1
|
Pocivavsek A, Schwarcz R, Erhardt S. Neuroactive Kynurenines as Pharmacological Targets: New Experimental Tools and Exciting Therapeutic Opportunities. Pharmacol Rev 2024; 76:978-1008. [PMID: 39304346 DOI: 10.1124/pharmrev.124.000239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
Both preclinical and clinical studies implicate functional impairments of several neuroactive metabolites of the kynurenine pathway (KP), the major degradative cascade of the essential amino acid tryptophan in mammals, in the pathophysiology of neurologic and psychiatric diseases. A number of KP enzymes, such as tryptophan 2,3-dioxygenase (TDO2), indoleamine 2,3-dioxygenases (IDO1 and IDO2), kynurenine aminotransferases (KATs), kynurenine 3-monooxygenase (KMO), 3-hydroxyanthranilic acid oxygenase (3-HAO), and quinolinic acid phosphoribosyltransferase (QPRT), control brain KP metabolism in health and disease and are therefore increasingly considered to be promising targets for the treatment of disorders of the nervous system. Understanding the distribution, cellular expression, and regulation of KP enzymes and KP metabolites in the brain is therefore critical for the conceptualization and implementation of successful therapeutic strategies. SIGNIFICANCE STATEMENT: Studies have implicated the kynurenine pathway of tryptophan in the pathophysiology of neurologic and psychiatric diseases. Key enzymes of the kynurenine pathway regulate brain metabolism in both health and disease, making them promising targets for treating these disorders. Therefore, understanding the distribution, cellular expression, and regulation of these enzymes and metabolites in the brain is critical for developing effective therapeutic strategies. This review endeavors to describe these processes in detail.
Collapse
Affiliation(s)
- Ana Pocivavsek
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina (A.P.); Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland (R.S.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.E.)
| | - Robert Schwarcz
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina (A.P.); Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland (R.S.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.E.)
| | - Sophie Erhardt
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina (A.P.); Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland (R.S.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.E.)
| |
Collapse
|
2
|
Dehhaghi M, Heydari M, Panahi HKS, Lewin SR, Heng B, Brew BJ, Guillemin GJ. The roles of the kynurenine pathway in COVID-19 neuropathogenesis. Infection 2024; 52:2043-2059. [PMID: 38802702 PMCID: PMC11499433 DOI: 10.1007/s15010-024-02293-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the highly contagious respiratory disease Corona Virus Disease 2019 (COVID-19) that may lead to various neurological and psychological disorders that can be acute, lasting days to weeks or months and possibly longer. The latter is known as long-COVID or more recently post-acute sequelae of COVID (PASC). During acute COVID-19 infection, a strong inflammatory response, known as the cytokine storm, occurs in some patients. The levels of interferon-γ (IFN-γ), interferon-β (IFN-β), interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) are particularly increased. These cytokines are known to activate the enzyme indoleamine 2,3-dioxygenase 1 (IDO-1), catalysing the first step of tryptophan (Trp) catabolism through the kynurenine pathway (KP) leading to the production of several neurotoxic and immunosuppressive metabolites. There is already data showing elevation in KP metabolites both acutely and in PASC, especially regarding cognitive impairment. Thus, it is likely that KP involvement is significant in SARS-CoV-2 pathogenesis especially neurologically.
Collapse
Affiliation(s)
- Mona Dehhaghi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mostafa Heydari
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Hamed Kazemi Shariat Panahi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, The Alfred Hospital and Monash University, Melbourne, VIC, Australia
| | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Bruce J Brew
- Peter Duncan Neurosciences Unit, St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia.
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia.
- Departments of Neurology and Immunology, St. Vincent's Hospital, Sydney, NSW, Australia.
- University of Notre Dame, Darlinghurst, Sydney, NSW, Australia.
| | - Gilles J Guillemin
- Peter Duncan Neurosciences Unit, St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Pertanian Bogor University, Bogor, Indonesia
| |
Collapse
|
3
|
Marszalek-Grabska M, Turska-Kozlowska M, Kaczorek-Lukowska E, Wicha-Komsta K, Turski WA, Siwicki AK, Gawel K. The Effects of Kynurenic Acid in Zebrafish Embryos and Adult Rainbow Trout. Biomolecules 2024; 14:1148. [PMID: 39334914 PMCID: PMC11429597 DOI: 10.3390/biom14091148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/16/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Kynurenic acid (KYNA) is a metabolite of tryptophan formed on the kynurenine pathway. Its pharmacological effects are relatively well characterized in mammals, whereas its role in fish is poorly understood. Therefore, the aim of the study was to expand the knowledge of KYNA's presence inside a fish's body and its impact on fish development and function. The study was performed on zebrafish larvae and adult rainbow trout. We provide evidence that KYNA is present in the embryo, larva and mature fish and that its distribution in organs varies considerably. A study of KYNA's effect on early larval development suggests that it can accelerate larval maturation, especially under conditions that are suboptimal for fish growth. Moreover, KYNA in concentrations over 1 mM caused morphological impairment and death of larvae. However, long-lasting exposure of larvae to subtoxic concentrations of KYNA does not affect the behavior of 5-day-old larvae kept under standard optimal conditions. We also show that ingestion of KYNA-supplemented feed can lead to KYNA accumulation, particularly in the pyloric caeca of mature trout. These results shed new light on the relevance of KYNA and provide new impulse for further research on the importance of the kynurenine pathway in fish.
Collapse
Affiliation(s)
- Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8B Str., 20-090 Lublin, Poland; (M.M.-G.); (K.W.-K.); (W.A.T.)
| | - Monika Turska-Kozlowska
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Konstantynow 1H, 20-708 Lublin, Poland;
| | - Edyta Kaczorek-Lukowska
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13 Str., 10-719 Olsztyn, Poland;
| | - Katarzyna Wicha-Komsta
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8B Str., 20-090 Lublin, Poland; (M.M.-G.); (K.W.-K.); (W.A.T.)
| | - Waldemar A. Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8B Str., 20-090 Lublin, Poland; (M.M.-G.); (K.W.-K.); (W.A.T.)
| | - Andrzej K. Siwicki
- Department of Ichiopathology and Fish Health Prevention, National Inland Fisheries Institute in Olsztyn, Oczapowskiego 10 Str., 10-917 Olsztyn, Poland;
| | - Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8B Str., 20-090 Lublin, Poland; (M.M.-G.); (K.W.-K.); (W.A.T.)
| |
Collapse
|
4
|
Bertollo AG, Mingoti MED, Ignácio ZM. Neurobiological mechanisms in the kynurenine pathway and major depressive disorder. Rev Neurosci 2024:revneuro-2024-0065. [PMID: 39245854 DOI: 10.1515/revneuro-2024-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Major depressive disorder (MDD) is a prevalent psychiatric disorder that has damage to people's quality of life. Tryptophan is the precursor to serotonin, a critical neurotransmitter in mood modulation. In mammals, most free tryptophan is degraded by the kynurenine pathway (KP), resulting in a range of metabolites involved in inflammation, immune response, and neurotransmission. The imbalance between quinolinic acid (QA), a toxic metabolite, and kynurenic acid (KynA), a protective metabolite, is a relevant phenomenon involved in the pathophysiology of MDD. Proinflammatory cytokines increase the activity of the enzyme indoleamine 2,3-dioxygenase (IDO), leading to the degradation of tryptophan in the KP and an increase in the release of QA. IDO activates proinflammatory genes, potentiating neuroinflammation and deregulating other physiological mechanisms related to chronic stress and MDD. This review highlights the physiological mechanisms involved with stress and MDD, which are underlying an imbalance of the KP and discuss potential therapeutic targets.
Collapse
Affiliation(s)
- Amanda Gollo Bertollo
- Laboratory of Physiology, Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Maiqueli Eduarda Dama Mingoti
- Laboratory of Physiology, Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Zuleide Maria Ignácio
- Laboratory of Physiology, Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| |
Collapse
|
5
|
Stone TW, Williams RO. Tryptophan metabolism as a 'reflex' feature of neuroimmune communication: Sensor and effector functions for the indoleamine-2, 3-dioxygenase kynurenine pathway. J Neurochem 2024; 168:3333-3357. [PMID: 38102897 DOI: 10.1111/jnc.16015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/16/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023]
Abstract
Although the central nervous system (CNS) and immune system were regarded as independent entities, it is now clear that immune system cells can influence the CNS, and neuroglial activity influences the immune system. Despite the many clinical implications for this 'neuroimmune interface', its detailed operation at the molecular level remains unclear. This narrative review focuses on the metabolism of tryptophan along the kynurenine pathway, since its products have critical actions in both the nervous and immune systems, placing it in a unique position to influence neuroimmune communication. In particular, since the kynurenine pathway is activated by pro-inflammatory mediators, it is proposed that physical and psychological stressors are the stimuli of an organismal protective reflex, with kynurenine metabolites as the effector arm co-ordinating protective neural and immune system responses. After a brief review of the neuroimmune interface, the general perception of tryptophan metabolism along the kynurenine pathway is expanded to emphasize this environmentally driven perspective. The initial enzymes in the kynurenine pathway include indoleamine-2,3-dioxygenase (IDO1), which is induced by tissue damage, inflammatory mediators or microbial products, and tryptophan-2,3-dioxygenase (TDO), which is induced by stress-induced glucocorticoids. In the immune system, kynurenic acid modulates leucocyte differentiation, inflammatory balance and immune tolerance by activating aryl hydrocarbon receptors and modulates pain via the GPR35 protein. In the CNS, quinolinic acid activates N-methyl-D-aspartate (NMDA)-sensitive glutamate receptors, whereas kynurenic acid is an antagonist: the balance between glutamate, quinolinic acid and kynurenic acid is a significant regulator of CNS function and plasticity. The concept of kynurenine and its metabolites as mediators of a reflex coordinated protection against stress helps to understand the variety and breadth of their activity. It should also help to understand the pathological origin of some psychiatric and neurodegenerative diseases involving the immune system and CNS, facilitating the development of new pharmacological strategies for treatment.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Richard O Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Kloc R, Urbanska EM. Memantine and the Kynurenine Pathway in the Brain: Selective Targeting of Kynurenic Acid in the Rat Cerebral Cortex. Cells 2024; 13:1424. [PMID: 39272996 PMCID: PMC11394628 DOI: 10.3390/cells13171424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/05/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Cytoprotective and neurotoxic kynurenines formed along the kynurenine pathway (KP) were identified as possible therapeutic targets in various neuropsychiatric conditions. Memantine, an adamantane derivative modulating dopamine-, noradrenaline-, serotonin-, and glutamate-mediated neurotransmission is currently considered for therapy in dementia, psychiatric disorders, migraines, or ischemia. Previous studies have revealed that memantine potently stimulates the synthesis of neuroprotective kynurenic acid (KYNA) in vitro via a protein kinase A-dependent mechanism. Here, the effects of acute and prolonged administration of memantine on brain kynurenines and the functional changes in the cerebral KP were assessed in rats using chromatographic and enzymatic methods. Five-day but not single treatment with memantine selectively activated the cortical KP towards neuroprotective KYNA. KYNA increases were accompanied by a moderate decrease in cortical tryptophan (TRP) and L-kynurenine (L-KYN) concentrations without changes in 3-hydroxykynurenine (3-HK) levels. Enzymatic studies revealed that the activity of cortical KYNA biosynthetic enzymes ex vivo was stimulated after prolonged administration of memantine. As memantine does not directly stimulate the activity of KATs' proteins, the higher activity of KATs most probably results from the increased expression of the respective genes. Noteworthy, the concentrations of KYNA, 3-HK, TRP, and L-KYN in the striatum, hippocampus, and cerebellum were not affected. Selective cortical increase in KYNA seems to represent one of the mechanisms underlying the clinical efficacy of memantine. It is tempting to hypothesize that a combination of memantine and drugs could strongly boost cortical KYNA and provide a more effective option for treating cortical pathologies at early stages. Further studies should evaluate this issue in experimental animal models and under clinical scenarios.
Collapse
Affiliation(s)
- Renata Kloc
- Chair and Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Ewa M Urbanska
- Chair and Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
7
|
Alves LDF, Moore JB, Kell DB. The Biology and Biochemistry of Kynurenic Acid, a Potential Nutraceutical with Multiple Biological Effects. Int J Mol Sci 2024; 25:9082. [PMID: 39201768 PMCID: PMC11354673 DOI: 10.3390/ijms25169082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Kynurenic acid (KYNA) is an antioxidant degradation product of tryptophan that has been shown to have a variety of cytoprotective, neuroprotective and neuronal signalling properties. However, mammalian transporters and receptors display micromolar binding constants; these are consistent with its typically micromolar tissue concentrations but far above its serum/plasma concentration (normally tens of nanomolar), suggesting large gaps in our knowledge of its transport and mechanisms of action, in that the main influx transporters characterized to date are equilibrative, not concentrative. In addition, it is a substrate of a known anion efflux pump (ABCC4), whose in vivo activity is largely unknown. Exogeneous addition of L-tryptophan or L-kynurenine leads to the production of KYNA but also to that of many other co-metabolites (including some such as 3-hydroxy-L-kynurenine and quinolinic acid that may be toxic). With the exception of chestnut honey, KYNA exists at relatively low levels in natural foodstuffs. However, its bioavailability is reasonable, and as the terminal element of an irreversible reaction of most tryptophan degradation pathways, it might be added exogenously without disturbing upstream metabolism significantly. Many examples, which we review, show that it has valuable bioactivity. Given the above, we review its potential utility as a nutraceutical, finding it significantly worthy of further study and development.
