1
|
Wang J, Ma W, Wang F, He Z, Ye X, Deng J, Zhao M, Li J. Signaling pathways mediating the induction of preharvest fruit drop in litchi. FRONTIERS IN PLANT SCIENCE 2024; 15:1474657. [PMID: 39717728 PMCID: PMC11663655 DOI: 10.3389/fpls.2024.1474657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/21/2024] [Indexed: 12/25/2024]
Abstract
Certain litchi varieties, such as "Nuomici", are highly susceptible to preharvest fruit drop, which leads to significant losses in fruit yield and economic value. However, the precise molecular mechanisms underlying this issue are not yet fully understood. In this study, we aimed to elucidate the signaling pathways that facilitate preharvest fruit drop in litchi, using "Nuomici" and "Huaizhi" cultivars as examples, which demonstrate high and low preharvest fruit drop rates, respectively. Our findings revealed that "Nuomici" experienced a substantial preharvest fruit drop, with a cumulative rate of 41.68%, significantly higher than the 1.44% observed in "Huaizhi". Cellulase activity assays showed a significant increase in cellulase activity in the abscission zone of "Nuomici", which coincided with the occurrence of preharvest fruit drop, in contrast to the relatively low levels in "Huaizhi". Phytohormone assays indicated lower indole-3-acetic acid content in the pericarp, aril, and seeds of "Nuomici" during the preharvest stage compared to "Huaizhi", coupled with higher abscisic acid levels in the seeds of "Nuomici". Furthermore, transcriptomic analysis identified 180, 282, 655, and 241 differentially expressed genes (DEGs) in the pericarp, aril, seed, and abscission zone, respectively, between the two cultivars during preharvest fruit drop. These DEGs are intricately involved in the generation and transmission of abscission signals from fruit tissues, encompassing PIN, PIN-LIKES, LAX, and SAUR genes related to polar auxin transport, ethylene diffusion, as well as perceiving these signals and activating the abscission process within the abscission zone. This includes ACO and ILR genes involved in hormone biosynthesis and signal transduction, regulation by WRKY, NAC, and bHLH transcription factors, AAO genes involved in response to reactive oxygen species, and EXP, EG, and PG genes involved in cell wall degradation in the abscission zone. Based on these comprehensive findings, we propose a model for preharvest fruit drop triggered by a series of molecular events in litchi, providing valuable insights into the complex mechanisms governing this phenomenon.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou, China
| | - Wuqiang Ma
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou, China
- Sanya Nanfan Research Institute, Hainan University, Sanya, China
| | - Fei Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Zidi He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xiangyang Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jiahui Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Minglei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Liu Y, Ma N, Gao Z, Hua Y, Cao Y, Yin D, Jia Q, Wang D. Systematic analysis of the ARF gene family in Fagopyrum dibotrys and its potential roles in stress tolerance. Genetica 2024; 152:159-178. [PMID: 39365431 DOI: 10.1007/s10709-024-00214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024]
Abstract
The auxin response factor (ARF) is a plant-specific transcription factor that regulates the expression of auxin response genes by binding directly to their promoters. They play an important role in the regulation of plant growth and development, as well as in the response to biotic and abiotic stresses. However, the identification and functional analysis of ARFs in Fagopyrum dibotrys are still unclear. In this study, a total of 26 FdARF genes were identified using bioinformatic methods. Their chromosomal location, gene structure, physical and chemical properties of their encoded protein, subcellular location, phylogenetic tree, conserved motifs and cis-acting elements in FdARF promoters were analyzed. The results showed that 26 FdARF genes were unevenly distributed on 8 chromosomes, with the largest distribution on chromosome 4 and the least distribution on chromosome 3. Most FdARF proteins are located in the nucleus, except for the proteins FdARF7 and FdARF21 located to the cytoplasm and nucleus, while FdARF14, FdARF16, and FdARF25 proteins are located outside the chloroplast and nucleus. According to phylogenetic analysis, 26 FdARF genes were divided into 6 subgroups. Duplication analysis indicates that the expansion of the FdARF gene family was derived from segmental duplication rather than tandem duplication. The prediction based on cis-elements of the promoter showed that 26 FdARF genes were rich in multiple stress response elements, suggesting that FdARFs may be involved in the response to abiotic stress. Expression profiling analysis showed that most of the FdARF genes were expressed in the roots, stems, leaves, and tubers of F. dibotrys, but their expression exhibits a certain degree of tissue specificity. qRT-PCR analysis revealed that most members of the FdARF gene were up- or down-regulated in response to abiotic stress. The results of this study expand our understanding of the functional role of FdARFs in response to abiotic stress and lay a theoretical foundation for further exploration of other functions of FdARF genes.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Nan Ma
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Ziyong Gao
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Yangguang Hua
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Yu Cao
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Dengpan Yin
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Qiaojun Jia
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Dekai Wang
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China.
| |
Collapse
|
3
|
Ou Z, Zhang Y, Wu Q, Wang K, Zhang G, Qiao X, Yan Y, Qian W, Wan F, Liu B. Silencing of the MP Gene via dsRNA Affects Root Development and Growth in the Invasive Weed Mikania micrantha. Int J Mol Sci 2024; 25:12678. [PMID: 39684389 DOI: 10.3390/ijms252312678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Mikania micrantha ("mile-a-minute" weed) is a global invasive alien weed that can cause severe damage to agroforestry ecosystems and significant agricultural losses worldwide. Although chemical, manual, or mechanical control methods are widely used to control M. micrantha, RNA interference (RNAi)-based biocontrol methods have rarely been reported for this species. The MONOPTEROS (MP) gene, encoding an auxin response factor, plays an essential role in embryonic root initiation in Arabidopsis thaliana. In this study, we identified the MP gene from M. micrantha via orthologous gene analysis. A total of 37 MP orthologous genes was identified in 4 plants, including 9 MP candidate genes in M. micrantha, 13 in Helianthus annuus, 6 in Chrysanthemum nankingense, and 9 in Lactuca sativa. Phylogenetic analysis revealed that an MP candidate gene in M. micrantha (Mm01G000655, named MmMP) was clustered into one clade with the MP gene in A. thaliana (AtMP). In addition, both MmMP and AtMP contain a B3-DNA binding domain that is shared by transcription factors that regulate plant embryogenesis. To study gene function, dsRNA against MmMP (dsMmMP) was applied to the roots of M. micrantha. Compared with those of the controls, the expression of MmMP was reduced by 43.3%, 22.1%, and 26.2% on the first, third, and fifth days after dsMmMP treatment, respectively. The dsMmMP-treated plants presented several morphological defects, mostly in the roots. Compared with water-treated plants, the dsMmMP-treated plants presented reduced developmental parameters, including root length, number of adventitious roots, root fresh and dry weights, plant height, and aboveground biomass. Additionally, safety assessment suggested that this dsMmMP treatment did not silence MP genes from non-target plants, including rice and tomato; nor did it inhibit root growth in those species. Collectively, these results suggest that MmMP plays an important role in root development in M. micrantha and provides a potential target for the development of species-specific RNAi-based herbicides.
Collapse
Affiliation(s)
- Zhenghui Ou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuantong Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Qiang Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Kangkang Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Guangzhong Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xi Qiao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Ying Yan
- Department of Insect Biotechnology in Plant Protection, Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Winchesterstraße 2, 35394 Giessen, Germany
| | - Wanqiang Qian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Fanghao Wan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Bo Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
4
|
Ding Y, Miao Y, Huang L, Zhu H, Li W, Zou W, Yu S, Dong B, Zhong S. Functional Divergence of the Closely Related Genes PhARF5 and PhARF19a in Petunia hybrida Flower Formation and Hormone Signaling. Int J Mol Sci 2024; 25:12249. [PMID: 39596314 PMCID: PMC11594976 DOI: 10.3390/ijms252212249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The ARF gene family plays a vital role in regulating multiple aspects of plant growth and development. However, detailed research on the role of the ARF family in regulating flower development in petunia and other plants remains limited. This study investigates the distinct roles of PhARF5 and PhARF19a in Petunia hybrida flower development. Phylogenetic analysis identified 29 PhARFs, which were grouped into four clades. VIGS-mediated silencing of PhARF5 and PhARF19a led to notable phenotypic changes, highlighting their non-redundant functions. PhARF5 silencing resulted in reduced petal number and limb abnormalities, while PhARF19a silencing disrupted corolla tube formation and orientation. Both genes showed high expression in the roots, leaves, and corollas, with nuclear localization. The transcriptomic analysis revealed significant overlaps in DEGs between PhARF5 and PhARF19a silencing, indicating shared pathways in hormone metabolism, signal transduction, and stress responses. Phytohormone analysis confirmed their broad impact on phytohormone biosynthesis, suggesting involvement in complex feedback mechanisms. Silencing PhARF5 and PhARF19a led to differential transcription of numerous genes related to hormone signaling pathways beyond auxin signaling, indicating their direct or indirect crosstalk with other phytohormones. However, significant differences in the regulation of these signaling pathways were observed between PhARF5 and PhARF19a. These findings reveal the roles of ARF genes in regulating petunia flower development, as well as the phylogenetic distribution of the PhARFs involved in this process. This study provides a valuable reference for molecular breeding aimed at improving floral traits in the petunia genus and related species.
Collapse
Affiliation(s)
- Yiqing Ding
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.D.); (Y.M.); (L.H.); (H.Z.); (W.L.); (W.Z.); (S.Y.)
| | - Yunfeng Miao
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.D.); (Y.M.); (L.H.); (H.Z.); (W.L.); (W.Z.); (S.Y.)
| | - Lingxuan Huang
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.D.); (Y.M.); (L.H.); (H.Z.); (W.L.); (W.Z.); (S.Y.)
| | - Huijun Zhu
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.D.); (Y.M.); (L.H.); (H.Z.); (W.L.); (W.Z.); (S.Y.)
| | - Wenle Li
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.D.); (Y.M.); (L.H.); (H.Z.); (W.L.); (W.Z.); (S.Y.)
| | - Wei Zou
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.D.); (Y.M.); (L.H.); (H.Z.); (W.L.); (W.Z.); (S.Y.)
| | - Shumin Yu
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.D.); (Y.M.); (L.H.); (H.Z.); (W.L.); (W.Z.); (S.Y.)
| | - Bin Dong
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.D.); (Y.M.); (L.H.); (H.Z.); (W.L.); (W.Z.); (S.Y.)
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou 311300, China
| | - Shiwei Zhong
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.D.); (Y.M.); (L.H.); (H.Z.); (W.L.); (W.Z.); (S.Y.)
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou 311300, China
| |
Collapse
|
5
|
Gu Y, Yu H, Kuang J, Ma X, Tahir MS, He S, Liao Y. Genomic insights into bamboo witches' broom disease: pathogenicity and phytohormone biosynthesis in Aciculosporium take. Front Microbiol 2024; 15:1432979. [PMID: 39600575 PMCID: PMC11590067 DOI: 10.3389/fmicb.2024.1432979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Bamboo witches' broom disease (WBD), caused by Aciculosporium take Miyake, devastates bamboo forests. Understanding the genome and pathogenic factors of pathogen is crucial for disease control. We employed single-molecule real-time sequencing, Illumina paired-end sequencing, and chromatin interaction mapping techniques to assemble the genome of A. take CCTCC-M2023413, analyze pathogenicity- and phytohormone-biosynthesis-related genes, and compare it to 12 other WBD pathogens. The genome of A. take is 59.24 Mb in size, with 54.32% repeats, 7 chromosomes, 7,105 protein-coding genes, 84 ribosomal RNAs, and 115 transfer RNAs. Predictive analysis of pathogenicity genes found 237 carbohydrate-active enzymes, 1,069 membrane transport proteins, 1,040 pathogen-host interaction genes, 315 virulence factors, and 70 effectors. Most of pathogenicity genes overlapped with repeat-rich regions. Additionally, 172 genes were linked to auxin biosynthesis, 53 to brassinosteroid biosynthesis, and 2 to cis-zeatin biosynthesis. Comparative genomic analysis identified 77 core orthogroups shared by 13 WBD pathogens, played roles in metabolites, genetic information processing, pathogenesis, cis-zeatin biosynthesis, lifespan, and quorum sensing. The miaA gene, crucial for cis-zeatin biosynthesis, is structurally conserved and sequence-diverse among 13 WBD pathogens, with upregulated expression during bamboo WBD pathogenesis. This highlights that cis-zeatin is significant contributor to host pathogenesis, and miaA is a new potential target for controlling WBD. This study provides important insights on preventing and controlling bamboo WBD.
