1
|
Corrao S, Calvo L, Granà W, Scibetta S, Mirarchi L, Amodeo S, Falcone F, Argano C. Metabolic dysfunction-associated steatotic liver disease: A pathophysiology and clinical framework to face the present and the future. Nutr Metab Cardiovasc Dis 2025; 35:103702. [PMID: 39358105 DOI: 10.1016/j.numecd.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 10/04/2024]
Abstract
AIMS This review aims to provide a straightforward conceptual framework for the knowledge and understanding of Metabolic dysfunction-associated steatotic liver disease (MASLD) in the broad spectrum of steatotic liver disease and to point out the need to consider metabolic dysfunction and comorbidities as interrelated factors for a holistic approach to fatty liver disease. DATA SYNTHESIS MASLD is the new proposed term for steatotic liver disease that replaces the old terminology of non-alcoholic fatty liver disease. This term focused on the relationship between metabolic alteration and hepatic steatosis, reflecting a growing comprehension of the association between metabolic dysfunction and hepatic steatosis. Numerous factors and conditions contribute to the underlying mechanisms, including central obesity, insulin resistance, adiponectin, lipid metabolism, liver function, dietary influences, the composition of intestinal microbiota, and genetic factors. The development of the condition, however, involves a more intricate network of components, such as neurotensin and Advanced Glycation End Products, highlighting the complexity of its pathogenesis. CONCLUSIONS MASLD must be regarded as a complex clinical problem in which only a holistic approach can win through the coordination of multi-professional and multi-speciality interventions.
Collapse
Affiliation(s)
- Salvatore Corrao
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, Palermo, Italy; Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties [PROMISE], University of Palermo, Italy.
| | - Luigi Calvo
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, Palermo, Italy
| | - Walter Granà
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, Palermo, Italy
| | - Salvatore Scibetta
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, Palermo, Italy
| | - Luigi Mirarchi
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, Palermo, Italy
| | - Simona Amodeo
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, Palermo, Italy
| | - Fabio Falcone
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, Palermo, Italy; Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties [PROMISE], University of Palermo, Italy
| | - Christiano Argano
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, Palermo, Italy
| |
Collapse
|
2
|
Hadefi A, Leprovots M, Dinsart G, Marefati M, Vermeersch M, Monteyne D, Pérez-Morga D, Lefort A, Libert F, Verset L, Liefferinckx C, Moreno C, Devière J, Trépo E, Garcia MI. Duodenal Organoids From Metabolic Dysfunction-Associated Steatohepatitis Patients Exhibit Absorptive and Barrier Alterations. GASTRO HEP ADVANCES 2024; 4:100599. [PMID: 39996241 PMCID: PMC11849614 DOI: 10.1016/j.gastha.2024.100599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/07/2024] [Indexed: 02/26/2025]
Abstract
Background and Aims Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive liver disease that can lead to fibrosis, cirrhosis, and hepatocellular carcinoma. Though MASH is closely tied to metabolic risk factors, the underlying pathogenic mechanisms remain scarcely understood. Recent research has emphasized the importance of the gut-liver axis in its pathogenesis, an aspect less explored in human studies. Here, we investigated whether the duodenal epithelium of MASH patients could exhibit intrinsic dysfunctions. Methods Duodenal epithelial organoids were generated from 16 MASH patients and 14 healthy controls. Biopsies and patient-derived organoid transcriptomes were then analyzed to evaluate if specific intestinal pathways were differentially modulated in MASH subjects. Functional assays were performed to assess the duodenal epithelial absorptive potential and barrier functionality. Results Organoid formation efficiency was similar between control-derived duodenal epithelial organoids and MASH-derived duodenal epithelial organoids (MDEOs) (71% and 69%, respectively). Despite global heterogeneity in growth patterns, MDEOs frequently exhibited cystic spheroid morphology. MDEOs displayed altered digestive potential associated with reduced mature absorptive cell fate, but they retained their lipid metabolic capacity, possibly mediated by lipid oxidation in stem/progenitor cells. Additionally, MDEOs misexpressed components of tight and adherens junctions and desmosomes compared to controls. However, MDEOs maintained pore and leak pathway integrity, indicating that the duodenal epithelial barrier remained functionally preserved under tested conditions. Conclusion This study provides evidence that the duodenal epithelium of MASH patients exhibits significant alterations in its nutrition-related and barrier functions. This study sheds light on the intricate dynamics of duodenal epithelial alterations in MASH, highlighting potential therapeutic avenues for restoring intestinal functions.
Collapse
Affiliation(s)
- Alia Hadefi
- IRIBHM, Jacques E. Dumont, Faculty of Medicine, Université Libre de Bruxelles ULB, Brussels, Belgium
- Department of Gastroenterology, Hepatopancreatology, and Digestive Oncology, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium
| | - Morgane Leprovots
- IRIBHM, Jacques E. Dumont, Faculty of Medicine, Université Libre de Bruxelles ULB, Brussels, Belgium
| | - Gilles Dinsart
- IRIBHM, Jacques E. Dumont, Faculty of Medicine, Université Libre de Bruxelles ULB, Brussels, Belgium
| | - Maryam Marefati
- IRIBHM, Jacques E. Dumont, Faculty of Medicine, Université Libre de Bruxelles ULB, Brussels, Belgium
| | - Marjorie Vermeersch
- Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Charleroi, Belgium
| | - Daniel Monteyne
- Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Charleroi, Belgium
| | - David Pérez-Morga
- Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Charleroi, Belgium
| | - Anne Lefort
- BRIGHTcore ULB-VUB and Institute of Interdisciplinary Research in Human and Molecular Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Frédérick Libert
- BRIGHTcore ULB-VUB and Institute of Interdisciplinary Research in Human and Molecular Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Laurine Verset
- Institut Jules Bordet, Hôpital Universitaire de Bruxelles, Centre d’Anatomie pathologique, rue Meylermeersch, Brussels, Belgium
| | - Claire Liefferinckx
- Department of Gastroenterology, Hepatopancreatology, and Digestive Oncology, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium
| | - Christophe Moreno
- Department of Gastroenterology, Hepatopancreatology, and Digestive Oncology, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium
| | - Jacques Devière
- Department of Gastroenterology, Hepatopancreatology, and Digestive Oncology, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium
| | - Eric Trépo
- Department of Gastroenterology, Hepatopancreatology, and Digestive Oncology, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium
| | - Marie-Isabelle Garcia
- IRIBHM, Jacques E. Dumont, Faculty of Medicine, Université Libre de Bruxelles ULB, Brussels, Belgium
| |
Collapse
|
3
|
Zhao L, Jiang Q, Lei J, Cui J, Pan X, Yue Y, Zhang B. Bile acid disorders and intestinal barrier dysfunction are involved in the development of fatty liver in laying hens. Poult Sci 2024; 103:104422. [PMID: 39418789 PMCID: PMC11532484 DOI: 10.1016/j.psj.2024.104422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/16/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024] Open
Abstract
The pathogenesis of fatty liver is highly intricate. The role of the gut-liver axis in the development of fatty liver has gained increasing recognition in recent years. This study was conducted to explore the role of bile acid signaling and gut barrier in the pathogenesis of fatty liver. A total of 100 "Jing Tint 6" laying hens, 56-week-old, were used and fed basal diets until 60 weeks of age. At the end of the experiment, thirty individuals were selected based on the degree of hepatic steatosis. The hens with minimal hepatic steatosis (< 5 %) were chosen as healthy controls, while those with severe steatosis (> 33 %) in the liver were classified as the fatty liver group. Laying hens with fatty liver and healthy controls showed significant differences in body weight, liver index, abdominal fat ratio, feed conversion ratio (FCR), albumin height, Haugh unit, and biochemical indexes. The results of bile acid metabolomics revealed a clear separation in hepatic bile acid profiles between the fatty liver group and healthy controls, and multiple secondary bile acids were decreased in the fatty liver group, indicating disordered bile acid metabolism. Additionally, the mRNA levels of farnesoid X receptor (FXR) and genes related to bile acid transport were significantly decreased in both the liver and terminal ileum of hens with fatty liver. Moreover, the laying hens with fatty liver exhibited significant decreases in ileal crypt depth, the number of goblet cells, and the mRNA expression of tight junction-related proteins, alongside a significant increase in ileal permeability. Collectively, these findings suggest that disordered bile acids, suppressed FXR-mediated signaling, and impaired intestinal barrier function are potential factors promoting the development of fatty liver. These insights indicate that regulating bile acids and enhancing intestinal barrier function may become new preventive and therapeutic strategies for fatty liver in the near future.
Collapse
Affiliation(s)
- Lihua Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qiuyu Jiang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiaqi Lei
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jian Cui
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xianjie Pan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuan Yue
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Zhou L, Zhang Y, Wu S, Kuang Y, Jiang P, Zhu X, Yin K. Type III Secretion System in Intestinal Pathogens and Metabolic Diseases. J Diabetes Res 2024; 2024:4864639. [PMID: 39544522 PMCID: PMC11561183 DOI: 10.1155/2024/4864639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
Modern lifestyle changes, especially the consumption of a diet high in salt, sugar, and fat, have contributed to the increasing incidence and prevalence of chronic metabolic diseases such as diabetes, obesity, and gout. Changing lifestyles continuously shape the gut microbiota which is closely related to the occurrence and development of metabolic diseases due to its specificity of composition and structural diversity. A large number of pathogenic bacteria such as Yersinia, Salmonella, Shigella, and pathogenic E. coli in the gut utilize the type III secretion system (T3SS) to help them resist host defenses and cause disease. Although the T3SS is critical for the virulence of many important human pathogens, its relationship with metabolic diseases remains unknown. This article reviews the structure and function of the T3SS, the disruption of intestinal barrier integrity by the T3SS, the changes in intestinal flora containing the T3SS in metabolic diseases, the possible mechanisms of the T3SS affecting metabolic diseases, and the application of the T3SS in the treatment of metabolic diseases. The aim is to provide insights into metabolic diseases targeting the T3SS, thereby serving as a valuable reference for future research on disease diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Le Zhou
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China
| | - Yaoyuan Zhang
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou 510900, China
| | - Shiqi Wu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China
| | - Yiyu Kuang
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China
| | - Pengfei Jiang
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China
| | - Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China
| | - Kai Yin
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou 510900, China
| |
Collapse
|
5
|
Maher S, Rajapakse J, El-Omar E, Zekry A. Role of the Gut Microbiome in Metabolic Dysfunction-Associated Steatotic Liver Disease. Semin Liver Dis 2024; 44:457-473. [PMID: 39389571 DOI: 10.1055/a-2438-4383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD)-previously described as nonalcoholic fatty liver disease-continues to rise globally. Despite this, therapeutic measures for MASLD remain limited. Recently, there has been a growing interest in the gut microbiome's role in the pathogenesis of MASLD. Understanding this relationship may allow for the administration of therapeutics that target the gut microbiome and/or its metabolic function to alleviate MASLD development or progression. This review will discuss the interplay between the gut microbiome's structure and function in relation to the development of MASLD, assess the diagnostic yield of gut microbiome-based signatures as a noninvasive tool to identify MASLD severity, and examine current and emerging therapies targeting the gut microbiome-liver axis.
Collapse
Affiliation(s)
- Salim Maher
- Department of Gastroenterology and Hepatology, St George Hospital, Sydney, Australia
- School of Clinical Medicine, UNSW Medicine & Health, St George & Sutherland Clinical Campuses
| | - Jayashi Rajapakse
- School of Clinical Medicine, UNSW Medicine & Health, St George & Sutherland Clinical Campuses
| | - Emad El-Omar
- Department of Gastroenterology and Hepatology, St George Hospital, Sydney, Australia
- School of Clinical Medicine, UNSW Medicine & Health, St George & Sutherland Clinical Campuses
| | - Amany Zekry
- Department of Gastroenterology and Hepatology, St George Hospital, Sydney, Australia
- School of Clinical Medicine, UNSW Medicine & Health, St George & Sutherland Clinical Campuses
| |
Collapse
|
6
|
Sharma N, Singh L, Sharma A, Kumar A, Mahajan D. NAFLD-associated hepatocellular carcinoma (HCC) - A compelling case for repositioning of existing mTORc1 inhibitors. Pharmacol Res 2024; 208:107375. [PMID: 39209081 DOI: 10.1016/j.phrs.2024.107375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/06/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The increasing prevalence of non-alcoholic fatty liver disease (NAFLD) is a growing concern for the high incidence rate of hepatocellular carcinoma (HCC) globally. The progression of NAFLD to HCC is heterogeneous and non-linear, involving intermediate stages of non-alcoholic steatohepatitis (NASH), liver fibrosis, and cirrhosis. There is a high unmet clinical need for appropriate diagnostic, prognostic, and therapeutic options to tackle this emerging epidemic. Unfortunately, at present, there is no validated marker to identify the risk of developing HCC in patients suffering from NAFLD or NASH. Additionally, the current treatment protocols for HCC don't differentiate between viral infection or NAFLD-specific etiology of the HCC and have a limited success rate. The mammalian target of rapamycin complex 1 (mTORc1) is an important protein involved in many vital cellular processes like lipid metabolism, glucose homeostasis, and inflammation. These cellular processes are highly implicated in NAFLD and its progression to severe liver manifestations. Additionally, hyperactivation of mTORc1 is known to promote cell proliferation, which can contribute to the genesis and progression of tumors. Many mTORc1 inhibitors are being evaluated for different types of cancers under various phases of clinical trials. This paper deliberates on the strong pathological implication of the mTORc1 signaling pathway in NAFLD and its progression to NASH and HCC and advocates for a systematic investigation of known mTORc1 inhibitors in suitable pre-clinical models of HCC having NAFLD/NASH-specific etiology.