Collapse
Affiliation(s)
- Luana de Fátima Alves
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - J. Bernadette Moore
- School of Food Science & Nutrition, University of Leeds, Leeds LS2 9JT, UK;
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| |
Collapse
|
8
|
Stone TW, Darlington LG, Badawy AAB, Williams RO. The Complex World of Kynurenic Acid: Reflections on Biological Issues and Therapeutic Strategy. Int J Mol Sci 2024; 25:9040. [PMID: 39201726 PMCID: PMC11354734 DOI: 10.3390/ijms25169040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
It has been unequivocally established that kynurenic acid has a number of actions in a variety of cells and tissues, raising, in principle, the possibility of targeting its generation, metabolism or sites of action to manipulate those effects to a beneficial therapeutic end. However, many basic aspects of the biology of kynurenic acid remain unclear, potentially leading to some confusion and misinterpretations of data. They include questions of the source, generation, targets, enzyme expression, endogenous concentrations and sites of action. This essay is intended to raise and discuss many of these aspects as a source of reference for more balanced discussion. Those issues are followed by examples of situations in which modulating and correcting kynurenic acid production or activity could bring significant therapeutic benefit, including neurological and psychiatric conditions, inflammatory diseases and cell protection. More information is required to obtain a clear overall view of the pharmacological environment relevant to kynurenic acid, especially with respect to the active concentrations of kynurenine metabolites in vivo and changed levels in disease. The data and ideas presented here should permit a greater confidence in appreciating the sites of action and interaction of kynurenic acid under different local conditions and pathologies, enhancing our understanding of kynurenic acid itself and the many clinical conditions in which manipulating its pharmacology could be of clinical value.
Collapse
Affiliation(s)
- Trevor W. Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK;
| | - L. Gail Darlington
- Worthing Hospital, University Hospitals Sussex NHS Foundation Trust, Worthing BN11 2DH, UK
| | - Abdulla A.-B. Badawy
- Formerly School of Health Sciences, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | - Richard O. Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK;
| |
Collapse
|
9
|
Körtési T, Nagy-Grócz G, Vécsei L. The role of kynurenines in migraine-related neuroimmune pathways. J Headache Pain 2024; 25:129. [PMID: 39107712 PMCID: PMC11304619 DOI: 10.1186/s10194-024-01833-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Migraine, a primary headache disorder whose mechanism remains incompletely understood, appears to involve the activation of the trigeminovascular system (TS) during attacks. Research suggests that inflammatory processes mediated by the immune system may play a role in migraine pathophysiology. Neuroinflammation is often associated with migraine attacks, with cytokines serving as crucial mediators in the process. Elevated levels of pro-inflammatory cytokines, such as interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α), have been observed in the blood and cerebrospinal fluid of individuals experiencing migraine attacks. These cytokines have the capacity to sensitize pain pathways in the brain, thereby increasing sensitivity to pain stimuli. This phenomenon, known as central sensitization, is believed to contribute to the intensity and persistence of migraine pain. Kynurenines, endogenous mediators of glutamatergic mechanisms, can significantly influence the pathophysiology of primary headache disorders. The kynurenine system is collectively known as the kynurenine pathway (KP), which can act on multiple receptors, such as glutamate receptors, aryl hydrocarbon receptors (AhRs), G protein-coupled receptors 35 (GPR35), and α-7 nicotinic acetylcholine (α7 nACh) receptors. These receptors are also found on various cells of the immune system, so the role of the KP in the pathomechanism of primary headaches may also be mediated through them. In this review, our goal is to show a possible link between the receptors of the KP and immune system in the context of inflammation and migraine. Migraine research in recent years has focused on neuropeptides, such as calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide (PACAP) as potential pathogenic factors and possible therapeutic approaches. These peptides share many similarities in their characteristics and roles. For instance, they exhibit potent vasodilation, occur in both the peripheral and central nervous systems, and play a role in transmitting nociception and neurogenic inflammation. The investigation of potential connections between the aforementioned neuropeptides and the kynurenine pathway could play a significant role in uncovering the pathomechanism of migraine and identifying new drug candidates.
Collapse
Affiliation(s)
- Tamás Körtési
- Department of Theoretical Health Sciences and Health Management, Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári krt. 31, Szeged, H-6726, Hungary
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, Danube Neuroscience Research Laboratory, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, Szeged, H- 6725, Hungary
- Preventive Health Sciences Research Group, Incubation Competence Centre of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, Szeged, H-6720, Hungary
| | - Gábor Nagy-Grócz
- Department of Theoretical Health Sciences and Health Management, Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári krt. 31, Szeged, H-6726, Hungary
- Preventive Health Sciences Research Group, Incubation Competence Centre of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, Szeged, H-6720, Hungary
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, Danube Neuroscience Research Laboratory, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, Szeged, H- 6725, Hungary.
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary.
| |
Collapse
|
10
|
Taracha E, Czarna M, Turzyńska D, Sobolewska A, Maciejak P. Long-term disruption of tissue levels of glutamate and glutamatergic neurotransmission neuromodulators, taurine and kynurenic acid induced by amphetamine. Psychopharmacology (Berl) 2024; 241:1387-1398. [PMID: 38480557 DOI: 10.1007/s00213-024-06570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 03/04/2024] [Indexed: 06/26/2024]
Abstract
RATIONALE Chronic amphetamine (AMPH) use leading to addiction results in adaptive changes within the central nervous system that persist well beyond the drug's elimination from the body and can precipitate relapse. Notably, alterations in glutamatergic neurotransmission play a crucial role in drug-associated behaviours. OBJECTIVES This study aimed to identify changes induced by amphetamine in glutamate levels and the neuromodulators of glutamatergic neurotransmission (taurine and kynurenic acid) observable after 14 and 28 days of abstinence in key brain regions implicated in addiction: the cortex (Cx), nucleus accumbens (Acb), and dorsolateral striatum (CPu-L). METHODS The rats were administered 12 doses of amphetamine (AMPH) intraperitoneally (i.p.) at 1.5 mg/kg. The behavioural response was evaluated through ultrasonic vocalizations (USV). High-performance liquid chromatography (HPLC) was used to measure the levels of glutamate, taurine, and kynurenic acid in the Cx, Acb, and CPu-L after 14 and 28 days of abstinence. RESULTS AMPH administration led to sensitisation towards AMPH's rewarding effects, as evidenced by changes in USV. There was a noticeable decrease in kynurenic acid levels and an increase in both taurine and glutamate in the CPu-L, along with an increase in glutamate levels in the Cx, 28 days following the final AMPH injection. CONCLUSIONS The most significant changes in the tissue levels of glutamate, taurine, and kynurenic acid were seen in the CPu-L 28 days after the last dose of AMPH. The emergence of these changes exclusively after 28 days suggests that the processes initiated by AMPH use and subsequent abstinence take time to become apparent and may be enduring. This could contribute to the incubation of craving and the risk of relapse. Developing pharmacological strategies to counteract the reduction in kynurenic acid induced by psychostimulants may provide new avenues for therapy development.
Collapse
Affiliation(s)
- Ewa Taracha
- Department of Experimental and Clinical Neuroscience, Institute of Psychiatry and Neurology, 9 Sobieskiego St, Warsaw, 02-957, Poland.
| | - Magdalena Czarna
- Department of Experimental and Clinical Neuroscience, Institute of Psychiatry and Neurology, 9 Sobieskiego St, Warsaw, 02-957, Poland
| | - Danuta Turzyńska
- Department of Experimental and Clinical Neuroscience, Institute of Psychiatry and Neurology, 9 Sobieskiego St, Warsaw, 02-957, Poland
| | - Alicja Sobolewska
- Department of Experimental and Clinical Neuroscience, Institute of Psychiatry and Neurology, 9 Sobieskiego St, Warsaw, 02-957, Poland
| | - Piotr Maciejak
- Department of Experimental and Clinical Neuroscience, Institute of Psychiatry and Neurology, 9 Sobieskiego St, Warsaw, 02-957, Poland
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, 1B Banacha St, Warsaw, 02-097, Poland
| |
Collapse
|
11
|
Donlon J, Kumari P, Varghese SP, Bai M, Florentin OD, Frost ED, Banks J, Vadlapatla N, Kam O, Shad MU, Rahman S, Abulseoud OA, Stone TW, Koola MM. Integrative Pharmacology in the Treatment of Substance Use Disorders. J Dual Diagn 2024; 20:132-177. [PMID: 38117676 DOI: 10.1080/15504263.2023.2293854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The detrimental physical, mental, and socioeconomic effects of substance use disorders (SUDs) have been apparent to the medical community for decades. However, it has become increasingly urgent in recent years to develop novel pharmacotherapies to treat SUDs. Currently, practitioners typically rely on monotherapy. Monotherapy has been shown to be superior to no treatment at all for most substance classes. However, many randomized controlled trials (RCTs) have revealed that monotherapy leads to poorer outcomes when compared with combination treatment in all specialties of medicine. The results of RCTs suggest that monotherapy frequently fails since multiple dysregulated pathways, enzymes, neurotransmitters, and receptors are involved in the pathophysiology of SUDs. As such, research is urgently needed to determine how various neurobiological mechanisms can be targeted by novel combination treatments to create increasingly specific yet exceedingly comprehensive approaches to SUD treatment. This article aims to review the neurobiology that integrates many pathophysiologic mechanisms and discuss integrative pharmacology developments that may ultimately improve clinical outcomes for patients with SUDs. Many neurobiological mechanisms are known to be involved in SUDs including dopaminergic, nicotinic, N-methyl-D-aspartate (NMDA), and kynurenic acid (KYNA) mechanisms. Emerging evidence indicates that KYNA, a tryptophan metabolite, modulates all these major pathophysiologic mechanisms. Therefore, achieving KYNA homeostasis by harmonizing integrative pathophysiology and pharmacology could prove to be a better therapeutic approach for SUDs. We propose KYNA-NMDA-α7nAChRcentric pathophysiology, the "conductor of the orchestra," as a novel approach to treat many SUDs concurrently. KYNA-NMDA-α7nAChR pathophysiology may be the "command center" of neuropsychiatry. To date, extant RCTs have shown equivocal findings across comparison conditions, possibly because investigators targeted single pathophysiologic mechanisms, hit wrong targets in underlying pathophysiologic mechanisms, and tested inadequate monotherapy treatment. We provide examples of potential combination treatments that simultaneously target multiple pathophysiologic mechanisms in addition to KYNA. Kynurenine pathway metabolism demonstrates the greatest potential as a target for neuropsychiatric diseases. The investigational medications with the most evidence include memantine, galantamine, and N-acetylcysteine. Future RCTs are warranted with novel combination treatments for SUDs. Multicenter RCTs with integrative pharmacology offer a promising, potentially fruitful avenue to develop novel therapeutics for the treatment of SUDs.
Collapse
Affiliation(s)
- Jack Donlon
- Cooper Medical School of Rowan University, Camden, New Jersey, USA
| | - Pooja Kumari
- Community Living Trent Highlands, Peterborough, Canada
| | - Sajoy P Varghese
- Addiction Recovery Treatment Services, Veterans Affairs Northern California Health Care System, University of California, Davis, Sacramento, California, USA
| | - Michael Bai
- Columbia University, New York, New York, USA
| | - Ori David Florentin
- Department of Psychiatry, Westchester Medical Center, Valhalla, New York, USA
| | - Emma D Frost
- Department of Neurology, Cooper University Health Care, Camden, New Jersey, USA
| | - John Banks
- Talkiatry Mental Health Clinic, New York, New York, USA
| | - Niyathi Vadlapatla
- Thomas Jefferson High School for Science and Technology, Alexandria, Virginia, USA
| | - Olivia Kam
- Stony Brook University Renaissance School of Medicine, Stony Brook, New York, USA
| | - Mujeeb U Shad
- Department of Psychiatry, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, South Dakota, USA
| | - Osama A Abulseoud
- Department of Psychiatry and Psychology, Alix School of Medicine at Mayo Clinic, Phoenix, Arizona, USA
| | - Trevor W Stone
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK
| | - Maju Mathew Koola
- Department of Psychiatry and Behavioral Health, Cooper University Health Care, Cooper Medical School of Rowan University, Camden, New Jersey, USA
| |
Collapse
|
12
|
Gawel K. A Review on the Role and Function of Cinnabarinic Acid, a "Forgotten" Metabolite of the Kynurenine Pathway. Cells 2024; 13:453. [PMID: 38474418 DOI: 10.3390/cells13050453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
In the human body, the majority of tryptophan is metabolized through the kynurenine pathway. This consists of several metabolites collectively called the kynurenines and includes, among others, kynurenic acid, L-kynurenine, or quinolinic acid. The wealth of metabolites, as well as the associated molecular targets and biological pathways, bring about a situation wherein even a slight imbalance in the kynurenine levels, both in the periphery and central nervous system, have broad consequences regarding general health. Cinnabarinic acid (CA) is the least known trace kynurenine, and its physiological and pathological roles are not widely understood. Some studies, however, indicate that it might be neuroprotective. Information on its hepatoprotective properties have also emerged, although these are pioneering studies and need to be replicated. Therefore, in this review, I aim to present and critically discuss the current knowledge on CA and its role in physiological and pathological settings to guide future studies.
