Eugenia Mureșan
- Doctoral School of Biomedical Sciences, University of Oradea, No. 1 University Street, 410087 Oradea, Romania
| | - Annamaria Pallag
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania
| | - Tunde Jurca
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania
| | - Laura Grațiela Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania
| | - Ioana Paula Tunduc
- Department of Cardiology, Clinical County Emergency Hospital of Bihor, Gheorghe Doja Street 65-67, 410169 Oradea, Romania
| | - Felicia Manole
- Department of Surgery, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania
| | - Liana Ștefan
- Department of Surgery, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania
| |
Collapse
|
8
|
Guan IA, Liu JST, Sawyer RC, Li X, Jiao W, Jiramongkol Y, White MD, Hagimola L, Passam FH, Tran DP, Liu X, Schoenwaelder SM, Jackson SP, Payne RJ, Liu X. Integrating Phenotypic and Chemoproteomic Approaches to Identify Covalent Targets of Dietary Electrophiles in Platelets. ACS CENTRAL SCIENCE 2024; 10:344-357. [PMID: 38435523 PMCID: PMC10906253 DOI: 10.1021/acscentsci.3c00822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 03/05/2024]
Abstract
A large variety of dietary phytochemicals has been shown to improve thrombosis and stroke outcomes in preclinical studies. Many of these compounds feature electrophilic functionalities that potentially undergo covalent addition to the sulfhydryl side chain of cysteine residues within proteins. However, the impact of such covalent modifications on the platelet activity and function remains unclear. This study explores the irreversible engagement of 23 electrophilic phytochemicals with platelets, unveiling the unique antiplatelet selectivity of sulforaphane (SFN). SFN impairs platelet responses to adenosine diphosphate (ADP) and a thromboxane A2 receptor agonist while not affecting thrombin and collagen-related peptide activation. It also substantially reduces platelet thrombus formation under arterial flow conditions. Using an alkyne-integrated probe, protein disulfide isomerase A6 (PDIA6) was identified as a rapid kinetic responder to SFN. Mechanistic profiling studies revealed SFN's nuanced modulation of PDIA6 activity and substrate specificity. In an electrolytic injury model of thrombosis, SFN enhanced the thrombolytic activity of recombinant tissue plasminogen activator (rtPA) without increasing blood loss. Our results serve as a catalyst for further investigations into the preventive and therapeutic mechanisms of dietary antiplatelets, aiming to enhance the clot-busting power of rtPA, currently the only approved therapeutic for stroke recanalization that has significant limitations.
Collapse
Affiliation(s)
- Ivy A. Guan
- School
of Chemistry, Faculty of Science, The University
of Sydney, Sydney, New South Wales 2006, Australia
- The
Heart Research Institute, The University
of Sydney, Newtown, New South Wales 2042, Australia
| | - Joanna S. T. Liu
- The
Heart Research Institute, The University
of Sydney, Newtown, New South Wales 2042, Australia
- School
of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Renata C. Sawyer
- School
of Chemistry, Faculty of Science, The University
of Sydney, Sydney, New South Wales 2006, Australia
- The
Heart Research Institute, The University
of Sydney, Newtown, New South Wales 2042, Australia
| | - Xiang Li
- Department
of Medicine, Washington University in St.
Louis, St. Louis, Missouri 63110, United States
- McDonnell
Genome Institute, Washington University
in St. Louis, St. Louis, Missouri 63108, United States
| | - Wanting Jiao
- Ferrier Research
Institute, Victoria University of Wellington, Wellington 6140, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Yannasittha Jiramongkol
- School
of Chemistry, Faculty of Science, The University
of Sydney, Sydney, New South Wales 2006, Australia
- Charles
Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Mark D. White
- School
of Chemistry, Faculty of Science, The University
of Sydney, Sydney, New South Wales 2006, Australia
| | - Lejla Hagimola
- School
of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Freda H. Passam
- School
of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Denise P. Tran
- Sydney
Mass Spectrometry, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Xiaoming Liu
- School
of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Simone M. Schoenwaelder
- The
Heart Research Institute, The University
of Sydney, Newtown, New South Wales 2042, Australia
- School
of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Shaun P. Jackson
- The
Heart Research Institute, The University
of Sydney, Newtown, New South Wales 2042, Australia
- Charles
Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Richard J. Payne
- School
of Chemistry, Faculty of Science, The University
of Sydney, Sydney, New South Wales 2006, Australia
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Xuyu Liu
- School
of Chemistry, Faculty of Science, The University
of Sydney, Sydney, New South Wales 2006, Australia
- The
Heart Research Institute, The University
of Sydney, Newtown, New South Wales 2042, Australia
| |
Collapse
|
9
|
Purgatorio R, Boccarelli A, Pisani L, de Candia M, Catto M, Altomare CD. A Critical Appraisal of the Protective Activity of Polyphenolic Antioxidants against Iatrogenic Effects of Anticancer Chemotherapeutics. Antioxidants (Basel) 2024; 13:133. [PMID: 38275658 PMCID: PMC10812703 DOI: 10.3390/antiox13010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Polyphenolic compounds, encompassing flavonoids (e.g., quercetin, rutin, and cyanidin) and non-flavonoids (e.g., gallic acid, resveratrol, and curcumin), show several health-related beneficial effects, which include antioxidant, anti-inflammatory, hepatoprotective, antiviral, and anticarcinogenic properties, as well as the prevention of coronary heart diseases. Polyphenols have also been investigated for their counteraction against the adverse effects of common anticancer chemotherapeutics. This review evaluates the outcomes of clinical studies (and related preclinical data) over the last ten years, with a focus on the use of polyphenols in chemotherapy as auxiliary agents acting against oxidative stress toxicity induced by antitumor drugs. While further clinical studies are needed to establish adequate doses and optimal delivery systems, the improvement in polyphenols' metabolic stability and bioavailability, through the implementation of nanotechnologies that are currently being investigated, could improve therapeutic applications of their pharmaceutical or nutraceutical preparations in tumor chemotherapy.
Collapse
Affiliation(s)
- Rosa Purgatorio
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (R.P.); (L.P.); (M.d.C.); (M.C.)
| | - Angelina Boccarelli
- Department of Precision and Regenerative Medicine and Ionian Area, School of Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Leonardo Pisani
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (R.P.); (L.P.); (M.d.C.); (M.C.)
| | - Modesto de Candia
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (R.P.); (L.P.); (M.d.C.); (M.C.)
| | - Marco Catto
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (R.P.); (L.P.); (M.d.C.); (M.C.)
| | - Cosimo D. Altomare
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (R.P.); (L.P.); (M.d.C.); (M.C.)
| |
Collapse
|
10
|
Liang X, Wang Q, Wang H, Wang X, Chu P, Yang C, Li Y, Liao L, Zhu Z, Wang Y, He L. Grass carp superoxide dismutases exert antioxidant function and inhibit autophagy to promote grass carp reovirus (GCRV) replication. Int J Biol Macromol 2024; 256:128454. [PMID: 38016608 DOI: 10.1016/j.ijbiomac.2023.128454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023]
Abstract
Superoxide dismutases (SODs) are potent antioxidants crucial for neutralizing reactive oxygen species (ROS) and protecting organisms from oxidative damage. In this study, we successfully cloned and analyzed two SOD genes, CiSOD1 and CiSOD2, from grass carp (Ctenopharyngodon idellus). CiSOD1 consists of two CuZn signature motifs and two conserved cysteine residues, while CiSOD2 contains a single Mn signature motif. The expression of CiSODs was found to be ubiquitous across all examined tissues, with their expression levels significantly altered after stimulation by grass carp reovirus (GCRV) or pathogen-associated molecular patterns (PAMPs). CiSOD1 was observed to be uniformly distributed in the cytoplasm, whereas CiSOD2 localized in the mitochondria. Escherichia coli transformed with both CiSODs demonstrated enhanced host resistance to H2O2 and heavy metals. Additionally, purified recombinant CiSOD proteins effectively protected DNA against oxidative damage. Furthermore, overexpression of CiSODs in fish cells reduced intracellular ROS, inhibited autophagy, and then resulted in the promotion of GCRV replication. Knockdown of CiSODs showed opposite trends. Notably, these roles of CiSODs in autophagy and GCRV replication were reversed upon treatment with an autophagy inducer. In summary, our findings suggest that grass carp SODs play an important role in decreasing intracellular ROS levels, inhibiting autophagy, and subsequently promoting GCRV replication.
Collapse
Affiliation(s)
- Xinyu Liang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Wang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanyue Wang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuyang Wang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Chu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Cheng Yang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yongming Li
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lanjie Liao
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zuoyan Zhu
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yaping Wang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Libo He
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Sibley D, Chen M, West MA, Matthew AG, Santa Mina D, Randall I. Potential mechanisms of multimodal prehabilitation effects on surgical complications: a narrative review. Appl Physiol Nutr Metab 2023; 48:639-656. [PMID: 37224570 DOI: 10.1139/apnm-2022-0272] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Continuous advances in prehabilitation research over the past several decades have clarified its role in improving preoperative risk factors, yet the evidence demonstrating reduced surgical complications remains uncertain. Describing the potential mechanisms underlying prehabilitation and surgical complications represents an important opportunity to establish biological plausibility, develop targeted therapies, generate hypotheses for future research, and contribute to the rationale for implementation into the standard of care. In this narrative review, we discuss and synthesize the current evidence base for the biological plausibility of multimodal prehabilitation to reduce surgical complications. The goal of this review is to improve prehabilitation interventions and measurement by outlining biologically plausible mechanisms of benefit and generating hypotheses for future research. This is accomplished by synthesizing the available evidence for the mechanistic benefit of exercise, nutrition, and psychological interventions for reducing the incidence and severity of surgical complications reported by the American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP). This review was conducted and reported in accordance with a quality assessment scale for narrative reviews. Findings indicate that prehabilitation has biological plausibility to reduce all complications outlined by NSQIP. Mechanisms for prehabilitation to reduce surgical complications include anti-inflammation, enhanced innate immunity, and attenuation of sympathovagal imbalance. Mechanisms vary depending on the intervention protocol and baseline characteristics of the sample. This review highlights the need for more research in this space while proposing potential mechanisms to be included in future investigations.
