1
|
Wu J, Wen L, Liu X, Li Q, Sun Z, Liang C, Xie F, Li X. Silybin: A Review of Its Targeted and Novel Agents for Treating Liver Diseases Based on Pathogenesis. Phytother Res 2024; 38:5713-5740. [PMID: 39310970 DOI: 10.1002/ptr.8347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 12/13/2024]
Abstract
Liver disease represents a significant global public health concern. Silybin, derived from Silybum marianum, has been demonstrated to exhibit a range of beneficial properties, including anti-inflammatory, antioxidative, antifibrotic, antiviral, and cytoprotective effects. These attributes render it a promising candidate for the treatment of liver fibrosis, cirrhosis, liver cancer, viral hepatitis, non-alcoholic fatty liver disease, and other liver conditions. Nevertheless, its low solubility and low bioavailability have emerged as significant limitations in its clinical application. To address these limitations, researchers have developed a number of silybin formulations. This study presents a comprehensive review of the results of research on silybin for the treatment of liver diseases in recent decades, with a particular focus on novel formulations based on the pathogenesis of the disease. These include approaches targeting the liver via the CD44 receptor, folic acid, vitamin A, and others. Furthermore, the study presents the findings of studies that have employed nanotechnology to enhance the low bioavailability and low solubility of silybin. This includes the use of nanoparticles, liposomes, and nanosuspensions. This study reviews the application of silybin preparations in the treatment of global liver diseases. However, further high-quality and more complete experimental studies are still required to gain a more comprehensive understanding of the efficacy and safety of these preparations. Finally, the study considers the issues that arise during the research of silybin formulations.
Collapse
Affiliation(s)
- Jijiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolian Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zihao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuipeng Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Fiorbelli E, Lapris M, Errico M, Della Badia A, Riahi I, Rocchetti G, Gallo A. Mycotoxin Challenge in Dairy Cows: Assessment of the Efficacy of an Anti-Mycotoxin Agent by Adopting an In Vitro Rumen Simulation Method. Toxins (Basel) 2024; 16:490. [PMID: 39591245 PMCID: PMC11598721 DOI: 10.3390/toxins16110490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
To protect ruminants from the harmful effects of mycotoxins, anti-mycotoxin agents can be added to the dietary ration, thus guaranteeing animal health and production. Therefore, the objective of this study was to evaluate the in vitro ruminal initial sequestration (weak binding) and subsequent desorption (strong binding) of an anti-mycotoxin agent based on a mixture of adsorbing material, turmeric and milk thistle extracts and yeast-based components to adsorb or bio-convert aflatoxins (AF), fumonisins B1 and B2 (FB), trichothecene deoxynivalenol (DON), T-2 and HT-2 toxins, and zearalenone (ZEN). Two doses were tested: Dose 1 simulated 30 mg/cow/d, while Dose 2 simulated 90 mg/cow/d of the anti-mycotoxin agent. Each treatment involved three analytical replicates at each of three incubation times (1, 4, and 24 h post-incubation), with two independent experimental runs providing experimental replicates. Analytical methods, including UHPLC-HRMS and multivariate analyses, were used to both quantify mycotoxin concentrations and reveal dose-dependent reductions, with statistical validations indicating significant changes in mycotoxin levels across both dose and time. The results indicated that the anti-mycotoxin agent was able to highly bind AFB1, T2, and HT-2 toxins since its concentration was always under the limit of detection (<1 ppb). Regarding ZEN (weak binding mean: 94.6%; strong binding mean: 62.4%) and FBs (weak binding mean: 58.7%; strong binding mean: 32.3%), orthogonal contrasts indicated that the anti-mycotoxin agent was able to effectively bind these toxins using Dose 1 (p < 0.05). This finding suggests that Dose 1 may be sufficient to achieve the targeted effect and that a further increase does not significantly improve the outcome. Regarding DON, a strong linear relationship was observed between dose and adsorption. However, the complex interactions between the mycotoxin, the ruminal environment, and the anti-mycotoxin agent made it difficult to establish a clear dose-effect relationship (p > 0.10). UHPLC-HRMS analysis identified over 1500 mass features in rumen samples, which were further analyzed to assess the effects of the anti-mycotoxin agent. Hierarchical clustering analysis (HCA) revealed significant changes in the untargeted metabolomic profiles of samples treated with mycotoxins compared to control samples, particularly after 24 h with the anti-mycotoxin treatments. Clear differences were noted between strong binding and weak binding samples. Further analysis using orthogonal partial least squares discriminant analysis (OPLS-DA) highlighted distinct metabolomic profiles, with stronger predictive ability in the strong binding group (Q2 cumulative value of 0.57) compared to the weak binding group (0.30). The analysis identified 44 discriminant compounds in the strong binding model and 16 in the weak binding model. Seven compounds were common to both groups, while silibinin, known for its antioxidant and anti-inflammatory properties, was found among the unique compounds in the weak binding group. Overall, the findings suggest that both doses of the anti-mycotoxin agent significantly influenced the chemical profiles in the rumen, particularly enhancing the binding of mycotoxins, thereby supporting the role of phytogenic extracts in mitigating mycotoxin effects.
Collapse
Affiliation(s)
- Erica Fiorbelli
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (E.F.); (M.L.); (M.E.); (G.R.)
| | - Marco Lapris
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (E.F.); (M.L.); (M.E.); (G.R.)
| | - Michela Errico
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (E.F.); (M.L.); (M.E.); (G.R.)
| | | | - Insaf Riahi
- Technical Department, BIŌNTE Nutrition S.L., 43204 Reus, Spain; (A.D.B.); (I.R.)
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (E.F.); (M.L.); (M.E.); (G.R.)
| | - Antonio Gallo
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (E.F.); (M.L.); (M.E.); (G.R.)
| |
Collapse
|
3
|
Erfanian SS, Ansari H, Javanmard SH, Amini Z, Hajigholami A. The hepatorenal protective effects of silymarin in cancer patients receiving chemotherapy: a randomized, placebo-controlled trial. BMC Complement Med Ther 2024; 24:329. [PMID: 39232773 PMCID: PMC11375936 DOI: 10.1186/s12906-024-04627-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Breast cancer is one of the most common diseases globally that may have side effects on liver and renal function. Pharmacological treatments to reduce adverse liver and renal effects are still limited. It has been proposed that silymarin may possess hepatoprotective and anti-inflammatory properties. The present trial aims to assess the hepatorenal protective efficacy of silymarin supplementation in cancer patients receiving chemotherapy in an outpatient setting. METHOD This is a randomized, placebo-controlled clinical trial that recruited female breast cancer patients. Participants were randomly assigned to one placebo group and two intervention groups. The control group received 140 mg of placebo daily, while the two intervention groups received 140 mg silymarin daily. Follow-up assessments were conducted at baseline, 3 weeks, and 6 weeks. At the beginning of the study, the patients were subjected to a computed tomography (CT) scan, and the liver and renal parameters such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), bilirubin, Blood urea nitrogen (BUN) and Creatinine (Cr) were examined through laboratory tests. RESULTS Despite two deaths and three dropouts, 100 patients completed the study. Silymarin showed significant effects on liver enzymes in the levels of ALP and bilirubin (P < 0.05), with no significant impact on renal function in the levels of Blood urea nitrogen (BUN) and Creatinine (Cr) (P > 0.05). The medication was well-tolerated, with minimal reported side effects (P > 0.05). DISCUSSION The study suggests that silymarin may have hepato-renal protective potential in breast cancer patients and improve patient tolerance to chemotherapy. The data presented on the efficacy and safety of silymarin may provide stronger foundation for further trials and for a possible use in clinical practice. TRIAL REGISTRATION INFORMATION Registration Number: IRCT20201123049474N2, First Trial Registration: 16/08/2021, Access: https://www.irct.behdasht.gov.ir/trial/57641.
Collapse
Affiliation(s)
- Safoora Sadat Erfanian
- Internal Medicine Department, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hourieh Ansari
- Department of Community and Family Medicine, School of Medicine, Isfahan University of Medical Sciences, P.O.BOX: 8177773095, Isfahan, Iran.
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Amini
- Department of Community and Family Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Hajigholami
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
4
|
Bahari H, Shahraki Jazinaki M, Rashidmayvan M, Taheri S, Amini MR, Malekahmadi M. The effects of silymarin consumption on inflammation and oxidative stress in adults: a systematic review and meta-analysis. Inflammopharmacology 2024; 32:949-963. [PMID: 38372848 DOI: 10.1007/s10787-023-01423-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/24/2023] [Indexed: 02/20/2024]
Abstract
BACKGROUND Owing to the rich phytochemical content of Silymarin, it may effectively manage inflammation and oxidative stress. We, therefore, aimed to examine the existing evidence on the effect of Silymarin consumption on inflammation and oxidative stress factors by conducting a systematic review and meta-analysis of randomized controlled trials. METHODS A systematic literature search up to September 2023 was completed in PubMed/Medline, Scopus, and Web of Science, to identify eligible RCTs. Heterogeneity tests of the selected trials were performed using the I2 statistic. Random effects models were assessed based on the heterogeneity tests, and pooled data were determined as weighted mean differences with a 95% confidence interval. RESULTS Fifteen RCTs were included in this meta-analysis. Our findings showed that Silymarin consumption significantly decreased CRP (WMD, - 0.50 mg/L; 95% CI, (- 0.95 to - 0.04); p = 0.03), MDA (WMD, - 1.19 nmol/mL; 95% CI, (- 1.99 to - 0.38); p = 0.004), and IL-6 (WMD, - 0.44 pg/ml; 95% CI, (- 0.75 to - 0.12); p = 0.006). Silymarin consumption had no significant effects on IL-10, TAC, and GSH. A significant non-linear relationship was observed between the duration of the intervention and MDA changes. CONCLUSIONS Silymarin can help reduce inflammation in patients with diabetes and thalassemia by reducing MDA as an oxidative stress marker and CRP and IL-6 as inflammatory markers.
Collapse
Affiliation(s)
- Hossein Bahari
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Shahraki Jazinaki
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Rashidmayvan
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Science, Gonabad, Iran
| | - Shaghayegh Taheri
- Department of Clinical Biochemistry, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Reza Amini
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Malekahmadi
- Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Gasmi A, Noor S, Dadar M, Semenova Y, Menzel A, Gasmi Benahmed A, Bjørklund G. The Role of Traditional Chinese Medicine and Chinese Pharmacopoeia in the Evaluation and Treatment of COVID-19. Curr Pharm Des 2024; 30:1060-1074. [PMID: 38523518 DOI: 10.2174/0113816128217263240220060252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 03/26/2024]
Abstract
The epidemic prompted by COVID-19 continues to spread, causing a great risk to the general population's safety and health. There are still no drugs capable of curing it. Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) are the two other diseases caused by coronaviruses. Traditional Chinese Medicine (TCM) showed benefits in treating SARS and MERS by preventing the disease early, substantially mitigating symptoms, shortening the treatment period, and minimizing risks and adverse reactions caused by hormone therapy. Although several vaccines have been developed and are being used for the treatment of COVID-19, existing vaccines cannot provide complete protection against the virus due to the rapid evolution and mutation of the virus, as mutated viral epitopes evade the vaccine's target and decrease the efficacy of vaccines. Thus, there is a need to develop alternative options. TCM has demonstrated positive effects in the treatment of COVID-19. Previous research studies on TCM showed broad-spectrum antiviral activity, offering a range of possibilities for their potential use against COVID-19. This study shed some light on common TCM used for SARS and MERS outbreaks and their effective use for COVID-19 management. This study provides new insights into COVID-19 drug discovery.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Sadaf Noor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Maryam Dadar
- CONEM Iran Microbiology Research Group, Tehran, Iran
| | - Yuliya Semenova
- School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | | | | | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
6
|
Pannala VR, Wallqvist A. High-Throughput Transcriptomics Differentiates Toxic versus Non-Toxic Chemical Exposures Using a Rat Liver Model. Int J Mol Sci 2023; 24:17425. [PMID: 38139254 PMCID: PMC10743995 DOI: 10.3390/ijms242417425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
To address the challenge of limited throughput with traditional toxicity testing, a newly developed high-throughput transcriptomics (HTT) platform, together with a 5-day in vivo rat model, offers an alternative approach to estimate chemical exposures and provide reasonable estimates of toxicological endpoints. This study contains an HTT analysis of 18 environmental chemicals with known liver toxicity. They were evaluated using male Sprague Dawley rats exposed to various concentrations daily for five consecutive days via oral gavage, with data collected on the sixth day. Here, we further explored the 5-day rat model to identify potential gene signatures that can differentiate between toxic and non-toxic liver responses and provide us with a potential histopathological endpoint of chemical exposure. We identified a distinct gene expression pattern that differentiated non-hepatotoxic compounds from hepatotoxic compounds in a dose-dependent manner, and an analysis of the significantly altered common genes indicated that toxic chemicals predominantly upregulated most of the genes and several pathways in amino acid and lipid metabolism. Finally, our liver injury module analysis revealed that several liver-toxic compounds showed similarities in the key injury phenotypes of cellular inflammation and proliferation, indicating potential molecular initiating processes that may lead to a specific end-stage liver disease.