Collapse
Affiliation(s)
- Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b Str., 20-090 Lublin, Poland
| |
Collapse
|
13
|
Nagy-Grócz G, Spekker E, Vécsei L. Kynurenines, Neuronal Excitotoxicity, and Mitochondrial Oxidative Stress: Role of the Intestinal Flora. Int J Mol Sci 2024; 25:1698. [PMID: 38338981 PMCID: PMC10855176 DOI: 10.3390/ijms25031698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
The intestinal flora has been the focus of numerous investigations recently, with inquiries not just into the gastrointestinal aspects but also the pathomechanism of other diseases such as nervous system disorders and mitochondrial diseases. Mitochondrial disorders are the most common type of inheritable metabolic illness caused by mutations of mitochondrial and nuclear DNA. Despite the intensive research, its diagnosis is usually difficult, and unfortunately, treating it challenges physicians. Metabolites of the kynurenine pathway are linked to many disorders, such as depression, schizophrenia, migraine, and also diseases associated with impaired mitochondrial function. The kynurenine pathway includes many substances, for instance kynurenic acid and quinolinic acid. In this review, we would like to show a possible link between the metabolites of the kynurenine pathway and mitochondrial stress in the context of intestinal flora. Furthermore, we summarize the possible markers of and future therapeutic options for the kynurenine pathway in excitotoxicity and mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Gábor Nagy-Grócz
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary;
- Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári krt. 31., H-6726 Szeged, Hungary
- Preventive Health Sciences Research Group, Incubation Competence Centre of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, H-6720 Szeged, Hungary
| | | | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary;
- HUN-REN-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
14
|
Zhang J, Han M, Wang S, Wu R, Zhao Q, Chen M, Yang Y, Zhang J, Meng X, Zhang Y, Wang Z. Study on the anti-mitochondrial apoptosis mechanism of Erigeron breviscapus injection based on UPLC-Q-TOF-MS metabolomics and molecular docking in rats with cerebral ischemia-reperfusion injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117310. [PMID: 37827296 DOI: 10.1016/j.jep.2023.117310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Erigeron breviscapus is a common medicine of eight ethnic minorities, including Miao, Naxi, and Yi. As early as the Ming Dynasty (AD 1368-1644), Lanmao's Materia Medica of Southern Yunnan (AD 1436) recorded that the medicine is used for the treatment of "Zuo tan you huan." In modern pharmacological research, Erigeron breviscapus injection is the most commonly used preparation in the treatment of ischemic stroke caused by acute cerebral infarction, but its mechanism of action in the treatment of ischemic stroke is not well understood. AIM OF THE STUDY In this study, a metabonomics study based on ultraperformance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS) was used in investigating the effect of a traditional Chinese medicine preparation Erigeron breviscapus injection on the rat model of focal cerebral ischemia-reperfusion and the affinity of its main components with the targets of mitochondrial apoptotic pathways. MATERIALS AND METHODS This study used molecular docking technology to verify the effective binding ability of main effective components of Erigeron breviscapus injection to target proteins related to mitochondrial apoptosis pathway. This study developed a metabonomics method based on the ultra-performance liquid chromatography combined with quadrupole time-of-flight tandem mass spectrometry (UPLC Q-TOF MS) to evaluate the efficacy and study the mechanism of traditional Chinese medicine preparation. With pattern recognition analysis (principal component analysis and partial least squares-discriminate analysis) of urinary metabolites, a clear separation of focal cerebral ischemia-reperfusion model group and healthy control group was achieved. RESULTS Erigeron breviscapus injection can significantly reduce the area of cerebral infarction, improve tissue morphological lesion in rats, and can increase the number of Nissl bodies. It may be a promoting factor by inhibiting hippocampal nerve cell apoptosis and Bax protein expression and by exerting effects against ischemia reperfusion after the induction of apoptosis. Thus, it plays a role in brain protection. Moreover, it can considerably promote the recovery of neurological deficiency signs in advance. Meanwhile, Erigeron breviscapus decreased malondialdehyde content and T-NOS activity. Its curative effect from strong to weak order: low dose > high dose > medium dose. The representative components of Erigeron breviscapus have good affinity with the active sites of mitochondrial apoptosis-related proteins. Metabolomics found that the potential biomarkers regulated by breviscapine are kynurequinolinic acid, succinylornithine, and leucine proline. It is speculated that it may participate in TRP-kynurequinolinic acid and succinylornithine-urea cycle-NO metabolic pathways. CONCLUSIONS This paper revealed the potential biomarkers and metabolic pathways regulated by Erigeron breviscapus. It was speculated that the mechanism is related to its inhibition of mitochondrion-mediated apoptosis. Erigeron breviscapus could restore the metabolic profiles of the model animals to normal animal levels. The mechanism may be related to the potential biomarkers of quinolinic acid, succinylornithine, and leucine proline and the metabolic pathways involved. However, the exact mechanism by which Erigeron breviscapus inhibits mitochondrion-mediated apoptosis remains to be further explored.
Collapse
Affiliation(s)
- Jingwen Zhang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mengtian Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shu Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; College of Pharmacy, Heze University, Heze, 274015, China
| | - Ruixia Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qipeng Zhao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Meihua Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yongmao Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jing Zhang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yi Zhang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Zhang Wang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
15
|
Bednarz K, Kozieł K, Urbańska EM. Novel Activity of Oral Hypoglycemic Agents Linked with Decreased Formation of Tryptophan Metabolite, Kynurenic Acid. Life (Basel) 2024; 14:127. [PMID: 38255742 PMCID: PMC10820136 DOI: 10.3390/life14010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/29/2023] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Kynurenic acid is a tryptophan (Trp) metabolite formed along the kynurenine (KYN) pathway in the brain and in peripheral tissues. The disturbed formation of kynurenic acid, which targets glutamate-mediated neurotransmission, GPR35, and aryl hydrocarbon receptors of immune or redox status, was implicated in the development of neuropsychiatric and metabolic disorders among others. Kynurenic acid exerts neuroprotective and immunomodulatory effects, yet its high brain levels may negatively impact cognition. Changes in the Trp-KYN pathway are also linked with the pathogenesis of diabetes mellitus, which is an established risk factor for cardiovascular and neurological diseases or cognitive deficits. Here, the effects of metformin and glibenclamide on the brain synthesis of kynurenic acid were evaluated. Acute exposure of rat cortical slices in vitro to either of the drugs reduced kynurenic acid production de novo. Glibenclamide, but not metformin, inhibited the activity of kynurenic acid biosynthetic enzymes, kynurenine aminotransferases (KATs) I and II, in semi-purified cortical homogenates. The reduced availability of kynurenic acid may be regarded as an unwanted effect, possibly alleviating the neuroprotective action of oral hypoglycemic agents. On the other hand, considering that both compounds ameliorate the cognitive deficits in animal and human studies and that high brain kynurenic acid may hamper learning and memory, its diminished synthesis may improve cognition.
Collapse
Affiliation(s)
| | | | - Ewa M. Urbańska
- Laboratory of Cellular and Molecular Pharmacology, Chair and Department of Clinical and Experimental Pharmacology, Medical University, 20-090 Lublin, Poland; (K.B.)
| |
Collapse
|
16
|
Tung TH, Lai WD, Lee HC, Su KP, Panunggal B, Huang SY. Attenuation of Chronic Stress-Induced Depressive-like Symptoms by Fish Oil via Alleviating Neuroinflammation and Impaired Tryptophan Metabolism in Aging Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14550-14561. [PMID: 37769277 PMCID: PMC10915802 DOI: 10.1021/acs.jafc.3c01784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023]
Abstract
The prevalence of depression is increasing, and geriatric depression, in particular, is difficult to recognize and treat. Depression in older adults is often accompanied by neuroinflammation in the central nervous system (CNS). Neuroinflammation affects the brain's physiological and immune functions through several pathways and induces depressive symptoms. This study investigated the relationship among depression, neuroinflammation, and fish oil supplementation. Thirty-six male Sprague-Dawley rats were used in an aging-related depression animal model to simulate geriatric depression. Cognitive function, depressive-like symptoms, peripheral nervous system and CNS inflammation status, and the tryptophan-related metabolic pathway were analyzed. The geriatric depression animal model was associated with depressive-like behaviors and cognitive impairment. The integrity of the blood-brain barrier was compromised, resulting in increased expression of ionized calcium-binding adapter molecule 1 and the glial fibrillary acidic protein in the brain, indicating increased neuroinflammation. Tryptophan metabolism was also negatively affected. The geriatric-depressive-like rats had high levels of neurotoxic 5-hydroxyindoleacetic acid and kynurenine in their hippocampus. Fish oil intake improved depressive-like symptoms and cognitive impairment, reduced proinflammatory cytokine expression, activated the brain's glial cells, and increased the interleukin-10 level in the prefrontal cortex. Thus, fish oil intervention could ameliorate abnormal neurobehaviors and neuroinflammation and elevate the serotonin level in the hippocampus.
Collapse
Affiliation(s)
- Te-Hsuan Tung
- School
of Nutrition and Health Sciences, Taipei
Medical University, Taipei 110301, Taiwan
| | - Wen-De Lai
- School
of Nutrition and Health Sciences, Taipei
Medical University, Taipei 110301, Taiwan
| | - Hsiu-Chuan Lee
- School
of Nutrition and Health Sciences, Taipei
Medical University, Taipei 110301, Taiwan
| | - Kuan-Pin Su
- Department
of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung 404018, Taiwan
- College of
Medicine, China Medical University, Taichung 404018, Taiwan
| | - Binar Panunggal
- School
of Nutrition and Health Sciences, Taipei
Medical University, Taipei 110301, Taiwan
- Department
of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang 50275, Indonesia
- Center
of Nutrition Research, Diponegoro University, Semarang 50275, Indonesia
| | - Shih-Yi Huang
- School
of Nutrition and Health Sciences, Taipei
Medical University, Taipei 110301, Taiwan
- Graduate
Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110301, Taiwan
- Nutrition
Research Centre, Taipei Medical University
Hospital, Taipei 110301, Taiwan
| |
Collapse
|
17
|
Domoki F, Tóth-Szűki V, Kovács V, Remzső G, Körmöczi T, Vécsei L, Berkecz R. Differential Effects of Hypothermia and SZR72 on Cerebral Kynurenine and Kynurenic Acid in a Piglet Model of Hypoxic-Ischemic Encephalopathy. Int J Mol Sci 2023; 24:14522. [PMID: 37833970 PMCID: PMC10572886 DOI: 10.3390/ijms241914522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Kynurenic acid (KYNA), an endogenous neuroprotectant with antiexcitotoxic, antioxidant, and anti-inflammatory effects, is synthesized through the tryptophan-kynurenine (KYN) pathway. We investigated whether brain KYN or KYNA levels were affected by asphyxia in a translational piglet model of hypoxic-ischemic encephalopathy (HIE). We also studied brain levels of the putative blood-brain barrier (BBB) permeable neuroprotective KYNA analogue SZR72, and whether SZR72 or therapeutic hypothermia (TH) modified KYN or KYNA levels. KYN, KYNA, and SZR72 levels were determined using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry in five brain regions 24 h after 20 min of asphyxia in vehicle-, SZR72- and TH-treated newborn piglets (n = 6-6-6) and naive controls (n = 4). Endogenous brain KYN levels (median range 311.2-965.6 pmol/g) exceeded KYNA concentrations (4.5-6.0 pmol/g) ~100-fold. Asphyxia significantly increased cerebral KYN and KYNA levels in all regions (1512.0-3273.9 and 16.9-21.2 pmol/g, respectively), increasing the KYN/Tryptophan-, but retaining the KYNA/KYN ratio. SZR72 treatment resulted in very high cerebral SZR72 levels (13.2-33.2 nmol/g); however, KYN and KYNA levels remained similar to those of the vehicle-treated animals. However, TH virtually ameliorated asphyxia-induced elevations in brain KYN and KYNA levels. The present study reports for the first time that the KYN pathway is altered during HIE development in the piglet. SZR72 readily crosses the BBB in piglets but fails to affect cerebral KYNA levels. Beneficial effects of TH may include restoration of the tryptophan metabolism to pre-asphyxia levels.
Collapse
Affiliation(s)
- Ferenc Domoki
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary; (V.T.-S.); (V.K.); (G.R.)
| | - Valéria Tóth-Szűki
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary; (V.T.-S.); (V.K.); (G.R.)
| | - Viktória Kovács
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary; (V.T.-S.); (V.K.); (G.R.)
| | - Gábor Remzső
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary; (V.T.-S.); (V.K.); (G.R.)
| | - Tímea Körmöczi
- Institute of Pharmaceutical Analysis, Interdisciplinary Excellence Center, University of Szeged, 6720 Szeged, Hungary; (T.K.); (R.B.)
| | - László Vécsei
- ELKH-SZTE-Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged, 6720 Szeged, Hungary
- Department of Neurology, Interdisciplinary Excellence Center, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Róbert Berkecz
- Institute of Pharmaceutical Analysis, Interdisciplinary Excellence Center, University of Szeged, 6720 Szeged, Hungary; (T.K.); (R.B.)
| |
Collapse
|
18
|
Marszalek-Grabska M, Gawel K, Kosheva N, Kocki T, Turski WA. Developmental Exposure to Kynurenine Affects Zebrafish and Rat Behavior. Cells 2023; 12:2224. [PMID: 37759447 PMCID: PMC10526278 DOI: 10.3390/cells12182224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Proper nutrition and supplementation during pregnancy and breastfeeding are crucial for the development of offspring. Kynurenine (KYN) is the central metabolite of the kynurenine pathway and a direct precursor of other metabolites that possess immunoprotective or neuroactive properties, with the ultimate effect on fetal neurodevelopment. To date, no studies have evaluated the effects of KYN on early embryonic development. Thus, the aim of our study was to determine the effect of incubation of larvae with KYN in different developmental periods on the behavior of 5-day-old zebrafish. Additionally, the effects exerted by KYN administered on embryonic days 1-7 (ED 1-7) on the behavior of adult offspring of rats were elucidated. Our study revealed that the incubation with KYN induced changes in zebrafish behavior, especially when zebrafish embryos or larvae were incubated with KYN from 1 to 72 h post-fertilization (hpf) and from 49 to 72 hpf. KYN administered early during pregnancy induced subtle differences in the neurobehavioral development of adult offspring. Further research is required to understand the mechanism of these changes. The larval zebrafish model can be useful for studying disturbances in early brain development processes and their late behavioral consequences. The zebrafish-medium system may be applicable in monitoring drug metabolism in zebrafish.