Collapse
Affiliation(s)
- Yu Gu
- College of Life Sciences, Sichuan Agricultural University, Yaan, China
| | - Haoyue Yu
- College of Life Sciences, Sichuan Agricultural University, Yaan, China
| | - Jiayan Kuang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Muhammad Salman Tahir
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sainan He
- College of Life Sciences, Sichuan Agricultural University, Yaan, China
| | - Yingchong Liao
- College of Life Sciences, Sichuan Agricultural University, Yaan, China
| |
Collapse
|
6
|
Lu S, Li M, Cheng Y, Gou H, Che L, Liang G, Mao J. Genome-wide identification of Aux/IAA gene family members in grape and functional analysis of VaIAA3 in response to cold stress. PLANT CELL REPORTS 2024; 43:265. [PMID: 39417869 DOI: 10.1007/s00299-024-03353-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024]
Abstract
KEY MESSAGE Twenty-five VvIAA genes and eighteen VaIAA genes were identified from Pinot Noir and Shanputao, respectively. The overexpression of VaIAA3 in transgenic Arabidopsis increased cold tolerance by regulating auxin, ABA and ethylene signaling. Aux/IAA genes are key genes involved in regulating auxin signal transduction in plants. Although IAA genes have been characterized in various plant species, the role of IAA genes in grape cold resistance is unclear. To further explore the members of the Aux/IAA gene family in grape and their functions, in this study, using genomic data for Pinot Noir (Vitis vinifera cv. 'Pinot Noir') and Shanputao (Vitis amurensis), 25 VvIAA genes and 18 VaIAA genes were identified. The VaIAA genes presented different expression patterns at five different temperatures (28 ± 1 °C, 5 ± 1 °C, 0 ± 1 °C, -5 ± 1 °C, and -10 ± 1 °C) according to qRT‑PCR results. VaIAA3 was selected as a candidate gene for further functional analysis because of its high expression level under low-temperature stress. Subcellular localization experiments revealed that VaIAA3 was localized in the nucleus. Additionally, under 4 °C treatment for 24 h, relative expression level of VaIAA3, antioxidant enzyme activity, survival rate, and cold-responsive gene expression in three transgenic lines (OE-1, OE-2, OE-3) were greater, whereas relative electrolytic conductivity (REC), malondialdehyde (MDA) content and hydrogen peroxide (H2O2) content were lower than those of the wild type (WT). Transcriptome sequencing analysis revealed that VaIAA3 regulated cold stress resistance in Arabidopsis thaliana (Arabidopsis) through pathways involving auxin, ABA, JA, or ethylene. Importantly, heterologous overexpression of VaIAA3 increased the resistance of Arabidopsis to cold stress, which provides a theoretical basis for the further use of VaIAA3 to improve cold resistance in grape.
Collapse
Affiliation(s)
- Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Min Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yongjuan Cheng
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Huimin Gou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lili Che
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Guoping Liang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
7
|
Wang J, Song Y, Wang G, Shi L, Shen Y, Liu W, Xu Y, Lou X, Jia W, Zhang M, Shang W, He S, Wang Z. PoARRO-1 regulates adventitious rooting through interaction with PoIAA27b in Paeonia ostii. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112204. [PMID: 39059631 DOI: 10.1016/j.plantsci.2024.112204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Adventitious root (AR) formation is a limiting factor in the vegetative propagation of tree peony (Paeonia suffruticosa Andr.). PoARRO-1, which encodes an auxin oxidase involved in AR formation, plays a role in the root development of P. ostii, but its associated molecular regulatory mechanisms are not yet understood. In this study, we examined the role of PoARRO-1 in AR formation in P. ostii. The overexpression of PoARRO-1 in P. ostii test-tube plantlets led to a notable enhancement in both the rooting rate and the average number of ARs in vitro, as well as increased activities of peroxidase (POD), superoxide dismutase (SOD), and indoleacetic acid oxidase (IAAO). PoARRO-1 was involved in the conversion of IAA-Asp and IAA-Glu to OxIAA and promoted IAA oxidation. RNA sequencing analysis revealed that PoARRO-1 overexpression led to upregulation of enzyme activity, auxin metabolism related genes. Further analyses showed that PoARRO-1 interacted with the 1-175 aa position of PoIAA27b to regulate the formation of ARs. We therefore propose that PoARRO-1 interacts with PoIAA27b to promote AR formation, and it may be useful targets for enhancing the in vitro propagation of P. ostii.
Collapse
Affiliation(s)
- Jiange Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Yinglong Song
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Guiqing Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Liyun Shi
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuxiao Shen
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Weichao Liu
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Yufeng Xu
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Xueyuan Lou
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenqing Jia
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Minhuan Zhang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
| | - Wenqian Shang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China.
| | - Songlin He
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zheng Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
8
|
Wu L, Fan S, Li S, Li J, Zhang Z, Qin Y, Hu G, Zhao J. LcINH1 as an inhibitor of cell wall invertase LcCWIN5 regulates early seed development in Litchi chinensis Sonn. Int J Biol Macromol 2024; 278:134497. [PMID: 39116976 DOI: 10.1016/j.ijbiomac.2024.134497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/18/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
Sugar signal mediated by Cell wall invertase (CWIN) plays a central role in seed development. In higher plants, invertase inhibitors (INHs) suppress CWIN activities at a post-translational level. In Litchi chinensis cultivar 'Nuomici', impaired CWIN expression is associated with seed abortion. Here, the expression of LcINH1 was significantly higher in the funicle of seed-aborting cultivar 'Nuomici' than big-seeded cultivar 'Heiye'. Promoter analyses found LcINH1 contained a 404 bp repeat fragment with an endosperm regulatory element of Skn-1_motif. LcINH1 and LcCWIN2/5 were located in plasma membrane. LcINH1 was able to interact with LcCWIN5, but not with LcCWIN2. In vitro enzyme activity assay demonstrated that LcINH1 could inhibit CWIN activity. Silencing LcINH1 in 'Nuomici' resulted in normal seed development, paralleled increased CWIN activities and glucose levels. Transcriptome analysis identified 1079 differentially expressed genes (DEGs) in LcINH1-silenced fruits. KEGG analysis showed significant enrichment of DEGs in pathways related to transporters and plant hormone signal transduction. Weighted gene co-expression network analysis indicated that the turquoise module was highly correlated with fructose content, and LcSWEET3b was closely associated with early seed development. These findings suggest that LcINH1 regulate LcCWIN5 activity at the post-translational level to alter sucrose metabolism, thereby affecting early seed development in litchi.
Collapse
Affiliation(s)
- Lijun Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shuying Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Sha Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jinzhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Zhike Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yonghua Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Guibing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China.
| | - Jietang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
9
|
Li BJ, Bao RX, Shi YN, Grierson D, Chen KS. Auxin response factors: important keys for understanding regulatory mechanisms of fleshy fruit development and ripening. HORTICULTURE RESEARCH 2024; 11:uhae209. [PMID: 39372288 PMCID: PMC11450211 DOI: 10.1093/hr/uhae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/18/2024] [Indexed: 10/08/2024]
Abstract
Auxin response transcription factors (ARFs) form a large gene family, many of whose members operate at the final step of the auxin signaling pathway. ARFs participate directly in many aspects of plant growth and development. Here we summarize recent advances in understanding the roles of ARFs in regulating aspects of fleshy fruit development and ripening. ARFs play a crucial role in regulating fruit size, color, nutrients, texture, yield, and other properties that ultimately influence the ripening and quality of important crops such as tomato, apple, strawberry, and peach. ARFs impact these processes acting as positive, negative, or bidirectional regulators via phytohormone-dependent or -independent mechanisms. In the phytohormone-dependent pathway, ARFs act as a central hub linking interactions with multiple phytohormones generating diverse effects. The three domains within ARFs, namely the DNA-binding domain, the middle region, and the carboxy-terminal dimerization domain, exhibit distinct yet overlapping functions, contributing to a range of mechanisms mediated by ARFs. These findings not only provide a profound understanding of ARF functions, but also raise new questions. Further exploration can lead to a more comprehensive understanding of the regulatory mechanisms of fleshy fruit development and ripening mediated by ARFs.
Collapse
Affiliation(s)
- Bai-Jun Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, No.100, East Daxue Road, Xixiangtang District, Nanning, Guangxi 530004, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, No. 866, Yuhangtang Road, Xihu District, Hangzhou, 310058, China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, No. 866, Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Ruo-Xuan Bao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, No.100, East Daxue Road, Xixiangtang District, Nanning, Guangxi 530004, China
| | - Yan-Na Shi
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, No. 866, Yuhangtang Road, Xihu District, Hangzhou, 310058, China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, No. 866, Yuhangtang Road, Xihu District, Hangzhou 310058, China
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, No. 866, Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Donald Grierson
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, No. 866, Yuhangtang Road, Xihu District, Hangzhou, 310058, China
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Kun-Song Chen
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, No. 866, Yuhangtang Road, Xihu District, Hangzhou, 310058, China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, No. 866, Yuhangtang Road, Xihu District, Hangzhou 310058, China
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, No. 866, Yuhangtang Road, Xihu District, Hangzhou 310058, China
| |
Collapse
|
10
|
Xie W, Lai X, Wu Y, Li Z, Zhu J, Huang Y, Zhang F. Transcription Factor and Protein Regulatory Network of PmACRE1 in Pinus massoniana Response to Pine Wilt Nematode Infection. PLANTS (BASEL, SWITZERLAND) 2024; 13:2672. [PMID: 39409542 PMCID: PMC11479228 DOI: 10.3390/plants13192672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024]
Abstract
Pine wilt disease, caused by Bursaphelenchus xylophilus, is a highly destructive and contagious forest affliction. Often termed the "cancer" of pine trees, it severely impacts the growth of Masson pine (Pinus massoniana). Previous studies have demonstrated that ectopic expression of the PmACRE1 gene from P. massoniana in Arabidopsis thaliana notably enhances resistance to pine wilt nematode infection. To further elucidate the transcriptional regulation and protein interactions of the PmACRE1 in P. massoniana in response to pine wilt nematode infection, we cloned a 1984 bp promoter fragment of the PmACRE1 gene, a transient expression vector was constructed by fusing this promoter with the reporter GFP gene, which successfully activated the GFP expression. DNA pull-down assays identified PmMYB8 as a trans-acting factor regulating PmACRE1 gene expression. Subsequently, we found that the PmACRE1 protein interacts with several proteins, including the ATP synthase CF1 α subunit, ATP synthase CF1 β subunit, extracellular calcium-sensing receptor (PmCAS), caffeoyl-CoA 3-O-methyltransferase (PmCCoAOMT), glutathione peroxidase, NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase 1, cinnamyl alcohol dehydrogenase, auxin response factor 16, and dehydrin 1 protein. Bimolecular fluorescence complementation (BiFC) assays confirmed the interactions between PmACRE1 and PmCCoAOMT, as well as PmCAS proteins in vitro. These findings provide preliminary insights into the regulatory role of PmACRE1 in P. massoniana's defense against pine wilt nematode infection.
Collapse
Affiliation(s)
- Wanfeng Xie
- Jinshan College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.X.); (Z.L.)
- Key Laboratory of Integrated Pest Management in Ecological Forests (Fujian Province University), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (Y.W.); (J.Z.)
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaolin Lai
- Key Laboratory of Integrated Pest Management in Ecological Forests (Fujian Province University), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (Y.W.); (J.Z.)
