1
|
Jiang Z, Zhao Y, Gao B, Wei X, Jiao P, Zhang H, Liu S, Guan S, Ma Y. ZmARF16 Regulates ZCN12 to Promote the Accumulation of Florigen and Accelerate Flowering. Int J Mol Sci 2024; 25:9607. [PMID: 39273554 PMCID: PMC11395262 DOI: 10.3390/ijms25179607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Auxin response factors(ARFs) are a class of transcription factors that regulate the expression of auxin response genes and play a crucial role in plant growth and development. Florigen plays a crucial role in the process of flowering. However, the process by which auxin regulates the accumulation of florigen remains largely unclear. This study found that the expression of ZmARF16 in maize increases during flowering, and the genetic transformation of ZmARF16 accelerates the flowering process in Arabidopsis and maize. Furthermore, ZmARF16 was found to be positively correlated with the transcription of the ZCN12 gene. Similarly, the FT-like gene ZCN12 in maize rescues the late flowering phenotype of the FT mutation in Arabidopsis. Moreover, ZCN12 actively participates in the accumulation of florigen and the flowering process. Further research revealed that ZmARF16 positively responds to the auxin signal, and that the interaction between ZmARF16 and the ZCN12 promoter, as well as the subsequent promotion of ZCN12 gene expression, leads to early flowering. This was confirmed through a yeast one-hybrid and dual-luciferase assay. Therefore, the study provides evidence that the ZmARF16-ZCN12 module plays a crucial role in regulating the flowering process of maize.
Collapse
Affiliation(s)
- Zhenzhong Jiang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China;
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China; (Y.Z.); (B.G.); (X.W.); (P.J.); (H.Z.); (S.L.)
| | - Yang Zhao
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China; (Y.Z.); (B.G.); (X.W.); (P.J.); (H.Z.); (S.L.)
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Bai Gao
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China; (Y.Z.); (B.G.); (X.W.); (P.J.); (H.Z.); (S.L.)
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Xiaotong Wei
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China; (Y.Z.); (B.G.); (X.W.); (P.J.); (H.Z.); (S.L.)
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Peng Jiao
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China; (Y.Z.); (B.G.); (X.W.); (P.J.); (H.Z.); (S.L.)
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Honglin Zhang
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China; (Y.Z.); (B.G.); (X.W.); (P.J.); (H.Z.); (S.L.)
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Siyan Liu
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China; (Y.Z.); (B.G.); (X.W.); (P.J.); (H.Z.); (S.L.)
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Shuyan Guan
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China; (Y.Z.); (B.G.); (X.W.); (P.J.); (H.Z.); (S.L.)
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Yiyong Ma
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China; (Y.Z.); (B.G.); (X.W.); (P.J.); (H.Z.); (S.L.)
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
2
|
Yang S, Poretska O, Poppenberger B, Sieberer T. ALTERED MERISTEM PROGRAM1 sustains cellular differentiation by limiting HD-ZIP III transcription factor gene expression. PLANT PHYSIOLOGY 2024; 196:291-308. [PMID: 38781290 PMCID: PMC11376390 DOI: 10.1093/plphys/kiae300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Plants show remarkable developmental and regenerative plasticity through the sustained activity of stem cells in meristems. Under certain conditions, pluripotency can even be reestablished in cells that have already entered differentiation. Mutation of the putative carboxypeptidase ALTERED MERISTEM PROGRAM1 (AMP1) in Arabidopsis (Arabidopsis thaliana) causes a set of hypertrophic phenotypes, indicating a defect in the suppression of pluripotency. A role of AMP1 in the miRNA-mediated inhibition of translation has previously been reported; however, how this activity is related to its developmental functions is unclear. Here, we examined the functional interaction between AMP1 and the Class III homeodomain-leucine zipper (HD-ZIP III) transcription factors, which are miRNA-controlled determinants of shoot meristem specification. We found that the HD-ZIP III transcriptional output is enhanced in the amp1 mutant and that plant lines with increased HD-ZIP III activity not only developed amp1 mutant-like phenotypes but also showed a synergistic genetic interaction with the mutant. Conversely, the reduction of HD-ZIP III function suppressed the shoot hypertrophy defects of the amp1 mutant. We further provide evidence that the expression domains of HD-ZIP III family members are expanded in the amp1 mutant and that this misexpression occurs at the transcriptional level and does not involve the function of miRNA165/166. Finally, amp1 mutant-specific phenotypes cannot be mimicked by a general inhibition of miRNA function in the AMP1 expression domain. These findings lead us to a model in which AMP1 restricts cellular pluripotency upstream of HD-ZIP III proteins, and this control appears to be not directly mediated by the canonical miRNA pathway.
Collapse
Affiliation(s)
- Saiqi Yang
- Research Unit Plant Growth Regulation, TUM School of Life Sciences, Technical University of Munich, DE-85354 Freising, Germany
| | - Olena Poretska
- Research Unit Plant Growth Regulation, TUM School of Life Sciences, Technical University of Munich, DE-85354 Freising, Germany
| | - Brigitte Poppenberger
- Professorship Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, DE-85354 Freising, Germany
| | - Tobias Sieberer
- Research Unit Plant Growth Regulation, TUM School of Life Sciences, Technical University of Munich, DE-85354 Freising, Germany
| |
Collapse
|
3
|
Wittmer J, Heidstra R. Appreciating animal induced pluripotent stem cells to shape plant cell reprogramming strategies. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4373-4393. [PMID: 38869461 PMCID: PMC11263491 DOI: 10.1093/jxb/erae264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
Animals and plants have developed resilience mechanisms to effectively endure and overcome physical damage and environmental challenges throughout their life span. To sustain their vitality, both animals and plants employ mechanisms to replenish damaged cells, either directly, involving the activity of adult stem cells, or indirectly, via dedifferentiation of somatic cells that are induced to revert to a stem cell state and subsequently redifferentiate. Stem cell research has been a rapidly advancing field in animal studies for many years, driven by its promising potential in human therapeutics, including tissue regeneration and drug development. A major breakthrough was the discovery of induced pluripotent stem cells (iPSCs), which are reprogrammed from somatic cells by expressing a limited set of transcription factors. This discovery enabled the generation of an unlimited supply of cells that can be differentiated into specific cell types and tissues. Equally, a keen interest in the connection between plant stem cells and regeneration has been developed in the last decade, driven by the demand to enhance plant traits such as yield, resistance to pathogens, and the opportunities provided by CRISPR/Cas-mediated gene editing. Here we discuss how knowledge of stem cell biology benefits regeneration technology, and we speculate on the creation of a universal genotype-independent iPSC system for plants to overcome regenerative recalcitrance.
Collapse
Affiliation(s)
- Jana Wittmer
- Cell and Developmental Biology, cluster Plant Developmental Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Renze Heidstra
- Cell and Developmental Biology, cluster Plant Developmental Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
4
|
Gentile D, Serino G, Frugis G. CRF transcription factors in the trade-off between abiotic stress response and plant developmental processes. Front Genet 2024; 15:1377204. [PMID: 38694876 PMCID: PMC11062136 DOI: 10.3389/fgene.2024.1377204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/04/2024] [Indexed: 05/04/2024] Open
Abstract
Climate change-induced environmental stress significantly affects crop yield and quality. In response to environmental stressors, plants use defence mechanisms and growth suppression, creating a resource trade-off between the stress response and development. Although stress-responsive genes have been widely engineered to enhance crop stress tolerance, there is still limited understanding of the interplay between stress signalling and plant growth, a research topic that can provide promising targets for crop genetic improvement. This review focuses on Cytokinin Response Factors (CRFs) transcription factor's role in the balance between abiotic stress adaptation and sustained growth. CRFs, known for their involvement in cytokinin signalling and abiotic stress responses, emerge as potential targets for delaying senescence and mitigating yield penalties under abiotic stress conditions. Understanding the molecular mechanisms regulated by CRFs paves the way for decoupling stress responses from growth inhibition, thus allowing the development of crops that can adapt to abiotic stress without compromising development. This review highlights the importance of unravelling CRF-mediated pathways to address the growing need for resilient crops in the face of evolving climatic conditions.