Collapse
Affiliation(s)
- Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8b, 20-090 Lublin, Poland; (K.G.); (N.K.); (T.K.); (W.A.T.)
| | | | | | | | | |
Collapse
|
19
|
Xu R, Vatsalya V, He L, Ma X, Feng W, McClain CJ, Zhang X. Altered urinary tryptophan metabolites in alcohol-associated liver disease. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1665-1676. [PMID: 37431708 PMCID: PMC10782820 DOI: 10.1111/acer.15148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/12/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Alcohol-associated liver disease (ALD) leads to millions of deaths worldwide annually. A few potential biomarkers of ALD have been discovered through metabolomic or proteomic analysis. Tryptophan (Trp), one of nine essential amino acids, has been extensively studied and shown to play significant roles in many mammalian physiological processes. However, Trp metabolism changes in ALD are not yet fully understood. Whereas urine is an abundant and non-invasive source for disease biomarker discovery the current study investigated whether the abundance of Trp metabolites in the urine of ALD patients differs from that of healthy subjects. We also examined whether, if present in ALD, changes in urinary Trp metabolites can serve as markers for differentiating between mild/moderate and severe ALD. METHODS We quantified the concentration of Trp and its metabolites in urine samples of healthy controls (n = 18), patients with mild or moderate alcohol-related liver injury (non-severe ALD; n = 21), and patients with severe alcohol-associated hepatitis (severe AH; n = 25) using both untargeted and targeted metabolomics. RESULTS Eighteen Trp metabolites were identified and quantified from the untargeted metabolomics data. We developed a targeted metabolomics method to quantify the Trp and its metabolites and quantified 17 metabolites from the human urine samples. The data acquired in the untargeted and targeted platforms agreed and showed that the Trp concentration is not affected by the severity of ALD. However, the abundance of 10 Trp metabolites was correlated with the model for end-stage liver disease (MELD) score, with the abundance of nine metabolites significantly different between the healthy control and ALD patient groups. CONCLUSION We found that Trp metabolism differs between ALD patients and healthy controls even though the concentration of Trp was not affected. Two Trp metabolites, quinolinic acid and indoxyl sulfate, correlate highly with the severity of ALD.
Collapse
Affiliation(s)
- Raobo Xu
- Department of Chemistry, University of Louisville, Louisville, KY 40208, U.S.A
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40208, U.S.A
- University of Louisville Hepatobiology & Toxicology Center of Biomedical Research Excellence, University of Louisville, Louisville, KY 40208, U.S.A
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208, U.S.A
| | - Vatsalya Vatsalya
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40208, U.S.A
- Department of Medicine, University of Louisville, Louisville, KY 40208, U.S.A
| | - Liqing He
- Department of Chemistry, University of Louisville, Louisville, KY 40208, U.S.A
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40208, U.S.A
- University of Louisville Hepatobiology & Toxicology Center of Biomedical Research Excellence, University of Louisville, Louisville, KY 40208, U.S.A
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208, U.S.A
| | - Xipeng Ma
- Department of Chemistry, University of Louisville, Louisville, KY 40208, U.S.A
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40208, U.S.A
- University of Louisville Hepatobiology & Toxicology Center of Biomedical Research Excellence, University of Louisville, Louisville, KY 40208, U.S.A
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208, U.S.A
| | - Wenke Feng
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40208, U.S.A
- University of Louisville Hepatobiology & Toxicology Center of Biomedical Research Excellence, University of Louisville, Louisville, KY 40208, U.S.A
- Department of Medicine, University of Louisville, Louisville, KY 40208, U.S.A
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40208, U.S.A
| | - Craig J. McClain
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40208, U.S.A
- University of Louisville Hepatobiology & Toxicology Center of Biomedical Research Excellence, University of Louisville, Louisville, KY 40208, U.S.A
- Department of Medicine, University of Louisville, Louisville, KY 40208, U.S.A
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40208, U.S.A
- Robley Rex Louisville VAMC, Louisville, KY 40292, U.S.A
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, KY 40208, U.S.A
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40208, U.S.A
- University of Louisville Hepatobiology & Toxicology Center of Biomedical Research Excellence, University of Louisville, Louisville, KY 40208, U.S.A
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208, U.S.A
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40208, U.S.A
| |
Collapse
|
20
|
Corrigan M, O'Rourke A, Moran B, Fletcher J, Harkin A. Inflammation in the pathogenesis of depression: a disorder of neuroimmune origin. Neuronal Signal 2023; 7:NS20220054. [PMID: 37457896 PMCID: PMC10345431 DOI: 10.1042/ns20220054] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
There are several hypotheses concerning the underlying pathophysiological mechanisms of major depression, which centre largely around adaptive changes in neuronal transmission and plasticity, neurogenesis, and circuit and regional connectivity. The immune and endocrine systems are commonly implicated in driving these changes. An intricate interaction of stress hormones, innate immune cells and the actions of soluble mediators of immunity within the nervous system is described as being associated with the symptoms of depression. Bridging endocrine and immune processes to neurotransmission and signalling within key cortical and limbic brain circuits are critical to understanding depression as a disorder of neuroimmune origins. Emergent areas of research include a growing recognition of the adaptive immune system, advances in neuroimaging techniques and mechanistic insights gained from transgenic animals. Elucidation of glial-neuronal interactions is providing additional avenues into promising areas of research, the development of clinically relevant disease models and the discovery of novel therapies. This narrative review focuses on molecular and cellular mechanisms that are influenced by inflammation and stress. The aim of this review is to provide an overview of our current understanding of depression as a disorder of neuroimmune origin, focusing on neuroendocrine and neuroimmune dysregulation in depression pathophysiology. Advances in current understanding lie in pursuit of relevant biomarkers, as the potential of biomarker signatures to improve clinical outcomes is yet to be fully realised. Further investigations to expand biomarker panels including integration with neuroimaging, utilising individual symptoms to stratify patients into more homogenous subpopulations and targeting the immune system for new treatment approaches will help to address current unmet clinical need.
Collapse
Affiliation(s)
- Myles Corrigan
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences and Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- Transpharmation Ireland, Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Aoife M. O'Rourke
- School of Biochemistry and Immunology, Trinity Biosciences Institute, Trinity College, Dublin, Ireland
| | - Barry Moran
- School of Biochemistry and Immunology, Trinity Biosciences Institute, Trinity College, Dublin, Ireland
| | - Jean M. Fletcher
- School of Biochemistry and Immunology, Trinity Biosciences Institute, Trinity College, Dublin, Ireland
| | - Andrew Harkin
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences and Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| |
Collapse
|
21
|
Auyeung A, Wang HC, Aravagiri K, Knezevic NN. Kynurenine Pathway Metabolites as Potential Biomarkers in Chronic Pain. Pharmaceuticals (Basel) 2023; 16:681. [PMID: 37242464 PMCID: PMC10224279 DOI: 10.3390/ph16050681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Chronic pain is a pressing medical and socioeconomic issue worldwide. It is debilitating for individual patients and places a major burden on society in the forms of direct medical costs and lost work productivity. Various biochemical pathways have been explored to explain the pathophysiology of chronic pain in order to identify biomarkers that can potentially serve as both evaluators of and guides for therapeutic effectiveness. The kynurenine pathway has recently been a source of interest due to its suspected role in the development and sustainment of chronic pain conditions. The kynurenine pathway is the primary pathway responsible for the metabolization of tryptophan and generates nicotinamide adenine dinucleotide (NAD+), in addition to the metabolites kynurenine (KYN), kynurenic acid (KA), and quinolinic acid (QA). Dysregulation of this pathway and changes in the ratios of these metabolites have been associated with numerous neurotoxic and inflammatory states, many of which present simultaneously with chronic pain symptoms. While further studies utilizing biomarkers to elucidate the kynurenine pathway's role in chronic pain are needed, the metabolites and receptors involved in its processes nevertheless present researchers with promising sources of novel and personalized disease-modifying treatments.
Collapse
Affiliation(s)
- Andrew Auyeung
- Advocate Illinois Masonic Medical Center, Department of Anesthesiology, Chicago, IL 60657, USA; (A.A.)
- College of Osteopathic Medicine, Des Moines University, Des Moines, IA 50312, USA
| | - Hank C. Wang
- Advocate Illinois Masonic Medical Center, Department of Anesthesiology, Chicago, IL 60657, USA; (A.A.)
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Kannan Aravagiri
- Advocate Illinois Masonic Medical Center, Department of Anesthesiology, Chicago, IL 60657, USA; (A.A.)
| | - Nebojsa Nick Knezevic
- Advocate Illinois Masonic Medical Center, Department of Anesthesiology, Chicago, IL 60657, USA; (A.A.)
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA
- Department of Surgery, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
22
|
Lashgari NA, Roudsari NM, Shayan M, Niazi Shahraki F, Hosseini Y, Momtaz S, Abdolghaffari AH. IDO/Kynurenine; novel insight for treatment of inflammatory diseases. Cytokine 2023; 166:156206. [PMID: 37120946 DOI: 10.1016/j.cyto.2023.156206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/26/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023]
Abstract
Inflammation and oxidative stress play pivotal roles in pathogenesis of many diseases including cancer, type 2 diabetes, cardiovascular disease, atherosclerosis, neurological diseases, and inflammatory diseases such as inflammatory bowel disease (IBD). Inflammatory mediators such as interleukins (ILs), interferons (INF-s), and tumor necrosis factor (TNF)-α are related to an extended chance of inflammatory diseases initiation or progression due to the over expression of the nuclear factor Kappa B (NF-κB), signal transducer of activators of transcription (STAT), nod-like receptor family protein 3 (NLRP), toll-like receptors (TLR), mitogen-activated protein kinase (MAPK), and mammalian target of rapamycin (mTOR) pathways. These pathways are completely interconnected. Theindoleamine 2,3 dioxygenase (IDO) subset of the kynurenine (KYN) (IDO/KYN), is a metabolic inflammatory pathway involved in production of nicotinamide adenine dinucleotide (NAD + ). It has been shown that IDO/KYN actively participates in inflammatory processes and can increase the secretion of cytokines that provoke inflammatory diseases. Data were extracted from clinical and animal studies published in English between 1990-April 2022, which were collected from PubMed, Google Scholar, Scopus, and Cochrane library. IDO/KYN is completely associated with inflammatory-related pathways, thus leading to the production of cytokines such as TNF-α, IL-1β, and IL-6, and ultimately development and progression of various inflammatory disorders. Inhibition of the IDO/KYN pathway might be a novel therapeutic option for inflammatory diseases. Herein, we gathered data on probable interactions of the IDO/KYN pathway with induction of some inflammatory diseases.
Collapse
Affiliation(s)
- Naser-Aldin Lashgari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Shayan
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Niazi Shahraki
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yasamin Hosseini
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
23
|
Inflammation and severity of depressive symptoms in physically active individuals after COVID-19 – An exploratory immunopsychological study investigating the effect of inflammation on depressive symptom severity. Brain Behav Immun Health 2023; 30:100614. [PMID: 37033771 PMCID: PMC10035808 DOI: 10.1016/j.bbih.2023.100614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/25/2023] Open
Abstract
Background SARS-CoV-2 infection is a risk factor for the development of depressive symptoms such as lack of energy, loss of interest, and depressed mood. Inflammatory processes might underline this association. The aim of this study was to investigate the association between inflammatory markers and the severity of depression after SARS-CoV-2 infection, and the predictive effect of inflammatory markers on the severity of depressive symptoms. Lifestyle factors and lifestyle-related diseases can influence inflammation and depressive symptoms. As these lifestyle factors and lifestyle-related diseases are less common in physically active individuals, they are a suitable population for investigating this research question. Methods We investigated 61 at least moderate physically active individuals on average ∼6 months (SD = 4.22, range = 0.5–19 months) after SARS-CoV-2 infection (t0) and performed a follow-up after 3 months (t1). Depressive symptoms and biomarkers of inflammation (interleukin [IL]-1β, IL-8, IL-10, Ferritin, Lipopolysaccharide-binding-protein [LBP], neutrophil-to-lymphocyte ratio [NLR], platelet-to-lymphocyte ratio [PLR], lymphocyte-to-monocyte ratio [LMR]) and kynurenine [KYN] were measured at both time points. Concentrations of inflammatory markers at t0 were used to predict the severity of depressive symptoms at t0 and t1. Results Concentrations of KYN were negatively related to the severity of depressive symptoms at t0. Concentrations of LMR predicted higher depressive symptoms at t0 as well as at t1. Furthermore, individuals with lower concentrations of LBP at t0 showed a higher severity of depressive symptoms at t1. No correlation was found between severity of depressive symptoms and IL1β, IL-8, IL-10, ferritin, NLR, and PLR at both time points. Conclusions KYN, LBP and LMR might be useful as a predictive factor of depressive symptoms in physically active individuals after SARS-CoV-2 infection. While the results for KYN confirm the current scientific evidence, our results highlight the importance of the innovative inflammatory markers LMR and LBP. LMR and LBP might be interesting targets for predicting the development of depressive symptoms in SARS-CoV-2 infected populations and should be further investigated in future studies.