Collapse
Affiliation(s)
- Nutan Sharma
- Center for Drug Discovery, BRIC-Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, India; Department of Chemistry, Faculty of Applied and Basic Sciences, SGT University, Gurugram 122505, India
| | - Lakhwinder Singh
- Center for Drug Discovery, BRIC-Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, India
| | - Aditya Sharma
- Center for Drug Discovery, BRIC-Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, India
| | - Ajay Kumar
- Center for Drug Discovery, BRIC-Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, India
| | - Dinesh Mahajan
- Center for Drug Discovery, BRIC-Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, India.
| |
Collapse
|
7
|
Zeng C, Wan SR, Guo M, Tan XZ, Zeng Y, Wu Q, Xie JJ, Yan P, Long Y, Zheng L, Jiang ZZ, Teng FY, Xu Y. Fecal virome transplantation: A promising strategy for the treatment of metabolic diseases. Biomed Pharmacother 2024; 177:117065. [PMID: 38971010 DOI: 10.1016/j.biopha.2024.117065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024] Open
Abstract
Metabolic diseases are a group of disorders caused by metabolic abnormalities, including obesity, diabetes, non-alcoholic fatty liver disease, and more. Increasing research indicates that, beyond inherent metabolic irregularities, the onset and progression of metabolic diseases are closely linked to alterations in the gut microbiota, particularly gut bacteria. Additionally, fecal microbiota transplantation (FMT) has demonstrated effectiveness in clinically treating metabolic diseases, notably diabetes. Recent attention has also focused on the role of gut viruses in disease onset. This review first introduces the characteristics and influencing factors of gut viruses, then summarizes their potential mechanisms in disease development, highlighting their impact on gut bacteria and regulation of host immunity. We also compare FMT, fecal filtrate transplantation (FFT), washed microbiota transplantation (WMT), and fecal virome transplantation (FVT). Finally, we review the current understanding of gut viruses in metabolic diseases and the application of FVT in treating these conditions. In conclusion, FVT may provide a novel and promising treatment approach for metabolic diseases, warranting further validation through basic and clinical research.
Collapse
Affiliation(s)
- Chen Zeng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Sheng-Rong Wan
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Man Guo
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiao-Zhen Tan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yan Zeng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Qi Wu
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China; Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jia-Jie Xie
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Pijun Yan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Institute of Cardiovascular Research, Peking University, Beijing 100871, China
| | - Yang Long
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Lemin Zheng
- Institute of Cardiovascular Research, Peking University, Beijing 100871, China
| | - Zong-Zhe Jiang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Fang-Yuan Teng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
8
|
Mohammadhasani K, Vahedi Fard M, Mottaghi Moghaddam Shahri A, Khorasanchi Z. Polyphenols improve non-alcoholic fatty liver disease via gut microbiota: A comprehensive review. Food Sci Nutr 2024; 12:5341-5356. [PMID: 39139973 PMCID: PMC11317728 DOI: 10.1002/fsn3.4178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 08/15/2024] Open
Abstract
Polyphenols, natural micronutrients derived from plants, are valued for their anti-inflammatory and antioxidant properties. The escalating global prevalence of non-alcoholic fatty liver disease (NAFLD) underscores its status as a chronic progressive liver condition. Furthermore, the dysregulation of gut microbiota (GM) is implicated in the onset and progression of NAFLD through the actions of metabolites such as bile acids (BAs), lipopolysaccharide (LPS), choline, and short-chain fatty acids (SCFAs). Additionally, GM may influence the integrity of the intestinal barrier. This review aims to evaluate the potential effects of polyphenols on GM and intestinal barrier function, and their subsequent impact on NAFLD. We searched through a wide range of databases, such as Web of Science, PubMed, EMBASE, and Scopus to gather information for our non-systematic review of English literature. GM functions and composition can be regulated by polyphenols such as chlorogenic acid, curcumin, green tea catechins, naringenin, quercetin, resveratrol, and sulforaphane. Regulating GM composition improves NAFLD by alleviating inflammation, liver fat accumulation, and liver enzymes. Furthermore, it improves serum lipid profile and gut barrier integrity. All of these components affect NAFLD through the metabolites of GM, including SCFAs, choline, LPS, and BAs. Current evidence indicates that chlorogenic acid, resveratrol, quercetin, and curcumin can modulate GM, improving intestinal barrier integrity and positively impacting NAFLD. More studies are necessary to evaluate the safety and efficacy of naringenin, sulforaphane, and catechin.
Collapse
Affiliation(s)
- Kimia Mohammadhasani
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research CenterGonabad University of Medical SciencesGonabadIran
| | - Mohammad Vahedi Fard
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research CenterGonabad University of Medical SciencesGonabadIran
| | - Ali Mottaghi Moghaddam Shahri
- International UNESCO Center for Health‐Related Basic Sciences and Human NutritionMashhad University of Medical SciencesMashhadIran
| | - Zahra Khorasanchi
- Department of Nutrition, School of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
9
|
Xiao JH, Wang Y, Zhang XM, Wang WX, Zhang Q, Tang YP, Yue SJ. Intestinal permeability in human cardiovascular diseases: a systematic review and meta-analysis. Front Nutr 2024; 11:1361126. [PMID: 39086542 PMCID: PMC11289889 DOI: 10.3389/fnut.2024.1361126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Background There is a link between cardiovascular diseases and intestinal permeability, but it is not clear. This review aimed to elucidate intestinal permeability in cardiovascular diseases by meta-analysis. Methods Multidisciplinary electronic databases were searched from the database creation to April 2023. All included studies were assessed for risk of bias according to the Joanna Briggs Institute Critical Appraisal Checklist. The heterogeneity of each study was estimated using the I2 statistic, and the data were analyzed using Review Manager 5.3 and Stata 16.0. Results In total, studies in 13 pieces of literature were included in the quantitative meta-analysis. These studies were conducted among 1,321 subjects mostly older than 48. Patients had higher levels of intestinal permeability markers (lipopolysaccharide, d-lactate, zonulin, serum diamine oxidase, lipopolysaccharide-binding protein, intestinal fatty acid binding protein, and melibiose/rhamnose) than controls (standard mean difference SMD = 1.50; 95% CI = 1.31-1.88; p < 0.00001). Similarly, lipopolysaccharide levels were higher in patients than in controls (SMD = 1.61; 95% CI = 1.02-2.21; p < 0.00001); d-lactate levels were higher in patients than in controls (SMD = 1.16; 95% CI = 0.23-2.08; p = 0.01); zonulin levels were higher in patients than in controls (SMD = 1.74; 95% CI = 1.45-2.03; p < 0.00001); serum diamine oxidase levels were higher in patients than in controls (SMD = 2.51; 95% CI = 0.29-4.73; p = 0.03). Conclusion The results of the meta-analysis verified that the intestinal barrier was damaged and intestinal permeability was increased in patients with cardiovascular diseases. These markers may become a means of the diagnosis and treatment of cardiovascular diseases. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=414296, identifier CRD42023414296.
Collapse
Affiliation(s)
- Jiang-Hong Xiao
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Yu Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Xi-Mei Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Wen-Xiao Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Qiao Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
10
|
Xu Q, Liu F, Wu Z, Chen M, Zhou Y, Shi Y. Suppression of STK39 weakens the MASLD/MASH process by protecting the intestinal barrier. Biosci Trends 2024; 18:289-302. [PMID: 38925962 DOI: 10.5582/bst.2024.01097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
STK39 is reportedly a critical negative regulator of intestinal barrier. Pharmacological targeting of STK39 is expected to protect the intestinal barrier and thereby weaken metabolic dysfunction-associated steatohepatitis (MASH); Proximal colon biopsy tissues from patients with metabolic dysfunction-associated steatotic liver disease (MASLD) and those without MASLD were analyzed for STK39 expression. Wildtype (WT) mice and systemic STK39 gene knockout (STK39-/-) male mice were fed a normal diet or a high-fat methionine-choline deficient diet (HFMCD) for 8 weeks. The MASH mice were grouped and treated with ZT-1a (a STK39 inhibitor) or vehicle intraperitoneal injection during the procedure of HFMCD induction. Liver and intestinal tissues were collected for further examination; Colon tissues from patients with MASLD exhibited higher levels of STK39 than those from subjects without MASLD. Knockout of STK39 diminished CD68+ Kupffer cells and α-SMA+ hepatic stellate cells infiltration in mouse MASH model. Treatment with ZT-1a also prevented severe steatohepatitis in a mouse MASH model, including milder histological and pathological manifestations (lobular inflammation and fibrosis) in the liver. Interestingly, Inhibition of STK39 had minimal effects on hepatic lipid metabolism. The reduced liver injury observed in mice with STK39 inhibition was linked to significant decreases in mucosal inflammation, tight junction disruption and intestinal epithelial permeability to bacterial endotoxins; Collectively, we have revealed that inhibiting STK39 prevents the progression of MASH by protecting the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Qing Xu
- Institute of Clinical Pathology & Department of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Liu
- Department of Biliary Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenru Wu
- Institute of Clinical Pathology & Department of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China
| | - Menglin Chen
- Institute of Clinical Pathology & Department of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China
| | - Yongjie Zhou
- Laboratory of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, China
| | - Yujun Shi
- Institute of Clinical Pathology & Department of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Alghamdi W, Mosli M, Alqahtani SA. Gut microbiota in MAFLD: therapeutic and diagnostic implications. Ther Adv Endocrinol Metab 2024; 15:20420188241242937. [PMID: 38628492 PMCID: PMC11020731 DOI: 10.1177/20420188241242937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/22/2024] [Indexed: 04/19/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD), formerly known as nonalcoholic fatty liver disease, is becoming a significant contributor to chronic liver disease globally, surpassing other etiologies, such as viral hepatitis. Prevention and early treatment strategies to curb its growing prevalence are urgently required. Recent evidence suggests that targeting the gut microbiota may help treat and alleviate disease progression in patients with MAFLD. This review aims to explore the complex relationship between MAFLD and the gut microbiota in relation to disease pathogenesis. Additionally, it delves into the therapeutic strategies targeting the gut microbiota, such as diet, exercise, antibiotics, probiotics, synbiotics, glucagon-like peptide-1 receptor agonists, and fecal microbiota transplantation, and discusses novel biomarkers, such as microbiota-derived testing and liquid biopsy, for their diagnostic and staging potential. Overall, the review emphasizes the urgent need for preventive and therapeutic strategies to address the devastating consequences of MAFLD at both individual and societal levels and recognizes that further exploration of the gut microbiota may open avenues for managing MAFLD effectively in the future.
Collapse
Affiliation(s)
- Waleed Alghamdi
- Division of Gastroenterology, Department of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud Mosli
- Division of Gastroenterology, Department of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saleh A. Alqahtani
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital & Research Center, Riyadh 11211, Saudi Arabia
- Division of Gastroenterology & Hepatology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
12
|
Long C, Zhou X, Xia F, Zhou B. Intestinal Barrier Dysfunction and Gut Microbiota in Non-Alcoholic Fatty Liver Disease: Assessment, Mechanisms, and Therapeutic Considerations. BIOLOGY 2024; 13:243. [PMID: 38666855 PMCID: PMC11048184 DOI: 10.3390/biology13040243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a type of metabolic stress liver injury closely related to insulin resistance (IR) and genetic susceptibility without alcohol consumption, which encompasses a spectrum of liver disorders ranging from simple hepatic lipid accumulation, known as steatosis, to the more severe form of steatohepatitis (NASH). NASH can progress to cirrhosis and hepatocellular carcinoma (HCC), posing significant health risks. As a multisystem disease, NAFLD is closely associated with systemic insulin resistance, central obesity, and metabolic disorders, which contribute to its pathogenesis and the development of extrahepatic complications, such as cardiovascular disease (CVD), type 2 diabetes mellitus, chronic kidney disease, and certain extrahepatic cancers. Recent evidence highlights the indispensable roles of intestinal barrier dysfunction and gut microbiota in the onset and progression of NAFLD/NASH. This review provides a comprehensive insight into the role of intestinal barrier dysfunction and gut microbiota in NAFLD, including intestinal barrier function and assessment, inflammatory factors, TLR4 signaling, and the gut-liver axis. Finally, we conclude with a discussion on the potential therapeutic strategies targeting gut permeability and gut microbiota in individuals with NAFLD/NASH, such as interventions with medications/probiotics, fecal transplantation (FMT), and modifications in lifestyle, including exercise and diet.
Collapse
Affiliation(s)
- Changrui Long
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Sehenzhen 518107, China;
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Xiaoyan Zhou
- Department of Cardiovascular, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China;
| | - Fan Xia
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Sehenzhen 518107, China;
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China
| | - Benjie Zhou
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Sehenzhen 518107, China;
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China
| |
Collapse
|
13
|
Zhang H, Liu M, Song F, Zhu X, Lu Q, Liu R. Fermentation enhances the amelioration effect of bee pollen on Caco-2 monolayer epithelial barrier dysfunction based on NF-κB-mediated MLCK-MLC signaling pathway. Food Res Int 2024; 178:113938. [PMID: 38309866 DOI: 10.1016/j.foodres.2024.113938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
Intestinal barrier integrity is essential for normal nutrient digestion and absorption and disease resistance. This study aims to investigate how fermentation affects the ameliorative effect of bee pollen on the intestinal barrier dysfunction stimulated by interferon-γ and tumor necrosis factor (IFN-γ/TNF-α) cytokines. The results indicated that fermentation enhances the alleviating effect of bee pollen on intestinal barrier dysfunction (including elevated trans epithelial electrical resistance and decreased paracellular permeability). In addition, fermented bee pollen (FBP) significantly decreased (p < 0.05) the secretion levels of interleukin (IL)-6, IL-8, and IL-1β and expression of cyclooxygenase (COX)-2 protein in intestinal barrier cells. Furthermore, fermentation improved the ability of bee pollen to up-regulate the expression of tight junction proteins including zonula occludens (ZO)-1, occluding, and claudin-1. Notably, FBP showed stronger ability to inhibit the expression of nuclear factor kappa-B (NF-κB) mediated myosin light chain kinase (MLCK) and myosin light chain (MLC) signaling pathway associated with phosphorylated proteins. Overall, our results indicated that fermentation enhances the protective effect of bee pollen on the intestinal barrier, and FBP has promising potential to be used as a novel functional food to protect the intestinal barrier.
