1
|
Schenck JK, Clarkson-Paredes C, Pushkarsky T, Wang Y, Miller RH, Bukrinsky MI. Nef mediates neuroimmune response, myelin impairment, and neuronal injury in EcoHIV-infected mice. Life Sci Alliance 2025; 8:e202402879. [PMID: 39532531 PMCID: PMC11557684 DOI: 10.26508/lsa.202402879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The introduction of antiretroviral therapy has markedly improved the management of HIV-associated neurocognitive disorders (HAND). However, HAND still affects nearly half of HIV-infected individuals, presenting significant challenges to their well-being. This highlights the critical need for a deeper understanding of HAND mechanisms. Among HIV viral proteins, Nef is notable for its multifaceted role in HIV pathogenesis, though its specific involvement in HAND remains unclear. To investigate this, we used a murine model infected with Nef-expressing (EcoHIV) and Nef-deficient (EcoHIVΔNef) murine HIV. Comparative analyses revealed increased neuroinflammation and reduced myelin and neuronal integrity in EcoHIV-infected brains compared with those with EcoHIVΔNef. Both viruses induced astrogliosis, with stronger GFAP activation in Nef-deficient infections. These findings suggest that Nef contributes to neuroinflammation, primarily through microglial targeting and demyelination, although other factors may regulate astrogliosis. Our results indicate that Nef may significantly contribute to neuronal injury in EcoHIV-infected mice, offering insights into Nef-induced neuropathology in HAND and guiding future research.
Collapse
Affiliation(s)
- Jessica K Schenck
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Cheryl Clarkson-Paredes
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Tatiana Pushkarsky
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Yongsen Wang
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Robert H Miller
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Michael I Bukrinsky
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| |
Collapse
|
2
|
Mustafa M, Musselman D, Jayaweera D, da Fonseca Ferreira A, Marzouka G, Dong C. HIV-Associated Neurocognitive Disorder (HAND) and Alzheimer's Disease Pathogenesis: Future Directions for Diagnosis and Treatment. Int J Mol Sci 2024; 25:11170. [PMID: 39456951 PMCID: PMC11508543 DOI: 10.3390/ijms252011170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
HIV-associated neurocognitive disorder (HAND) and Alzheimer's disease (AD) are two neurocognitive disorders with overlapping clinical presentations and pathophysiology. The two have been thought to be two separate entities. However, the introduction and widespread use of antiretroviral therapy (ART) has altered the clinical manifestations of HAND, shifting from a pattern of subcortical dementia to one more akin to cortical dementia, resembling AD. Thus, the line between the two disease entities is not clear-cut. In this review, we discuss the concept of Alzheimer's disease-like dementia (ADLD) in HIV, which describes this phenomenon. While the mechanisms of HIV-associated ADLD remain to be elucidated, potential mechanisms include HIV-specific pathways, including epigenetic imprinting from initial viral infection, persistent and low viral load (which can only be detected by ultra-sensitive PCR), HIV-related inflammation, and putative pathways underlying traditional AD risk factors. Importantly, we have shown that HIV-specific microRNAs (miRs) encapsulated in extracellular vesicles (EV-miRs) play an important role in mediating the detrimental effects in the cardiovascular system. A useful preclinical model to study ADLD would be to expose AD mice to HIV-positive EVs to identify candidate EV-miRs that mediate the HIV-specific effects underlying ADLD. Characterization of the candidate EV-miRs may provide novel therapeutic armamentaria for ADLD.
Collapse
Affiliation(s)
- Mohammed Mustafa
- Department of Medicine, Jackson Memorial Hospital, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.M.); (D.J.)
| | - Dominique Musselman
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Dushyantha Jayaweera
- Department of Medicine, Jackson Memorial Hospital, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.M.); (D.J.)
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Andrea da Fonseca Ferreira
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - George Marzouka
- Department of Medicine, Jackson Memorial Hospital, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.M.); (D.J.)
- Division of Cardiovascular Disease, Department of Medicine, Miami VA Health System, University of Miami, Miami, FL 33136, USA
| | - Chunming Dong
- Department of Medicine, Jackson Memorial Hospital, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.M.); (D.J.)
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Division of Cardiovascular Disease, Department of Medicine, Miami VA Health System, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
3
|
Avalos B, Kulbe JR, Ford MK, Laird AE, Walter K, Mante M, Florio JB, Boustani A, Chaillon A, Schlachetzki JCM, Sundermann EE, Volsky DJ, Rissman RA, Ellis RJ, Letendre SL, Iudicello J, Fields JA. Cannabis Use and Cannabidiol Modulate HIV-Induced Alterations in TREM2 Expression: Implications for Age-Related Neuropathogenesis. Viruses 2024; 16:1509. [PMID: 39459844 PMCID: PMC11512329 DOI: 10.3390/v16101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is involved in neuroinflammation and HIV-associated neurocognitive impairment (NCI). People with HIV (PWH) using cannabis exhibit lower inflammation and neurological disorders. We hypothesized that TREM2 dysfunction mediates HIV neuropathogenesis and can be reversed by cannabinoids. EcoHIV-infected wildtype (WT) and TREM2R47H mutant mice were used to study HIV's impact on TREM2 and behavior. TREM2 and related gene expressions were examined in monocyte-derived macrophages (MDMs) from PWH (n = 42) and people without HIV (PWoH; n = 19) with varying cannabis use via RNA sequencing and qPCR. Differences in membrane-bound and soluble TREM2 (sTREM2) were evaluated using immunocytochemistry (ICC) and ELISA. EcoHIV increased immature and C-terminal fragment forms of TREM2 in WT mice but not in TREM2R47H mice, with increased IBA1 protein in TREM2R47H hippocampi, correlating with worse memory test performance. TREM2 mRNA levels increased with age in PWoH but not in PWH. Cannabidiol (CBD) treatment increased TREM2 mRNA alone and with IL1β. RNA-seq showed the upregulation of TREM2-related transcripts in cannabis-using PWH compared to naïve controls. IL1β increased sTREM2 and reduced membrane-bound TREM2, effects partially reversed by CBD. These findings suggest HIV affects TREM2 expression modulated by cannabis and CBD, offering insights for therapeutic strategies.
Collapse
Affiliation(s)
- Bryant Avalos
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Jacqueline R. Kulbe
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Mary K. Ford
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Anna Elizabeth Laird
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Kyle Walter
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Michael Mante
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, 9880 Mesa Rim Road, San Diego, CA 92121, USA; (M.M.); (J.B.F.); (R.A.R.)
| | - Jazmin B. Florio
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, 9880 Mesa Rim Road, San Diego, CA 92121, USA; (M.M.); (J.B.F.); (R.A.R.)
| | - Ali Boustani
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Antoine Chaillon
- Department of Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA;
| | | | - Erin E. Sundermann
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - David J. Volsky
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert A. Rissman
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, 9880 Mesa Rim Road, San Diego, CA 92121, USA; (M.M.); (J.B.F.); (R.A.R.)
| | - Ronald J. Ellis
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA;
| | - Scott L. Letendre
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
- Department of Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA;
| | - Jennifer Iudicello
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Jerel Adam Fields
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| |
Collapse
|
4
|
Asia LK, Van Vuren EJ, Kruger IM, Williams ME. A Pilot Investigation of the Association Between Vpr Amino Acid Substitutions and Peripheral Immune Marker Levels in People With Human Immunodeficiency Virus: Implications for Neurocognitive Impairment. Open Forum Infect Dis 2024; 11:ofae111. [PMID: 38524224 PMCID: PMC10960601 DOI: 10.1093/ofid/ofae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/23/2024] [Indexed: 03/26/2024] Open
Abstract
Background Subtype-specific amino acid variations in viral proteins of human immunodeficiency virus type 1 (HIV-1) influence disease progression. Furthermore, Vpr sequence variation correlates with chronic inflammation, a central mechanism in HIV-1 (neuro)pathogenesis. Nevertheless, no clinical study has investigated the link between Vpr sequence variation and peripheral inflammation in people with HIV (PWH). The aim of this pilot study was to ascertain whether specific Vpr amino acid variants were associated with immune markers in PWH. Methods We included a unique cohort of 48 treatment-naive South African PWH to determine the association between blood-derived Vpr sequence variation and peripheral immune marker levels using Sanger sequencing and enzyme-linked immunosorbent assay analysis, respectively. Results Our findings indicate that among the many neuropathogenic Vpr amino acid variants and immune markers examined, after applying Bonferroni corrections (P = .05/3) and adjusting for sex and locality, soluble urokinase plasminogen activator receptor (suPAR) was nearing significance for higher levels in participants with the G41 amino acid variant compared to those with the S41 variant (P = .035). Furthermore, amino acid variations at position 41 (between G41 and S41) exhibited a significant association with suPAR (adjusted R2 = 0.089, β = .386 [95% confidence interval, .125-3.251]; P = .035). Conclusions These findings suggest that Vpr amino acid sequence variations might contribute to dysregulated inflammation, which could explain the observed association between specific Vpr variants and HIV-1 (neuro)pathogenesis found in prior research. These Vpr variants merit further investigation to fully understand their roles in HIV-1 pathogenesis and neuropathogenesis.