Collapse
Affiliation(s)
- Daniel Sibley
- Faculty of Kinesiology, University of Toronto, Toronto, ON, Canada
- Department of Anesthesia and Pain Management, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Maggie Chen
- Faculty of Kinesiology, University of Toronto, Toronto, ON, Canada
- Department of Anesthesia and Pain Management, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Malcolm A West
- Faculty of Medicine, Cancer Sciences, University of Southampton, UK
- NIHR Southampton Biomedical Research Centre, Perioperative and Critical Care, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Andrew G Matthew
- Department of Surgical Oncology, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Daniel Santa Mina
- Faculty of Kinesiology, University of Toronto, Toronto, ON, Canada
- Department of Anesthesia and Pain Management, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Ian Randall
- Department of Anesthesia and Pain Management, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Pasdaran A, Zare M, Hamedi A, Hamedi A. A Review of the Chemistry and Biological Activities of Natural Colorants, Dyes, and Pigments: Challenges, and Opportunities for Food, Cosmetics, and Pharmaceutical Application. Chem Biodivers 2023; 20:e202300561. [PMID: 37471105 DOI: 10.1002/cbdv.202300561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/21/2023]
Abstract
Natural pigments are important sources for the screening of bioactive lead compounds. This article reviewed the chemistry and therapeutic potentials of over 570 colored molecules from plants, fungi, bacteria, insects, algae, and marine sources. Moreover, related biological activities, advanced extraction, and identification approaches were reviewed. A variety of biological activities, including cytotoxicity against cancer cells, antioxidant, anti-inflammatory, wound healing, anti-microbial, antiviral, and anti-protozoal activities, have been reported for different pigments. Considering their structural backbone, they were classified as naphthoquinones, carotenoids, flavonoids, xanthones, anthocyanins, benzotropolones, alkaloids, terpenoids, isoprenoids, and non-isoprenoids. Alkaloid pigments were mostly isolated from bacteria and marine sources, while flavonoids were mostly found in plants and mushrooms. Colored quinones and xanthones were mostly extracted from plants and fungi, while colored polyketides and terpenoids are often found in marine sources and fungi. Carotenoids are mostly distributed among bacteria, followed by fungi and plants. The pigments isolated from insects have different structures, but among them, carotenoids and quinone/xanthone are the most important. Considering good manufacturing practices, the current permitted natural colorants are: Carotenoids (canthaxanthin, β-carotene, β-apo-8'-carotenal, annatto, astaxanthin) and their sources, lycopene, anthocyanins, betanin, chlorophyllins, spirulina extract, carmine and cochineal extract, henna, riboflavin, pyrogallol, logwood extract, guaiazulene, turmeric, and soy leghemoglobin.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Zare
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Student research committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azar Hamedi
- School of Agriculture, Shiraz University, Shiraz, Iran
| | - Azadeh Hamedi
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Babacan EY, Zheleva-Dimitrova D, Gevrenova R, Bouyahya A, Balos MM, Cakilcioglu U, Sinan KI, Zengin G. Orbitrap Mass Spectrometry-Based Profiling of Secondary Metabolites in Two Unexplored Eminium Species and Bioactivity Potential. PLANTS (BASEL, SWITZERLAND) 2023; 12:2252. [PMID: 37375878 DOI: 10.3390/plants12122252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023]
Abstract
The study aimed at the metabolite profiling and evaluation of antioxidant and enzyme inhibitory properties of methanol extracts from flowers, leaves, and tubers of unexplored Eminium intortum (Banks & Sol.) Kuntze and E. spiculatum (Blume) Schott (Araceae). A total of 83 metabolites, including 19 phenolic acids, 46 flavonoids, 11 amino, and 7 fatty acids were identified by UHPLC-HRMS in the studied extracts for the first time. E. intortum flower and leaf extracts had the highest total phenolic and flavonoid contents (50.82 ± 0.71 mg GAE/g and 65.08 ± 0.38 RE/g, respectively). Significant radical scavenging activity (32.20 ± 1.26 and 54.34 ± 0.53 mg TE/g for DPPH and ABTS) and reducing power (88.27 ± 1.49 and 33.13 ± 0.68 mg TE/g for CUPRAC and FRAP) were observed in leaf extracts. E. intortum flowers showed the maximum anticholinesterase activity (2.72 ± 0.03 mg GALAE/g). E. spiculatum leaves and tubers exhibited the highest inhibition towards α-glucosidase (0.99 ± 0.02 ACAE/g) and tirosinase (50.73 ± 2.29 mg KAE/g), respectively. A multivariate analysis revealed that O-hydroxycinnamoylglycosyl-C-flavonoid glycosides mostly accounted for the discrimination of both species. Thus, E. intortum and E. spiculatum can be considered as potential candidates for designing functional ingredients in the pharmaceutical and nutraceutical industries.
Collapse
Affiliation(s)
- Ebru Yuce Babacan
- Pertek Sakine Genç Vocational School, Munzur University, Pertek, Tunceli 62500, Turkey
| | | | - Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Mehmet Maruf Balos
- Şanlıurfa Provincial Directorate of National Education, Karaköprü, Şanlıurfa 63320, Turkey
| | - Ugur Cakilcioglu
- Pertek Sakine Genç Vocational School, Munzur University, Pertek, Tunceli 62500, Turkey
| | - Kouadio Ibrahime Sinan
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, University Campus, Konya 42130, Turkey
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, University Campus, Konya 42130, Turkey
| |
Collapse
|
14
|
Zhao X, Yin Y, Fang W, Yang Z. What happens when fruit married with beer? Int J Gastron Food Sci 2023. [DOI: 10.1016/j.ijgfs.2023.100716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
15
|
Parmenter BH, Dalgaard F, Murray K, Marquis-Gravel G, Cassidy A, Bondonno CP, Lewis JR, Croft KD, Kyrø C, Gislason G, Scalbert A, Tjønneland A, Overvad K, Hodgson JM, Bondonno NP. Intake of dietary flavonoids and incidence of ischemic heart disease in the Danish Diet, Cancer, and Health cohort. Eur J Clin Nutr 2023; 77:270-277. [PMID: 36284213 PMCID: PMC9908533 DOI: 10.1038/s41430-022-01226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND/OBJECTIVES Few studies have investigated the association between dietary flavonoid intake, including all major subclasses, and the long-term risk of ischemic heart disease (IHD). We examined whether dietary flavonoid intake associated with IHD incidence, assessing the possible modifying role of sex and smoking, in participants from the Danish Diet, Cancer, and Health study. SUBJECTS/METHODS In a cohort study design, 54,496 adults (46.8% male), aged 50-64 years, without a history of IHD, were followed for up to 23 years. Habitual dietary flavonoid intake was estimated from food frequency questionnaires using Phenol-Explorer. Incident cases of IHD were identified within Danish nationwide health registries. Restricted cubic splines in Cox proportional hazards models were used to examine associations between flavonoid intake and IHD risk. RESULTS During follow-up, 5560 IHD events were recorded. No overall association was seen between total flavonoid intake, nor any subclass, and IHD, following adjustment for demographics, lifestyle, and dietary confounders. Stratified by sex and smoking status, higher intakes of specific subclasses associated with lower IHD risk among ever-smokers [Q5 vs. Q1 flavonols HR (95% CI): 0.90 (0.82, 0.99); flavanol oligo+polymers: 0.88 (0.80, 0.97)], but not among never-smokers, nor either sex specifically. CONCLUSIONS While we did not find clear evidence that higher habitual dietary flavonoid intake was associated with lower IHD risk, these results do not exclude the possibility that certain subclasses may have a protective role in prevention of IHD among population sub-groups; this was evident among smokers, who are at a higher risk of atherosclerosis.
Collapse
Affiliation(s)
- Benjamin H Parmenter
- School of Biomedical Sciences, University of Western Australia, Royal Perth Hospital, Perth, WA, Australia
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Frederik Dalgaard
- Department of Cardiology, Herlev & Gentofte University Hospital, Copenhagen, Denmark
| | - Kevin Murray
- School of Population and Global Health, University of Western Australia, Perth, WA, Australia
| | | | - Aedín Cassidy
- Institute for Global Food Security, Queen's University, Belfast, Northern Ireland
| | - Catherine P Bondonno
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
- Medical School, University of Western Australia, Perth, WA, Australia
| | - Joshua R Lewis
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
- Medical School, University of Western Australia, Perth, WA, Australia
- Centre for Kidney Research, School of Public Health, The University of Sydney, Sydney, NSW, Australia
| | - Kevin D Croft
- School of Biomedical Sciences, University of Western Australia, Royal Perth Hospital, Perth, WA, Australia
| | - Cecilie Kyrø
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Gunnar Gislason
- Department of Cardiology, Herlev & Gentofte University Hospital, Copenhagen, Denmark
- The National Institute of Public Health, University of Southern Denmark, Odense, Denmark
- The Danish Heart Foundation, Copenhagen, Denmark
| | | | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kim Overvad
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Jonathan M Hodgson
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
- Medical School, University of Western Australia, Perth, WA, Australia
| | - Nicola P Bondonno
- School of Biomedical Sciences, University of Western Australia, Royal Perth Hospital, Perth, WA, Australia.
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.
- Danish Cancer Society Research Center, Copenhagen, Denmark.
| |
Collapse
|
16
|
Kerch G. Severe COVID-19-A Review of Suggested Mechanisms Based on the Role of Extracellular Matrix Stiffness. Int J Mol Sci 2023; 24:1187. [PMID: 36674700 PMCID: PMC9861790 DOI: 10.3390/ijms24021187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The severity of COVID-19 commonly depends on age-related tissue stiffness. The aim was to review publications that explain the effect of microenvironmental extracellular matrix stiffness on cellular processes. Platelets and endothelial cells are mechanosensitive. Increased tissue stiffness can trigger cytokine storm with the upregulated expression of pro-inflammatory cytokines, such as tumor necrosis factor alpha and interleukin IL-6, and tissue integrity disruption, leading to enhanced virus entry and disease severity. Increased tissue stiffness in critically ill COVID-19 patients triggers platelet activation and initiates plague formation and thrombosis development. Cholesterol content in cell membrane increases with aging and further enhances tissue stiffness. Membrane cholesterol depletion decreases virus entry to host cells. Membrane cholesterol lowering drugs, such as statins or novel chitosan derivatives, have to be further developed for application in COVID-19 treatment. Statins are also known to decrease arterial stiffness mitigating cardiovascular diseases. Sulfated chitosan derivatives can be further developed for potential use in future as anticoagulants in prevention of severe COVID-19. Anti-TNF-α therapies as well as destiffening therapies have been suggested to combat severe COVID-19. The inhibition of the nuclear factor kappa-light-chain-enhancer of activated B cells pathway must be considered as a therapeutic target in the treatment of severe COVID-19 patients. The activation of mechanosensitive platelets by higher matrix stiffness increases their adhesion and the risk of thrombus formation, thus enhancing the severity of COVID-19.