Collapse
Affiliation(s)
- Huifang Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430070, China
| | - Min Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430070, China
| | - Fanfen Song
- Research Unit VEG-i-TEC, Faculty of BioscienceEngineering, Ghent University, Sint-Martens-Latemlaan2B, 8500 Kortrijk, Belgium
| | - Xiaoling Zhu
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan 430075, China
| | - Qun Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China.
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China.
| |
Collapse
|
14
|
Shah YR, Ali H, Tiwari A, Guevara-Lazo D, Nombera-Aznaran N, Pinnam BSM, Gangwani MK, Gopakumar H, Sohail AH, Kanumilli S, Calderon-Martinez E, Krishnamoorthy G, Thakral N, Dahiya DS. Role of fecal microbiota transplant in management of hepatic encephalopathy: Current trends and future directions. World J Hepatol 2024; 16:17-32. [PMID: 38313244 PMCID: PMC10835490 DOI: 10.4254/wjh.v16.i1.17] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/02/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Fecal microbiota transplantation (FMT) offers a potential treatment avenue for hepatic encephalopathy (HE) by leveraging beneficial bacterial displacement to restore a balanced gut microbiome. The prevalence of HE varies with liver disease severity and comorbidities. HE pathogenesis involves ammonia toxicity, gut-brain communication disruption, and inflammation. FMT aims to restore gut microbiota balance, addressing these factors. FMT's efficacy has been explored in various conditions, including HE. Studies suggest that FMT can modulate gut microbiota, reduce ammonia levels, and alleviate inflammation. FMT has shown promise in alcohol-associated, hepatitis B and C-associated, and non-alcoholic fatty liver disease. Benefits include improved liver function, cognitive function, and the slowing of disease progression. However, larger, controlled studies are needed to validate its effectiveness in these contexts. Studies have shown cognitive improvements through FMT, with potential benefits in cirrhotic patients. Notably, trials have demonstrated reduced serious adverse events and cognitive enhancements in FMT arms compared to the standard of care. Although evidence is promising, challenges remain: Limited patient numbers, varied dosages, administration routes, and donor profiles. Further large-scale, controlled trials are essential to establish standardized guidelines and ensure FMT's clinical applications and efficacy. While FMT holds potential for HE management, ongoing research is needed to address these challenges, optimize protocols, and expand its availability as a therapeutic option for diverse hepatic conditions.
Collapse
Affiliation(s)
- Yash R Shah
- Department of Internal Medicine, Trinity Health Oakland/Wayne State University, Pontiac, MI 48341, United States
| | - Hassam Ali
- Division of Gastroenterology and Hepatology, East Carolina University/Brody School of Medicine, Greenville, NC 27858, United States
| | - Angad Tiwari
- Department of Internal Medicine, Maharani Laxmi Bai Medical College, Jhansi 284001, India
| | - David Guevara-Lazo
- Faculty of Medicine, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | | | - Bhanu Siva Mohan Pinnam
- Department of Internal Medicine, John H. Stroger Hospital of Cook County, Chicago, IL 60612, United States
| | - Manesh Kumar Gangwani
- Department of Internal Medicine, The University of Toledo, Toledo, OH 43606, United States
| | - Harishankar Gopakumar
- Department of Gastroenterology and Hepatology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, United States
| | - Amir H Sohail
- Department of Surgery, University of New Mexico, Albuquerque, NM 87106, United States
| | | | - Ernesto Calderon-Martinez
- Department of Internal Medicine, Universidad Nacional Autonoma de Mexico, Ciudad De Mexico 04510, Mexico
| | - Geetha Krishnamoorthy
- Department of Internal Medicine, Trinity Health Oakland/Wayne State University, Pontiac, MI 48341, United States
| | - Nimish Thakral
- Department of Digestive Diseases and Nutrition, University of Kentucky, Lexington, KY 40536, United States
| | - Dushyant Singh Dahiya
- Division of Gastroenterology, Hepatology & Motility, The University of Kansas School of Medicine, Kansas City, KS 66160, United States.
| |
Collapse
|
15
|
Bauer A, Rawa T. Circulating Monocyte Chemoattractant Protein-1 (MCP-1) in Patients with Primary Biliary Cholangitis. Int J Mol Sci 2024; 25:1333. [PMID: 38279333 PMCID: PMC10816849 DOI: 10.3390/ijms25021333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic autoimmune liver disease that leads to the destruction of the intrahepatic bile ducts. While the inflammatory process can be mediated by monocyte chemotactic protein-1 (MCP-1), the importance of circulating MCP-1 as a biomarker is unclear. Our aim was to assess the diagnostic significance of the serum concentrations of MCP-1 in PBC patients. We compared circulating MCP-1 with biochemical, immunological and histological parameters. Serum samples were collected from 120 PBC patients, 60 pathologic controls and 30 healthy donors. MCP-1 levels were determined by using commercial enzyme-linked immunosorbent assay (ELISA). Elevated serum MCP-1 levels were detected in 66% of PBC patients with a specificity of 97%. Significantly higher levels of MCP-1 protein were found in the sera of patients with PBC than in the group of healthy individuals-410.2 pg/mL vs. 176.0 pg/mL, p < 0.01). Patients with higher concentrations of alkaline phosphatase also had higher levels of MCP-1 (r = 0.4, p < 0.01). In accordance with Ludwig's classification, a positive correlation of serum MCP-1 concentration with the degree of fibrosis was observed, OR = 6.1, p = 0.0003. We compared the MCP-1 with procollagen type III, hyaluronic acid (HA), FIB-4 index, APRI and collagen type IV when predicting the advance of liver fibrosis. Circulating MCP-1 is better correlated with liver fibrosis and is also associated with the occurrence of specific antimitochondrial autoantibodies and specific anti-nuclear autoantibodies-anti-gp210. MPC-1 can be considered to be a tool for diagnosing the degree of fibrosis in PBC, and combinations of MCP-1 and other specific biomarkers could support the diagnosis of PBC.
Collapse
Affiliation(s)
- Alicja Bauer
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 00-022 Warsaw, Poland
| | - Tomasz Rawa
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Roentgena 5, 02-781 Warsaw, Poland;
| |
Collapse
|
16
|
Forlano R, Martinez-Gili L, Takis P, Miguens-Blanco J, Liu T, Triantafyllou E, Skinner C, Loomba R, Thursz M, Marchesi JR, Mullish B, Manousou P. Disruption of gut barrier integrity and host-microbiome interactions underlie MASLD severity in patients with type-2 diabetes mellitus. Gut Microbes 2024; 16:2304157. [PMID: 38235661 PMCID: PMC10798360 DOI: 10.1080/19490976.2024.2304157] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024] Open
Abstract
Aberration of the "gut-liver axis" contributes to the development and progression of metabolic dysfunction-associated steatotic liver disease (MASLD). Here, we use multi-omics to analyze the gut microbiota composition and metabolic profile of patients with type-2 diabetes mellitus (T2DM). T2DM patients were screened for liver disease by blood tests, ultrasound, and liver stiffness measurements. Stool microbiota was analyzed by 16S rRNA gene sequencing; metabolomic profiling by Nuclear Magnetic Resonance spectroscopy and Ultra-High Performance-Mass Spectrometry. Microbiome and metabolic signatures were analyzed in the whole cohort and in matched subsets to identify signatures specific for steatosis (MASLD±) or fibrosis (Fibrosis±). Gut permeability was assessed in-vitro using monolayers of MDCK cells and trans-epithelial electric resistance (TEER). Cytokine profile was assessed in serum and stools.Overall, 285 patients were enrolled: 255 serum, 252 urine and 97 stool samples were analyzed. Anaeroplasma and Escherichia/Shigella ASVs were higher, while Butyricicoccus ASVs were lower in those with normal liver. In MASLD±, Butyricicoccus ASV was significantly higher in those with steatosis. In the Fibrosis±, Butyricicoccus ASV was significantly lower in those with fibrosis. Glycochenodeoxycholic acid-3-sulfate (G-UDCA-3S) appeared to be higher in MASLD with fibrosis. Fecal water from patients with MASLD and fibrosis caused the greatest drop in the TEER vs those with normal liver; this was reversed with protease inhibitors. Finally, fecal IL-13 was lower in MASLD with fibrosis. We identified microbiome signatures which were specific for steatosis and fibrosis and independent of other metabolic risk factors. Moreover, we conclude that protease-related gut permeability plays a role in those MASLD patients with fibrosis, and that disease progression is linked to a gut-liver axis which is at least partially independent of T2DM.
Collapse
Affiliation(s)
- R. Forlano
- Liver unit/Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - L. Martinez-Gili
- Liver unit/Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - P. Takis
- National Phenome Centre, Imperial College London, London, UK
| | - J. Miguens-Blanco
- Liver unit/Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - T. Liu
- Liver unit/Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - E. Triantafyllou
- Liver unit/Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - C. Skinner
- Liver unit/Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - R Loomba
- NAFLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, USA
| | - M. Thursz
- Liver unit/Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - J. R. Marchesi
- Liver unit/Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - B.H. Mullish
- Liver unit/Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - P. Manousou
- Liver unit/Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
17
|
DiMattia Z, Damani JJ, Van Syoc E, Rogers CJ. Effect of Probiotic Supplementation on Intestinal Permeability in Overweight and Obesity: A Systematic Review of Randomized Controlled Trials and Animal Studies. Adv Nutr 2024; 15:100162. [PMID: 38072119 PMCID: PMC10771892 DOI: 10.1016/j.advnut.2023.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/27/2023] Open
Abstract
Overweight and obesity are associated with increased intestinal permeability, characterized by loss of gut epithelial integrity, resulting in unregulated passage of lipopolysaccharide (LPS) and other inflammatory triggers into circulation, i.e., metabolic endotoxemia. In obesity, shifts in the gut microbiome negatively impact intestinal permeability. Probiotics are an intervention that can target the gut microbiome by introducing beneficial microbial species, potentially restoring gut barrier integrity. Currently, the role of probiotic supplementation in ameliorating obesity- and overweight-associated increases in gut permeability has not been reviewed. This systematic review aimed to summarize findings from both animal and clinical studies that evaluated the effect of probiotic supplementation on obesity-induced impairment in intestinal permeability (International Prospective Register of Systematic Reviews, CRD42022363538). A literature search was conducted using PubMed (Medline), Web of Science, and CAB Direct from origin until August 2023 using keywords of intestinal permeability, overweight or obesity, and probiotic supplementation. Of 920 records, 26 eligible records were included, comprising 12 animal and 14 clinical studies. Clinical trials ranged from 3 to 26 wk and were mostly parallel-arm (n = 13) or crossover (n = 1) design. In both animal and clinical studies, plasma/serum LPS was the most common measure of intestinal permeability. Eleven of 12 animal studies reported a positive effect of probiotic supplementation in reducing intestinal permeability. However, results from clinical trials were inconsistent, with half reporting reductions in serum LPS and half reporting no differences after probiotic supplementation. Bifidobacterium, Lactobacillus, and Akkermansia emerged as the most common genera in probiotic formulations among the animal and clinical studies that yielded positive results, suggesting that specific bacteria may be more effective at reducing intestinal permeability and improving gut barrier function. However, better standardization of strain use, dosage, duration, and the delivery matrix is needed to fully understand the probiotic impact on intestinal permeability in individuals with overweight and obesity.
Collapse
Affiliation(s)
- Zachary DiMattia
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Janhavi J Damani
- The Intercollege Graduate Degree Program in Integrative and Biomedical Physiology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Emily Van Syoc
- Integrative and Biomedical Physiology and Clinical and Translational Science, The Pennsylvania State University, University Park, PA, United States; Department of Animal Science, The Pennsylvania State University, University Park, PA, United States; The Microbiome Center, The Pennsylvania State University, University Park, PA, United States
| | - Connie J Rogers
- Department of Nutritional Sciences, College of Family and Consumer Sciences, University of Georgia, Athens, GA, United States.
| |
Collapse
|
18
|
Koutoukidis DA, Yen S, Gomez Castro P, Misheva M, Jebb SA, Aveyard P, Tomlinson JW, Mozes FE, Cobbold JF, Johnson JS, Marchesi JR. Changes in intestinal permeability and gut microbiota following diet-induced weight loss in patients with metabolic dysfunction-associated steatohepatitis and liver fibrosis. Gut Microbes 2024; 16:2392864. [PMID: 39340210 PMCID: PMC11444513 DOI: 10.1080/19490976.2024.2392864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/25/2024] [Accepted: 08/12/2024] [Indexed: 09/30/2024] Open
Abstract
Weight loss improves metabolic dysfunction-associated steatohepatitis (MASH). We investigated whether there were associated changes in intestinal permeability, short-chain fatty acids (SCFAs), and gut microbiota, which are implicated in the pathophysiology of MASH. Sixteen adults with MASH, moderate fibrosis, and obesity received a low-energy total diet replacement program for 12 weeks and stepped food re-introduction over the following 12 weeks (ISRCTN12900952). Intestinal permeability, fecal SCFAs, and fecal microbiota were assessed at 0, 12, and 24 weeks. Data were analyzed using mixed-effects linear regression and sparse partial least-squares regression. Fourteen participants completed the trial, lost 15% (95% CI: 11.2-18.6%) of their weight, and 93% had clinically relevant reductions in liver disease severity markers. Serum zonulin concentrations were reduced at both 12 and 24 weeks (152.0 ng/ml, 95% CI: 88.0-217.4, p < 0.001). Each percentage point of weight loss was associated with a 13.2 ng/mL (95% CI: 3.8-22.5, p < 0.001) reduction in zonulin. For every 10 ng/mL reduction in zonulin, there was a 6.8% (95% CI: 3.5%-10.2, p < 0.001) reduction in liver fat. There were reductions in SCFA and alpha diversity evenness as well as increases in beta diversity of the gut microbiota at 12 weeks, but the changes did not persist at 24 weeks. In conclusion, substantial dietary energy restriction is associated with significant improvement in MASH markers alongside reduction in intestinal permeability. Changes in gut microbiota and SCFA were not maintained with sustained reductions in weight and liver fat, suggesting that microbiome modulation may not explain the relationship between weight loss and improvements in MASH.