Collapse
Affiliation(s)
- Levanco K Asia
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Esmé Jansen Van Vuren
- Hypertension in Africa Research Team, North-West University, Potchefstroom, South Africa
- South African Medical Research Council, Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Iolanthé M Kruger
- Africa Unit for Transdisciplinary Health Research, North-West University, Potchefstroom, South Africa
| | - Monray E Williams
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
5
|
Matos ADO, Dantas PHDS, Queiroz HAGDB, Silva-Sales M, Sales-Campos H. TREM-2: friend or foe in infectious diseases? Crit Rev Microbiol 2024; 50:1-19. [PMID: 36403150 DOI: 10.1080/1040841x.2022.2146481] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022]
Abstract
The triggering receptor expressed on myeloid cells-2 (TREM-2) is an immune receptor expressed on immune and non-immune cells, more frequently investigated in neurodegenerative disorders and considered a marker for microglia activation. In infectious diseases, the receptor was initially believed to be an anti-inflammatory molecule, opposing the inflammation triggered by TREM-1. Currently, TREM-2 is associated with different aspects in response to infectious stimuli, including the induction of bacterial phagocytosis and clearance, containment of exacerbated pro-inflammatory responses, induction of M2 differentiation and activation of Th1 lymphocytes, besides of neurological damage after viral infection. Here, we present and discuss results published in the last two decades regarding the expression, activation and functions of TREM-2 during the course of bacterial, viral, fungal and parasitic infections. A surprisingly plasticity was observed regarding the roles of the receptor in the aforementioned contexts, which largely varied according to the cell/organ and pathogen type, besides influencing disease outcome. Therefore, our review aimed to critically overview the role of TREM-2 in infectious diseases, highlighting its potential to be used as a clinical biomarker or therapeutic target.
Collapse
Affiliation(s)
| | | | | | - Marcelle Silva-Sales
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | | |
Collapse
|
6
|
Williams ME, Naudé PJW. The relationship between HIV-1 neuroinflammation, neurocognitive impairment and encephalitis pathology: A systematic review of studies investigating post-mortem brain tissue. Rev Med Virol 2024; 34:e2519. [PMID: 38282400 PMCID: PMC10909494 DOI: 10.1002/rmv.2519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
The activities of HIV-1 in the central nervous system (CNS) are responsible for a dysregulated neuroinflammatory response and the subsequent development of HIV-associated neurocognitive disorders (HAND). The use of post-mortem human brain tissue is pivotal for studying the neuroimmune mechanisms of CNS HIV infection. To date, numerous studies have investigated HIV-1-induced neuroinflammation in post-mortem brain tissue. However, from the commonly investigated studies in this line of research, it is not clear which neuroinflammatory markers are consistently associated with HIV neurocognitive impairment (NCI) and neuropathology (i.e., HIV-encephalitis, HIVE). Therefore, we conducted a systematic review of the association between neuroinflammation and NCI/HIVE from studies investigating post-mortem brain tissue. Our aim was to synthesise the published data to date to provide commentary on the most noteworthy markers that are associated with NCI/HIVE. PubMed, Scopus, and Web of Science databases were searched using a search protocol designed specifically for this study. Sixty-one studies were included that investigated the levels of inflammatory markers based on their gene and protein expression in association with NCI/HIVE. The findings revealed that the (1) transcript expressions of IL-1β and TNF-α were consistently associated with NCI/HIVE, whereas CCL2 and IL-6 were commonly not associated with NCI/HIVE, (2) protein expressions of CD14, CD16, CD68, Iba-1, IL-1β and TNF-α were consistently associated with NCI/HIVE, while CD45, GFAP, HLA-DR, IL-1 and IL-6 were commonly not associated with NCI/HIVE, and (3) gene and protein expressions of CNS IL-1β and TNF-α were consistently associated with NCI/HIVE, while IL-6 was consistently not associated with NCI/HIVE. These markers highlight the commonly investigated markers in this line of research and elucidates the neuroinflammatory mechanisms in the HIV-1 brain that are involved in the pathophysiology of NCI/HIVE. These markers and related pathways should be investigated for the development of improved diagnostics, prognostics, and therapeutics of HAND.
Collapse
Affiliation(s)
| | - Petrus J. W. Naudé
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownSouth Africa
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
7
|
Riggs PK, Anderson AM, Tang B, Rubin LH, Morgello S, Marra CM, Gelman BB, Clifford DB, Franklin D, Heaton RK, Ellis RJ, Fennema-Notestine C, Letendre SL. Elevated Plasma Protein Carbonyl Concentration Is Associated with More Abnormal White Matter in People with HIV. Viruses 2023; 15:2410. [PMID: 38140650 PMCID: PMC10747698 DOI: 10.3390/v15122410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/23/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Structural brain abnormalities, including those in white matter (WM), remain common in people with HIV (PWH). Their pathogenesis is uncertain and may reflect multiple etiologies. Oxidative stress is associated with inflammation, HIV, and its comorbidities. The post-translational carbonylation of proteins results from oxidative stress, and circulating protein carbonyls may reflect this. In this cross-sectional analysis, we evaluated the associations between protein carbonyls and a panel of soluble biomarkers of neuronal injury and inflammation in plasma (N = 45) and cerebrospinal fluid (CSF, n = 32) with structural brain MRI. The volume of abnormal WM was normalized for the total WM volume (nAWM). In this multisite project, all regression models were adjusted for the scanner. The candidate covariates included demographics, HIV disease characteristics, and comorbidities. Participants were PWH on virally suppressive antiretroviral therapy (ART) and were mostly white (64.4%) men (88.9%), with a mean age of 56.8 years. In unadjusted analyses, more nAWM was associated with higher plasma protein carbonyls (p = 0.002) and higher CCL2 (p = 0.045). In the adjusted regression models for nAWM, the association with plasma protein carbonyls remained significant (FDR p = 0.018). Protein carbonyls in plasma may be a valuable biomarker of oxidative stress and its associated adverse health effects, including within the central nervous system. If confirmed, these findings would support the hypothesis that reducing oxidative stress could treat or prevent WM injury in PWH.
Collapse
Affiliation(s)
- Patricia K. Riggs
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Albert M. Anderson
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bin Tang
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
| | - Leah H. Rubin
- Departments of Neurology, Psychiatry and Behavioral Sciences, and Epidemiology, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Susan Morgello
- Departments of Neurology, Neuroscience, and Pathology, Mt Sinai School of Medicine, New York, NY 10029, USA
| | - Christina M. Marra
- Department of Neurology, University of Washington, Seattle, WA 98195, USA
| | - Benjamin B. Gelman
- Departments of Pathology, and Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - David B. Clifford
- Department of Neurology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Donald Franklin
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
| | - Robert K. Heaton
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
| | - Ronald J. Ellis
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
- Department of Neurosciences, University of California San Diego, San Diego, CA 92093, USA
| | - Christine Fennema-Notestine
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
- Department of Radiology, University of California San Diego, San Diego, CA 92093, USA
| | - Scott L. Letendre
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
8
|
Ellis RJ, Marquine MJ, Kaul M, Fields JA, Schlachetzki JCM. Mechanisms underlying HIV-associated cognitive impairment and emerging therapies for its management. Nat Rev Neurol 2023; 19:668-687. [PMID: 37816937 PMCID: PMC11052664 DOI: 10.1038/s41582-023-00879-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/12/2023]
Abstract
People living with HIV are affected by the chronic consequences of neurocognitive impairment (NCI) despite antiretroviral therapies that suppress viral replication, improve health and extend life. Furthermore, viral suppression does not eliminate the virus, and remaining infected cells may continue to produce viral proteins that trigger neurodegeneration. Comorbidities such as diabetes mellitus are likely to contribute substantially to CNS injury in people living with HIV, and some components of antiretroviral therapy exert undesirable side effects on the nervous system. No treatment for HIV-associated NCI has been approved by the European Medicines Agency or the US Food and Drug Administration. Historically, roadblocks to developing effective treatments have included a limited understanding of the pathophysiology of HIV-associated NCI and heterogeneity in its clinical manifestations. This heterogeneity might reflect multiple underlying causes that differ among individuals, rather than a single unifying neuropathogenesis. Despite these complexities, accelerating discoveries in HIV neuropathogenesis are yielding potentially druggable targets, including excessive immune activation, metabolic alterations culminating in mitochondrial dysfunction, dysregulation of metal ion homeostasis and lysosomal function, and microbiome alterations. In addition to drug treatments, we also highlight the importance of non-pharmacological interventions. By revisiting mechanisms implicated in NCI and potential interventions addressing these mechanisms, we hope to supply reasons for optimism in people living with HIV affected by NCI and their care providers.