Collapse
Affiliation(s)
- Davide Gentile
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Rome, Italy
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University of Rome, Rome, Italy
| | - Giovanna Serino
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University of Rome, Rome, Italy
| | - Giovanna Frugis
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Rome, Italy
| |
Collapse
|
5
|
Xu L, Liu Y, Zhang J, Wu W, Hao Z, He S, Li Y, Shi J, Chen J. Genomic survey and expression analysis of LcARFs reveal multiple functions to somatic embryogenesis in Liriodendron. BMC PLANT BIOLOGY 2024; 24:94. [PMID: 38326748 PMCID: PMC10848544 DOI: 10.1186/s12870-024-04765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Auxin response factors (ARFs) are critical transcription factors that mediate the auxin signaling pathway and are essential for regulating plant growth. However, there is a lack of understanding regarding the ARF gene family in Liriodendron chinense, a vital species in landscaping and economics. Thus, further research is needed to explore the roles of ARFs in L. chinense and their potential applications in plant development. RESULT In this study, we have identified 20 LcARF genes that belong to three subfamilies in the genome of L. chinense. The analysis of their conserved domains, gene structure, and phylogeny suggests that LcARFs may be evolutionarily conserved and functionally similar to other plant ARFs. The expression of LcARFs varies in different tissues. Additionally, they are also involved in different developmental stages of somatic embryogenesis. Overexpression of LcARF1, LcARF2a, and LcARF5 led to increased activity within callus. Additionally, our promoter-GFP fusion study indicated that LcARF1 may play a role in embryogenesis. Overall, this study provides insights into the functions of LcARFs in plant development and embryogenesis, which could facilitate the improvement of somatic embryogenesis in L. chinense. CONCLUSION The research findings presented in this study shed light on the regulatory roles of LcARFs in somatic embryogenesis in L. chinense and may aid in accelerating the breeding process of this tree species. By identifying the specific LcARFs involved in different stages of somatic embryogenesis, this study provides a basis for developing targeted breeding strategies aimed at optimizing somatic embryogenesis in L. chinense, which holds great potential for improving the growth and productivity of this economically important species.
Collapse
Affiliation(s)
- Lin Xu
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Ye Liu
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Jiaji Zhang
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Weihuang Wu
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Zhaodong Hao
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Shichan He
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Yiran Li
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China.
| | - Jinhui Chen
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China.
| |
Collapse
|
6
|
Lee K, Koo D, Park OS, Seo PJ. The HOS1-PIF4/5 module controls callus formation in Arabidopsis leaf explants. PLANT SIGNALING & BEHAVIOR 2023; 18:2261744. [PMID: 37747842 PMCID: PMC10761175 DOI: 10.1080/15592324.2023.2261744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023]
Abstract
A two-step plant regeneration has been widely exploited to genetic manipulation and genome engineering in plants. Despite technical importance, understanding of molecular mechanism underlying in vitro plant regeneration remains to be fully elucidated. Here, we found that the HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1 (HOS1)-PHYTOCHROME INTERACTING FACTOR 4/5 (PIF4/5) module participates in callus formation. Consistent with the repressive role of HOS1 in PIF transcriptional activation activity, hos1-3 mutant leaf explants exhibited enhanced callus formation, whereas pif4-101 pif5-3 mutant leaf explants showed reduced callus size. The HOS1-PIF4/5 function would be largely dependent on auxin biosynthesis and signaling, which are essential for callus initiation and proliferation. Our findings suggest that the HOS1-PIF4/5 module plays a pivotal role in auxin-dependent callus formation in Arabidopsis.
Collapse
Affiliation(s)
- Kyounghee Lee
- Department of Chemistry, Seoul National University, Seoul, Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul, Korea
| | - Dohee Koo
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Ok-Sun Park
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
7
|
Tang M, Zhao G, Awais M, Gao X, Meng W, Lin J, Zhao B, Lai Z, Lin Y, Chen Y. Genome-Wide Identification and Expression Analysis Reveals the B3 Superfamily Involved in Embryogenesis and Hormone Responses in Dimocarpus longan Lour. Int J Mol Sci 2023; 25:127. [PMID: 38203301 PMCID: PMC10779397 DOI: 10.3390/ijms25010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
B3 family transcription factors play an essential regulatory role in plant growth and development processes. This study performed a comprehensive analysis of the B3 family transcription factor in longan (Dimocarpus longan Lour.), and a total of 75 DlB3 genes were identified. DlB3 genes were unevenly distributed on the 15 chromosomes of longan. Based on the protein domain similarities and functional diversities, the DlB3 family was further clustered into four subgroups (ARF, RAV, LAV, and REM). Bioinformatics and comparative analyses of B3 superfamily expression were conducted in different light and with different temperatures and tissues, and early somatic embryogenesis (SE) revealed its specific expression profile and potential biological functions during longan early SE. The qRT-PCR results indicated that DlB3 family members played a crucial role in longan SE and zygotic embryo development. Exogenous treatments of 2,4-D (2,4-dichlorophenoxyacetic acid), NPA (N-1-naphthylphthalamic acid), and PP333 (paclobutrazol) could significantly inhibit the expression of the DlB3 family. Supplementary ABA (abscisic acid), IAA (indole-3-acetic acid), and GA3 (gibberellin) suppressed the expressions of DlLEC2, DlARF16, DlTEM1, DlVAL2, and DlREM40, but DlFUS3, DlARF5, and DlREM9 showed an opposite trend. Furthermore, subcellular localization indicated that DlLEC2 and DlFUS3 were located in the nucleus, suggesting that they played a role in the nucleus. Therefore, DlB3s might be involved in complex plant hormone signal transduction pathways during longan SE and zygotic embryo development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.T.); (G.Z.); (M.A.); (X.G.); (W.M.); (J.L.); (B.Z.); (Z.L.)
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.T.); (G.Z.); (M.A.); (X.G.); (W.M.); (J.L.); (B.Z.); (Z.L.)
| |
Collapse
|
8
|
Lee HG, Jang SY, Jie EY, Choi SH, Park OS, Bae SH, Kim HS, Kim SW, Hwang GS, Seo PJ. Adenosine monophosphate enhances callus regeneration competence for de novo plant organogenesis. MOLECULAR PLANT 2023; 16:1867-1870. [PMID: 37817411 DOI: 10.1016/j.molp.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 10/12/2023]
Affiliation(s)
- Hong Gil Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| | - Seo Young Jang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
| | - Eun Yee Jie
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Korea
| | - Seung Hee Choi
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Korea
| | - Ok-Sun Park
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| | - Soon Hyung Bae
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Suk Weon Kim
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Korea.
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea; College of Pharmacy, Chung-Ang University, Seoul 06974, Korea.
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
9
|
Wójcikowska B, Belaidi S, Robert HS. Game of thrones among AUXIN RESPONSE FACTORs-over 30 years of MONOPTEROS research. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6904-6921. [PMID: 37450945 PMCID: PMC10690734 DOI: 10.1093/jxb/erad272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
For many years, research has been carried out with the aim of understanding the mechanism of auxin action, its biosynthesis, catabolism, perception, and transport. One central interest is the auxin-dependent gene expression regulation mechanism involving AUXIN RESPONSE FACTOR (ARF) transcription factors and their repressors, the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) proteins. Numerous studies have been focused on MONOPTEROS (MP)/ARF5, an activator of auxin-dependent gene expression with a crucial impact on plant development. This review summarizes over 30 years of research on MP/ARF5. We indicate the available analytical tools to study MP/ARF5 and point out the known mechanism of MP/ARF5-dependent regulation of gene expression during various developmental processes, namely embryogenesis, leaf formation, vascularization, and shoot and root meristem formation. However, many questions remain about the auxin dose-dependent regulation of gene transcription by MP/ARF5 and its isoforms in plant cells, the composition of the MP/ARF5 protein complex, and, finally, all the genes under its direct control. In addition, information on post-translational modifications of MP/ARF5 protein is marginal, and knowledge about their consequences on MP/ARF5 function is limited. Moreover, the epigenetic factors and other regulators that act upstream of MP/ARF5 are poorly understood. Their identification will be a challenge in the coming years.