Collapse
Affiliation(s)
- Dimitrios A Koutoukidis
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Sandi Yen
- Oxford Centre for Microbiome Studies, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Paula Gomez Castro
- Oxford Centre for Microbiome Studies, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Mariya Misheva
- Oxford Centre for Microbiome Studies, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Susan A Jebb
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
- NIHR Oxford Health Biomedical Research Centre, Warneford Hospital, Oxford, UK
| | - Paul Aveyard
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
- NIHR Oxford Health Biomedical Research Centre, Warneford Hospital, Oxford, UK
- Oxford and Thames Valley Applied Research Collaboration, University of Oxford, Oxford, UK
| | - Jeremy W Tomlinson
- NIHR Oxford Biomedical Research Centre, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ferenc E Mozes
- Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jeremy F Cobbold
- NIHR Oxford Biomedical Research Centre, Oxford, UK
- Department of Gastroenterology and Hepatology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jethro S Johnson
- Oxford Centre for Microbiome Studies, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Julian R Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, St Mary's Hospital, Imperial College London, London, UK
| |
Collapse
|
19
|
Banerjee G, Papri SR, Satapathy SK, Banerjee P. Akkermansia muciniphila - A Potential Next-generation Probiotic for Non-alcoholic Fatty Liver Disease. Curr Pharm Biotechnol 2024; 25:426-433. [PMID: 37724669 DOI: 10.2174/1389201025666230915103052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 09/21/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a spectrum of liver conditions, and its growing prevalence is a serious concern worldwide, especially in Western countries. Researchers have pointed out several genetic mutations associated with NAFLD; however, the imbalance of the gut microbial community also plays a critical role in the progression of NAFLD. Due to the lack of approved medicine, probiotics gain special attention in controlling metabolic disorders like NAFLD. Among these probiotics, Akkermansia muciniphila (a member of natural gut microflora) is considered one of the most efficient and important bacterium in maintaining gut health, energy homeostasis, and lipid metabolism. In this perspective, we discussed the probable molecular mechanism of A. muciniphila in controlling the progression of NAFLD and restoring liver health. The therapeutic potential of A. muciniphila in NAFLD has been tested primarily on animal models, and thus, more randomized human trials should be conducted to prove its efficacy.
Collapse
Affiliation(s)
- Goutam Banerjee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Suraya R Papri
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Sanjaya K Satapathy
- 2Department of Medicine, Northwell Health Center for Liver Disease & Transplantation, North Shore, University Hospital/Northwell Health, 400 Community Drive, Manhasset, NY 11030, USA
| | - Pratik Banerjee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| |
Collapse
|
20
|
Driessen S, Francque SM, Anker SD, Castro Cabezas M, Grobbee DE, Tushuizen ME, Holleboom AG. Metabolic dysfunction-associated steatotic liver disease and the heart. Hepatology 2023:01515467-990000000-00699. [PMID: 38147315 DOI: 10.1097/hep.0000000000000735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/13/2023] [Indexed: 12/27/2023]
Abstract
The prevalence and severity of metabolic dysfunction-associated steatotic liver disease (MASLD) are increasing. Physicians who treat patients with MASLD may acknowledge the strong coincidence with cardiometabolic disease, including atherosclerotic cardiovascular disease (asCVD). This raises questions on co-occurrence, causality, and the need for screening and multidisciplinary care for MASLD in patients with asCVD, and vice versa. Here, we review the interrelations of MASLD and heart disease and formulate answers to these matters. Epidemiological studies scoring proxies for atherosclerosis and actual cardiovascular events indicate increased atherosclerosis in patients with MASLD, yet no increased risk of asCVD mortality. MASLD and asCVD share common drivers: obesity, insulin resistance and type 2 diabetes mellitus (T2DM), smoking, hypertension, and sleep apnea syndrome. In addition, Mendelian randomization studies support that MASLD may cause atherosclerosis through mixed hyperlipidemia, while such evidence is lacking for liver-derived procoagulant factors. In the more advanced fibrotic stages, MASLD may contribute to heart failure with preserved ejection fraction by reduced filling of the right ventricle, which may induce fatigue upon exertion, often mentioned by patients with MASLD. Some evidence points to an association between MASLD and cardiac arrhythmias. Regarding treatment and given the strong co-occurrence of MASLD and asCVD, pharmacotherapy in development for advanced stages of MASLD would ideally also reduce cardiovascular events, as has been demonstrated for T2DM treatments. Given the common drivers, potential causal factors and especially given the increased rate of cardiovascular events, comprehensive cardiometabolic risk management is warranted in patients with MASLD, preferably in a multidisciplinary approach.
Collapse
Affiliation(s)
- Stan Driessen
- Department of Vascular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Sven M Francque
- Department of Gastroenterology and Hepatology, University Hospital Antwerp, Antwerp, Belgium
| | - Stefan D Anker
- Department of Cardiology (CVK) of German Heart Center Charité, Institute of Health Center for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin, Berlin, Germany
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Manuel Castro Cabezas
- Julius Clinical, Zeist, The Netherlands
- Department of Internal Medicine, Franciscus Gasthuis and Vlietland, Rotterdam, The Netherlands
- Department of Internal Medicine and Endocrinology, Erasmus MC, Rotterdam, The Netherlands
| | - Diederick E Grobbee
- Julius Clinical, Zeist, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maarten E Tushuizen
- Department of Gastroenterology and Hepatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Adriaan G Holleboom
- Department of Vascular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Qu D, Chen M, Zhu H, Liu X, Cui Y, Zhou W, Zhang M. Akkermansia muciniphila and its outer membrane protein Amuc_1100 prevent high-fat diet-induced nonalcoholic fatty liver disease in mice. Biochem Biophys Res Commun 2023; 684:149131. [PMID: 37866242 DOI: 10.1016/j.bbrc.2023.149131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/01/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. A. muciniphila and its outer membrane protein Amuc_1100 ameliorate metabolic disorders, enteritis, depression, and other diseases in mice. The NAFLD mouse model was established by feeding a high-fat diet (HFD) for 10 weeks. To assess the effect of A. muciniphila and Amuc_1100 on NAFLD, we used atorvastatin, a common lipid-lowering drug, as a positive control. A. muciniphila and Amuc_1100 significantly reduced body weight and serum ALT and AST levels, and improved serum lipid levels in NAFLD mice, which had similar effects to Ator. In addition, A. muciniphila and Amuc_1100 decreased the concentration of LPS in the serum and upregulated the mRNA expression of the colonic tight junction proteins. In the liver, A. muciniphila and Amuc_1100 significantly reduced the mRNA expression levels of nodular receptor protein 3 (NLRP3) and Toll-like receptor 4 (TLR4)/nuclear factor κB (NF-κB), and the protein and mRNA expression levels inflammatory cytokines. At the genus level, Amuc_1100 treatment significantly reduced the abundance of Coriobacteriaceae_UCG-002 produced by the HFD. The abundances of Blautia, norank_f__Ruminococcaceae, Lachnoclostridium, GCA-900066575 and Lachnospiraceae_UCG-006 increased dramatically. Together, A. muciniphila and Amuc_1100 alleviate HFD-induced NAFLD by acting on the gut-liver axis and regulating gut microbes.
Collapse
Affiliation(s)
- Danni Qu
- School of Life Sciences, Anhui University, Hefei, Anhui, 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, 230601, China
| | - Mengyun Chen
- School of Life Sciences, Anhui University, Hefei, Anhui, 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, 230601, China
| | - Haiyan Zhu
- School of Life Sciences, Anhui University, Hefei, Anhui, 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, 230601, China
| | - Xingyu Liu
- School of Life Sciences, Anhui University, Hefei, Anhui, 230601, China
| | - Yanan Cui
- School of Life Sciences, Anhui University, Hefei, Anhui, 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, 230601, China
| | - Wei Zhou
- School of Life Sciences, Anhui University, Hefei, Anhui, 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, 230601, China
| | - Min Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, 230601, China.
| |
Collapse
|
22
|
Yazici D, Ogulur I, Pat Y, Babayev H, Barletta E, Ardicli S, Bel Imam M, Huang M, Koch J, Li M, Maurer D, Radzikowska U, Satitsuksanoa P, Schneider SR, Sun N, Traidl S, Wallimann A, Wawrocki S, Zhakparov D, Fehr D, Ziadlou R, Mitamura Y, Brüggen MC, van de Veen W, Sokolowska M, Baerenfaller K, Nadeau K, Akdis M, Akdis CA. The epithelial barrier: The gateway to allergic, autoimmune, and metabolic diseases and chronic neuropsychiatric conditions. Semin Immunol 2023; 70:101846. [PMID: 37801907 DOI: 10.1016/j.smim.2023.101846] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023]
Abstract
Since the 1960 s, our health has been compromised by exposure to over 350,000 newly introduced toxic substances, contributing to the current pandemic in allergic, autoimmune and metabolic diseases. The "Epithelial Barrier Theory" postulates that these diseases are exacerbated by persistent periepithelial inflammation (epithelitis) triggered by exposure to a wide range of epithelial barrier-damaging substances as well as genetic susceptibility. The epithelial barrier serves as the body's primary physical, chemical, and immunological barrier against external stimuli. A leaky epithelial barrier facilitates the translocation of the microbiome from the surface of the afflicted tissues to interepithelial and even deeper subepithelial locations. In turn, opportunistic bacterial colonization, microbiota dysbiosis, local inflammation and impaired tissue regeneration and remodelling follow. Migration of inflammatory cells to susceptible tissues contributes to damage and inflammation, initiating and aggravating many chronic inflammatory diseases. The objective of this review is to highlight and evaluate recent studies on epithelial physiology and its role in the pathogenesis of chronic diseases in light of the epithelial barrier theory.
Collapse
Affiliation(s)
- Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Huseyn Babayev
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Elena Barletta
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Swiss Institute of Bioinformatics (SIB), Davos, Switzerland
| | - Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Manal Bel Imam
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Mengting Huang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Jana Koch
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Swiss Institute of Bioinformatics (SIB), Davos, Switzerland
| | - Manru Li
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Debbie Maurer
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | | | - Stephan R Schneider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Na Sun
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Stephan Traidl
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Alexandra Wallimann
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sebastian Wawrocki
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Damir Zhakparov
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Danielle Fehr
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland; Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Reihane Ziadlou
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland; Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Marie-Charlotte Brüggen
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland; Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Katja Baerenfaller
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Swiss Institute of Bioinformatics (SIB), Davos, Switzerland
| | - Kari Nadeau
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland.
| |
Collapse
|
23
|
Soppert J, Brandt EF, Heussen NM, Barzakova E, Blank LM, Kuepfer L, Hornef MW, Trebicka J, Jankowski J, Berres ML, Noels H. Blood Endotoxin Levels as Biomarker of Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-analysis. Clin Gastroenterol Hepatol 2023; 21:2746-2758. [PMID: 36470528 DOI: 10.1016/j.cgh.2022.11.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND & AIMS Growing evidence supports a role of gut-derived metabolites in nonalcoholic fatty liver disease (NAFLD), but the relation of endotoxin levels with gut permeability and NAFLD stage remains unclear. This systematic review with meta-analysis aims to provide further insights. METHODS PubMed, Embase, and Cochrane Library were searched for studies published until January 2022 assessing blood endotoxins in patients with NAFLD. Meta-analyses and univariate/multivariate meta-regression, as well as correlation analyses, were performed for endotoxin values and potential relationships to disease stage, age, sex, parameters of systemic inflammation, and metabolic syndrome, as well as liver function and histology. RESULTS Forty-three studies were included, of which 34 were used for meta-analyses. Blood endotoxin levels were higher in patients with simple steatosis vs liver-healthy controls (standardized mean difference, 0.86; 95% confidence interval, 0.62-1.11) as well as in patients with nonalcoholic steatohepatitis vs patients with nonalcoholic fatty liver/non-nonalcoholic steatohepatitis (standardized mean difference, 0.81; 95% confidence interval, 0.27-1.35; P = .0078). Consistently, higher endotoxin levels were observed in patients with more advanced histopathological gradings of liver steatosis and fibrosis. An increase of blood endotoxin levels was partially attributed to a body mass index rise in patients with NAFLD compared with controls. Nevertheless, significant increases of blood endotoxin levels in NAFLD retained after compensation for differences in body mass index, metabolic condition, or liver enzymes. Increases in blood endotoxin levels were associated with increases in C-reactive protein concentrations, and in most cases, paralleled a rise in markers for intestinal permeability. CONCLUSION Our results support blood endotoxin levels as relevant diagnostic biomarker for NAFLD, both for disease detection as well as staging during disease progression, and might serve as surrogate marker of enhanced intestinal permeability in NAFLD. Registration number in Prospero: CRD42022311166.