Collapse
|
24
|
Alberts C, Owe-Larsson M, Urbanska EM. New Perspective on Anorexia Nervosa: Tryptophan-Kynurenine Pathway Hypothesis. Nutrients 2023; 15:nu15041030. [PMID: 36839388 PMCID: PMC9967350 DOI: 10.3390/nu15041030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Anorexia nervosa (AN), affecting up to 4% of all females and 0.3% of all males globally, remains the neuropsychiatric disorder with the highest mortality rate. However, the response to the current therapeutic options is rarely satisfactory. Considering the devastating prognosis of survival among patients with AN, further research aimed at developing novel, more effective therapies for AN is essential. Brain and serum tryptophan is mostly converted along the kynurenine pathway into multiple neuroactive derivatives, whereas only 1-2% is used for the synthesis of serotonin. This narrative review provides an update on the experimental and clinical research data concerning the metabolism of tryptophan along the kynurenine pathway in anorexia nervosa based on the available literature. We propose that in AN, lower levels of L-kynurenine and kynurenic acid result in diminished stimulation of the aryl hydrocarbon receptor, which could contribute to abnormally low body weight. The impact of L-kynurenine supplementation on anorexia in animal models and the effects of changes in tryptophan and downstream kynurenines on the clinical progression of AN require further investigation. Moreover, prospective clinical studies on larger cohorts of restrictive and binge-eating/purging AN patients and assessing the potential benefit of L-kynurenine as an add-on therapeutic agent, should follow.
Collapse
Affiliation(s)
- Charl Alberts
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8B, 20-059 Lublin, Poland
| | - Maja Owe-Larsson
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland
- Laboratory of Center for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Ewa M. Urbanska
- Laboratory of Cellular and Molecular Pharmacology, Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8B, 20-059 Lublin, Poland
- Correspondence:
| |
Collapse
|
25
|
Changes in mRNA and miRNA expression in the prelimbic cortex related to depression-like syndrome induced by chronic social defeat stress in mice. Behav Brain Res 2023; 438:114211. [PMID: 36368442 DOI: 10.1016/j.bbr.2022.114211] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/31/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
Abstract
Major depressive disorder is a complex psychiatric disorder with a high prevalence rate worldwide. Previous studies have demonstrated the involvement of the prelimbic cortex (PL) in mediating depressive-like behavior, however, the exact molecular mechanism taking place in the PL remains unclear. In the present study, we conducted high-throughput sequencing of mRNAs and miRNAs in PL tissue harvested from chronic social defeat stress (CSDS) susceptible male mice. We identified 59 differentially expressed mRNAs and 6 differentially expressed miRNAs, in which 40 mRNAs and 3 miRNAs were up-regulated, while 19 mRNAs and 3 miRNAs were down-regulated. Integrated analysis of miRNA-mRNA networks suggested that GPR35 signaling might be involved in CSDS-induced depressive-like behaviors. RT-PCR and western blot assays validated that Abra, Sell and GPR35 were up-regulated. Functionally, inhibition of GPR35 in the PL ameliorated CSDS-induced depressive-like behaviors. Thus, the present study provided a global view of mRNA and miRNA profiles in the PL of male stress susceptible mice, and suggested that GPR35 signaling was associated with CSDS-induced depressive-like behaviors. These results may be valuable for further investigations of the molecular regulatory mechanisms in stress-induced depression.
Collapse
|
26
|
Bruno JP. Enhancing the resolution of behavioral measures: Key observations during a forty year career in behavioral neuroscience. Neurosci Biobehav Rev 2023; 145:105004. [PMID: 36549379 DOI: 10.1016/j.neubiorev.2022.105004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
This manuscript reviews several key observations from the research program of Professor John P. Bruno that are believed to have significantly advanced our understanding of the brain's mediation of behavior. This review focuses on findings within several important research areas in behavioral neuroscience, including a) age-dependent neurobehavioral plasticity following brain damage; b) the role of the cortical cholinergic system in attentional processing and cognitive flexibility; and c) the design and validation of animal models of cognitive deficits in schizophrenia. In selecting these observations, emphasis was given to examples in which the heuristic potency was increased by maximizing the resolution and microanalysis of behavioral assays in the same fashion as one typically refines neuronal manipulations. Professor Bruno served the International Behavioral Neuroscience Society (IBNS) as an IBNS Fellow (1995-present) and President of the IBNS (2001-02).
Collapse
Affiliation(s)
- John P Bruno
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
27
|
Kynurenine Pathway in Diabetes Mellitus-Novel Pharmacological Target? Cells 2023; 12:cells12030460. [PMID: 36766803 PMCID: PMC9913876 DOI: 10.3390/cells12030460] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
The tryptophan-kynurenine pathway (Trp-KYN) is the major route for tryptophan conversion in the brain and in the periphery. Kynurenines display a wide range of biological actions (which are often contrasting) such as cytotoxic/cytoprotective, oxidant/antioxidant or pro-/anti-inflammatory. The net effect depends on their local concentration, cellular environment, as well as a complex positive and negative feedback loops. The imbalance between beneficial and harmful kynurenines was implicated in the pathogenesis of various neurodegenerative disorders, psychiatric illnesses and metabolic disorders, including diabetes mellitus (DM). Despite available therapies, DM may lead to serious macro- and microvascular complications including cardio- and cerebrovascular disease, peripheral vascular disease, chronic renal disease, diabetic retinopathy, autonomic neuropathy or cognitive impairment. It is well established that low-grade inflammation, which often coincides with DM, can affect the function of KP and, conversely, that kynurenines may modulate the immune response. This review provides a detailed summary of findings concerning the status of the Trp-KYN pathway in DM based on available animal, human and microbiome studies. We highlight the importance of the molecular interplay between the deranged (functionally and qualitatively) conversion of Trp to kynurenines in the development of DM and insulin resistance. The Trp-KYN pathway emerges as a novel target in the search for preventive and therapeutic interventions in DM.
Collapse
|
28
|
Jorratt P, Ricny J, Leibold C, Ovsepian SV. Endogenous Modulators of NMDA Receptor Control Dendritic Field Expansion of Cortical Neurons. Mol Neurobiol 2023; 60:1440-1452. [PMID: 36462136 PMCID: PMC9899188 DOI: 10.1007/s12035-022-03147-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022]
Abstract
Impairments of N-methyl-D-aspartate receptor (NMDAR) activity have been implicated in several neuropsychiatric disorders, with pharmacological inhibition of NMDAR-mediated currents and associated neurobehavioral changes considered as a model of schizophrenia. We analyzed the effects of brief and long-term exposure of rat cortical cultures to the most prevalent endogenous modulators of NMDAR (kynurenic acid, pregnenolone sulfate, spermidine, and zinc) on neuronal viability, stimulation-induced release of glutamate, and dendritic morphology with synaptic density. Both, glutamate release and neuronal viability studies revealed no difference between the test and control groups. No differences were also observed in the number of dendritic branching and length, or density of synaptic connections and neuronal soma size. Comparison of the extent of dendritic projections and branching patterns, however, revealed enhanced distal arborization with the expansion of the dendritic area under prolonged treatment of cultures with physiological concentrations of NMDAR modulators, with differences reaching significance in spermidine and pregnenolone sulfate tests. Measurements of the density of glutamatergic synapses showed consistency across all neuronal groups, except those treated with pregnenolone sulfate, which showed a reduction of PSD-95-positive elements. Overall, our data suggest that constitutive glutamatergic activity mediated by NMDAR controls the dendritic field expansion and can influence the integrative properties of cortical neurons.
Collapse
Affiliation(s)
- Pascal Jorratt
- grid.447902.cNational Institute of Mental Health, Klecany, Czech Republic ,grid.4491.80000 0004 1937 116XThird Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Ricny
- grid.447902.cNational Institute of Mental Health, Klecany, Czech Republic
| | - Christian Leibold
- grid.5963.9Faculty of Biology and Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Saak V. Ovsepian
- grid.36316.310000 0001 0806 5472Faculty of Science and Engineering, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB UK
| |
Collapse
|
29
|
Stone TW, Clanchy FIL, Huang YS, Chiang NY, Darlington LG, Williams RO. An integrated cytokine and kynurenine network as the basis of neuroimmune communication. Front Neurosci 2022; 16:1002004. [PMID: 36507331 PMCID: PMC9729788 DOI: 10.3389/fnins.2022.1002004] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Two of the molecular families closely associated with mediating communication between the brain and immune system are cytokines and the kynurenine metabolites of tryptophan. Both groups regulate neuron and glial activity in the central nervous system (CNS) and leukocyte function in the immune system, although neither group alone completely explains neuroimmune function, disease occurrence or severity. This essay suggests that the two families perform complementary functions generating an integrated network. The kynurenine pathway determines overall neuronal excitability and plasticity by modulating glutamate receptors and GPR35 activity across the CNS, and regulates general features of immune cell status, surveillance and tolerance which often involves the Aryl Hydrocarbon Receptor (AHR). Equally, cytokines and chemokines define and regulate specific populations of neurons, glia or immune system leukocytes, generating more specific responses within restricted CNS regions or leukocyte populations. In addition, as there is a much larger variety of these compounds, their homing properties enable the superimposition of dynamic variations of cell activity upon local, spatially limited, cell populations. This would in principle allow the targeting of potential treatments to restricted regions of the CNS. The proposed synergistic interface of 'tonic' kynurenine pathway affecting baseline activity and the superimposed 'phasic' cytokine system would constitute an integrated network explaining some features of neuroimmune communication. The concept would broaden the scope for the development of new treatments for disorders involving both the CNS and immune systems, with safer and more effective agents targeted to specific CNS regions.
Collapse
Affiliation(s)
- Trevor W. Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom,*Correspondence: Trevor W. Stone,
| | - Felix I. L. Clanchy
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Yi-Shu Huang
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Nien-Yi Chiang
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - L. Gail Darlington
- Department of Internal Medicine, Ashtead Hospital, Ashtead, United Kingdom
| | - Richard O. Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
30
|
Deficiency of kynurenine 3-monooxygenase exacerbates impairment of prepulse inhibition induced by phencyclidine. Biochem Biophys Res Commun 2022; 629:142-151. [PMID: 36116377 DOI: 10.1016/j.bbrc.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022]
Abstract
Phencyclidine (PCP) causes mental symptoms that closely resemble schizophrenia through the inhibition of the glutamatergic system. The kynurenine (KYN) pathway (KP) generates metabolites that modulate glutamatergic systems such as kynurenic acid (KA), quinolinic acid (QA), and xanthurenic acid (XA). Kynurenine 3-monooxygenase (KMO) metabolizes KYN to 3-hydroxykynurenine (3-HK), an upstream metabolite of QA and XA. Clinical studies have reported lower KMO mRNA and higher KA levels in the postmortem brains of patients with schizophrenia and exacerbation of symptoms in schizophrenia by PCP. However, the association between KMO deficiency and PCP remains elusive. Here, we demonstrated that a non-effective dose of PCP induced impairment of prepulse inhibition (PPI) in KMO KO mice. KA levels were increased in the prefrontal cortex (PFC) and hippocampus (HIP) of KMO KO mice, but 3-HK levels were decreased. In wild-type C57BL/6 N mice, the PPI impairment induced by PCP is exacerbated by KA, while attenuated by 3-HK, QA and XA. Taken together, KMO KO mice were vulnerable to the PPI impairment induced by PCP through an increase in KA and a decrease in 3-HK, suggesting that an increase in the ratio of KA to 3-HK (QA and XA) may play an important role in the pathophysiology of schizophrenia.
Collapse
|
31
|
Turska M, Paluszkiewicz P, Turski WA, Parada-Turska J. A Review of the Health Benefits of Food Enriched with Kynurenic Acid. Nutrients 2022; 14:4182. [PMID: 36235834 PMCID: PMC9570704 DOI: 10.3390/nu14194182] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Kynurenic acid (KYNA), a metabolite of tryptophan, is an endogenous substance produced intracellularly by various human cells. In addition, KYNA can be synthesized by the gut microbiome and delivered in food. However, its content in food is very low and the total alimentary supply with food accounts for only 1-3% of daily KYNA excretion. The only known exception is chestnut honey, which has a higher KYNA content than other foods by at least two orders of magnitude. KYNA is readily absorbed from the gastrointestinal tract; it is not metabolized and is excreted mainly in urine. It possesses well-defined molecular targets, which allows the study and elucidation of KYNA's role in various pathological conditions. Following a period of fascination with KYNA's importance for the central nervous system, research into its role in the peripheral system has been expanding rapidly in recent years, bringing some exciting discoveries. KYNA does not penetrate from the peripheral circulation into the brain; hence, the following review summarizes knowledge on the peripheral consequences of KYNA administration, presents data on KYNA content in food products, in the context of its daily supply in diets, and systematizes the available pharmacokinetic data. Finally, it provides an analysis of the rationale behind enriching foods with KYNA for health-promoting effects.