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuxiao Wu
- Key Laboratory of Integrated Pest Management in Ecological Forests (Fujian Province University), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (Y.W.); (J.Z.)
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zheyu Li
- Jinshan College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.X.); (Z.L.)
| | - Jingwen Zhu
- Key Laboratory of Integrated Pest Management in Ecological Forests (Fujian Province University), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (Y.W.); (J.Z.)
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu Huang
- Fujian Academy of Forestry, Fuzhou 350000, China
| | - Feiping Zhang
- Key Laboratory of Integrated Pest Management in Ecological Forests (Fujian Province University), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (Y.W.); (J.Z.)
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
11
|
Yan W, Wang R, Zhang Y, Zhang X, Wang Q. A Medicago truncatula HD-ZIP gene MtHB2 is involved in modulation of root development by regulating auxin response. FRONTIERS IN PLANT SCIENCE 2024; 15:1466431. [PMID: 39363924 PMCID: PMC11446790 DOI: 10.3389/fpls.2024.1466431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024]
Abstract
HD-Zip proteins are plant-specific transcription factors known for their diverse functions in regulating plant growth, development, and responses to environmental stresses. Among the Medicago truncatula HD-Zip II genes, MtHB2 has been previously linked to abiotic stress responses. In this study, we conducted a functional characterization of MtHB2 in the regulation of root growth and development. Upon auxin stimulation, expression of MtHB2 was promptly up-regulated. Overexpression of MtHB2 in Arabidopsis thaliana led to reduced primary root growth and inhibited lateral root formation. Interestingly, the transgenic plants expressing MtHB2 exhibited differential responses to three types of auxins (IAA, NAA, and 2,4-D) in terms of root growth and development compared to the wild-type plants. Specifically, primary root growth was less affected, and lateral root formation was enhanced in the transgenic plants when exposed to auxins. This differential response suggests a potential role for MtHB2 in modulating auxin transport and accumulation, as evidenced by the reduced sensitivity of the transgenic plants to the auxin transport inhibitor NPA and lower expression levels of auxin-related reporters such as PIN-FORMED (PIN1)::PIN1-GFP, PIN3::PIN3-GFP, PIN7::PIN7-GFP, and DR5::GFP compared to wild-type plants. Additionally, microarray analysis of the root tissues revealed down-regulation of several auxin-responsive genes in transgenic seedlings compared to wild-type plants. These findings collectively indicate that MtHB2 plays a critical regulatory role in root growth and development by modulating auxin accumulation and response in the roots.
Collapse
Affiliation(s)
- Wei Yan
- Institute of Biotechnology, Inner Mongolia Academy of Science and Technology, Hohhot, China
| | - Runze Wang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Yutong Zhang
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiuxiu Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Qin Wang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| |
Collapse
|
12
|
Zhang Y, Li Q, Jiang M, Tian H, Khalid MHB, Wang Y, Yu H. The Small Auxin-Up RNA 50 (SAUR50) Gene from Ammopiptanthus nanus Negatively Regulates Drought Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:2512. [PMID: 39273996 PMCID: PMC11397199 DOI: 10.3390/plants13172512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024]
Abstract
Drought stress is a primary abiotic stress that causes significant losses to forestry and agricultural production. Therefore, exploring drought-responsive genes and their regulatory mechanism is crucial for plant molecular breeding for forestry and agriculture production safety. Small auxin-up RNA (SAUR) proteins are essential in plant growth and development but show functional diversity in stress response. In this study, the transcriptome sequencing data of Ammopiptanthus nanus seedlings revealed that the expression of AnSAUR50 was continuously downregulated under drought stress. Hence, the AnSAUR50 gene was cloned and functionally analyzed in drought response. The results showed that the coding sequence of AnSAUR50 was 315 bp in length and encoded 104 amino acids. The AnSAUR50 protein showed high conservation, possessed a SAUR-specific domain, and localized in the nucleus and cell membrane. The heterologous expression of the AnSAUR50 gene enhanced the drought sensitivity of the transgenic Arabidopsis with a lower survival rate, biomass, and higher malondialdehyde content and relative electrolyte leakage. Moreover, transgenic plants showed shorter root lengths and bigger stomatal apertures, resulting in facilitating water loss under drought stress. The study indicates that AnSAUR50 negatively regulates drought tolerance by inhibiting root growth and stomatal closure, which provides insights into the underlying function and regulatory mechanism of SAURs in plant stress response.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Ecological Security and Protection Key Laboratory of Sichuan Province, College of Life Science & Biotechnology, Mianyang Normal University, Mianyang 621000, China
| | - Qi Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengyang Jiang
- Ecological Security and Protection Key Laboratory of Sichuan Province, College of Life Science & Biotechnology, Mianyang Normal University, Mianyang 621000, China
| | - Hui Tian
- Ecological Security and Protection Key Laboratory of Sichuan Province, College of Life Science & Biotechnology, Mianyang Normal University, Mianyang 621000, China
| | - Muhammad Hayder Bin Khalid
- National Research Centre of Intercropping, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Yingge Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoqiang Yu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
13
|
Jiang Z, Zhao Y, Gao B, Wei X, Jiao P, Zhang H, Liu S, Guan S, Ma Y. ZmARF16 Regulates ZCN12 to Promote the Accumulation of Florigen and Accelerate Flowering. Int J Mol Sci 2024; 25:9607. [PMID: 39273554 PMCID: PMC11395262 DOI: 10.3390/ijms25179607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Auxin response factors(ARFs) are a class of transcription factors that regulate the expression of auxin response genes and play a crucial role in plant growth and development. Florigen plays a crucial role in the process of flowering. However, the process by which auxin regulates the accumulation of florigen remains largely unclear. This study found that the expression of ZmARF16 in maize increases during flowering, and the genetic transformation of ZmARF16 accelerates the flowering process in Arabidopsis and maize. Furthermore, ZmARF16 was found to be positively correlated with the transcription of the ZCN12 gene. Similarly, the FT-like gene ZCN12 in maize rescues the late flowering phenotype of the FT mutation in Arabidopsis. Moreover, ZCN12 actively participates in the accumulation of florigen and the flowering process. Further research revealed that ZmARF16 positively responds to the auxin signal, and that the interaction between ZmARF16 and the ZCN12 promoter, as well as the subsequent promotion of ZCN12 gene expression, leads to early flowering. This was confirmed through a yeast one-hybrid and dual-luciferase assay. Therefore, the study provides evidence that the ZmARF16-ZCN12 module plays a crucial role in regulating the flowering process of maize.
Collapse
Affiliation(s)
- Zhenzhong Jiang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China;
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China; (Y.Z.); (B.G.); (X.W.); (P.J.); (H.Z.); (S.L.)
| | - Yang Zhao
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China; (Y.Z.); (B.G.); (X.W.); (P.J.); (H.Z.); (S.L.)
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Bai Gao
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China; (Y.Z.); (B.G.); (X.W.); (P.J.); (H.Z.); (S.L.)
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Xiaotong Wei
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China; (Y.Z.); (B.G.); (X.W.); (P.J.); (H.Z.); (S.L.)
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Peng Jiao
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China; (Y.Z.); (B.G.); (X.W.); (P.J.); (H.Z.); (S.L.)
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Honglin Zhang
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China; (Y.Z.); (B.G.); (X.W.); (P.J.); (H.Z.); (S.L.)
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Siyan Liu
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China; (Y.Z.); (B.G.); (X.W.); (P.J.); (H.Z.); (S.L.)
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Shuyan Guan
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China; (Y.Z.); (B.G.); (X.W.); (P.J.); (H.Z.); (S.L.)
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Yiyong Ma
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China; (Y.Z.); (B.G.); (X.W.); (P.J.); (H.Z.); (S.L.)
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
14
|
Li Z, Ye J, Yuan Q, Zhang M, Wang X, Wang J, Wang T, Qian H, Wei X, Yang Y, Shang L, Feng Y. BTA2 regulates tiller angle and the shoot gravity response through controlling auxin content and distribution in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1966-1982. [PMID: 38940609 DOI: 10.1111/jipb.13726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/09/2024] [Indexed: 06/29/2024]
Abstract
Tiller angle is a key agricultural trait that establishes plant architecture, which in turn strongly affects grain yield by influencing planting density in rice. The shoot gravity response plays a crucial role in the regulation of tiller angle in rice, but the underlying molecular mechanism is largely unknown. Here, we report the identification of the BIG TILLER ANGLE2 (BTA2), which regulates tiller angle by controlling the shoot gravity response in rice. Loss-of-function mutation of BTA2 dramatically reduced auxin content and affected auxin distribution in rice shoot base, leading to impaired gravitropism and therefore a big tiller angle. BTA2 interacted with AUXIN RESPONSE FACTOR7 (ARF7) to modulate rice tiller angle through the gravity signaling pathway. The BTA2 protein was highly conserved during evolution. Sequence variation in the BTA2 promoter of indica cultivars harboring a less expressed BTA2 allele caused lower BTA2 expression in shoot base and thus wide tiller angle during rice domestication. Overexpression of BTA2 significantly increased grain yield in the elite rice cultivar Huanghuazhan under appropriate dense planting conditions. Our findings thus uncovered the BTA2-ARF7 module that regulates tiller angle by mediating the shoot gravity response. Our work offers a target for genetic manipulation of plant architecture and valuable information for crop improvement by producing the ideal plant type.
Collapse
Affiliation(s)
- Zhen Li
- China National Center for Rice Improvement, State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Junhua Ye
- China National Center for Rice Improvement, State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qiaoling Yuan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Mengchen Zhang
- China National Center for Rice Improvement, State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| | - Xingyu Wang
- China National Center for Rice Improvement, State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jing Wang
- China National Center for Rice Improvement, State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Tianyi Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Hongge Qian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Xinghua Wei
- China National Center for Rice Improvement, State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| | - Yaolong Yang
- China National Center for Rice Improvement, State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| | - Lianguang Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Yue Feng
- China National Center for Rice Improvement, State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| |
Collapse
|
15
|
Wei R, Ma L, Ma S, Xu L, Ma T, Ma Y, Cheng Z, Dang J, Li S, Chai Q. Intrinsic Mechanism of CaCl 2 Alleviation of H 2O 2 Inhibition of Pea Primary Root Gravitropism. Int J Mol Sci 2024; 25:8613. [PMID: 39201298 PMCID: PMC11354692 DOI: 10.3390/ijms25168613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Normal root growth is essential for the plant uptake of soil nutrients and water. However, exogenous H2O2 inhibits the gravitropic growth of pea primary roots. It has been shown that CaCl2 application can alleviate H2O2 inhibition, but the exact alleviation mechanism is not clear. Therefore, the present study was carried out by combining the transcriptome and metabolome with a view to investigate in depth the mechanism of action of exogenous CaCl2 to alleviate the inhibition of pea primordial root gravitropism by H2O2. The results showed that the addition of CaCl2 (10 mmol·L-1) under H2O2 stress (150 mmol·L-1) significantly increased the H2O2 and starch content, decreased peroxidase (POD) activity, and reduced the accumulation of sugar metabolites and lignin in pea primary roots. Down-regulated genes regulating peroxidase, respiratory burst oxidase, and lignin synthesis up-regulated PGM1, a key gene for starch synthesis, and activated the calcium and phytohormone signaling pathways. In summary, 10 mmol·L-1 CaCl2 could alleviate H2O2 stress by modulating the oxidative stress response, signal transduction, and starch and lignin accumulation within pea primary roots, thereby promoting root gravitropism. This provides new insights into the mechanism by which CaCl2 promotes the gravitropism of pea primary roots under H2O2 treatment.