Collapse
Affiliation(s)
- Josefin Soppert
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany; Department of Anesthesiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Elisa Fabiana Brandt
- Department of Internal Medicine III, University Hospital of Aachen, Aachen, Germany
| | - Nicole Maria Heussen
- Department of Medical Statistics, RWTH Aachen University, Aachen, Germany; Center of Biostatistics and Epidemiology, Medical School, Sigmund Freud University, Vienna, Austria
| | - Emona Barzakova
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Lars Mathias Blank
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Lars Kuepfer
- Institute for Systems Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | | | - Jonel Trebicka
- Department of Internal Medicine B, University of Münster, Münster, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany; Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Marie-Luise Berres
- Department of Internal Medicine III, University Hospital of Aachen, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Site Aachen, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
24
|
Chen CY, Ho HC. Roles of gut microbes in metabolic-associated fatty liver disease. Tzu Chi Med J 2023; 35:279-289. [PMID: 38035063 PMCID: PMC10683521 DOI: 10.4103/tcmj.tcmj_86_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 12/02/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is the most common chronic liver disease. Gut dysbiosis is considered a significant contributing factor in disease development. Increased intestinal permeability can be induced by gut dysbiosis, followed by the entry of lipopolysaccharide into circulation to reach peripheral tissue and result in chronic inflammation. We reviewed how microbial metabolites push host physiology toward MAFLD, including short-chain fatty acids (SCFAs), bile acids, and tryptophan metabolites. The effects of SCFAs are generally reported as anti-inflammatory and can improve intestinal barrier function and restore gut microbiota. Gut microbes can influence intestinal barrier function through SCFAs produced by fermentative bacteria, especially butyrate and propionate producers. This is achieved through the activation of free fatty acid sensing receptors. Bile is directly involved in lipid absorption. Gut microbes can alter bile acid composition by bile salt hydrolase-producing bacteria and bacterial hydroxysteroid dehydrogenase-producing bacteria. These bile acids can affect host physiology by activating farnesoid X receptor Takeda G protein-coupled receptor 5. Gut microbes can also induce MAFLD-associated symptoms by producing tryptophan metabolites kynurenine, serotonin, and indole-3-propionate. A summary of bacterial genera involved in SCFAs production, bile acid transformation, and tryptophan metabolism is provided. Many bacteria have demonstrated efficacy in alleviating MAFLD in animal models and are potential therapeutic candidates for MAFLD.
Collapse
Affiliation(s)
- Chun-Yao Chen
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien, Taiwan
| | - Han-Chen Ho
- Department of Anatomy, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
25
|
Shang Y, Widman L, Ebrahimi F, Ludvigsson JF, Hagström H, Wester A. Risk of infections in non-alcoholic fatty liver disease: A nationwide population-based cohort study. Liver Int 2023; 43:2142-2152. [PMID: 37475642 DOI: 10.1111/liv.15680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND AND AIMS Previous literature suggests an association between non-alcoholic fatty liver disease (NAFLD) and infections. We aimed to determine the rate and risk of severe infections in NAFLD compared to the general population. METHODS In this population-based cohort study, we used national registers to identify all patients with a hospital-based diagnosis of NAFLD in Sweden 1987-2020 (n = 14 869). The patients were matched with ≤10 comparators from the general population for age, sex, municipality, and calendar year (n = 137 145). Cox regression was used to estimate hazard ratios (HR) for infections in patients with NAFLD compared to comparators. Cumulative incidences were calculated while accounting for competing risks (non-infection death and liver transplantation). RESULTS Severe infections leading to death or hospitalization occurred in 1990 (13.4%) patients with NAFLD and 9899 (7.2%) comparators during a median of 4.5 and 6.1 years of follow-up, respectively. The rate of severe infections per 1000 person-years was higher in patients with NAFLD (21.0) than comparators (9.1) independently of components related to the metabolic syndrome (adjusted HR 1.9, 95% CI = 1.8-2.0). Infection-related mortality was also higher in NAFLD compared to comparators (adjusted HR 1.8, 95% CI = 1.6-2.2). The 10-year cumulative incidence of severe infections was 16.6% (95% CI = 15.8-17.4) in NAFLD and 8.0% (95% CI = 7.8-8.2) in comparators. CONCLUSION NAFLD was associated with severe infections and infection-related mortality, independently of components associated with the metabolic syndrome. Increased clinical vigilance of severe infections in NAFLD may diminish the risk of premature death.
Collapse
Affiliation(s)
- Ying Shang
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Linnea Widman
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Fahim Ebrahimi
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Gastroenterology and Hepatology, University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Jonas F Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatrics, Örebro University Hospital, Örebro, Sweden
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Hannes Hagström
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
- Division of Hepatology, Department of Upper GI, Karolinska University Hospital, Stockholm, Sweden
| | - Axel Wester
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
26
|
Golubeva JA, Sheptulina AF, Elkina AY, Liusina EO, Kiselev AR, Drapkina OM. Which Comes First, Nonalcoholic Fatty Liver Disease or Arterial Hypertension? Biomedicines 2023; 11:2465. [PMID: 37760906 PMCID: PMC10525922 DOI: 10.3390/biomedicines11092465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/28/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and arterial hypertension (AH) are widespread noncommunicable diseases in the global population. Since hypertension and NAFLD are diseases associated with metabolic syndrome, they are often comorbid. In fact, many contemporary published studies confirm the association of these diseases with each other, regardless of whether other metabolic factors, such as obesity, dyslipidemia, and type 2 diabetes mellites, are present. This narrative review considers the features of the association between NAFLD and AH, as well as possible pathophysiological mechanisms.
Collapse
Affiliation(s)
- Julia A. Golubeva
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Anna F. Sheptulina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy and Preventive Medicine, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Anastasia Yu. Elkina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Intermediate Level Therapy, Saratov State Medical University, 410012 Saratov, Russia
| | - Ekaterina O. Liusina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Anton R. Kiselev
- Coordinating Center for Fundamental Research, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Oxana M. Drapkina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy and Preventive Medicine, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| |
Collapse
|
27
|
Grander C, Grabherr F, Tilg H. Non-alcoholic fatty liver disease: pathophysiological concepts and treatment options. Cardiovasc Res 2023; 119:1787-1798. [PMID: 37364164 PMCID: PMC10405569 DOI: 10.1093/cvr/cvad095] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/30/2022] [Accepted: 06/23/2023] [Indexed: 06/28/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is continually increasing due to the global obesity epidemic. NAFLD comprises a systemic metabolic disease accompanied frequently by insulin resistance and hepatic and systemic inflammation. Whereas simple hepatic steatosis is the most common disease manifestation, a more progressive disease course characterized by liver fibrosis and inflammation (i.e. non-alcoholic steatohepatitis) is present in 10-20% of affected individuals. NAFLD furthermore progresses in a substantial number of patients towards liver cirrhosis and hepatocellular carcinoma. Whereas this disease now affects almost 25% of the world's population and is mainly observed in obesity and type 2 diabetes, NAFLD also affects lean individuals. Pathophysiology involves lipotoxicity, hepatic immune disturbances accompanied by hepatic insulin resistance, a gut dysbiosis, and commonly hepatic and systemic insulin resistance defining this disorder a prototypic systemic metabolic disorder. Not surprisingly many affected patients have other disease manifestations, and indeed cardiovascular disease, chronic kidney disease, and extrahepatic malignancies are all contributing substantially to patient outcome. Weight loss and lifestyle change reflect the cornerstone of treatment, and several medical treatment options are currently under investigation. The most promising treatment strategies include glucagon-like peptide 1 receptor antagonists, sodium-glucose transporter 2 inhibitors, Fibroblast Growth Factor analogues, Farnesoid X receptor agonists, and peroxisome proliferator-activated receptor agonists. Here, we review epidemiology, pathophysiology, and therapeutic options for NAFLD.
Collapse
Affiliation(s)
- Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria
| |
Collapse
|
28
|
Kotsiliti E, Leone V, Schuehle S, Govaere O, Li H, Wolf MJ, Horvatic H, Bierwirth S, Hundertmark J, Inverso D, Zizmare L, Sarusi-Portuguez A, Gupta R, O'Connor T, Giannou AD, Shiri AM, Schlesinger Y, Beccaria MG, Rennert C, Pfister D, Öllinger R, Gadjalova I, Ramadori P, Rahbari M, Rahbari N, Healy ME, Fernández-Vaquero M, Yahoo N, Janzen J, Singh I, Fan C, Liu X, Rau M, Feuchtenberger M, Schwaneck E, Wallace SJ, Cockell S, Wilson-Kanamori J, Ramachandran P, Kho C, Kendall TJ, Leblond AL, Keppler SJ, Bielecki P, Steiger K, Hofmann M, Rippe K, Zitzelsberger H, Weber A, Malek N, Luedde T, Vucur M, Augustin HG, Flavell R, Parnas O, Rad R, Pabst O, Henderson NC, Huber S, Macpherson A, Knolle P, Claassen M, Geier A, Trautwein C, Unger K, Elinav E, Waisman A, Abdullah Z, Haller D, Tacke F, Anstee QM, Heikenwalder M. Intestinal B cells license metabolic T-cell activation in NASH microbiota/antigen-independently and contribute to fibrosis by IgA-FcR signalling. J Hepatol 2023; 79:296-313. [PMID: 37224925 PMCID: PMC10360918 DOI: 10.1016/j.jhep.2023.04.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND & AIMS The progression of non-alcoholic steatohepatitis (NASH) to fibrosis and hepatocellular carcinoma (HCC) is aggravated by auto-aggressive T cells. The gut-liver axis contributes to NASH, but the mechanisms involved and the consequences for NASH-induced fibrosis and liver cancer remain unknown. We investigated the role of gastrointestinal B cells in the development of NASH, fibrosis and NASH-induced HCC. METHODS C57BL/6J wild-type (WT), B cell-deficient and different immunoglobulin-deficient or transgenic mice were fed distinct NASH-inducing diets or standard chow for 6 or 12 months, whereafter NASH, fibrosis, and NASH-induced HCC were assessed and analysed. Specific pathogen-free/germ-free WT and μMT mice (containing B cells only in the gastrointestinal tract) were fed a choline-deficient high-fat diet, and treated with an anti-CD20 antibody, whereafter NASH and fibrosis were assessed. Tissue biopsy samples from patients with simple steatosis, NASH and cirrhosis were analysed to correlate the secretion of immunoglobulins to clinicopathological features. Flow cytometry, immunohistochemistry and single-cell RNA-sequencing analysis were performed in liver and gastrointestinal tissue to characterise immune cells in mice and humans. RESULTS Activated intestinal B cells were increased in mouse and human NASH samples and licensed metabolic T-cell activation to induce NASH independently of antigen specificity and gut microbiota. Genetic or therapeutic depletion of systemic or gastrointestinal B cells prevented or reverted NASH and liver fibrosis. IgA secretion was necessary for fibrosis induction by activating CD11b+CCR2+F4/80+CD11c-FCGR1+ hepatic myeloid cells through an IgA-FcR signalling axis. Similarly, patients with NASH had increased numbers of activated intestinal B cells; additionally, we observed a positive correlation between IgA levels and activated FcRg+ hepatic myeloid cells, as well the extent of liver fibrosis. CONCLUSIONS Intestinal B cells and the IgA-FcR signalling axis represent potential therapeutic targets for the treatment of NASH. IMPACT AND IMPLICATIONS There is currently no effective treatment for non-alcoholic steatohepatitis (NASH), which is associated with a substantial healthcare burden and is a growing risk factor for hepatocellular carcinoma (HCC). We have previously shown that NASH is an auto-aggressive condition aggravated, amongst others, by T cells. Therefore, we hypothesized that B cells might have a role in disease induction and progression. Our present work highlights that B cells have a dual role in NASH pathogenesis, being implicated in the activation of auto-aggressive T cells and the development of fibrosis via activation of monocyte-derived macrophages by secreted immunoglobulins (e.g., IgA). Furthermore, we show that the absence of B cells prevented HCC development. B cell-intrinsic signalling pathways, secreted immunoglobulins, and interactions of B cells with other immune cells are potential targets for combinatorial NASH therapies against inflammation and fibrosis.