Collapse
Affiliation(s)
- Barbara Wójcikowska
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Samia Belaidi
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Hélène S Robert
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
10
|
Ma L, Zhang X, Deng Z, Zhang P, Wang T, Li R, Li J, Cheng K, Wang J, Ma N, Qu G, Zhu B, Fu D, Luo Y, Li F, Zhu H. Dicer-like2b suppresses the wiry leaf phenotype in tomato induced by tobacco mosaic virus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1737-1747. [PMID: 37694805 DOI: 10.1111/tpj.16462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
Dicer-like (DCL) proteins are principal components of RNA silencing, a major defense mechanism against plant virus infections. However, their functions in suppressing virus-induced disease phenotypes remain largely unknown. Here, we identified a role for tomato (Solanum lycopersicum) DCL2b in regulating the wiry leaf phenotype during defense against tobacco mosaic virus (TMV). Knocking out SlyDCL2b promoted TMV accumulation in the leaf primordium, resulting in a wiry phenotype in distal leaves. Biochemical and bioinformatics analyses showed that 22-nt virus-derived small interfering RNAs (vsiRNAs) accumulated less abundantly in slydcl2b mutants than in wild-type plants, suggesting that SlyDCL2b-dependent 22-nt vsiRNAs are required to exclude virus from leaf primordia. Moreover, the wiry leaf phenotype was accompanied by upregulation of Auxin Response Factors (ARFs), resulting from a reduction in trans-acting siRNAs targeting ARFs (tasiARFs) in TMV-infected slydcl2b mutants. Loss of tasiARF production in the slydcl2b mutant was in turn caused by inhibition of miRNA390b function. Importantly, silencing SlyARF3 and SlyARF4 largely restored the wiry phenotype in TMV-infected slydcl2b mutants. Our work exemplifies the complex relationship between RNA viruses and the endogenous RNA silencing machinery, whereby SlyDCL2b protects the normal development of newly emerging organs by excluding virus from these regions and thus maintaining developmental silencing.
Collapse
Affiliation(s)
- Liqun Ma
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xi Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiqi Deng
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Peiyu Zhang
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Tian Wang
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ran Li
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jinyan Li
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ke Cheng
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jubin Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nan Ma
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Guiqin Qu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Benzhong Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Daqi Fu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yunbo Luo
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Feng Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongliang Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
11
|
Liu K, Yang A, Yan J, Liang Z, Yuan G, Cong P, Zhang L, Han X, Zhang C. MdAIL5 overexpression promotes apple adventitious shoot regeneration by regulating hormone signaling and activating the expression of shoot development-related genes. HORTICULTURE RESEARCH 2023; 10:uhad198. [PMID: 38023483 PMCID: PMC10673654 DOI: 10.1093/hr/uhad198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 09/25/2023] [Indexed: 12/01/2023]
Abstract
Adventitious shoot (AS) regeneration is a significant factor in the genetic transformation of horticultural plants. It is also a noteworthy approach to their vegetative propagation. AS regeneration remains highly dependent on the genotype or maturity of explants. We here found that the AS regeneration abilities of apple leaves were positively correlated with MdAIL5 expression. MdAIL5 overexpression dramatically increased AS regeneration efficiency. Notably, MdAIL5 overexpression could restore the AS formation ability of explants to a certain extent, which was lost with an increase in maturity. Endogenous hormone detection revealed that MdAIL5 overexpression changed the contents of auxin, cytokinin (CK), and other hormones in apple leaves. Transcriptome analysis revealed that many genes related to auxin, CK, and brassinolide signaling pathways were significantly and differentially expressed between MdAIL5-overexpressing transgenic apple and wild-type apple plants. Yeast one-hybrid assays, the electrophoretic mobility shift assay, and the dual-luciferase reporter assay revealed that MdAIL5 directly binds to MdARF9 and MdHB14 promoters and positively affects their expression. We here established a model of MdAIL5 regulating AS formation, which acts as a theoretical basis for facilitating genotype- or explant maturity-independent AS regeneration in the future.
Collapse
Affiliation(s)
- Kai Liu
- Apple Breeding, Chinese Academy of Agricultural Sciences Research Institute of Pomology, Xingcheng 125100, China
- Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xingcheng 125100, China
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - An Yang
- Apple Breeding, Chinese Academy of Agricultural Sciences Research Institute of Pomology, Xingcheng 125100, China
- Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xingcheng 125100, China
| | - Jiadi Yan
- Apple Breeding, Chinese Academy of Agricultural Sciences Research Institute of Pomology, Xingcheng 125100, China
- Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xingcheng 125100, China
| | - Zhaolin Liang
- Apple Breeding, Chinese Academy of Agricultural Sciences Research Institute of Pomology, Xingcheng 125100, China
- Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xingcheng 125100, China
| | - Gaopeng Yuan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Peihua Cong
- Apple Breeding, Chinese Academy of Agricultural Sciences Research Institute of Pomology, Xingcheng 125100, China
- Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xingcheng 125100, China
| | - Liyi Zhang
- Apple Breeding, Chinese Academy of Agricultural Sciences Research Institute of Pomology, Xingcheng 125100, China
- Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xingcheng 125100, China
| | - Xiaolei Han
- Apple Breeding, Chinese Academy of Agricultural Sciences Research Institute of Pomology, Xingcheng 125100, China
- Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xingcheng 125100, China
| | - Caixia Zhang
- Apple Breeding, Chinese Academy of Agricultural Sciences Research Institute of Pomology, Xingcheng 125100, China
- Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xingcheng 125100, China
| |
Collapse
|
12
|
Yan T, Hou Q, Wei X, Qi Y, Pu A, Wu S, An X, Wan X. Promoting genotype-independent plant transformation by manipulating developmental regulatory genes and/or using nanoparticles. PLANT CELL REPORTS 2023; 42:1395-1417. [PMID: 37311877 PMCID: PMC10447291 DOI: 10.1007/s00299-023-03037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/22/2023] [Indexed: 06/15/2023]
Abstract
KEY MESSAGE This review summarizes the molecular basis and emerging applications of developmental regulatory genes and nanoparticles in plant transformation and discusses strategies to overcome the obstacles of genotype dependency in plant transformation. Plant transformation is an important tool for plant research and biotechnology-based crop breeding. However, Plant transformation and regeneration are highly dependent on species and genotype. Plant regeneration is a process of generating a complete individual plant from a single somatic cell, which involves somatic embryogenesis, root and shoot organogeneses. Over the past 40 years, significant advances have been made in understanding molecular mechanisms of embryogenesis and organogenesis, revealing many developmental regulatory genes critical for plant regeneration. Recent studies showed that manipulating some developmental regulatory genes promotes the genotype-independent transformation of several plant species. Besides, nanoparticles penetrate plant cell wall without external forces and protect cargoes from degradation, making them promising materials for exogenous biomolecule delivery. In addition, manipulation of developmental regulatory genes or application of nanoparticles could also bypass the tissue culture process, paving the way for efficient plant transformation. Applications of developmental regulatory genes and nanoparticles are emerging in the genetic transformation of different plant species. In this article, we review the molecular basis and applications of developmental regulatory genes and nanoparticles in plant transformation and discuss how to further promote genotype-independent plant transformation.