Collapse
Affiliation(s)
- Venkat R. Pannala
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA
| |
Collapse
|
7
|
Salimi-Sabour E, Tahri RA, Asgari A, Ghorbani M. The novel hepatoprotective effects of silibinin-loaded nanostructured lipid carriers against diazinon-induced liver injuries in male mice. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105643. [PMID: 38072518 DOI: 10.1016/j.pestbp.2023.105643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 10/09/2023] [Indexed: 12/18/2023]
Abstract
In the current study, silibinin-loaded nanostructured lipid carriers (Sili-NLCs) was synthesized, and the hepatoprotective effectiveness of Sili-NLCs against diazinon (DZN)-induced liver damage in male mice was evaluated. The emulsification-solvent evaporation technique was applied to prepare Sili-NLCs, and characterized by using particle size, zeta potential, entrapment efficacy (EE %), in vitro drug release behavior, and stability studies. In vivo, studies were done on male mice. Hepatotoxicity in male mice were induced by DZN (10 mg/kg/day, i.p.). Four groups treated with silibinin and Sili-NLCs with the same doses (100 and 200 mg/kg, p.o.). On 31th days, serum and liver tissue samples were collected. Alanine (ALT) and aspartate (AST) aminotransferase levels, oxidative stress biomarkers, inflammatory cytokines, and histopathological alterations were assessed. The Sili-NLCs particle size, zeta potential, polydispersity index (PDI), and EE % were obtained at 220.8 ± 0.86 nm, -18.7 ± 0.28 mV, 0.118 ± 0.03, and 71.83 ± 0.15%, respectively. The in vivo studies revealed that DZN significantly increased the serum levels of AST, ALT, hepatic levels of lipid peroxidation (LPO), and tumor necrosis factor-α (TNF-α), while decreased the antioxidant defense system in the mice's liver. However, Sili-NLCs was more effective than silibinin to return the aforementioned ratio toward the normal situation, and these results were well correlated with histopathological findings. Improvement of silibinin protective efficacy and oral bioavailability by using NLCs caused to Sili-NLCs can be superior to free silibinin in ameliorating DZN-induced hepatotoxicity in male mice.
Collapse
Affiliation(s)
- Ebrahim Salimi-Sabour
- Department of Pharmacognosy and Traditional Pharmacy, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ramazan-Ali Tahri
- Nanobiotechnology Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amirhossein Asgari
- Department of Pharmacognosy and Traditional Pharmacy, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Ghorbani
- Department of pharmacology and Toxicology, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Gheybi F, Khooei A, Hoseinian A, Doagooyan M, Houshangi K, Jaafari MR, Papi A, Khoddamipour Z, Sahebkar A, Alavizadeh SH. Alleviation of acetaminophen-induced liver failure using silibinin nanoliposomes: An in vivo study. Biochem Biophys Res Commun 2023; 676:103-108. [PMID: 37506470 DOI: 10.1016/j.bbrc.2023.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/09/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Acetaminophen (Act) overdose is a known inducer of liver failure in both children and adults. Cell annihilation ensues following acetaminophen overdose and its toxic metabolites by depleting cellular GSH storage and increasing ROS levels. Silymarin extract and its major compound silibinin (SLB) possess robust antioxidant properties by inducing ROS elimination; however, low bioavailability and rapid metabolism limit their applications. Herein, we aimed at using SLB liposomes to combat acetaminophen-induced acute liver toxicity. METHODS We have developed a SLB-lipid complex to improve SLB loading efficiency within nanoliposome by using the lipid film method. Liposomes were characterized by using DLS and TEM analysis, and the release pattern, and toxicity profile on the normal cells as well as histopathological and serum analysis were investigated to reveal relevant enzyme activities in an animal model. RESULTS Data demonstrated that negatively-charged SLB liposomes of 115 nm had homogeneous spherical morphology, and entrapped a considerable quantity of SLB of almost 40%. Liposomes shows a favorable release pattern and were not toxic against NIH3T3 mouse fibroblast cells. The animal study revealed that treatment of mice with SLB nanoliposomes could significantly preserve liver function as revealed by the reduced levels of ALT and AST hepatic enzymes as well as ALP in the serum. Our data indicated that intraperitoneal administration of SLB Lip could significantly reduce ALT enzyme levels (p < 0.05) compared to N-acetylcysteine, while i.v administration resulted in no significant difference compared to control animals with no treatment. CONCLUSION The results of this study support the significant hepatoprotective effect of SLB nanoliposomes against acetaminophen-induced toxicity depending on the route of administration.
Collapse
Affiliation(s)
- Fatemeh Gheybi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Khooei
- Department of Pathology, Imam Reza Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azam Hoseinian
- Department of Pathology, Imam Reza Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maham Doagooyan
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kebria Houshangi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Papi
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khoddamipour
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Haake J, Meyerhoff N, Meller S, Twele F, Charalambous M, Wilke V, Volk H. Investigating Owner Use of Dietary Supplements in Dogs with Canine Cognitive Dysfunction. Animals (Basel) 2023; 13:3056. [PMID: 37835662 PMCID: PMC10571926 DOI: 10.3390/ani13193056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/10/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Canine cognitive dysfunction (CCD) is becoming increasingly recognized in veterinary medicine, as dogs live longer and with CCD being highly prevalent among the elderly dog population. Various studies have shown that diet and dietary supplementation can positively influence the clinical signs of CCD, especially if given at an early stage. The aim of this study was to investigate owner use of dietary supplements (DSs) in dogs with age-related behavioral changes. An observational study based on an online questionnaire for owners of dogs with age-related behavioral changes was performed. Out of a total of 394 owners who completed the survey, after noticing age-related behavioral changes, over half of the dogs received DSs (54%), whereas only 8% reported changing their dog's base diet. The most used DS was fish oil (48%). The use of DSs should be discussed with and monitored by veterinary surgeons since many geriatric patients have multi-morbidities, may have specific nutritional requirements and receive multi-faceted medications.
Collapse
Affiliation(s)
- Julia Haake
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (J.H.); (N.M.); (S.M.); (F.T.); (M.C.)
| | - Nina Meyerhoff
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (J.H.); (N.M.); (S.M.); (F.T.); (M.C.)
| | - Sebastian Meller
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (J.H.); (N.M.); (S.M.); (F.T.); (M.C.)
| | - Friederike Twele
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (J.H.); (N.M.); (S.M.); (F.T.); (M.C.)
| | - Marios Charalambous
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (J.H.); (N.M.); (S.M.); (F.T.); (M.C.)
| | - Volker Wilke
- Institute for Animal Nutrition, University of Veterinary Medicine, Foundation, 30173 Hannover, Germany;
| | - Holger Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (J.H.); (N.M.); (S.M.); (F.T.); (M.C.)
| |
Collapse
|
10
|
Börklü Budak T. Adsorption of Basic Yellow 28 and Basic Blue 3 Dyes from Aqueous Solution Using Silybum Marianum Stem as a Low-Cost Adsorbent. Molecules 2023; 28:6639. [PMID: 37764414 PMCID: PMC10536612 DOI: 10.3390/molecules28186639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
In the present study, the ability of an adsorbent (SLM Stem) obtained from the stem of the Silybum Marianum plant to treat wastewater containing the cationic dyes basic blue 3 (BB3) and basic yellow 28 (BY28) from aqueous solutions was investigated using a batch method. Then, the SLM Stem (SLM Stem-Natural) adsorbent was carbonized at different temperatures (200-900 °C) and the removal capacity of the products obtained for both dyes was examined again. The investigation continued with the product carbonized at 800 °C (SLM Stem-800 °C), the adsorbent with the highest removal capacity. The dyestuff removal studies were continued with the SLM Stem-Natural and SLM Stem-800 °C adsorbents because they had the highest removal values. The surface properties of these two adsorbents were investigated using IR, SEM, and XRD measurements. It was determined that the SLM Stem-Natural has mainly non-porous material, and the SLM Stem-800 °C has a microporous structure. The optimal values for various parameters, including adsorbent amount, initial dye solution concentration, contact time, temperature, pH, and agitation speed, were investigated for BY28 dye and were 0.05 g, 15 mg/L, 30 min, 40 °C, pH 6 and 100 rpm when SLM Stem-Natural adsorbent was used and, 0.15 g, 30 mg/L, 30 min, 40 °C, pH 10, and 150 rpm when SLM Stem-800 °C adsorbent was used. For BB3 dye, optimal parameter values of 0.20 g, 10 mg/L, 30 min, 25 °C, pH 7, and 100 rpm were obtained when SLM Stem-Natural adsorbent was used and 0.15 g, 15 mg/L, 40 min, 40 °C, pH 10, and 100 rpm when SLM Stem-800 °C adsorbent was used. The Langmuir isotherm described the adsorption process best, with a value of r2 = 0.9987. When SLM Stem-800 °C adsorbent was used for BY28 dye at 25 °C, the highest qm value in the Langmuir isotherm was 271.73 mg/g. When the study was repeated with actual water samples under optimum conditions, the highest removal for the BY28 dye was 99.9% in tap water with the SLM Stem-800 °C adsorbent. Furthermore, the reuse study showed the adsorbent's efficiency even after three repetitions.
Collapse
Affiliation(s)
- Türkan Börklü Budak
- Department of Chemistry, Faculty of Art and Science, Yildiz Technical University, 34220 Istanbul, Turkey
| |
Collapse
|
11
|
Liu Y, Wu M, Ren M, Bao H, Wang Q, Wang N, Sun S, Xu J, Yang X, Zhao X, Bao Y, He G, Xu W. From Medical Herb to Functional Food: Development of a Fermented Milk Containing Silybin and Protein from Milk Thistle. Foods 2023; 12:foods12061308. [PMID: 36981234 PMCID: PMC10048290 DOI: 10.3390/foods12061308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 03/30/2023] Open
Abstract
Milk thistle is a traditional medicinal herb. Silybin is a medicinal component found in the seed coat of milk thistle, which has liver-protective and anti-cancer properties. Conventional studies have focused on the extraction of silybin with organic reagents, which was inapplicable to the food industry. This study aims to develop a fermented milk containing silybin and protein from the milk thistle seeds. A three step procedure was developed, comprising homogenization of milk thistle seeds, NaHCO3 heat treatment, and microbial fermentation. The silybin was characterized by high performance liquid chromatography, and the protein was quantified and electrophorized. It was found that the homogenization step was essential for the preparation of protein, and the NaHCO3 heat treatment was the crucial step in obtaining silybin. The optimal NaHCO3 treatment settings were 1% NaHCO3, 60°C, and 3 h, and the optimal strains for microbial fermentation were L131 (Rummeliibacillus stabekisii) and RS72 (Lactobacillus plantarum). The silybin yield in the fermented milk reached 11.24-12.14 mg/g seeds, accounting for 72.6-78.4% of the total silybin in the milk thistle seeds, and the protein yield reached 121.8-129.6 mg/g seeds. The fermented milk had a slightly sweet yoghurt-like flavor and could be used as a dietary supplement for silybin and protein.
Collapse
Affiliation(s)
- Yanxia Liu
- School of Ocean Science and Technology, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin Campus, Panjin 124221, China
| | - Minghuo Wu
- School of Ocean Science and Technology, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin Campus, Panjin 124221, China
| | - Miaomiao Ren
- School of Ocean Science and Technology, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin Campus, Panjin 124221, China
| | - Haijun Bao
- Yingkou Chenguang Extraction Equipment Co., Ltd., Yingkou 115000, China
| | - Qing'an Wang
- Yingkou Chenguang Extraction Equipment Co., Ltd., Yingkou 115000, China
| | - Nan Wang
- Yingkou Chenguang Extraction Equipment Co., Ltd., Yingkou 115000, China
| | - Shibo Sun
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin Campus, Panjin 124221, China
| | - Jianqiang Xu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin Campus, Panjin 124221, China
| | - Xiaojing Yang
- School of Ocean Science and Technology, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin Campus, Panjin 124221, China
| | - Xu Zhao
- School of Ocean Science and Technology, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin Campus, Panjin 124221, China
| | - Yongming Bao
- School of Ocean Science and Technology, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin Campus, Panjin 124221, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Weiping Xu
- School of Ocean Science and Technology, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin Campus, Panjin 124221, China
| |
Collapse
|
12
|
In Vitro Antioxidant Capacity of Purified Bioactive Compounds in Milk Thistle Seed (Silybum marianum) Along with Phenolic Profile. FOOD ANAL METHOD 2023. [DOI: 10.1007/s12161-023-02449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Verdura S, Encinar JA, Fernández-Arroyo S, Joven J, Cuyàs E, Bosch-Barrera J, Menendez JA. Silibinin Suppresses the Hyperlipidemic Effects of the ALK-Tyrosine Kinase Inhibitor Lorlatinib in Hepatic Cells. Int J Mol Sci 2022; 23:9986. [PMID: 36077379 PMCID: PMC9456400 DOI: 10.3390/ijms23179986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
The third-generation anaplastic lymphoma tyrosine kinase inhibitor (ALK-TKI) lorlatinib has a unique side effect profile that includes hypercholesteremia and hypertriglyceridemia in >80% of lung cancer patients. Here, we tested the hypothesis that lorlatinib might directly promote the accumulation of cholesterol and/or triglycerides in human hepatic cells. We investigated the capacity of the hepatoprotectant silibinin to modify the lipid-modifying activity of lorlatinib. To predict clinically relevant drug−drug interactions if silibinin were used to clinically manage lorlatinib-induced hyperlipidemic effects in hepatic cells, we also explored the capacity of silibinin to interact with and block CYP3A4 activity using in silico computational descriptions and in vitro biochemical assays. A semi-targeted ultrahigh pressure liquid chromatography accurate mass quadrupole time-of-flight mass spectrometry with electrospray ionization (UHPLC-ESI-QTOF-MS/MS)-based lipidomic approach revealed that short-term treatment of hepatic cells with lorlatinib promotes the accumulation of numerous molecular species of cholesteryl esters and triglycerides. Silibinin treatment significantly protected the steady-state lipidome of hepatocytes against the hyperlipidemic actions of lorlatinib. Lipid staining confirmed the ability of lorlatinib to promote neutral lipid overload in hepatocytes upon long-term exposure, which was prevented by co-treatment with silibinin. Computational analyses and cell-free biochemical assays predicted a weak to moderate inhibitory activity of clinically relevant concentrations of silibinin against CYP3A4 when compared with recommended (rosuvastatin) and non-recommended (simvastatin) statins for lorlatinib-associated dyslipidemia. The elevated plasma cholesterol and triglyceride levels in lorlatinib-treated lung cancer patients might involve primary alterations in the hepatic accumulation of lipid intermediates. Silibinin could be clinically explored to reduce the undesirable hyperlipidemic activity of lorlatinib in lung cancer patients.