Collapse
Affiliation(s)
- Monika Turska
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland
| | - Piotr Paluszkiewicz
- Department of General, Oncological and Metabolic Surgery, Institute of Hematology and Transfusion Medicine, 02-778 Warsaw, Poland
| | - Waldemar A. Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Jolanta Parada-Turska
- Department of Rheumatology and Connective Tissue Diseases, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
32
|
Tanaka M, Szabó Á, Spekker E, Polyák H, Tóth F, Vécsei L. Mitochondrial Impairment: A Common Motif in Neuropsychiatric Presentation? The Link to the Tryptophan-Kynurenine Metabolic System. Cells 2022; 11:2607. [PMID: 36010683 PMCID: PMC9406499 DOI: 10.3390/cells11162607] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 02/07/2023] Open
Abstract
Nearly half a century has passed since the discovery of cytoplasmic inheritance of human chloramphenicol resistance. The inheritance was then revealed to take place maternally by mitochondrial DNA (mtDNA). Later, a number of mutations in mtDNA were identified as a cause of severe inheritable metabolic diseases with neurological manifestation, and the impairment of mitochondrial functions has been probed in the pathogenesis of a wide range of illnesses including neurodegenerative diseases. Recently, a growing number of preclinical studies have revealed that animal behaviors are influenced by the impairment of mitochondrial functions and possibly by the loss of mitochondrial stress resilience. Indeed, as high as 54% of patients with one of the most common primary mitochondrial diseases, mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome, present psychiatric symptoms including cognitive impairment, mood disorder, anxiety, and psychosis. Mitochondria are multifunctional organelles which produce cellular energy and play a major role in other cellular functions including homeostasis, cellular signaling, and gene expression, among others. Mitochondrial functions are observed to be compromised and to become less resilient under continuous stress. Meanwhile, stress and inflammation have been linked to the activation of the tryptophan (Trp)-kynurenine (KYN) metabolic system, which observably contributes to the development of pathological conditions including neurological and psychiatric disorders. This review discusses the functions of mitochondria and the Trp-KYN system, the interaction of the Trp-KYN system with mitochondria, and the current understanding of the involvement of mitochondria and the Trp-KYN system in preclinical and clinical studies of major neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Masaru Tanaka
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - Eleonóra Spekker
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Helga Polyák
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - Fanni Tóth
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - László Vécsei
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
33
|
Chen Z, Fu L, Liu XA, Yang Z, Li W, Li F, Luo Q. Real-time effects of nicotine exposure and withdrawal on neurotransmitter metabolism of hippocampal neuronal cells by microfluidic chip-coupled LC-MS. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Ostapiuk A, Urbanska EM. Kynurenic acid in neurodegenerative disorders-unique neuroprotection or double-edged sword? CNS Neurosci Ther 2022; 28:19-35. [PMID: 34862742 PMCID: PMC8673711 DOI: 10.1111/cns.13768] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022] Open
Abstract
AIMS The family of kynurenine pathway (KP) metabolites includes compounds produced along two arms of the path and acting in clearly opposite ways. The equilibrium between neurotoxic kynurenines, such as 3-hydroxykynurenine (3-HK) or quinolinic acid (QUIN), and neuroprotective kynurenic acid (KYNA) profoundly impacts the function and survival of neurons. This comprehensive review summarizes accumulated evidence on the role of KYNA in Alzheimer's, Parkinson's and Huntington's diseases, and discusses future directions of potential pharmacological manipulations aimed to modulate brain KYNA. DISCUSSION The synthesis of specific KP metabolites is tightly regulated and may considerably vary under physiological and pathological conditions. Experimental data consistently imply that shift of the KP to neurotoxic branch producing 3-HK and QUIN formation, with a relative or absolute deficiency of KYNA, is an important factor contributing to neurodegeneration. Targeting specific brain regions to maintain adequate KYNA levels seems vital; however, it requires the development of precise pharmacological tools, allowing to avoid the potential cognitive adverse effects. CONCLUSIONS Boosting KYNA levels, through interference with the KP enzymes or through application of prodrugs/analogs with high bioavailability and potency, is a promising clinical approach. The use of KYNA, alone or in combination with other compounds precisely influencing specific populations of neurons, is awaiting to become a significant therapy for neurodegenerative disorders.
Collapse
Affiliation(s)
- Aleksandra Ostapiuk
- Laboratory of Cellular and Molecular PharmacologyDepartment of Experimental and Clinical PharmacologyMedical University of LublinLublinPoland
- Present address:
Department of Clinical Digestive OncologyKU LeuvenLeuvenBelgium
| | - Ewa M. Urbanska
- Laboratory of Cellular and Molecular PharmacologyDepartment of Experimental and Clinical PharmacologyMedical University of LublinLublinPoland
| |
Collapse
|
35
|
The Kynurenine Pathway as a Potential Target for Neuropathic Pain Therapy Design: From Basic Research to Clinical Perspectives. Int J Mol Sci 2021; 22:ijms222011055. [PMID: 34681715 PMCID: PMC8537209 DOI: 10.3390/ijms222011055] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence suggests the key role of the kynurenine pathway (KP) of the tryptophan metabolism in the pathogenesis of several diseases. Despite extensive research aimed at clarifying the mechanisms underlying the development and maintenance of neuropathic pain, the roles of KP metabolites in this process are still not fully known. Although the function of the peripheral KP has been known for several years, it has only recently been acknowledged that its metabolites within the central nervous system have remarkable consequences related to physiology and behavior. Both the products and metabolites of the KP are involved in the pathogenesis of pain conditions. Apart from the neuroactive properties of kynurenines, the KP regulates several neurotransmitter systems in direct or indirect ways. Some neuroactive metabolites are known to have neuroprotective properties (kynurenic acid, nicotinamide adenine dinucleotide cofactor), while others are toxic (3-hydroxykynurenine, quinolinic acid). Numerous animal models show that modulation of the KP may turn out to be a viable target for the treatment of diseases. Importantly, some compounds that affect KP enzymes are currently described to possess analgesic properties. Additionally, kynurenine metabolites may be useful for assessing response to therapy or as biomarkers in therapeutic monitoring. The following review describes the molecular site of action and changes in the levels of metabolites of the kynurenine pathway in the pathogenesis of various conditions, with a particular emphasis on their involvement in neuropathy. Moreover, the potential clinical implications of KP modulation in chronic pain therapy as well as the directions of new research initiatives are discussed.
Collapse
|
36
|
Correa Leite PE, de Araujo Portes J, Pereira MR, Russo FB, Martins-Duarte ES, Almeida Dos Santos N, Attias M, Barrantes FJ, Baleeiro Beltrão-Braga PC, de Souza W. Morphological and biochemical repercussions of Toxoplasma gondii infection in a 3D human brain neurospheres model. Brain Behav Immun Health 2021; 11:100190. [PMID: 34589727 PMCID: PMC8474451 DOI: 10.1016/j.bbih.2020.100190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 12/06/2020] [Indexed: 12/19/2022] Open
Abstract
Background Toxoplasmosis is caused by the parasite Toxoplasma gondii that can infect the central nervous system (CNS), promoting neuroinflammation, neuronal loss, neurotransmitter imbalance and behavioral alterations. T. gondii infection is also related to neuropsychiatric disorders such as schizophrenia. The pathogenicity and inflammatory response in rodents are different to the case of humans, compromising the correlation between the behavioral alterations and physiological modifications observed in the disease. In the present work we used BrainSpheres, a 3D CNS model derived from human pluripotent stem cells (iPSC), to investigate the morphological and biochemical repercussions of T. gondii infection in human neural cells. Methods We evaluated T. gondii ME49 strain proliferation and cyst formation in both 2D cultured human neural cells and BrainSpheres. Aspects of cell morphology, ultrastructure, viability, gene expression of neural phenotype markers, as well as secretion of inflammatory mediators were evaluated for 2 and 4 weeks post infection in BrainSpheres. Results T. gondii can infect BrainSpheres, proliferating and inducing cysts formation, neural cell death, alteration in neural gene expression and triggering the release of several inflammatory mediators. Conclusions BrainSpheres reproduce many aspects of T. gondii infection in human CNS, constituting a useful model to study the neurotoxicity and neuroinflammation mediated by the parasite. In addition, these data could be important for future studies aiming at better understanding possible correlations between psychiatric disorders and human CNS infection with T. gondii. T. gondii infects, proliferates and induce cysts formation in neurospheres. T. gondii infection induces neural cell death in neurospheres. T. gondii infection promotes alteration in neural gene expression in neurospheres. T. gondii infection promotes release of inflammatory mediators in neurospheres.
Collapse
Affiliation(s)
- Paulo Emilio Correa Leite
- Institute of Biophysics Carlos Chagas Filho and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, RJ, Brazil.,Directory of Metrology Applied to Life Sciences (Dimav), National Institute of Metrology Quality and Technology (INMETRO), Duque de Caxias, RJ, Brazil
| | - Juliana de Araujo Portes
- Institute of Biophysics Carlos Chagas Filho and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, RJ, Brazil
| | | | - Fabiele Baldino Russo
- Laboratory of Disease Modeling, Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil
| | - Erica S Martins-Duarte
- Institute of Biophysics Carlos Chagas Filho and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, RJ, Brazil.,Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Nathalia Almeida Dos Santos
- Laboratory of Disease Modeling, Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil.,Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London, UK
| | - Marcia Attias
- Institute of Biophysics Carlos Chagas Filho and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, RJ, Brazil
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute for Biomedical Research (BIOMED), UCA-CONICET, Buenos Aires, Argentina
| | - Patricia Cristina Baleeiro Beltrão-Braga
- Laboratory of Disease Modeling, Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil.,Scientific Platform Pasteur-USP, São Paulo, SP, Brazil
| | - Wanderley de Souza
- Institute of Biophysics Carlos Chagas Filho and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, RJ, Brazil
| |
Collapse
|
37
|
Leclercq S, Schwarz M, Delzenne NM, Stärkel P, de Timary P. Alterations of kynurenine pathway in alcohol use disorder and abstinence: a link with gut microbiota, peripheral inflammation and psychological symptoms. Transl Psychiatry 2021; 11:503. [PMID: 34599147 PMCID: PMC8486842 DOI: 10.1038/s41398-021-01610-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/11/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
The gut-brain communication is mostly driven by the immune, metabolic and neural pathways which remained poorly explored in patients with alcohol use disorder (AUD). The metabolites arising from the tryptophan-kynurenine pathway have gained considerable attention since they are at the interface between intestinal bacteria, host immune response and brain functions. This study described the circulating levels of kynurenine metabolites in AUD patients, at the onset (T1) and end (T2) of a 3-week detoxification program, and tested correlations between those metabolites and inflammatory markers, the gut microbiota and the psychological symptoms. Increased concentration of the neurotoxic metabolite quinolinic acid (QUIN) and decreased levels of the neuroprotector metabolite kynurenic acid (KYNA) which both modulate glutamatergic neurotransmission were observed in AUD patients, particularly at T2. The inflammatory marker hsCRP was associated with several metabolic ratios of the kynurenine pathway. Tryptophan, KYNA and QUIN were correlated with depression, alcohol craving and reaction time, respectively. Analysis of gut microbiota revealed that bacteria known as short-chain fatty acid producers, as well as bacterial metabolites including butyrate and medium-chain fatty acids were associated with some metabolites of the tryptophan-kynurenine pathway. Targeting the glutamatergic neurotransmission through the modulation of the kynurenine pathway, by manipulating the gut microbiota, might represent an interesting alternative for modulating alcohol-related behavior.
Collapse
Affiliation(s)
- Sophie Leclercq
- grid.7942.80000 0001 2294 713XInstitute of Neuroscience, Université catholique de Louvain (UCLouvain), Brussels, Belgium ,grid.7942.80000 0001 2294 713XMetabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Markus Schwarz
- grid.411095.80000 0004 0477 2585Institute of Laboratory Medicine, LMU Klinikum Munich, Munich, Germany
| | - Nathalie M. Delzenne
- grid.7942.80000 0001 2294 713XMetabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Peter Stärkel
- grid.7942.80000 0001 2294 713XLaboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université catholique de Louvain (UCLouvain), Brussels, Belgium ,grid.48769.340000 0004 0461 6320Department of Hepatogastroenterology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Philippe de Timary
- Institute of Neuroscience, Université catholique de Louvain (UCLouvain), Brussels, Belgium. .,Department of Adult Psychiatry, Cliniques universitaires Saint-Luc, Brussels, Belgium.
| |
Collapse
|
38
|
Palandri J, Smith SL, Heal DJ, Wonnacott S, Bailey CP. Contrasting effects of the α7 nicotinic receptor antagonist methyllycaconitine in different rat models of heroin reinstatement. J Psychopharmacol 2021; 35:1204-1215. [PMID: 33691518 PMCID: PMC8521373 DOI: 10.1177/0269881121991570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND α7 Nicotinic acetylcholine receptors are implicated in the reinstatement of drug-seeking, an important component of relapse. We showed previously that the α7 nicotinic acetylcholine receptor antagonist, methyllycaconitine, specifically attenuated morphine-primed reinstatement of conditioned place preference in rodents and this effect was mediated in the ventral hippocampus. AIMS The purpose of this study was to evaluate α7 nicotinic acetylcholine receptor antagonism in reinstatement of the conditioned place preference for the more widely abused opioid, heroin, and to compare the effect of α7 nicotinic acetylcholine receptor blockade on reinstatement of heroin-seeking and heroin self-administration in an intravenous self-administration model of addictive behaviour. METHODS Rats were trained to acquire heroin conditioned place preference or heroin self-administration; both followed by extinction of responding. Methyllycaconitine or saline was given prior to reinstatement of drug-primed conditioned place preference, or drug-prime plus cue-induced reinstatement of intravenous self-administration, using two protocols: without delivery of heroin in response to lever pressing to model heroin-seeking, or with heroin self-administration, using fixed and progressive ratio reward schedules, to model relapse. RESULTS Methyllycaconitine had no effect on acquisition of heroin conditioned place preference or lever-pressing for food rewards. Methyllycaconitine blocked reinstatement of heroin-primed conditioned place preference. Methyllycaconitine did not prevent drug-prime plus cue-induced reinstatement of heroin-seeking, reinstatement of heroin self-administration, or diminish the reinforcing effect of heroin. CONCLUSIONS The α7 nicotinic acetylcholine receptor antagonist, methyllycaconitine, prevented reinstatement of the opioid conditioned place preference, consistent with a role for α7 nicotinic acetylcholine receptors in the retrieval of associative memories of drug liking. The lack of effect of methyllycaconitine in heroin-dependent rats in two intravenous self-administration models suggests that α7 nicotinic acetylcholine receptors do not play a role in later stages of heroin abuse.