Collapse
Affiliation(s)
- Elena Kotsiliti
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Valentina Leone
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany; Research Unit of Radiation Cytogenetics (ZYTO), Helmholtz Zentrum München, Neuherberg, Germany; Institute of Molecular Oncology and Functional Genomics, Clinic and Polyclinic for Internal Medicine II, Klinikum rechts der Isar of the Technical University of Munich (TUM), Munich, Germany; Translational Pancreatic Cancer Research Center, Clinic and Polyclinic for Internal Medicine II, Klinikum rechts der Isar of the Technical University of Munich (TUM), Munich, Germany
| | - Svenja Schuehle
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Olivier Govaere
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Hai Li
- Maurice Müller Laboratories (DBMR), University Department of Visceral Surgery and Medicine Inselspital, University of Bern, Bern, Switzerland
| | - Monika J Wolf
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Helena Horvatic
- Institute of Molecular Medicine and Experimental Immunology, University Hospital, Bonn, Germany
| | - Sandra Bierwirth
- Nutrition and Immunology, Technical University of Munich, Freising-Weihenstephan, Germany; ZIEL - Institute for Food and Health, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Jana Hundertmark
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Donato Inverso
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany; European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Laimdota Zizmare
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center (WSIC), Tübingen University, Tübingen, Germany
| | - Avital Sarusi-Portuguez
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Revant Gupta
- Internal Medicine I, University Hospital Tübingen, Faculty of Medicine, University of Tübingen, Tübingen, Germany; Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Tracy O'Connor
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany; North Park University, Chicago, IL, USA
| | - Anastasios D Giannou
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ahmad Mustafa Shiri
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yehuda Schlesinger
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Maria Garcia Beccaria
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Charlotte Rennert
- Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominik Pfister
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, Clinic and Polyclinic for Internal Medicine II, Klinikum rechts der Isar of the Technical University of Munich (TUM), Munich, Germany
| | - Iana Gadjalova
- Center for Translational Cancer Research (TranslaTUM), Technical University of Munich (TUM), Munich, Germany
| | - Pierluigi Ramadori
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Mohammad Rahbari
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Nuh Rahbari
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Marc E Healy
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Mirian Fernández-Vaquero
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Neda Yahoo
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Jakob Janzen
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Indrabahadur Singh
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany; Emmy Noether Research Group Epigenetic Machineries and Cancer, Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chaofan Fan
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Xinyuan Liu
- Research Center for Immunotherapy (FZI), University Medical Center at the Johannes Gutenberg University, Mainz, Germany; Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Monika Rau
- Division of Hepatology, University-Hospital Würzburg, Würzburg, Germany
| | - Martin Feuchtenberger
- Rheumatology/Clinical Immunology, Kreiskliniken Altötting-Burghausen, Burghausen, Germany
| | - Eva Schwaneck
- Rheumatology, Medical Clinic II, Julius-Maximilians-University Würzburg, Germany
| | - Sebastian J Wallace
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Simon Cockell
- School of Biomedical, Nutrition and Sports Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - John Wilson-Kanamori
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Prakash Ramachandran
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Celia Kho
- Institute of Molecular Medicine and Experimental Immunology, University Hospital, Bonn, Germany
| | - Timothy J Kendall
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Anne-Laure Leblond
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Selina J Keppler
- Center for Translational Cancer Research (TranslaTUM), Technical University of Munich (TUM), Munich, Germany
| | - Piotr Bielecki
- Department of Immunobiology, Yale University School of Medicine, New Haven, USA
| | - Katja Steiger
- Institute of Pathology, Technical University of Munich (TUM), Munich, Germany; Comparative Experimental Pathology, Technical University of Munich (TUM), Munich, Germany
| | - Maike Hofmann
- Internal Medicine I, University Hospital Tübingen, Faculty of Medicine, University of Tübingen, Tübingen, Germany
| | - Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Horst Zitzelsberger
- Research Unit of Radiation Cytogenetics (ZYTO), Helmholtz Zentrum München, Neuherberg, Germany
| | - Achim Weber
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Nisar Malek
- Department Internal Medicine I, Eberhard-Karls University, Tübingen, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Mihael Vucur
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany; European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Richard Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, USA
| | - Oren Parnas
- European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, Clinic and Polyclinic for Internal Medicine II, Klinikum rechts der Isar of the Technical University of Munich (TUM), Munich, Germany; Center for Translational Cancer Research (TranslaTUM), Technical University of Munich (TUM), Munich, Germany
| | - Olivier Pabst
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany
| | - Neil C Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Samuel Huber
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrew Macpherson
- Maurice Müller Laboratories (DBMR), University Department of Visceral Surgery and Medicine Inselspital, University of Bern, Bern, Switzerland
| | - Percy Knolle
- Institute of Molecular Immunology and Experimental Oncology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Manfred Claassen
- Internal Medicine I, University Hospital Tübingen, Faculty of Medicine, University of Tübingen, Tübingen, Germany; Department of Computer Science, University of Tübingen, Tübingen, Germany; Department Internal Medicine I, Eberhard-Karls University, Tübingen, Germany
| | - Andreas Geier
- Division of Hepatology, University-Hospital Würzburg, Würzburg, Germany
| | - Christoph Trautwein
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center (WSIC), Tübingen University, Tübingen, Germany
| | - Kristian Unger
- Research Unit of Radiation Cytogenetics (ZYTO), Helmholtz Zentrum München, Neuherberg, Germany
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel; Cancer-Microbiome Research Division, DKFZ, Heidelberg, Germany
| | - Ari Waisman
- Research Center for Immunotherapy (FZI), University Medical Center at the Johannes Gutenberg University, Mainz, Germany; Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Zeinab Abdullah
- Institute of Molecular Medicine and Experimental Immunology, University Hospital, Bonn, Germany
| | - Dirk Haller
- Nutrition and Immunology, Technical University of Munich, Freising-Weihenstephan, Germany; ZIEL - Institute for Food and Health, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Quentin M Anstee
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK; Newcastle NIHR Biomedical Research Center, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, United Kingdom
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany; M3 Research Institute, Eberhard Karls University Tübingen, Tübingen, Germany.
| |
Collapse
|
29
|
Ng JJJ, Loo WM, Siah KTH. Associations between irritable bowel syndrome and non-alcoholic fatty liver disease: A systematic review. World J Hepatol 2023; 15:925-938. [PMID: 37547029 PMCID: PMC10401413 DOI: 10.4254/wjh.v15.i7.925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/12/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is associated with obesity and metabolic syndrome. IBS and non-alcoholic fatty liver disease (NAFLD) are highly prevalent entities worldwide and may share similar mechanisms including gut dysbiosis, impaired intestinal mucosal barrier and immune system activation.
AIM To systematically review their association according to the Preferred Reporting Items for Systemic Review and Meta-analyses guidelines.
METHODS PubMed, EMBASE and Cochrane Database of Systematic Reviews were searched for relevant papers. Manual searches were also performed.
RESULTS Six studies were included. Both IBS and NAFLD subjects had significantly more metabolic risk factors like hypertension, obesity, dyslipidaemia and diabetes. Our review showed that 23.2% to 29.4% of NAFLD patients had IBS. IBS was significantly higher in NAFLD patients compared with patients without NAFLD (23.2% vs 12.5%, P < 0.01). A higher proportion of IBS patients had NAFLD (65.8% to 74.0%). IBS patients were three times more likely to have NAFLD compared with non-IBS patients (P < 0.001). Two studies showed a significant correlation between the severity of IBS and NAFLD. The proportion of NAFLD subjects with IBS increased with NAFLD severity.
CONCLUSION Further prospective studies are warranted to evaluate the relationship and shared pathways between IBS and NAFLD, potentially leading to the development of future therapeutics.
Collapse
Affiliation(s)
- Jareth Jun Jie Ng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Wai Mun Loo
- AliveoMedical, Mount Alvernia and Mount Elizabeth Hospitals, Singapore 574623, Singapore
| | - Kewin Tien Ho Siah
- Division of Gastroenterology and Hepatology, National University Hospital, Singapore 119228, Singapore
- Department of Medicine, National University Hospital, Singapore 119228, Singapore
| |
Collapse
|
30
|
Kriger-Sharabi O, Malnick SDH, Fisher D. Manipulation of the intestinal microbiome-a slow journey to primetime. World J Clin Cases 2023; 11:4975-4988. [PMID: 37583860 PMCID: PMC10424025 DOI: 10.12998/wjcc.v11.i21.4975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/17/2023] [Accepted: 06/30/2023] [Indexed: 07/26/2023] Open
Abstract
The gut microbiota has important functions in the regulation of normal body functions. Alterations of the microbiota are being increasingly linked to various disease states. The microbiome has been manipulated via the administration of stool from animals or humans, for more than 1000 years. Currently, fecal microbiota transplantation can be performed via endoscopic administration of fecal matter to the duodenum or colon or via capsules of lyophilized stools. More recently fecal microbial transplantation has been shown to be very effective for recurrent Clostridoides difficile infection (CDI). In addition there is some evidence of efficacy in the metabolic syndrome and its hepatic manifestation, metabolic associated fatty liver disease (MAFLD), irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). We review the current literature regarding the microbiome and the pathogenesis and treatment of CDI, MAFLD, IBS and IBD.
Collapse
Affiliation(s)
- Ofra Kriger-Sharabi
- Institute of Gastroenterology, Assuta Medical Center, Ashdod 7747629, Israel
| | - Stephen D H Malnick
- Department of Internal Medicine, Kaplan Medical Center, Rehovot 76100, Israel
| | - David Fisher
- Department of Endocrinology, Soroka Medical Center, Beer Sheva POB 151, Israel
| |
Collapse
|
31
|
Wang Y, Zhang T, Nie L, Zhang Y, Wang J, Liu Q, Dong L, Hu Y, Zhang B, Wang S. Digestibility of Malondialdehyde-Induced Dietary Advanced Lipoxidation End Products and Their Effects on Hepatic Lipid Accumulation in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37390008 DOI: 10.1021/acs.jafc.3c01956] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Advanced lipoxidation end products (ALEs) are formed by modifying proteins with lipid oxidation products. The health effects of ALEs formed in vivo have been extensively studied. However, the digestibility, safety, and health risk of ALEs in heat-processed foods remain unclear. This investigation was performed to determine the structure, digestibility, and effect on the mice liver of dietary ALEs. The results showed that malondialdehyde (MDA) was able to alter the structure of myofibrillar proteins (MPs) to form linear, loop, and cross-linked types of Schiff bases and dihydropyridine derivatives under simulated heat processing, leading to the intra- and intermolecular aggregation of MPs and, thus, reducing the digestibility of MPs. In addition, dietary ALE intake resulted in abnormal liver function and lipid accumulation in mice. The core reason for these adverse effects was the destructive effect of ALEs on the intestinal barrier. Because the damage to the intestinal barrier leads to an increase in lipopolysaccharide levels in the liver, it induces liver damage by modulating hepatic lipid metabolism.
Collapse
Affiliation(s)
- Yaya Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Tianchang Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Linqing Nie
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Junping Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Qisijing Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Lu Dong
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Yaozhong Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
32
|
Ni Y, Nan S, Zheng L, Zhang L, Zhao Y, Fu Z. Time-dependent effect of REV-ERBα agonist SR9009 on nonalcoholic steatohepatitis and gut microbiota in mice. Chronobiol Int 2023; 40:769-782. [PMID: 37161366 DOI: 10.1080/07420528.2023.2207649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/11/2023]
Abstract
The circadian clock is involved in the pathogenesis of nonalcoholic steatohepatitis (NASH), and the target pathways of many NASH candidate drugs are controlled by the circadian clock. However, the application of chronopharmacology in NASH is little considered currently. Here, the time-dependent effect of REV-ERBα agonist SR9009 on diet-induced NASH and microbiota was investigated. C57BL/6J mice were fed a high-cholesterol and high-fat diet (CL) for 12 weeks to induce NASH and then treated with SR9009 either at Zeitgeber time 0 (ZT0) or ZT12 for another 6 weeks. Pharmacological activation of REV-ERBα by SR9009 alleviated hepatic steatosis, insulin resistance, liver inflammation, and fibrosis in CL diet-induced NASH mice. These effects were accompanied by improved gut barrier function and altered microbial composition and function in NASH mice, and the effect tended to be stronger when SR9009 was injected at ZT0. Moreover, SR9009 treatment at different time points resulted in a marked difference in the composition of the microbiota, with a stronger effect on the enrichment of beneficial bacteria and the diminishment of harmful bacteria when SR9009 was administrated at ZT0. Therefore, the time-dependent effect of REV-ERBα agonist on NASH was partly associated with the microbiota, highlighting the potential role of microbiota in the chronopharmacology of NASH and the possibility of discovering new therapeutic strategies for NASH.
Collapse
Affiliation(s)
- Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Sujie Nan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Liujie Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Liqian Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yufeng Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
33
|
Liu L, Yin M, Gao J, Yu C, Lin J, Wu A, Zhu J, Xu C, Liu X. Intestinal Barrier Function in the Pathogenesis of Nonalcoholic Fatty Liver Disease. J Clin Transl Hepatol 2023; 11:452-458. [PMID: 36643028 PMCID: PMC9817057 DOI: 10.14218/jcth.2022.00089] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/09/2022] [Accepted: 07/29/2022] [Indexed: 01/18/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. The mechanisms involved in NAFLD onset are complicated and multifactorial. Recent literature has indicated that altered intestinal barrier function is related to the occurrence and progression of liver disease. The intestinal barrier is important for absorbing nutrients and electrolytes and for defending against toxins and antigens in the enteric environment. Major mechanisms by which the intestinal barrier influences the development of NAFLD involve the altered epithelial layer, decreased intracellular junction integrity, and increased intestinal barrier permeability. Increased intestinal permeability leads to luminal dysbiosis and allows the translocation of pathogenic bacteria and metabolites into the liver, inducing inflammation, immune response, and hepatocyte injury in NAFLD. Although research has been directed to NAFLD in recent decades, the pathophysiological changes in NAFLD initiation and progression are still not completely understood, and the therapeutic targets remain limited. A deeper understanding on the correlation between NAFLD pathogenesis and intestinal barrier regulation must be attained. Therefore, in this review, the components of the intestinal barrier and their respective functions and disruptions during the progression of NAFLD are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chunfang Xu
- Correspondence to: Xiaolin Liu and Chunfang Xu, Department of Gastroenterology, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu 215006, China. ORCID: https://orcid.org/0000-0003-4560-7589 (XL) and https://orcid.org/0000-0001-5648-3003 (CX). Tel/Fax: +86-512-65223637, E-mail: (XL) and (CX)
| | - Xiaolin Liu
- Correspondence to: Xiaolin Liu and Chunfang Xu, Department of Gastroenterology, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu 215006, China. ORCID: https://orcid.org/0000-0003-4560-7589 (XL) and https://orcid.org/0000-0001-5648-3003 (CX). Tel/Fax: +86-512-65223637, E-mail: (XL) and (CX)
| |
Collapse
|
34
|
Veres-Székely A, Szász C, Pap D, Szebeni B, Bokrossy P, Vannay Á. Zonulin as a Potential Therapeutic Target in Microbiota-Gut-Brain Axis Disorders: Encouraging Results and Emerging Questions. Int J Mol Sci 2023; 24:ijms24087548. [PMID: 37108711 PMCID: PMC10139156 DOI: 10.3390/ijms24087548] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The relationship between dysbiosis and central nervous diseases has been proved in the last 10 years. Microbial alterations cause increased intestinal permeability, and the penetration of bacterial fragment and toxins induces local and systemic inflammatory processes, affecting distant organs, including the brain. Therefore, the integrity of the intestinal epithelial barrier plays a central role in the microbiota-gut-brain axis. In this review, we discuss recent findings on zonulin, an important tight junction regulator of intestinal epithelial cells, which is assumed to play a key role in maintaining of the blood-brain barrier function. In addition to focusing on the effect of microbiome on intestinal zonulin release, we also summarize potential pharmaceutical approaches to modulate zonulin-associated pathways with larazotide acetate and other zonulin receptor agonists or antagonists. The present review also addresses the emerging issues, including the use of misleading nomenclature or the unsolved questions about the exact protein sequence of zonulin.
