1
|
Etesami H. Enhancing crop disease management through integrating biocontrol bacteria and silicon fertilizers: Challenges and opportunities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123102. [PMID: 39471603 DOI: 10.1016/j.jenvman.2024.123102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
To achieve sustainable disease management in agriculture, there's a growing interest in using beneficial microorganisms as alternatives to chemical pesticides. Bacteria, in particular, have been extensively studied as biological control agents, but their inconsistent performance and limited availability hinder broader adoption. Research continues to explore innovative biocontrol technologies, which can be enhanced by combining silicon (Si) with biocontrol plant growth-promoting rhizobacteria (PGPR). Both biocontrol PGPR and Si demonstrate effectiveness in reducing plant disease under stress conditions, potentially leading to synergistic effects when used together. This review examines the individual mechanisms by which biocontrol PGPR and Si fertilizers manage plant diseases, emphasizing their roles in enhancing plant defense and decreasing disease incidence. Various Si fertilizer sources allow for flexible application methods, suitable for different target diseases and plant species. However, challenges exist, such as inconsistent soil Si data, lack of standardized soil tests, and limited availability of Si fertilizers. Addressing these issues necessitates collaborative efforts to develop improved Si fertilizers and tailored application strategies for specific cropping systems. Additionally, exploring silicate-solubilizing biocontrol bacteria to enhance Si availability in soils introduces intriguing research avenues. Investigating these bacteria's diversity and mechanisms can optimize Si access for plants and bolster disease resistance. Overall, combining biocontrol PGPR and Si fertilizers or silicate-solubilizing biocontrol bacteria shows promise for sustainable agriculture, enhancing crop productivity while reducing reliance on chemical inputs and promoting environmental sustainability.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Jan S, Bhardwaj S, Singh B, Kapoor D. Silicon efficacy for the remediation of metal contaminated soil. 3 Biotech 2024; 14:212. [PMID: 39193011 PMCID: PMC11345352 DOI: 10.1007/s13205-024-04049-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
In the course of past two decade anthropogenic activities have reinforced, begetting soil and water defilement. A plethora of heavy metals alters and limits plant growth and yield, with opposing effect on agricultural productivity. Silicon often perceived as plant alimentary 'nonentity'. A suite of determinants associated with silicon have been lately discerned, concerning plant physiology, chemistry, gene regulation/expression and interaction with different organisms. Exogenous supplementation of silicon renders resistance against heavy-metal stress. Predominantly, plants having significant amount of silicon in root and shoot thus are barely prone to pest onset and manifest greater endurance against abiotic stresses including heavy-metal toxicity. Silicon-mediated stress management involves abatement of metal ions within soil, co-precipitation of metal ions, gene modulation associated with metal transport, chelation, activation of antioxidants (enzymatic and non-enzymatic), metal ion compartmentation and structural metamorphosis in plants. Silicon supplementation also stimulates expression of stress-resistant genes under heavy-metal toxicity to provide plant tolerance under stress conditions. Ergo, to boost metal tolerance within crops, immanent genetic potential for silicon assimilation should be enhanced. Current study, addresses the potential role and mechanistic interpretation of silicon induced mitigation of heavy-metal stress in plants.
Collapse
Affiliation(s)
- Sadaf Jan
- Technology Enabling Centre, Panjab University, Chandigarh, 160014 India
- School of Bioengineering & Biosciences, Lovely Professional University, Jalandhar, Punjab 144411 India
| | - Savita Bhardwaj
- Department of Botany, MCM DAV College, Kangra, Himachal Pradesh 176001 India
| | - Bhupender Singh
- School of Bioengineering & Biosciences, Lovely Professional University, Jalandhar, Punjab 144411 India
| | - Dhriti Kapoor
- Department of Botany, Shoolini University, Solan Oachghat Kumarhatti Highway, Bajhol, Himachal Pradesh 173229 India
| |
Collapse
|
3
|
Osibe DA, Hojo Y, Shinya T, Mitani-Ueno N, Galis I. Comprehensive analysis of silicon impact on defense and metabolic responses in rice exposed to herbivory stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1399562. [PMID: 38872888 PMCID: PMC11169889 DOI: 10.3389/fpls.2024.1399562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/15/2024] [Indexed: 06/15/2024]
Abstract
Silicon (Si) uptake is generally beneficial for plants that need protection from insect herbivores. In pursue of mechanisms involved in Si-mediated defense, we comprehensively explored the impact of Si on several defensive and metabolic traits in rice exposed to simulated and real herbivory of Mythimna loreyi Duponchel larvae. Hydroponic experiments showed that Si-deprived rice supplemented with Si 72 h prior to insect infestation were similarly resistant to larvae as plants continuously grown in Si-containing media. Both Si and herbivory altered primary metabolism in rice, including the levels of several sugars, amino acids, and organic acids. While the accumulation of sugars was generally positively correlated with Si presence, multiple amino acids showed a negative correlation trend with Si supplementation. The levels of secondary metabolites, including isopentylamine, p-coumaroylputrescine and feruloylputrescine, were typically higher in the leaves of Si-supplemented plants exposed to herbivory stress compared to Si-deprived plants. In addition, simulated herbivory treatment in Si-supplemented plants induced more volatile emissions relative to Si-deprived plants, which was consistent with the increased transcripts of key genes involved in volatile biosynthesis. In ecological interactions, Si alone did not affect the oviposition choice of M. loreyi but gravid females showed a significant preference for simulated herbivory-treated/Si-deprived compared to Si-supplemented plants. Our data suggest that apart from mechanical defense, Si may affect rice metabolism in multiple ways that might enhance/modulate defense responses of rice under herbivory stress.
Collapse
Affiliation(s)
- Dandy Ahamefula Osibe
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- Department of Plant Science and Biotechnology, University of Nigeria, Nsukka, Nigeria
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Namiki Mitani-Ueno
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| |
Collapse
|
4
|
Berrabah F, Benaceur F, Yin C, Xin D, Magne K, Garmier M, Gruber V, Ratet P. Defense and senescence interplay in legume nodules. PLANT COMMUNICATIONS 2024; 5:100888. [PMID: 38532645 PMCID: PMC11009364 DOI: 10.1016/j.xplc.2024.100888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/05/2024] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
Immunity and senescence play a crucial role in the functioning of the legume symbiotic nodules. The miss-regulation of one of these processes compromises the symbiosis leading to death of the endosymbiont and the arrest of the nodule functioning. The relationship between immunity and senescence has been extensively studied in plant organs where a synergistic response can be observed. However, the interplay between immunity and senescence in the symbiotic organ is poorly discussed in the literature and these phenomena are often mixed up. Recent studies revealed that the cooperation between immunity and senescence is not always observed in the nodule, suggesting complex interactions between these two processes within the symbiotic organ. Here, we discuss recent results on the interplay between immunity and senescence in the nodule and the specificities of this relationship during legume-rhizobium symbiosis.
Collapse
Affiliation(s)
- Fathi Berrabah
- Faculty of Sciences, University Amar Telidji, 03000 Laghouat, Algeria; Research Unit of Medicinal Plants (RUMP), National Center of Biotechnology Research, CRBt, 25000 Constantine, Algeria.
| | - Farouk Benaceur
- Faculty of Sciences, University Amar Telidji, 03000 Laghouat, Algeria; Research Unit of Medicinal Plants (RUMP), National Center of Biotechnology Research, CRBt, 25000 Constantine, Algeria
| | - Chaoyan Yin
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Dawei Xin
- Key Laboratory of Soybean Biology in the Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Kévin Magne
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Marie Garmier
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Véronique Gruber
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France.
| | - Pascal Ratet
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| |
Collapse
|
5
|
Lata-Tenesaca LF, Oliveira MJB, Barros AV, Picanço BBM, Rodrigues FÁ. Physiological and Biochemical Aspects of Silicon-Mediated Resistance in Maize against Maydis Leaf Blight. PLANTS (BASEL, SWITZERLAND) 2024; 13:531. [PMID: 38498536 PMCID: PMC10893398 DOI: 10.3390/plants13040531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
Maydis leaf blight (MLB), caused by the necrotrophic fungus Bipolaris maydis, has caused considerable yield losses in maize production. The hypothesis that maize plants with higher foliar silicon (Si) concentration can be more resistant against MLB was investigated in this study. This goal was achieved through an in-depth analysis of the photosynthetic apparatus (parameters of leaf gas exchange chlorophyll (Chl) a fluorescence and photosynthetic pigments) changes in activities of defense and antioxidative enzymes in leaves of maize plants with (+Si; 2 mM) and without (-Si; 0 mM) Si supplied, as well as challenged and not with B. maydis. The +Si plants showed reduced MLB symptoms (smaller lesions and lower disease severity) due to higher foliar Si concentration and less production of malondialdehyde, hydrogen peroxide, and radical anion superoxide compared to -Si plants. Higher values for leaf gas exchange (rate of net CO2 assimilation, stomatal conductance to water vapor, and transpiration rate) and Chl a fluorescence (variable-to-maximum Chl a fluorescence ratio, photochemical yield, and yield for dissipation by downregulation) parameters along with preserved pool of chlorophyll a+b and carotenoids were noticed for infected +Si plants compared to infected -Si plants. Activities of defense (chitinase, β-1,3-glucanase, phenylalanine ammonia-lyase, polyphenoloxidase, peroxidase, and lipoxygenase) and antioxidative (ascorbate peroxidase, catalase, superoxide dismutase, and glutathione reductase) enzymes were higher for infected +Si plants compared to infected -Si plants. Collectively, this study highlights the importance of using Si to boost maize resistance against MLB considering the more operative defense reactions and the robustness of the antioxidative metabolism of plants along with the preservation of their photosynthetic apparatus.