Collapse
Affiliation(s)
- Ruonan Wei
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Lei Ma
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaoying Ma
- Laboratory and Site Management Center, Gansu Agricultural University, Lanzhou 730070, China;
| | - Ling Xu
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Tingfeng Ma
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Yantong Ma
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Zhen Cheng
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Junhong Dang
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Sheng Li
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
- State Key Laboratory of Arid-land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiang Chai
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Arid-land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
16
|
Gao X, Liu X, Zhang H, Cheng L, Wang X, Zhen C, Du H, Chen Y, Yu H, Zhu B, Xiao J. Genome-Wide Identification, Expression, and Interaction Analysis of the Auxin Response Factor and AUX/ IAA Gene Families in Vaccinium bracteatum. Int J Mol Sci 2024; 25:8385. [PMID: 39125955 PMCID: PMC11312502 DOI: 10.3390/ijms25158385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Auxin, a plant hormone, plays diverse roles in the modulation of plant growth and development. The transport and signal transduction of auxin are regulated by various factors involved in shaping plant morphology and responding to external environmental conditions. The auxin signal transduction is primarily governed by the following two gene families: the auxin response factor (ARF) and auxin/indole-3-acetic acid (AUX/IAA). However, a comprehensive genomic analysis involving the expression profiles, structures, and functional features of the ARF and AUX/IAA gene families in Vaccinium bracteatum has not been carried out to date. RESULTS Through the acquisition of genomic and expression data, coupled with an analysis using online tools, two gene family members were identified. This groundwork provides a distinguishing characterization of the chosen gene families in terms of expression, interaction, and response in the growth and development of plant fruits. In our genome-wide search of the VaARF and VaIAA genes in Vaccinium bracteatum, we identified 26 VaARF and 17 VaIAA genes. We analyzed the sequence and structural characteristics of these VaARF and VaIAA genes. We found that 26 VaARF and 17 VaIAA genes were divided into six subfamilies. Based on protein interaction predictions, VaIAA1 and VaIAA20 were designated core members of VaIAA gene families. Moreover, an analysis of expression patterns showed that 14 ARF genes and 12 IAA genes exhibited significantly varied expressions during fruit development. CONCLUSION Two key genes, namely, VaIAA1 and VaIAA20, belonging to a gene family, play a potentially crucial role in fruit development through 26 VaARF-IAAs. This study provides a valuable reference for investigating the molecular mechanism of fruit development and lays the foundation for further research on Vaccinium bracteatum.
Collapse
Affiliation(s)
- Xuan Gao
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (X.G.); (X.L.); (L.C.); (C.Z.); (H.D.)
| | - Xiaohui Liu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (X.G.); (X.L.); (L.C.); (C.Z.); (H.D.)
| | - Hong Zhang
- Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (H.Z.); (X.W.); (Y.C.); (H.Y.)
| | - Li Cheng
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (X.G.); (X.L.); (L.C.); (C.Z.); (H.D.)
| | - Xingliang Wang
- Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (H.Z.); (X.W.); (Y.C.); (H.Y.)
| | - Cheng Zhen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (X.G.); (X.L.); (L.C.); (C.Z.); (H.D.)
| | - Haijing Du
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (X.G.); (X.L.); (L.C.); (C.Z.); (H.D.)
| | - Yufei Chen
- Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (H.Z.); (X.W.); (Y.C.); (H.Y.)
| | - Hongmei Yu
- Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (H.Z.); (X.W.); (Y.C.); (H.Y.)
| | - Bo Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (X.G.); (X.L.); (L.C.); (C.Z.); (H.D.)
| | - Jiaxin Xiao
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (X.G.); (X.L.); (L.C.); (C.Z.); (H.D.)
| |
Collapse
|
17
|
Wang G, Zeng J, Du C, Tang Q, Hua Y, Chen M, Yang G, Tu M, He G, Li Y, He J, Chang J. Divergent Roles of the Auxin Response Factors in Lemongrass ( Cymbopogon flexuosus (Nees ex Steud.) W. Watson) during Plant Growth. Int J Mol Sci 2024; 25:8154. [PMID: 39125724 PMCID: PMC11312390 DOI: 10.3390/ijms25158154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Auxin Response Factors (ARFs) make up a plant-specific transcription factor family that mainly couples perception of the phytohormone, auxin, and gene expression programs and plays an important and multi-faceted role during plant growth and development. Lemongrass (Cymbopogon flexuosus) is a representative Cymbopogon species widely used in gardening, beverages, fragrances, traditional medicine, and heavy metal phytoremediation. Biomass yield is an important trait for several agro-economic purposes of lemongrass, such as landscaping, essential oil production, and phytoremediation. Therefore, we performed gene mining of CfARFs and identified 26 and 27 CfARF-encoding genes in each of the haplotype genomes of lemongrass, respectively. Phylogenetic and domain architecture analyses showed that CfARFs can be divided into four groups, among which groups 1, 2, and 3 correspond to activator, repressor, and ETTN-like ARFs, respectively. To identify the CfARFs that may play major roles during the growth of lemongrass plants, RNA-seq was performed on three tissues (leaf, stem, and root) and four developmental stages (3-leaf, 4-leaf, 5-leaf. and mature stages). The expression profiling of CfARFs identified several highly expressed activator and repressor CfARFs and three CfARFs (CfARF3, 18, and 35) with gradually increased levels during leaf growth. Haplotype-resolved transcriptome analysis revealed that biallelic expression dominance is frequent among CfARFs and contributes to their gene expression patterns. In addition, co-expression network analysis identified the modules enriched with CfARFs. By establishing orthologous relationships among CfARFs, sorghum ARFs, and maize ARFs, we showed that CfARFs were mainly expanded by whole-genome duplications, and that the duplicated CfARFs might have been divergent due to differential expression and variations in domains and motifs. Our work provides a detailed catalog of CfARFs in lemongrass, representing a first step toward characterizing CfARF functions, and may be useful in molecular breeding to enhance lemongrass plant growth.
Collapse
Affiliation(s)
- Guoli Wang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (G.W.); (J.Z.)
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (C.D.); (Q.T.); (M.C.); (G.Y.); (G.H.); (Y.L.)
| | - Jian Zeng
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (G.W.); (J.Z.)
| | - Canghao Du
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (C.D.); (Q.T.); (M.C.); (G.Y.); (G.H.); (Y.L.)
| | - Qi Tang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (C.D.); (Q.T.); (M.C.); (G.Y.); (G.H.); (Y.L.)
| | - Yuqing Hua
- Hubei Technical Engineering Research Center for Chemical Utilization and Engineering Development of Agricultural and Byproduct Resources, School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (M.T.)
| | - Mingjie Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (C.D.); (Q.T.); (M.C.); (G.Y.); (G.H.); (Y.L.)
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (C.D.); (Q.T.); (M.C.); (G.Y.); (G.H.); (Y.L.)
| | - Min Tu
- Hubei Technical Engineering Research Center for Chemical Utilization and Engineering Development of Agricultural and Byproduct Resources, School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (M.T.)
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (C.D.); (Q.T.); (M.C.); (G.Y.); (G.H.); (Y.L.)
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (C.D.); (Q.T.); (M.C.); (G.Y.); (G.H.); (Y.L.)
| | - Jinming He
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (G.W.); (J.Z.)
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (C.D.); (Q.T.); (M.C.); (G.Y.); (G.H.); (Y.L.)
| |
Collapse
|
18
|
Huang X, Shad MA, Shu Y, Nong S, Li X, Wu S, Yang J, Rao MJ, Aslam MZ, Huang X, Huang D, Wang L. Genome-Wide Analysis of the Auxin/Indoleacetic Acid ( Aux/IAA) Gene Family in Autopolyploid Sugarcane ( Saccharum spontaneum). Int J Mol Sci 2024; 25:7473. [PMID: 39000581 PMCID: PMC11242263 DOI: 10.3390/ijms25137473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
The auxin/indoleacetic acid (Aux/IAA) family plays a central role in regulating gene expression during auxin signal transduction. Nonetheless, there is limited knowledge regarding this gene family in sugarcane. In this study, 92 members of the IAA family were identified in Saccharum spontaneum, distributed on 32 chromosomes, and classified into three clusters based on phylogeny and motif compositions. Segmental duplication and recombination events contributed largely to the expansion of this superfamily. Additionally, cis-acting elements in the promoters of SsIAAs involved in plant hormone regulation and stress responsiveness were predicted. Transcriptomics data revealed that most SsIAA expressions were significantly higher in stems and basal parts of leaves, and at nighttime, suggesting that these genes might be involved in sugar transport. QRT-PCR assays confirmed that cold and salt stress significantly induced four and five SsIAAs, respectively. GFP-subcellular localization showed that SsIAA23 and SsIAA12a were localized in the nucleus, consistent with the results of bioinformatics analysis. In conclusion, to a certain extent, the functional redundancy of family members caused by the expansion of the sugarcane IAA gene family is related to stress resistance and regeneration of sugarcane as a perennial crop. This study reveals the gene evolution and function of the SsIAA gene family in sugarcane, laying the foundation for further research on its mode of action.
Collapse
Affiliation(s)
- Xiaojin Huang
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China (M.J.R.); (M.Z.A.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
- National Experimental Plant Science Education Demonstration Center, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Munsif Ali Shad
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China (M.J.R.); (M.Z.A.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
- National Experimental Plant Science Education Demonstration Center, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yazhou Shu
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China (M.J.R.); (M.Z.A.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
- National Experimental Plant Science Education Demonstration Center, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Sikun Nong
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China (M.J.R.); (M.Z.A.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xianlong Li
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China (M.J.R.); (M.Z.A.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Songguo Wu
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China (M.J.R.); (M.Z.A.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Juan Yang
- National Experimental Plant Science Education Demonstration Center, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Muhammad Junaid Rao
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China (M.J.R.); (M.Z.A.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
- National Experimental Plant Science Education Demonstration Center, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Muhammad Zeshan Aslam
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China (M.J.R.); (M.Z.A.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
- National Experimental Plant Science Education Demonstration Center, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xiaoti Huang
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China (M.J.R.); (M.Z.A.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Dige Huang
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China (M.J.R.); (M.Z.A.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Lingqiang Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China (M.J.R.); (M.Z.A.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
- National Experimental Plant Science Education Demonstration Center, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
19
|
Wang Y, Wang Q, Zhang F, Han C, Li W, Ren M, Wang Y, Qi K, Xie Z, Zhang S, Tao S. PbARF19-mediated auxin signaling regulates lignification in pear fruit stone cells. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112103. [PMID: 38657909 DOI: 10.1016/j.plantsci.2024.112103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
The stone cells in pear fruits cause rough flesh and low juice, seriously affecting the taste. Lignin has been demonstrated as the main component of stone cells. Auxin, one of the most important plant hormone, regulates most physiological processes in plants including lignification. However, the concentration effect and regulators of auxin on pear fruits stone cell formation remains unclear. Here, endogenous indole-3-acetic acid (IAA) and stone cells were found to be co-localized in lignified cells by immunofluorescence localization analysis. The exogenous treatment of different concentrations of IAA demonstrated that the application of 200 µM IAA significantly reduced stone cell content, while concentrations greater than 500 µM significantly increased stone cell content. Besides, 31 auxin response factors (ARFs) were identified in pear genome. Putative ARFs were predicted as critical regulators involved in the lignification of pear flesh cells by phylogenetic relationship and expression analysis. Furthermore, the negative regulation of PbARF19 on stone cell formation in pear fruit was demonstrated by overexpression in pear fruitlets and Arabidopsis. These results illustrated that the PbARF19-mediated auxin signal plays a critical role in the lignification of pear stone cell by regulating lignin biosynthetic genes. This study provides theoretical and practical guidance for improving fruit quality in pear production.