Collapse
Affiliation(s)
- Tingwei Yan
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Quancan Hou
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China
| | - Xun Wei
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China
| | - Yuchen Qi
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Aqing Pu
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Suowei Wu
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Xueli An
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Xiangyuan Wan
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China.
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China.
| |
Collapse
|
13
|
Fehér A. A Common Molecular Signature Indicates the Pre-Meristematic State of Plant Calli. Int J Mol Sci 2023; 24:13122. [PMID: 37685925 PMCID: PMC10488067 DOI: 10.3390/ijms241713122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
In response to different degrees of mechanical injury, certain plant cells re-enter the division cycle to provide cells for tissue replenishment, tissue rejoining, de novo organ formation, and/or wound healing. The intermediate tissue formed by the dividing cells is called a callus. Callus formation can also be induced artificially in vitro by wounding and/or hormone (auxin and cytokinin) treatments. The callus tissue can be maintained in culture, providing starting material for de novo organ or embryo regeneration and thus serving as the basis for many plant biotechnology applications. Due to the biotechnological importance of callus cultures and the scientific interest in the developmental flexibility of somatic plant cells, the initial molecular steps of callus formation have been studied in detail. It was revealed that callus initiation can follow various ways, depending on the organ from which it develops and the inducer, but they converge on a seemingly identical tissue. It is not known, however, if callus is indeed a special tissue with a defined gene expression signature, whether it is a malformed meristem, or a mass of so-called "undifferentiated" cells, as is mostly believed. In this paper, I review the various mechanisms of plant regeneration that may converge on callus initiation. I discuss the role of plant hormones in the detour of callus formation from normal development. Finally, I compare various Arabidopsis gene expression datasets obtained a few days, two weeks, or several years after callus induction and identify 21 genes, including genes of key transcription factors controlling cell division and differentiation in meristematic regions, which were upregulated in all investigated callus samples. I summarize the information available on all 21 genes that point to the pre-meristematic nature of callus tissues underlying their wide regeneration potential.
Collapse
Affiliation(s)
- Attila Fehér
- Institute of Plant Biology, Biological Research Centre, 62 Temesvári Körút, 6726 Szeged, Hungary; or
- Department of Plant Biology, University of Szeged, 52 Közép Fasor, 6726 Szeged, Hungary
| |
Collapse
|
14
|
Šmeringai J, Schrumpfová PP, Pernisová M. Cytokinins - regulators of de novo shoot organogenesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1239133. [PMID: 37662179 PMCID: PMC10471832 DOI: 10.3389/fpls.2023.1239133] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023]
Abstract
Plants, unlike animals, possess a unique developmental plasticity, that allows them to adapt to changing environmental conditions. A fundamental aspect of this plasticity is their ability to undergo postembryonic de novo organogenesis. This requires the presence of regulators that trigger and mediate specific spatiotemporal changes in developmental programs. The phytohormone cytokinin has been known as a principal regulator of plant development for more than six decades. In de novo shoot organogenesis and in vitro shoot regeneration, cytokinins are the prime candidates for the signal that determines shoot identity. Both processes of de novo shoot apical meristem development are accompanied by changes in gene expression, cell fate reprogramming, and the switching-on of the shoot-specific homeodomain regulator, WUSCHEL. Current understanding about the role of cytokinins in the shoot regeneration will be discussed.
Collapse
Affiliation(s)
- Ján Šmeringai
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Petra Procházková Schrumpfová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Markéta Pernisová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
| |
Collapse
|
15
|
Peng Z, Li H, Liu G, Jia W, Fu D. NAC transcription factor NOR-like1 regulates tomato fruit size. PLANTA 2023; 258:9. [PMID: 37256357 DOI: 10.1007/s00425-023-04166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/24/2023] [Indexed: 06/01/2023]
Abstract
MAIN CONCLUSION NOR-like1 regulates tomato fruit size by targeting SlARF9, SlGRAS2, SlFW3.2, and SlFW11.3 genes involved in cell division and cell expansion. Fruit size is an important agricultural character that determines the yield of crops. Here, we found that NAC transcription factor NOR-like1 regulated fruit size by regulating cell layer number and cell area in tomato. Over-expressing NOR-like1 gene in tomato reduced fruit weight and size, whereas the knock-out of NOR-like1 increased fruit weight and size. At the molecular level, NOR-like1 binds to the promoter of SlGRAS2, SlFW3.2, and SlFW11.3 to repress their transcription, while it also binds to the promoter of ARF9 to activate its transcription. Overall, these results expand the biological function of NOR-like1 and deepen our understanding of the transcriptional network that regulates tomato fruit size.
Collapse
Affiliation(s)
- Zhenzhen Peng
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hongli Li
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Gangshuai Liu
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Wen Jia
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Daqi Fu
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
16
|
Verma V, Kumar A, Partap M, Thakur M, Bhargava B. CRISPR-Cas: A robust technology for enhancing consumer-preferred commercial traits in crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1122940. [PMID: 36824195 PMCID: PMC9941649 DOI: 10.3389/fpls.2023.1122940] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
The acceptance of new crop varieties by consumers is contingent on the presence of consumer-preferred traits, which include sensory attributes, nutritional value, industrial products and bioactive compounds production. Recent developments in genome editing technologies provide novel insight to identify gene functions and improve the various qualitative and quantitative traits of commercial importance in plants. Various conventional as well as advanced gene-mutagenesis techniques such as physical and chemical mutagenesis, CRISPR-Cas9, Cas12 and base editors are used for the trait improvement in crops. To meet consumer demand, breakthrough biotechnologies, especially CRISPR-Cas have received a fair share of scientific and industrial interest, particularly in plant genome editing. CRISPR-Cas is a versatile tool that can be used to knock out, replace and knock-in the desired gene fragments at targeted locations in the genome, resulting in heritable mutations of interest. This review highlights the existing literature and recent developments in CRISPR-Cas technologies (base editing, prime editing, multiplex gene editing, epigenome editing, gene delivery methods) for reliable and precise gene editing in plants. This review also discusses the potential of gene editing exhibited in crops for the improvement of consumer-demanded traits such as higher nutritional value, colour, texture, aroma/flavour, and production of industrial products such as biofuel, fibre, rubber and pharmaceuticals. In addition, the bottlenecks and challenges associated with gene editing system, such as off targeting, ploidy level and the ability to edit organelle genome have also been discussed.
Collapse
Affiliation(s)
- Vipasha Verma
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Akhil Kumar
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Mahinder Partap
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Meenakshi Thakur
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Bhavya Bhargava
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
17
|
Lee K, Wang K. Strategies for genotype-flexible plant transformation. Curr Opin Biotechnol 2023; 79:102848. [PMID: 36463838 DOI: 10.1016/j.copbio.2022.102848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/23/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022]
Abstract
Recent advances in the genome-editing tools have demonstrated a great potential for accelerating functional genomics and crop trait improvements, but the low efficiency and genotype dependence in plant transformation hinder practical applications of such revolutionary tools. Morphogenic transcription factors (MTFs) such as Baby boom, Wuschel2, GROWTH-REGULATING FACTOR5, GROWTH-REGULATING FACTOR4 and its cofactor GRF-INTERACTING FACTOR1, and Wuschel-homeobox 5 related have been shown to greatly enhance plant transformation efficiency and expand the range of amenable species and genotypes. This review will summarize recent advancements in plant transformation technologies with an emphasis on the strategies developed for genotype-flexible transformation methods utilizing MTFs for both monocots and dicot plant species. We highlight several breakthrough studies that demonstrated a wide range of applicability.