Collapse
Affiliation(s)
- Ronald J Ellis
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| | - María J Marquine
- Department of Medicine, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Marcus Kaul
- School of Medicine, Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Jerel Adam Fields
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
9
|
Singh S, Joshi V, Upadhyay A. Amyloids and brain cancer: molecular linkages and crossovers. Biosci Rep 2023; 43:BSR20230489. [PMID: 37335084 PMCID: PMC10548166 DOI: 10.1042/bsr20230489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023] Open
Abstract
Amyloids are high-order proteinaceous formations deposited in both intra- and extracellular spaces. These aggregates have tendencies to deregulate cellular physiology in multiple ways; for example, altered metabolism, mitochondrial dysfunctions, immune modulation, etc. When amyloids are formed in brain tissues, the endpoint often is death of neurons. However, interesting but least understood is a close connection of amyloids with another set of conditions in which brain cells proliferate at an extraordinary rate and form tumor inside brain. Glioblastoma is one such condition. Increasing number of evidence indicate a possible link between amyloid formation and depositions in brain tumors. Several proteins associated with cell cycle regulation and apoptotic pathways themselves have shown to possess high tendencies to form amyloids. Tumor suppressor protein p53 is one prominent example that mutate, oligomerize and form amyloids leading to loss- or gain-of-functions and cause increased cell proliferation and malignancies. In this review article, we present available examples, genetic links and common pathways that indicate that possibly the two distantly placed pathways: amyloid formation and developing cancers in the brain have similarities and are mechanistically intertwined together.
Collapse
Affiliation(s)
- Shalini Singh
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jheepasani, Jodhpur, Rajasthan 342001, India
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, U.S.A
| | - Vibhuti Joshi
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jheepasani, Jodhpur, Rajasthan 342001, India
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh 201310, India
| | - Arun Upadhyay
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jheepasani, Jodhpur, Rajasthan 342001, India
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, U.S.A
| |
Collapse
|
10
|
Kulbe JR, Le AA, Mante M, Florio J, Laird AE, Swinton MK, Rissman RA, Fields JA. GP120 and tenofovir alafenamide alter cannabinoid receptor 1 expression in hippocampus of mice. J Neurovirol 2023; 29:564-576. [PMID: 37801175 PMCID: PMC10645617 DOI: 10.1007/s13365-023-01155-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/05/2023] [Accepted: 06/21/2023] [Indexed: 10/07/2023]
Abstract
Central nervous system (CNS) dysfunction remains prevalent in people with HIV (PWH) despite effective antiretroviral therapy (ART). There is evidence that low-level HIV infection and ART drugs may contribute to CNS damage in the brain of PWH with suppressed viral loads. As cannabis is used at a higher rate in PWH compared to the general population, there is interest in understanding how HIV proteins and ART drugs interact with the endocannabinoid system (ECS) and inflammation in the CNS. Therefore, we investigated the effects of the HIV envelope protein gp120 and tenofovir alafenamide (TAF) on cannabinoid receptor 1 (CB1R), glial fibrillary acidic protein (GFAP), and IBA1 in the brain and on locomotor activity in mice. The gp120 transgenic (tg) mouse model was administered TAF daily for 30 days and then analyzed using the open field test before being euthanized, and their brains were analyzed for CB1R, GFAP, and IBA1 expression using immunohistochemical approaches. CB1R expression levels were significantly increased in CA1, CA2/3, and dentate gyrus of gp120tg mice compared to wt littermates; TAF reversed these effects. As expected, TAF showed a medium effect of enhancing GFAP in the frontal cortex of gp120tg mice in the frontal cortex. TAF had minimal effect on IBA1 signal. TAF showed medium to large effects on fine movements, rearing, total activity, total distance, and lateral activity in the open-field test. These findings suggest that TAF may reverse gp120-induced effects on CB1R expression and, unlike tenofovir disoproxil fumarate (TDF), may not affect gliosis in the brain.
Collapse
Affiliation(s)
| | - Alexandra Anh Le
- University of California, San Diego Department of Psychiatry, San Diego, CA, USA
| | - Michael Mante
- University of California, San Diego Department of Neurosciences, San Diego, CA, USA
| | - Jazmin Florio
- University of California, San Diego Department of Neurosciences, San Diego, CA, USA
| | - Anna Elizabeth Laird
- University of California, San Diego Department of Psychiatry, San Diego, CA, USA
| | - Mary K Swinton
- University of California, San Diego Department of Psychiatry, San Diego, CA, USA
| | - Robert A Rissman
- University of California, San Diego Department of Neurosciences, San Diego, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine of USC, Alzheimer's Therapeutic Research Institute, San Diego, CA, USA
| | - Jerel Adam Fields
- University of California, San Diego Department of Psychiatry, San Diego, CA, USA.
| |
Collapse
|
11
|
Fruhwürth S, Reinert LS, Öberg C, Sakr M, Henricsson M, Zetterberg H, Paludan SR. TREM2 is down-regulated by HSV1 in microglia and involved in antiviral defense in the brain. SCIENCE ADVANCES 2023; 9:eadf5808. [PMID: 37595041 PMCID: PMC10438464 DOI: 10.1126/sciadv.adf5808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/19/2023] [Indexed: 08/20/2023]
Abstract
Immunological control of viral infections in the brain exerts immediate protection and also long-term maintenance of brain integrity. Microglia are important for antiviral defense in the brain. Here, we report that herpes simplex virus type 1 (HSV1) infection of human induced pluripotent stem cell (hiPSC)-derived microglia down-regulates expression of genes in the TREM2 pathway. TREM2 was found to be important for virus-induced IFNB induction through the DNA-sensing cGAS-STING pathway in microglia and for phagocytosis of HSV1-infected neurons. Consequently, TREM2 depletion increased susceptibility to HSV1 infection in human microglia-neuron cocultures and in the mouse brain. TREM2 augmented STING signaling and activation of downstream targets TBK1 and IRF3. Thus, TREM2 is important for the antiviral immune response in microglia. Since TREM2 loss-of-function mutations and HSV1 serological status are both linked to Alzheimer's disease, this work poses the question whether genetic or virus-induced alterations of TREM2 activity predispose to post-infection neurological pathologies.
Collapse
Affiliation(s)
- Stefanie Fruhwürth
- Department of Rheumatology and Inflammatory Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Line S. Reinert
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Carl Öberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Marcelina Sakr
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Marcus Henricsson
- Biomarker Discovery and Development, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Søren R. Paludan
- Department of Rheumatology and Inflammatory Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Orhun G, Esen F, Yilmaz V, Ulusoy C, Şanlı E, Yıldırım E, Gürvit H, Ergin Özcan P, Sencer S, Bebek N, Tüzün E. Elevated sTREM2 and NFL levels in patients with sepsis associated encephalopathy. Int J Neurosci 2023; 133:327-333. [PMID: 33851572 DOI: 10.1080/00207454.2021.1916489] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE Sepsis-associated encephalopathy (SAE) is a common manifestation of sepsis that may lead to cognitive decline. Our aim was to investigate whether the neurofilament light chain (NFL) and soluble triggering receptor expressed on myeloid cells 2 (sTREM2) could be utilized as prognostic biomarkers in SAE. MATERIALS AND METHODS In this prospective observational study, baseline serum levels of sTREM2 and cerebrospinal fluid (CSF) levels of sTREM2 and NFL were measured by ELISA in 11 SAE patients and controls. Patients underwent daily neurological examination. Brain magnetic resonance imaging (MRI) and standard electroencephalography (EEG) were performed. Cognitive dysfunction was longitudinally assessed after discharge in 4 SAE patients using the Mini-Mental State Examination (MMSE) and Addenbrooke's Cognitive Examination-Revised (ACE-R) tests. RESULTS SAE patients showed higher CSF sTREM2 and NFL levels than controls. sTREM2 and NFL levels were not correlated with the severity measures of sepsis. Three months after discharge, 2 SAE patients displayed ACE-R scores congruent with mild cognitive impairment (MCI), persisting in one patient 12 months after discharge. SAE patients with MCI showed higher CSF NFL levels, bacteremia, and abnormal brain MRI. Patients with increased serum/CSF sTREM2 levels showed trends towards displaying poorer attention/orientation and visuo-spatial skills. CONCLUSIONS sTREM2 and NFL levels may serve as a prognostic biomarker for cognitive decline in SAE. These results lend further support for the involvement of glial activation and neuroaxonal degeneration in the physiopathology of SAE.
Collapse
Affiliation(s)
- Günseli Orhun
- Department of Anesthesiology and Intensive Care, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Figen Esen
- Department of Anesthesiology and Intensive Care, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Vuslat Yilmaz
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Canan Ulusoy
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Elif Şanlı
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Elif Yıldırım
- Department of Psychology, Faculty of Arts and Sciences, Isik University, Istanbul, Turkey
| | - Hakan Gürvit
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Perihan Ergin Özcan
- Department of Anesthesiology and Intensive Care, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Serra Sencer
- Department of Neuroradiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nerses Bebek
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Erdem Tüzün
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
13
|
Garces A, Martinez B, De La Garza R, Roy D, Vallee KA, Fields JA, Moore DJ, Rodrigo H, Roy U. Differential expression of interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) in Alzheimer's disease and HIV-1 associated neurocognitive disorders. Sci Rep 2023; 13:3276. [PMID: 36841839 PMCID: PMC9968324 DOI: 10.1038/s41598-022-27276-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/29/2022] [Indexed: 02/27/2023] Open
Abstract
The United Nations projects that one in every six people will be over the age of 65 by the year 2050. With a rapidly aging population, the risk of Alzheimer's disease (AD) becomes a major concern. AD is a multifactorial disease that involves neurodegeneration in the brain with mild dementia and deficits in memory and other cognitive domains. Additionally, it has been established that individuals with Human Immunodeficiency Virus-1 (HIV-1) experience a 5 to 10-year accelerated aging and an increased risk of developing HIV-associated neurocognitive disorders (HAND). Despite a significant amount of clinical evidence pointing towards a potential overlap between neuropathogenic processes in HAND and AD, the underlying epigenetic link between these two diseases is mostly unknown. This study is focused on identifying differentially expressed genes observed in both AD and HAND using linear regression models and a more robust significance analysis of microarray. The results established that the dysregulated type 1 and 2 interferon pathways observed in both AD and HAND contribute to the similar pathologies of these diseases within the brain. The current study identifies the important roles of interferon pathways in AD and HAND, a relationship that may be useful for earlier detection in the future.