Collapse
Affiliation(s)
- Yanling Wang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Wang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Fanhang Zhang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Chenyang Han
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen Li
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Mei Ren
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yueyang Wang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaijie Qi
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihua Xie
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shutian Tao
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
20
|
Cai W, Tao Y, Cheng X, Wan M, Gan J, Yang S, Okita TW, He S, Tian L. CaIAA2-CaARF9 module mediates the trade-off between pepper growth and immunity. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2054-2074. [PMID: 38450864 PMCID: PMC11182598 DOI: 10.1111/pbi.14325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
To challenge the invasion of various pathogens, plants re-direct their resources from plant growth to an innate immune defence system. However, the underlying mechanism that coordinates the induction of the host immune response and the suppression of plant growth remains unclear. Here we demonstrate that an auxin response factor, CaARF9, has dual roles in enhancing the immune resistance to Ralstonia solanacearum infection and in retarding plant growth by repressing the expression of its target genes as exemplified by Casmc4, CaLBD37, CaAPK1b and CaRROP1. The expression of these target genes not only stimulates plant growth but also negatively impacts pepper resistance to R. solanacearum. Under normal conditions, the expression of Casmc4, CaLBD37, CaAPK1b and CaRROP1 is active when promoter-bound CaARF9 is complexed with CaIAA2. Under R. solanacearum infection, however, degradation of CaIAA2 is triggered by SA and JA-mediated signalling defence by the ubiquitin-proteasome system, which enables CaARF9 in the absence of CaIAA2 to repress the expression of Casmc4, CaLBD37, CaAPK1b and CaRROP1 and, in turn, impeding plant growth while facilitating plant defence to R. solanacearum infection. Our findings uncover an exquisite mechanism underlying the trade-off between plant growth and immunity mediated by the transcriptional repressor CaARF9 and its deactivation when complexed with CaIAA2.
Collapse
Affiliation(s)
- Weiwei Cai
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture ScienceZhejiang A&F UniversityHangzhouZhejiangChina
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural AffairsZhejiang A&F UniversityHangzhouZhejiangChina
| | - Yilin Tao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture ScienceZhejiang A&F UniversityHangzhouZhejiangChina
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural AffairsZhejiang A&F UniversityHangzhouZhejiangChina
| | - Xingge Cheng
- Agricultural CollegeFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Meiyun Wan
- Agricultural CollegeFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Jianghuang Gan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture ScienceZhejiang A&F UniversityHangzhouZhejiangChina
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural AffairsZhejiang A&F UniversityHangzhouZhejiangChina
| | - Sheng Yang
- Agricultural CollegeFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Thomas W. Okita
- Institute of Biological ChemistryWashington State UniversityPullmanWashingtonUSA
| | - Shuilin He
- Agricultural CollegeFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Li Tian
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture ScienceZhejiang A&F UniversityHangzhouZhejiangChina
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural AffairsZhejiang A&F UniversityHangzhouZhejiangChina
| |
Collapse
|
21
|
Long Y, Zeng J, Liu X, Wang Z, Tong Q, Zhou R, Liu X. Transcriptomic and metabolomic profiling reveals molecular regulatory network involved in flower development and phenotypic changes in two Lonicera macranthoides varieties. 3 Biotech 2024; 14:174. [PMID: 38855147 PMCID: PMC11153451 DOI: 10.1007/s13205-024-04019-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/26/2024] [Indexed: 06/11/2024] Open
Abstract
Due to the medicinal importance of the flowers of Xianglei type (XL) Lonicera macranthoides, it is important to understand the molecular mechanisms that underlie their development. In this study, we elucidated the transcriptomic and metabolomic mechanisms that underlie the flower development mechanism of two L. macranthoides varieties. In this study, 3435 common differentially expressed unigenes (DEGs) and 1138 metabolites were identified. These common DEGs were mainly enriched in plant hormone signal transduction pathways. Metabolomic analysis showed that amino acids were the main metabolites of differential accumulation in wild-type (WT) L. macranthoides, whereas in XL, they were flavonoids and phenylalanine metabolites. Genes and transcription factors (TFs), such as MYB340, histone deacetylase 1 (HDT1), small auxin-up RNA 32 (SAUR32), auxin response factor 6 (ARF6), PIN-LIKES 7 (PILS7), and WRKY6, likely drive metabolite accumulation. Plant hormone signals, especially auxin signals, and various TFs induce downstream flower organ recognition genes, resulting in a differentiation of the two L. macranthoides varieties in terms of their developmental trajectories. In addition, photoperiodic, autonomous, and plant hormone pathways jointly regulated the L. macranthoides corolla opening. SAUR32, Arabidopsis response regulator 9 (ARR9), Gibberellin receptor (GID1B), and Constans-like 10 (COL10) were closely related to the unfolding of the L. macranthoides corolla. These findings offer valuable understanding of the flower growth process of L. macranthoides and the excellent XL phenotypes at the molecular level. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04019-1.
Collapse
Affiliation(s)
- YuQing Long
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-Scale Genuine Medicinal Materials, Changsha, 410208 Hunan Province China
| | - Juan Zeng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-Scale Genuine Medicinal Materials, Changsha, 410208 Hunan Province China
| | - XiaoRong Liu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-Scale Genuine Medicinal Materials, Changsha, 410208 Hunan Province China
| | - ZhiHui Wang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-Scale Genuine Medicinal Materials, Changsha, 410208 Hunan Province China
| | - QiaoZhen Tong
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-Scale Genuine Medicinal Materials, Changsha, 410208 Hunan Province China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208 Hunan Province China
| | - RiBao Zhou
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-Scale Genuine Medicinal Materials, Changsha, 410208 Hunan Province China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208 Hunan Province China
| | - XiangDan Liu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-Scale Genuine Medicinal Materials, Changsha, 410208 Hunan Province China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208 Hunan Province China
| |
Collapse
|
22
|
Jin F, Zhu L, Hou L, Li H, Li L, Xiao G. Auxin resistant 2 and short hypocotyl 2 regulate cotton fiber initiation and elongation. PLANT PHYSIOLOGY 2024; 195:2032-2052. [PMID: 38527791 DOI: 10.1093/plphys/kiae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/18/2024] [Accepted: 02/18/2024] [Indexed: 03/27/2024]
Abstract
Auxin, a pivotal regulator of diverse plant growth processes, remains central to development. The auxin-responsive genes auxin/indole-3-acetic acids (AUX/IAAs) are indispensable for auxin signal transduction, which is achieved through intricate interactions with auxin response factors (ARFs). Despite this, the potential of AUX/IAAs to govern the development of the most fundamental biological unit, the single cell, remains unclear. In this study, we harnessed cotton (Gossypium hirsutum) fiber, a classic model for plant single-cell investigation, to determine the complexities of AUX/IAAs. Our research identified 2 pivotal AUX/IAAs, auxin resistant 2 (GhAXR2) and short hypocotyl 2 (GhSHY2), which exhibit opposite control over fiber development. Notably, suppressing GhAXR2 reduced fiber elongation, while silencing GhSHY2 fostered enhanced fiber elongation. Investigating the mechanistic intricacies, we identified specific interactions between GhAXR2 and GhSHY2 with distinct ARFs. GhAXR2's interaction with GhARF6-1 and GhARF23-2 promoted fiber cell development through direct binding to the AuxRE cis-element in the constitutive triple response 1 promoter, resulting in transcriptional inhibition. In contrast, the interaction of GhSHY2 with GhARF7-1 and GhARF19-1 exerted a negative regulatory effect, inhibiting fiber cell growth by activating the transcription of xyloglucan endotransglucosylase/hydrolase 9 and cinnamate-4-hydroxylase. Thus, our study reveals the intricate regulatory networks surrounding GhAXR2 and GhSHY2, elucidating the complex interplay of multiple ARFs in AUX/IAA-mediated fiber cell growth. This work enhances our understanding of single-cell development and has potential implications for advancing plant growth strategies and agricultural enhancements.
Collapse
Affiliation(s)
- Fei Jin
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Liping Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Liyong Hou
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Hongbin Li
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Ling Li
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
23
|
Pan G, Yang X, He J, Liu Z, Chen F, Chen J. Comprehensive analyses of the ARF gene family in cannabis reveals their potential roles in regulating cannabidiol biosynthesis and male flower development. FRONTIERS IN PLANT SCIENCE 2024; 15:1394337. [PMID: 38903430 PMCID: PMC11188406 DOI: 10.3389/fpls.2024.1394337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024]
Abstract
Background Cannabidiol (CBD), as an important therapeutic property of the cannabis plants, is mainly produced in the flower organs. Auxin response factors (ARFs) are play a crucial role in flower development and secondary metabolite production. However, the specific roles of ARF gene family in cannabis remain unknown. Methods In this study, various bioinformatics analysis of CsARF genes were conducted using online website and bioinformatics, quantitative real time PCR technology was used to investigate the expression patterns of the CsARF gene family in different tissues of different cannabis varieties, and subcellular localization analysis was performed in tobacco leaf. Results In this study, 22 CsARF genes were identified and found to be unevenly distributed across 9 chromosomes of the cannabis genome. Phylogenetic analysis revealed that the ARF proteins were divided into 4 subgroups. Duplication analysis identified one pair of segmental/whole-genome duplicated CsARF, and three pairs of tandemly duplicated CsARF. Collinearity analysis revealed that two CsARF genes, CsARF4 and CsARF19, were orthologous in both rice and soybean. Furthermore, subcellular localization analysis showed that CsARF2 was localized in the nucleus. Tissue-specific expression analysis revealed that six genes were highly expressed in cannabis male flowers, and among these genes, 3 genes were further found to be highly expressed at different developmental stages of male flowers. Meanwhile, correlation analysis between the expression level of CsARF genes and CBD content in two cultivars 'H8' and 'Y7' showed that the expression level of CsARF13 was negatively correlated with CBD content, while the expression levels of six genes were positively correlated with CBD content. In addition, most of CsARF genes were responsive to IAA treatment. Conclusion Our study laid a foundation for the further studies of CsARFs function in cannabis, and provides candidate genes for breeding varieties with high CBD yield in cannabis production.
Collapse
Affiliation(s)
- Gen Pan
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomic, Changsha Medical University, Changsha, China
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Xiaojuan Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Jiajia He
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomic, Changsha Medical University, Changsha, China
| | - Zhenyi Liu
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomic, Changsha Medical University, Changsha, China
| | - Fengming Chen
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomic, Changsha Medical University, Changsha, China
| | - Jiayi Chen
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomic, Changsha Medical University, Changsha, China
| |
Collapse
|
24
|
Ma X, He Z, Yuan Y, Liang Z, Zhang H, Lalun VO, Liu Z, Zhang Y, Huang Z, Huang Y, Li J, Zhao M. The transcriptional control of LcIDL1-LcHSL2 complex by LcARF5 integrates auxin and ethylene signaling for litchi fruitlet abscission. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1206-1226. [PMID: 38517216 DOI: 10.1111/jipb.13646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/01/2024] [Indexed: 03/23/2024]
Abstract
At the physiological level, the interplay between auxin and ethylene has long been recognized as crucial for the regulation of organ abscission in plants. However, the underlying molecular mechanisms remain unknown. Here, we identified transcription factors involved in indoleacetic acid (IAA) and ethylene (ET) signaling that directly regulate the expression of INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) and its receptor HAESA (HAE), which are key components initiating abscission. Specifically, litchi IDA-like 1 (LcIDL1) interacts with the receptor HAESA-like 2 (LcHSL2). Through in vitro and in vivo experiments, we determined that the auxin response factor LcARF5 directly binds and activates both LcIDL1 and LcHSL2. Furthermore, we found that the ETHYLENE INSENSITIVE 3-like transcription factor LcEIL3 directly binds and activates LcIDL1. The expression of IDA and HSL2 homologs was enhanced in LcARF5 and LcEIL3 transgenic Arabidopsis plants, but reduced in ein3 eil1 mutants. Consistently, the expressions of LcIDL1 and LcHSL2 were significantly decreased in LcARF5- and LcEIL3-silenced fruitlet abscission zones (FAZ), which correlated with a lower rate of fruitlet abscission. Depletion of auxin led to an increase in 1-aminocyclopropane-1-carboxylic acid (the precursor of ethylene) levels in the litchi FAZ, followed by abscission activation. Throughout this process, LcARF5 and LcEIL3 were induced in the FAZ. Collectively, our findings suggest that the molecular interactions between litchi AUXIN RESPONSE FACTOR 5 (LcARF5)-LcIDL1/LcHSL2 and LcEIL3-LcIDL1 signaling modules play a role in regulating fruitlet abscission in litchi and provide a long-sought mechanistic explanation for how the interplay between auxin and ethylene is translated into the molecular events that initiate abscission.