Collapse
Affiliation(s)
- Sara Verdura
- Metabolism and Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Salt, 17190 Girona, Spain
| | - José Antonio Encinar
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cell Biology Institute (IBMC), Miguel Hernández University (UMH), 03207 Elche, Spain
| | - Salvador Fernández-Arroyo
- Department of Medicine and Surgery, Universitat Rovira i Virgili, 43204 Reus, Spain
- Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d’Investigació Sanitaria Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain
| | - Jorge Joven
- Department of Medicine and Surgery, Universitat Rovira i Virgili, 43204 Reus, Spain
- Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d’Investigació Sanitaria Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain
| | - Elisabet Cuyàs
- Metabolism and Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Salt, 17190 Girona, Spain
| | - Joaquim Bosch-Barrera
- Girona Biomedical Research Institute (IDIBGI), Salt, 17190 Girona, Spain
- Medical Oncology, Catalan Institute of Oncology, 17007 Girona, Spain
- Department of Medical Sciences, Medical School, University of Girona, 17071 Girona, Spain
| | - Javier A. Menendez
- Metabolism and Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Salt, 17190 Girona, Spain
| |
Collapse
|
14
|
Riasová P, Jenčo J, Moreno-González D, Vander Heyden Y, Mangelings D, Polášek M, Jáč P. Development of a capillary electrophoresis method for the separation of flavonolignans in silymarin complex. Electrophoresis 2022; 43:930-938. [PMID: 34751959 DOI: 10.1002/elps.202100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/11/2022]
Abstract
CE method for the baseline separation of structurally similar flavonolignans silybin A, silybin B, isosilybin A, isosilybin B, silychristin, silydianin, and their precursor taxifolin in silymarin complex has been developed and validated. The optimized background electrolyte was 100 mmol/L boric acid (pH 9.0) containing 5 mmol/L heptakis(2,3,6-tri-O-methyl)-β-CD and 10% (v/v) of methanol. The separation was carried out in an 80.5/72 cm (50 μm id) fused silica capillary at +25 kV with UV detection at 200 nm. Genistein (10 μg/mL) was used as internal standard. The resolution between the diastereomers of silybin and isosilybin was 1.73 and 2.59, respectively. The method was validated for each analyte in a concentration range of 2.5-50 μg/mL. The calibration curves were rectilinear with correlation coefficients ≥0.9972. The method was applied to determine flavonolignans in two dietary supplements containing Silybum marianum extract. The accuracy was evaluated by comparing the results of the CE analyses of the dietary supplements with those of the reference United States Pharmacopeial HPLC method. The unpaired t-test did not show a statistically significant difference between the results of both the proposed CE and the reference method (p > 0.05, n = 3).
Collapse
Affiliation(s)
- Petra Riasová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jaroslav Jenčo
- Department of Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - David Moreno-González
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Debby Mangelings
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Miroslav Polášek
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Pavel Jáč
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
15
|
Salvoza N, Giraudi PJ, Tiribelli C, Rosso N. Natural Compounds for Counteracting Nonalcoholic Fatty Liver Disease (NAFLD): Advantages and Limitations of the Suggested Candidates. Int J Mol Sci 2022; 23:2764. [PMID: 35269912 PMCID: PMC8911502 DOI: 10.3390/ijms23052764] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 12/20/2022] Open
Abstract
The booming prevalence of nonalcoholic fatty liver disease (NAFLD) in adults and children will threaten the health system in the upcoming years. The "multiple hit" hypothesis is the currently accepted explanation of the complex etiology and pathophysiology of the disease. Some of the critical pathological events associated with the development of NAFLD are insulin resistance, steatosis, oxidative stress, inflammation, and fibrosis. Hence, attenuating these events may help prevent or delay the progression of NAFLD. Despite an increasing understanding of the mechanisms involved in NAFLD, no approved standard pharmacological treatment is available. The only currently recommended alternative relies on lifestyle modifications, including diet and physical activity. However, the lack of compliance is still hampering this approach. Thus, there is an evident need to characterize new therapeutic alternatives. Studies of food bioactive compounds became an attractive approach to overcome the reticence toward lifestyle changes. The present study aimed to review some of the reported compounds with beneficial properties in NAFLD; namely, coffee (and its components), tormentic acid, verbascoside, and silymarin. We provide details about their protective effects, their mechanism of action in ameliorating the critical pathological events involved in NAFLD, and their clinical applications.
Collapse
Affiliation(s)
- Noel Salvoza
- Fondazione Italiana Fegato—ONLUS, Area Science Park Basovizza, SS14 km 163.5, 34149 Trieste, Italy; (N.S.); (P.J.G.)
- Philippine Council for Health Research and Development, DOST Compound, Bicutan, Taguig 1631, Philippines
| | - Pablo J. Giraudi
- Fondazione Italiana Fegato—ONLUS, Area Science Park Basovizza, SS14 km 163.5, 34149 Trieste, Italy; (N.S.); (P.J.G.)
| | - Claudio Tiribelli
- Fondazione Italiana Fegato—ONLUS, Area Science Park Basovizza, SS14 km 163.5, 34149 Trieste, Italy; (N.S.); (P.J.G.)
| | - Natalia Rosso
- Fondazione Italiana Fegato—ONLUS, Area Science Park Basovizza, SS14 km 163.5, 34149 Trieste, Italy; (N.S.); (P.J.G.)
| |
Collapse
|
16
|
Angwa LM, Jiang Y, Pei J, Sun D. Antioxidant Phytochemicals for the Prevention of Fluoride-Induced Oxidative Stress and Apoptosis: a Review. Biol Trace Elem Res 2022; 200:1418-1441. [PMID: 34003450 DOI: 10.1007/s12011-021-02729-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Fluorosis is a major public health problem globally. The non-availability of specific treatment and the irreversible nature of dental and skeletal lesions poses a challenge in the management of fluorosis. Oxidative stress is known to be one of the most important mechanisms of fluoride toxicity. Fluoride promotes the accumulation of reactive oxygen species by inhibiting the activity of antioxidant enzymes, resulting in the excessive production of reactive oxygen species at the cellular level which further leads to activation of cell death processes such as apoptosis. Phytochemicals that act as antioxidants have the potential to protect cells from oxidative stress. Evidence confirms that clinical symptoms of fluorosis can be mitigated to some extent or prevented by long-term intake of antioxidants and plant products. The primary purpose of this review is to examine recent findings that focus on the amelioration of fluoride-induced oxidative stress and apoptosis by natural and synthetic phytochemicals and their molecular mechanisms of action.
Collapse
Affiliation(s)
- Linet M Angwa
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China
- Department of Clinical Medicine, Kabarak University, Nakuru, 20157, Kenya
| | - Yuting Jiang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China
| | - Junrui Pei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
17
|
Budurova D, Momekova D, Momekov G, Shestakova P, Penchev H, Rangelov S. PEG-Modified tert-Octylcalix[8]arenes as Drug Delivery Nanocarriers of Silibinin. Pharmaceutics 2021; 13:2025. [PMID: 34959307 PMCID: PMC8709077 DOI: 10.3390/pharmaceutics13122025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/12/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
The hepatoprotective properties of silibinin, as well its therapeutic potential as an anticancer and chemo-preventive agent, have failed to progress towards clinical development and commercialization due to this material's unfavorable pharmacokinetics and physicochemical properties, low aqueous solubility, and chemical instability. The present contribution is focused on the feasibility of using PEGylated calixarene, in particular polyoxyethylene-derivatized tert-octylcalix[8]arene, to prepare various platforms for the delivery of silibinin, such as inclusion complexes and supramolecular aggregates thereof. The inclusion complex is characterized by various instrumental methods. At concentrations exceeding the critical micellization concentration of PEGylated calixarene, the tremendous solubility increment of silibinin is attributed to the additional solubilization and hydrophobic non-covalent interactions of the drug with supramolecular aggregates. PEG-modified tert-octylcalix[8]arenes, used as drug delivery carriers for silibinin, were additionally investigated for cytotoxicity against human tumor cell lines.
Collapse
Affiliation(s)
- Desislava Budurova
- Institute of Polymers, Bulgarian Academy of Sciences, 103 Acad. Georgi Bonchev St., 1113 Sofia, Bulgaria;
| | - Denitsa Momekova
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University—Sofia, 2 Dunav St., 1000 Sofia, Bulgaria;
| | - Georgi Momekov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University—Sofia, 2 Dunav St., 1000 Sofia, Bulgaria;
| | - Pavletta Shestakova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev St. Bldg 9, 1113 Sofia, Bulgaria;
| | - Hristo Penchev
- Institute of Polymers, Bulgarian Academy of Sciences, 103 Acad. Georgi Bonchev St., 1113 Sofia, Bulgaria;
| | - Stanislav Rangelov
- Institute of Polymers, Bulgarian Academy of Sciences, 103 Acad. Georgi Bonchev St., 1113 Sofia, Bulgaria;
| |
Collapse
|
18
|
Cold-Active Lipase-Based Biocatalysts for Silymarin Valorization through Biocatalytic Acylation of Silybin. Catalysts 2021. [DOI: 10.3390/catal11111390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Extremophilic biocatalysts represent an enhanced solution in various industrial applications. Integrating enzymes with high catalytic potential at low temperatures into production schemes such as cold-pressed silymarin processing not only brings value to the silymarin recovery from biomass residues, but also improves its solubility properties for biocatalytic modification. Therefore, a cold-active lipase-mediated biocatalytic system has been developed for silybin acylation with methyl fatty acid esters based on the extracellular protein fractions produced by the psychrophilic bacterial strain Psychrobacter SC65A.3 isolated from Scarisoara Ice Cave (Romania). The extracellular production of the lipase fraction was enhanced by 1% olive-oil-enriched culture media. Through multiple immobilization approaches of the cold-active putative lipases (using carbodiimide, aldehyde-hydrazine, or glutaraldehyde coupling), bio-composites (S1–5) with similar or even higher catalytic activity under cold-active conditions (25 °C) have been synthesized by covalent attachment to nano-/micro-sized magnetic or polymeric resin beads. Characterization methods (e.g., FTIR DRIFT, SEM, enzyme activity) strengthen the biocatalysts’ settlement and potential. Thus, the developed immobilized biocatalysts exhibited between 80 and 128% recovery of the catalytic activity for protein loading in the range 90–99% and this led to an immobilization yield up to 89%. The biocatalytic acylation performance reached a maximum of 67% silybin conversion with methyl decanoate acylating agent and nano-support immobilized lipase biocatalyst.
Collapse
|
19
|
Taxifolin Targets PI3K and mTOR and Inhibits Glioblastoma Multiforme. JOURNAL OF ONCOLOGY 2021; 2021:5560915. [PMID: 34462635 PMCID: PMC8403040 DOI: 10.1155/2021/5560915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/31/2021] [Indexed: 01/12/2023]
Abstract
Glioblastoma multiforme (GBM), the most common malignant primary brain tumor, has a very poor prognosis. With increasing knowledge of tumor molecular biology, targeted therapies are becoming increasingly integral to comprehensive GBM treatment strategies. mTOR is a key downstream molecule of the PI3K/Akt signaling pathway, integrating input signals from growth factors, nutrients, and energy sources to regulate cell growth and cell proliferation through multiple cellular responses. mTOR/PI3K dual-targeted therapy has shown promise in managing various cancers. Here, we report that taxifolin, a flavanone commonly found in milk thistle, inhibited mTOR/PI3K, promoted autophagy, and suppressed lipid synthesis in GBM. In silico analysis showed that taxifolin can bind to the rapamycin binding site of mTOR and the catalytic site of PI3K (p110α). In in vitro experiments, taxifolin inhibited mTOR and PI3K activity in five different glioma cell lines. Lastly, we showed that taxifolin suppressed tumors in mice; stimulated expression of autophagy-related genes LC3B-II, Atg7, atg12, and Beclin-1; and inhibited expression of fatty acid synthesis-related genes C/EBPα, PPARγ, FABP4, and FAS. Our observations suggest that taxifolin is potentially a valuable drug for treating GBM.