Collapse
Affiliation(s)
- Armando Garces
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd, Brownsville, TX, 78520, USA
| | - Bryan Martinez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd, Brownsville, TX, 78520, USA
| | - Roberto De La Garza
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd, Brownsville, TX, 78520, USA
| | - Deepa Roy
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd, Brownsville, TX, 78520, USA
| | - Kaylie-Anna Vallee
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Jerel Adam Fields
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - David J Moore
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Hansapani Rodrigo
- School of Mathematical and Statistical Sciences, University of Texas Rio Grande Valley (UTRGV), Edinburg, TX, USA.
| | - Upal Roy
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd, Brownsville, TX, 78520, USA.
| |
Collapse
|
14
|
Riggs PK, Chaillon A, Jiang G, Letendre SL, Tang Y, Taylor J, Kaytes A, Smith DM, Dubé K, Gianella S. Lessons for Understanding Central Nervous System HIV Reservoirs from the Last Gift Program. Curr HIV/AIDS Rep 2022; 19:566-579. [PMID: 36260191 PMCID: PMC9580451 DOI: 10.1007/s11904-022-00628-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW Deep tissue HIV reservoirs, especially within the central nervous system (CNS), are understudied due to the challenges of sampling brain, spinal cord, and other tissues. Understanding the cellular characteristics and viral dynamics in CNS reservoirs is critical so that HIV cure trials can address them and monitor the direct and indirect effects of interventions. The Last Gift program was developed to address these needs by enrolling altruistic people with HIV (PWH) at the end of life who agree to rapid research autopsy. RECENT FINDINGS Recent findings from the Last Gift emphasize significant heterogeneity across CNS reservoirs, CNS compartmentalization including differential sensitivity to broadly neutralizing antibodies, and bidirectional migration of HIV across the blood-brain barrier. Our findings add support for the potential of CNS reservoirs to be a source of rebounding viruses and reseeding of systemic sites if they are not targeted by cure strategies. This review highlights important scientific, practical, and ethical lessons learned from the Last Gift program in the context of recent advances in understanding the CNS reservoirs and key knowledge gaps in current research.
Collapse
Affiliation(s)
| | | | - Guochun Jiang
- Department of Biochemistry and Biophysics, Institute of Global Health and Infectious Diseases, UNC HIV Cure Center, Chapel Hill, NC, USA
| | | | - Yuyang Tang
- Department of Biochemistry and Biophysics, Institute of Global Health and Infectious Diseases, UNC HIV Cure Center, Chapel Hill, NC, USA
| | - Jeff Taylor
- AntiViral Research Center (AVRC) Community Advisory Board, University of California San Diego, San Diego, CA, USA
- HIV + Aging Research Project - Palm Springs (HARP-PS), Palm Springs, CA, USA
| | - Andrew Kaytes
- AntiViral Research Center (AVRC) Community Advisory Board, University of California San Diego, San Diego, CA, USA
| | | | - Karine Dubé
- Department of Medicine, UCSD, San Diego, CA, USA
| | | |
Collapse
|
15
|
Fields JA, Swinton M, Sundermann EE, Scrivens N, Vallee KAJ, Moore DJ. Complement component 3 and complement factor H protein levels are altered in brain tissues from people with human immunodeficiency virus: A pilot study. Front Aging Neurosci 2022; 14:981937. [PMID: 36118688 PMCID: PMC9472593 DOI: 10.3389/fnagi.2022.981937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
People with HIV (PWH) continue to suffer from dysfunction of the central nervous system, as evidenced by HIV-associated neurocognitive disorder (HAND), despite antiretroviral therapy and suppressed viral loads. As PWH live longer they may also be at risk of age-related neurodegenerative diseases such Alzheimer’s disease (AD) and its precursor, amnestic mild cognitive impairment (aMCI). The complement system is associated with deposition of AD-related proteins such as beta amyloid (Aβ), neuroinflammation, and neurological dysfunction in PWH. Complement component 3 (C3) is a key protagonist in the complement cascade and complement factor H (CFH) is an antagonist of C3 activity. We investigated the relationship between C3 and CFH levels in the brain and Aβ plaques and neurological dysfunction in 22 PWH. We analyzed by immunoblot C3 and CFH protein levels in frontal cortex (FC) and cerebellum (CB) brain specimens from PWH previously characterized for Aβ plaque deposition. C3 and CFH protein levels were then correlated with specific cognitive domains. C3 protein levels in the FC were significantly increased in brains with Aβ plaques and in brains with HAND compared to controls. In the CB, C3 levels trended higher in brains with Aβ plaques. Overall C3 protein levels were significantly higher in the FC compared to the CB, but the opposite was true for CFH, having significantly higher levels of CFH protein in the CB compared to the FC. However, only CFH in the FC showed significant correlations with specific domains, executive function and motor performance. These findings corroborate previous results showing that complement system proteins are associated with HAND and AD neuropathogenesis.
Collapse
|
16
|
Calcagno A, Celani L, Trunfio M, Orofino G, Imperiale D, Atzori C, Arena V, d'Ettorre G, Guaraldi G, Gisslen M, Di Perri G. Alzheimer Dementia in People Living With HIV. Neurol Clin Pract 2021; 11:e627-e633. [PMID: 34840876 DOI: 10.1212/cpj.0000000000001060] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022]
Abstract
Objective Given the aging of people living with HIV (PLWH) and the high prevalence of HIV-associated neurocognitive disorders, we aimed at describing the clinical, instrumental, and CSF features of PLWH diagnosed with Alzheimer dementia (AD). Methods The databases of 3 large Italian outpatient clinics taking care of more than 9,000 PLWH were searched for the diagnosis of AD. After obtaining patients' or their next of kin's consent for publication, anonymous data were collected in an excel spreadsheet and described. Routinely collected CSF biomarkers and radiologic imaging results were recorded whether available. Results Four patients were included in this case series who were diagnosed with AD aged between 60 and 74 years. All participants were on highly active antiretroviral therapy and showed nondetectable serum HIV RNA. Memory impairment was the most prominent cognitive feature. The diagnosis was obtained considering the exclusion of other potential causes, MRI and fluorodeoxyglucose-PET features, and, in (in 2/4), CSF AD biomarkers levels. In 1 patient, longitudinal CSF tau/p-tau increased, and beta-amyloid1-42 decreased over time despite antiretroviral therapy containing nucleotide reverse transcriptase inhibitors. Conclusions In older PLWH cognitive symptoms may represent the onset of AD: a multidisciplinary team may be needed for reaching a likely in vivo diagnosis.