Collapse
Affiliation(s)
- Apor Veres-Székely
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Csenge Szász
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
| | - Domonkos Pap
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Beáta Szebeni
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Péter Bokrossy
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
| | - Ádám Vannay
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| |
Collapse
|
35
|
Shin JH, Lee Y, Song EJ, Lee D, Jang SY, Byeon HR, Hong MG, Lee SN, Kim HJ, Seo JG, Jun DW, Nam YD. Faecalibacterium prausnitzii prevents hepatic damage in a mouse model of NASH induced by a high-fructose high-fat diet. Front Microbiol 2023; 14:1123547. [PMID: 37007480 PMCID: PMC10060964 DOI: 10.3389/fmicb.2023.1123547] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionNonalcoholic steatohepatitis (NASH) is an advanced nonalcoholic fatty liver disease characterized by chronic inflammation and fibrosis. A dysbiosis of the gut microbiota has been associated with the pathophysiology of NASH, and probiotics have proven helpful in its treatment and prevention. Although both traditional and next-generation probiotics have the potential to alleviate various diseases, studies that observe the therapeutic effect of next-generation probiotics on NASH are lacking. Therefore, we investigated whether a next-generation probiotic candidate, Faecalibacterium prausnitzii, contributed to the mitigation of NASH.MethodsIn this study, we conducted 16S rRNA sequencing analyses in patients with NASH and healthy controls. To test F. prausnitzii could alleviate NASH symptoms, we isolated four F. prausnitzii strains (EB-FPDK3, EB-FPDK9, EB-FPDK11, and EB-FPYYK1) from fecal samples collected from four healthy individuals. Mice were maintained on a high-fructose high-fat diet for 16 weeks to induce a NASH model and received oral administration of the bacterial strains. Changes in characteristic NASH phenotypes were assessed via oral glucose tolerance tests, biochemical assays, and histological analyses.Results16S rRNA sequencing analyses confirmed that the relative abundance of F. prausnitzii reduced significantly in patients with NASH compared to healthy controls (p < 0.05). In the NASH mice, F. prausnitzii supplementation improved glucose homeostasis, prevented hepatic lipid accumulation, curbed liver damage and fibrosis, restored damaged gut barrier functions, and alleviated hepatic steatosis and liver inflammation. Furthermore, real-time PCR assays documented that the four F. prausnitzii strains regulated the expression of genes related to hepatic steatosis in these mice.DiscussionOur study, therefore, confirms that the administration of F. prausnitzii bacteria can alleviate NASH symptoms. We propose that F. prausnitzii has the potential to contribute to the next-generation probiotic treatment of NASH.
Collapse
Affiliation(s)
- Ji-Hee Shin
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Yoonmi Lee
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Eun-Ji Song
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Dokyung Lee
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Seo-Yul Jang
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Hye Rim Byeon
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Moon-Gi Hong
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Sang-Nam Lee
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Hyun-Jin Kim
- Division of Applied Life Science (BK21 Four), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju-si, Republic of Korea
| | - Jae-Gu Seo
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
- *Correspondence: Jae-Gu Seo,
| | - Dae Won Jun
- Department of Internal Medicine, Hanyang University, College of Medicine, Seoul, Republic of Korea
- Dae Won Jun,
| | - Young-Do Nam
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
- Young-Do Nam,
| |
Collapse
|
36
|
Li X, Liu YJ, Wang Y, Liu YF, Xu YJ. Epoxy Triglyceride Enhances Intestinal Permeability via Caspase-1/NLRP3/GSDMD and cGAS-STING Pathways in Dextran Sulfate Sodium-Induced Colitis Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4371-4381. [PMID: 36857113 DOI: 10.1021/acs.jafc.2c08134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Oxidized triglyceride monomers are the main cytotoxic products of deep-frying oil. However, its impact on the intestinal barrier, the first health guardian, remains unknown. In this study, HPLC-MS/MS analysis revealed that the epoxy group is the main oxidation product, indicating that it may be the main cytotoxic factor. Therefore, 1-9,10-epoxystearic ester, 2,3-dioleic acid (EGT) and glycerol trioleate (GT) were used to reveal the effect of the epoxy group on the intestinal barrier of dextran sulfate sodium-induced colitis. Characteristics analysis showed that EGT could aggravate intestinal damage. The relative mRNA expression analysis suggested that EGT could activate Caspase-1/NLRP3/GSDMD, thereby inducing pyroptosis. The proinflammatory cytokines activated by pyroptosis and the cGAS-STING pathway were released through the pores, thus inducing the disintegration of the tight junction between the intestinal epithelial cells and enhancing intestinal permeability. Metabonomics further confirmed that EGT can change the composition and content of phospholipids on the cell membrane, indicating the morphological changes of the intestinal epithelial cell membrane. In conclusion, this study highlights that EGT induced intestinal dysfunction via Caspase-1/NLRP3/GSDMD and cGAS-STING pathways.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yan-Jun Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yu Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yuan-Fa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
37
|
Cho YE, Kwon YS, Hwang S. Heterogeneous population of macrophages in the development of non-alcoholic fatty liver disease. LIVER RESEARCH 2023; 7:16-25. [PMID: 39959694 PMCID: PMC11791820 DOI: 10.1016/j.livres.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/09/2022] [Accepted: 06/25/2022] [Indexed: 11/21/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by a spectrum of hepatic diseases, including fatty liver, non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma. NAFLD is a hepatic manifestation of metabolic syndrome and has become the leading cause of liver transplantation, necessitating an in-depth understanding of its underlying pathogenic mechanisms and the identification of viable drug targets. Although fatty liver is benign and does not exert marked liver damage or inflammation, NAFLD progression involves inflammatory processes facilitated by immune cells. Macrophages and monocytes constitute the pool of innate immune cells that contribute to NAFLD development in association with other cell types, such as neutrophils, T cells, and natural killer cells. The concept that macrophages contribute to the inflammatory processes in NAFLD development has long been debated; however, the remarkable advances in experimental techniques have rapidly uncovered new subpopulations of macrophages and monocytes, whose functions need to be comprehensively elucidated. The current review focuses on the recent expansion of our knowledge of the heterogeneous population of macrophages crucially involved in NAFLD development. In addition, the present paper discusses ongoing efforts to target macrophages and inflammatory processes to develop optimal therapeutic agents against non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Ye Eun Cho
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Yong Seong Kwon
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Seonghwan Hwang
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
38
|
The Effects of Probiotics on Small Intestinal Microbiota Composition, Inflammatory Cytokines and Intestinal Permeability in Patients with Non-Alcoholic Fatty Liver Disease. Biomedicines 2023; 11:biomedicines11020640. [PMID: 36831176 PMCID: PMC9953317 DOI: 10.3390/biomedicines11020640] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/02/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) has soared globally. As our understanding of the disease grows, the role of the gut-liver axis (GLA) in NAFLD pathophysiology becomes more apparent. Hence, we focused mainly on the small intestinal area to explore the role of GLA. We looked at how multi-strain probiotics (MCP® BCMC® strains) containing six different Lactobacillus and Bifidobacterium species affected the small intestinal gut microbiota, inflammatory cytokines, and permeability in NAFLD patients. After six months of supplementation, biochemical blood analysis did not show any discernible alterations in either group. Five predominant phyla known as Actinobacteria, Proteobacteria, Firmicutes, Bacteroidota and Fusobacteria were found in NAFLD patients. The probiotics group demonstrated a significant cluster formation of microbiota composition through beta-diversity analysis (p < 0.05). This group significantly reduced three unclassifiable species: unclassified_Proteobacteria, unclassified_Streptococcus, and unclassified_Stenotrophomonas. In contrast, the placebo group showed a significant increase in Prevotella_melaninogenica and Rothia_mucilaginosa, which were classified as pathogens. Real-time quantitative PCR analysis of small intestinal mucosal inflammatory cytokines revealed a significant decrease in IFN-γ (-7.9 ± 0.44, p < 0.0001) and TNF-α (-0.96 ± 0.25, p < 0.0033) in the probiotics group but an increase in IL-6 (12.79 ± 2.24, p < 0.0001). In terms of small intestinal permeability analysis, the probiotics group, unfortunately, did not show any positive changes through ELISA analysis. Both probiotics and placebo groups exhibited a significant increase in the level of circulating zonulin (probiotics: 107.6 ng/mL ± 124.7, p = 0.005 vs. placebo: 106.9 ng/mL ± 101.3, p = 0.0002) and a significant decrease in circulating zonula occluden-1 (ZO-1) (probiotics: -34.51 ng/mL ± 18.38, p < 0.0001 vs. placebo: -33.34 ng/mL ± 16.62, p = 0.0001). The consumption of Lactobacillus and Bifidobacterium suggested the presence of a well-balanced gut microbiota composition. Probiotic supplementation improves dysbiosis in NAFLD patients. This eventually stabilised the expression of inflammatory cytokines and mucosal immune function. To summarise, more research on probiotic supplementation as a supplement to a healthy diet and lifestyle is required to address NAFLD and its underlying causes.
Collapse
|
39
|
Understanding NAFLD: From Case Identification to Interventions, Outcomes, and Future Perspectives. Nutrients 2023; 15:nu15030687. [PMID: 36771394 PMCID: PMC9921401 DOI: 10.3390/nu15030687] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
While non-alcoholic fatty liver disease (NAFLD) is a prevalent and frequent cause of liver-related morbidity and mortality, it is also strongly associated with cardiovascular disease-related morbidity and mortality, likely driven by its associations with insulin resistance and other manifestations of metabolic dysregulation. However, few satisfactory pharmacological treatments are available for NAFLD due in part to its complex pathophysiology, and challenges remain in stratifying individual patient's risk for liver and cardiovascular disease related outcomes. In this review, we describe the development and progression of NAFLD, including its pathophysiology and outcomes. We also describe different tools for identifying patients with NAFLD who are most at risk of liver-related and cardiovascular-related complications, as well as current and emerging treatment options, and future directions for research.
Collapse
|
40
|
De Munck TJI, Verhaegh P, Spooren C, Mujagic Z, Wienhold T, Jonkers D, Masclee AAM, Koek GH, Verbeek J. Colonic permeability is increased in non-cirrhotic patients with nonalcoholic fatty liver disease. Dig Liver Dis 2023; 55:614-621. [PMID: 36710170 DOI: 10.1016/j.dld.2022.12.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/21/2022] [Accepted: 12/26/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND AIM Intestinal permeability (IP) plays an important role in the pathophysiology of nonalcoholic fatty liver disease (NAFLD). We assessed site-specific (gastroduodenum, small intestine, colon and whole gut) IP in NAFLD patients and healthy controls (HC) and its association with the degree of hepatic steatosis, hepatic fibrosis and dietary composition in these NAFLD patients. METHODS In vivo site-specific IP was analysed with a validated multi-sugar test in NAFLD patients and HC. Furthermore, in NAFLD patients, hepatic steatosis (chemical shift MRI), hepatic fibrosis (transient elastography) and dietary composition (food frequency questionnaire) were assessed. RESULTS Fifty-two NAFLD patients and forty-six HC were included in this study. Small intestinal (P <0.001), colonic (P = 0.004) and whole gut (P <0.001) permeability were increased in NAFLD patients compared to HC. Furthermore, colonic permeability (P = 0.029) was significantly higher in NAFLD patients with clinically significant fibrosis compared to those without. Colonic permeability remained positively associated with the presence of clinically significant fibrosis (P = 0.017) after adjustment for age, sex and BMI. CONCLUSION Colonic permeability is increased in at least a subset of NAFLD patients compared to HC and is independently associated with clinically significant NAFLD fibrosis.
Collapse
Affiliation(s)
- Toon J I De Munck
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Centre, Maastricht, the Netherlands; School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands.
| | - Pauline Verhaegh
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Centre, Maastricht, the Netherlands; School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Corinne Spooren
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Centre, Maastricht, the Netherlands; School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Zlatan Mujagic
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Centre, Maastricht, the Netherlands; School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Tobias Wienhold
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Daisy Jonkers
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Centre, Maastricht, the Netherlands; School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Ad A M Masclee
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Centre, Maastricht, the Netherlands; School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Ger H Koek
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Centre, Maastricht, the Netherlands; School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Jef Verbeek
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Centre, Maastricht, the Netherlands; School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands; Department of Gastroenterology and Hepatology, University Hospitals KU Leuven, Leuven, Belgium
| |
Collapse
|
41
|
Jiang X, Yang Q, Qu H, Chen Y, Zhu S. Endogenous n-3 PUFAs Improve Non-Alcoholic Fatty Liver Disease through FFAR4-Mediated Gut-Liver Crosstalk. Nutrients 2023; 15:nu15030586. [PMID: 36771292 PMCID: PMC9919706 DOI: 10.3390/nu15030586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The gut-liver axis plays a key role in the development and progression of non-alcoholic fatty liver disease (NAFLD). Due to the complexity and incomplete understanding of the cross-talk between the gut and liver, effective therapeutic targets are largely unknown. Free fatty acid receptors (FFARs) may bridge the cross-talk between the gut and liver. FFAR4 has received considerable attention due to its important role in lipid metabolism. However, the role of FFAR4 in this cross talk in NAFLD remains unclear. In this study, mice with high endogenous n-3 PUFAs but FFAR4 deficiency were generated by crossbreeding Fat-1 and FFAR4 knockout mice. FFAR4 deficiency blocked the protective effects of high endogenous n-3 PUFAs on intestinal barrier dysfunction and hepatic steatosis. In addition, FFAR4 deficiency decreased gut microbiota diversity and enriched Rikenella, Anaerotruncus, and Enterococcus, and reduced Dubosiella, Ruminococcaceae UCG-010, Ruminococcaceae UCG-014, Coriobacteriaceae UCG-002, Faecalibaculum, Ruminococcaceae UCG-009, and Akkermansia. Notably, FFAR4 deficiency co-regulated pantothenic acid and CoA biosynthesis, β-alanine metabolism, and sphingolipid metabolism pathways in the gut and liver, potentially associated with the aggravation of NAFLD. Together, the beneficial effects of n-3 PUFAs on the gut and liver were mediated by FFAR4, providing insights on the role of FFAR4 in the treatment of NAFLD through the gut-liver axis.