Collapse
Affiliation(s)
| | | | | | | | - Fabrício Ávila Rodrigues
- Departamento de Fitopatologia, Laboratório da Interação Planta-Patógeno, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (L.F.L.-T.); (M.J.B.O.); (A.V.B.); (B.B.M.P.)
| |
Collapse
|
6
|
Bilal S, Khan T, Asaf S, Khan NA, Saad Jan S, Imran M, Al-Rawahi A, Khan AL, Lee IJ, Al-Harrasi A. Silicon-Induced Morphological, Biochemical and Molecular Regulation in Phoenix dactylifera L. under Low-Temperature Stress. Int J Mol Sci 2023; 24:ijms24076036. [PMID: 37047009 PMCID: PMC10094002 DOI: 10.3390/ijms24076036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Climate changes abruptly affect optimum growth temperatures, leading to a negative influence on plant physiology and productivity. The present study aimed to investigate the extent of low-temperature stress effects on date palm growth and physiological indicators under the exogenous application of silicon (Si). Date palm seedlings were treated with Si (1.0 mM) and exposed to different temperature regimes (5, 15, and 30 °C). It was observed that the application of Si markedly improved fresh and dry biomass, photosynthetic pigments (chlorophyll and carotenoids), plant morphology, and relative water content by ameliorating low-temperature-induced oxidative stress. Low-temperature stress (5 and 15 °C), led to a substantial upregulation of ABA-signaling-related genes (NCED-1 and PyL-4) in non Si treated plants, while Si treated plants revealed an antagonistic trend. However, jasmonic acid and salicylic acid accumulation were markedly elevated in Si treated plants under stress conditions (5 and 15 °C) in comparison with non Si treated plants. Interestingly, the upregulation of low temperature stress related plant plasma membrane ATPase (PPMA3 and PPMA4) and short-chain dehydrogenases/reductases (SDR), responsible for cellular physiology, stomatal conductance and nutrient translocation under silicon applications, was observed in Si plants under stress conditions in comparison with non Si treated plants. Furthermore, a significant expression of LSi-2 was detected in Si plants under stress, leading to the significant accumulation of Si in roots and shoots. In contrast, non Si plants demonstrated a low expression of LSi-2 under stress conditions, and thereby, reduced level of Si accumulation were observed. Less accumulation of oxidative stress was evident from the expression of superoxide dismutase (SOD) and catalase (CAT). Additionally, Si plants revealed a significant exudation of organic acids (succinic acid and citric acid) and nutrient accumulation (K and Mg) in roots and shoots. Furthermore, the application of Si led to substantial upregulation of the low temperature stress related soybean cold regulated gene (SRC-2) and ICE-1 (inducer of CBF expression 1), involved in the expression of CBF/DREB (C-repeat binding factor/dehydration responsive element binding factor) gene family under stress conditions in comparison with non Si plants. The current research findings are crucial for exploring the impact on morpho-physio-biochemical attributes of date palms under low temperature and Si supplementation, which may provide an efficient strategy for growing plants in low-temperature fields.
Collapse
Affiliation(s)
- Saqib Bilal
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Taimoor Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Sajjad Asaf
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Nasir Ali Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
| | - Syed Saad Jan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Muhammad Imran
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, 80 Dahak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Ahmed Al-Rawahi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX 77479, USA
| | - In-Jung Lee
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, 80 Dahak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
7
|
Mapuranga J, Chang J, Yang W. Combating powdery mildew: Advances in molecular interactions between Blumeria graminis f. sp. tritici and wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:1102908. [PMID: 36589137 PMCID: PMC9800938 DOI: 10.3389/fpls.2022.1102908] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Wheat powdery mildew caused by a biotrophic fungus Blumeria graminis f. sp. tritici (Bgt), is a widespread airborne disease which continues to threaten global wheat production. One of the most chemical-free and cost-effective approaches for the management of wheat powdery mildew is the exploitation of resistant cultivars. Accumulating evidence has reported that more than 100 powdery mildew resistance genes or alleles mapping to 63 different loci (Pm1-Pm68) have been identified from common wheat and its wild relatives, and only a few of them have been cloned so far. However, continuous emergence of new pathogen races with novel degrees of virulence renders wheat resistance genes ineffective. An essential breeding strategy for achieving more durable resistance is the pyramiding of resistance genes into a single genotype. The genetics of host-pathogen interactions integrated with temperature conditions and the interaction between resistance genes and their corresponding pathogen a virulence genes or other resistance genes within the wheat genome determine the expression of resistance genes. Considerable progress has been made in revealing Bgt pathogenesis mechanisms, identification of resistance genes and breeding of wheat powdery mildew resistant cultivars. A detailed understanding of the molecular interactions between wheat and Bgt will facilitate the development of novel and effective approaches for controlling powdery mildew. This review gives a succinct overview of the molecular basis of interactions between wheat and Bgt, and wheat defense mechanisms against Bgt infection. It will also unleash the unsung roles of epigenetic processes, autophagy and silicon in wheat resistance to Bgt.
Collapse
|
8
|
Application of Exogenous Silicon for Alleviating Photosynthetic Inhibition in Tomato Seedlings under Low−Calcium Stress. Int J Mol Sci 2022; 23:ijms232113526. [DOI: 10.3390/ijms232113526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
To address the low Ca−induced growth inhibition of tomato plants, the mitigation effect of exogenous Si on tomato seedlings under low−Ca stress was investigated using different application methods. We specifically analyzed the effects of root application or foliar spraying of 1 mM Si on growth conditions, leaf photosynthetic properties, stomatal status, chlorophyll content, chlorophyll fluorescence, ATP activity and content, Calvin cycle−related enzymatic activity, and gene expression in tomato seedlings under low vs. adequate calcium conditions. We found that the low−Ca environment significantly affected (reduced) these parameters, resulting in growth limitation. Surprisingly, the application of 1 mM Si significantly increased plant height, stem diameter, and biomass accumulation, protected photosynthetic pigments, improved gas exchange, promoted ATP production, enhanced the activity of Calvin cycle key enzymes and expression of related genes, and ensured efficient photosynthesis to occur in plants under low−Ca conditions. Interestingly, when the same amount of Si was applied, the beneficial effects of Si were more pronounced under low−Ca conditions that under adequate Ca. We speculate that Si might promote the absorption and transport of calcium in plants. The effects of Si also differed depending on the application method; foliar spraying was better in alleviating photosynthetic inhibition in plants under low−Ca stress, whereas root application of Si significantly promoted root growth and development. Enhancing the photosynthetic capacity by foliar Si application is an effective strategy for ameliorating the growth inhibition of plants under low−Ca stress.