Collapse
Affiliation(s)
- Xingshuai Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zidi He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Ye Yuan
- Dongguan Botanical Garden, Dongguan, 523128, China
| | - Zhijian Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Hang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Vilde Olsson Lalun
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Blindernveien 31, Oslo, 0316, Norway
| | - Zhuoyi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yanqing Zhang
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Zhiqiang Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yulian Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Minglei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
25
|
Duan S, Guan S, Fei R, Sun T, Kang X, Xin R, Song W, Sun X. Unraveling the role of PlARF2 in regulating deed formancy in Paeonia lactiflora. PLANTA 2024; 259:133. [PMID: 38668881 DOI: 10.1007/s00425-024-04411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/10/2024] [Indexed: 05/01/2024]
Abstract
MAIN CONCLUSION PlARF2 can positively regulate the seed dormancy in Paeonia lactiflora Pall. and bind the RY cis-element. Auxin, a significant phytohormone influencing seed dormancy, has been demonstrated to be regulated by auxin response factors (ARFs), key transcriptional modulators in the auxin signaling pathway. However, the role of this class of transcription factors (TFs) in perennials with complex seed dormancy mechanisms remains largely unexplored. Here, we cloned and characterized an ARF gene from Paeonia lactiflora, named PlARF2, which exhibited differential expression levels in the seeds during the process of seed dormancy release. The deduced amino acid sequence of PlARF2 had high homology with those of other plants and contained typical conserved Auxin_resp domain of the ARF family. Phylogenetic analysis revealed that PlARF2 was closely related to VvARF3 in Vitis vinifera. The subcellular localization and transcriptional activation assay showed that PlARF2 is a nuclear protein possessing transcriptional activation activity. The expression levels of dormancy-related genes in transgenic callus indicated that PlARF2 was positively correlated with the contents of PlABI3 and PlDOG1. The germination assay showed that PlARF2 promoted seed dormancy. Moreover, TF Centered Yeast one-hybrid assay (TF-Centered Y1H), electrophoretic mobility shift assay (EMSA) and dual-luciferase reporter assay analysis (Dual-Luciferase) provided evidence that PlARF2 can bind to the 'CATGCATG' motif. Collectively, our findings suggest that PlARF2, as TF, could be involved in the regulation of seed dormancy and may act as a repressor of germination.
Collapse
Affiliation(s)
- Siyang Duan
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Shixin Guan
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Riwen Fei
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Tianyi Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Xuening Kang
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Rujie Xin
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Wenhui Song
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Xiaomei Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China.
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China.
| |
Collapse
|
26
|
Wang Z, Shang Q, Zhang W, Huang D, Pan X. Identification of ARF genes in Juglans Sigillata Dode and analysis of their expression patterns under drought stress. Mol Biol Rep 2024; 51:539. [PMID: 38642202 DOI: 10.1007/s11033-024-09441-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/12/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Auxin response factor (ARF), a transcription factors that controls the expression of genes responsive to auxin, plays a key role in the regulation of plant growth and development. Analyses aimed at identifying ARF family genes and characterizing their functions in Juglans sigillata Dode are lacking. METHODS AND RESULTS We used bioinformatic approaches to identify members of the J. sigillata ARF gene family and analyze their evolutionary relationships, collinearity, cis-acting elements, and tissue-specific expression patterns. The expression patterns of ARF gene family members under natural drought conditions were also analyzed. The J. sigillata ARF gene family contained 31 members, which were unevenly distributed across 16 chromosomes. We constructed a phylogenetic tree of JsARF genes and other plant ARF genes. Cis-acting elements in the promoters of JsARF were predicted. JsARF28 showed higher expressions in both the roots and leaves. A heat map of the transcriptome data of the cluster analysis under drought stress indicated that JsARF3/9/11/17/20/26 are responsive to drought. The expression of the 11 ARF genes varied under PEG treatment and JsARF18 and JsARF20 were significantly up-regulated. CONCLUSIONS The interactions between abiotic stresses and plant hormones are supported by our cumulative data, which also offers a theoretical groundwork for comprehending the ARF mechanism and drought resistance in J. sigillata.
Collapse
Affiliation(s)
- Zhifan Wang
- College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, China
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Qing Shang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Wen'e Zhang
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Dong Huang
- College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, China.
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| | - Xuejun Pan
- College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, China.
- College of Agriculture, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
27
|
Ding C, Shao Z, Yan Y, Zhang G, Zeng D, Zhu L, Hu J, Gao Z, Dong G, Qian Q, Ren D. Carotenoid isomerase regulates rice tillering and grain productivity by its biosynthesis pathway. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:172-175. [PMID: 38314481 DOI: 10.1111/jipb.13617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024]
Abstract
Carotenoid isomerase activity and carotenoid content maintain the appropriate tiller number, photosynthesis, and grain yield. Interactions between the strigolactone and abscisic acid pathways regulates tiller formation.
Collapse
Affiliation(s)
- Chaoqing Ding
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Zhengji Shao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yuping Yan
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Li Zhu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qian Qian
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Deyong Ren
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| |
Collapse
|
28
|
Luo H, Li T, Guan Y, Zhang Z, Zhang Z, Zhang Z, Li H. FvemiR160-FveARF18A-FveAP1/FveFUL module regulates flowering time in woodland strawberry. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1130-1147. [PMID: 37967025 DOI: 10.1111/tpj.16544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023]
Abstract
Flowering is an indicator of plant transformation from vegetative to reproductive growth. miR160 has been shown to have a significant effect on the growth and development of fruits, leaves, and roots of plants or their stress response to environment, but the participation of miR160 in regulating flowering time in plants is unclear. In this study, we found that two FvemiR160s (FvemiR160a/FvemiR160b) mature sequences in strawberry (Fragaria vesca) were consistent. It was displayed that the miR160 mature sequence is highly conserved in various species, and the miR160 mature sequence formed by the 5' arm of the MIR160 precursor was more conserved. Three FveARFs in woodland strawberry were negatively regulated by FvemiR160a, among which FveARF18A was the most significant. Phylogenetic analysis indicated that FvemiR160 is closely related to apple (Malus domestica), grape (Vitis vinifera), and Arabidopsis thaliana, while FveARF18A is closely related to RcARF18. Subsequently, we demonstrated that FvemiR160a can target cutting FveARF18A to negatively regulate its expression by RLM-5' RACE, cleavage site mutation, and GFP fluorescence assay. Moreover, we observed that FveMIR160a overexpressed plants have advanced flowering, while mFveARF18A overexpressed plants have delayed flowering. We also verified that FveARF18A negatively regulates the expression of FveAP1 and FveFUL by binding their promoters by yeast one-hybrid, LUC, and GUS assay, and FveAP1 and FveFUL transgenic Arabidopsis showed early flowering phenotype. In addition, the expression level of FvemiR160a was decreased obviously while that of FveARF18A was increased obviously by MeJA, GA and IAA. In conclusion, our study reveals the important role of the FvemiR160-FveARF18A-FveAP1/FveFUL module in the flowering process of woodland strawberry and provides a new pathway for studying flowering.
Collapse
Affiliation(s)
- He Luo
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Tianyu Li
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yuhan Guan
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhuo Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zihui Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhihong Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - He Li
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| |
Collapse
|
29
|
Zhang H, Wang X, Yang Z, Bai Y, Chen L, Wu T. Transcriptome analysis reveals the potential mechanism of the response to scale insects in Camellia sasanqua Thunb. BMC Genomics 2024; 25:106. [PMID: 38267855 PMCID: PMC10807073 DOI: 10.1186/s12864-024-09980-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/06/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Camellia sasanqua Thunb. is an essential woody ornamental plant. Our continuous observation found that scale insects often infest C. sasanqua all year round in Kunming, China, resulting in poor growth. Scientifically preventing and controlling the infestation of scale insects should be paid attention to, and the mechanism of scale insects influencing C. sasanqua should be used as the research basis. RESULTS The scale insect was identified as Pseudaulacaspis sasakawai Takagi. We analyzed transcriptome sequencing data from leaves of C. sasanqua infested with scale insects. A total of 1320 genes were either up-regulated or down-regulated and differed significantly in response to scale insects. GO (Gene Ontology) annotation analysis showed that the pathway of catalytic activity, binding, membrane part, cell part, and cellular process were affected. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis showed that most DEGs (differentially expressed genes) involved in plant hormone signal transduction, MAPK signaling pathway, flavonoid biosynthesis, tropane, piperidine and pyridine alkaloid biosynthesis. We also observed that the expression of galactose metabolism and carotenoid biosynthesis were significantly influenced. In addition, qRT-PCR (quantitative real-time PCR) validated the expression patterns of DEGs, which showed an excellent agreement with the transcriptome sequencing. CONCLUSIONS Our transcriptomic analysis revealed that the C. sasanqua had an intricate resistance strategy to cope with scale insect attacks. After sensing the attack signal of scale insects, C. sasanqua activated the early signal MAPK (mitogen-activated protein kinase) to activate further transcription factors and Auxin, ET, JA, ABA, and other plant hormone signaling pathways, ultimately leading to the accumulation of lignin, scopolin, flavonoids and other secondary metabolites, produces direct and indirect resistance to scale insects. Our results suggested that it provided some potential resources of defense genes that would benefit the following resistance breeding in C. sasanqua to scale insects.
Collapse
Affiliation(s)
- Hongye Zhang
- School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Xubo Wang
- Yunnan Biodiversity Research Institute, Southwest Forestry University, Kunming, 650224, China
| | - Ziyun Yang
- School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Yan Bai
- School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Longqing Chen
- School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Tian Wu
- School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China.
| |
Collapse
|
30
|
Peng Y, Zhao K, Zheng R, Chen J, Zhu X, Xie K, Huang R, Zhan S, Su Q, Shen M, Niu M, Chen X, Peng D, Ahmad S, Liu ZJ, Zhou Y. A Comprehensive Analysis of Auxin Response Factor Gene Family in Melastoma dodecandrum Genome. Int J Mol Sci 2024; 25:806. [PMID: 38255880 PMCID: PMC10815038 DOI: 10.3390/ijms25020806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Auxin Response Factors (ARFs) mediate auxin signaling and govern diverse biological processes. However, a comprehensive analysis of the ARF gene family and identification of their key regulatory functions have not been conducted in Melastoma dodecandrum, leading to a weak understanding of further use and development for this functional shrub. In this study, we successfully identified a total of 27 members of the ARF gene family in M. dodecandrum and classified them into Class I-III. Class II-III showed more significant gene duplication than Class I, especially for MedARF16s. According to the prediction of cis-regulatory elements, the AP2/ERF, BHLH, and bZIP transcription factor families may serve as regulatory factors controlling the transcriptional pre-initiation expression of MedARF. Analysis of miRNA editing sites reveals that miR160 may play a regulatory role in the post-transcriptional expression of MeARF. Expression profiles revealed that more than half of the MedARFs exhibited high expression levels in the stem compared to other organs. While there are some specific genes expressed only in flowers, it is noteworthy that MedARF16s, MedARF7A, and MedARF9B, which are highly expressed in stems, also demonstrate high expressions in other organs of M. dodecandrum. Further hormone treatment experiments revealed that these MedARFs were sensitive to auxin changes, with MedARF6C and MedARF7A showing significant and rapid changes in expression upon increasing exogenous auxin. In brief, our findings suggest a crucial role in regulating plant growth and development in M. dodecandrum by responding to changes in auxin. These results can provide a theoretical basis for future molecular breeding in Myrtaceae.