Collapse
Affiliation(s)
- Andrea Calcagno
- Unit of Infectious Diseases (C. Andrea, MT, GDP), Department of Medical Sciences, University of Torino, Italy; Department of Public Health and Infectious Diseases (LC, GE), Sapienza University of Rome, Italy; "Divisione A" Unit of Infectious Diseases (GO), Ospedale Amedeo di Savoia, ASL Città di Torino, Italy; Unit of Neurology (DI, C. Atzori), Ospedale Maria Vittoria, ASL Città di Torino, Italy; AFFIDEA Irmet PET/CT Center (VA), Torino, Italy; Department of Surgical (GG), Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Italy; Department of Infectious Diseases (MG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden; and Region Västra Götaland (MG), Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Luigi Celani
- Unit of Infectious Diseases (C. Andrea, MT, GDP), Department of Medical Sciences, University of Torino, Italy; Department of Public Health and Infectious Diseases (LC, GE), Sapienza University of Rome, Italy; "Divisione A" Unit of Infectious Diseases (GO), Ospedale Amedeo di Savoia, ASL Città di Torino, Italy; Unit of Neurology (DI, C. Atzori), Ospedale Maria Vittoria, ASL Città di Torino, Italy; AFFIDEA Irmet PET/CT Center (VA), Torino, Italy; Department of Surgical (GG), Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Italy; Department of Infectious Diseases (MG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden; and Region Västra Götaland (MG), Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Mattia Trunfio
- Unit of Infectious Diseases (C. Andrea, MT, GDP), Department of Medical Sciences, University of Torino, Italy; Department of Public Health and Infectious Diseases (LC, GE), Sapienza University of Rome, Italy; "Divisione A" Unit of Infectious Diseases (GO), Ospedale Amedeo di Savoia, ASL Città di Torino, Italy; Unit of Neurology (DI, C. Atzori), Ospedale Maria Vittoria, ASL Città di Torino, Italy; AFFIDEA Irmet PET/CT Center (VA), Torino, Italy; Department of Surgical (GG), Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Italy; Department of Infectious Diseases (MG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden; and Region Västra Götaland (MG), Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Giancarlo Orofino
- Unit of Infectious Diseases (C. Andrea, MT, GDP), Department of Medical Sciences, University of Torino, Italy; Department of Public Health and Infectious Diseases (LC, GE), Sapienza University of Rome, Italy; "Divisione A" Unit of Infectious Diseases (GO), Ospedale Amedeo di Savoia, ASL Città di Torino, Italy; Unit of Neurology (DI, C. Atzori), Ospedale Maria Vittoria, ASL Città di Torino, Italy; AFFIDEA Irmet PET/CT Center (VA), Torino, Italy; Department of Surgical (GG), Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Italy; Department of Infectious Diseases (MG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden; and Region Västra Götaland (MG), Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Daniele Imperiale
- Unit of Infectious Diseases (C. Andrea, MT, GDP), Department of Medical Sciences, University of Torino, Italy; Department of Public Health and Infectious Diseases (LC, GE), Sapienza University of Rome, Italy; "Divisione A" Unit of Infectious Diseases (GO), Ospedale Amedeo di Savoia, ASL Città di Torino, Italy; Unit of Neurology (DI, C. Atzori), Ospedale Maria Vittoria, ASL Città di Torino, Italy; AFFIDEA Irmet PET/CT Center (VA), Torino, Italy; Department of Surgical (GG), Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Italy; Department of Infectious Diseases (MG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden; and Region Västra Götaland (MG), Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Cristiana Atzori
- Unit of Infectious Diseases (C. Andrea, MT, GDP), Department of Medical Sciences, University of Torino, Italy; Department of Public Health and Infectious Diseases (LC, GE), Sapienza University of Rome, Italy; "Divisione A" Unit of Infectious Diseases (GO), Ospedale Amedeo di Savoia, ASL Città di Torino, Italy; Unit of Neurology (DI, C. Atzori), Ospedale Maria Vittoria, ASL Città di Torino, Italy; AFFIDEA Irmet PET/CT Center (VA), Torino, Italy; Department of Surgical (GG), Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Italy; Department of Infectious Diseases (MG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden; and Region Västra Götaland (MG), Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Vincenzo Arena
- Unit of Infectious Diseases (C. Andrea, MT, GDP), Department of Medical Sciences, University of Torino, Italy; Department of Public Health and Infectious Diseases (LC, GE), Sapienza University of Rome, Italy; "Divisione A" Unit of Infectious Diseases (GO), Ospedale Amedeo di Savoia, ASL Città di Torino, Italy; Unit of Neurology (DI, C. Atzori), Ospedale Maria Vittoria, ASL Città di Torino, Italy; AFFIDEA Irmet PET/CT Center (VA), Torino, Italy; Department of Surgical (GG), Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Italy; Department of Infectious Diseases (MG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden; and Region Västra Götaland (MG), Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Gabriella d'Ettorre
- Unit of Infectious Diseases (C. Andrea, MT, GDP), Department of Medical Sciences, University of Torino, Italy; Department of Public Health and Infectious Diseases (LC, GE), Sapienza University of Rome, Italy; "Divisione A" Unit of Infectious Diseases (GO), Ospedale Amedeo di Savoia, ASL Città di Torino, Italy; Unit of Neurology (DI, C. Atzori), Ospedale Maria Vittoria, ASL Città di Torino, Italy; AFFIDEA Irmet PET/CT Center (VA), Torino, Italy; Department of Surgical (GG), Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Italy; Department of Infectious Diseases (MG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden; and Region Västra Götaland (MG), Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Giovanni Guaraldi
- Unit of Infectious Diseases (C. Andrea, MT, GDP), Department of Medical Sciences, University of Torino, Italy; Department of Public Health and Infectious Diseases (LC, GE), Sapienza University of Rome, Italy; "Divisione A" Unit of Infectious Diseases (GO), Ospedale Amedeo di Savoia, ASL Città di Torino, Italy; Unit of Neurology (DI, C. Atzori), Ospedale Maria Vittoria, ASL Città di Torino, Italy; AFFIDEA Irmet PET/CT Center (VA), Torino, Italy; Department of Surgical (GG), Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Italy; Department of Infectious Diseases (MG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden; and Region Västra Götaland (MG), Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Magnus Gisslen
- Unit of Infectious Diseases (C. Andrea, MT, GDP), Department of Medical Sciences, University of Torino, Italy; Department of Public Health and Infectious Diseases (LC, GE), Sapienza University of Rome, Italy; "Divisione A" Unit of Infectious Diseases (GO), Ospedale Amedeo di Savoia, ASL Città di Torino, Italy; Unit of Neurology (DI, C. Atzori), Ospedale Maria Vittoria, ASL Città di Torino, Italy; AFFIDEA Irmet PET/CT Center (VA), Torino, Italy; Department of Surgical (GG), Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Italy; Department of Infectious Diseases (MG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden; and Region Västra Götaland (MG), Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Giovanni Di Perri
- Unit of Infectious Diseases (C. Andrea, MT, GDP), Department of Medical Sciences, University of Torino, Italy; Department of Public Health and Infectious Diseases (LC, GE), Sapienza University of Rome, Italy; "Divisione A" Unit of Infectious Diseases (GO), Ospedale Amedeo di Savoia, ASL Città di Torino, Italy; Unit of Neurology (DI, C. Atzori), Ospedale Maria Vittoria, ASL Città di Torino, Italy; AFFIDEA Irmet PET/CT Center (VA), Torino, Italy; Department of Surgical (GG), Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Italy; Department of Infectious Diseases (MG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden; and Region Västra Götaland (MG), Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| |
Collapse
|
17
|
Swinton MK, Sundermann EE, Pedersen L, Nguyen JD, Grelotti DJ, Taffe MA, Iudicello JE, Fields JA. Alterations in Brain Cannabinoid Receptor Levels Are Associated with HIV-Associated Neurocognitive Disorders in the ART Era: Implications for Therapeutic Strategies Targeting the Endocannabinoid System. Viruses 2021; 13:v13091742. [PMID: 34578323 PMCID: PMC8473156 DOI: 10.3390/v13091742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 01/02/2023] Open
Abstract
HIV-associated neurocognitive disorders (HAND) persist despite the advent of antiretroviral therapy (ART), suggesting underlying systemic and central nervous system (CNS) inflammatory mechanisms. The endogenous cannabinoid receptors 1 and 2 (CB1 and CB2) modulate inflammatory gene expression and play an important role in maintaining neuronal homeostasis. Cannabis use is disproportionately high among people with HIV (PWH) and may provide a neuroprotective effect for those on ART due to its anti-inflammatory properties. However, expression profiles of CB1 and CB2 in the brains of PWH on ART with HAND have not been reported. In this study, biochemical and immunohistochemical analyses were performed to determine CB1 and CB2 expression in the brain specimens of HAND donors. Immunoblot revealed that CB1 and CB2 were differentially expressed in the frontal cortices of HAND brains compared to neurocognitively unimpaired (NUI) brains of PWH. CB1 expression levels negatively correlated with memory and information processing speed. CB1 was primarily localized to neuronal soma in HAND brains versus a more punctate distribution of neuronal processes in NUI brains. CB1 expression was increased in cells with glial morphology and showed increased colocalization with an astroglial marker. These results suggest that targeting the endocannabinoid system may be a potential therapeutic strategy for HAND.
Collapse
|
18
|
Dash PK, Gorantla S, Poluektova L, Hasan M, Waight E, Zhang C, Markovic M, Edagwa B, Machhi J, Olson KE, Wang X, Mosley RL, Kevadiya B, Gendelman HE. Humanized Mice for Infectious and Neurodegenerative disorders. Retrovirology 2021; 18:13. [PMID: 34090462 PMCID: PMC8179712 DOI: 10.1186/s12977-021-00557-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/22/2021] [Indexed: 12/12/2022] Open
Abstract
Humanized mice model human disease and as such are used commonly for research studies of infectious, degenerative and cancer disorders. Recent models also reflect hematopoiesis, natural immunity, neurobiology, and molecular pathways that influence disease pathobiology. A spectrum of immunodeficient mouse strains permit long-lived human progenitor cell engraftments. The presence of both innate and adaptive immunity enables high levels of human hematolymphoid reconstitution with cell susceptibility to a broad range of microbial infections. These mice also facilitate investigations of human pathobiology, natural disease processes and therapeutic efficacy in a broad spectrum of human disorders. However, a bridge between humans and mice requires a complete understanding of pathogen dose, co-morbidities, disease progression, environment, and genetics which can be mirrored in these mice. These must be considered for understanding of microbial susceptibility, prevention, and disease progression. With known common limitations for access to human tissues, evaluation of metabolic and physiological changes and limitations in large animal numbers, studies in mice prove important in planning human clinical trials. To these ends, this review serves to outline how humanized mice can be used in viral and pharmacologic research emphasizing both current and future studies of viral and neurodegenerative diseases. In all, humanized mouse provides cost-effective, high throughput studies of infection or degeneration in natural pathogen host cells, and the ability to test transmission and eradication of disease.