Collapse
|
9
|
Jiang H, Song Z, Su QW, Wei ZH, Li WC, Jiang ZX, Tian P, Wang ZH, Yang X, Yang MY, Wei XS, Wu ZH. Transcriptomic and metabolomic reveals silicon enhances adaptation of rice under dry cultivation by improving flavonoid biosynthesis, osmoregulation, and photosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:967537. [PMID: 35991391 PMCID: PMC9386530 DOI: 10.3389/fpls.2022.967537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Dry cultivation is a new rice crop mode used to alleviate water shortage and develop water-saving agriculture. There is obvious genetic difference compared with drought-tolerant rice. Silicon (Si) plays an important role in plant adaptation to adverse environmental conditions and can significantly improve the drought tolerance and yield of rice. However, the regulatory mechanism via which Si provides plant tolerance or adaptation under dry cultivation is not well understood. The present study investigated the changes in plant growth, photosynthetic gas exchange, and oxidative stress of the rice cultivar "Suijing 18" under dry cultivation. Si improved photosynthetic performance and antioxidant enzyme activity and subsequently reduced lipid peroxidation of rice seedlings, promoted LAI and promoted leaf growth under dry cultivation. Further, transcriptomics combined with quasi-targeted metabolomics detected 1416 and 520 differentially expressed genes (DEGs), 38 and 41 differentially accumulated metabolites (DAMs) in the rice leaves and roots, respectively. Among them, 13 DEGs were involved in flavonoid biosynthesis, promoting the accumulation of flavonoids, anthocyanins, and flavonols in the roots and leaves of rice under dry cultivation. Meanwhile, 14 DEGs were involved in photosynthesis, promoting photosystem I and photosystem II responses, increasing the abundance of metabolites in leaves. On the other hand, 24 DAMs were identified involved in osmoregulatory processes, significantly increasing amino acids and carbohydrates and their derivatives in roots. These results provide new insight into the role of Si in alleviating to adverse environmental, Si enhanced the accumulation of flavonoids and osmoregulatory metabolites, thereby alleviating drought effect on the roots. On the other hand, improving dehydration resistance of leaves, guaranteeing normal photosynthesis and downward transport of organic matter. In conclusion, Si promoted the coordinated action between the above-ground and below-ground plant parts, improved the root/shoot ratio (R/S) of rice and increased the sugar content and enhancing rice adaptability under dry cultivation conditions. The establishment of the system for increasing the yield of rice under dry cultivation provides theoretical and technical support thereby promoting the rapid development of rice in Northeast China, and ensuring national food security.
Collapse
Affiliation(s)
- Hao Jiang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Ze Song
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Qing-Wang Su
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Zhi-Heng Wei
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Wan-Chun Li
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Zi-Xian Jiang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Ping Tian
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Zhen-Hui Wang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Xue Yang
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Mei-Ying Yang
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Xiao-Shuang Wei
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Zhi-Hai Wu
- College of Agronomy, Jilin Agricultural University, Changchun, China
- National Crop Variety Approval and Characteristic Identification Station, Jilin Agricultural University, Changchun, China
| |
Collapse
|
10
|
Sun C, Liang X, Gong X, Chen H, Liu X, Zhang S, Li F, Zhao J, Yi J. Comparative transcriptomics provide new insights into the mechanisms by which foliar silicon alleviates the effects of cadmium exposure in rice. J Environ Sci (China) 2022; 115:294-307. [PMID: 34969457 DOI: 10.1016/j.jes.2021.07.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 06/14/2023]
Abstract
Silicon (Si) has been shown to alleviate Cd stress in rice. Here, we investigated the beneficial effects of foliar Si in an indica rice Huanghuazhan (HHZ). Our results showed that foliar Si increases the dry weight and decreases Cd translocation in Cd-exposed rice at the grain-filling stage only, implying that the filling stage is critical for foliar Si to reduce Cd accumulation. We also investigated the transcriptomics in flag leaves (FLs), spikelets (SPs), and node Is (NIs) of Cd-exposed HHZ after foliar Si application at the filling stage. Importantly, the gene expression profiles associated with the Si-mediated alleviation of Cd stress were tissue specific, while shared pathways were mediated by Si in Cd-exposed rice tissues. Furthermore, after the Si treatment of Cd-exposed rice, the ATP-binding cassette (ABC)-transporters were mostly upregulated in FL and SP, while the bivalent cation transporters were mostly downregulated in FL and NI, possibly helping to reduce Cd accumulation. The genes associated with essential nutrient transporters, carbohydrate and secondary metabolite biosynthesis, and cytochrome oxidase activity were mostly upregulated in Cd-exposed FL and SP, which may help to alleviate oxidative stress and improve plant growth under Cd exposure. Interestingly, genes responsible for signal transduction were negatively regulated in FL, but positively regulated in SP, by foliar Si. Our results provide transcriptomic evidence that foliar Si plays an active role in alleviating the effects of Cd exposure in rice. In particular, foliar Si may alter the expression pattern of genes associated with transport, biosynthesis and metabolism, and oxidation reduction.
Collapse
Affiliation(s)
- Chongjun Sun
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyu Liang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaomei Gong
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Huamei Chen
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiulian Liu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shuchang Zhang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Fangbai Li
- Guangdong Institute of Eco-environmental Science and Technology, Guangzhou 510650, China
| | - Junliang Zhao
- Rice Research Institute and Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Jicai Yi
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
11
|
Foliar Silicon Spray before Summer Cutting Propagation Enhances Resistance to Powdery Mildew of Daughter Plants. Int J Mol Sci 2022; 23:ijms23073803. [PMID: 35409165 PMCID: PMC8998806 DOI: 10.3390/ijms23073803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Silicon (Si) has beneficial effects on not only plant growth but also against biotic and abiotic stresses. However, a few studies focus on how Si application helps strawberry (Fragaria × ananassa Duch.) resist powdery mildew. The aim of this work was to find out the optimal Si application method before cutting propagation to enhance the resistance to powdery mildew in strawberry “daughter” plants. Naturally infected “mother” plants of ‘Sulhyang’, ‘Maehyang’, and ‘Kuemsil’ strawberries were supplied with Si. Potassium silicate (K2SiO3) at a final concentration of 75 mg·L−1 Si was either added to the medium for drenching or sprayed to the leaves of the “mother” or “daughter” plant, or soluble Si fertilizer was used to dress the “mother” plant. The Si application significantly increased the shoot fresh weight of the “daughter” plants. Supplemental Si also increased the contents of phosphorus (P), potassium (K), and magnesium (Mg). In addition, the Si treatment decreased the damage of powdery mildew by increased level of proline content and suppressive reactive oxygen species. After applying Si, the length and density of hyphae on the leaf surface decreased. In addition, the infected area of “daughter” plant leaves covered with powdery mildew decreased. This study also demonstrated that Si increased the expression of resistance-gene and decreased the expression of susceptibility-gene of strawberry. Overall, Si application promoted the growth of the “daughter” plants regardless of the application method. Direct foliar Si spray to the “daughter” plants before cutting propagation is recommended to increase their resistance to powdery mildew.
Collapse
|
12
|
Marwein R, Singh S, Maharana J, Kumar S, Arunkumar KP, Velmurugan N, Chikkaputtaiah C. Transcriptome-wide analysis of North-East Indian rice cultivars in response to Bipolaris oryzae infection revealed the importance of early response to the pathogen in suppressing the disease progression. Gene 2022; 809:146049. [PMID: 34743920 DOI: 10.1016/j.gene.2021.146049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/18/2022]
Abstract
Brown spot disease (BSD) of rice (Oryza sativa L.) caused by Bipolaris oryzae is one of the major and neglected fungal diseases worldwide affecting rice production. Despite its significance, very limited knowledge on genetics and genomics of rice in response to B. oryzae available. Our study firstly identified moderately resistant (Gitesh) and susceptible (Shahsarang) North-East Indian rice cultivars in response to a native Bipolaris oryzae isolate BO1. Secondly, a systematic comparative RNA seq was performed for both cultivars at four different time points viz. 12, 24, 48, and 72 hours post infestation (hpi). Differential gene expression analysis revealed the importance of early response to the pathogen in suppressing disease progression. The pathogen negatively regulates the expression of photosynthetic-related genes at early stages in both cultivars. Of the cell wall modification enzymes, cellulose synthase and callose synthase are important for signal transduction and defense. Cell wall receptors OsLYP6, OsWAK80 might positively and OsWAK25 negatively regulate disease resistance. Jasmonic acid and/or abscisic acid signaling pathways are presumably involved in disease resistance, whereas salicylic acid pathway, and an ethylene response gene OsEBP-89 in promoting disease. Surprisingly, pathogenesis-related proteins showed no antimicrobial impact on the pathogen. Additionally, transcription factors OsWRKY62 and OsWRKY45 together might negatively regulate resistance to the pathogen. Taken together, our study has identified and provide key regulatory genes involved in response to B. oryzae which serve as potential resources for functional genetic analysis to develop genetic tolerance to BSD of rice.