Collapse
Affiliation(s)
- Yukun Peng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Kai Zhao
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (K.Z.); (M.S.)
| | - Ruiyue Zheng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Jiemin Chen
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Xuanyi Zhu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Kai Xie
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Ruiliu Huang
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Suying Zhan
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Qiuli Su
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Mingli Shen
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (K.Z.); (M.S.)
| | - Muqi Niu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Xiuming Chen
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Donghui Peng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Sagheer Ahmad
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Zhong-Jian Liu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Yuzhen Zhou
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| |
Collapse
|
31
|
Pirredda M, Fañanás-Pueyo I, Oñate-Sánchez L, Mira S. Seed Longevity and Ageing: A Review on Physiological and Genetic Factors with an Emphasis on Hormonal Regulation. PLANTS (BASEL, SWITZERLAND) 2023; 13:41. [PMID: 38202349 PMCID: PMC10780731 DOI: 10.3390/plants13010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Upon storage, seeds inevitably age and lose their viability over time, which determines their longevity. Longevity correlates with successful seed germination and enhancing this trait is of fundamental importance for long-term seed storage (germplasm conservation) and crop improvement. Seed longevity is governed by a complex interplay between genetic factors and environmental conditions experienced during seed development and after-ripening that will shape seed physiology. Several factors have been associated with seed ageing such as oxidative stress responses, DNA repair enzymes, and composition of seed layers. Phytohormones, mainly abscisic acid, auxins, and gibberellins, have also emerged as prominent endogenous regulators of seed longevity, and their study has provided new regulators of longevity. Gaining a thorough understanding of how hormonal signalling genes and pathways are integrated with downstream mechanisms related to seed longevity is essential for formulating strategies aimed at preserving seed quality and viability. A relevant aspect related to research in seed longevity is the existence of significant differences between results depending on the seed equilibrium relative humidity conditions used to study seed ageing. Hence, this review delves into the genetic, environmental and experimental factors affecting seed ageing and longevity, with a particular focus on their hormonal regulation. We also provide gene network models underlying hormone signalling aimed to help visualize their integration into seed longevity and ageing. We believe that the format used to present the information bolsters its value as a resource to support seed longevity research for seed conservation and crop improvement.
Collapse
Affiliation(s)
- Michela Pirredda
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Av. Puerta de Hierro 2, 28040 Madrid, Spain;
| | - Iris Fañanás-Pueyo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Luis Oñate-Sánchez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Sara Mira
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Av. Puerta de Hierro 2, 28040 Madrid, Spain;
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain;
| |
Collapse
|
32
|
Zhang H, Mu Y, Zhang H, Yu C. Maintenance of stem cell activity in plant development and stress responses. FRONTIERS IN PLANT SCIENCE 2023; 14:1302046. [PMID: 38155857 PMCID: PMC10754534 DOI: 10.3389/fpls.2023.1302046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023]
Abstract
Stem cells residing in plant apical meristems play an important role during postembryonic development. These stem cells are the wellspring from which tissues and organs of the plant emerge. The shoot apical meristem (SAM) governs the aboveground portions of a plant, while the root apical meristem (RAM) orchestrates the subterranean root system. In their sessile existence, plants are inextricably bound to their environment and must adapt to various abiotic stresses, including osmotic stress, drought, temperature fluctuations, salinity, ultraviolet radiation, and exposure to heavy metal ions. These environmental challenges exert profound effects on stem cells, potentially causing severe DNA damage and disrupting the equilibrium of reactive oxygen species (ROS) and Ca2+ signaling in these vital cells, jeopardizing their integrity and survival. In response to these challenges, plants have evolved mechanisms to ensure the preservation, restoration, and adaptation of the meristematic stem cell niche. This enduring response allows plants to thrive in their habitats over extended periods. Here, we presented a comprehensive overview of the cellular and molecular intricacies surrounding the initiation and maintenance of the meristematic stem cell niche. We also delved into the mechanisms employed by stem cells to withstand and respond to abiotic stressors.
Collapse
Affiliation(s)
- Huankai Zhang
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Yangwei Mu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Hui Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Caiyu Yu
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| |
Collapse
|
33
|
Zhao H, Li X, Xiao X, Wang T, Liu L, Li C, Wu H, Shan Z, Wu Q. Evaluating Tartary Buckwheat Genotypes with High Callus Induction Rates and the Transcriptomic Profiling during Callus Formation. PLANTS (BASEL, SWITZERLAND) 2023; 12:3663. [PMID: 37960020 PMCID: PMC10647830 DOI: 10.3390/plants12213663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
Due to their complex genotypes, low in vitro regeneration rates, and difficulty in obtaining transgenic plants, studies concerning basic biological research and molecular breeding in Tartary buckwheat (TB) are greatly limited. In this study, the hypocotyls of 60 genotypes of TB (TBC1~60) were used as explants. Of these, TBC14 was selected due to a high callus induction rate of 97.78% under dark and a proliferation coefficient (PC) of 28.2 when cultured on MS medium supplemented with 2.0 mg/L of 2,4-D and 1.5 mg/L of 6-BA. Subsequently, the samples of the calli obtained from TBC14 were collected at 0, 10, 20, and 30 d, and their transcriptomes were sequenced where identified. GO enrichment led to the detection of the most significant active gene set, which was the DNA binding transcription factor activity. The DEGs related to the pathways concerning metabolism, the biosynthesis of secondary metabolites, and hormone signal transduction were the most enriched in the KEGG database. The sets of MYB, AP2/ERF, and bHLH TFs exhibited the highest number of DEGs. Using this enrichment analysis, 421 genes encoding TFs, 47 auxin- and cytokinin-related genes, and 6 signal transduction-associated genes were screened that may play significant roles in callus formation (CF) in TB. Furthermore, FtPinG0008123200.01 (bZIP), a key gene promoting CF, was screened in terms of the weighted gene co-expression network associated with the various stages of CF. Our study not only provides valuable information about the molecular mechanism of CF but also reveals new genes involved in this process.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qi Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya’an 625014, China; (H.Z.); (X.L.); (X.X.); (T.W.); (L.L.); (C.L.); (H.W.); (Z.S.)
| |
Collapse
|
34
|
Cai K, Zhao Q, Zhang J, Yuan H, Li H, Han L, Li X, Li K, Jiang T, Zhao X. Unraveling the Guardians of Growth: A Comprehensive Analysis of the Aux/ IAA and ARF Gene Families in Populus simonii. PLANTS (BASEL, SWITZERLAND) 2023; 12:3566. [PMID: 37896029 PMCID: PMC10610179 DOI: 10.3390/plants12203566] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
The auxin/indole-3-acetic acid (Aux/IAA) and auxin response factor (ARF) genes are two crucial gene families in the plant auxin signaling pathway. Nonetheless, there is limited knowledge regarding the Aux/IAA and ARF gene families in Populus simonii. In this study, we first identified 33 putative PsIAAs and 35 PsARFs in the Populus simonii genome. Analysis of chromosomal location showed that the PsIAAs and PsARFs were distributed unevenly across 17 chromosomes, with the greatest abundance observed on chromosomes 2. Furthermore, based on the homology of PsIAAs and PsARFs, two phylogenetic trees were constructed, classifying 33 PsIAAs and 35 PsARFs into three subgroups each. Five pairs of PsIAA genes were identified as the outcome of tandem duplication, but no tandem repeat gene pairs were found in the PsARF family. The expression profiling of PsIAAs and PsARFs revealed that several genes exhibited upregulation in different tissues and under various stress conditions, indicating their potential key roles in plant development and stress responses. The variance in expression patterns of specific PsIAAs and PsARFs was corroborated through RT-qPCR analysis. Most importantly, we instituted that the PsIAA7 gene, functioning as a central hub, exhibits interactions with numerous Aux/IAA and ARF proteins. Furthermore, subcellular localization findings indicate that PsIAA7 functions as a protein localized within the nucleus. To conclude, the in-depth analysis provided in this study will contribute significantly to advancing our knowledge of the roles played by PsIAA and PsARF families in both the development of P. simonii tissue and its responses to stress. The insights gained will serve as a valuable asset for further inquiries into the biological functions of these gene families.
Collapse
Affiliation(s)
- Kewei Cai
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (K.C.); (Q.Z.); (H.L.); (K.L.); (T.J.)
| | - Qiushuang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (K.C.); (Q.Z.); (H.L.); (K.L.); (T.J.)
| | - Jinwang Zhang
- Tongliao Forestry and Grassland Science Research Institute, Tongliao 028000, China; (J.Z.); (H.Y.)
| | - Hongtao Yuan
- Tongliao Forestry and Grassland Science Research Institute, Tongliao 028000, China; (J.Z.); (H.Y.)
| | - Hanxi Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (K.C.); (Q.Z.); (H.L.); (K.L.); (T.J.)
| | - Lu Han
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China;
| | - Xuebo Li
- Changling County Front Seven State-Owned Forest Protection Center, Changling 131500, China
| | - Kailong Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (K.C.); (Q.Z.); (H.L.); (K.L.); (T.J.)
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (K.C.); (Q.Z.); (H.L.); (K.L.); (T.J.)
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (K.C.); (Q.Z.); (H.L.); (K.L.); (T.J.)
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China;
| |
Collapse
|
35
|
Li L, Li Y, Quan W, Ding G. Effects of PmaIAA27 and PmaARF15 genes on drought stress tolerance in pinus massoniana. BMC PLANT BIOLOGY 2023; 23:478. [PMID: 37807055 PMCID: PMC10561430 DOI: 10.1186/s12870-023-04498-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/29/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Auxin plays an important role in plant resistance to abiotic stress. The modulation of gene expression by Auxin response factors (ARFs) and the inhibition of auxin/indole-3-acetic acid (Aux/IAA) proteins play crucial regulatory roles in plant auxin signal transduction. However, whether the stress resistance of Masson pine (Pinus massoniana), as a representative pioneer species, is related to Aux/IAA and ARF genes has not been thoroughly studied and explored. RESULTS The present study provides preliminary evidence for the regulatory role of the PmaIAA27 gene in abiotic stress response in Masson pine. We investigated the effects of drought and hormone treatments on Masson pine by examining the expression patterns of PmaIAA27 and PmaARF15 genes. Subsequently, we conducted gene cloning, functional testing using transgenic tobacco, and explored gene interactions. Exogenous auxin irrigation significantly downregulated the expression of PmaIAA27 while upregulating PmaARF15 in Masson pine seedlings. Moreover, transgenic tobacco with the PmaIAA27 gene exhibited a significant decrease in auxin content compared to control plants, accompanied by an increase in proline content - a known indicator of plant drought resistance. These findings suggest that overexpression of the PmaIAA27 gene may enhance drought resistance in Masson pine. To further investigate the interaction between PmaIAA27 and PmaARF15 genes, we performed bioinformatics analysis and yeast two-hybrid experiments which revealed interactions between PB1 structural region of PmaARF15 and PmaIAA27. CONCLUSION The present study provides new insights into the regulatory functions of Aux/IAA and ARF genes in Masson pine. Overexpression of PmaIAA gene may have negative effects on the growth of Masson pine, but may improve the drought resistance. Therefore, this study has great application prospects.