Collapse
Affiliation(s)
- Garry Kerch
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, 1048 Riga, Latvia
| |
Collapse
|
17
|
Donkin R, Fung YL, Singh I. Fibrinogen, Coagulation, and Ageing. Subcell Biochem 2023; 102:313-342. [PMID: 36600138 DOI: 10.1007/978-3-031-21410-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The World Health Organization estimates that the world's population over 60 years of age will nearly double in the next 30 years. This change imposes increasing demands on health and social services with increased disease burden in older people, hereafter defined as people aged 60 years or more. An older population will have a greater incidence of cardiovascular disease partly due to higher levels of blood fibrinogen, increased levels of some coagulation factors, and increased platelet activity. These factors lead to a hypercoagulable state which can alter haemostasis, causing an imbalance in appropriate coagulation, which plays a crucial role in the development of cardiovascular diseases. These changes in haemostasis are not only affected by age but also by gender and the effects of hormones, or lack thereof in menopause for older females, ethnicity, other comorbidities, medication interactions, and overall health as we age. Another confounding factor is how we measure fibrinogen and coagulation through laboratory and point-of-care testing and how our decision-making on disease and treatment (including anticoagulation) is managed. It is known throughout life that in normal healthy individuals the levels of fibrinogen and coagulation factors change, however, reference intervals to guide diagnosis and management are based on only two life stages, paediatric, and adult ranges. There are no specific diagnostic guidelines based on reference intervals for an older population. How ageing relates to alterations in haemostasis and the impact of the disease will be discussed in this chapter. Along with the effect of anticoagulation, laboratory testing of fibrinogen and coagulation, future directions, and implications will be presented.
Collapse
Affiliation(s)
- Rebecca Donkin
- The University of the Sunshine Coast, School of Health and Behavioural Sciences, Sippy Downs, QLD, Australia. .,Griffith University, School of Medicine and Dentistry, Gold Coast, QLD, Australia.
| | - Yoke Lin Fung
- The University of the Sunshine Coast, School of Health and Behavioural Sciences, Sippy Downs, QLD, Australia
| | - Indu Singh
- Griffith University, School of Pharmacy and Medical Science, Gold Coast, QLD, Australia
| |
Collapse
|
18
|
Tong J, Zeng Y, Xie J, Xiao K, Li M, Cong L. Association between flavonoid and subclasses intake and metabolic associated fatty liver disease in U.S. adults: Results from National Health and Nutrition Examination Survey 2017-2018. Front Nutr 2022; 9:1074494. [PMID: 36532560 PMCID: PMC9751205 DOI: 10.3389/fnut.2022.1074494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/14/2022] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Metabolic associated fatty liver disease (MAFLD) formerly known as non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. Flavonoid is considered a promising candidate for metabolic disease prevention although few studies have explored the relationship between flavonoid intake and MAFLD. PURPOSE To assess the relationship between flavonoid intake and MAFLD prevalence in the U.S. adult population. MATERIALS AND METHODS The data of this cross-sectional study was obtained from National Health and Nutrition Examination Survey (NHANES) and Food and Nutrient Database for Dietary Studies (FNDDS) 2017-2018. Flavonoid and subclasses intake was assessed by two 24h recalls. MAFLD was diagnosed according to the consensus definitions. Multivariate logistic regression model was performed to examine the association between flavonoid intake and MAFLD with adjustments for confounders. RESULTS A total of 4,431 participants were included in this cross-sectional analysis. MAFLD had a weighted prevalence of 41.93% and was not associated with total flavonoid intake. A higher anthocyanin and isoflavone intake, on the other hand, was associated with a lower prevalence of MAFLD. The protective effect of higher anthocyanin intake was significant among male, Non-Hispanic White, and Non-Hispanic Asia participants. Higher isoflavone intake was associated with a lower risk of MAFLD in participants of younger (age < 50), Non-Hispanic Black, Non-Hispanic Asia, and higher HEI-2015 scores compared with the lowest quartile of isoflavone intake. Stratified analysis showed that compared with the lowest quartile of anthocyanin intake, the effect of anthocyanin intake on MAFLD varied by racial groups (P interaction = 0.02). A positive correlation existed between HDL and anthocyanidin intake (P = 0.03), whereas a negative correlation existed between FPG and isoflavone intake (P = 0.02). CONCLUSION MAFLD was adversely linked with flavonoid subclasses, anthocyanin and isoflavone. This modifiable lifestyle provides a potential opportunity to prevent MAFLD. These findings promote future research into the links and mechanisms between anthocyanin and isoflavone intake and MAFLD.
Collapse
Affiliation(s)
- Junlu Tong
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Yingjuan Zeng
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jianhui Xie
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Kecen Xiao
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Man Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Li Cong
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| |
Collapse
|
19
|
Saryono, Sarmoko, Nani D, Proverawati A, Taufik A. Black solo garlic protects hepatic and renal cell function in streptozotocin-induced rats. Front Nutr 2022; 9:962993. [PMID: 36523339 PMCID: PMC9745152 DOI: 10.3389/fnut.2022.962993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/26/2022] [Indexed: 11/03/2023] Open
Abstract
Black solo garlic (BSG) has been evaluated for its ability to reduce free radicals; however, the safety test on kidney and liver function has not been evaluated. This study aimed to examine the effect of brewed BSG on the liver (total protein, albumin, glutathione S-transferase/GST) and kidney (urea, creatinine, and β 2 -microglobulin) function in streptozotocin (STZ)-induced white rats. The experimental animals were randomly divided into six groups, each including five animals. The groups consist of the normal control group, the STZ-induced control group, the BSG treatment group with doses 6.5, 13.5, and 26 g/kg body weight, and metformin positive control. After STZ induction, the serum levels of GST, total protein, and albumin are decreased. After treatment with BSG, the serum level of GST, total protein, and albumin increased significantly (p < 0.05). The levels of urea, creatinine, and β2-microglobulin increased after STZ induction. After treatment of BSG, levels of urea, creatinine, and β2-microglobulin are decreased significantly (p < 0.05). These results suggest that BSG use is safe for the liver and kidneys of STZ-induced rats.
Collapse
Affiliation(s)
- Saryono
- Department of Nursing, Faculty of Health Sciences, Jenderal Soedirman University, Purwokerto, Indonesia
| | - Sarmoko
- Department of Pharmacy, Faculty of Health Sciences, Jenderal Soedirman University, Purwokerto, Indonesia
- Department of Pharmacy, Sumatera Institute of Technology, South Lampung, Indonesia
| | - Desiyani Nani
- Department of Nursing, Faculty of Health Sciences, Jenderal Soedirman University, Purwokerto, Indonesia
| | - Atikah Proverawati
- Department of Nutrition, Faculty of Health Sciences, Jenderal Soedirman University, Purwokerto, Indonesia
| | - Agis Taufik
- Department of Nursing, Faculty of Health Sciences, Jenderal Soedirman University, Purwokerto, Indonesia
| |
Collapse
|
20
|
Ormazabal P, Rodriguez L, Paredes A, Morales G, Fuentes E, Palomo I. Antiplatelet activity of Lampaya medicinalis Phil. in human platelets. NFS JOURNAL 2022. [DOI: 10.1016/j.nfs.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Glycaemic Control in Patients Undergoing Percutaneous Coronary Intervention: What Is the Role for the Novel Antidiabetic Agents? A Comprehensive Review of Basic Science and Clinical Data. Int J Mol Sci 2022; 23:ijms23137261. [PMID: 35806265 PMCID: PMC9266811 DOI: 10.3390/ijms23137261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
Coronary artery disease (CAD) remains one of the most important causes of morbidity and mortality worldwide, and revascularization through percutaneous coronary interventions (PCI) significantly improves survival. In this setting, poor glycaemic control, regardless of diabetes, has been associated with increased incidence of peri-procedural and long-term complications and worse prognosis. Novel antidiabetic agents have represented a paradigm shift in managing patients with diabetes and cardiovascular diseases. However, limited data are reported so far in patients undergoing coronary stenting. This review intends to provide an overview of the biological mechanisms underlying hyperglycaemia-induced vascular damage and the contrasting actions of new antidiabetic drugs. We summarize existing evidence on the effects of these drugs in the setting of PCI, addressing pre-clinical and clinical studies and drug-drug interactions with antiplatelet agents, thus highlighting new opportunities for optimal long-term management of these patients.
Collapse
|
22
|
Antidiabetic and Hypolipidemic Efficiency of Lactobacillus plantarum Fermented Oat (Avena sativa) Extract in Streptozotocin-Induced Diabetes in Rats. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060267] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antidiabetic properties of fermented foods have been previously demonstrated. This study aimed to examine the antidiabetic and hypolipidemic potential activities of L. plantarum fermented oat extract in Streptozotocin-induced diabetic rats. Firstly, inoculating 1% of L. plantarum starter culture in 10% whole oat flour in aqueous media resulted in 8.36 log CFU mL−1 and pH 4.60 after 72 h of fermentation at 37 °C. With time progression of oat fermentation, total phenolic content (TPC), antioxidant activity (AOA), and γ-aminobutyric acid (GABA) contents were significantly increased up to 72 h. On the contrary, a significant reduction in β-glucan content was observed only after 72 h of fermentation. Secondly, separated aqueous extracts, i.e., unfermented oat extract (UFOE) and L. plantarum fermented oat extract (LFOE) were examined in vivo in a rat model, which consisted of five groups. Group 1 (negative group, NR); GROUP 2 (positive group, STZ), intraperitoneally injected with a single dose of 45 mg kg−1 BW of Streptozotocin and administered 7 mL of distilled water orally per day; Group 3 (STZ+MET), diabetic rats orally administered 50 mg of metformin kg−1 BW daily; Group 4 (STZ+UFOE), diabetic rats orally administered 7 mL of UFOE daily; and Group 5 (STZ+UFOE), diabetic rats orally administered 7 mL of LFOE daily for 6 weeks. Monitoring random blood glucose (RBG) and fasting blood glucose (FBG) showed that both the UFOE and the LFOE alleviated hyperglycemia in the STZ-induced diabetic rats. The extracts were significantly efficient in improving serum lipid profiles as compared with the positive group. Moreover, liver and kidneys’ functions were improved, and both extracts promoted hepatoprotective and nephroprotective characteristics. Furthermore, the administration of the UFOE and the LFOE efficiently attenuated GSH, CAT, and SOD enzymes and decreased MDA levels as compared with the positive group. In conclusion, data indicate the potential of UFOE and LFOE in future strategies as functional supplements against diabetes and diabetes-related complications.