Collapse
Affiliation(s)
- Riwandahun Marwein
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Sanjay Singh
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, Assam, India
| | - Jitendra Maharana
- Distributed Information Centre (DIC), Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India; Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Sanjeev Kumar
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Kallare P Arunkumar
- Central Muga Eri Research and Training Institute (CMER&TI), Lahdoigarh, Jorhat 785700, Assam, India
| | - Natarajan Velmurugan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India; Biological Sciences Division, Branch Laboratory-Itanagar, CSIR-NEIST, Naharlagun 791110, Arunachal Pradesh, India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
13
|
Pitann B, Bakhat HF, Fatima A, Hanstein S, Schubert S. Silicon-mediated growth promotion in maize (Zea mays L.) occurs via a mechanism that does not involve activation of the plasma membrane H +-ATPase. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:1121-1130. [PMID: 34328870 DOI: 10.1016/j.plaphy.2021.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Silicon (Si)-mediated growth promotion of various grasses is well documented. In the present study, Si-induced changes in maize shoot growth and its underlying mechanisms were studied. Maize plants were grown with various concentrations of Si (0-3 mM) in the nutrient solution. Silicon nutrition improved plant expansion growth. Silicon-supplied maize plants (0.8 and 1.2 mM) showed higher plant height and leaf area compared to no-Si amended plants. It was assumed that Si-induced expansion growth was due to positive Si effects on plasma membrane (PM) H+-ATPase. In this context, western blot analysis revealed an increase in PM H+-ATPase abundance by 77% under Si nutrition. However, in vitro measurements of enzyme activities showed no significant effect on apoplast pH, proton pumping, passive H+ efflux and enzyme kinetics such as Km, Vmax, and activation energy. Further, these results were confirmed by in vivo ratiometric analysis of apoplastic pH, which showed non-significant changes upon Si supply. In contrast, 1 mM Si altered the relative transcripts of specific PM H+-ATPase isoforms. Silicon application resulted in a significant decrease of MHA3, and this decrease in transcription seems to be compensated by an increased concentration of H+-ATPase protein. From these results, it can be concluded that changes in cell wall composition and PM H+-ATPase may be responsible for Si-mediated growth improvement in maize.
Collapse
Affiliation(s)
- Britta Pitann
- Institute of Plant Nutrition (iFZ) Justus Liebig University Giessen, Heinrich Buff-Ring 26-32, 35392, Giessen, Germany
| | - Hafiz Faiq Bakhat
- Institute of Plant Nutrition (iFZ) Justus Liebig University Giessen, Heinrich Buff-Ring 26-32, 35392, Giessen, Germany.
| | - Ammara Fatima
- Institute of Plant Nutrition (iFZ) Justus Liebig University Giessen, Heinrich Buff-Ring 26-32, 35392, Giessen, Germany
| | - Stefan Hanstein
- Institute of Plant Nutrition (iFZ) Justus Liebig University Giessen, Heinrich Buff-Ring 26-32, 35392, Giessen, Germany
| | - Sven Schubert
- Institute of Plant Nutrition (iFZ) Justus Liebig University Giessen, Heinrich Buff-Ring 26-32, 35392, Giessen, Germany
| |
Collapse
|
14
|
Naz R, Batool S, Shahid M, Keyani R, Yasmin H, Nosheen A, Hassan MN, Mumtaz S, Siddiqui MH. Exogenous silicon and hydrogen sulfide alleviates the simultaneously occurring drought stress and leaf rust infection in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:558-571. [PMID: 34174661 DOI: 10.1016/j.plaphy.2021.06.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/07/2021] [Accepted: 06/17/2021] [Indexed: 05/28/2023]
Abstract
Silicon (Si) and hydrogen sulfide (H2S) are known to enhance plant defense against multiple stresses. Current study was conducted to investigate the application of Si and H2S alone as well as in combination, improved physiological resilience of wheat plants to drought stress (DS) and pathogen-Puccinia triticina (Pt) infection. We aimed to increase the wheat plant growth and to enhance the DS tolerance and Pt resistance with the concurrent applications of H2S and Si. In the first experiment, we selected the best growth enhancing concentration of H2S (0.3 mM) and Si (6 mM) to further investigate their tolerance and resistance potential in the pot experiment under DS and pathogen infection conditions. The obtained results reveal that DS has further increased the susceptibility of wheat plants to leaf rust pathogen infection while, the sole application of Si and the simultaneous exogenous treatments of H2S + Si enhanced the plant growth, decreased disease incidence, and significantly improved tolerance and defense mechanisms of wheat under individual and interactive stress conditions. The exogenous treatment of H2S + Si improved the growth criteria, photosynthetic pigments, osmoprotectants, and defense related enzyme activities. The same treatment also reinforced the endogenous H2S, Si, ABA and SA contents while decreased the disease incidence and oxidative stress indicators under individual and combined stress conditions. Overall, results from this study presents the influence of combined drought and P. triticina stress in wheat and reveal the beneficial impacts of concurrent exogenous treatment of H2S + Si to mitigate the drought and pathogen (P. triticina) induced adverse effects.
Collapse
Affiliation(s)
- Rabia Naz
- Department of Biosciences, COMSATS University, Islamabad, Pakistan.
| | - Sana Batool
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University, Vehari Campus, Islamabad, Pakistan
| | - Rumana Keyani
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Humaira Yasmin
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Asia Nosheen
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | | | - Saqib Mumtaz
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Manzer Hussain Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Saudi Arabia
| |
Collapse
|
15
|
Silicon via nutrient solution modulates deficient and sufficient manganese sugar and energy cane antioxidant systems. Sci Rep 2021; 11:16900. [PMID: 34413411 PMCID: PMC8376992 DOI: 10.1038/s41598-021-96427-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022] Open
Abstract
Manganese (Mn) is highly demanded by Poaceae, and its deficiency induces physiological and biochemical responses in plants. Silicon (Si), which is beneficial to plants under various stress conditions, may also play an important role in plants without stress. However, the physiological and nutritional mechanisms of Si to improve Mn nutrition in sugarcane and energy cane, in addition to mitigating deficiency stress, are still unclear. The objective of this study is to evaluate whether the mechanisms of action of Si are related to the nutrition of Mn by modulating the antioxidant defense system of sugarcane plants and energy cane plants cultivated in nutrient solution, favoring the physiological and growth factors of plants cultivated under Mn deficiency or sufficiency. Two experiments were carried out with pre-sprouted seedlings of Saccharum officinarum L. and Saccharum spontaneum L. grown in the nutrient solution. Treatments were arranged in a 2 × 2 factorial design. Plants were grown under Mn sufficiency (20.5 µmol L−1) and the deficiency (0.1 µmol L−1) associated with the absence and presence of Si (2.0 mmol L−1). Mn deficiency caused oxidative stress by increasing lipid peroxidation and decreasing GPOX activity, contents of phenols, pigments, and photosynthetic efficiency, and led to the growth of both studied species. Si improved the response of both species to Mn supply. The attenuation of the effects of Mn deficiency by Si depends on species, with a higher benefit for Saccharum spontaneum. Its performance is involved in reducing the degradation of cells by reactive oxygen species (21%), increasing the contents of phenols (18%), carotenoids (64%), proteins, modulating SOD activity, and improving photosynthetic and growth responses.
Collapse
|
16
|
Ahammed GJ, Yang Y. Mechanisms of silicon-induced fungal disease resistance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:200-206. [PMID: 34052681 DOI: 10.1016/j.plaphy.2021.05.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/19/2021] [Indexed: 05/25/2023]
Abstract
Silicon (Si) acts as a beneficial element for plant growth and provides protection against abiotic and biotic stresses. Despite numerous reports on the beneficial role of Si in enhancing plant resistance to fungal pathogens, the underlying mechanisms remain largely unclear. Silicon shows antifungal activity; however, Si-induced improved disease resistance is partly manifested by the formation of Si polymerized mechanical obstruction under the cuticle and in cell walls, which prevents fungal ingress. Moreover, rapid production of defense compounds through secondary metabolic pathways is thought to be a key mechanism of Si-induced chemical defense against fungal pathogens beyond the physical barrier. Besides, improved mineral nutrition assures the healthy status of Si-supplied plants and a healthy plant exhibits better photosynthetic potential, antioxidant capacity and disease resistance. Multiple plant hormones and their crosstalk mediate the Si-induced basal as well as induced resistance; nonetheless, how root uptake of Si systemically modulates resistance to foliar diseases in low Si accumulating plants, needs in-depth investigation. Recent studies also indicate that Si influences effector-triggered immunity by affecting host recognition and/or limiting receptor-effector interactions. Here we review the role of Si in plant response to fungal pathogens. We also discuss and propose potential mechanisms of Si-induced enhanced disease resistance in plants. Finally, we identify some limitations of research approaches in addressing the beneficial roles of Si in biotic stress management.