Collapse
Affiliation(s)
- Keunsub Lee
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA; Crop Bioengineering Center, Iowa State University, Ames, IA 50011, USA
| | - Kan Wang
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA; Crop Bioengineering Center, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
18
|
Nuzzo F, Gambino G, Perrone I. Unlocking grapevine in vitro regeneration: Issues and perspectives for genetic improvement and functional genomic studies. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 193:99-109. [PMID: 36343465 DOI: 10.1016/j.plaphy.2022.10.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
In vitro plant regeneration is a pivotal process in genetic engineering to obtain large numbers of transgenic, cisgenic and gene edited plants in the frame of functional gene or genetic improvement studies. However, several issues emerge as regeneration is not universally possible across the plant kingdom and many variables must be considered. In grapevine (Vitis spp.), as in other woody and fruit tree species, the regeneration process is impaired by a recalcitrance that depends on numerous factors such as genotype and explant-dependent responses. This is one of the major obstacles in developing gene editing approaches and functional genome studies in grapevine and it is therefore crucial to understand how to achieve efficient regeneration across different genotypes. Further issues that emerge in regeneration need to be addressed, such as somaclonal mutations which do not allow the regeneration of individuals identical to the original mother plant, an essential factor for commercial use of the improved grapevines obtained through the New Breeding Techniques. Over the years, the evolution of protocols to achieve plant regeneration has relied mainly on optimizing protocols for genotypes of interest whilst nowadays with new genomic data available there is an emerging opportunity to have a clearer picture of its molecular regulation. The goal of this review is to discuss the latest information available about different aspects of grapevine in vitro regeneration, to address the main factors that can impair the efficiency of the plant regeneration process and cause post-regeneration problems and to propose strategies for investigating and solving them.
Collapse
Affiliation(s)
- Floriana Nuzzo
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Strada Delle Cacce 73, 10135, Torino, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Strada Delle Cacce 73, 10135, Torino, Italy.
| | - Irene Perrone
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Strada Delle Cacce 73, 10135, Torino, Italy
| |
Collapse
|
19
|
Xu X, Zhang Q, Gao X, Wu G, Wu M, Yuan Y, Zheng X, Gong Z, Hu X, Gong M, Qi T, Li H, Luo Z, Li Z, Deng W. Auxin and abscisic acid antagonistically regulate ascorbic acid production via the SlMAPK8-SlARF4-SlMYB11 module in tomato. THE PLANT CELL 2022; 34:4409-4427. [PMID: 36000899 PMCID: PMC9614483 DOI: 10.1093/plcell/koac262] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/11/2022] [Indexed: 06/01/2023]
Abstract
Ascorbic acid (AsA) is a multifunctional phytonutrient that is essential for the human diet as well as plant development. While much is known about AsA biosynthesis in plants, how this process is regulated in tomato (Solanum lycopersicum) fruits remains unclear. Here, we found that auxin treatment inhibited AsA accumulation in the leaves and pericarps of tomato. The auxin response factor gene SlARF4 is induced by auxin to mediate auxin-induced inhibition of AsA accumulation. Specifically, SlARF4 transcriptionally inhibits the transcription factor gene SlMYB11, thereby modulating AsA accumulation by regulating the transcription of the AsA biosynthesis genes l-galactose-1-phosphate phosphatase, l-galactono-1,4-lactone dehydrogenase, and dehydroascorbate. By contrast, abscisic acid (ABA) treatment increased AsA accumulation in tomato under drought stress. ABA induced the expression of the mitogen-activated protein kinase gene SlMAPK8. We demonstrate that SlMAPK8 phosphorylates SlARF4 and inhibits its transcriptional activity, whereas SlMAPK8 phosphorylates SlMYB11 and activates its transcriptional activity. SlMAPK8 functions in ABA-induced AsA accumulation and drought stress tolerance. Moreover, ABA antagonizes the effects of auxin on AsA biosynthesis. Therefore, auxin- and ABA-induced regulation of AsA accumulation is mediated by the SlMAPK8-SlARF4-SlMYB11 module in tomato during fruit development and drought stress responses, shedding light on the roles of phytohormones in regulating AsA accumulation to mediate stress tolerance.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Qiongdan Zhang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Xueli Gao
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Guanle Wu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Mengbo Wu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Yujin Yuan
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Xianzhe Zheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Zehao Gong
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Xiaowei Hu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Min Gong
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Tiancheng Qi
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Honghai Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
| |
Collapse
|
20
|
Canher B, Lanssens F, Zhang A, Bisht A, Mazumdar S, Heyman J, Wolf S, Melnyk CW, De Veylder L. The regeneration factors ERF114 and ERF115 regulate auxin-mediated lateral root development in response to mechanical cues. MOLECULAR PLANT 2022; 15:1543-1557. [PMID: 36030378 DOI: 10.1016/j.molp.2022.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/10/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Plants show an unparalleled regenerative capacity, allowing them to survive severe stress conditions, such as injury, herbivory attack, and harsh weather conditions. This potential not only replenishes tissues and restores damaged organs but can also give rise to whole plant bodies. Despite the intertwined nature of development and regeneration, common upstream cues and signaling mechanisms are largely unknown. Here, we demonstrate that in addition to being activators of regeneration, ETHYLENE RESPONSE FACTOR 114 (ERF114) and ERF115 govern developmental growth in the absence of wounding or injury. Increased ERF114 and ERF115 activity enhances auxin sensitivity, which is correlated with enhanced xylem maturation and lateral root formation, whereas their knockout results in a decrease in lateral roots. Moreover, we provide evidence that mechanical cues contribute to ERF114 and ERF115 expression in correlation with BZR1-mediated brassinosteroid signaling under both regenerative and developmental conditions. Antagonistically, cell wall integrity surveillance via mechanosensory FERONIA signaling suppresses their expression under both conditions. Taken together, our data suggest a molecular framework in which cell wall signals and mechanical strains regulate organ development and regenerative responses via ERF114- and ERF115-mediated auxin signaling.
Collapse
Affiliation(s)
- Balkan Canher
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium; VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Fien Lanssens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium; VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Ai Zhang
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 756 51 Uppsala, Sweden
| | - Anchal Bisht
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium; VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Shamik Mazumdar
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 756 51 Uppsala, Sweden
| | - Jefri Heyman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium; VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Sebastian Wolf
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Charles W Melnyk
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 756 51 Uppsala, Sweden
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium; VIB Center for Plant Systems Biology, Ghent B-9052, Belgium.
| |
Collapse
|
21
|
Xu Z, Wang R, Kong K, Begum N, Almakas A, Liu J, Li H, Liu B, Zhao T, Zhao T. An APETALA2/ethylene responsive factor transcription factor GmCRF4a regulates plant height and auxin biosynthesis in soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:983650. [PMID: 36147224 PMCID: PMC9485679 DOI: 10.3389/fpls.2022.983650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/17/2022] [Indexed: 06/01/2023]
Abstract
Plant height is one of the key agronomic traits affecting soybean yield. The cytokinin response factors (CRFs), as a branch of the APETALA2/ethylene responsive factor (AP2/ERF) super gene family, have been reported to play important roles in regulating plant growth and development. However, their functions in soybean remain unknown. This study characterized a soybean CRF gene named GmCRF4a by comparing the performance of the homozygous Gmcrf4a-1 mutant, GmCRF4a overexpression (OX) and co-silencing (CS) lines. Phenotypic analysis showed that overexpression of GmCRF4a resulted in taller hypocotyls and epicotyls, more main stem nodes, and higher plant height. While down-regulation of GmCRF4a conferred shorter hypocotyls and epicotyls, as well as a reduction in plant height. The histological analysis results demonstrated that GmCRF4a promotes epicotyl elongation primarily by increasing cell length. Furthermore, GmCRF4a is required for the expression of GmYUCs genes to elevate endogenous auxin levels, which may subsequently enhance stem elongation. Taken together, these observations describe a novel regulatory mechanism in soybean, and provide the basis for elucidating the function of GmCRF4a in auxin biosynthesis pathway and plant heigh regulation in plants.