Collapse
Affiliation(s)
| | - Sharon L Smith
- RenaSci Ltd, BioCity, Nottingham, UK,DevelRx Ltd, BioCity, Nottingham, UK
| | - David J Heal
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK,DevelRx Ltd, BioCity, Nottingham, UK
| | - Sue Wonnacott
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Chris P Bailey
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK,Chris P Bailey, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
39
|
Büki A, Kekesi G, Horvath G, Vécsei L. A Potential Interface between the Kynurenine Pathway and Autonomic Imbalance in Schizophrenia. Int J Mol Sci 2021; 22:10016. [PMID: 34576179 PMCID: PMC8467675 DOI: 10.3390/ijms221810016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Schizophrenia is a neuropsychiatric disorder characterized by various symptoms including autonomic imbalance. These disturbances involve almost all autonomic functions and might contribute to poor medication compliance, worsened quality of life and increased mortality. Therefore, it has a great importance to find a potential therapeutic solution to improve the autonomic disturbances. The altered level of kynurenines (e.g., kynurenic acid), as tryptophan metabolites, is almost the most consistently found biochemical abnormality in schizophrenia. Kynurenic acid influences different types of receptors, most of them involved in the pathophysiology of schizophrenia. Only few data suggest that kynurenines might have effects on multiple autonomic functions. Publications so far have discussed the implication of kynurenines and the alteration of the autonomic nervous system in schizophrenia independently from each other. Thus, the coupling between them has not yet been addressed in schizophrenia, although their direct common points, potential interfaces indicate the consideration of their interaction. The present review gathers autonomic disturbances, the impaired kynurenine pathway in schizophrenia, and the effects of kynurenine pathway on autonomic functions. In the last part of the review, the potential interaction between the two systems in schizophrenia, and the possible therapeutic options are discussed.
Collapse
Affiliation(s)
- Alexandra Büki
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary; (A.B.); (G.K.); (G.H.)
| | - Gabriella Kekesi
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary; (A.B.); (G.K.); (G.H.)
| | - Gyongyi Horvath
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary; (A.B.); (G.K.); (G.H.)
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6., H-6725 Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, H-6725 Szeged, Hungary
- Interdisciplinary Excellence Center, Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6., H-6725 Szeged, Hungary
| |
Collapse
|
40
|
Joisten N, Ruas JL, Braidy N, Guillemin GJ, Zimmer P. The kynurenine pathway in chronic diseases: a compensatory mechanism or a driving force? Trends Mol Med 2021; 27:946-954. [PMID: 34373202 DOI: 10.1016/j.molmed.2021.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022]
Abstract
The kynurenine (KYN) pathway (KP) of tryptophan (TRP) metabolism is dysregulated in inflammation-driven pathologies including oncological and brain diseases [e.g., multiple sclerosis (MS), depression] and thus is a promising therapeutic target. Both pathological and compensatory mechanisms underlie disease-associated KP activation. There is growing evidence for bioenergetic roles of certain KP metabolites such as kynurenic acid (KA), or quinolinic acid (QA) as an NAD+ precursor, which may explain its frequently observed 'pathological' overactivation. Disease- and tissue-specific aspects, negative feedback on inflammatory signals, and the balance of downstream metabolites are likely to be decisive factors in the interpretation of an imbalanced KP. Therapeutic strategies should consider the compensatory actions and bioenergetic roles of KP metabolites to successfully design future theragnostic approaches aimed at attenuating disease progression.
Collapse
Affiliation(s)
- Niklas Joisten
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, Technical University Dortmund, Dortmund, Germany.
| | - Jorge L Ruas
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, Technical University Dortmund, Dortmund, Germany
| |
Collapse
|
41
|
Bai MY, Lovejoy DB, Guillemin GJ, Kozak R, Stone TW, Koola MM. Galantamine-Memantine Combination and Kynurenine Pathway Enzyme Inhibitors in the Treatment of Neuropsychiatric Disorders. Complex Psychiatry 2021; 7:19-33. [PMID: 35141700 PMCID: PMC8443947 DOI: 10.1159/000515066] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/04/2021] [Indexed: 12/25/2022] Open
Abstract
The kynurenine pathway (KP) is a major route for L-tryptophan (L-TRP) metabolism, yielding a variety of bioactive compounds including kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), quinolinic acid (QUIN), and picolinic acid (PIC). These tryptophan catabolites are involved in the pathogenesis of many neuropsychiatric disorders, particularly when the KP becomes dysregulated. Accordingly, the enzymes that regulate the KP such as indoleamine 2,3-dioxygenase (IDO)/tryptophan 2,3-dioxygenase, kynurenine aminotransferases (KATs), and kynurenine 3-monooxygenase (KMO) represent potential drug targets as enzymatic inhibition can favorably rebalance KP metabolite concentrations. In addition, the galantamine-memantine combination, through its modulatory effects at the alpha7 nicotinic acetylcholine receptors and N-methyl-D-aspartate receptors, may counteract the effects of KYNA. The aim of this review is to highlight the effectiveness of IDO-1, KAT II, and KMO inhibitors, as well as the galantamine-memantine combination in the modulation of different KP metabolites. KAT II inhibitors are capable of decreasing the KYNA levels in the rat brain by a maximum of 80%. KMO inhibitors effectively reduce the central nervous system (CNS) levels of 3-HK, while markedly boosting the brain concentration of KYNA. Emerging data suggest that the galantamine-memantine combination also lowers L-TRP, kynurenine, KYNA, and PIC levels in humans. Presently, there are only 2 pathophysiological mechanisms (cholinergic and glutamatergic) that are FDA approved for the treatment of cognitive dysfunction for which purpose the galantamine-memantine combination has been designed for clinical use against Alzheimer's disease. The alpha7 nicotinic-NMDA hypothesis targeted by the galantamine-memantine combination has been implicated in the pathophysiology of various CNS diseases. Similarly, KYNA is well capable of modulating the neuropathophysiology of these disorders. This is known as the KYNA-centric hypothesis, which may be implicated in the management of certain neuropsychiatric conditions. In line with this hypothesis, KYNA may be considered as the "conductor of the orchestra" for the major pathophysiological mechanisms underlying CNS disorders. Therefore, there is great opportunity to further explore and compare the biological effects of these therapeutic modalities in animal models with a special focus on their effects on KP metabolites in the CNS and with the ultimate goal of progressing to clinical trials for many neuropsychiatric diseases.
Collapse
Affiliation(s)
- Michael Y. Bai
- Department of Biomedical Sciences, Neuroinflammation Group, Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - David B. Lovejoy
- Department of Biomedical Sciences, Neuroinflammation Group, Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Gilles J. Guillemin
- Department of Biomedical Sciences, Neuroinflammation Group, Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Rouba Kozak
- Neuroscience Drug Discovery Unit, Takeda Pharmaceuticals International Co, Cambridge, Massachusetts, USA
| | - Trevor W. Stone
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Maju Mathew Koola
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, Stony Brook, New York, USA
| |
Collapse
|
42
|
Zhu X, Hu J, Deng S, Tan Y, Qiu C, Zhang M, Ni X, Lu H, Wang Z, Li L, Luo Y, Huang S, Xiao T, Liu S, Li X, Shang D, Wen Y. Comprehensive Bibliometric Analysis of the Kynurenine Pathway in Mood Disorders: Focus on Gut Microbiota Research. Front Pharmacol 2021; 12:687757. [PMID: 34239441 PMCID: PMC8258344 DOI: 10.3389/fphar.2021.687757] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Emerging evidence implicates the dysregulated kynurenine pathway (KP), an immune-inflammatory pathway, in the pathophysiology of mood disorders (MD), including depression and bipolar disorder characterized by a low-grade chronic pro-inflammatory state. The metabolites of the KP, an important part of the microbiota-gut-brain axis, serve as immune system modulators linking the gut microbiota (GM) with the host central nervous system. Aim: This bibliometric analysis aimed to provide a first glimpse into the KP in MD, with a focus on GM research in this field, to guide future research and promote the development of this field. Methods: Publications relating to the KP in MD between the years 2000 and 2020 were retrieved from the Scopus and Web of Science Core Collection (WoSCC), and analyzed in CiteSpace (5.7 R5W), biblioshiny (using R-Studio), and VOSviewer (1.6.16). Results: In total, 1,064 and 948 documents were extracted from the Scopus and WoSCC databases, respectively. The publications have shown rapid growth since 2006, partly owing to the largest research hotspot appearing since then, “quinolinic acid.” All the top five most relevant journals were in the neuropsychiatry field, such as Brain Behavior and Immunity. The United States and Innsbruck Medical University were the most influential country and institute, respectively. Journal co-citation analysis showed a strong tendency toward co-citation of research in the psychiatry field. Reference co-citation analysis revealed that the top four most important research focuses were “kynurenine pathway,” “psychoneuroimmunology,” “indoleamine 2,3-dioxygenase,” and “proinflammatory cytokines,” and the most recent focus was “gut-brain axis,” thus indicating the role of the KP in bridging the GM and the host immune system, and together reflecting the field’s research foundations. Overlap analysis between the thematic map of keywords and the keyword burst analysis revealed that the topics “Alzheimer’s disease,” “prefrontal cortex,” and “acid,” were research frontiers. Conclusion: This comprehensive bibliometric study provides an updated perspective on research associated with the KP in MD, with a focus on the current status of GM research in this field. This perspective may benefit researchers in choosing suitable journals and collaborators, and aid in the further understanding of the field’s hotspots and frontiers, thus facilitating future research.
Collapse
Affiliation(s)
- Xiuqing Zhu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Jinqing Hu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Shuhua Deng
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yaqian Tan
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Chang Qiu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Ming Zhang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xiaojia Ni
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Haoyang Lu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Zhanzhang Wang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Lu Li
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yayan Luo
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.,Institute of Neuropsychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Shanqing Huang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Tao Xiao
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Shujing Liu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Xiaolin Li
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Dewei Shang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yuguan Wen
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| |
Collapse
|
43
|
Mithaiwala MN, Santana-Coelho D, Porter GA, O’Connor JC. Neuroinflammation and the Kynurenine Pathway in CNS Disease: Molecular Mechanisms and Therapeutic Implications. Cells 2021; 10:1548. [PMID: 34205235 PMCID: PMC8235708 DOI: 10.3390/cells10061548] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022] Open
Abstract
Diseases of the central nervous system (CNS) remain a significant health, social and economic problem around the globe. The development of therapeutic strategies for CNS conditions has suffered due to a poor understanding of the underlying pathologies that manifest them. Understanding common etiological origins at the cellular and molecular level is essential to enhance the development of efficacious and targeted treatment options. Over the years, neuroinflammation has been posited as a common link between multiple neurological, neurodegenerative and neuropsychiatric disorders. Processes that precipitate neuroinflammatory conditions including genetics, infections, physical injury and psychosocial factors, like stress and trauma, closely link dysregulation in kynurenine pathway (KP) of tryptophan metabolism as a possible pathophysiological factor that 'fuel the fire' in CNS diseases. In this study, we aim to review emerging evidence that provide mechanistic insights between different CNS disorders, neuroinflammation and the KP. We provide a thorough overview of the different branches of the KP pertinent to CNS disease pathology that have therapeutic implications for the development of selected and efficacious treatment strategies.
Collapse
Affiliation(s)
- Mustafa N. Mithaiwala
- Integrated Biomedical Sciences Program, Graduate School of Biomedical Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; (M.N.M.); (D.S.-C.); (G.A.P.)
- Department of Pharmacology, Long School of Medicine, UT Health San Antonio, Mail Code 8864, San Antonio, TX 78229, USA
| | - Danielle Santana-Coelho
- Integrated Biomedical Sciences Program, Graduate School of Biomedical Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; (M.N.M.); (D.S.-C.); (G.A.P.)
- Department of Pharmacology, Long School of Medicine, UT Health San Antonio, Mail Code 8864, San Antonio, TX 78229, USA
| | - Grace A. Porter
- Integrated Biomedical Sciences Program, Graduate School of Biomedical Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; (M.N.M.); (D.S.-C.); (G.A.P.)
- Department of Pharmacology, Long School of Medicine, UT Health San Antonio, Mail Code 8864, San Antonio, TX 78229, USA
| | - Jason C. O’Connor
- Integrated Biomedical Sciences Program, Graduate School of Biomedical Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; (M.N.M.); (D.S.-C.); (G.A.P.)