Collapse
|
23
|
Lazzari A, Barbosa HD, Machado Filho ER, Maldonado da Silva LH, Anjo FA, Sato F, Lourenzi Franco Rosa CI, Matumoto Pintro PT. Effect on Bioactive Compounds and Antioxidant Activity in the Brewing Process for Beers Using Rubim and Mastruz as Hop Replacements. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2022. [DOI: 10.1080/03610470.2022.2053638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Anderson Lazzari
- Programa de Pós-Graduação em Ciências de Alimentos, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Heloisa Dias Barbosa
- Programa de Pós-Graduação em Ciências de Alimentos, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | | | | | - Fernando Antônio Anjo
- Programa de Pós-Graduação em Ciências de Alimentos, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Francielle Sato
- Departamento de Física, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | | | | |
Collapse
|
24
|
Clinical Significance of PAC-1, CD62P, and Platelet-Leukocyte Aggregates in Acute Ischemic Stroke. Bull Exp Biol Med 2022; 172:543-548. [DOI: 10.1007/s10517-022-05429-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 10/18/2022]
|
25
|
Shafreen RMB, Lakshmi SA, Pandian SK, Kim YM, Deutsch J, Katrich E, Gorinstein S. In Vitro and In Silico Interaction Studies with Red Wine Polyphenols against Different Proteins from Human Serum. Molecules 2021; 26:molecules26216686. [PMID: 34771095 PMCID: PMC8587719 DOI: 10.3390/molecules26216686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/23/2022] Open
Abstract
Previous reports have shown that consumption of wine has several health benefits; however, there are different types of wine. In the present study, red wines were investigated for their compositions of active ingredients. The interaction of each component in terms of its binding mode with different serum proteins was unraveled, and the components were implicated as drug candidates in clinical settings. Overall, the study indicates that red wines have a composition of flavonoids, non-flavonoids, and phenolic acids that can interact with the key regions of proteins to enhance their biological activity. Among them, rutin, resveratrol, and tannic acid have shown good binding affinity and possess beneficial properties that can enhance their role in clinical applications.
Collapse
Affiliation(s)
- Raja Mohamed Beema Shafreen
- Department of Biotechnology, Dr. Umayal Ramanathan College for Women, Algappapuram, Karaikudi 630003, India;
| | - Selvaraj Alagu Lakshmi
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630003, India; (S.A.L.); (S.K.P.)
| | - Shunmugiah Karutha Pandian
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630003, India; (S.A.L.); (S.K.P.)
| | - Young-Mo Kim
- Industry Academic Collaboration Foundation, Kwangju Women’s University, Gwangju 62396, Korea;
| | - Joseph Deutsch
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (J.D.); (E.K.)
| | - Elena Katrich
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (J.D.); (E.K.)
| | - Shela Gorinstein
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (J.D.); (E.K.)
- Correspondence: ; Tel.: +972-2-6758690
| |
Collapse
|
26
|
Choi Y, Larson N, Steffen LM, Schreiner PJ, Gallaher DD, Duprez DA, Shikany JM, Rana JS, Jacobs DR. Plant-Centered Diet and Risk of Incident Cardiovascular Disease During Young to Middle Adulthood. J Am Heart Assoc 2021; 10:e020718. [PMID: 34344159 PMCID: PMC8475033 DOI: 10.1161/jaha.120.020718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background The association between diets that focus on plant foods and restrict animal products and cardiovascular disease (CVD) is inconclusive. We investigated whether cumulative intake of a plant‐centered diet and shifting toward such a diet are associated with incident CVD. Methods and Results Participants were 4946 adults in the CARDIA (Coronary Artery Risk Development in Young Adults) prospective study. They were initially 18 to 30 years old and free of CVD (1985–1986, exam year [year 0]) and followed until 2018. Diet was assessed by an interviewer‐administered, validated diet history. Plant‐centered diet quality was assessed using the A Priori Diet Quality Score (APDQS), in which higher scores indicate higher consumption of nutritionally rich plant foods and limited consumption of high‐fat meat products and less healthy plant foods. Proportional hazards models estimated hazard ratios of CVD associated with both time‐varying average APDQS and a 13‐year change in APDQS score (difference between the year 7 and year 20 assessments). During the 32‐year follow‐up, 289 incident CVD cases were identified. Both long‐term consumption and a change toward such a diet were associated with a lower risk of CVD. Multivariable‐adjusted hazard ratio was 0.48 (95% CI, 0.28–0.81) when comparing the highest quintile of the time‐varying average ADPQS with lowest quintiles. The 13‐year change in APDQS was associated with a lower subsequent risk of CVD, with a hazard ratio of 0.39 (95% CI, 0.19–0.81) comparing the extreme quintiles. Similarly, strong inverse associations were found for coronary heart disease and hypertension‐related CVD with either the time‐varying average or change APDQS. Conclusions Consumption of a plant‐centered, high‐quality diet starting in young adulthood is associated with a lower risk of CVD by middle age.
Collapse
Affiliation(s)
- Yuni Choi
- Department of Food Science and Nutrition University of Minnesota-Twin Cities St Paul MN
| | - Nicole Larson
- Division of Epidemiology and Community Health University of Minnesota-Twin Cities Minneapolis MN
| | - Lyn M Steffen
- Division of Epidemiology and Community Health University of Minnesota-Twin Cities Minneapolis MN
| | - Pamela J Schreiner
- Division of Epidemiology and Community Health University of Minnesota-Twin Cities Minneapolis MN
| | - Daniel D Gallaher
- Department of Food Science and Nutrition University of Minnesota-Twin Cities St Paul MN
| | - Daniel A Duprez
- Cardiovascular Division Department of Medicine University of Minnesota-Twin Cities Minneapolis MN
| | - James M Shikany
- Division of Preventive Medicine School of Medicine University of Alabama at Birmingham Birmingham AL
| | - Jamal S Rana
- Divisions of Cardiology and Research Kaiser Permanente Northern California Oakland CA.,Department of Medicine University of California San Francisco CA
| | - David R Jacobs
- Division of Epidemiology and Community Health University of Minnesota-Twin Cities Minneapolis MN
| |
Collapse
|
27
|
Nandini C, Madhunapantula SV, Bovilla VR, Ali M, Mruthunjaya K, Santhepete MN, Jayashree K. Platelet enhancement by Carica papaya L. leaf fractions in cyclophosphamide induced thrombocytopenic rats is due to elevated expression of CD110 receptor on megakaryocytes. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:114074. [PMID: 33831466 DOI: 10.1016/j.jep.2021.114074] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/23/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Carica papaya leaf juice/decoction has been in use in folk medicine in Srilanka, Malaysia and in few parts of India for enhancing the platelet counts in dengue. In Siddha medicine, a traditional form of medicine in India, papaya leaf juice has been used for increasing the platelet counts. Papaya leaf has been reported to enhance blood volume in ancient Ayurveda books in India. Carica papaya leaf is well known for its platelet enhancement activity. Although many preclinical and clinical studies have demonstrated the ability of papaya leaf juice for platelet enhancement, but the underlying mechanisms are still unclear. AIM OF THE STUDY The study is aimed at identifying the key ingredients of papaya leaf extract and elucidate the mechanism (s) of action of the identified potent component in mitigating thrombocytopenia (Thp). MATERIALS AND METHODS C. papaya leaf juice was subjected for sequential fractionation to identify the anti-thrombocytopenic phytochemicals. In vivo, stable thrombocytopenia was induced by subcutaneous injection of 70 mg/kg cyclophosphamide (Cyp). After induction, rats were treated with 200 and 400 mg/kg body weight papaya leaf juice and with identified fractions for 14 days. Serum thrombopoietin level was estimated using ELISA. CD110/cMpl, a receptor for thrombopoietin on platelets was measured by western blotting. RESULTS Administration of cyclophosphamide for 6 days induced thrombocytopenia (210.4 ± 14.2 × 103 cells/μL) in rats. Treating thrombocytopenic rats with papaya leaf juice and butanol fraction for 14 days significantly increased the platelet count to 1073.50 ± 29.6 and 1189.80 ± 36.5 × 103 cells/μL, respectively. C.papaya extracts normalized the elevated bleeding and clotting time and decreased oxidative markers by increasing endogenous antioxidants. A marginal increase in the serum thrombopoietin (TPO) level was observed in Cyp treated group compared to normal and treatment groups. Low expression of CD110/cMpl receptor found in Cyp treated group was enhanced by C. papaya extracts (CPJ) and CPJ-BT. Furthermore, examination of the morphology of bone marrow megakaryocytes, histopathology of liver and kidneys revealed the ability of CPJ and fractions in mitigating Cyp-induced thrombocytopenia in rats. CONCLUSION C. papaya leaf juice enhances the platelet count in chemotherapy-induced thrombocytopenia by increasing the expression of CD110 receptor on the megakaryocytes. Hence, activating CD110 receptor might be a viable strategy to increase the platelet production in individuals suffering from thrombocytopenia.
Collapse
Affiliation(s)
- C Nandini
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - SubbaRao V Madhunapantula
- Centre of Excellence in Molecular Biology and Regenerative Medicine (CEMR), JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India.
| | - Venugopal R Bovilla
- Centre of Excellence in Molecular Biology and Regenerative Medicine (CEMR), JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Mohammad Ali
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - K Mruthunjaya
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Manjula N Santhepete
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India.
| | - K Jayashree
- Department of Pathology, JSS Medical College and Hospital, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India.
| |
Collapse
|
28
|
Ed Nignpense B, Francis N, Blanchard C, Santhakumar AB. Bioaccessibility and Bioactivity of Cereal Polyphenols: A Review. Foods 2021; 10:foods10071595. [PMID: 34359469 PMCID: PMC8307242 DOI: 10.3390/foods10071595] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Cereal bioactive compounds, especially polyphenols, are known to possess a wide range of disease preventive properties that are attributed to their antioxidant and anti-inflammatory activity. However, due to their low plasma concentrations after oral intake, there is controversy regarding their therapeutic benefits in vivo. Within the gastrointestinal tract, some cereal polyphenols are absorbed in the small intestine, with the majority accumulating and metabolised by the colonic microbiota. Chemical and enzymatic processes occurring during gastrointestinal digestion modulate the bioactivity and bioaccessibility of phenolic compounds. The interactions between the cereal polyphenols and the intestinal epithelium allow the modulation of intestinal barrier function through antioxidant, anti-inflammatory activity and mucin production thereby improving intestinal health. The intestinal microbiota is believed to have a reciprocal interaction with polyphenols, wherein the microbiome produces bioactive and bioaccessible phenolic metabolites and the phenolic compound, in turn, modifies the microbiome composition favourably. Thus, the microbiome presents a key link between polyphenol consumption and the health benefits observed in metabolic conditions in numerous studies. This review will explore the therapeutic value of cereal polyphenols in conjunction with their bioaccessibility, impact on intestinal barrier function and interaction with the microbiome coupled with plasma anti-inflammatory effects.
Collapse
Affiliation(s)
- Borkwei Ed Nignpense
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (B.E.N.); (N.F.); (C.B.)
| | - Nidhish Francis
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (B.E.N.); (N.F.); (C.B.)
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Christopher Blanchard
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (B.E.N.); (N.F.); (C.B.)
- Australian Research Council (ARC), Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Abishek Bommannan Santhakumar
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (B.E.N.); (N.F.); (C.B.)