Collapse
Affiliation(s)
- Prasanta K Dash
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Larisa Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mahmudul Hasan
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Emiko Waight
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chen Zhang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Milica Markovic
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Katherine E Olson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Xinglong Wang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bhavesh Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
19
|
Monette A, Mouland AJ. Zinc and Copper Ions Differentially Regulate Prion-Like Phase Separation Dynamics of Pan-Virus Nucleocapsid Biomolecular Condensates. Viruses 2020; 12:E1179. [PMID: 33081049 PMCID: PMC7589941 DOI: 10.3390/v12101179] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) is a rapidly growing research focus due to numerous demonstrations that many cellular proteins phase-separate to form biomolecular condensates (BMCs) that nucleate membraneless organelles (MLOs). A growing repertoire of mechanisms supporting BMC formation, composition, dynamics, and functions are becoming elucidated. BMCs are now appreciated as required for several steps of gene regulation, while their deregulation promotes pathological aggregates, such as stress granules (SGs) and insoluble irreversible plaques that are hallmarks of neurodegenerative diseases. Treatment of BMC-related diseases will greatly benefit from identification of therapeutics preventing pathological aggregates while sparing BMCs required for cellular functions. Numerous viruses that block SG assembly also utilize or engineer BMCs for their replication. While BMC formation first depends on prion-like disordered protein domains (PrLDs), metal ion-controlled RNA-binding domains (RBDs) also orchestrate their formation. Virus replication and viral genomic RNA (vRNA) packaging dynamics involving nucleocapsid (NC) proteins and their orthologs rely on Zinc (Zn) availability, while virus morphology and infectivity are negatively influenced by excess Copper (Cu). While virus infections modify physiological metal homeostasis towards an increased copper to zinc ratio (Cu/Zn), how and why they do this remains elusive. Following our recent finding that pan-retroviruses employ Zn for NC-mediated LLPS for virus assembly, we present a pan-virus bioinformatics and literature meta-analysis study identifying metal-based mechanisms linking virus-induced BMCs to neurodegenerative disease processes. We discover that conserved degree and placement of PrLDs juxtaposing metal-regulated RBDs are associated with disease-causing prion-like proteins and are common features of viral proteins responsible for virus capsid assembly and structure. Virus infections both modulate gene expression of metalloproteins and interfere with metal homeostasis, representing an additional virus strategy impeding physiological and cellular antiviral responses. Our analyses reveal that metal-coordinated virus NC protein PrLDs initiate LLPS that nucleate pan-virus assembly and contribute to their persistence as cell-free infectious aerosol droplets. Virus aerosol droplets and insoluble neurological disease aggregates should be eliminated by physiological or environmental metals that outcompete PrLD-bound metals. While environmental metals can control virus spreading via aerosol droplets, therapeutic interference with metals or metalloproteins represent additional attractive avenues against pan-virus infection and virus-exacerbated neurological diseases.
Collapse
Affiliation(s)
- Anne Monette
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
| | - Andrew J. Mouland
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
- Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| |
Collapse
|
20
|
Xie Y, Seawell J, Boesch E, Allen L, Suchy A, Longo FM, Meeker RB. Small molecule modulation of the p75 neurotrophin receptor suppresses age- and genotype-associated neurodegeneration in HIV gp120 transgenic mice. Exp Neurol 2020; 335:113489. [PMID: 33007293 DOI: 10.1016/j.expneurol.2020.113489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/07/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022]
Abstract
The persistence of HIV in the central nervous system leads to cognitive deficits in up to 50% of people living with HIV even with systemic suppression by antiretroviral treatment. The interaction of chronic inflammation with age-associated degeneration places these individuals at increased risk of accelerated aging and other neurodegenerative diseases and no treatments are available that effectively halt these processes. The adverse effects of aging and inflammation may be mediated, in part, by an increase in the expression of the p75 neurotrophin receptor (p75NTR) which shifts the balance of neurotrophin signaling toward less protective pathways. To determine if modulation of p75NTR could modify the disease process, we treated HIV gp120 transgenic mice with a small molecule ligand designed to engage p75NTR and downregulate degenerative signaling. Daily treatment with 50 mg/kg LM11A-31 for 4 months suppressed age- and genotype-dependent activation of microglia, increased microtubule associated protein-2 (MAP-2), reduced dendritic varicosities and slowed the loss of parvalbumin immunoreactive neurons in the hippocampus. An age related accumulation of microtubule associated protein Tau was identified in the hippocampus in extracellular clusters that co-expressed p75NTR suggesting a link between Tau and p75NTR. Although the significance of the relationship between p75NTR and Tau is unclear, a decrease in Tau-1 immunoreactivity as gp120 mice entered old age (>16 months) suggests that the Tau may transition to more pathological modifications; a process blocked by LM11A-31. Overall, the effects of LM11A-31 are consistent with strong neuroprotective and anti-inflammatory actions that have significant therapeutic potential.
Collapse
Affiliation(s)
- Youmie Xie
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, United States of America
| | - Jaimie Seawell
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, United States of America; The Edward Via College of Osteopathic Medicine, Spartanburg, SC 29303, United States of America
| | - Emily Boesch
- School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States of America
| | - Lauren Allen
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, United States of America
| | - Ashley Suchy
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, United States of America
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Rick B Meeker
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, United States of America; Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC 27599, United States of America.
| |
Collapse
|
21
|
Saloner R, Fields JA, Marcondes MCG, Iudicello JE, von Känel S, Cherner M, Letendre SL, Kaul M, Grant I. Methamphetamine and Cannabis: A Tale of Two Drugs and their Effects on HIV, Brain, and Behavior. J Neuroimmune Pharmacol 2020; 15:743-764. [PMID: 32929575 DOI: 10.1007/s11481-020-09957-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022]
Abstract
HIV infection and drug use intersect epidemiologically, and their combination can result in complex effects on brain and behavior. The extent to which drugs affect the health of persons with HIV (PWH) depends on many factors including drug characteristics, use patterns, stage of HIV disease and its treatment, comorbid factors, and age. To consider the range of drug effects, we have selected two that are in common use by PWH: methamphetamine and cannabis. We compare the effects of methamphetamine with those of cannabis, to illustrate how substances may potentiate, worsen, or even buffer the effects of HIV on the CNS. Data from human, animal, and ex vivo studies provide insights into how these drugs have differing effects on the persistent inflammatory state that characterizes HIV infection, including effects on viral replication, immune activation, mitochondrial function, gut permeability, blood brain barrier integrity, glia and neuronal signaling. Moving forward, we consider how these mechanistic insights may inform interventions to improve brain outcomes in PWH. This review summarizes literature from clinical and preclinical studies demonstrating the adverse effects of METH, as well as the potentially beneficial effects of cannabis, on the interacting systemic (e.g., gut barrier leakage/microbial translocation, immune activation, inflammation) and CNS-specific (e.g., glial activation/neuroinflammation, neural injury, mitochondrial toxicity/oxidative stress) mechanisms underlying HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Rowan Saloner
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA. .,Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego , San Diego, CA, USA.
| | - Jerel Adam Fields
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | | | - Jennifer E Iudicello
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | - Sofie von Känel
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | - Mariana Cherner
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | - Scott L Letendre
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | - Marcus Kaul
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA.,Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, USA
| | - Igor Grant
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | | |
Collapse
|
22
|
Pinto DO, DeMarino C, Vo TT, Cowen M, Kim Y, Pleet ML, Barclay RA, Noren Hooten N, Evans MK, Heredia A, Batrakova EV, Iordanskiy S, Kashanchi F. Low-Level Ionizing Radiation Induces Selective Killing of HIV-1-Infected Cells with Reversal of Cytokine Induction Using mTOR Inhibitors. Viruses 2020; 12:E885. [PMID: 32823598 PMCID: PMC7472203 DOI: 10.3390/v12080885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
HIV-1 infects 39.5 million people worldwide, and cART is effective in preventing viral spread by reducing HIV-1 plasma viral loads to undetectable levels. However, viral reservoirs persist by mechanisms, including the inhibition of autophagy by HIV-1 proteins (i.e., Nef and Tat). HIV-1 reservoirs can be targeted by the "shock and kill" strategy, which utilizes latency-reversing agents (LRAs) to activate latent proviruses and immunotarget the virus-producing cells. Yet, limitations include reduced LRA permeability across anatomical barriers and immune hyper-activation. Ionizing radiation (IR) induces effective viral activation across anatomical barriers. Like other LRAs, IR may cause inflammation and modulate the secretion of extracellular vesicles (EVs). We and others have shown that cells may secrete cytokines and viral proteins in EVs and, therefore, LRAs may contribute to inflammatory EVs. In the present study, we mitigated the effects of IR-induced inflammatory EVs (i.e., TNF-α), through the use of mTOR inhibitors (mTORi; Rapamycin and INK128). Further, mTORi were found to enhance the selective killing of HIV-1-infected myeloid and T-cell reservoirs at the exclusion of uninfected cells, potentially via inhibition of viral transcription/translation and induction of autophagy. Collectively, the proposed regimen using cART, IR, and mTORi presents a novel approach allowing for the targeting of viral reservoirs, prevention of immune hyper-activation, and selectively killing latently infected HIV-1 cells.
Collapse
Affiliation(s)
- Daniel O. Pinto
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Thy T. Vo
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Maria Cowen
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Yuriy Kim
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Michelle L. Pleet
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Robert A. Barclay
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (N.N.H.); (M.K.E.)