Collapse
Affiliation(s)
- Xuan Jiang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qin Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Hongyan Qu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yongquan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and School of Translational Medicine, Jiangnan University, Wuxi 214122, China
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and School of Translational Medicine, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
42
|
Diversity and Comparison of Intestinal Desulfovibrio in Patients with Liver Cirrhosis and Healthy People. Microorganisms 2023; 11:microorganisms11020276. [PMID: 36838242 PMCID: PMC9960842 DOI: 10.3390/microorganisms11020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Desulfovibrio belongs to Sulfate-reducing bacteria (SRB), which are widely present in anaerobic environments, including the human gut. Desulfovibrio has been associated with many human diseases, including chronic liver disease. However, the characteristics and difference of Desulfovibrio from fecal samples of healthy volunteers (HV) and patients with liver cirrhosis (LC) have not been fully elucidated. Here, we isolated Desulfovibrio from the feces of 6 HV and 9 LC, and 88 Desulfovibrio strains were obtained. In the feces of HV, 55% of isolated strains were D. desulfuricans, followed by D. intestinalis (15%), D. simplex (11%), D. piger (9%), D. legallii (4%), Cupidesulfovibrio oxamicus (4%) and D. fairfieldensis (2%). However, only D. desulfuricans (60%) and C. oxamicus (40%) were isolated from fecal samples of patients with LC. Our results suggest that there was a significant difference in the desulfurization ability and the H2S production ability of different Desulfovibrio. Desulfovibrio. Furthermore, we found that Desulfovibrio isolated from the patients with LC generally had a higher hydrogen sulfide production capacity, gastrointestinal tolerance, and levels of antibiotic resistance than the same species isolated from HV. Our findings suggested that Desulfovibrio may be associated with the occurrence and development of liver cirrhosis.
Collapse
|
43
|
Krznarić J, Vince A. The Role of Non-Alcoholic Fatty Liver Disease in Infections. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122052. [PMID: 36556417 PMCID: PMC9788238 DOI: 10.3390/life12122052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease, affecting one third of the Western population. The hallmark of the disease is excessive storage of fat in the liver. Most commonly, it is caused by metabolic syndrome (or one of its components). Even though the development of NAFLD has multiple effects on the human organism resulting in systemic chronic low-grade inflammation, this review is focused on NAFLD as a risk factor for the onset, progression, and outcomes of infectious diseases. The correlation between NAFLD and infections is still unclear. Multiple factors (obesity, chronic inflammation, altered immune system function, insulin resistance, altered intestinal microbiota, etc.) have been proposed to play a role in the development and progression of infections in people with NAFLD, although the exact mechanism and the interplay of mentioned factors is still mostly hypothesized. In this article we review only the selection of well-researched topics on NAFLD and infectious diseases (bacterial pneumonia, COVID, H. pylori, urinary tract infections, C. difficile, bacteremia, hepatitis B, hepatitis C, HIV, and periodontitis).
Collapse
Affiliation(s)
- Juraj Krznarić
- Department for Infectious Diseases, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department for Viral Hepatitis, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia
| | - Adriana Vince
- Department for Infectious Diseases, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department for Viral Hepatitis, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
44
|
High polyphenolic cranberry beverage alters specific fecal microbiota but not gut permeability following aspirin challenge in healthy obese adults: A randomized, double-blind, crossover trial. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
45
|
Cheon SY, Song J. Novel insights into non-alcoholic fatty liver disease and dementia: insulin resistance, hyperammonemia, gut dysbiosis, vascular impairment, and inflammation. Cell Biosci 2022; 12:99. [PMID: 35765060 PMCID: PMC9237975 DOI: 10.1186/s13578-022-00836-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/20/2022] [Indexed: 02/08/2023] Open
Abstract
AbstractNon-alcoholic fatty liver disease (NAFLD) is a metabolic disease characterized by multiple pathologies. The progression of dementia with NAFLD may be affected by various risk factors, including brain insulin resistance, cerebrovascular dysfunction, gut dysbiosis, and neuroinflammation. Many recent studies have focused on the increasing prevalence of dementia in patients with NAFLD. Dementia is characterized by cognitive and memory deficits and has diverse subtypes, including vascular dementia, Alzheimer’s dementia, and diabetes mellitus-induced dementia. Considering the common pathological features of NAFLD and dementia, further studies on the association between them are needed to find appropriate therapeutic solutions for diseases. This review summarizes the common pathological characteristics and mechanisms of NAFLD and dementia. Additionally, it describes recent evidence on association between NAFLD and dementia progression and provides novel perspectives with regard to the treatment of patients with dementia secondary to NAFLD.
Collapse
|
46
|
Pezzino S, Sofia M, Faletra G, Mazzone C, Litrico G, La Greca G, Latteri S. Gut-Liver Axis and Non-Alcoholic Fatty Liver Disease: A Vicious Circle of Dysfunctions Orchestrated by the Gut Microbiome. BIOLOGY 2022; 11:1622. [PMID: 36358323 PMCID: PMC9687983 DOI: 10.3390/biology11111622] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 09/24/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent, multifactorial, and poorly understood liver disease with an increasing incidence worldwide. NAFLD is typically asymptomatic and coupled with other symptoms of metabolic syndrome. The prevalence of NAFLD is rising in tandem with the prevalence of obesity. In the Western hemisphere, NAFLD is one of the most prevalent causes of liver disease and liver transplantation. Recent research suggests that gut microbiome dysbiosis may play a significant role in the pathogenesis of NAFLD by dysregulating the gut-liver axis. The so-called "gut-liver axis" refers to the communication and feedback loop between the digestive system and the liver. Several pathological mechanisms characterized the alteration of the gut-liver axis, such as the impairment of the gut barrier and the increase of the intestinal permeability which result in endotoxemia and inflammation, and changes in bile acid profiles and metabolite levels produced by the gut microbiome. This review will explore the role of gut-liver axis disruption, mediated by gut microbiome dysbiosis, on NAFLD development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Saverio Latteri
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| |
Collapse
|
47
|
Kim MY, Lee SJ, Randolph G, Han YH. Lubiprostone significantly represses fatty liver diseases via induction of mucin and HDL release in mice. Life Sci 2022; 311:121176. [PMID: 36372211 DOI: 10.1016/j.lfs.2022.121176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
|
48
|
Lin YC, Lin HF, Wu CC, Chen CL, Ni YH. Pathogenic effects of Desulfovibrio in the gut on fatty liver in diet-induced obese mice and children with obesity. J Gastroenterol 2022; 57:913-925. [PMID: 35976494 DOI: 10.1007/s00535-022-01909-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 07/24/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Although we know the key role of gut dysbiosis in nonalcoholic fatty liver disease (NAFLD), it remains unclear what microbe(s) are responsible. This study aims to identify the microbes that cause NAFLD. METHODS C57BL/6JNarl male mice fed a high-fat diet (HFD) were orally administered Lactobacillus reuteri (L. reuteri) or Lactobacillus rhamnosus GG plus Bifidobacterium animalis subsp. lactis BB12 (LGG plus BB12). Their fecal microbiomes identified by 16S rRNA sequencing were correlated with the severity of fatty liver. We then used a human cohort to confirm the role of the microbe(s). The HFD-fed mice were administrated with the identified bacterium, Desulfovibrio. The histopathological changes in the liver and ileum were analyzed. RESULTS Lactobacillus and Bifidobacterium improved hepatic steatosis and fibrosis in HFD-fed mice, which was related to the decreased abundance of Desulfovibrio in feces. Further human study confirmed the amount of D. piger in the fecal microbiota of obese children with NAFLD was increased. We then administered D. piger and found aggravated hepatic steatosis and fibrosis in HFD-fed mice. Hepatic expression of CD36 was significantly increased in HFD-fed mice gavaged with D. piger. In HepG2 cells, overexpression of CD36 increased lipid droplets, whereas knockdown of CD36 decreased lipid droplets. HFD-fed mice gavaged with D. piger had a decrease in the villus length, crypt depth, and zonula occludens-1 density in the ileum tissue. CONCLUSIONS Our findings provide novel insights into the role of Desulfovibrio dysregulation in NAFLD. Modulation of Desulfovibrio may be a potential target for the treatment of NAFLD.
Collapse
Affiliation(s)
- Yu-Cheng Lin
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,Asia Eastern University of Science and Technology, New Taipei City, Taiwan
| | - Hsueh-Fang Lin
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chi-Chien Wu
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chun-Liang Chen
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yen-Hsuan Ni
- Departments of Pediatrics, College of Medicine, National Taiwan University, No.8, Chung Shan S. Rd., Taipei City, 10002, Taiwan.
| |
Collapse
|
49
|
Abenavoli L, Maurizi V, Rinninella E, Tack J, Di Berardino A, Santori P, Rasetti C, Procopio AC, Boccuto L, Scarpellini E. Fecal Microbiota Transplantation in NAFLD Treatment. Medicina (B Aires) 2022; 58:medicina58111559. [PMID: 36363516 PMCID: PMC9695159 DOI: 10.3390/medicina58111559] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Introduction: Gut microbiota is not only a taxonomic biologic ecosystem but is also involved in human intestinal and extra-intestinal functions such as immune system modulation, nutrient absorption and digestion, as well as metabolism regulation. The latter is strictly linked to non-alcoholic fatty liver disease (NAFLD) pathophysiology. Materials and methods: We reviewed the literature on the definition of gut microbiota, the concepts of “dysbiosis” and “eubiosis”, their role in NAFLD pathogenesis, and the data on fecal microbiota transplantation (FMT) in these patients. We consulted the main medical databases using the following keywords, acronyms, and their associations: gut microbiota, eubiosis, dysbiosis, bile acids, NAFLD, and FMT. Results: Gut microbiota qualitative and quantitative composition is different in healthy subjects vs. NALFD patients. This dysbiosis is associated with and involved in NAFLD pathogenesis and evolution to non-acoholic steatohepatitis (NASH), liver cirrhosis, and hepatocellular carcinoma (HCC). In detail, microbial-driven metabolism of bile acids (BAs) and interaction with hepatic and intestinal farnesoid nuclear X receptor (FXR) have shown a determinant role in liver fat deposition and the development of fibrosis. Over the use of pre- or probiotics, FMT has shown preclinical and initial clinical promising results in NAFLD treatment through re-modulation of microbial dysbiosis. Conclusions: Promising clinical data support a larger investigation of gut microbiota dysbiosis reversion through FMT in NAFLD using randomized clinical trials to design precision-medicine treatments for these patients at different disease stages.
Collapse
Affiliation(s)
- Ludovico Abenavoli
- Department of Health Sciences, University “Magna Græcia”, 88100 Catanzaro, Italy
| | - Valentina Maurizi
- Internal Medicine Residency Program, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Emanuele Rinninella
- Clinical Nutrition Unit, Fondazione Policlinico A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Jan Tack
- T.A.R.G.I.D., Gasthuisberg University Hospital, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Arianna Di Berardino
- Clinical Nutrition and Internal Medicine Unit, “Madonna del Soccorso” General Hospital, 63074 San Benedetto del Tronto, Italy
| | - Pierangelo Santori
- Hepatology and Internal Medicine Unit, “Madonna del Soccorso” General Hospital, 63074 San Benedetto del Tronto, Italy
| | - Carlo Rasetti
- Clinical Nutrition and Internal Medicine Unit, “Madonna del Soccorso” General Hospital, 63074 San Benedetto del Tronto, Italy
- Hepatology and Internal Medicine Unit, “Madonna del Soccorso” General Hospital, 63074 San Benedetto del Tronto, Italy
| | | | - Luigi Boccuto
- Healthcare Genetics and Genomics Doctoral Program, School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, 105 Sikes Hall, Clemson, SC 29631, USA
| | - Emidio Scarpellini
- T.A.R.G.I.D., Gasthuisberg University Hospital, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Clinical Nutrition and Internal Medicine Unit, “Madonna del Soccorso” General Hospital, 63074 San Benedetto del Tronto, Italy
- Correspondence: ; Tel.: +3907-3579-3301; Fax: +3907-3579-3306
| |
Collapse
|
50
|
Enomoto M, Kaji K, Nishimura N, Fujimoto Y, Murata K, Takeda S, Tsuji Y, Fujinaga Y, Takaya H, Kawaratani H, Namisaki T, Akahane T, Yoshiji H. Rifaximin and lubiprostone mitigate liver fibrosis development by repairing gut barrier function in diet-induced rat steatohepatitis. Dig Liver Dis 2022; 54:1392-1402. [PMID: 35514019 DOI: 10.1016/j.dld.2022.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Although gut-derived lipopolysaccharide (LPS) affects the progression of non-alcoholic steatohepatitis (NASH) pathogenesis, few studies have focused on this relationship to develop treatments for NASH. AIMS To explore the effects of combination with rifaximin and lubiprostone on NASH liver fibrosis through the modulation of gut barrier function. METHODS To induce steatohepatitis, F344 rats were fed a choline-deficient l-amino acid-defined (CDAA) diet for 12 weeks and received oral administration of rifaximin and/or lubiprostone. Histological, molecular, and fecal microbial analyses were performed. Barrier function in Caco-2 cells were assessed by in vitro assays. RESULTS Combination rifaximin/lubiprostone treatment significantly suppressed macrophage expansion, proinflammatory responses, and liver fibrosis in CDAA-fed rats by blocking hepatic translocation of LPS and activation of toll-like receptor 4 signaling. Rifaximin and lubiprostone improved intestinal permeability via restoring tight junction proteins (TJPs) with the intestinal activation of pregnane X receptor and chloride channel-2, respectively. Moreover, this combination increased the abundance of Bacteroides, Lactobacillus, and Faecalibacterium as well as decreased that of Veillonella resulting in an increase of fecal short-chain fatty acids and a decrease of intestinal sialidase activity. Both agents also directly suppressed the LPS-induced barrier dysfunction and depletion of TJPs in Caco-2 cells. CONCLUSION The combination of rifaximin and lubiprostone may provide a novel strategy for treating NASH-related fibrosis.
Collapse
Affiliation(s)
- Masahide Enomoto
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Kosuke Kaji
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan.
| | - Norihisa Nishimura
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Yuki Fujimoto
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Koji Murata
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Soichi Takeda
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Yuki Tsuji
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Yukihisa Fujinaga
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Hiroaki Takaya
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Hideto Kawaratani
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Tadashi Namisaki
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Takemi Akahane
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| |
Collapse
|