Collapse
|
20
|
Verdura S, Cuyàs E, Ruiz-Torres V, Micol V, Joven J, Bosch-Barrera J, Menendez JA. Lung Cancer Management with Silibinin: A Historical and Translational Perspective. Pharmaceuticals (Basel) 2021; 14:ph14060559. [PMID: 34208282 PMCID: PMC8230811 DOI: 10.3390/ph14060559] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 01/01/2023] Open
Abstract
The flavonolignan silibinin, the major bioactive component of the silymarin extract of Silybum marianum (milk thistle) seeds, is gaining traction as a novel anti-cancer therapeutic. Here, we review the historical developments that have laid the groundwork for the evaluation of silibinin as a chemopreventive and therapeutic agent in human lung cancer, including translational insights into its mechanism of action to control the aggressive behavior of lung carcinoma subtypes prone to metastasis. First, we summarize the evidence from chemically induced primary lung tumors supporting a role for silibinin in lung cancer prevention. Second, we reassess the preclinical and clinical evidence on the effectiveness of silibinin against drug resistance and brain metastasis traits of lung carcinomas. Third, we revisit the transcription factor STAT3 as a central tumor-cell intrinsic and microenvironmental target of silibinin in primary lung tumors and brain metastasis. Finally, by unraveling the selective vulnerability of silibinin-treated tumor cells to drugs using CRISPR-based chemosensitivity screenings (e.g., the hexosamine biosynthesis pathway inhibitor azaserine), we illustrate how the therapeutic use of silibinin against targetable weaknesses might be capitalized in specific lung cancer subtypes (e.g., KRAS/STK11 co-mutant tumors). Forthcoming studies should take up the challenge of developing silibinin and/or next-generation silibinin derivatives as novel lung cancer-preventive and therapeutic biomolecules.
Collapse
Affiliation(s)
- Sara Verdura
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain; (S.V.); (E.C.)
- Metabolism and Cancer Group, Program against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007 Girona, Spain
| | - Elisabet Cuyàs
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain; (S.V.); (E.C.)
- Metabolism and Cancer Group, Program against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007 Girona, Spain
| | - Verónica Ruiz-Torres
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), 03202 Elche, Spain; (V.R.-T.); (V.M.)
| | - Vicente Micol
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), 03202 Elche, Spain; (V.R.-T.); (V.M.)
| | - Jorge Joven
- Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain;
| | - Joaquim Bosch-Barrera
- Metabolism and Cancer Group, Program against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007 Girona, Spain
- Medical Oncology, Catalan Institute of Oncology, Dr. Josep Trueta Hospital of Girona, 17007 Girona, Spain
- Department of Medical Sciences, Faculty of Medicine, University of Girona (UdG), 17003 Girona, Spain
- Correspondence: (J.B.-B.); (J.A.M.)
| | - Javier A. Menendez
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain; (S.V.); (E.C.)
- Metabolism and Cancer Group, Program against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007 Girona, Spain
- Correspondence: (J.B.-B.); (J.A.M.)
| |
Collapse
|
21
|
Goupil RC, Davis M, Kaufman A, Roberts D, Mitchell T. Clinical recovery of 5 dogs from amatoxin mushroom poisoning using an adapted Santa Cruz protocol for people. J Vet Emerg Crit Care (San Antonio) 2021; 31:414-427. [PMID: 33458945 DOI: 10.1111/vec.13040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/24/2019] [Accepted: 07/23/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To describe the clinical course, treatment, and outcome of 5 dogs following ingestion of toxic Amanita spp. mushrooms containing amatoxins using an adapted version of the Santa Cruz protocol developed for people. CASE SERIES SUMMARY Five dogs were presented with clinical signs compatible with amanitin toxicity with witnessed ingestion noted in 3 of 5 dogs. Clinical findings included acute onset vomiting and diarrhea, lethargy, and hepatopathy including signs of fulminant hepatic failure (increased liver enzyme activities, hyperbilirubinemia, prolonged clotting times, and hypoglycemia were noted among these cases). Urine toxicological screening confirmed the presence of Amanita toxins in 4 cases with expert mycologist speciation in the fifth. Core interventions included percutaneous biliary drainage, use of octreotide, and early nil per os orders. All dogs survived to discharge with this treatment strategy. NEW OR UNIQUE INFORMATION PROVIDED This case series describes the use of a modified version of the Santa Cruz protocol to address amatoxin-induced fulminant hepatic failure in dogs. The protocol was safe, well tolerated, and all patients made a full clinical recovery.
Collapse
Affiliation(s)
- Ryan C Goupil
- Emergency & Critical Care and Internal Medicine Departments
| | | | | | - Diane Roberts
- Emergency & Critical Care and Internal Medicine Departments
| | | |
Collapse
|
22
|
Kammoun M, Ayeb H, Bettaieb T, Richel A. Chemical characterisation and technical assessment of agri-food residues, marine matrices, and wild grasses in the South Mediterranean area: A considerable inflow for biorefineries. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 118:247-257. [PMID: 32916421 DOI: 10.1016/j.wasman.2020.08.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
The integration of easily available and under-exploited biomasses is considered a sustainable strategy in biorefining approaches. Mediterranean countries, especially Algeria, Morocco, and Tunisia, offer such under-exploited waste of different origins. This study revealed the chemical composition and phytochemical characteristics of various agri-food side-products, marine residues, and wild grasses collected in the Maghreb region. Results showed that these wastes contained variable proportions of polysaccharides, lignin, constitute molecules (proteins, lipids, and inorganic molecules) and, various secondary metabolites, mainly flavonoids and condensed tannins. Based on this, the Mediterranean waste was divided into three categories. The first category included waste with high lignin content (40 wt%). The second category contained waste with lignin content below 10 wt% and structural carbohydrate content below 50 wt%. Additionally, the waste in this category comprised noticeable amounts of flavonoids and condensed tannins, particularly from thistle, speedwell, and spurge. Finally, the third category included waste with lignin content above 15 wt% and carbohydrate content in the range of 45-55 wt%. The results also showed that the waste in the third category has a chemical composition similar to that of raw materials envisioned for use in European or North American commercial biorefineries. The findings of this study indicate that the biomass waste employed in this study can be used to develop marketable bioproducts and may be a potential raw material for a biorefinery facility.
Collapse
Affiliation(s)
- Maroua Kammoun
- Laboratory of Biomass and Green Technologies - University of Liege (Gembloux Agro-Bio Tech Campus), Passage des Déportés, 2, 5030 Gembloux, Belgium; Laboratory of Horticultural Sciences - University of Carthage (National Agronomic Institute of Tunisia), 43 Av. Charles Nicolle, 1082 Tunis, Tunisia.
| | - Haitham Ayeb
- Louvain Institute of Biomolecular Science and Technology, University of Louvain (UCLouvain), Croix du Sud 4-5, L7.07.14, 1348 Louvain-la-Neuve, Belgium
| | - Taoufik Bettaieb
- Laboratory of Horticultural Sciences - University of Carthage (National Agronomic Institute of Tunisia), 43 Av. Charles Nicolle, 1082 Tunis, Tunisia
| | - Aurore Richel
- Laboratory of Biomass and Green Technologies - University of Liege (Gembloux Agro-Bio Tech Campus), Passage des Déportés, 2, 5030 Gembloux, Belgium
| |
Collapse
|
23
|
Kesharwani SS, Jain V, Dey S, Sharma S, Mallya P, Kumar VA. An overview of advanced formulation and nanotechnology-based approaches for solubility and bioavailability enhancement of silymarin. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
Egresi A, Süle K, Szentmihályi K, Blázovics A, Fehér E, Hagymási K, Fébel H. Impact of milk thistle (Silybum marianum) on the mycotoxin caused redox-homeostasis imbalance of ducks liver. Toxicon 2020; 187:181-187. [PMID: 32920016 DOI: 10.1016/j.toxicon.2020.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/25/2020] [Accepted: 09/07/2020] [Indexed: 12/31/2022]
Abstract
The Fusarium mycotoxins deoxynivalenol (DON) and zearalenone (ZEA) frequently contaminate grain crops, especially maize, the basis of poultry's feed. Mycotoxins enter the food chain and induce pathological changes in edible tissues. Milk thistle (Silybum marianum) has been used for the treatment of liver disease in humans because of its antioxidant and hepatoprotective effects, but its utility in veterinary use is poorly examined. To investigate possible protective properties against mycotoxin caused oxidative stress in poultry, pressed form of milk thistle seed (0.5%) was tested in white, female, Hungarian ducks over a feeding period of 47 days. Ducks were separated into 3 groups. The first group was fed with normal diet. The second group was fed with normal diet contaminated with DON (4.9 mg/kg) and ZEA (0.66 mg/kg). The third group received mycotoxin contaminated feed with milk thistle supplementation. Histological examination, markers of the redox status and metal element concentration measurements were carried out. The results showed alterations in the histological examination and in the redox homeostasis markers as a short-term effect by strengthening the antioxidant system. Acute exposure of mycotoxins caused an oxidative stress, which induced an effective antioxidant defensive response of the organism indicated by the free sulfhydryl group content (from 0.72 ± 0.06 to 0.77 ± 0.11) and the reducing power (0.49 ± 0.06 to 0.52 ± 0.08) elevation. The short-term free radical injury may be compensated by the liver resulting in decreased lipid peroxidation markers (malondialdehyde concentration: from 16.86 ± 0.49 to 0.94 ± 0.15, conjugated diene concentration: from 0.21 ± 0.07 to 0.17 ± 0.03). Silymarin further strengthtened the antioxidant defense by the elevation of sulfhydryl groups concentration and reducing power property resulted in decreased total scavenger capacity. However the concentration of lipid peroxidation markers were further elevated by the used antioxidant treatment (MDA: 5.2 ± 0.35, DC: 0.26 ± 0.08). In conclusion, the mycotoxin-contamination activated effectively the antioxidant system. The milk thistle supplementation has cytoprotective effects according to the histological findings, activated the antioxidant system, however the elevation of lipid peroxidation products need further explanation.
Collapse
Affiliation(s)
- Anna Egresi
- Department of Internal Medicine, Semmelweis University, Budapest, Hungary.
| | - Krisztina Süle
- Budapest Research Centre for the Hungarian Academy of Sciences Institute of Materials and Environmental Chemistry, Budapest, Hungary; Department of Pharmacognosy Semmelweis University, Budapest, Hungary
| | - Klára Szentmihályi
- Budapest Research Centre for the Hungarian Academy of Sciences Institute of Materials and Environmental Chemistry, Budapest, Hungary; Department of Pharmacognosy Semmelweis University, Budapest, Hungary
| | - Anna Blázovics
- Department of Pharmacognosy Semmelweis University, Budapest, Hungary
| | - Erzsébet Fehér
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Krisztina Hagymási
- Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Hedvig Fébel
- Research Institute of Animal Breeding and Nutrition, Herceghalom, Hungary
| |
Collapse
|
25
|
Abstract
Ranging from the skin to liver, body has an in-built detox system that keeps it running
smoothly on a daily basis. Due to the present life-style, increased stress, pollution, unhealthy dietary
habits, the natural system gets weakened. The need of present time is to unveil the herbs present in
the nature full of detox potential, inheriting the capacity to purify the kidney, liver, gut, skin and
blood. These herbal detoxifiers facilitate lungs, aids kidneys, facilitates digestive tract and skin. The
present review deals with the study of herbs under the category of detoxifiers for kidney, liver, gut,
skin and blood. The herbs were studied by sectioning them for their detoxification potential for the
major organs of the body. The use of herbal agents to detox the major organs of the body not only
helps to remove the toxins but also increases the overall energy and efficiency of the body.
Collapse
Affiliation(s)
| | | | - Ankita Wal
- Pharmacy Department, PSIT, Kanpur, India
| | - Pranay Wal
- Pharmacy Department, PSIT, Kanpur, India
| |
Collapse
|
26
|
Assessment of α-amanitin toxicity and effects of silibinin and penicillin in different in vitro models. Toxicol In Vitro 2020; 67:104921. [PMID: 32599260 DOI: 10.1016/j.tiv.2020.104921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 01/26/2023]
Abstract
Silibinin (Sil) is used as hepatoprotective drug and is approved for therapeutic use in amanitin poisoning. In our study we compared Sil-bis-succinate (SilBS), a water-soluble drug approved for i.v.-administration, with Sil solved in ethanol (SilEtOH), which is normally used in research. We challenged monocultures or 3D-microtissues consisting of HepG2 cells or primary hepatocytes with α-amanitin and treated with SILBS, SILEtOH, penicillin and combinations thereof. Cell viability and the integrity of the microtissues was monitored. Finally, the expression of the transporters OATP1B1 and B3 was analyzed by qRT-PCR. We demonstrated that primary hepatocytes were more sensitive to α-amanitin compared to HepG2. Primary hepatocytes cultures were protected by SilBS and SilEtOH independent of penicillin from the cytotoxic effects of α-amanitin. Subsequent studies of the expression profile of the transporters OATP1B1/B3 revealed that primary hepatocytes do express both whereas in HepG2 cells they were hardly detectable. Our study showed that SilBS has significant advantage over SilEtOH with no additional benefit of penicillin. Moreover, HepG2 cells may not represent an appropriate model to investigate Amanita phalloides poisoning in vitro with focus on OATP transporters since these cells are lacking sensitivity towards α-amanitin probably due to missing cytotoxicity-associated transporters suggesting that primary hepatocytes should be preferred in this context.