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (N.N.H.); (M.K.E.)
| | - Alonso Heredia
- Institute of Human Virology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
| | - Elena V. Batrakova
- Department of Medicine, University of North Carolina HIV Cure Center; University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA;
| | - Sergey Iordanskiy
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA;
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| |
Collapse
|
23
|
Knight AC, Brill SA, Solis CV, Richardson MR, McCarron ME, Queen SE, Bailey CC, Mankowski JL. Differential regulation of TREM2 and CSF1R in CNS macrophages in an SIV/macaque model of HIV CNS disease. J Neurovirol 2020; 26:511-519. [PMID: 32488843 PMCID: PMC7442592 DOI: 10.1007/s13365-020-00844-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/11/2020] [Accepted: 04/13/2020] [Indexed: 11/26/2022]
Abstract
HIV-associated neuroinflammation is primarily driven by CNS macrophages including microglia. Regulation of these immune responses, however, remains to be characterized in detail. Using the SIV/macaque model of HIV, we evaluated CNS expression of triggering receptor expressed on myeloid cells 2 (TREM2) which is constitutively expressed by microglia and contributes to cell survival, proliferation, and differentiation. Loss-of-function mutations in TREM2 are recognized risk factors for neurodegenerative diseases including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Nasu-Hakola disease (NHD); recent reports have also indicated a role for TREM2 in HIV-associated neuroinflammation. Using in situ hybridization (ISH) and qRT-PCR, TREM2 mRNA levels were found to be significantly elevated in frontal cortex of macaques with SIV encephalitis compared with uninfected controls (P = 0.02). TREM2 protein levels were also elevated as measured by ELISA of frontal cortex tissue homogenates in these animals. Previously, we characterized the expression of CSF1R (colony-stimulating factor 1 receptor) in this model; the TREM2 and CSF1R promoters both contain a PU.1 binding site. While TREM2 and CSF1R mRNA levels in the frontal cortex were highly correlated (Spearman R = 0.79, P < 0.001), protein levels were not well correlated. In SIV-infected macaques released from ART to study viral rebound, neither TREM2 nor CSF1R mRNA increased with rebound viremia. However, CSF1R protein levels remained significantly elevated unlike TREM2 (P = 0.02). This differential expression suggests that TREM2 and CSF1R play unique, distinct roles in the pathogenesis of HIV CNS disease.
Collapse
MESH Headings
- Animals
- Antiretroviral Therapy, Highly Active/methods
- Antiviral Agents/pharmacology
- Drug Administration Schedule
- Encephalitis, Viral/drug therapy
- Encephalitis, Viral/genetics
- Encephalitis, Viral/immunology
- Encephalitis, Viral/virology
- Frontal Lobe/drug effects
- Frontal Lobe/immunology
- Frontal Lobe/virology
- Gene Expression Regulation
- Host-Pathogen Interactions/genetics
- Host-Pathogen Interactions/immunology
- Macaca nemestrina/genetics
- Macaca nemestrina/immunology
- Macaca nemestrina/virology
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/virology
- Male
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Microglia/drug effects
- Microglia/immunology
- Microglia/virology
- Promoter Regions, Genetic
- Protein Binding
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/immunology
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/immunology
- Simian Acquired Immunodeficiency Syndrome/drug therapy
- Simian Acquired Immunodeficiency Syndrome/genetics
- Simian Acquired Immunodeficiency Syndrome/immunology
- Simian Acquired Immunodeficiency Syndrome/virology
- Simian Immunodeficiency Virus/drug effects
- Simian Immunodeficiency Virus/growth & development
- Simian Immunodeficiency Virus/immunology
- Trans-Activators/genetics
- Trans-Activators/immunology
Collapse
Affiliation(s)
- Audrey C Knight
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Samuel A Brill
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Clarisse V Solis
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Morgan R Richardson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Megan E McCarron
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Suzanne E Queen
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Charles C Bailey
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Emmune, Inc., 130 Scripps Way, Jupiter, Florida, USA
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
24
|
Fields JA, Swinton MK, Soontornniyomkij B, Carson A, Achim CL. Beta amyloid levels in cerebrospinal fluid of HIV-infected people vary by exposure to antiretroviral therapy. AIDS 2020; 34:1001-1007. [PMID: 32073451 PMCID: PMC7210049 DOI: 10.1097/qad.0000000000002506] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND HIV-associated neurocognitive disorders (HAND) persist despite the widespread implementation of combined antiretroviral therapy (ART). As people with HIV (PWH) age on ART regimens, the risk of age-related comorbidities, such as Alzheimer's disease may increase. However, questions remain as to whether HIV or ART will alter such risks. Beta amyloid (Aβ) and phosphorylated-tau (p-tau) proteins are associated with Alzheimer's disease and their levels are altered in the CSF of Alzheimer's disease cases. METHODS To better understand how these Alzheimer's disease-related markers are affected by HIV infection and ART, postmortem CSF collected from 70 well characterized HIV+ decedents was analyzed for Aβ1-42, Aβ1-40, and p-tau levels. RESULTS Aβ1-42 and Aβ1-40 CSF levels were higher in cases that were exposed to ART. Aβ1-42 and Aβ1-40 CSF levels were also higher in cases on protease inhibitors compared with those with no exposure to protease inhibitors. Aβ1-42 and Aβ1-40 levels in CSF were lowest in HIV+ cases with HIV-associated dementia (HAD) and levels were highest in those diagnosed with asymptomatic neurocognitive impairment (ANI) and minor neurocognitive disorder (MND). Aβ1-42 and Aβ1-40 were inversely related with p-tau levels in all cases, as previously reported. CONCLUSION These data suggest that ART exposure is associated with increased levels of Aβ1-42 and Aβ1-40 in the CSF. Also, HAD, but not ANI/MND diagnosis is associated with decreased levels of Aβ1-42 and Aβ1-40 in CSF, potentially suggesting impaired clearance. These data suggest that HIV infection and ART may impact pathogenic mechanisms involving Aβ1-42 and Aβ1-40, but not p-tau.
Collapse
Affiliation(s)
- Jerel Adam Fields
- Department of Psychiatry, University of California San
Diego, La Jolla, CA, USA
| | - Mary K. Swinton
- Department of Psychiatry, University of California San
Diego, La Jolla, CA, USA
| | | | - Aliyah Carson
- Department of Psychiatry, University of California San
Diego, La Jolla, CA, USA
| | - Cristian L. Achim
- Department of Psychiatry, University of California San
Diego, La Jolla, CA, USA
- Department of Pathology, University of California San
Diego, La Jolla, CA, USA
| |
Collapse
|
25
|
Canchi S, Swinton MK, Rissman RA, Fields JA. Transcriptomic analysis of brain tissues identifies a role for CCAAT enhancer binding protein β in HIV-associated neurocognitive disorder. J Neuroinflammation 2020; 17:112. [PMID: 32276639 PMCID: PMC7149918 DOI: 10.1186/s12974-020-01781-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND HIV-associated neurocognitive disorders (HAND) persist in the era of combined antiretroviral therapy (ART) despite reductions in viral load (VL) and overall disease severity. The mechanisms underlying HAND in the ART era are not well understood but are likely multifactorial, involving alterations in common pathways such as inflammation, autophagy, neurogenesis, and mitochondrial function. Newly developed omics approaches hold potential to identify mechanisms driving neuropathogenesis of HIV in the ART era. METHODS In this study, using 33 postmortem frontal cortex (FC) tissues, neuropathological, molecular, and biochemical analyses were used to determine cellular localization and validate expression levels of the prolific transcription factor (TF), CCAAT enhancer binding protein (C/EBP) β, in brain tissues from HIV+ cognitively normal and HAND cases. RNA sequencing (seq) and transcriptomic analyses were performed on FC tissues including 24 specimens from well-characterized people with HIV that had undergone neurocognitive assessments. In vitro models for brain cells were used to investigate the role of C/EBPβ in mediating gene expression. RESULTS The most robust signal for TF dysregulation was observed in cases diagnosed with minor neurocognitive disorder (MND) compared to cognitive normal (CN) cases. Of particular interest, due to its role in inflammation, autophagy and neurogenesis, C/EBPβ was significantly upregulated in MND compared to CN brains. C/EBPβ was increased at the protein level in HAND brains. C/EBPβ levels were significantly reduced in neurons and increased in astroglia in HAND brains compared to CN. Transfection of human astroglial cells with a plasmid expressing C/EBPβ induced expression of multiple targets identified in the transcriptomic analysis of HAND brains, including dynamin-1-like protein (DNM1L) and interleukin-1 receptor-associated kinase 1. Recombinant HIV-Tat reduced and increased C/EBPβ levels in neuronal and astroglial cells, respectively. CONCLUSIONS These findings are the first to present RNAseq-based transcriptomic analyses of HIV+ brain tissues, providing further evidence of altered neuroinflammation, neurogenesis, mitochondrial function, and autophagy in HAND. Interestingly, these studies confirm a role for CEBPβ in regulating inflammation, metabolism, and autophagy in astroglia. Therapeutic strategies aimed at transcriptional regulation of astroglia or downstream pathways may provide relief to HIV+ patients at risk for HAND and other neurological disorders.