- Australian Research Council (ARC), Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
- Correspondence: ; Tel.: +61-2-6933-2678
| |
Collapse
|
29
|
Thomas P, Dong J. (-)-Epicatechin acts as a potent agonist of the membrane androgen receptor, ZIP9 (SLC39A9), to promote apoptosis of breast and prostate cancer cells. J Steroid Biochem Mol Biol 2021; 211:105906. [PMID: 33989703 DOI: 10.1016/j.jsbmb.2021.105906] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 01/07/2023]
Abstract
(-)-Epicatechin, a flavonoid present in high concentrations in foods such as green tea and cocoa, exerts beneficial and protective effects in numerous disease models, including anti-tumorigenesis and apoptosis in human breast and prostate cancer cells. Potential interactions of (-)-epicatechin and (+)-catechin with the membrane androgen receptor, ZIP9 (SLC39A9), which mediates androgen induction of apoptosis in these cancer cells, were investigated. Both (-)-epicatechin and (+)-catechin were effective competitors of [3H]-testosterone binding to PC-3 prostate cancer cells (nuclear androgen receptor-negative, nAR-null) overexpressing ZIP9 (PC3-ZIP9), with relative binding affinities of 75 % and 28 % that of testosterone, respectively. (-)-Epicatechin (200 nM) mimicked the effects of 100 nM testosterone in inducing apoptosis of PC3-ZIP9 cells, whereas (+)-catechin (concentration range 200 nM-1000 nM) did not significantly increase apoptosis and instead blocked the apoptotic response to testosterone. (-)-Epicatechin also activated androgen-dependent ZIP9 signaling pathways, inducing decreases in cAMP production and elevating intracellular free zinc levels, while (+)-catechin typically lacked these actions. Both (-)-epicatechin and (+)-catechin also bound to cell membranes of MDA-MB-468 breast cancer cells (nAR-null, high ZIP9 expression). MDA-MB-468 cells showed similar apoptotic, cAMP, and free zinc signaling responses to (-)-epicatechin to those observed in PC3-ZIP9 cells, as well as antagonism by (+)-catechin of testosterone-induced apoptosis and modulation of cAMP and caspase-3 levels. Moreover, knockdown of ZIP9 expression in MDA-MB-468 cells with siRNA decreased specific [3H]-testosterone binding of both catechins and blocked the apoptotic and free zinc responses to testosterone and (-)-epicatechin. The results indicate (-)-epicatechin is a potent ZIP9 agonist in breast and prostate cancer cells.
Collapse
Affiliation(s)
- Peter Thomas
- Marine Science Institute, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX, 78373, United States.
| | - Jing Dong
- Marine Science Institute, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX, 78373, United States
| |
Collapse
|
30
|
Bernatoniene J, Kazlauskaite JA, Kopustinskiene DM. Pleiotropic Effects of Isoflavones in Inflammation and Chronic Degenerative Diseases. Int J Mol Sci 2021; 22:ijms22115656. [PMID: 34073381 PMCID: PMC8197878 DOI: 10.3390/ijms22115656] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Isoflavones are phytoestrogens of plant origin, mostly found in the members of the Fabaceae family, that exert beneficial effects in various degenerative disorders. Having high similarity to 17-β-estradiol, isoflavones can bind estrogen receptors, scavenge reactive oxygen species, activate various cellular signal transduction pathways and modulate growth and transcription factors, activities of enzymes, cytokines, and genes regulating cell proliferation and apoptosis. Due to their pleiotropic activities isoflavones might be considered as a natural alternative for the treatment of estrogen decrease-related conditions during menopause. This review will focus on the effects of isoflavones on inflammation and chronic degenerative diseases including cancer, metabolic, cardiovascular, neurodegenerative diseases, rheumatoid arthritis and adverse postmenopausal symptoms.
Collapse
Affiliation(s)
- Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.A.K.); (D.M.K.)
- Correspondence:
| | - Jurga Andreja Kazlauskaite
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.A.K.); (D.M.K.)
| | - Dalia Marija Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.A.K.); (D.M.K.)
| |
Collapse
|
31
|
Sharifi-Rad J, Quispe C, Shaheen S, El Haouari M, Azzini E, Butnariu M, Sarac I, Pentea M, Ramírez-Alarcón K, Martorell M, Kumar M, Docea AO, Cruz-Martins N, Calina D. Flavonoids as potential anti-platelet aggregation agents: from biochemistry to health promoting abilities. Crit Rev Food Sci Nutr 2021; 62:8045-8058. [PMID: 33983094 DOI: 10.1080/10408398.2021.1924612] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiovascular ailments are the number one cause of mortalities throughout the globe with 17.9 million deaths per year. Platelet activation and aggregation play a crucial role in the pathogenesis of arterial diseases, including acute coronary syndrome, acute myocardial infarction, cerebrovascular transient ischemia, unstable angina, among others. Flavonoids-rich plant extracts are gaining interest for treating the heart-related problems due to safe nature of these herbal extracts. Consumption of plant-food-derived bioactives, particularly flavonoids, has shown antithrombotic, and cardiovascular protective effects due to its anti-platelet activity. Preclinical and clinical trials have proven that flavonoid-rich plant extracts are protective against the cardiac ailments through anti-platelet aggregation activity. This review aims to highlight the anti-platelet aggregation potential of flavonoids with a key emphasis on the therapeutic efficacy in humans. The mechanism of flavonoids in preventing and treating cardiovascular diseases is also highlighted based on preclinical and clinical experimental trials. Further studies are the need of time for exploring the exact molecular mechanism of flavonoids as anti-platelet aggregation agents for treating heart-related problems.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | | | - Mohammed El Haouari
- Centre Régional des Métiers de l'Education et de la Formation/Région: Fès-Meknès (Antenne de Taza), Taza Gare, Morocco.,Laboratoire Matériaux, Substances Naturelles, Environnement et Modélisation (LMSNEM), Faculté Polydisciplinaire de Taza, Université Sidi Mohamed Ben Abdellah, Taza Gare, Morocco
| | - Elena Azzini
- Centre for Research on Food and Nutrition, Council for Agricultural Research and Economics (CREA), Rome, Italy
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, Timis, Romania
| | - Ioan Sarac
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, Timis, Romania
| | - Marius Pentea
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, Timis, Romania
| | - Karina Ramírez-Alarcón
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile.,Unidad de Desarrollo Tecnológico, UDT, Universidad de Concepción, Concepción, Chile
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, India
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
32
|
Taherkhani S, Suzuki K, Ruhee RT. A Brief Overview of Oxidative Stress in Adipose Tissue with a Therapeutic Approach to Taking Antioxidant Supplements. Antioxidants (Basel) 2021; 10:594. [PMID: 33924341 PMCID: PMC8069597 DOI: 10.3390/antiox10040594] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/20/2022] Open
Abstract
One of the leading causes of obesity associated with oxidative stress (OS) is excessive consumption of nutrients, especially fast-foods, and a sedentary lifestyle, characterized by the ample accumulation of lipid in adipose tissue (AT). When the body needs energy, the lipid is broken down into glycerol (G) and free fatty acids (FFA) during the lipolysis process and transferred to various tissues in the body. Materials secreted from AT, especially adipocytokines (interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α)) and reactive oxygen species (ROS), are impressive in causing inflammation and OS of AT. There are several ways to improve obesity, but researchers have highly regarded the use of antioxidant supplements due to their neutralizing properties in removing ROS. In this review, we have examined the AT response to OS to antioxidant supplements focusing on animal studies. The results are inconsistent due to differences in the study duration and diversity in animals (strain, age, and sex). Therefore, there is a need for different studies, especially in humans.
Collapse
Affiliation(s)
- Shima Taherkhani
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht 4199843653, Iran
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
| | - Ruheea Taskin Ruhee
- Gradute School of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
| |
Collapse
|
33
|
The relationship between vitamin 25(OH)D level and hematological parameters in newly diagnosed women with fibromyalgia syndrome. JOURNAL OF SURGERY AND MEDICINE 2021. [DOI: 10.28982/josam.746743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
34
|
Matilla-Cuenca L, Gil C, Cuesta S, Rapún-Araiz B, Žiemytė M, Mira A, Lasa I, Valle J. Antibiofilm activity of flavonoids on staphylococcal biofilms through targeting BAP amyloids. Sci Rep 2020; 10:18968. [PMID: 33144670 PMCID: PMC7641273 DOI: 10.1038/s41598-020-75929-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
The opportunistic pathogen Staphylococcus aureus is responsible for causing infections related to indwelling medical devices, where this pathogen is able to attach and form biofilms. The intrinsic properties given by the self-produced extracellular biofilm matrix confer high resistance to antibiotics, triggering infections difficult to treat. Therefore, novel antibiofilm strategies targeting matrix components are urgently needed. The Biofilm Associated Protein, Bap, expressed by staphylococcal species adopts functional amyloid-like structures as scaffolds of the biofilm matrix. In this work we have focused on identifying agents targeting Bap-related amyloid-like aggregates as a strategy to combat S. aureus biofilm-related infections. We identified that the flavonoids, quercetin, myricetin and scutellarein specifically inhibited Bap-mediated biofilm formation of S. aureus and other staphylococcal species. By using in vitro aggregation assays and the cell-based methodology for generation of amyloid aggregates based on the Curli-Dependent Amyloid Generator system (C-DAG), we demonstrated that these polyphenols prevented the assembly of Bap-related amyloid-like structures. Finally, using an in vivo catheter infection model, we showed that quercetin and myricetin significantly reduced catheter colonization by S. aureus. These results support the use of polyphenols as anti-amyloids molecules that can be used to treat biofilm-related infections.
Collapse
Affiliation(s)
- Leticia Matilla-Cuenca
- Instituto de Agrobiotecnología (IDAB), CSIC-UPNA-Gobierno de Navarra, Avenida Pamplona 123, 31192, Mutilva, Spain
| | - Carmen Gil
- Navarrabiomed-Universidad Pública de Navarra-Departamento de Salud, IDISNA, 31008, Pamplona, Navarra, Spain
| | - Sergio Cuesta
- Instituto de Agrobiotecnología (IDAB), CSIC-UPNA-Gobierno de Navarra, Avenida Pamplona 123, 31192, Mutilva, Spain
| | - Beatriz Rapún-Araiz
- Navarrabiomed-Universidad Pública de Navarra-Departamento de Salud, IDISNA, 31008, Pamplona, Navarra, Spain
| | - Miglė Žiemytė
- Genomics and Health Department, FISABIO Foundation, 46020, Valencia, Spain
| | - Alex Mira
- Genomics and Health Department, FISABIO Foundation, 46020, Valencia, Spain
| | - Iñigo Lasa
- Navarrabiomed-Universidad Pública de Navarra-Departamento de Salud, IDISNA, 31008, Pamplona, Navarra, Spain
| | - Jaione Valle
- Instituto de Agrobiotecnología (IDAB), CSIC-UPNA-Gobierno de Navarra, Avenida Pamplona 123, 31192, Mutilva, Spain.