- Department of Pharmacology, Long School of Medicine, UT Health San Antonio, Mail Code 8864, San Antonio, TX 78229, USA
- Department of Research, Audie L. Murphy VA Hospital, South Texas Veterans Heath System, San Antonio, TX 78229, USA
| |
Collapse
|
44
|
Stone TW. Relationships and Interactions between Ionotropic Glutamate Receptors and Nicotinic Receptors in the CNS. Neuroscience 2021; 468:321-365. [PMID: 34111447 DOI: 10.1016/j.neuroscience.2021.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
Although ionotropic glutamate receptors and nicotinic receptors for acetylcholine (ACh) have usually been studied separately, they are often co-localized and functionally inter-dependent. The objective of this review is to survey the evidence for interactions between the two receptor families and the mechanisms underlying them. These include the mutual regulation of subunit expression, which change the NMDA:AMPA response balance, and the existence of multi-functional receptor complexes which make it difficult to distinguish between individual receptor sites, especially in vivo. This is followed by analysis of the functional relationships between the receptors from work on transmitter release, cellular electrophysiology and aspects of behavior where these can contribute to understanding receptor interactions. It is clear that nicotinic receptors (nAChRs) on axonal terminals directly regulate the release of glutamate and other neurotransmitters, α7-nAChRs generally promoting release. Hence, α7-nAChR responses will be prevented not only by a nicotinic antagonist, but also by compounds blocking the indirectly activated glutamate receptors. This accounts for the apparent anticholinergic activity of some glutamate antagonists, including the endogenous antagonist kynurenic acid. The activation of presynaptic nAChRs is by the ambient levels of ACh released from pre-terminal synapses, varicosities and glial cells, acting as a 'volume neurotransmitter' on synaptic and extrasynaptic sites. In addition, ACh and glutamate are released as CNS co-transmitters, including 'cholinergic' synapses onto spinal Renshaw cells. It is concluded that ACh should be viewed primarily as a modulator of glutamatergic neurotransmission by regulating the release of glutamate presynaptically, and the location, subunit composition, subtype balance and sensitivity of glutamate receptors, and not primarily as a classical fast neurotransmitter. These conclusions and caveats should aid clarification of the sites of action of glutamate and nicotinic receptor ligands in the search for new centrally-acting drugs.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; Institute of Neuroscience, University of Glasgow, G12 8QQ, UK.
| |
Collapse
|
45
|
Pukoli D, Polyák H, Rajda C, Vécsei L. Kynurenines and Neurofilament Light Chain in Multiple Sclerosis. Front Neurosci 2021; 15:658202. [PMID: 34113231 PMCID: PMC8185147 DOI: 10.3389/fnins.2021.658202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/29/2021] [Indexed: 12/30/2022] Open
Abstract
Multiple sclerosis is an autoimmune, demyelinating, and neurodegenerative disease of the central nervous system. In recent years, it has been proven that the kynurenine system plays a significant role in the development of several nervous system disorders, including multiple sclerosis. Kynurenine pathway metabolites have both neurotoxic and neuroprotective effects. Moreover, the enzymes of the kynurenine pathway play an important role in immunomodulation processes, among others, as well as interacting with neuronal energy balance and various redox reactions. Dysregulation of many of the enzymatic steps in kynurenine pathway and upregulated levels of these metabolites locally in the central nervous system, contribute to the progression of multiple sclerosis pathology. This process can initiate a pathogenic cascade, including microglia activation, glutamate excitotoxicity, chronic oxidative stress or accumulated mitochondrial damage in the axons, that finally disrupt the homeostasis of neurons, leads to destabilization of neuronal cell cytoskeleton, contributes to neuro-axonal damage and neurodegeneration. Neurofilaments are good biomarkers of the neuro-axonal damage and their level reliably indicates the severity of multiple sclerosis and the treatment response. There is increasing evidence that connections exist between the molecules generated in the kynurenine metabolic pathway and the change in neurofilament concentrations. Thus the alterations in the kynurenine pathway may be an important biomarker of the course of multiple sclerosis. In our present review, we report the possible relationship and connection between neurofilaments and the kynurenine system in multiple sclerosis based on the available evidences.
Collapse
Affiliation(s)
- Dániel Pukoli
- Department of Neurology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Neurology, Vaszary Kolos Hospital, Esztergom, Hungary
| | - Helga Polyák
- Department of Neurology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Cecilia Rajda
- Department of Neurology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Neuroscience Research Group, Department of Neurology, Faculty of Medicine, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| |
Collapse
|
46
|
The kynurenine pathway in major depression: What we know and where to next. Neurosci Biobehav Rev 2021; 127:917-927. [PMID: 34029552 DOI: 10.1016/j.neubiorev.2021.05.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/27/2022]
Abstract
Major depression is a serious psychiatric disorder, occurring in up to 20 % of the population. Despite its devastating burden, the neurobiological changes associated with depression are not fully understood. A growing body of evidence suggests the kynurenine pathway is implicated in the pathophysiology of depression. In this review, we bring together the literature examining elements of the kynurenine pathway in depression and explore the implications for the pathophysiology and treatment of depression, while highlighting the gaps in the current knowledge. Current research indicates an increased potential for neurotoxic activity of the kynurenine pathway in peripheral blood samples but an increased activation of the putative neuroprotective arm in some brain regions in depression. The disconnect between these findings requires further investigation, with a greater research effort on elucidating the central effects of the kynurenine pathway in driving depression symptomology. Research investigating the benefits of targeting the kynurenine pathway centred on human brain findings and the heterogenous subtypes of depression will help guide the identification of effective drug targets in depression.
Collapse
|
47
|
MacDowell KS, Munarriz-Cuezva E, Meana JJ, Leza JC, Ortega JE. Paliperidone Reversion of Maternal Immune Activation-Induced Changes on Brain Serotonin and Kynurenine Pathways. Front Pharmacol 2021; 12:682602. [PMID: 34054556 PMCID: PMC8156415 DOI: 10.3389/fphar.2021.682602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/30/2021] [Indexed: 12/23/2022] Open
Abstract
Emerging evidence indicates that early-life exposure to environmental factors may increase the risk for schizophrenia via inflammatory mechanisms. Inflammation can alter the metabolism of tryptophan through the oxidative kynurenine pathway to compounds with neurotoxic and neuroprotective activity and compromise serotonin (5-HT) synthesis. Here we investigate the role of serotonergic and kynurenine pathways in the maternal immune activation (MIA) animal model of schizophrenia. The potential reversion exerted by long-term antipsychotic treatment was also evaluated. MIA was induced by prenatal administration of polyinosinic:polycytidylic acid (poly (I:C)) in mice. Expression of different proteins and the content of different metabolites involved in the function of serotonergic and kynurenine pathways was assessed by RT-PCR, immunoblot and ELISA analyses in frontal cortex of the offspring after puberty. MIA decreased tissue 5-HT content and promoted changes in the expression of serotonin transporter, 5-HT2A and 5-HT2C receptors. Expression of indoleamine 2,3-dioxygenase 2 (IDO2) and kynurenine 3-monooxygenase (KMO) was increased by poly (I:C) whereas kynurenine aminotransferase II and its metabolite kynurenic acid were not altered. Long-term paliperidone was able to counteract MIA-induced changes in 5-HT and KMO, and to increase tryptophan availability and tryptophan hydroxylase-2 expression in poly (I:C) mice but not in controls. MIA-induced increase of the cytotoxic risk ratio of kynurenine metabolites (quinolinic/kynurenic acid) was also reversed by paliperidone. MIA induces specific long-term brain effects on serotonergic activity. Such effects seem to be related with alternative activation of the kynurenine metabolic pathway towards a cytotoxic status. Atypical antipsychotic paliperodine partially remediates abnormalities observed after MIA.
Collapse
Affiliation(s)
- Karina S MacDowell
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense of Madrid (UCM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Bizkaia, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (i+12), IUIN-UCM, Madrid, Spain
| | - Eva Munarriz-Cuezva
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Bizkaia, Madrid, Spain.,Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain
| | - J Javier Meana
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Bizkaia, Madrid, Spain.,Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Juan C Leza
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense of Madrid (UCM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Bizkaia, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (i+12), IUIN-UCM, Madrid, Spain
| | - Jorge E Ortega
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Bizkaia, Madrid, Spain.,Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| |
Collapse
|
48
|
Kovács V, Remzső G, Körmöczi T, Berkecz R, Tóth-Szűki V, Pénzes A, Vécsei L, Domoki F. The Kynurenic Acid Analog SZR72 Enhances Neuronal Activity after Asphyxia but Is Not Neuroprotective in a Translational Model of Neonatal Hypoxic Ischemic Encephalopathy. Int J Mol Sci 2021; 22:4822. [PMID: 34062911 PMCID: PMC8125407 DOI: 10.3390/ijms22094822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/17/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) remains to be a major cause of long-term neurodevelopmental deficits in term neonates. Hypothermia offers partial neuroprotection warranting research for additional therapies. Kynurenic acid (KYNA), an endogenous product of tryptophan metabolism, was previously shown to be beneficial in rat HIE models. We sought to determine if the KYNA analog SZR72 would afford neuroprotection in piglets. After severe asphyxia (pHa = 6.83 ± 0.02, ΔBE = -17.6 ± 1.2 mmol/L, mean ± SEM), anesthetized piglets were assigned to vehicle-treated (VEH), SZR72-treated (SZR72), or hypothermia-treated (HT) groups (n = 6, 6, 6; Tcore = 38.5, 38.5, 33.5 °C, respectively). Compared to VEH, serum KYNA levels were elevated, recovery of EEG was faster, and EEG power spectral density values were higher at 24 h in the SZR72 group. However, instantaneous entropy indicating EEG signal complexity, depression of the visual evoked potential (VEP), and the significant neuronal damage observed in the neocortex, the putamen, and the CA1 hippocampal field were similar in these groups. In the caudate nucleus and the CA3 hippocampal field, neuronal damage was even more severe in the SZR72 group. The HT group showed the best preservation of EEG complexity, VEP, and neuronal integrity in all examined brain regions. In summary, SZR72 appears to enhance neuronal activity after asphyxia but does not ameliorate early neuronal damage in this HIE model.
Collapse
Affiliation(s)
- Viktória Kovács
- Department of Physiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary; (V.K.); (G.R.); (V.T.-S.); (A.P.)
| | - Gábor Remzső
- Department of Physiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary; (V.K.); (G.R.); (V.T.-S.); (A.P.)
| | - Tímea Körmöczi
- Institute of Pharmaceutical Analysis, Interdisciplinary Excellence Center, University of Szeged, 6720 Szeged, Hungary; (T.K.); (R.B.)
| | - Róbert Berkecz
- Institute of Pharmaceutical Analysis, Interdisciplinary Excellence Center, University of Szeged, 6720 Szeged, Hungary; (T.K.); (R.B.)
| | - Valéria Tóth-Szűki
- Department of Physiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary; (V.K.); (G.R.); (V.T.-S.); (A.P.)
| | - Andrea Pénzes
- Department of Physiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary; (V.K.); (G.R.); (V.T.-S.); (A.P.)
| | - László Vécsei
- Department of Neurology, Interdisciplinary Excellence Center, University of Szeged, 6720 Szeged, Hungary;
- MTA-SZTE Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged, 6720 Szeged, Hungary
| | - Ferenc Domoki
- Department of Physiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary; (V.K.); (G.R.); (V.T.-S.); (A.P.)
| |
Collapse
|
49
|
Wu Q, Huang J, Wu R. Drugs Based on NMDAR Hypofunction Hypothesis in Schizophrenia. Front Neurosci 2021; 15:641047. [PMID: 33912003 PMCID: PMC8072017 DOI: 10.3389/fnins.2021.641047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/12/2021] [Indexed: 12/30/2022] Open
Abstract
Treatments for negative symptoms and cognitive dysfunction in schizophrenia remain issues that psychiatrists around the world are trying to solve. Their mechanisms may be associated with N-methyl-D-aspartate receptors (NMDARs). The NMDAR hypofunction hypothesis for schizophrenia was brought to the fore mainly based on the clinical effects of NMDAR antagonists and anti-NMDAR encephalitis pathology. Drugs targeted at augmenting NMDAR function in the brain seem to be promising in improving negative symptoms and cognitive dysfunction in patients with schizophrenia. In this review, we list NMDAR-targeted drugs and report on related clinical studies. We then summarize their effects on negative symptoms and cognitive dysfunction and analyze the unsatisfactory outcomes of these clinical studies according to the improved glutamate hypothesis that has been revealed in animal models. We aimed to provide perspectives for scientists who sought therapeutic strategies for negative symptoms and cognitive dysfunction in schizophrenia based on the NMDAR hypofunction hypothesis.
Collapse
Affiliation(s)
- Qiongqiong Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jing Huang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Renrong Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
50
|
Spekker E, Laborc KF, Bohár Z, Nagy-Grócz G, Fejes-Szabó A, Szűcs M, Vécsei L, Párdutz Á. Effect of dural inflammatory soup application on activation and sensitization markers in the caudal trigeminal nucleus of the rat and the modulatory effects of sumatriptan and kynurenic acid. J Headache Pain 2021; 22:17. [PMID: 33789568 PMCID: PMC8011387 DOI: 10.1186/s10194-021-01229-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/15/2021] [Indexed: 01/12/2023] Open
Abstract
Background The topical inflammatory soup can model the inflammation of the dura mater causing hypersensitivity and activation of the trigeminal system, a phenomenon present in migraineurs. Calcitonin gene-related peptide, transient receptor potential vanilloid-1 receptor, and neuronal nitric oxide synthase are important in the sensitization process there. 5-HT1B/1D receptor agonists, triptans are used as a treatment of migraine. Kynurenic acid an NMDA antagonist can act on structures involved in trigeminal activation. Aim We investigated the effect of inflammatory soup induced dural inflammation on the calcitonin gene-related peptide, transient receptor potential vanilloid-1 receptor, and neuronal nitric oxide synthase levels in the caudal trigeminal nucleus. We also tested whether pretreatment with a well-known antimigraine drug, such as sumatriptan and kynurenic acid, a compound with a different mechanism of action, can affect these changes and if their modulatory effects are comparable. Material and methods After subcutaneous sumatriptan or intraperitoneal kynurenic acid the dura mater of adult male Sprague-Dawley rats (n = 72) was treated with inflammatory soup or its vehicle (synthetic interstitial fluid). Two and a half or four hours later perfusion was performed and the caudal trigeminal nucleus was removed for immunohistochemistry. Results and conclusion Inflammatory soup increased calcitonin gene-related peptide, transient receptor potential vanilloid-1 receptor, and neuronal nitric oxide synthase in the caudal trigeminal nucleus compared to placebo, which was attenuated by sumatriptan and kynurenic acid. This suggests the involvement of 5-HT1B/1D and NMDA receptors in neurogenic inflammation development of the dura and thus in migraine attacks.
Collapse
Affiliation(s)
- Eleonóra Spekker
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary
| | - Klaudia Flóra Laborc
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary
| | - Zsuzsanna Bohár
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary.,MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Gábor Nagy-Grócz
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary.,Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary
| | | | - Mónika Szűcs
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary. .,MTA-SZTE Neuroscience Research Group, Szeged, Hungary.
| | - Árpád Párdutz
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary
| |
Collapse
|