Collapse
Affiliation(s)
- Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Youxin Yang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
17
|
Khan MIR, Ashfaque F, Chhillar H, Irfan M, Khan NA. The intricacy of silicon, plant growth regulators and other signaling molecules for abiotic stress tolerance: An entrancing crosstalk between stress alleviators. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:36-47. [PMID: 33667965 DOI: 10.1016/j.plaphy.2021.02.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/01/2021] [Indexed: 05/28/2023]
Abstract
Unfavorable environmental conditions are the critical inimical to the sustainable agriculture. Among various novel strategies designed to protect plants from abiotic stress threats, use of mineral elements as 'stress mitigators' has emerged as the most crucial and interesting aspect. Silicon (Si) is a quasi-essential nutrient that mediates plant growth and development and interacts with plant growth regulators (PGRs) and signaling molecules to combat abiotic stress induced adversities in plants and increase stress tolerance. PGRs are one of the most important chemical messengers that mediate plant growth and development during stressful conditions. However, the individual roles of Si and PGRs have extensively defined but their exquisite crosstalk with each other to mediate plant stress responses is still indiscernible. The present review is an upfront effort to delineate an intricate crosstalk/interaction between Si and PGRs to reduce abiotic stress adversities. The combined effects of interaction of Si with other signaling molecules such as reactive oxygen species (ROS), nitric oxide (NO) and calcium (Ca2+) for the survival of plants under stress and optimal conditions are also discussed.
Collapse
Affiliation(s)
| | - Farha Ashfaque
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | | | - Mohammad Irfan
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, New Jersey, USA
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
18
|
Silicon supplementation improves early blight resistance in Lycopersicon esculentum Mill . by modulating the expression of defense-related genes and antioxidant enzymes. 3 Biotech 2021; 11:232. [PMID: 33968576 DOI: 10.1007/s13205-021-02789-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/12/2021] [Indexed: 01/24/2023] Open
Abstract
Early blight is the most devastating disease in tomato which causes huge yield losses across the globe. Hence, development of specific, efficient and ecofriendly tools are required to increase the disease resistance in tomato plants. Here, we systematically investigate the defensive role and priming effect of silicon (Si) in tomato plants under control and infected conditions. Based on the results, Si-treated tomato plants showed improved resistance to Alternaria solani as there was delay in symptoms and reduced disease severity than non-Si-treated plants. To further examine the Si-mediated molecular priming in tomato plants, expression profiling of defense-related genes like PR1, PR2, WRKYII, PR3, LOXD and JERF3 was studied in control, Si-supplemented, A. solani-inoculated and Si + A. solani-inoculated plants. Interestingly, Si significantly increased the expression of jasmonic acid (JA) marker genes (PR3, LOXD and JERF3) than salicylic acid (SA) marker genes (PR1, PR2 and WRKYII). However, Si + A. solani-inoculated plants showed higher expression levels of defence genes except WRKYII than A. solani-inoculated or Si-treated plants. Furthermore, pre-supplementation of Si to A. solani-infected tomato plants showed increased activity of antioxidant enzymes viz. superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR) and peroxidase (POD) than control, Si-treated and A. solani-inoculated plants. Altogether, present study highlights the defensive role of Si in tomato plants in response to A. solani by increasing not only the transcript levels of defense signature genes, but also the activity of antioxidant enzymes.
Collapse
|
19
|
Tripathi DK, Vishwakarma K, Singh VP, Prakash V, Sharma S, Muneer S, Nikolic M, Deshmukh R, Vaculík M, Corpas FJ. Silicon crosstalk with reactive oxygen species, phytohormones and other signaling molecules. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124820. [PMID: 33516974 DOI: 10.1016/j.jhazmat.2020.124820] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/20/2020] [Accepted: 12/08/2020] [Indexed: 05/28/2023]
Abstract
Exogenous applications of silicon (Si) can initiate cellular defence pathways to enhance plant resistance to abiotic and biotic stresses. Plant Si accumulation is regulated by several transporters of silicic acid (e.g. Lsi1, Lsi2, and Lsi6), but the precise mechanisms involved in overall Si transport and its beneficial effects remains unclear. In stressed plants, the accumulation of Si leads to a defence mechanism involving the formation of amorphous or hydrated silicic acid caused by their polymerization and interaction with other organic substances. Silicon also regulates plant ionic homeostasis, which involves the nutrient acquisition, availability, and replenishment in the soil through biogeochemical cycles. Furthermore, Si is implicated in modulating ethylene-dependent and jasmonate pathways, as well as other phytohormones, particularly under stress conditions. Crosstalk between Si and phytohormones could lead to improvements in Si-mediated crop growth, especially when plants are exposed to stress. The integration of Si with reactive oxygen species (ROS) metabolism appears to be a part of the signaling cascade that regulates plant phytohormone homeostasis, as well as morphological, biochemical, and molecular responses. This review aims to provide an update on Si interplays with ROS, phytohormones, and other signaling molecules that regulate plant development under stress conditions.
Collapse
Affiliation(s)
- Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture (AIOA), Amity University Uttar Pradesh, Sector-125, Noida, India
| | - Kanchan Vishwakarma
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Sector-125, Noida, India
| | - Vijay Pratap Singh
- Department of Botany, C.M.P. Degree College, A Constituent PG College of University of Allahabad, Prayagraj, India
| | - Ved Prakash
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Sowbiya Muneer
- School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Miroslav Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, Mlynská dolina, Bratislava, Slovakia; Institute of Botany, Plant Science. and Biodiversity Centre, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, Slovakia
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry and Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda, Granada, Spain.
| |
Collapse
|
20
|
Mundada PS, Barvkar VT, Umdale SD, Anil Kumar S, Nikam TD, Ahire ML. An insight into the role of silicon on retaliation to osmotic stress in finger millet (Eleusine coracana (L.) Gaertn). JOURNAL OF HAZARDOUS MATERIALS 2021; 403:124078. [PMID: 33265064 DOI: 10.1016/j.jhazmat.2020.124078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 06/12/2023]
Abstract
Finger millet, a vital nutritional cereal crop provides food security. It is a well-established fact that silicon (Si) supplementation to plants alleviates both biotic and abiotic stresses. However, precise molecular targets of Si remain elusive. The present study attempts to understand the alterations in the metabolic pathways after Si amendment under osmotic stress. The analysis of transcriptome and metabolome of finger millet seedlings treated with distilled water (DW) as control, Si (10 ppm), PEG (15%), and PEG (15%) + Si (10 ppm) suggest the molecular alterations mediated by Si for ameliorating the osmotic stress. Under osmotic stress, uptake of Si has increased mediating the diversion of an enhanced pool of acetyl CoA to lipid biosynthesis and down-regulation of TCA catabolism. The membrane lipid damage reduced significantly by Si under osmotic stress. A significant decrease in linolenic acid and an increase of jasmonic acid (JA) in PEG + Si treatment suggest the JA mediated regulation of osmotic stress. The relative expression of transcripts corroborated with the corresponding metabolites abundance levels indicating the activity of genes in assuaging the osmotic stress. This work substantiates the role of Si in osmotic stress tolerance by reprogramming of fatty acids biosynthesis in finger millet.
Collapse
Affiliation(s)
- Pankaj S Mundada
- Department of Botany, Savitribai Phule Pune University, Pune 411007, Maharashtra, India; Department of Biotechnology, Yashavantrao Chavan Institute of Science, Satara 415001, Maharashtra, India
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune 411007, Maharashtra, India
| | - Suraj D Umdale
- Department of Botany, Jaysingpur College, Jaysingpur, Maharashtra 416101, India
| | - S Anil Kumar
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur, Andhra Pradesh 522213, India
| | - Tukaram D Nikam
- Department of Botany, Savitribai Phule Pune University, Pune 411007, Maharashtra, India
| | - Mahendra L Ahire
- Department of Botany, Yashavantrao Chavan Institute of Science, Satara 415001, Maharashtra, India.
| |
Collapse
|
21
|
Bathoova M, Švubová R, Bokor B, Neděla V, Tihlaříková E, Martinka M. Silicon triggers sorghum root enzyme activities and inhibits the root cell colonization by Alternaria alternata. PLANTA 2021; 253:29. [PMID: 33423117 DOI: 10.1007/s00425-020-03560-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Silicon inhibits the growth of Alternaria alternata into sorghum root cells by maintaining their integrity through stimulating biochemical defense reactions rather than by silica-based physical barrier creation. Although the ameliorating effect of silicon (Si) on plant resistance against fungal pathogens has been proven, the mechanism of its action needs to be better understood on a cellular level. The present study explores the effect of Si application in sorghum roots infected with fungus Alternaria alternata under controlled in vitro conditions. Detailed anatomical and cytological observations by both fluorescent and electron microscopy revealed that Si supplementation results in the inhibition of fungal hyphae growth into the protoplast of root cells. An approach of environmental scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy enabling spatial detection of Si even at low concentrations showed that there is no continual solid layer of silica in the root cell walls of the rhizodermis, mesodermis and exodermis physically blocking the fungal growth into the protoplasts. Additionally, biochemical evidence suggests that Si speeds up the onset of activities of phenylpropanoid pathway enzymes phenylalanine ammonia lyase, peroxidases and polyphenol oxidases involved in phenolic compounds production and deposition to plant cell walls. In conclusion, Si alleviates the negative impact of A. alternata infection by limiting hyphae penetration through sorghum root cell walls into protoplasts, thus maintaining their structural and functional integrity. This might occur by triggering plant biochemical defense responses rather than by creating compact Si layer deposits.