Collapse
|
27
|
Silibinin and SARS-CoV-2: Dual Targeting of Host Cytokine Storm and Virus Replication Machinery for Clinical Management of COVID-19 Patients. J Clin Med 2020; 9:jcm9061770. [PMID: 32517353 PMCID: PMC7356916 DOI: 10.3390/jcm9061770] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/25/2020] [Accepted: 06/05/2020] [Indexed: 01/08/2023] Open
Abstract
COVID-19, the illness caused by infection with the novel coronavirus SARS-CoV-2, is a rapidly spreading global pandemic in urgent need of effective treatments. Here we present a comprehensive examination of the host- and virus-targeted functions of the flavonolignan silibinin, a potential drug candidate against COVID-19/SARS-CoV-2. As a direct inhibitor of STAT3—a master checkpoint regulator of inflammatory cytokine signaling and immune response—silibinin might be expected to phenotypically integrate the mechanisms of action of IL-6-targeted monoclonal antibodies and pan-JAK1/2 inhibitors to limit the cytokine storm and T-cell lymphopenia in the clinical setting of severe COVID-19. As a computationally predicted, remdesivir-like inhibitor of RNA-dependent RNA polymerase (RdRp)—the central component of the replication/transcription machinery of SARS-CoV-2—silibinin is expected to reduce viral load and impede delayed interferon responses. The dual ability of silibinin to target both the host cytokine storm and the virus replication machinery provides a strong rationale for the clinical testing of silibinin against the COVID-19 global public health emergency. A randomized, open-label, phase II multicentric clinical trial (SIL-COVID19) will evaluate the therapeutic efficacy of silibinin in the prevention of acute respiratory distress syndrome in moderate-to-severe COVID-19-positive onco-hematological patients at the Catalan Institute of Oncology in Catalonia, Spain.
Collapse
|
28
|
Kim SH, Choo GS, Yoo ES, Woo JS, Han SH, Lee JH, Jung JY. Silymarin induces inhibition of growth and apoptosis through modulation of the MAPK signaling pathway in AGS human gastric cancer cells. Oncol Rep 2019; 42:1904-1914. [PMID: 31485597 PMCID: PMC6775811 DOI: 10.3892/or.2019.7295] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/17/2019] [Indexed: 12/15/2022] Open
Abstract
Apoptosis is regarded as a therapeutic target because it is typically disturbed in human cancer. Silymarin from milk thistle (Silybum marianum) has been reported to exhibit anticancer properties via regulation of apoptosis as well as anti-inflammatory, antioxidant and hepatoprotective effects. In the present study, the effects of silymarin on the inhibition of proliferation and apoptosis were examined in human gastric cancer cells. The viability of AGS human gastric cancer cells was assessed by MTT assay. The migration of AGS cells was investigated by wound healing assay. Silymarin was revealed to significantly decrease viability and migration of AGS cells in a concentration-dependent manner. In addition, the number of apoptotic bodies and the rate of apoptosis were increased in a dose-dependent manner as determined by DAPI staining and Annexin V/propidium iodide double staining. The changes in the expression of silymarin-induced apoptosis proteins were investigated in human gastric cancer cells by western blotting analysis. Silymarin increased the expression of Bax, phosphorylated (p)-JNK and p-p38, and cleaved poly-ADP ribose polymerase, and decreased the levels of Bcl-2 and p-ERK1/2 in a concentration-dependent manner. The in vivo tumor growth inhibitory effect of silymarin was investigated. Silymarin (100 mg/kg) significantly decreased the AGS tumor volume and increased apoptosis, as assessed by the TUNEL assay, confirming its tumor-inhibitory effect. Immunohistochemical staining revealed elevated expression of p-JNK and p-p38 as well as reduced expression of p-ERK1/2 associated with silymarin-treatment. Silymarin was revealed to reduce tumor growth through inhibition of p-ERK and activation of p-p38 and p-JNK in human gastric cancer cells. These results indicated that silymarin has potential for development as a cancer therapeutic due to its growth inhibitory effects and induction of apoptosis in human gastric cancer cells.
Collapse
Affiliation(s)
- Sung-Hyun Kim
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340‑702, Republic of Korea
| | - Gang-Sik Choo
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340‑702, Republic of Korea
| | - Eun-Seon Yoo
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340‑702, Republic of Korea
| | - Joong-Seok Woo
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340‑702, Republic of Korea
| | - So-Hee Han
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340‑702, Republic of Korea
| | - Jae-Han Lee
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340‑702, Republic of Korea
| | - Ji-Youn Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340‑702, Republic of Korea
| |
Collapse
|
29
|
Xu F, Han C, Li Y, Zheng M, Xi X, Hu C, Cui X, Cao H. The Chemical Constituents and Pharmacological Actions of Silybum Marianum. CURRENT NUTRITION & FOOD SCIENCE 2019. [DOI: 10.2174/1573401314666180327155745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review presents the chemical constituents and pharmacological actions of Silybum marianum. These chemical constituents include flavonolignans, fatty acids, phenolics and other chemical constituents. Furthermore, flavonolignans constituents include silymarin isosilychristin, silychristin, silydianin, silybin A, silybin B, isosilybin A, isosilybin B, etc. Pharmacological actions include a well curative effect on non-alcoholic steatohepatitis, UV damage, varieties of cancers, diabetes. In addition, its pharmacological actions include anti-inflammatory, anti-depression and more pharmacological actions. This paper will enable Silybum marianum lay the foundation for producing high and sustainable productions in the future.
Collapse
Affiliation(s)
- Fangxue Xu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yujuan Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Mengmeng Zheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaozhi Xi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chaoqun Hu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaowei Cui
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hui Cao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
30
|
Kim JY, Kim JY, Jenis J, Li ZP, Ban YJ, Baiseitova A, Park KH. Tyrosinase inhibitory study of flavonolignans from the seeds of Silybum marianum (Milk thistle). Bioorg Med Chem 2019; 27:2499-2507. [PMID: 30871862 DOI: 10.1016/j.bmc.2019.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/03/2019] [Accepted: 03/06/2019] [Indexed: 10/27/2022]
Abstract
Anti-melanogenesis effects of silymarin from milk thistle have been reported recently, but detailed tyrosinase inhibition properties of individual components have not been investigated. This study purported to substantiate tyrosinase inhibition and its mechanism based on a single metabolite. The responsible components for tyrosinase inhibition of target source were found out as flavonolignans which consist of isosilybin A (1), isosilybin B (2), silydianin (3), 2,3-dihydrosilychristin (4), silychristin A (5), silychristin B (6) and silybin (7), respectively. The isolated flavonolignans (1-7) inhibited both monophenolase (IC50 = 1.7-7.6 µM) and diphenolase (IC50 = 12.1-44.9 µM) of tyrosinase significantly. Their inhibitions were 10-fold effective in comparison with their mother skeletons (8-10). Inhibitory functions were also proved by HPLC analysis using N-acetyl-l-tyrosine as substrate. The predominant formation of Emet·I was confirmed from a long prolongation of lag time and a decrease of the static state activity of the enzyme. All tested compounds had a significant binding affinity to tyrosinase with KSV values of 0.06-0.27 × 104 L·mol-1, which are well correlated with IC50s. In kinetic study, all flavonolignan (1-7) were mixed type I (KI < KIS) inhibitors, whereas their mother skeletons (8-10) were competitive ones. The UPLC-ESI-TOF/MS analysis showed that the isolated inhibitors are the most abundant metabolites in the target plant.
Collapse
Affiliation(s)
- Ji Yeong Kim
- Division of Applied Life Science (BK21 plus), IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jeong Yoon Kim
- Division of Applied Life Science (BK21 plus), IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Janar Jenis
- Division of Applied Life Science (BK21 plus), IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Zuo Peng Li
- Division of Applied Life Science (BK21 plus), IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yeong Jun Ban
- Division of Applied Life Science (BK21 plus), IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Aizhamal Baiseitova
- Division of Applied Life Science (BK21 plus), IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ki Hun Park
- Division of Applied Life Science (BK21 plus), IALS, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
31
|
Rodríguez-Flores EM, Mata-Espinosa D, Barrios-Payan J, Marquina-Castillo B, Castañón-Arreola M, Hernández-Pando R. A significant therapeutic effect of silymarin administered alone, or in combination with chemotherapy, in experimental pulmonary tuberculosis caused by drug-sensitive or drug-resistant strains: In vitro and in vivo studies. PLoS One 2019; 14:e0217457. [PMID: 31145751 PMCID: PMC6542514 DOI: 10.1371/journal.pone.0217457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 05/13/2019] [Indexed: 12/11/2022] Open
Abstract
For many years, tuberculosis (TB) has been a major public health problem worldwide. Advances for treatment and eradication have been very limited. Silymarin (Sm) is a natural product with antioxidant and hepatoprotective activities that has been proposed as a complementary medicine to reduce the liver injury produced by the conventional anti-TB chemotherapy. Sm also has immunoregulatory and microbicide properties. In this study, we determined the effect of Sm on the growth control of mycobacteria. In vitro studies showed that Sm and Silibinin (the principal active compound of Sm) have microbicidal activity against drug-sensitive and multidrug-resistant (MDR) mycobacteria, induce the production of protective cytokines from infected macrophages, and improve the growth control of mycobacteria (p ≤ 0.0001). Studies in vivo using a model of progressive pulmonary TB in BALB/c mice infected with drug-sensitive or MDR mycobacteria have shown that Sm induces significant expression of Th-1 cytokines such as IFN-γ and IL-12 as well as TNFα, which produce significant therapeutic activity when administered alone and apparently have a synergistic effect with chemotherapy. These results suggest that Sm has a bactericidal effect and can contribute to the control and establishment of a TH1 protective immune response against mycobacterial infection. Thus, it seems that this flavonoid has a promising potential as adjuvant therapy in the treatment of TB.
Collapse
Affiliation(s)
- Edén M. Rodríguez-Flores
- Department of Pathology, Experimental Pathology Section, National Institute of Medical Sciences and Nutrition ‘‘Salvador Zubiran”, Mexico City, Mexico
- Genomic Sciences Program, Autonomous University of México City, Mexico City, México
| | - Dulce Mata-Espinosa
- Department of Pathology, Experimental Pathology Section, National Institute of Medical Sciences and Nutrition ‘‘Salvador Zubiran”, Mexico City, Mexico
| | - Jorge Barrios-Payan
- Department of Pathology, Experimental Pathology Section, National Institute of Medical Sciences and Nutrition ‘‘Salvador Zubiran”, Mexico City, Mexico
| | - Brenda Marquina-Castillo
- Department of Pathology, Experimental Pathology Section, National Institute of Medical Sciences and Nutrition ‘‘Salvador Zubiran”, Mexico City, Mexico
| | | | - Rogelio Hernández-Pando
- Department of Pathology, Experimental Pathology Section, National Institute of Medical Sciences and Nutrition ‘‘Salvador Zubiran”, Mexico City, Mexico
| |
Collapse
|
32
|
Kalantari A, Salimi A, Kalantari H, Ebrahimi Broojeni J, Rashidi I, Raesi Vanani A, Bácskay I. The hepatoprotective effect of livergol microemulsion preparation (nanoparticle) against bromobenzene induced toxicity in mice. Toxicol Rep 2019; 6:444-448. [PMID: 31193476 PMCID: PMC6529715 DOI: 10.1016/j.toxrep.2019.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 04/20/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022] Open
Abstract
Livergol (LG), which is the extract of Silybum marianum and commonly known as milk thistle possess hepatoprotective effect. Orally administered LG significantly suppresses Bromobenzene (BB)-induced increases in serum activity of enzymes AST, ALT, ALP. Treatment with LG has improved hepatic damages due to BB severe degeneration and vacuolation of hepatocytes. Based on the results the efficacy of LG in MEs showed better drug solubility and permeability which lead to improve drug absorption among different biological membranes. The hepatoprotective effect of this formulation against BB toxicity has been conducted through the control release, high diffusion and absorption rates and improve and increase in oral bioavailability of active pharmaceutical agents.
Livergol (LG), which is the extract of Silybum marianum and commonly known as milk thistle possess hepatoprotective effect and have got licensed for sale in Iran and other countries. LG was evaluated for its capacity to counteract the toxic effects of bromobenzene (BB) on mouse liver. The bioactive component of this plant is known to reinforce naturally occurring liver function through antioxidant activity, the stimulation of bile production and regeneration by the liver organ, resulting in enhanced protection against toxicants, hepatitis, and cirrhosis. The major bioactive components of this product are the flavonolignan ssilibinin, silidianin, silicristin, and isosilibinin. Mice were treated for 10 days with daily gavage of microemulsions (MEs), into which 0–400 mg/kg LG was dispersed. 0.36 ml/kg BB was injected intraperitoneally (ip) to each animal on day 10, followed by sacrifice on day 11, and histological evaluation of hematoxylin-eosin (HE)‐stained liver tissue samples, afterwards followed by evaluation liver enzymes level, aminotransferase (AST), alanine aminotransaminase (ALT) and alkaline phosphatase (ALP) activities. Significant suppression of BB-mediated damage to liver tissue, and increased in AST, ALT, and ALP level was observed to occur dose-responsively with LG administration, suggesting a use for LG as a chemoprotectant for persons chronically exposed to industrial solvents.