| |
Collapse
|
35
|
Effects of Feeding Dried Fruit Pomaces as Additional Fibre-Phenolic Compound on Meat Quality, Blood Chemistry and Redox Status of Broilers. Animals (Basel) 2020; 10:ani10111968. [PMID: 33114718 PMCID: PMC7692383 DOI: 10.3390/ani10111968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Fruit juice production resulted in a considerable amount of by-products that are rich in phenolic compounds. Several studies have already reported that polyphenols seemed to have antioxidant, anti-inflammatory and hypolipidemic properties. For this reason, fruit extracts have been widely used as a human food supplement for health promotion and disease prevention. However, little information about their application in animal feeds is available. The aim of this study was to investigate whether 3% or 6% apple, blackcurrant and strawberry dietary inclusion could have a positive effect on meat quality, blood chemistry and redox status of broiler chickens. Overall, the obtained results seem encouraging as both 3% and 6% fruit pomaces diets did not impair carcass traits and meat quality. Moreover, fruit pomaces groups showed lower blood triglycerides and improved renal function with lower creatinine level. Regarding antioxidant activity, all fruit pomaces improved the redox status in liver, breast and blood. No differences have been recorded between 3% and 6% diets. From a productive and biological point of view, the use of fruit pomaces in broiler chicken nutrition seems to be promising, in particular, 3% dietary inclusion seems to be preferable as higher fibre level can impair nutrient digestibility in poultry. Abstract The present study investigated the effects of apple (A), blackcurrant (B) and strawberry (S) dried pomaces on meat quality, blood chemistry and redox status of broiler chickens. A total of 480 Ross-308 male broilers were divided into 8 dietary treatments containing 3% and 6% of cellulose preparation (C), A, B or S. Six birds/group were slaughtered at 35 days of age and blood samples were collected. Carcass traits and meat quality were determined on the Pectoralis major muscles, recording nonsignificant differences. Antioxidant activity was evaluated in serum, liver and breast muscle. In serum, fruit pomaces lowered triglycerides, creatinine and atherogenic index (p < 0.05). Regarding redox status, in serum, ACW (antioxidant capacity of water-soluble substances) and ACL (antioxidant capacity of lipid-soluble substances) were greater in A (p < 0.001). In breast, ACW and ACL were higher in B and S compared to C (p < 0.05). In liver, ACL was greater in B and S compared to C (p < 0.001) and in higher dosage compared to low (p = 0.036). GSSG (oxidized glutathione) concentration was lower in A, whereas A, B and S presented a higher GSH (reduced glutathione)/GSSG ratio. The results showed that fruit pomaces could represent promising feed ingredients for broilers, improving serum, meat and tissue antioxidant parameters.
Collapse
|
36
|
Yang B, Dong Y, Wang F, Zhang Y. Nanoformulations to Enhance the Bioavailability and Physiological Functions of Polyphenols. Molecules 2020; 25:E4613. [PMID: 33050462 PMCID: PMC7587200 DOI: 10.3390/molecules25204613] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
Polyphenols are micronutrients that are widely present in human daily diets. Numerous studies have demonstrated their potential as antioxidants and anti-inflammatory agents, and for cancer prevention, heart protection and the treatment of neurodegenerative diseases. However, due to their vulnerability to environmental conditions and low bioavailability, their application in the food and medical fields is greatly limited. Nanoformulations, as excellent drug delivery systems, can overcome these limitations and maximize the pharmacological effects of polyphenols. In this review, we summarize the biological activities of polyphenols, together with systems for their delivery, including phospholipid complexes, lipid-based nanoparticles, protein-based nanoparticles, niosomes, polymers, micelles, emulsions and metal nanoparticles. The application of polyphenol nanoparticles in food and medicine is also discussed. Although loading into nanoparticles solves the main limitation to application of polyphenolic compounds, there are some concerns about their toxicological safety after entry into the human body. It is therefore necessary to conduct toxicity studies and residue analysis on the carrier.
Collapse
Affiliation(s)
| | | | | | - Yu Zhang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; (B.Y.); (Y.D.); (F.W.)
| |
Collapse
|
37
|
Parmenter BH, Croft KD, Hodgson JM, Dalgaard F, Bondonno CP, Lewis JR, Cassidy A, Scalbert A, Bondonno NP. An overview and update on the epidemiology of flavonoid intake and cardiovascular disease risk. Food Funct 2020; 11:6777-6806. [PMID: 32725042 DOI: 10.1039/d0fo01118e] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is an accumulating body of literature reporting on dietary flavonoid intake and the risk of cardiovascular disease (CVD) in prospective cohort studies. This makes apparent the need for an overview and update on the current state of the science. To date, at least 27 prospective cohorts (in 44 publications) have evaluated the association between estimated habitual flavonoid intake and CVD risk. At this time, the totality of evidence suggests long-term consumption of flavonoid-rich foods may be associated with a lower risk of fatal and non-fatal ischemic heart disease (IHD), cerebrovascular disease, and total CVD; disease outcomes which are principally, though not exclusively, composed of cases of atherosclerotic CVD (ASCVD). To date, few studies have investigated outcome specific ASCVD, such as peripheral artery disease (PAD) or ischemic stroke. Of the flavonoid subclasses investigated, evidence more often implicates diets rich in anthocyanins, flavan-3-ols, and flavonols in lowering the risk of CVD. Although inferences are restricted by confounding and other inherent limitations of observational studies, causality appears possible based on biological plausibility, temporality, and the relative consistency of the reported associations. However, whether the associations observed represent a benefit of the isolated bioactives per se, or are a signal of the bioactives acting in concert with the co-occurring nutrient matrix within flavonoid-bearing foods, are issues of consideration. Thus, the simple interpretation, and the one most relevant for dietary advice, is that consumption of flavonoid-rich foods or diets higher in flavonoids, appear nutritionally beneficial in the prevention of CVD.
Collapse
Affiliation(s)
- Benjamin H Parmenter
- School of Biomedical Sciences, University of Western Australia, Royal Perth Hospital Research Foundation, Perth, Australia.
| | - Kevin D Croft
- School of Biomedical Sciences, University of Western Australia, Royal Perth Hospital Research Foundation, Perth, Australia.
| | - Jonathan M Hodgson
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia and Medical School, University of Western Australia, Perth, Australia
| | - Frederik Dalgaard
- Department of Cardiology, Herlev & Gentofte University Hospital, Copenhagen, Denmark
| | - Catherine P Bondonno
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia and Medical School, University of Western Australia, Perth, Australia
| | - Joshua R Lewis
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia and Medical School, University of Western Australia, Perth, Australia and Centre for Kidney Research, School of Public Health, The University of Sydney, Sydney, Australia
| | - Aedín Cassidy
- Institute for Global Food Security, Queen's University, Belfast, Northern Ireland
| | - Augustin Scalbert
- Biomarkers Group, International Agency for Research on Cancer, Lyon, France
| | - Nicola P Bondonno
- School of Biomedical Sciences, University of Western Australia, Royal Perth Hospital Research Foundation, Perth, Australia. and School of Medical and Health Sciences, Edith Cowan University, Perth, Australia and Institute for Global Food Security, Queen's University, Belfast, Northern Ireland
| |
Collapse
|
38
|
ROS in Platelet Biology: Functional Aspects and Methodological Insights. Int J Mol Sci 2020; 21:ijms21144866. [PMID: 32660144 PMCID: PMC7402354 DOI: 10.3390/ijms21144866] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022] Open
Abstract
Reactive oxygen species (ROS) and mitochondria play a pivotal role in regulating platelet functions. Platelet activation determines a drastic change in redox balance and in platelet metabolism. Indeed, several signaling pathways have been demonstrated to induce ROS production by NAPDH oxidase (NOX) and mitochondria, upon platelet activation. Platelet-derived ROS, in turn, boost further ROS production and consequent platelet activation, adhesion and recruitment in an auto-amplifying loop. This vicious circle results in a platelet procoagulant phenotype and apoptosis, both accounting for the high thrombotic risk in oxidative stress-related diseases. This review sought to elucidate molecular mechanisms underlying ROS production upon platelet activation and the effects of an altered redox balance on platelet function, focusing on the main advances that have been made in platelet redox biology. Furthermore, given the increasing interest in this field, we also describe the up-to-date methods for detecting platelets, ROS and the platelet bioenergetic profile, which have been proposed as potential disease biomarkers.
Collapse
|
39
|
Ed Nignpense B, Chinkwo KA, Blanchard CL, Santhakumar AB. Black Sorghum Phenolic Extract Modulates Platelet Activation and Platelet Microparticle Release. Nutrients 2020; 12:nu12061760. [PMID: 32545505 PMCID: PMC7353362 DOI: 10.3390/nu12061760] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 01/17/2023] Open
Abstract
Platelet hyper-activation and platelet microparticles (PMPs) play a key role in the pathogenesis of cardiovascular diseases. Dietary polyphenols are believed to mimic antiplatelet agents by blunting platelet activation receptors via its antioxidant phenomenon. However, there is limited information on the anti-platelet activity of grain-derived polyphenols. The aim of the study is to evaluate the effects of sorghum extract (Shawaya short black 1 variety), an extract previously characterised for its high antioxidant activity and reduction of oxidative stress-related endothelial dysfunction, on platelet aggregation, platelet activation and PMP release. Whole blood samples collected from 18 healthy volunteers were treated with varying non-cytotoxic concentrations of polyphenol-rich black sorghum extract (BSE). Platelet aggregation study utilised 5 µg/mL collagen to target the GPVI pathway of thrombus formation whereas adenine phosphate (ADP) was used to stimulate the P2Y1/P2Y12 pathway of platelet activation assessed by flow cytometry. Procaspase-activating compound 1 (PAC-1) and P-selectin/CD62P were used to evaluate platelet activation- related conformational changes and degranulation respectively. PMPs were isolated from unstimulated platelets and quantified by size distribution and binding to CD42b. BSE treatment significantly reduced both collagen-induced platelet aggregation and circulatory PMP release at 40 µg/mL (p < 0.001) when compared to control. However, there was no significant impact of BSE on ADP-induced activation-dependent conformational change and degranulation of platelets. Results of this study suggest that phenolic rich BSE may confer cardio-protection by modulating specific signalling pathways involved in platelet activation and PMP release.
Collapse
Affiliation(s)
- Borkwei Ed Nignpense
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (B.E.D.); (K.A.C.); (C.L.B.)
| | - Kenneth A Chinkwo
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (B.E.D.); (K.A.C.); (C.L.B.)
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Christopher L Blanchard
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (B.E.D.); (K.A.C.); (C.L.B.)
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Abishek B Santhakumar
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (B.E.D.); (K.A.C.); (C.L.B.)