Collapse
Affiliation(s)
- Zhiyong Xu
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruikai Wang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Keke Kong
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Naheeda Begum
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Aisha Almakas
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Jun Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongyu Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Tao Zhao
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
22
|
Fang SC, Chen JC, Chang PY, Lin HY. Co-option of the SHOOT MERISTEMLESS network regulates protocorm-like body development in Phalaenopsis aphrodite. PLANT PHYSIOLOGY 2022; 190:127-145. [PMID: 35258627 PMCID: PMC9434259 DOI: 10.1093/plphys/kiac100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/08/2022] [Indexed: 06/02/2023]
Abstract
The protocorm is a structure that is formed upon germination of an orchid seed. It lacks cotyledons and is ovoid in shape. The protocorm-like body (PLB), on the other hand, is a protocorm-like organ induced from somatic tissues. PLBs have been widely used for orchid micropropagation. Because of its unique structure and its application in the orchid industry, PLB development has drawn considerable interest from orchid and developmental biologists. Our previous genome-wide comparative transcriptome study demonstrated that protocorms and PLBs share similar molecular signatures and suggested that SHOOT MERISTEMLESS (STM)-dependent organogenesis is important for PLB development. Here, we show that overexpression of Phalaenopsis aphrodite STM (PaSTM) greatly enhances PLB regeneration from vegetative tissue-based explants of Phalaenopsis orchids, confirming its regulatory role in PLB development. Expression of PaSTM restored shoot meristem function of the Arabidopsis (Arabidopsis thaliana) stm-2 mutant. Moreover, we identified class S11 MYB transcription factors (TFs) as targets downstream of PaSTM. A cis-acting element, TTGACT, identified in the promoters of S11 MYB TFs was found to be important for PaSTM binding and activation. Overexpression of PaSTM or its downstream targets, PaMYB13, PaMYB14, and PaMYB17, enhanced de novo shoot regeneration in Arabidopsis, indicating the active role of the PaSTM-S11 PaMYB module in organogenesis. In summary, our data demonstrate that PaSTM is important for PLB development. The STM-S11 MYB regulatory module is evolutionarily conserved and may regulate shoot or shoot-related organ development in plants.
Collapse
Affiliation(s)
| | - Jhun-Chen Chen
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Pou-Yi Chang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Hsiang-Yin Lin
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
23
|
Okazaki K, Koike I, Kera S, Yamaguchi K, Shigenobu S, Shimomura K, Umehara M. Gene expression profiling before and after internode culture for adventitious shoot formation in ipecac. BMC PLANT BIOLOGY 2022; 22:361. [PMID: 35869421 PMCID: PMC9308184 DOI: 10.1186/s12870-022-03756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In ipecac (Carapichea ipecacuanha (Brot.) L. Andersson), adventitious shoots can be induced simply by placing internodal segments on phytohormone-free culture medium. The shoots form locally on the epidermis of the apical region of the segments, but not the basal region. Levels of endogenous auxin and cytokinin transiently increase in the segments after 1 week of culture. RESULTS Here, we conducted RNA-seq analysis to compare gene expression patterns in apical and basal regions of segments before culture and after 1 week of culture for adventitious shoot formation. The results revealed 8987 differentially expressed genes in a de novo assembly of 76,684 genes. Among them, 276 genes were upregulated in the apical region after 1 week of culture relative to before culture and the basal region after 1 week of culture. These genes include 18 phytohormone-response genes and shoot-formation-related genes. Validation of the gene expression by quantitative real-time PCR assay confirmed that the expression patterns were similar to those of the RNA-seq data. CONCLUSIONS The transcriptome data show that expression of cytokinin biosynthesis genes is induced along with the acquisition of cellular pluripotency and the initiation of cell division by wounding in the apical region of internodal segments, that trigger adventitious shoot formation without callusing.
Collapse
Affiliation(s)
- Karin Okazaki
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Imari Koike
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Sayuri Kera
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Katushi Yamaguchi
- Trans-Scale Biology Center, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Shuji Shigenobu
- Trans-Scale Biology Center, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Koichiro Shimomura
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Mikihisa Umehara
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan.
- Department of Applied Biosciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan.
| |
Collapse
|
24
|
Abstract
AGAMOUS-LIKE 24 (AGL24) is a key gene regulating floral transition, but its involvement in flower organ identity remains largely unknown. In this study, we found that RhAGL24 is strongly related to petal and stamen development in rose. Its expression increases rapidly at the petal primordium development stage and maintains a high level until the complete differentiation stage. RhAGL24 silencing increases the number of malformed petals and decreases the number of stamens, indicating that this gene affects stamen petaloidy. RhAG (AGAMOUS), a class C gene associated with petal and stamen development, is downregulated in RhAGL24-silenced plants. Moreover, we found that RhAGL24 could directly bind to the promoter region of RhARF18 (AUXIN RESPONSE FACTORS 18), a regulator of RhAG. Our results suggested that RhAGL24-RhARF18 module regulates stamen petaloidy in rose and provide new insights into the function of AGL24 for plants.
Collapse
|
25
|
Liu X, He X, Liu Z, Wu P, Tang N, Chen Z, Zhang W, Rao S, Cheng S, Luo C, Xu F. Transcriptome mining of genes in Zanthoxylum armatum revealed ZaMYB86 as a negative regulator of prickly development. Genomics 2022; 114:110374. [PMID: 35489616 DOI: 10.1016/j.ygeno.2022.110374] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/23/2022] [Accepted: 04/22/2022] [Indexed: 01/14/2023]
Abstract
Zanthoxylum armatum DC. is an important economic tree species. Prickle is a type of trichome with special morphology, and there are a lot of prickles on the leaves of Z. armatum, which seriously restricts the development of Z. armatum industry. In this study, the leaves of Z. armatum cv. Zhuye (ZY) and its budding variety 'Rongchangwuci' (WC) (A less prickly mutant variety) at different developmental stages were used as materials, and the transcriptome sequencing data were analyzed. A total of 96,931 differentially expressed genes (DEGs) were identified among the samples, among which 1560 were candidate DEGs that might be involved in hormone metabolism. The contents of JA, auxin and CK phytohormones in ZY leaves were significantly higher than those in WC leaves. Combined with weighted gene co-expression network analysis, eight genes (MYC, IAA, ARF, CRE/AHK, PP2C, ARR-A, AOS and LOX) were identified, including 25 transcripts, which might affect the metabolism of the three hormones and indirectly participate in the formation of prickles. Combining with the proteins successfully reported in other plants to regulate trichome formation, ZaMYB86, a transcription factor of R2R3 MYB family, was identified through local Blast and phylogenetic tree analysis, which might regulate prickle formation of Z. armatum. Overexpression of ZaMYB86 in mutant A. thaliana resulted in the reduction of trichomes in A. thaliana leaves, which further verified that ZaMYB86 was involved in the formation of pickles. Yeast two-hybrid results showed that ZaMYB86 interacted with ZaMYB5. Furthermore, ZaMYB5 was highly homologous to AtMYB5, a transcription factor that regulated trichomes development, in MYB DNA binding domain. Taken together, these results indicated that ZaMYB86 and ZaMYB5 act together to regulate the formation of prickles in Z. armatum. Our findings provided a new perspective for revealing the molecular mechanism of prickly formation.