Collapse
Affiliation(s)
- Azin Kalantari
- Faculty of Pharmacy, Department of Pharmaceutical Technology, University of Debrecen Health Science Center, Debrecen, Hungary
| | - Anayatollah Salimi
- Nanotechnology Research Center, Department of Pharmaceutics, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Heibatullah Kalantari
- Nanotechnology Research Center, Department of Pharmacology and Toxicology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jalal Ebrahimi Broojeni
- Nanotechnology Research Center, Department of Pharmacology and Toxicology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Iran Rashidi
- Nanotechnology Research Center, Department of Pharmacology and Toxicology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Atefeh Raesi Vanani
- Nanotechnology Research Center, Department of Pharmacology and Toxicology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ildikó Bácskay
- Faculty of Pharmacy, Department of Pharmaceutical Technology, University of Debrecen Health Science Center, Debrecen, Hungary
| |
Collapse
|
33
|
Pérez-Sánchez A, Cuyàs E, Ruiz-Torres V, Agulló-Chazarra L, Verdura S, González-Álvarez I, Bermejo M, Joven J, Micol V, Bosch-Barrera J, Menendez JA. Intestinal Permeability Study of Clinically Relevant Formulations of Silibinin in Caco-2 Cell Monolayers. Int J Mol Sci 2019; 20:E1606. [PMID: 30935093 PMCID: PMC6480586 DOI: 10.3390/ijms20071606] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 12/20/2022] Open
Abstract
An ever-growing number of preclinical studies have investigated the tumoricidal activity of the milk thistle flavonolignan silibinin. The clinical value of silibinin as a bona fide anti-cancer therapy, however, remains uncertain with respect to its bioavailability and blood⁻brain barrier (BBB) permeability. To shed some light on the absorption and bioavailability of silibinin, we utilized the Caco-2 cell monolayer model of human intestinal absorption to evaluate the permeation properties of three different formulations of silibinin: silibinin-meglumine, a water-soluble form of silibinin complexed with the amino-sugar meglumine; silibinin-phosphatidylcholine, the phytolipid delivery system Siliphos; and Eurosil85/Euromed, a milk thistle extract that is the active component of the nutraceutical Legasil with enhanced bioavailability. Our approach predicted differential mechanisms of transport and blood⁻brain barrier permeabilities between the silibinin formulations tested. Our assessment might provide valuable information about an idoneous silibinin formulation capable of reaching target cancer tissues and accounting for the observed clinical effects of silibinin, including a recently reported meaningful central nervous system activity against brain metastases.
Collapse
Affiliation(s)
- Almudena Pérez-Sánchez
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), 03202 Elche, Spain.
| | - Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, 17007 Girona, Spain.
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain.
| | - Verónica Ruiz-Torres
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), 03202 Elche, Spain.
| | - Luz Agulló-Chazarra
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), 03202 Elche, Spain.
| | - Sara Verdura
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, 17007 Girona, Spain.
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain.
| | - Isabel González-Álvarez
- Pharmacokinetics and Pharmaceutical Technology Area, Engineering Department, Universidad Miguel Hernández (UMH), San Juan de Alicante, 03202 Alicante, Spain.
| | - Marival Bermejo
- Pharmacokinetics and Pharmaceutical Technology Area, Engineering Department, Universidad Miguel Hernández (UMH), San Juan de Alicante, 03202 Alicante, Spain.
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain.
| | - Vicente Micol
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), 03202 Elche, Spain.
- CIBER, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (CB12/03/30038), 07122 Palma de Mallorca, Spain.
| | - Joaquim Bosch-Barrera
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, 17007 Girona, Spain.
- Department of Medical Sciences, Medical School University of Girona, 17003 Girona, Spain.
- Medical Oncology, Catalan Institute of Oncology (ICO), Dr. Josep Trueta University Hospital, 17007 Girona, Spain.
| | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, 17007 Girona, Spain.
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain.
| |
Collapse
|
34
|
Shah M, Ullah MA, Drouet S, Younas M, Tungmunnithum D, Giglioli-Guivarc'h N, Hano C, Abbasi BH. Interactive Effects of Light and Melatonin on Biosynthesis of Silymarin and Anti-Inflammatory Potential in Callus Cultures of Silybum marianum (L.) Gaertn. Molecules 2019; 24:E1207. [PMID: 30934786 PMCID: PMC6480540 DOI: 10.3390/molecules24071207] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/21/2019] [Accepted: 03/27/2019] [Indexed: 12/26/2022] Open
Abstract
Silybum marianum (L.) Gaertn. is a well-known medicinal herb, primarily used in liver protection. Light strongly affects several physiological processes along with secondary metabolites biosynthesis in plants. Herein, S. marianum was exploited for in vitro potential under different light regimes in the presence of melatonin. The optimal callogenic response occurred in the combination of 1.0 mg/L α-naphthalene acetic acid and 0.5 mg/L 6-benzylaminopurine under photoperiod. Continuous light associated with melatonin treatment increased total flavonoid content (TFC), total phenolic content (TPC) and antioxidant potential, followed by photoperiod and dark treatments. The increased level of melatonin has a synergistic effect on biomass accumulation under continuous light and photoperiod, while an adverse effect was observed under dark conditions. More detailed phytochemical analysis showed maximum total silymarin content (11.92 mg/g dry weight (DW)) when placed under continuous light + 1.0 mg/L melatonin. Individually, the level of silybins (A and B), silydianin, isolsilychristin and silychristin was found highest under continuous light. Anti-inflammatory activities were also studied and highest percent inhibition was recorded against 15-lipoxygenase (15-LOX) for cultures cultivated under continuous light (42.33%). The current study helps us to better understand the influence of melatonin and different light regimes on silymarin production as well as antioxidant and anti-inflammatory activities in S. marianum callus extracts.
Collapse
Affiliation(s)
- Muzamil Shah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad-45320, Pakistan.
| | - Muhammad Asad Ullah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad-45320, Pakistan.
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067 Orléans CEDEX 2, France.
| | - Muhammad Younas
- Department of Biotechnology, Quaid-i-Azam University, Islamabad-45320, Pakistan.
| | - Duangjai Tungmunnithum
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067 Orléans CEDEX 2, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans CEDEX 2, France.
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok 10400, Thailand.
| | - Nathalie Giglioli-Guivarc'h
- EA2106 Biomolecules et Biotechnologies Vegetales, Universite Francois-Rabelais de Tours, 37000 Tours, France.
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067 Orléans CEDEX 2, France.
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok 10400, Thailand.
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad-45320, Pakistan.
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067 Orléans CEDEX 2, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans CEDEX 2, France.
- EA2106 Biomolecules et Biotechnologies Vegetales, Universite Francois-Rabelais de Tours, 37000 Tours, France.
| |
Collapse
|
35
|
Prophylactic Therapy of Silymarin (Milk Thistle) on Antituberculosis Drug-Induced Liver Injury: A Meta-Analysis of Randomized Controlled Trials. Can J Gastroenterol Hepatol 2019; 2019:3192351. [PMID: 30733935 PMCID: PMC6348824 DOI: 10.1155/2019/3192351] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/12/2018] [Accepted: 12/31/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Prophylactic therapy with silymarin to prevent the development of antituberculosis drug-induced liver injury (anti-TB DILI) has been under debate. We aimed to evaluate the effect of silymarin in the prevention of anti-TB DILI. METHODS We searched MEDLINE, PubMed, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) up to 30th November 2018. Randomized controlled trials (RCTs) that compared silymarin and placebo to prevent anti-TB DILI were included. All statistical analyses were conducted using STATA 12.0 software. Standardized mean difference (SMD) and risk ratio (RR) with 95% confidence intervals (CIs) were used to evaluate the effect of silymarin. The quality of included studies was assessed according to Cochrane handbook. Funnel plots and Egger's tests were carried out to evaluate publication bias. Sensitivity analysis was conducted to assess the influence of each study. RESULTS A total of 1198 patients from five RCTs (585 with silymarin and 613 with placebo groups) were included. Overall, silymarin significantly reduced the occurrence of anti-TB DILI at week 4 [RR: 0.33, 95% CI (0.15, 0.75)]. In addition, silymarin exerted protective effect on liver function in patients undergoing anti-TB drugs [SMD = - 0.15, 95% CI (-0.24, -0.07), P < 0.001 (ALT); SMD =-0.14, 95% CI (-0.23, -0.06), P = 0.001(AST); SMD =-0.12, 95% CI (-0.20, -0.03), P = 0.008 (ALP)]. Silymarin led to similar AEs in placebo groups [OR: 1.09, 95% CI (0.86, 1.39), P = 0.47]. CONCLUSION Prophylactic therapy of silymarin is contributed to a noticeably reduced risk of development of anti-TB DILI four weeks after the initiation. In addition, silymarin significantly improved the liver function in patients who are receiving anti-TB drugs.
Collapse
|
36
|
Qin N, Sasaki T, Li W, Wang J, Zhang X, Li D, Li Z, Cheng M, Hua H, Koike K. Identification of flavonolignans from Silybum marianum seeds as allosteric protein tyrosine phosphatase 1B inhibitors. J Enzyme Inhib Med Chem 2018; 33:1283-1291. [PMID: 30160205 PMCID: PMC6127842 DOI: 10.1080/14756366.2018.1497020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is an attractive molecular target for anti-diabetes, anti-obesity, and anti-cancer drug development. From the seeds of Silybum marianum, nine flavonolignans, namely, silybins A, B (1, 2), isosilybins A, B (3, 4), silychristins A, B (5, 6), isosilychristin A (7), dehydrosilychristin A (8), and silydianin (11) were identified as a novel class of natural PTP1B inhibitors (IC50 1.3 7-23.87 µM). Analysis of structure-activity relationship suggested that the absolute configurations at C-7" and C-8" greatly affected the PTP1B inhibitory activity. Compounds 1-5 were demonstrated to be non-competitive inhibitors of PTP1B based on kinetic analyses. Molecular docking simulations resulted that 1-5 docked into the allosteric site, including α3, α6, and α7 helix of PTP1B. At a concentration inhibiting PTP1B completely, compounds 1-5 moderately inhibited VHR and SHP-2, and weakly inhibited TCPTP and SHP-1. These results suggested the potentiality of these PTP1B inhibitors as lead compounds for further drug developments.
Collapse
Affiliation(s)
- Ningbo Qin
- a Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education , Shenyang Pharmaceutical University , Shenyang , Liaoning , PR China.,b School of Traditional Chinese Materia Medica , Shenyang Pharmaceutical University , Shenyang , Liaoning PR China
| | - Tatsunori Sasaki
- c Faculty of Pharmaceutical Sciences , Toho University , Funabashi , Japan
| | - Wei Li
- a Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education , Shenyang Pharmaceutical University , Shenyang , Liaoning , PR China.,c Faculty of Pharmaceutical Sciences , Toho University , Funabashi , Japan
| | - Jian Wang
- a Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education , Shenyang Pharmaceutical University , Shenyang , Liaoning , PR China.,d School of Pharmaceutical Engineering , Shenyang Pharmaceutical University , Shenyang , Liaoning , PR China
| | - Xiangyu Zhang
- a Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education , Shenyang Pharmaceutical University , Shenyang , Liaoning , PR China.,d School of Pharmaceutical Engineering , Shenyang Pharmaceutical University , Shenyang , Liaoning , PR China
| | - Dahong Li
- a Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education , Shenyang Pharmaceutical University , Shenyang , Liaoning , PR China.,b School of Traditional Chinese Materia Medica , Shenyang Pharmaceutical University , Shenyang , Liaoning PR China
| | - Zhanlin Li
- a Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education , Shenyang Pharmaceutical University , Shenyang , Liaoning , PR China.,b School of Traditional Chinese Materia Medica , Shenyang Pharmaceutical University , Shenyang , Liaoning PR China
| | - Maosheng Cheng
- a Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education , Shenyang Pharmaceutical University , Shenyang , Liaoning , PR China.,d School of Pharmaceutical Engineering , Shenyang Pharmaceutical University , Shenyang , Liaoning , PR China
| | - Huiming Hua
- a Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education , Shenyang Pharmaceutical University , Shenyang , Liaoning , PR China.,b School of Traditional Chinese Materia Medica , Shenyang Pharmaceutical University , Shenyang , Liaoning PR China
| | - Kazuo Koike
- c Faculty of Pharmaceutical Sciences , Toho University , Funabashi , Japan
| |
Collapse
|
37
|
Investigating owner use of dietary supplements in dogs with idiopathic epilepsy. Res Vet Sci 2018; 119:276-284. [PMID: 30064067 DOI: 10.1016/j.rvsc.2018.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/01/2018] [Accepted: 07/21/2018] [Indexed: 12/29/2022]
Abstract
Epilepsy is the most common chronic neurological disorder in dogs. Some diets have been shown to have a positive impact upon the seizure activity in dogs with idiopathic epilepsy (IE), while other diets and dietary supplements (DS), although marketed as providing health benefits, lack conclusive scientific evidence on their actual beneficial effects. A web-based owner questionnaire was designed to assess how and why owners of dogs with IE use different dietary regimes and DS. The study cohort, with 297 valid responses, consisted mainly of pure-breed (82.5%) male neutered (52.9%) dogs. Over two-thirds of owners (67.7%) changed their dog's diet after their dog received a diagnosis of IE. Nearly half of the owners (45.8%) reported giving DS, the most common being coconut oil or derived medium-chain triglyceride oil (71.3%). Some owner justifications of DS use included improvement of seizure frequency (88.2%), seizure severity (61.8%) and protection from potential drug side effects (62.5%). Many owners give DS to their dog with IE. The pharmacokinetic properties of anti-epileptic drugs, such as efficacy, absorption and clearance can be influenced by other medications, diets and possibly by DS. We propose that use of DS should be considered and monitored by veterinary surgeons in epilepsy management.