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
- Correspondence: ; Tel.: +61-2-6933-2678
| |
Collapse
|
40
|
Rus A, Molina F, Martínez-Ramírez MJ, Aguilar-Ferrándiz ME, Carmona R, del Moral ML. Effects of Olive Oil Consumption on Cardiovascular Risk Factors in Patients with Fibromyalgia. Nutrients 2020; 12:nu12040918. [PMID: 32230754 PMCID: PMC7231107 DOI: 10.3390/nu12040918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 12/19/2022] Open
Abstract
We have recently reported that patients with fibromyalgia (FM) may be at increased risk for cardiovascular disease. Olive oil reportedly has cardioprotective effects. We examined the influence of olive oil consumption on cardiovascular risk factors in FM. This preliminary study was performed on blood samples of women with FM who consumed 50 mL of organic olive oil daily for 3 weeks. Patients were randomized into two groups: 15 women ingested extra virgin olive oil (EVOO) and 15 refined olive oil (ROO). Cardiovascular risk markers were measured at baseline (pre measure) and after consumption of olive oil (post measure). Red blood cell count and erythrocyte sedimentation rate (ESR; both p < 0.05) declined significantly post-treatment in the EVOO group. Consumption of ROO increased mean platelet volume and reduced platelet distribution width (PDW), neutrophil-to-lymphocyte ratio, ESR and fibrinogen (all p < 0.05). Significant differences were found in pre–post change between the EVOO and ROO groups for cortisol and PDW (both p < 0.05). Our results have shown that consumption of olive oil may have antithrombotic and antiinflammatory properties in patients with FM, thereby improving a number of cardiovascular risk markers. Both EVOO and ROO may be useful as adjuvants for the prevention and/or treatment of cardiovascular disorders in these patients.
Collapse
Affiliation(s)
- Alma Rus
- Department of Cell Biology, University of Granada, Avenida de la Fuentenueva, s/n, 18071 Granada, Spain; (A.R.); (R.C.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain;
| | - Francisco Molina
- Department of Health Science, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain;
- Correspondence: ; Tel.: +34-953-213654
| | | | - María Encarnación Aguilar-Ferrándiz
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain;
- Department of Physical Therapy, University of Granada, Avenida de la Ilustración, 60, 18016 Granada, Spain
| | - Ramón Carmona
- Department of Cell Biology, University of Granada, Avenida de la Fuentenueva, s/n, 18071 Granada, Spain; (A.R.); (R.C.)
| | - María Luisa del Moral
- Department of Experimental Biology, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain;
| |
Collapse
|
41
|
Jeong D, Irfan M, Lee DH, Hong SB, Oh JW, Rhee MH. Rumex acetosa modulates platelet function and inhibits thrombus formation in rats. BMC Complement Med Ther 2020; 20:98. [PMID: 32204703 PMCID: PMC7092512 DOI: 10.1186/s12906-020-02889-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/11/2020] [Indexed: 12/19/2022] Open
Abstract
Background The Rumex acetosa has been used in medicinal treatment, food technology and phytotherapeutics in Eastern Asia and many other countries. However, its effect on cardiovascular system and antiplatelet activity remained to be known. In this study, we examined the antiplatelet activity of R. acetosa in detailed manner to understand underlying mechanism. Methods To study this, whole blood was obtained from male Sprague Dawley (SD) rats and aggregation of washed platelets measured using light transmission aggregometry. Intracellular calcium ion concentration ([Ca2+]i) was measured using Fura-2/AM while ATP release evaluated by luminometer. Activation of integrin αIIbβ3 analyzed by flow cytometry and clot retraction. Furthermore, we studied the signaling pathways mediated by R. acetosa extract by western blot analysis. Results R. acetosa extract markedly inhibited collagen-induced platelet aggregation and ATP release in a dose-dependent manner. It also suppressed [Ca2+]i mobilization, integrin αIIbβ3 activation and clot retraction. The extract significantly attenuated phosphorylation of the MAPK pathway (i.e., ERK1/2, JNK), MKK4, PI3K/Akt, and Src family kinase. Conclusion Taken together, this data suggests that R. acetosa extract exhibits anti-platelet activity via modulating MAPK, PI3K/Akt pathways, and integrin αIIbβ3-mediated inside-out and outside-in signaling, and it may protect against the development of platelet-related cardiovascular diseases.
Collapse
Affiliation(s)
- Dahye Jeong
- Laboratory of Veterinary Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Muhammad Irfan
- Laboratory of Veterinary Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dong-Ha Lee
- Department of Biomedical Laboratory Science; and Molecular Diagnostics Research Institute, Namseoul University, Cheonan, 31020, Republic of Korea
| | - Seung-Bok Hong
- Department of Clinical Laboratoy Science, Chungbuk Health & Science University, Cheongju-si, Chungbuk, 28150, Republic of Korea
| | - Jae-Wook Oh
- Department of Animal Biotechnology, Konkuk University, Seoul, 05029, South Korea
| | - Man Hee Rhee
- Laboratory of Veterinary Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
42
|
Xia T, Gao Y, Zhang L, Wang X, Pan G, Wang Z, Han S, Ma X, Zhao W, Zhang J. Sensitive Detection of Caffeic Acid and Rutin via the Enhanced Anodic Electrochemiluminescence Signal of Luminol. ANAL SCI 2020; 36:311-316. [PMID: 31611473 DOI: 10.2116/analsci.19p274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The electrooxidation of phenolic groups of caffeic acid and rutin promote anodic electrochemiluminescence (ECL) luminol substantially. A sensitive, and cost-effective ECL method has thus been developed to detect caffeic acid, ranging from 0.1 to 5.0 μM, with a detection limit of 0.1 μM and rutin ranging from 0.2 to 25 μM with a detection limit of 0.12 μM. Contrarily, phenolic compounds quench the weak cathodic ECL of luminol. Both of anodic and cathodic ECL mechanisms of luminol in the presence of phenolic compounds are analyzed. The method based on the boomed anodic ECL of luminol is comparable to those based on Ru(bpy)32+ and S2O82-/O2 systems. A lower onset potential and price than the other ECL reagents would realize its widely applications in the detection of phenolic compounds in food and medicine.
Collapse
Affiliation(s)
- Tianlai Xia
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology
| | - Yuan Gao
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology.,College of Applied Chemistry, Shenyang University of Chemical Technology
| | - Ling Zhang
- School of Science, Harbin Institute of Technology
| | - Xinyu Wang
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology
| | - Guangxing Pan
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology
| | - Zhenyuan Wang
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology
| | - Shuang Han
- College of Applied Chemistry, Shenyang University of Chemical Technology
| | - Xing Ma
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology
| | - Weiwei Zhao
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology
| | - Jiaheng Zhang
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology
| |
Collapse
|
43
|
Li W, Xu C, Hao C, Zhang Y, Wang Z, Wang S, Wang W. Inhibition of herpes simplex virus by myricetin through targeting viral gD protein and cellular EGFR/PI3K/Akt pathway. Antiviral Res 2020; 177:104714. [PMID: 32165083 PMCID: PMC7111628 DOI: 10.1016/j.antiviral.2020.104714] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/23/2019] [Accepted: 01/20/2020] [Indexed: 12/21/2022]
Abstract
Myricetin, a common dietary flavonoid, was reported to possess many different biological activities such as anti-oxidant, anti-inflammatory, and antiviral effects. In this study, we explored the anti-HSV effects and mechanisms of myricetin both in vitro and in vivo. The results showed that myricetin possessed anti-HSV-1 and HSV-2 activities with very low toxicity, superior to the effects of acyclovir. Myricetin may block HSV infection through direct interaction with virus gD protein to interfere with virus adsorption and membrane fusion, which was different from the nucleoside analogues such as acyclovir. Myricetin also down-regulate the cellular EGFR/PI3K/Akt signaling pathway to further inhibit HSV infection and its subsequent replication. Most importantly, intraperitoneal therapy of myricetin markedly improved mice survival and reduced virus titers in both lungs and spinal cord. Therefore, the natural dietary flavonoid myricetin has potential to be developed into a novel anti-HSV agent targeting both virus gD protein and cellular EGFR/PI3K/Akt pathway. Myricetin possessed anti-HSV-1 and HSV-2 activities in vitro with low toxicity. Myricetin may be able to block HSV binding and entry process in HeLa cells. Myricetin may directly bind to virus gD protein rather than cellular receptors of HSV. The EGFR/PI3K/Akt pathway may be involved in the anti-HSV actions of myricetin. Myricetin markedly improved survival and reduced virus titers in HSV infected mice.
Collapse
Affiliation(s)
- Wenmiao Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China
| | - Cuijing Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China
| | - Cui Hao
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, 266003, PR China.
| | - Yang Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China
| | - Zhaoqi Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China
| | - Shuyao Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China
| | - Wei Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China.
| |
Collapse
|
44
|
Aboonabi A, Meyer RR, Gaiz A, Singh I. Anthocyanins in berries exhibited anti-atherogenicity and antiplatelet activities in a metabolic syndrome population. Nutr Res 2020; 76:82-93. [PMID: 32217379 DOI: 10.1016/j.nutres.2020.02.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/16/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
Metabolic syndrome (MetS) is a global challenge for atherosclerosis. It was hypothesized that a four-week consumption of anthocyanin supplements by MetS patients who had three or more risk factors linked with metabolic syndrome would have a greater improvement in cardiometabolic biomarkers and would also reduce the risk of thrombosis. A total of 55 participants in two groups of Normal healthy and MetS (age 25-75y) were given 320 mg anthocyanin supplements twice daily for 4 weeks. Platelet coagulant activities, lipid profiles, fasting blood glucose, and inflammatory and oxidative stress biomarkers were measured before and after supplementation to evaluate the atheroprotective effects of anthocyanins in the study subjects. Four weeks of anthocyanin supplementation significantly decreased cardiometabolic risk factors including the average serum fasting blood glucose (FBG) (by 13.3%, P < .05) and lipid profiles by significant reduction in triglyceride (by 24.9%, P < .05) and LDL-C (by 33.1%, P < .05) in the MetS group. Anthocyanin supplementation also decreased high sensitivity C-reactive protein (hs-CRP) level (by 28%, P < .05) in females. However, no significant differences in serum UA (uric acid) and HDL-C were observed between anthocyanin pre- and post-treatment in both groups. Moreover, Anthocyanin supplements decreased ADP-induced platelet activation configuration expressed as P-selectin by 40% (P < .05). There was a positive correlation between decreased hs-CRP values and the levels of LDL-C and FBG in the MetS group (P < .05). These results support the hypothesis that anthocyanin supplementation exerts anti-atherogenicity effects by improving cardiometabolic risk factors and reducing thrombogenicity in the MetS population.