Collapse
Affiliation(s)
- Liangliang Li
- Forest Resources and Environment Research Center, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550001, China
- Institute of Mountain Resources of Guizhou Province, Guiyang, 550001, China
| | - Yan Li
- Forest Resources and Environment Research Center, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550001, China
| | - Wenxuan Quan
- Forest Resources and Environment Research Center, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550001, China
| | - Guijie Ding
- Forest Resources and Environment Research Center, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550001, China.
| |
Collapse
|
36
|
Lin JX, Ali A, Chu N, Fu HY, Huang MT, Mbuya SN, Gao SJ, Zhang HL. Identification of ARF transcription factor gene family and its defense responses to bacterial infection and salicylic acid treatment in sugarcane. Front Microbiol 2023; 14:1257355. [PMID: 37744907 PMCID: PMC10513436 DOI: 10.3389/fmicb.2023.1257355] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Auxin response factor (ARF) is a critical regulator in the auxin signaling pathway, involved in a variety of plant biological processes. Here, gene members of 24 SpapARFs and 39 SpnpARFs were identified in two genomes of Saccharum spontaneum clones AP85-441 and Np-X, respectively. Phylogenetic analysis showed that all ARF genes were clustered into four clades, which is identical to those ARF genes in maize (Zea mays) and sorghum (Sorghum bicolor). The gene structure and domain composition of this ARF family are conserved to a large degree across plant species. The SpapARF and SpnpARF genes were unevenly distributed on chromosomes 1-8 and 1-10 in the two genomes of AP85-441 and Np-X, respectively. Segmental duplication events may also contribute to this gene family expansion in S. spontaneum. The post-transcriptional regulation of ARF genes likely involves sugarcane against various stressors through a miRNA-medicated pathway. Expression levels of six representative ShARF genes were analyzed by qRT-PCR assays on two sugarcane cultivars [LCP85-384 (resistant to leaf scald) and ROC20 (susceptible to leaf scald)] triggered by Acidovorax avenae subsp. avenae (Aaa) and Xanthomonas albilineans (Xa) infections and salicylic acid (SA) treatment. ShARF04 functioned as a positive regulator under Xa and Aaa stress, whereas it was a negative regulator under SA treatment. ShARF07/17 genes played positive roles against both pathogenic bacteria and SA stresses. Additionally, ShARF22 was negatively modulated by Xa and Aaa stimuli in both cultivars, particularly LCP85-384. These findings imply that sugarcane ARFs exhibit functional redundancy and divergence against stressful conditions. This work lays the foundation for further research on ARF gene functions in sugarcane against diverse environmental stressors.
Collapse
Affiliation(s)
- Jia-Xin Lin
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ahmad Ali
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Na Chu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hua-Ying Fu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mei-Ting Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sylvain Ntambo Mbuya
- Faculté des Sciences Agronomiques, Département de production végétale, Laboratoire de Recherche en Biofortification, Defense et Valorisation des Cultures (BioDev), Université de Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui-Li Zhang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
37
|
Roussi Z, Ennoury A, Krid A, Nhiri M. Sage leaf rock rose water extract: a bio-solution for enhancing the growth and salt stress resistance of sorghum plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1339-1352. [PMID: 38024950 PMCID: PMC10678872 DOI: 10.1007/s12298-023-01370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023]
Abstract
Sorghum bicolor, a versatile cereal grain, holds significant agronomic importance globally and plays a crucial role in addressing food insecurity. However, salinity, a major abiotic stress, poses a threat to food production by reducing soil fertility and hindering plant growth and yield. In this study, we investigated the potential of Cistus salviifolius water extract (CSE) in mitigating salt stress in sorghum plants. Salt stress severely impacted plant growth, biomass, and chlorophyll production, and reduced indole-3-acetic acid (IAA) levels, which negatively affected plant development. Salt stress also led to the buildup of reactive oxygen species (ROS), hence, resulting in oxidative harm to sorghum plants and also affecting their carbon and nitrogen metabolism. On the other hand, CSE treatments increased IAA and chlorophyll content which promoted growth under stress. Furthermore, this extract exhibited strong ROS scavenging capacity and safeguarded plants against oxidative stress by enhancing the activities of antioxidant enzymes (superoxide dismutase, glutathione peroxidase, glutathione-S-transferase, and glutathione reductase) and increasing the production of osmolytes. Additionally, CSE treatments enhanced the activities of carbon/nitrogen enzymes (phosphoenolpyruvate carboxylase, malate dehydrogenase, glutamate dehydrogenase, aspartate aminotransferase, and glutamine synthase), promoting energy synthesis and crop growth. This led to a significant increase in sorghum growth in salted soil with the highest rise recorded for 5 mg/L of CSE (an increase of 48.23% and 158.36% in length and weight compared to the salt control), which highlights this extract's potential as a biostimulant to enhance crop tolerance to salinity and contribute to sustainable agriculture.
Collapse
Affiliation(s)
- Zoulfa Roussi
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, University Abdelmalek Essaadi, Km 10, Ziaten. BP: 416, Tetouan, Tangier, Morocco
| | - Abdelhamid Ennoury
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, University Abdelmalek Essaadi, Km 10, Ziaten. BP: 416, Tetouan, Tangier, Morocco
| | - Azzouz Krid
- Environmental Technologies, Biotechnology and Valorization of Bio-Resources Team, TEBVB, FSTH, Abdelmalek Essaadi University, Tetouan, 93020 Morocco
| | - Mohamed Nhiri
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, University Abdelmalek Essaadi, Km 10, Ziaten. BP: 416, Tetouan, Tangier, Morocco
| |
Collapse
|
38
|
Bai Y, Xie Y, Cai M, Jiang J, Wu C, Zheng H, Gao J. GA20ox Family Genes Mediate Gibberellin and Auxin Crosstalk in Moso bamboo ( Phyllostachys edulis). PLANTS (BASEL, SWITZERLAND) 2023; 12:2842. [PMID: 37570996 PMCID: PMC10421110 DOI: 10.3390/plants12152842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Moso bamboo (Phyllostachys edulis) is one of the fastest growing plants. Gibberellin (GA) is a key phytohormone regulating growth, but there are few studies on the growth of Moso bamboo regulated by GA. The gibberellin 20 oxidase (GA20ox) gene family was targeted in this study. Chromosomal distribution and collinearity analysis identified 10 GA20ox genes evenly distributed on chromosomes, and the family genes were relatively conservative in evolution. The genetic relationship of GA20ox genes had been confirmed to be closest in different genera of plants in a phylogenetic and selective pressure analysis between Moso bamboo and rice. About 1/3 GA20ox genes experienced positive selective pressure with segmental duplication being the main driver of gene family expansion. Analysis of expression patterns revealed that only six PheGA20ox genes were expressed in different organs of shoot development and flowers, that there was redundancy in gene function. Underground organs were not the main site of GA synthesis in Moso bamboo, and floral organs are involved in the GA biosynthesis process. The auxin signaling factor PheARF47 was located upstream of PheGA20ox3 and PheGA20ox6 genes, where PheARF47 regulated PheGA20ox3 through cis-P box elements and cis-AuxRR elements, based on the result that promoter analysis combined with yeast one-hybrid and dual luciferase detection analysis identified. Overall, we identified the evolutionary pattern of PheGA20ox genes in Moso bamboo and the possible major synthesis sites of GA, screened for key genes in the crosstalk between auxin and GA, and laid the foundation for further exploration of the synergistic regulation of growth by GA and auxin in Moso bamboo.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jian Gao
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China; (Y.B.); (Y.X.); (M.C.); (J.J.); (C.W.); (H.Z.)
| |
Collapse
|
39
|
He Y, Wu Q, Cui C, Tian Q, Zhang D, Zhang Y. ChIP-Seq Analysis of SlAREB1 Downstream Regulatory Network during Tomato Ripening. Foods 2023; 12:2357. [PMID: 37372568 DOI: 10.3390/foods12122357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
SlAREB1, a member of the abscisic acid (ABA) response element-binding factors (AREB/ABFs) family, was reported to play a crucial role in the expression of ABA-regulated downstream genes and affect the ripening of tomato fruit. However, the downstream genes of SlAREB1 are still unclear. Chromatin immunoprecipitation (ChIP) is a powerful tool and a standard method for studying the interactions between DNA and proteins at the genome-wide level. In the present study, SlAREB1 was proved to continually increase until the mature green stage and then decrease during the ripening period, and a total of 972 gene peaks were identified downstream of SlAREB1 by ChIP-seq analysis, mainly located in the intergenic and promoter regions. Further gene ontology (GO) annotation analysis revealed that the target sequence of SlAREB1 was the most involved in biological function. Kyoto Encylopaedia of Genes and Genomes (KEGG) pathway analysis showed that the identified genes were mainly involved in the oxidative phosphorylation and photosynthesis pathways, and some of them were associated with tomato phytohormone synthesis, the cell wall, pigment, and the antioxidant characteristic of the fruit as well. Based on these results, an initial model of SlAREB1 regulation on tomato fruit ripening was constructed, which provided a theoretical basis for further exploring the effects of the regulation mechanism of SlAREB1 and ABA on tomato fruit ripening.
Collapse
Affiliation(s)
- Yanan He
- Engineering Center of Ministry of Education, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Qiong Wu
- Engineering Center of Ministry of Education, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Chunxiao Cui
- Engineering Center of Ministry of Education, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Qisheng Tian
- Engineering Center of Ministry of Education, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Dongdong Zhang
- Engineering Center of Ministry of Education, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Yurong Zhang
- Engineering Center of Ministry of Education, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
40
|
Caumon H, Vernoux T. A matter of time: auxin signaling dynamics and the regulation of auxin responses during plant development. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad132. [PMID: 37042516 DOI: 10.1093/jxb/erad132] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Indexed: 06/19/2023]
Abstract
As auxin is a major regulator of plant development, studying the signaling mechanisms by which auxin influences cellular activities is of primary importance. In this review, we describe the current knowledge on the different modalities of signaling, from the well-characterized canonical nuclear auxin pathway, to the more recently discovered or re-discovered non-canonical modes of auxin signaling. In particular, we discuss how both the modularity of the nuclear auxin pathway and the dynamic regulation of its core components allow to trigger specific transcriptomic responses. We highlight the fact that the diversity of modes of auxin signaling allows for a wide range of timescales of auxin responses, from second-scale cytoplasmic responses to minute/hour-scale modifications of gene expression. Finally, we question the extent to which the temporality of auxin signaling and responses contributes to development in both the shoot and the root meristems. We conclude by stressing the fact that future investigations should allow to build an integrative view not only of the spatial control, but also of the temporality of auxin-mediated regulation of plant development, from the cell to the whole organism.
Collapse
Affiliation(s)
- Hugo Caumon
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, F-69342, Lyon, France
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, F-69342, Lyon, France
| |
Collapse
|
41
|
Sacco Botto C, Matić S, Moine A, Chitarra W, Nerva L, D’Errico C, Pagliarani C, Noris E. Tomato Yellow Leaf Curl Sardinia Virus Increases Drought Tolerance of Tomato. Int J Mol Sci 2023; 24:2893. [PMID: 36769211 PMCID: PMC9918285 DOI: 10.3390/ijms24032893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Drought stress is one of the major physiological stress factors that adversely affect agricultural production, altering critical features of plant growth and metabolism. Plants can be subjected simultaneously to abiotic and biotic stresses, such as drought and viral infections. Rewarding effects provided by viruses on the ability of host plants to endure abiotic stresses have been reported. Recently, begomoviruses causing the tomato yellow leaf curl disease in tomatoes were shown to increase heat and drought tolerance. However, biological bases underlying the induced drought tolerance need further elucidation, particularly in the case of tomato plants. In this work, tomato plants infected by the tomato yellow leaf curl Sardinia virus (TYLCSV) were subjected to severe drought stress, followed by recovery. Morphological traits, water potential, and hormone contents were measured in leaves together with molecular analysis of stress-responsive and hormone metabolism-related genes. Wilting symptoms appeared three days later in TYLCSV-infected plants compared to healthy controls and post-rehydration recovery was faster (2 vs. 4 days, respectively). Our study contributes new insights into the impact of viruses on the plant's adaptability to environmental stresses. On a broader perspective, such information could have important practical implications for managing the effects of climate change on agroecosystems.
Collapse
Affiliation(s)
- Camilla Sacco Botto
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
- Department of Agriculture, Forestry and Food Science DISAFA, Turin University, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Slavica Matić
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
| | - Amedeo Moine
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
| | - Walter Chitarra
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
- Council for Agricultural Research and Economics Centre of Viticultural and Enology Research (CREA-VE), Viale XXVIII Aprile 26, 31015 Conegliano, Italy
| | - Luca Nerva
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
- Council for Agricultural Research and Economics Centre of Viticultural and Enology Research (CREA-VE), Viale XXVIII Aprile 26, 31015 Conegliano, Italy
| | - Chiara D’Errico
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
| | - Chiara Pagliarani
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
| | - Emanuela Noris
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
| |
Collapse
|