Collapse
Affiliation(s)
- Monika Bathoova
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina, Ilkovicova 6, 842 15, Bratislava 4, Slovak Republic.
| | - Renáta Švubová
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina, Ilkovicova 6, 842 15, Bratislava 4, Slovak Republic
| | - Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina, Ilkovicova 6, 842 15, Bratislava 4, Slovak Republic
- Comenius University Science Park, Comenius University in Bratislava, Ilkovicova 8, 841 04, Bratislava, Slovak Republic
| | - Vilém Neděla
- Environmental Electron Microscopy Group, Institute of Scientific Instruments of the Czech Academy of Sciences, Kralovopolska 147, 612 00, Brno, Czech Republic
| | - Eva Tihlaříková
- Environmental Electron Microscopy Group, Institute of Scientific Instruments of the Czech Academy of Sciences, Kralovopolska 147, 612 00, Brno, Czech Republic
| | - Michal Martinka
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina, Ilkovicova 6, 842 15, Bratislava 4, Slovak Republic
| |
Collapse
|
22
|
Islam W, Tayyab M, Khalil F, Hua Z, Huang Z, Chen HYH. Silicon-mediated plant defense against pathogens and insect pests. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 168:104641. [PMID: 32711774 DOI: 10.1016/j.pestbp.2020.104641] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/23/2020] [Accepted: 06/19/2020] [Indexed: 05/20/2023]
Abstract
Plant diseases and insect pests are one of the major limiting factors that reduce crop production worldwide. Silicon (Si) is one of the most abundant elements in the lithosphere and has a positive impact on plant health by effectively mitigating biotic and abiotic stresses. It also enhances plant resistance against insect pests and fungal, bacterial, and viral diseases. Therefore, this review critically converges its focus upon Si-mediated physical, biochemical, and molecular mechanisms in plant defense against pathogens and insect pests. It further explains Si-modulated interactive phytohormone signaling and enzymatic production and their involvement in inducing resistance against biotic stresses. Furthermore, this review highlights the recent research accomplishments which have successfully revealed the active role of Si in protecting plants against insect herbivory and various viral, bacterial, and fungal diseases. The article explores the potential in enhancing Si-mediated plant resistance against various economically important diseases and insect pests, further shedding light upon future issues regarding the role of Si in defense against pathogens and insect pests.
Collapse
Affiliation(s)
- Waqar Islam
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Institute of Geography, Fujian Normal University, Fuzhou 350007, China
| | - Muhammad Tayyab
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Farghama Khalil
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhang Hua
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhiqun Huang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Institute of Geography, Fujian Normal University, Fuzhou 350007, China.
| | - Han Y H Chen
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Institute of Geography, Fujian Normal University, Fuzhou 350007, China; Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada.
| |
Collapse
|
23
|
Zhu Y, Yin J, Liang Y, Liu J, Jia J, Huo H, Wu Z, Yang R, Gong H. Transcriptomic dynamics provide an insight into the mechanism for silicon-mediated alleviation of salt stress in cucumber plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:245-254. [PMID: 30831473 DOI: 10.1016/j.ecoenv.2019.02.075] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/02/2019] [Accepted: 02/25/2019] [Indexed: 05/20/2023]
Abstract
Salinity decreases the yield and quality of crops. Silicon (Si) has been widely reported to have beneficial effects on plant growth and development under salt stress. However, the mechanism is still poorly understood. In an attempt to identify genes or gene networks that may be orchestrated to improve salt tolerance of cucumber plants, we sequenced the transcriptomes of both control and salt-stressed cucumber leaves in the presence or absence of added Si. Seedlings of cucumber 'JinYou 1' were subjected to salt stress (75 mM NaCl) without or with addition of 0.3 mM Si. Plant growth, photosynthetic gas exchange and transcriptomic dynamics were investigated. The results showed that Si addition improved the growth and photosynthetic performance of cucumber seedlings under salt stress. The comparative transcriptome analysis revealed that Si played an important role in shaping the transcriptome of cucumber: the expressions of 1469 genes were altered in response to Si treatment in the control conditions, and these genes were mainly involved in ion transport, hormone and signal transduction, biosynthetic and metabolic processes, and stress and defense responses. Under salt stress alone, 1482 genes with putative functions associated with metabolic processes and responses to environmental stimuli have changed their expression levels. Si treatment shifted the transcriptome of salt-stressed cucumber back to that of the control, as evidenced that among the 708 and 774 genes that were up- or down-regulated under salt stress, a large majority of them (609 and 595, respectively) were reverted to the normal expression levels. These results suggest that Si may act as an elicitor to precondition cucumber plants and induce salt tolerance. The study may help us understand the mechanism for silicon-mediated salt tolerance and provide a theoretical basis for silicon application in crop production in saline soils.
Collapse
Affiliation(s)
- Yongxing Zhu
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Horticulture and Gardening, College of Agronomy, Yangtze University, Jingzhou 434025, Hubei, China
| | - Junliang Yin
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Horticulture and Gardening, College of Agronomy, Yangtze University, Jingzhou 434025, Hubei, China
| | - Yufei Liang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiaqi Liu
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianhua Jia
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Heqiang Huo
- Mid-Florida Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, 2725 South Binion Road, Apopka, FL 32703, USA
| | - Zefeng Wu
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ruolin Yang
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Haijun Gong
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
24
|
Role of Silicon in Mediating Salt Tolerance in Plants: A Review. PLANTS 2019; 8:plants8060147. [PMID: 31159197 PMCID: PMC6630593 DOI: 10.3390/plants8060147] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 01/06/2023]
Abstract
Salt stress is a major threat for plant growth worldwide. The regulatory mechanisms of silicon in alleviating salt stress have been widely studied using physiological, molecular genetics, and genomic approaches. Recently, progresses have been made in elucidating the alleviative effects of silicon in salt-induced osmotic stress, Na toxicity, and oxidative stress. In this review, we highlight recent development on the impact of silicon application on salt stress responses. Emphasis will be given to the following aspects. (1) Silicon transporters have been experimentally identified in different plant species and their structure feature could be an important molecular basis for silicon permeability. (2) Silicon could mediate salt-induced ion imbalance by (i) regulating Na+ uptake, transport, and distribution and (ii) regulating polyamine levels. (3) Si-mediated upregulation of aquaporin gene expression and osmotic adjustment play important roles in alleviating salinity-induced osmotic stress. (4) Silicon application direct/indirectly mitigates oxidative stress via regulating the antioxidant defense and polyamine metabolism. (5) Omics studies reveal that silicon could regulate plants' response to salt stress by modulating the expression of various genes including transcription factors and hormone-related genes. Finally, research areas that require further investigation to provide a deeper understanding of the role of silicon in plants are highlighted.
Collapse
|
25
|
Coskun D, Deshmukh R, Sonah H, Menzies JG, Reynolds O, Ma JF, Kronzucker HJ, Bélanger RR. The controversies of silicon's role in plant biology. THE NEW PHYTOLOGIST 2019; 221:67-85. [PMID: 30007071 DOI: 10.1111/nph.15343] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/05/2018] [Indexed: 05/21/2023]
Abstract
Contents Summary 67 I. Introduction 68 II. Silicon transport in plants: to absorb or not to absorb 69 III. The role of silicon in plants: not just a matter of semantics 71 IV. Silicon and biotic stress: beyond mechanical barriers and defense priming 76 V. Silicon and abiotic stress: a proliferation of proposed mechanisms 78 VI. The apoplastic obstruction hypothesis: a working model 79 VII. Perspectives and conclusions 80 Acknowledgements 81 References 81 SUMMARY: Silicon (Si) is not classified as an essential plant nutrient, and yet numerous reports have shown its beneficial effects in a variety of species and environmental circumstances. This has created much confusion in the scientific community with respect to its biological roles. Here, we link molecular and phenotypic data to better classify Si transport, and critically summarize the current state of understanding of the roles of Si in higher plants. We argue that much of the empirical evidence, in particular that derived from recent functional genomics, is at odds with many of the mechanistic assertions surrounding Si's role. In essence, these data do not support reports that Si affects a wide range of molecular-genetic, biochemical and physiological processes. A major reinterpretation of Si's role is therefore needed, which is critical to guide future studies and inform agricultural practice. We propose a working model, which we term the 'apoplastic obstruction hypothesis', which attempts to unify the various observations on Si's beneficial influences on plant growth and yield. This model argues for a fundamental role of Si as an extracellular prophylactic agent against biotic and abiotic stresses (as opposed to an active cellular agent), with important cascading effects on plant form and function.