Collapse
|
38
|
Chu C, Li D, Zhang S, Ikejima T, Jia Y, Wang D, Xu F. Role of silibinin in the management of diabetes mellitus and its complications. Arch Pharm Res 2018; 41:785-796. [DOI: 10.1007/s12272-018-1047-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 06/16/2018] [Indexed: 02/07/2023]
|
39
|
Younas M, Drouet S, Nadeem M, Giglioli-Guivarc'h N, Hano C, Abbasi BH. Differential accumulation of silymarin induced by exposure of Silybum marianum L. callus cultures to several spectres of monochromatic lights. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 184:61-70. [PMID: 29803074 DOI: 10.1016/j.jphotobiol.2018.05.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/12/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023]
Abstract
Silybum marianum L. (Milk thistle) is one of the most extensively studied medicinal herbs with well-known hepatoprotective activity. Light is considered as a key abiotic elicitor influencing several physiological processes in plants, including the biosynthesis of secondary metabolites. In this study, we investigated the influence of light quality on morphological and biochemical aspects in in vitro grown leaf-derived callus cultures of S. marianum. Combination of 6-benzylaminopurine (BAP 2.5 mg/L) and α-naphthalene acetic acid (NAA 1.0 mg/L) resulted in optimum callogenic response (97%) when placed under cool-white light with 16 h light and 8 h dark. Red light significantly increased the total phenolic content (TPC), total flavonoid content (TFC), antioxidant and superoxide dismutase (SOD) activities while highest peroxidase (POD) activity was recorded for the dark grown cultures, followed by green light grown cultures. HPLC analysis revealed enhanced total silymarin content under red light (18.67 mg/g DW), which was almost double than control (9.17 mg/g DW). Individually, the level of silychristin, isosilychristin, silydianin, silybin A and silybin B were found greatest under red light, whereas green spectrum resulted in highest accumulation of isosilybin A and isosilybin B. Conversely, the amount of taxifolin was found maximum under continuous white light (0.480 mg/g DW) which was almost 8-fold greater than control (0.063 mg/g DW). A positive correlation was found between the TPC, TFC and antioxidant activities. This study will assist in comprehending the influence of light quality on production of valuable secondary metabolites in in vitro cultures of S. marianum L.
Collapse
Affiliation(s)
- Muhammad Younas
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Plant Lignans Team, UPRES EA 1207 INRA USC1328, Université d'Orléans, F 28000 Chartres, France
| | - Muhammad Nadeem
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Plant Lignans Team, UPRES EA 1207 INRA USC1328, Université d'Orléans, F 28000 Chartres, France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Plant Lignans Team, UPRES EA 1207 INRA USC1328, Université d'Orléans, F 28000 Chartres, France; EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 37200 Tours, France.
| |
Collapse
|
40
|
Bijak M, Synowiec E, Sitarek P, Sliwiński T, Saluk-Bijak J. Evaluation of the Cytotoxicity and Genotoxicity of Flavonolignans in Different Cellular Models. Nutrients 2017; 9:E1356. [PMID: 29240674 PMCID: PMC5748806 DOI: 10.3390/nu9121356] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 12/15/2022] Open
Abstract
Flavonolignans are the main components of silymarin, which represents 1.5-3% of the dry fruit weight of Milk thistle (Silybum marianum L. Gaernt.). In ancient Greece and Romania, physicians and herbalists used the Silybum marianum to treat a range of liver diseases. Besides their hepatoprotective action, silymarin flavonolignans have many other healthy properties, such as anti-platelet and anti-inflammatory actions. The aim of this study was to evaluate the toxic effect of flavonolignans on blood platelets, peripheral blood mononuclear cells (PBMCs) and human lung cancer cell line-A549-using different molecular techniques. We established that three major flavonolignans: silybin, silychristin and silydianin, in concentrations of up to 100 µM, have neither a cytotoxic nor genotoxic effect on blood platelets, PMBCs and A549. We also saw that silybin and silychristin have a protective effect on cellular mitochondria, observed as a reduction of spontaneous mitochondrial DNA (mtDNA) damage in A549, measured as mtDNA copies, and mtDNA lesions in ND1 and ND5 genes. Additionally, we observed that flavonolignans increase the blood platelets' mitochondrial membrane potential and reduce the generation of reactive oxygen species in blood platelets. Our current findings show for the first time that the three major flavonolignans, silybin, silychristin and silydianin, do not have any cytotoxicity and genotoxicity in various cellular models, and that they actually protect cellular mitochondria. This proves that the antiplatelet and anti-inflammatory effect of these compounds is part of our molecular health mechanisms.
Collapse
Affiliation(s)
- Michal Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Przemyslaw Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland.
| | - Tomasz Sliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
41
|
Eulenberg VM, Lidbury JA. Hepatic Fibrosis in Dogs. J Vet Intern Med 2017; 32:26-41. [PMID: 29194760 PMCID: PMC5787209 DOI: 10.1111/jvim.14891] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/17/2017] [Accepted: 10/31/2017] [Indexed: 12/19/2022] Open
Abstract
Hepatic fibrosis is commonly diagnosed in dogs, often as a sequela to chronic hepatitis (CH). The development of fibrosis is a crucial event in the progression of hepatic disease that is of prognostic value. The pathophysiology of hepatic fibrosis in human patients and rodent models has been studied extensively. Although less is known about this process in dogs, evidence suggests that fibrogenic mechanisms are similar between species and that activation of hepatic stellate cells is a key step. Diagnosis and staging of hepatic fibrosis in dogs requires histopathological examination of a liver biopsy specimen. However, performing a liver biopsy is invasive and assessment of fibrotic stage is complicated by the absence of a universally accepted staging scheme in veterinary medicine. Serum biomarkers that can discriminate among different fibrosis stages are used in human patients, but such markers must be more completely evaluated in dogs before clinical use. When successful treatment of its underlying cause is feasible, reversal of hepatic fibrosis has been shown to be possible in rodent models and human patients. Reversal of fibrosis has not been well documented in dogs, but successful treatment of CH is possible. In human medicine, better understanding of the pathomechanisms of hepatic fibrosis is leading to the development of novel treatment strategies. In time, these may be applied to dogs. This article comparatively reviews the pathogenesis of hepatic fibrosis, its diagnosis, and its treatment in dogs.
Collapse
Affiliation(s)
- V M Eulenberg
- Gastrointestinal Laboratory, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX
| | - J A Lidbury
- Gastrointestinal Laboratory, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX
| |
Collapse
|
42
|
Bijak M. Silybin, a Major Bioactive Component of Milk Thistle (Silybum marianum L. Gaernt.)-Chemistry, Bioavailability, and Metabolism. Molecules 2017; 22:E1942. [PMID: 29125572 PMCID: PMC6150307 DOI: 10.3390/molecules22111942] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/28/2017] [Accepted: 11/08/2017] [Indexed: 01/04/2023] Open
Abstract
Milk thistle (Silybum marianum) is a medicinal plant that has been used for thousands of years as a remedy for a variety of ailments. The main component of S. marianum fruit extract (silymarin) is a flavonolignan called silybin, which is not only the major silymarin element but is also the most active ingredient of this extract, which has been confirmed in various studies. This compound belongs to the flavonoid group known as flavonolignans. Silybin's structure consists in two main units. The first is based on a taxifolin, the second a phenyllpropanoid unit, which in this case is conyferil alcohol. These two units are linked together into one structure by an oxeran ring. Since the 1970s, silybin has been regarded in official medicine as a substance with hepatoprotective properties. There is a large body of research that demonstrates silybin's many other healthy properties, but there are still a lack of papers focused on its molecular structure, chemistry, metabolism, and novel form of administration. Therefore, the aim of this paper is a literature review presenting and systematizing our knowledge of the silybin molecule, with particular emphasis on its structure, chemistry, bioavailability, and metabolism.
Collapse
Affiliation(s)
- Michal Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
43
|
Duffy GF, Shupe ES, Kuczmarski MF, Zonderman AB, Evans MK. Motivations for Botanical Use by Socioeconomically Diverse, Urban Adults: Does Evidence Support Motivation? J Altern Complement Med 2017; 23:812-818. [PMID: 28437143 PMCID: PMC5655417 DOI: 10.1089/acm.2016.0224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE The study objectives were to characterize botanical dietary supplement (BDS) use and to compare the motivations for botanical supplement (BS) use to the efficacy of the botanical in a socioeconomically and racially diverse urban adult population. METHODS Subjects were from the Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS) study, a 20-year prospective health disparities study with African American and white adults from Baltimore, Maryland. All study participants completed two dietary recalls and a dietary supplement (DS) questionnaire in Wave 3 (n = 2140). Diet quality was evaluated by the Healthy Eating Index-2010 and the Mean Adequacy Ratio for 17 micronutrients. A comparison of reported motivations to efficacy reported in the literature of single BS was conducted. RESULTS Approximately 50% (1062/2140) of participants took DS. Of these, 8% (n = 178) reported taking either BS or BDS. It was found that BDS users had better diet quality than DS users as well as nonusers of DS. The top three motivations for BDS users were to improve overall health, to maintain health, and to supplement the diet. There is limited evidence for the efficacy of most BS. Review of the efficacy of the 15 BS reported by ≥5% of the study population revealed beneficial health roles for only fiber, gingko biloba extract EGb 761, and hawthorn berry. CONCLUSION To the authors' knowledge, this study is the first to report a better quality diet with BDS use for a racially diverse urban population. Yet, improvement in diet is needed because overall quality did not achieve current recommendations. To improve overall health, it may be beneficial for this population to focus on dietary modifications to reduce the risks associated with chronic diseases. In general, the reported motivations for BS use were not supported by clinical evidence.
Collapse
Affiliation(s)
- Grace F. Duffy
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE
| | - Emily Stave Shupe
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE
| | | | - Alan B. Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD
| |
Collapse
|
44
|
Soares JMD, Pereira Leal AEB, Silva JC, Almeida JRGS, de Oliveira HP. Influence of Flavonoids on Mechanism of Modulation of Insulin Secretion. Pharmacogn Mag 2017; 13:639-646. [PMID: 29200726 PMCID: PMC5701404 DOI: 10.4103/pm.pm_87_17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/31/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The development of alternatives for insulin secretion control in vivo or in vitro represents an important aspect to be investigated. In this direction, natural products have been progressively explored with this aim. In particular, flavonoids are potential candidates to act as insulin secretagogue. OBJECTIVE To study the influence of flavonoid on overall modulation mechanisms of insulin secretion. METHODS The research was conducted in the following databases and platforms: PubMed, Scopus, ISI Web of Knowledge, SciELO, LILACS, and ScienceDirect, and the MeSH terms used for the search were flavonoids, flavones, islets of Langerhans, and insulin-secreting cells. RESULTS Twelve articles were included and represent the basis of discussion on mechanisms of insulin secretion of flavonoids. Papers in ISI Web of Knowledge were in number of 1, Scopus 44, PubMed 264, ScienceDirect 511, and no papers from LILACS and SciELO databases. CONCLUSION According to the literature, the majority of flavonoid subclasses can modulate insulin secretion through several pathways, in an indication that corresponding molecule is a potential candidate for active materials to be applied in the treatment of diabetes. SUMMARY The action of natural products on insulin secretion represents an important investigation topic due to their importance in the diabetes controlIn addition to their typical antioxidant properties, flavonoids contribute to the insulin secretionThe modulation of insulin secretion is induced by flavonoids according to different mechanisms. Abbreviations used: KATP channels: ATP-sensitive K+ channels, GLUT4: Glucose transporter 4, ERK1/2: Extracellular signal-regulated protein kinases 1 and 2, L-VDCCs: L-type voltage-dependent Ca+2 channels, GLUT1: Glucose transporter 1, AMPK: Adenosine monophosphate-activated protein kinase, PTP1B: Protein tyrosine phosphatase 1B, GLUT2: Glucose transporter 2, cAMP: Cyclic adenosine monophosphate, PKA: Protein kinase A, PTK: Protein tyrosine kinase, CaMK II: Ca2+/calmodulin-dependent protein kinase II, GSIS: Glucose-stimulated insulin secretion, Insig-1: Insulin-induced gene 1, IRS-2: Insulin receptor substrate 2, PDX-1: Pancreatic and duodenal homeobox 1, SREBP-1c: Sterol regulatory element binding protein-1c, DMC: Dihydroxy-6'-methoxy-3',5'-dimethylchalcone, GLP-1: Glucagon-like peptide-1, GLP-1R: Glucagon-like peptide 1 receptor.