Collapse
Affiliation(s)
- Xiaomeng Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xiao He
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Zhongbing Liu
- School of Horticulture and Landscape, Wuhan University of Bioengineering, Wuhan, China
| | - Peiyin Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Ning Tang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing 400000, China
| | - Zexiong Chen
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing 400000, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China; Spice Crops Research Institute, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, Hubei, China; National Selenium Rich Product Quality Supervision and Inspection Center, Enshi 445000, Hubei, China
| | - Chengrong Luo
- Sichuan Academy of Forestry, Chengdu 610081, Sichuan, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China.
| |
Collapse
|
26
|
Mao J, Ma D, Niu C, Ma X, Li K, Tahir MM, Chen S, Liu X, Zhang D. Transcriptome analysis reveals the regulatory mechanism by which MdWOX11 suppresses adventitious shoot formation in apple. HORTICULTURE RESEARCH 2022; 9:uhac080. [PMID: 35669707 PMCID: PMC9160730 DOI: 10.1093/hr/uhac080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 03/18/2022] [Indexed: 05/27/2023]
Abstract
Adventitious shoot (AS) regeneration accelerates plant reproduction and genetic transformation. WOX11 is involved in many biological processes, but its regulation of AS regeneration has not been reported. Here, we showed that the genotype and CK/IAA ratio of apple leaves were the key factors that affected their capacity for AS formation. Moreover, the expression level of MdWOX11 was negatively correlated with the capacity for AS formation. Phenotypic analysis of MdWOX11 transgenic plants showed that overexpression of MdWOX11 inhibited AS formation. Endogenous hormone analysis demonstrated that the contents of auxin (IAA), cytokinin (CK), and abscisic acid (ABA) were higher in MdWOX11-RNAi plants than in MdWOX11-OE transgenic plants. We used RNA sequencing to examine the transcriptional responses of genes in MdWOX11-RNAi and MdWOX11-OE transgenic apple plants at different AS stages. We identified 8066 differentially expressed genes and focused our analysis on those involved in the IAA, CK, ABA, and gibberellin (GA) hormone signaling pathways. The expression of genes related to the CK signaling pathway and shoot development was higher in GL-3 than in MdWOX11-OE transgenic plants during the callus and AS emergence stages. However, the expression of MdCKX5 was higher in MdWOX11-OE transgenic plants than in GL3 and MdWOX11-RNAi transgenic plants. Yeast one-hybrid (Y1H) assays, dual-luciferase reporter assays, and ChIP-qPCR showed that MdWOX11 binds to the promoter of MdCKX5, and a dual-luciferase reporter assay showed that MdWOX11 enhanced the promoter activity of MdCKX5. We concluded that MdCKX5 acts downstream of MdWOX11 to control AS formation, and we built a regulatory model of the suppression of AS formation by MdWOX11 in apple.
Collapse
|
27
|
Maren NA, Duan H, Da K, Yencho GC, Ranney TG, Liu W. Genotype-independent plant transformation. HORTICULTURE RESEARCH 2022; 9:uhac047. [PMID: 35531314 PMCID: PMC9070643 DOI: 10.1093/hr/uhac047] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/11/2022] [Indexed: 05/26/2023]
Abstract
Plant transformation and regeneration remain highly species- and genotype-dependent. Conventional hormone-based plant regeneration via somatic embryogenesis or organogenesis is tedious, time-consuming, and requires specialized skills and experience. Over the last 40 years, significant advances have been made to elucidate the molecular mechanisms underlying embryogenesis and organogenesis. These pioneering studies have led to a better understanding of the key steps and factors involved in plant regeneration, resulting in the identification of crucial growth and developmental regulatory genes that can dramatically improve regeneration efficiency, shorten transformation time, and make transformation of recalcitrant genotypes possible. Co-opting these regulatory genes offers great potential to develop innovative genotype-independent genetic transformation methods for various plant species, including specialty crops. Further developing these approaches has the potential to result in plant transformation without the use of hormones, antibiotics, selectable marker genes, or tissue culture. As an enabling technology, the use of these regulatory genes has great potential to enable the application of advanced breeding technologies such as genetic engineering and gene editing for crop improvement in transformation-recalcitrant crops and cultivars. This review will discuss the recent advances in the use of regulatory genes in plant transformation and regeneration, and their potential to facilitate genotype-independent plant transformation and regeneration.
Collapse
Affiliation(s)
- Nathan A Maren
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27607, USA
| | - Hui Duan
- USDA-ARS, U.S. National Arboretum, Floral and Nursery Plants Research Unit, Beltsville Agricultural Research Center (BARC)-West, Beltsville, MD 20705, USA
| | - Kedong Da
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27607, USA
| | - G Craig Yencho
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27607, USA
| | - Thomas G Ranney
- Mountain Crop Improvement Lab, Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River, NC 28759, USA
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27607, USA
| |
Collapse
|
28
|
Zheng J, Zhang Z, Gong Z, Liang Y, Sang Z, Xu Y, Li X, Wang J. Genome-Wide Association Analysis of Salt-Tolerant Traits in Terrestrial Cotton at Seedling Stage. PLANTS (BASEL, SWITZERLAND) 2021; 11:97. [PMID: 35009100 PMCID: PMC8747425 DOI: 10.3390/plants11010097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/01/2021] [Accepted: 12/11/2021] [Indexed: 06/01/2023]
Abstract
Soil salinization is the main abiotic stress factor affecting agricultural production worldwide, and salt stress has a significant impact on plant growth and development. Cotton is one of the most salt-tolerant crops. Therefore, the selection and utilization of salt-tolerant germplasm resources and the excavation of salt resistance genes play important roles in improving cotton production in saline-alkali soils. In this study, we analysed the population structure and genetic diversity of a total 149 cotton plant materials including 137 elite Gossypium hirsutum cultivar accessions collected from China and 12 elite Gossypium hirsutum cultivar accessions collected from around the world. Illumina Cotton SNP 70 K was used to obtain genome-wide single-nucleotide polymorphism (SNP) data for 149 elite Gossypium hirsutum cultivar accessions, and 18,430 highly consistent SNP loci were obtained by filtering. It was assessed by using PCA principal component analysis so that the 149 elite Gossypium hirsutum cultivar accessions could be divided into two subgroups, including subgroup 1 with 78 materials and subgroup 2 with 71 materials. Using the obtained SNP and other marker genotype test results, under salt stress, the salt tolerance traits 3d Germination potential, 3d Radicle length drop rate, 7d Germination rate, 7d Radicle length drop rate, 7d Germination weight, 3d Radicle length, 7d Radicle length, Relative Germination potential, Relative Germination rate, 7d Radicle weight drop rate, Salt tolerance index 3d Germination potential index, 3d Radicle length index, 7d Radicle length index, 7d Radicle weight index and 7d Germination rate index were evaluated by GWAS (genome-wide association analysis). A total of 27 SNP markers closely related to the salt tolerance traits and 15 SNP markers closely related to the salt tolerance index were detected. At the SNP locus associated with phenotyping, Gh_D01G0943, Gh_D01G0945, Gh_A01G0906, Gh_A01G0908, Gh_D08G1308 and Gh_D08G1309 related to plant salt tolerance were detected, and they were found to be involved in intracellular transport, sucrose synthesis, osmotic pressure balance, transmembrane transport, N-glycosylation, auxin response and cell amplification. This study provides a theoretical basis for the selection and breeding of salt-tolerant upland cotton varieties.
Collapse
Affiliation(s)
- Juyun Zheng
- Economic Crops Research Institute, Xinjiang Academy of Agricultural Science (XAAS), Urumqi 830001, China; (J.Z.); (Z.Z.); (Z.G.); (Y.L.); (Z.S.)
| | - Zeliang Zhang
- Economic Crops Research Institute, Xinjiang Academy of Agricultural Science (XAAS), Urumqi 830001, China; (J.Z.); (Z.Z.); (Z.G.); (Y.L.); (Z.S.)
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China
| | - Zhaolong Gong
- Economic Crops Research Institute, Xinjiang Academy of Agricultural Science (XAAS), Urumqi 830001, China; (J.Z.); (Z.Z.); (Z.G.); (Y.L.); (Z.S.)
| | - Yajun Liang
- Economic Crops Research Institute, Xinjiang Academy of Agricultural Science (XAAS), Urumqi 830001, China; (J.Z.); (Z.Z.); (Z.G.); (Y.L.); (Z.S.)
| | - Zhiwei Sang
- Economic Crops Research Institute, Xinjiang Academy of Agricultural Science (XAAS), Urumqi 830001, China; (J.Z.); (Z.Z.); (Z.G.); (Y.L.); (Z.S.)