Collapse
Affiliation(s)
- Devrim Coskun
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Rupesh Deshmukh
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Humira Sonah
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, QC, G1V 0A6, Canada
| | - James G Menzies
- Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| | - Olivia Reynolds
- Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, 2568, Australia
- Graham Centre for Agricultural Innovation, Wagga Wagga, NSW, 2650, Australia
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Herbert J Kronzucker
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Vic., 3010, Australia
| | - Richard R Bélanger
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
26
|
Frew A, Weston LA, Reynolds OL, Gurr GM. The role of silicon in plant biology: a paradigm shift in research approach. ANNALS OF BOTANY 2018; 121:1265-1273. [PMID: 29438453 PMCID: PMC6007437 DOI: 10.1093/aob/mcy009] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/15/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Silicon (Si) is known to have numerous beneficial effects on plants, alleviating diverse forms of abiotic and biotic stress. Research on this topic has accelerated in recent years and revealed multiple effects of Si in a range of plant species. Available information regarding the impact of Si on plant defence, growth and development is fragmented, discipline-specific, and usually focused on downstream, distal phenomena rather than underlying effects. Accordingly, there is a growing need for studies that address fundamental metabolic and regulatory processes, thereby allowing greater unification and focus of current research across disciplines. SCOPE AND CONCLUSIONS Silicon is often regarded as a plant nutritional 'non-entity'. A suite of factors associated with Si have been recently identified, relating to plant chemistry, physiology, gene regulation and interactions with other organisms. Research to date has typically focused on the impact of Si application upon plant stress responses. However, the fundamental, underlying mechanisms that account for the manifold effects of Si in plant biology remain undefined. Here, the known effects of Si in higher plants relating to alleviation of both abiotic and biotic stress are briefly reviewed and the potential importance of Si in plant primary metabolism is discussed, highlighting the need for a unifying research framework targeting common underlying mechanisms. The traditional approach of discipline-specific work on single stressors in individual plant species is currently inadequate. Thus, a holistic and comparative approach is proposed to assess the mode of action of Si between plant trait types (e.g. C3, C4 and CAM; Si accumulators and non-accumulators) and between biotic and abiotic stressors (pathogens, herbivores, drought, salt), considering potential pathways (i.e. primary metabolic processes) highlighted by recent empirical evidence. Utilizing genomic, transcriptomic, proteomic and metabolomic approaches in such comparative studies will pave the way for unification of the field and a deeper understanding of the role of Si in plants.
Collapse
Affiliation(s)
- Adam Frew
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Graham Centre for Agricultural Innovation, Wagga Wagga, New South Wales, Australia
- For correspondence. E-mail
| | - Leslie A Weston
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Graham Centre for Agricultural Innovation, Wagga Wagga, New South Wales, Australia
| | - Olivia L Reynolds
- Graham Centre for Agricultural Innovation, Wagga Wagga, New South Wales, Australia
- Biosecurity and Food Safety, New South Wales Department of Primary Industries, Narellan, New South Wales, Australia
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Geoff M Gurr
- Graham Centre for Agricultural Innovation, Wagga Wagga, New South Wales, Australia
- School of Agricultural and Wine Sciences, Charles Sturt University, Orange, New South Wales, Australia
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
27
|
Hassan JA, de la Torre‐Roche R, White JC, Lewis JD. Soil mixture composition alters Arabidopsis susceptibility to Pseudomonas syringae infection. PLANT DIRECT 2018; 2:e00044. [PMID: 31245710 PMCID: PMC6508533 DOI: 10.1002/pld3.44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/08/2018] [Accepted: 01/23/2018] [Indexed: 05/25/2023]
Abstract
Pseudomonas syringae is a gram-negative bacterial pathogen that causes disease on more than 100 different plant species, including the model plant Arabidopsis thaliana. Dissection of the Arabidopsis thaliana-Pseudomonas syringae pathosystem has identified many factors that contribute to successful infection or immunity, including the genetics of the host, the genetics of the pathogen, and the environment. Environmental factors that contribute to a successful interaction can include temperature, light, and the circadian clock, as well as the soil environment. As silicon-amended Resilience soil is advertised to enhance plant health, we sought to examine the extent to which this soil might affect the behavior of the A. thaliana-P. syringae model pathosystem and to characterize the mechanisms through which these effects may occur. We found that plants grown in Si-amended Resilience soil displayed enhanced resistance to bacteria compared to plants grown in non-Si-amended Sunshine soil, and salicylic acid biosynthesis and signaling were not required for resistance. Although silicon has been shown to contribute to broad-spectrum resistance, our data indicate that silicon is not the direct cause of enhanced resistance and that the Si-amended Resilience soil has additional properties that modulate plant resistance. Our work demonstrates the importance of environmental factors, such as soil in modulating interactions between the plant and foliar pathogens, and highlights the significance of careful annotation of the environmental conditions under which plant-pathogen interactions are studied.
Collapse
Affiliation(s)
- Jana A. Hassan
- Department of Plant and Microbial BiologyUniversity of California BerkeleyBerkeleyCAUSA
| | | | - Jason C. White
- Department of Analytical ChemistryThe Connecticut Agricultural Experiment StationNew HavenCTUSA
| | - Jennifer D. Lewis
- Department of Plant and Microbial BiologyUniversity of California BerkeleyBerkeleyCAUSA
- Plant Gene Expression CenterUnited States Department of AgricultureAlbanyCAUSA
| |
Collapse
|
28
|
Aucique-Pérez CE, de Menezes Silva PE, Moreira WR, DaMatta FM, Rodrigues FÁ. Photosynthesis impairments and excitation energy dissipation on wheat plants supplied with silicon and infected with Pyricularia oryzae. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 121:196-205. [PMID: 29128781 DOI: 10.1016/j.plaphy.2017.10.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/16/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
Considering the effect of silicon (Si) in reducing the blast symptoms on wheat in a scenario where the losses in the photosynthetic capacity of the infected plants is lowered, this study investigated the ability of using the incident light, the chloroplastidic pigments (chlorophylls and carotenoids) alterations and the possible role of carotenoids on the process of light dissipation on wheat plants non-supplied (-Si) or supplied (+Si) with Si and inoculated or not with Pyricularia oryzae. For + Si plants, blast severity was reduced compared to -Si plants. Reductions in the concentration of photosynthetic pigments (total chlorophyll, violanxanthin + antheraxanthin + zeaxanthin, β-carotene and lutein) were greater for inoculated -Si plants than for inoculated + Si ones. The α-carotene concentration increased for inoculated -Si and +Si plants in comparison to non-inoculated plants limiting, therefore, lutein production. Higher functional damage to the photosystem II (PSII) was noticed for inoculated -Si plants with reductions in the values of maximum quantum quenching, photochemical yield of PSII and electron transport rate, but higher values for quenching non-photochemical. This finding also contributed to reductions in the values of light saturated rate photosynthesis and light saturation point for -Si plants which was attenuated for inoculated + Si plants. Increase in dark respiration values occurred for inoculated plants than for non-inoculated ones. The Si supply to wheat plants, besides reducing blast severity, contributed to their better photosynthetic performance. Moreover, inoculated + Si plants coped with drastic losses of light energy dissipation processes (fluorescence and heat) by increasing the concentration of carotenoids which helped to maintain the structural and functional viability of the photosynthetic machinery minimizing, therefore, lipid peroxidation and the production of reactive oxygen species.