Collapse
Affiliation(s)
- Saranya Canchi
- Veterans Affairs San Diego Healthcare System, San Diego, CA USA
- Department of Neurosciences, University of California San Diego, San Diego, La Jolla, CA USA
| | - Mary K. Swinton
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Dr., BSB 3009, San Diego, La Jolla, CA 92093-0603 USA
| | - Robert A. Rissman
- Veterans Affairs San Diego Healthcare System, San Diego, CA USA
- Department of Neurosciences, University of California San Diego, San Diego, La Jolla, CA USA
| | - Jerel Adam Fields
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Dr., BSB 3009, San Diego, La Jolla, CA 92093-0603 USA
| |
Collapse
|
26
|
Hasselmann J, Blurton-Jones M. Human iPSC-derived microglia: A growing toolset to study the brain's innate immune cells. Glia 2020; 68:721-739. [PMID: 31926038 DOI: 10.1002/glia.23781] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/21/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022]
Abstract
Recent advances in the generation of microglia from human induced pluripotent stem cells (iPSCs) have provided exciting new approaches to examine and decipher the biology of microglia. As these techniques continue to evolve to encompass more complex in situ and in vivo paradigms, so too have they begun to yield novel scientific insight into the genetics and function of human microglia. As such, researchers now have access to a toolset comprised of three unique "flavors" of iPSC-derived microglia: in vitro microglia (iMGs), organoid microglia (oMGs), and xenotransplanted microglia (xMGs). The goal of this review is to discuss the variety of research applications that each of these techniques enables and to highlight recent discoveries that these methods have begun to uncover. By presenting the research paradigms in which each model has been successful, as well as the key benefits and limitations of each approach, it is our hope that this review will help interested researchers to incorporate these techniques into their studies, collectively advancing our understanding of human microglia biology.
Collapse
Affiliation(s)
- Jonathan Hasselmann
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California.,Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, California.,Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, California
| | - Mathew Blurton-Jones
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California.,Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, California.,Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, California
| |
Collapse
|
27
|
Fields JA, Swinton MK, Carson A, Soontornniyomkij B, Lindsay C, Han MM, Frizzi K, Sambhwani S, Murphy A, Achim CL, Ellis RJ, Calcutt NA. Tenofovir disoproxil fumarate induces peripheral neuropathy and alters inflammation and mitochondrial biogenesis in the brains of mice. Sci Rep 2019; 9:17158. [PMID: 31748578 PMCID: PMC6868155 DOI: 10.1038/s41598-019-53466-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/01/2019] [Indexed: 01/08/2023] Open
Abstract
Mounting evidence suggests that antiretroviral therapy (ART) drugs may contribute to the prevalence of HIV-associated neurological dysfunction. The HIV envelope glycoprotein (gp120) is neurotoxic and has been linked to alterations in mitochondrial function and increased inflammatory gene expression, which are common neuropathological findings in HIV+ cases on ART with neurological disorders. Tenofovir disproxil fumarate (TDF) has been shown to affect neurogenesis in brains of mice and mitochondria in neurons. In this study, we hypothesized that TDF contributes to neurotoxicity by modulating mitochondrial biogenesis and inflammatory pathways. TDF administered to wild-type (wt) and GFAP-gp120 transgenic (tg) mice caused peripheral neuropathy, as indicated by nerve conduction slowing and thermal hyperalgesia. Conversely TDF protected gp120-tg mice from cognitive dysfunction. In the brains of wt and gp120-tg mice, TDF decreased expression of mitochondrial transcription factor A (TFAM). However, double immunolabelling revealed that TFAM was reduced in neurons and increased in astroglia in the hippocampi of TDF-treated wt and gp120-tg mice. TDF also increased expression of GFAP and decreased expression of IBA1 in the wt and gp120-tg mice. TDF increased tumor necrosis factor (TNF) α in wt mice. However, TDF reduced interleukin (IL) 1β and TNFα mRNA in gp120-tg mouse brains. Primary human astroglia were exposed to increasing doses of TDF for 24 hours and then analyzed for mitochondrial alterations and inflammatory gene expression. In astroglia, TDF caused a dose-dependent increase in oxygen consumption rate, extracellular acidification rate and spare respiratory capacity, changes consistent with increased metabolism. TDF also reduced IL-1β-mediated increases in IL-1β and TNFα mRNA. These data demonstrate that TDF causes peripheral neuropathy in mice and alterations in inflammatory signaling and mitochondrial activity in the brain.
Collapse
Affiliation(s)
- Jerel Adam Fields
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| | - Mary K Swinton
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Aliyah Carson
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Charmaine Lindsay
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - May Madi Han
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Katie Frizzi
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Shrey Sambhwani
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Anne Murphy
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Cristian L Achim
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Ronald J Ellis
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Nigel A Calcutt
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
28
|
Fields JA, Ellis RJ. HIV in the cART era and the mitochondrial: immune interface in the CNS. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 145:29-65. [PMID: 31208526 DOI: 10.1016/bs.irn.2019.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HIV-associated neurocognitive disorders (HAND) persist in the era of effective combined antiretroviral therapy (cART). A large body of literature suggests that mitochondrial dysfunction is a prospective etiology of HAND in the cART era. While viral load is often suppressed and the immune system remains intact in HIV+ patients on cART, evidence suggests that the central nervous system (CNS) acts as a reservoir for virus and low-level expression of viral proteins, which interact with mitochondria. In particular, the HIV proteins glycoprotein 120, transactivator of transcription, viral protein R, and negative factor have each been linked to mitochondrial dysfunction in the brain. Moreover, cART drugs have also been shown to have detrimental effects on mitochondrial function. Here, we review the evidence generated from human studies, animal models, and in vitro models that support a role for HIV proteins and/or cART drugs in altered production of adenosine triphosphate, mitochondrial dynamics, mitophagy, calcium signaling and apoptosis, oxidative stress, mitochondrial biogenesis, and immunometabolism in the CNS. When insightful, evidence of HIV or cART-induced mitochondrial dysfunction in the peripheral nervous system or other cell types is discussed. Lastly, therapeutic approaches to targeting mitochondrial dysfunction have been summarized with the aim of guiding new investigations and providing hope that mitochondrial-based drugs may provide relief for those suffering with HAND.
Collapse
Affiliation(s)
- Jerel Adam Fields
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States.
| | - Ronald J Ellis
- Department of Neuroscience, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
29
|
Rubin LH, Sundermann EE, Moore DJ. The current understanding of overlap between characteristics of HIV-associated neurocognitive disorders and Alzheimer's disease. J Neurovirol 2019; 25:661-672. [PMID: 30671777 DOI: 10.1007/s13365-018-0702-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/04/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022]
Abstract
The advent of effective antiretroviral medications (ARVs) has led to an aging of the HIV population with approximately 50% of people with HIV (PWH) being over the age of 50 years. Neurocognitive complications, typically known as HIV-associated neurocognitive disorders (HAND), persist in the era of ARVs and, in addition to risk of HAND, older PWH are also at risk for age-associated, neurodegenerative disorders including Alzheimer's disease (AD). It has been postulated that risk for AD may be greater among PWH due to potential compounding effects of HIV and aging on mechanisms of neural insult. We are now faced with the challenge of disentangling AD from HAND, which has important prognostic and treatment implications given the more rapidly debilitating trajectory of AD. Herein, we review the evidence to date demonstrating both parallels and differences in the profiles of HAND and AD. We specifically address similarities and difference of AD and HAND as it relates to (1) neuropsychological profiles (cross-sectional/longitudinal), (2) AD-associated neuropathological features as evidenced from neuropathological, cerebrospinal fluid and neuroimaging assessments, (3) biological mechanisms underlying cortical amyloid deposition, (4) parallels in mechanisms of neural insult, and (5) common risk factors. Our current understanding of the similarities and dissimilarities of AD and HAND should be further delineated and leveraged in the development of differential diagnostic methods that will allow for the early identification of AD and more suitable and effective treatment interventions among graying PWH.
Collapse
Affiliation(s)
- Leah H Rubin
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Erin E Sundermann
- Department of Psychiatry, University of California, San Diego (UCSD) School of Medicine, La Jolla, CA, USA.
| | - David J Moore
- Department of Psychiatry, University of California, San Diego (UCSD) School of Medicine, La Jolla, CA, USA
| |
Collapse
|
30
|
Risk Factors and Pathogenesis of HIV-Associated Neurocognitive Disorder: The Role of Host Genetics. Int J Mol Sci 2018; 19:ijms19113594. [PMID: 30441796 PMCID: PMC6274730 DOI: 10.3390/ijms19113594] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023] Open
Abstract
Neurocognitive impairments associated with human immunodeficiency virus (HIV) infection remain a considerable health issue for almost half the people living with HIV, despite progress in HIV treatment through combination antiretroviral therapy (cART). The pathogenesis and risk factors of HIV-associated neurocognitive disorder (HAND) are still incompletely understood. This is partly due to the complexity of HAND diagnostics, as phenotypes present with high variability and change over time. Our current understanding is that HIV enters the central nervous system (CNS) during infection, persisting and replicating in resident immune and supporting cells, with the subsequent host immune response and inflammation likely adding to the development of HAND. Differences in host (human) genetics determine, in part, the effectiveness of the immune response and other factors that increase the vulnerability to HAND. This review describes findings from studies investigating the role of human host genetics in the pathogenesis of HAND, including potential risk factors for developing HAND. The similarities and differences between HAND and Alzheimer's disease are also discussed. While some specific variations in host genes regulating immune responses and neurotransmission have been associated with protection or risk of HAND development, the effects are generally small and findings poorly replicated. Nevertheless, a few specific gene variants appear to affect the risk for developing HAND and aid our understanding of HAND pathogenesis.
Collapse
|