Collapse
Affiliation(s)
| | | | - Juliane Cabral Silva
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | | | | |
Collapse
|
45
|
Flavonolignans Inhibit IL1-β-Induced Cross-Talk between Blood Platelets and Leukocytes. Nutrients 2017; 9:nu9091022. [PMID: 28914761 PMCID: PMC5622782 DOI: 10.3390/nu9091022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/03/2017] [Accepted: 09/13/2017] [Indexed: 01/18/2023] Open
Abstract
Interleukin-1 beta (IL-1β)-the most potent pro-inflammatory is responsible for a broad spectrum of immune and inflammatory responses, it induces T-cell and B-cell activation and consequently the synthesis of other pro-inflammatory cytokines (such as IFN-γ and TNF). IL-1β induces the formation of blood platelet-leukocyte aggregates (PLAs), which suggests that IL-1β significantly affects the cross-talk between blood platelets and the immune response system, leading to coronary thrombosis. The aim of our study is to investigate the effect of flavonolignans (silybin, silychristin and silydianin) on the IL-1β-induced interaction between platelets and leukocytes, as well as on the expression and the secretion of pro-inflammatory factors. Whole blood samples were pre-incubated with commercially available flavonolignans (silybin, silychristin and silydianin) in a concentration range of 10-100 µM (30 min, 37 °C). Next, samples were activated by IL-1β for 1 h. Blood platelet-leukocyte aggregates were detected by using the double-labeled flow cytometry (CD61/CD45). The level of produced cytokines was estimated via the ELISA immunoenzymatic method. IFN-γ and TNF gene expression was evaluated using Real Time PCR with TaqMan arrays. We observed that in a dose-dependent manner, silybin and silychristin inhibit the IL-1β-induced formation of blood platelet-leukocyte aggregates in whole blood samples, as well as the production of pro-inflammatory cytokines-IL-2, TNF, INF-α, and INF-γ. Additionally, these two flavonolignans abolished the IL-1β-induced expression of mRNA for IFN-γ and TNF. Our current results demonstrate that flavonolignans can be novel compounds used in the prevention of cardiovascular diseases with dual-use action as antiplatelet and anti-inflammatory agents.
Collapse
|
46
|
Marin V, Gazzin S, Gambaro SE, Dal Ben M, Calligaris S, Anese M, Raseni A, Avellini C, Giraudi PJ, Tiribelli C, Rosso N. Effects of Oral Administration of Silymarin in a Juvenile Murine Model of Non-alcoholic Steatohepatitis. Nutrients 2017; 9:nu9091006. [PMID: 28895929 PMCID: PMC5622766 DOI: 10.3390/nu9091006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/07/2017] [Accepted: 09/09/2017] [Indexed: 12/29/2022] Open
Abstract
The increasing prevalence of non-alcoholic fatty liver disease (NAFLD) in adolescents is challenging the global care system. No therapeutic strategies have been defined so far, and changes in the lifestyle remain the only alternative. In this study, we assessed the protective effects of silymarin in a juvenile non-alcoholic steatohepatitis (NASH) model and the in vitro effects on fat-laden human hepatocytes. C57Bl/6 mice were exposed to HFHC diet immediately after weaning. After eight weeks, animals showed histological signs of NASH. Silymarin was added to the HFHC diet, the treatment continued for additional 12 weeks and the effects on BMI, hepatomegaly, visceral fat, lipid profile, transaminases, HOMA-IR, steatosis, inflammation, fibrosis, oxidative stress, and apoptosis were determined. The switch from HFHC to control diet was used to mimic life style changes. In vitro experiments were performed in parallel in human hepatocytes. HFHC diet supplemented with silymarin showed a significant improvement in glycemia, visceral fat, lipid profile, and liver fibrosis. Moreover, it reduced (both in vitro and in vivo) ALT, hepatic inflammation, oxidative stress, and apoptosis. Lifestyle changes restored the control group parameters. The data presented show the beneficial effects of the oral administration of silymarin in the absence of changes in the dietary habits in a juvenile model of NASH.
Collapse
Affiliation(s)
- Veronica Marin
- Fondazione Italiana Fegato ONLUS-Centro Studi Fegato, Area Science Park Basovizza Bldg, Q SS 14 Km 163,5, Basovizza, 34149 Trieste, Italy.
| | - Silvia Gazzin
- Fondazione Italiana Fegato ONLUS-Centro Studi Fegato, Area Science Park Basovizza Bldg, Q SS 14 Km 163,5, Basovizza, 34149 Trieste, Italy.
| | - Sabrina E Gambaro
- Fondazione Italiana Fegato ONLUS-Centro Studi Fegato, Area Science Park Basovizza Bldg, Q SS 14 Km 163,5, Basovizza, 34149 Trieste, Italy.
| | - Matteo Dal Ben
- Fondazione Italiana Fegato ONLUS-Centro Studi Fegato, Area Science Park Basovizza Bldg, Q SS 14 Km 163,5, Basovizza, 34149 Trieste, Italy.
| | - Sonia Calligaris
- Università di Udine, Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Monica Anese
- Università di Udine, Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Alan Raseni
- IRCCS Burlo Garofolo Paediatric Hospital, Clinical Chemistry Laboratory, 34100 Trieste, Italy.
| | - Claudio Avellini
- Azienda Ospedaliero-Universitaria "Santa Maria della Misericordia", Dipartimento di Laboratorio, Istituto di Anatomia Patologica, 33100 Udine, Italy.
| | - Pablo J Giraudi
- Fondazione Italiana Fegato ONLUS-Centro Studi Fegato, Area Science Park Basovizza Bldg, Q SS 14 Km 163,5, Basovizza, 34149 Trieste, Italy.
| | - Claudio Tiribelli
- Fondazione Italiana Fegato ONLUS-Centro Studi Fegato, Area Science Park Basovizza Bldg, Q SS 14 Km 163,5, Basovizza, 34149 Trieste, Italy.
| | - Natalia Rosso
- Fondazione Italiana Fegato ONLUS-Centro Studi Fegato, Area Science Park Basovizza Bldg, Q SS 14 Km 163,5, Basovizza, 34149 Trieste, Italy.
| |
Collapse
|
47
|
Ham J, Lim W, Bazer FW, Song G. Silibinin stimluates apoptosis by inducing generation of ROS and ER stress in human choriocarcinoma cells. J Cell Physiol 2017; 233:1638-1649. [PMID: 28657208 DOI: 10.1002/jcp.26069] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023]
Abstract
Silibinin is a flavonolignan extracted from seeds of milk thistles. Traditionally, it has been used as a therapeutic agent for liver disorders, and now it is well-known for its anti-cancer effects. However, studies on anti-cancer effects of silibinin on choriocarcinoma are very limited. Therefore, we performed proliferation and apoptosis assays to determine effects of silibinin on the viability of human choriocarcinoma (JAR and JEG3) cells. Our results showed that silibinin significantly inhibited proliferation and induced apoptosis in both JAR and JEG3 cells, and significantly increased reactive oxygen species (ROS) and lipid peroxidation. Moreover, silibinin disrupted mitochondrial function by inducing permeabilization of mitochondrial membrane potential and calcium ion efflux in JAR and JEG3 cells. Furthermore, silibinin-induced apoptosis in choriocarcinoma cells via AKT, mitogen-activated protein kinases (MAPK) and unfolded protein response (UPR) signal transduction. Collectively, our results suggest that silibinin is a novel therapeutic agent or dietary supplement for management of human placental choriocarcinomas.
Collapse
Affiliation(s)
- Jiyeon Ham
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Whasun Lim
- Department of Biomedical Sciences, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Fuller W Bazer
- Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas A & M University, College Station, Texas
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
48
|
Albassam AA, Frye RF, Markowitz JS. The effect of milk thistle (Silybum marianum) and its main flavonolignans on CYP2C8 enzyme activity in human liver microsomes. Chem Biol Interact 2017; 271:24-29. [PMID: 28457856 DOI: 10.1016/j.cbi.2017.04.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/27/2017] [Indexed: 01/04/2023]
Abstract
Milk thistle is a widely-consumed botanical used for an array of purported health benefits. The primary extract of milk thistle is termed silymarin, a complex mixture that contains a number of structurally-related flavonolignans, the flavonoid, taxifolin, and a number of other constituents. The major flavonolignans present in most extracts are silybin A, silybin B, isosilybin A and isosilybin B, silydianin, silychristin and isosilychristin. Silymarin itself has been reported to inhibit CYP2C8 activity in vitro, but the effect of the individual flavonolignans on this enzyme has not been studied. To investigate the effects of milk thistle extract and its main flavonolignans (silybin A, silybin B, isosilybin A and isosilybin B) on CYP2C8 activity at relevant concentrations, the effect of milk thistle extract and the flavonolignans on CYP2C8 enzyme activity was studied in vitro using human liver microsomes (HLM) incorporating an enzyme-selective substrate for CYP2C8, amodiaquine. Metabolite formation was analyzed using liquid chromatography-tandem mass spectrometry (LC/MS-MS). The concentration causing 50% inhibition of enzyme activity (IC50) was used to express the degree of inhibition. Isosilibinin, a mixture of the diastereoisomers isosilybin A and isosilybin B, was found to be the most potent inhibitor, followed by isosilybin B with IC50 values (mean ± SE) of 1.64 ± 0.66 μg/mL and 2.67 ± 1.18 μg/mL, respectively. The rank order of observed inhibitory potency after isosilibinin was silibinin > isosilybin A > silybin A > milk thistle extract > and silybin B. These in vitro results suggest a potentially significant inhibitory effect of isosilibinin and isosilybin B on CYP2C8 activity. However, the observed IC50 values are unlikely to be achieved in humans supplemented with orally administered milk thistle extracts due to the poor bioavailability of flavonolignans documented with most commercially available formulations.
Collapse
Affiliation(s)
- Ahmed A Albassam
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL, USA; Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.
| | - Reginald F Frye
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - John S Markowitz
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL, USA
| |
Collapse
|
49
|
Qin NB, Li SG, Yang XY, Gong C, Zhang XY, Wang J, Li DH, Guo YQ, Li ZL, Hua HM. Bioactive terpenoids from Silybum marianum and their suppression on NO release in LPS-induced BV-2 cells and interaction with iNOS. Bioorg Med Chem Lett 2017; 27:2161-2165. [PMID: 28377060 DOI: 10.1016/j.bmcl.2017.03.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/06/2017] [Accepted: 03/22/2017] [Indexed: 02/07/2023]
Abstract
Three new (1-3) and one known (4) bioactive terpenoids were isolated from the seeds of Silybum marianum based on the investigation to get new NO inhibitors. Their structures were determined by extensive NMR (1D and 2D NMR) and MS spectroscopic data, and the absolute configurations were identified by experimental and calculated ECD spectra. The NO inhibitory activities in murine microglial BV-2 cells and interactions with iNOS protein by molecular docking were evaluated for all compounds. The results showed that these compounds had potent NO inhibitory effects.
Collapse
Affiliation(s)
- Ning-Bo Qin
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, People's Republic of China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Sheng-Ge Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, People's Republic of China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xue-Yuan Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Chi Gong
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, People's Republic of China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiang-Yu Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| | - Da-Hong Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, People's Republic of China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yuan-Qiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Zhan-Lin Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, People's Republic of China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Hui-Ming Hua
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, People's Republic of China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
50
|
Federico A, Dallio M, Loguercio C. Silymarin/Silybin and Chronic Liver Disease: A Marriage of Many Years. Molecules 2017; 22:molecules22020191. [PMID: 28125040 PMCID: PMC6155865 DOI: 10.3390/molecules22020191] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/13/2017] [Accepted: 01/18/2017] [Indexed: 02/06/2023] Open
Abstract
Silymarin is the extract of Silybum marianum, or milk thistle, and its major active compound is silybin, which has a remarkable biological effect. It is used in different liver disorders, particularly chronic liver diseases, cirrhosis and hepatocellular carcinoma, because of its antioxidant, anti-inflammatory and antifibrotic power. Indeed, the anti-oxidant and anti-inflammatory effect of silymarin is oriented towards the reduction of virus-related liver damages through inflammatory cascade softening and immune system modulation. It also has a direct antiviral effect associated with its intravenous administration in hepatitis C virus infection. With respect to alcohol abuse, silymarin is able to increase cellular vitality and to reduce both lipid peroxidation and cellular necrosis. Furthermore, silymarin/silybin use has important biological effects in non-alcoholic fatty liver disease. These substances antagonize the progression of non-alcoholic fatty liver disease, by intervening in various therapeutic targets: oxidative stress, insulin resistance, liver fat accumulation and mitochondrial dysfunction. Silymarin is also used in liver cirrhosis and hepatocellular carcinoma that represent common end stages of different hepatopathies by modulating different molecular patterns. Therefore, the aim of this review is to examine scientific studies concerning the effects derived from silymarin/silybin use in chronic liver diseases, cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Alessandro Federico
- Department of Clinical and Experimental Medicine, Second University of Naples, 80131 Naples, Italy.
| | - Marcello Dallio
- Department of Clinical and Experimental Medicine, Second University of Naples, 80131 Naples, Italy.
| | - Carmelina Loguercio
- Department of Clinical and Experimental Medicine, Second University of Naples, 80131 Naples, Italy.
| |
Collapse
|