Collapse
Affiliation(s)
| | | | - Wiler Ribas Moreira
- Departmento de Fitopatologia, Universidade Federal de Viçosa, Minas Gerais 36570-900, Brazil
| | - Fábio Murilo DaMatta
- Departmento de Biologia Vegetal, Universidade Federal de Viçosa, Minas Gerais 36570-900, Brazil
| | | |
Collapse
|
29
|
Debona D, Rodrigues FA, Datnoff LE. Silicon's Role in Abiotic and Biotic Plant Stresses. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:85-107. [PMID: 28504920 DOI: 10.1146/annurev-phyto-080516-035312] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Silicon (Si) plays a pivotal role in the nutritional status of a wide variety of monocot and dicot plant species and helps them, whether directly or indirectly, counteract abiotic and/or biotic stresses. In general, plants with a high root or shoot Si concentration are less prone to pest attack and exhibit enhanced tolerance to abiotic stresses such as drought, low temperature, or metal toxicity. However, the most remarkable effect of Si is the reduction in the intensities of a number of seedborne, soilborne, and foliar diseases in many economically important crops that are caused by biotrophic, hemibiotrophic, and necrotrophic plant pathogens. The reduction in disease symptom expression is due to the effect of Si on some components of host resistance, including incubation period, lesion size, and lesion number. The mechanical barrier formed by the polymerization of Si beneath the cuticle and in the cell walls was the first proposed hypothesis to explain how this element reduced the severity of plant diseases. However, new insights have revealed that many plant species supplied with Si have the phenylpropanoid and terpenoid pathways potentiated and have a faster and stronger transcription of defense genes and higher activities of defense enzymes. Photosynthesis and the antioxidant system are also improved for Si-supplied plants. Although the current understanding of how this overlooked element improves plant reaction against pathogen infections, pest attacks, and abiotic stresses has advanced, the exact mechanism(s) by which it modulates plant physiology through the potentiation of host defense mechanisms still needs further investigation at the genomic, metabolomic, and proteomic levels.
Collapse
Affiliation(s)
- Daniel Debona
- Department of Plant Pathology, Laboratory of Host-Pathogen Interaction, Viçosa Federal University, Viçosa, Minas Gerais State, Brazil, 36570-900;
| | - Fabrício A Rodrigues
- Department of Plant Pathology, Laboratory of Host-Pathogen Interaction, Viçosa Federal University, Viçosa, Minas Gerais State, Brazil, 36570-900;
| | - Lawrence E Datnoff
- Department of Plant Pathology & Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803;
| |
Collapse
|
30
|
Markovich O, Steiner E, Kouřil Š, Tarkowski P, Aharoni A, Elbaum R. Silicon promotes cytokinin biosynthesis and delays senescence in Arabidopsis and Sorghum. PLANT, CELL & ENVIRONMENT 2017; 40:1189-1196. [PMID: 28102542 DOI: 10.1111/pce.12913] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/09/2017] [Accepted: 01/15/2017] [Indexed: 05/18/2023]
Abstract
Silicate minerals are dominant soil components. Thus, plant roots are constantly exposed to silicic acid. High silicon intake, enabled by root silicon transporters, correlates with increased tolerance to many biotic and abiotic stresses. However, the underlying protection mechanisms are largely unknown. Here, we tested the hypothesis that silicon interacts with the plant hormones, and specifically, that silicic acid intake increases cytokinin biosynthesis. The reaction of sorghum (Sorghum bicolor) and Arabidopsis plants, modified to absorb high versus low amounts of silicon, to dark-induced senescence was monitored, by quantifying expression levels of genes along the senescence pathway and measuring tissue cytokinin levels. In both species, detached leaves with high silicon content senesced more slowly than leaves that were not exposed to silicic acid. Expression levels of genes along the senescence pathway suggested increased cytokinin biosynthesis with silicon exposure. Mass spectrometry measurements of cytokinin suggested a positive correlation between silicon exposure and active cytokinin concentrations. Our results indicate a similar reaction to silicon treatment in distantly related plants, proposing a general function of silicon as a stress reliever, acting via increased cytokinin biosynthesis.
Collapse
Affiliation(s)
- Oshry Markovich
- R H Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Evyatar Steiner
- R H Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Štěpán Kouřil
- Centre of the Region Haná for Biotechnological and Agricultural Research, Central Laboratories and Research Support, Faculty of Science, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Petr Tarkowski
- Centre of the Region Haná for Biotechnological and Agricultural Research, Central Laboratories and Research Support, Faculty of Science, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Asaph Aharoni
- Department of Plant and Environmental Science, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Rivka Elbaum
- R H Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| |
Collapse
|
31
|
Wang M, Gao L, Dong S, Sun Y, Shen Q, Guo S. Role of Silicon on Plant-Pathogen Interactions. FRONTIERS IN PLANT SCIENCE 2017; 8:701. [PMID: 28529517 PMCID: PMC5418358 DOI: 10.3389/fpls.2017.00701] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/18/2017] [Indexed: 05/18/2023]
Abstract
Although silicon (Si) is not recognized as an essential element for general higher plants, it has beneficial effects on the growth and production of a wide range of plant species. Si is known to effectively mitigate various environmental stresses and enhance plant resistance against both fungal and bacterial pathogens. In this review, the effects of Si on plant-pathogen interactions are analyzed, mainly on physical, biochemical, and molecular aspects. In most cases, the Si-induced biochemical/molecular resistance during plant-pathogen interactions were dominated as joint resistance, involving activating defense-related enzymes activates, stimulating antimicrobial compound production, regulating the complex network of signal pathways, and activating of the expression of defense-related genes. The most previous studies described an independent process, however, the whole plant resistances were rarely considered, especially the interaction of different process in higher plants. Si can act as a modulator influencing plant defense responses and interacting with key components of plant stress signaling systems leading to induced resistance. Priming of plant defense responses, alterations in phytohormone homeostasis, and networking by defense signaling components are all potential mechanisms involved in Si-triggered resistance responses. This review summarizes the roles of Si in plant-microbe interactions, evaluates the potential for improving plant resistance by modifying Si fertilizer inputs, and highlights future research concerning the role of Si in agriculture.
Collapse
Affiliation(s)
| | | | | | | | | | - Shiwei Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
32
|
De Bruyne L, Van Poucke C, Di Mavungu DJ, Zainudin NAIM, Vanhaecke L, De Vleesschauwer D, Turgeon BG, De Saeger S, Höfte M. Comparative chemical screening and genetic analysis reveal tentoxin as a new virulence factor in Cochliobolus miyabeanus, the causal agent of brown spot disease on rice. MOLECULAR PLANT PATHOLOGY 2016; 17:805-17. [PMID: 26456797 PMCID: PMC6638388 DOI: 10.1111/mpp.12329] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Brown spot disease, caused by Cochliobolus miyabeanus, is currently considered to be one of the most important yield reducers of rice (Oryza sativa L.). Despite its agricultural importance, little is known about the virulence mechanisms deployed by the fungus. Therefore, we set out to identify novel virulence factors with a role in disease development. This article reports, for the first time, the production of tentoxin by C. miyabeanus as a virulence factor during brown spot disease and the identification of the non-ribosomal protein synthetase (NRPS) CmNps3, responsible for tentoxin biosynthesis. We compared the chemical compounds produced by C. miyabeanus strains differing in virulence ability using ultra-high-performance liquid chromatography (UHPLC) coupled to high-resolution Orbitrap mass spectrometry (HRMS). The production of tentoxin by a highly virulent strain was revealed by principal component analysis of the detected ions and confirmed by UHPLC coupled to tandem-quadrupole mass spectrometry (MS/MS). The corresponding NRPS was identified by in silico genome analysis and confirmed by gene deletion. Infection tests with wild-type and Cmnps3 mutants showed that tentoxin acts as a virulence factor and is correlated with chlorosis development during the second phase of infection. Although rice has previously been classified as a tentoxin-insensitive plant species, our data demonstrate that tentoxin production by C. miyabeanus affects symptom development.
Collapse
Affiliation(s)
- Lieselotte De Bruyne
- Department of Crop Protection, Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, BE-9000, Ghent, Belgium
| | - Christof Van Poucke
- Department of Bio-analysis, Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, BE-9000, Ghent, Belgium
| | - Diana Jose Di Mavungu
- Department of Bio-analysis, Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, BE-9000, Ghent, Belgium
| | - Nur Ain Izzati Mohd Zainudin
- Section of Plant Pathology & Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, 14850, Ithaca, NY, USA
- Department of Biology, Faculty of Science, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Lynn Vanhaecke
- Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, BE-9000, Ghent, Belgium
| | - David De Vleesschauwer
- Department of Crop Protection, Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, BE-9000, Ghent, Belgium
| | - B Gillian Turgeon
- Section of Plant Pathology & Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, 14850, Ithaca, NY, USA
| | - Sarah De Saeger
- Department of Bio-analysis, Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, BE-9000, Ghent, Belgium
| | - Monica Höfte
- Department of Crop Protection, Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, BE-9000, Ghent, Belgium
| |
Collapse
|