Collapse
Affiliation(s)
- Anahita Aboonabi
- School of Medical Science, Gold Coast Campus, Parklands Drive, Southport, Queensland 4222, Australia.
| | - Roselyn Rose Meyer
- School of Medical Science, Gold Coast Campus, Parklands Drive, Southport, Queensland 4222, Australia.
| | - Almottesembellah Gaiz
- School of Medical Science, Gold Coast Campus, Parklands Drive, Southport, Queensland 4222, Australia.
| | - Indu Singh
- School of Medical Science, Gold Coast Campus, Parklands Drive, Southport, Queensland 4222, Australia.
| |
Collapse
|
45
|
Peng Y, Yan Y, Wan P, Dong W, Huang K, Ran L, Mi J, Lu L, Zeng X, Cao Y. Effects of long-term intake of anthocyanins from Lycium ruthenicum Murray on the organism health and gut microbiota in vivo. Food Res Int 2019; 130:108952. [PMID: 32156393 DOI: 10.1016/j.foodres.2019.108952] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/21/2019] [Accepted: 12/22/2019] [Indexed: 12/14/2022]
Abstract
The relationship between diet, especially polyphenols, and health has been receiving increasing attention. Polyphenols were degraded by gut microbiota into metabolites and acted on the body to exert many bioactivities from several targets such as antioxidative stress, anti-inflammation, intestinal barrier and gut microbiota modulation. After long-term treatment of mice with anthocyanins from Lycium ruthenicum Murray (ACN), antioxidant status in liver (T-AOC, T-SOD, CAT, GSH and GSH-Px were increased and AST, ALT, ALP and MDA were decreased), anti-inflammatory status in colon (the expression of mRNA of iNos, Cox-2, Tnf-α, Il-6, Il-1β and Ifn-γ were significantly reduced), intestinal barrier (the expression of mRNA of Zo-1, Occludin, Claudin-1 and Muc1 were significantly increased) and gut microbiota (Barnesiella, Alistipes, Eisenbergiella, Coprobacter and Odoribacter were proliferated) were all regulated in ACN group. Meanwhile, the content of short-chain fatty acids in cecal contents and feces were increased. Taken together, long-term intake of ACN could promote organism healthy and these results have important implications for the development of ACN as a functional food ingredient.
Collapse
Affiliation(s)
- Yujia Peng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yamei Yan
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Peng Wan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Wei Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Kaiyin Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Linwu Ran
- Laboratory Animal Center, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Jia Mi
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Lu Lu
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Youlong Cao
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China.
| |
Collapse
|
46
|
Ed Nignpense B, Chinkwo KA, Blanchard CL, Santhakumar AB. Polyphenols: Modulators of Platelet Function and Platelet Microparticle Generation? Int J Mol Sci 2019; 21:ijms21010146. [PMID: 31878290 PMCID: PMC6981839 DOI: 10.3390/ijms21010146] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
Platelets and platelet microparticles (PMPs) play a key role in the pathophysiology of vascular disorders such as coronary artery disease and stroke. In atherosclerosis, for example, the disruption of the plaque exposes endogenous agonists such as collagen, which activates platelets. Platelet hyper-activation and the high levels of PMPs generated in such situations pose a thrombotic risk that can lead to strokes or myocardial infarctions. Interestingly, dietary polyphenols are gaining much attention due to their potential to mimic the antiplatelet activity of treatment drugs such as aspirin and clopidogrel that target the glycoprotein VI (GPVI)-collagen and cyclooxygenease-1 (COX-1)-thromboxane platelet activation pathways respectively. Platelet function tests such as aggregometry and flow cytometry used to monitor the efficacy of antiplatelet drugs can also be used to assess the antiplatelet potential of dietary polyphenols. Despite the low bioavailability of polyphenols, several in vitro and dietary intervention studies have reported antiplatelet effects of polyphenols. This review presents a summary of platelet function in terms of aggregation, secretion, activation marker expression, and PMP release. Furthermore, the review will critically evaluate studies demonstrating the impact of polyphenols on aggregation and PMP release.
Collapse
Affiliation(s)
- Borkwei Ed Nignpense
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (B.E.N.); (K.A.C.); (C.L.B.)
| | - Kenneth A. Chinkwo
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (B.E.N.); (K.A.C.); (C.L.B.)
- Australian Research Council (ARC), Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Christopher L. Blanchard
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (B.E.N.); (K.A.C.); (C.L.B.)
- Australian Research Council (ARC), Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Abishek B. Santhakumar
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (B.E.N.); (K.A.C.); (C.L.B.)
- Australian Research Council (ARC), Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
- Correspondence: ; Tel.: +61-2-6933-2678
| |
Collapse
|
47
|
Kang GG, Francis N, Hill R, Waters D, Blanchard C, Santhakumar AB. Dietary Polyphenols and Gene Expression in Molecular Pathways Associated with Type 2 Diabetes Mellitus: A Review. Int J Mol Sci 2019; 21:ijms21010140. [PMID: 31878222 PMCID: PMC6981492 DOI: 10.3390/ijms21010140] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder with various contributing factors including genetics, epigenetics, environment and lifestyle such as diet. The hallmarks of T2DM are insulin deficiency (also referred to as β-cell dysfunction) and insulin resistance. Robust evidence suggests that the major mechanism driving impaired β-cell function and insulin signalling is through the action of intracellular reactive oxygen species (ROS)-induced stress. Chronic high blood glucose (hyperglycaemia) and hyperlipidaemia appear to be the primary activators of these pathways. Reactive oxygen species can disrupt intracellular signalling pathways, thereby dysregulating the expression of genes associated with insulin secretion and signalling. Plant-based diets, containing phenolic compounds, have been shown to exhibit remedial benefits by ameliorating insulin secretion and insulin resistance. The literature also provides evidence that polyphenol-rich diets can modulate the expression of genes involved in insulin secretion, insulin signalling, and liver gluconeogenesis pathways. However, whether various polyphenols and phenolic compounds can target specific cellular signalling pathways involved in the pathogenesis of T2DM has not been elucidated. This review aims to evaluate the modulating effects of various polyphenols and phenolic compounds on genes involved in cellular signalling pathways (both in vitro and in vivo from human, animal and cell models) leading to the pathogenesis of T2DM.
Collapse
Affiliation(s)
- Gideon Gatluak Kang
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Wagga Wagga, NSW 2650, Australia; (G.G.K.); (N.F.); (D.W.); (C.B.)
- School of Biomedical Sciences, Charles Sturt University, NSW 2650, Australia;
| | - Nidhish Francis
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Wagga Wagga, NSW 2650, Australia; (G.G.K.); (N.F.); (D.W.); (C.B.)
- School of Animal and Veterinary Sciences, Charles Sturt University, NSW 2650, Australia
| | - Rodney Hill
- School of Biomedical Sciences, Charles Sturt University, NSW 2650, Australia;
| | - Daniel Waters
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Wagga Wagga, NSW 2650, Australia; (G.G.K.); (N.F.); (D.W.); (C.B.)
- School of Biomedical Sciences, Charles Sturt University, NSW 2650, Australia;
| | - Christopher Blanchard
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Wagga Wagga, NSW 2650, Australia; (G.G.K.); (N.F.); (D.W.); (C.B.)
- School of Biomedical Sciences, Charles Sturt University, NSW 2650, Australia;
| | - Abishek Bommannan Santhakumar
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Wagga Wagga, NSW 2650, Australia; (G.G.K.); (N.F.); (D.W.); (C.B.)
- School of Biomedical Sciences, Charles Sturt University, NSW 2650, Australia;
- Correspondence: ; Tel.: +61-2-6933-2678
| |
Collapse
|
48
|
Rice Bran Derived Bioactive Compounds Modulate Risk Factors of Cardiovascular Disease and Type 2 Diabetes Mellitus: An Updated Review. Nutrients 2019; 11:nu11112736. [PMID: 31718066 PMCID: PMC6893409 DOI: 10.3390/nu11112736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/04/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM) are two chronic diseases that have claimed more lives globally than any other disease. Dietary supplementation of functional foods containing bioactive compounds is recognised to result in improvements in free-radical-mediated oxidative stress. Emerging evidence indicates that bioactive compounds derived from rice bran (RB) have therapeutic potential against cellular oxidative stress. This review aims to describe the mechanistic pathways behind CVD and T2DM development and the therapeutic potential of polyphenols derived from RB against these chronic diseases.
Collapse
|
49
|
Wang P, Liu J, Luo X, Xiong P, Gao S, Yan J, Li Y, Cheng Y, Xi T. A tannic acid-modified fluoride pre-treated Mg-Zn-Y-Nd alloy with antioxidant and platelet-repellent functionalities for vascular stent application. J Mater Chem B 2019; 7:7314-7325. [PMID: 31674636 DOI: 10.1039/c9tb01587f] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Vascular stent interventional therapy, as a regular and effective therapy, has been widely used to treat coronary artery diseases. However, adverse events occur frequently after stent intervention, especially restenosis and late stent thrombosis. The targeted implanting site will suffer from severe atherosclerosis, which is considered as a chronic inflammatory disease. Meanwhile, with the over-expanding use of endovascular mechanical intervention, vascular injury has become an increasingly common issue. Lesions and newly induced vascular injury result in inflammatory and oxidative stress; meanwhile, activated macrophages and granulocytes generate high levels of reactive oxygen species (ROS), contributing to endothelial dysfunction and neointima hyperplasia. Therefore, attenuating oxidative stress and reducing ROS generation in the inflammatory response represent reasonable strategies to inhibit intimal hyperplasia and restenosis. Herein, we have developed a multifunctional surface for the MgZnYNd alloy with tannic acid (TA) coating, and the pH dependence of the coating deposition is also demonstrated. The phenolic hydroxyl groups on the coatings endow the modified surface with excellent antioxidant functions. We found that the coating can be recycled, and the scavenging activity hardly weakened within five cycles. Also, the TA coating has a promising strong antioxidant activity as it shows a radical scavenging activity over 80% in long term. Moreover, the TA coating possesses platelet-repellent capability. No significant inflammatory response was observed for the TA modified sample in the rat subcutaneous implantation test. Combining these performances, we envision that the vascular stent modified with TA coating can have great potential in various applications by virtue of its simplicity and effectiveness.
Collapse
Affiliation(s)
- Pei Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, No. 5, Yiheyuan Road HaiDian District, Beijing 100871, China.
| | - Jing Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Xujiang Luo
- Department of Orthopedics, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China and Institute of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries in PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Pan Xiong
- Academy for Advanced Interdisciplinary Studies, Peking University, No. 5, Yiheyuan Road HaiDian District, Beijing 100871, China.
| | - Shuang Gao
- Academy for Advanced Interdisciplinary Studies, Peking University, No. 5, Yiheyuan Road HaiDian District, Beijing 100871, China.
| | - Jianglong Yan
- Academy for Advanced Interdisciplinary Studies, Peking University, No. 5, Yiheyuan Road HaiDian District, Beijing 100871, China.
| | - Yangyang Li
- Academy for Advanced Interdisciplinary Studies, Peking University, No. 5, Yiheyuan Road HaiDian District, Beijing 100871, China.
| | - Yan Cheng
- Academy for Advanced Interdisciplinary Studies, Peking University, No. 5, Yiheyuan Road HaiDian District, Beijing 100871, China.
| | - Tingfei Xi
- Academy for Advanced Interdisciplinary Studies, Peking University, No. 5, Yiheyuan Road HaiDian District, Beijing 100871, China.
| |
Collapse
|
50
|
Pavlova E, Simeonova L, Serkedjieva J. Antioxidant activities of Geranium sanguineum L. polyphenolic extract in chemiluminescent model systems. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.107518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|