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology (China), Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR-CAAS), Anyang 455000, China;
| | - Xueyuan Li
- Economic Crops Research Institute, Xinjiang Academy of Agricultural Science (XAAS), Urumqi 830001, China; (J.Z.); (Z.Z.); (Z.G.); (Y.L.); (Z.S.)
| | - Junduo Wang
- Economic Crops Research Institute, Xinjiang Academy of Agricultural Science (XAAS), Urumqi 830001, China; (J.Z.); (Z.Z.); (Z.G.); (Y.L.); (Z.S.)
| |
Collapse
|
29
|
Gonzalez JH, Taylor JS, Reed KM, Wright RC, Bargmann BOR. Temporal Control of Morphogenic Factor Expression Determines Efficacy in Enhancing Regeneration. PLANTS (BASEL, SWITZERLAND) 2021; 10:2271. [PMID: 34834634 PMCID: PMC8617614 DOI: 10.3390/plants10112271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Regeneration of fertile plants from tissue culture is a critical bottleneck in the application of new plant breeding technologies. Ectopic overexpression of morphogenic factors is a promising workaround for this hurdle. METHODS Conditional overexpression of WUS and ARF5Δ was used to study the effect of timing the overexpression of these morphogenic factors during shoot regeneration from root explants in Arabidopsis. In addition, their effect on auxin-signaling activation was examined by visualization and cytometric quantification of the DR5:GFP auxin-signaling reporter in roots and protoplasts, respectively. RESULTS The induced expression of both WUS and ARF5Δ led to an activation of auxin signaling in roots. Activation of auxin signaling by WUS and ARF5Δ was further quantified by transient transformation of protoplasts. Ectopic overexpression of both WUS and ARF5Δ enhanced regeneration efficiency, but only during the shoot-induction stage of regeneration and not during the callus-induction stage. CONCLUSIONS The overexpression of WUS and ARF5Δ both lead to activation of auxin signaling. Expression during the shoot-induction stage is critical for the enhancement of shoot regeneration by WUS and ARF5Δ.
Collapse
Affiliation(s)
- Juan H Gonzalez
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA 24061, USA
| | - Joseph S Taylor
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA 24061, USA
| | - Kelsey M Reed
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA 24061, USA
| | - R Clay Wright
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA 24061, USA
| | - Bastiaan O R Bargmann
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA 24061, USA
| |
Collapse
|
30
|
Hesami M, Baiton A, Alizadeh M, Pepe M, Torkamaneh D, Jones AMP. Advances and Perspectives in Tissue Culture and Genetic Engineering of Cannabis. Int J Mol Sci 2021; 22:5671. [PMID: 34073522 PMCID: PMC8197860 DOI: 10.3390/ijms22115671] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/20/2023] Open
Abstract
For a long time, Cannabis sativa has been used for therapeutic and industrial purposes. Due to its increasing demand in medicine, recreation, and industry, there is a dire need to apply new biotechnological tools to introduce new genotypes with desirable traits and enhanced secondary metabolite production. Micropropagation, conservation, cell suspension culture, hairy root culture, polyploidy manipulation, and Agrobacterium-mediated gene transformation have been studied and used in cannabis. However, some obstacles such as the low rate of transgenic plant regeneration and low efficiency of secondary metabolite production in hairy root culture and cell suspension culture have restricted the application of these approaches in cannabis. In the current review, in vitro culture and genetic engineering methods in cannabis along with other promising techniques such as morphogenic genes, new computational approaches, clustered regularly interspaced short palindromic repeats (CRISPR), CRISPR/Cas9-equipped Agrobacterium-mediated genome editing, and hairy root culture, that can help improve gene transformation and plant regeneration, as well as enhance secondary metabolite production, have been highlighted and discussed.
Collapse
Affiliation(s)
- Mohsen Hesami
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.); (A.B.); (M.P.)
| | - Austin Baiton
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.); (A.B.); (M.P.)
| | - Milad Alizadeh
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Marco Pepe
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.); (A.B.); (M.P.)
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, QC G1V 0A6, Canada;
| | | |
Collapse
|
31
|
Sun D, Zhang L, Yu Q, Zhang J, Li P, Zhang Y, Xing X, Ding L, Fang W, Chen F, Song A. Integrated Signals of Jasmonates, Sugars, Cytokinins and Auxin Influence the Initial Growth of the Second Buds of Chrysanthemum after Decapitation. BIOLOGY 2021; 10:biology10050440. [PMID: 34065759 PMCID: PMC8156878 DOI: 10.3390/biology10050440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022]
Abstract
Decapitation is common in horticulture for altering plant architecture. The decapitation of chrysanthemum plants breaks apical dominance and leads to more flowers on lateral branches, resulting in landscape flowers with good coverage. We performed both third- and second-generation transcriptome sequencing of the second buds of chrysanthemum. This third-generation transcriptome is the first sequenced third-generation transcriptome of chrysanthemum, revealing alternative splicing events, lncRNAs, and transcription factors. Aside from the classic hormones, the expression of jasmonate-related genes changed because of this process. Sugars also played an important role in this process, with upregulated expression of sucrose transport-related and TPS genes. We constructed a model of the initial growth of the second buds after decapitation. Auxin export and sugar influx activated the growth of these buds, while the JA-Ile caused by wounding inhibited the expression of CycD genes from 0 h to 6 h. After wound recovery, cytokinins accumulated in the second buds and might have induced ARR12 expression to upregulate CycD gene expression from 6 h to 48 h, together with sugars. Therefore, jasmonates, cytokinins, sugars, and auxin work together to determine the fate of the buds of plants with short internodes, such as chrysanthemum.
Collapse
Affiliation(s)
- Daojin Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (D.S.); (L.Z.); (Q.Y.); (J.Z.); (Y.Z.); (X.X.); (L.D.); (W.F.); (F.C.)
| | - Luyao Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (D.S.); (L.Z.); (Q.Y.); (J.Z.); (Y.Z.); (X.X.); (L.D.); (W.F.); (F.C.)
| | - Qi Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (D.S.); (L.Z.); (Q.Y.); (J.Z.); (Y.Z.); (X.X.); (L.D.); (W.F.); (F.C.)
| | - Jiali Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (D.S.); (L.Z.); (Q.Y.); (J.Z.); (Y.Z.); (X.X.); (L.D.); (W.F.); (F.C.)
| | - Peiling Li
- Henan Key Laboratory of Tea Comprehensive Utilization in South Henan, Xinyang Agriculture and Forestry University, Xinyang 464000, China;
| | - Yu Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (D.S.); (L.Z.); (Q.Y.); (J.Z.); (Y.Z.); (X.X.); (L.D.); (W.F.); (F.C.)
| | - Xiaojuan Xing
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (D.S.); (L.Z.); (Q.Y.); (J.Z.); (Y.Z.); (X.X.); (L.D.); (W.F.); (F.C.)
| | - Lian Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (D.S.); (L.Z.); (Q.Y.); (J.Z.); (Y.Z.); (X.X.); (L.D.); (W.F.); (F.C.)
| | - Weimin Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (D.S.); (L.Z.); (Q.Y.); (J.Z.); (Y.Z.); (X.X.); (L.D.); (W.F.); (F.C.)
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (D.S.); (L.Z.); (Q.Y.); (J.Z.); (Y.Z.); (X.X.); (L.D.); (W.F.); (F.C.)
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (D.S.); (L.Z.); (Q.Y.); (J.Z.); (Y.Z.); (X.X.); (L.D.); (W.F.); (F.C.)
- Correspondence:
| |
Collapse
|
32
|
Zhang MM, Zhang HK, Zhai JF, Zhang XS, Sang YL, Cheng ZJ. ARF4 regulates shoot regeneration through coordination with ARF5 and IAA12. PLANT CELL REPORTS 2021; 40:315-325. [PMID: 33180161 DOI: 10.1007/s00299-020-02633-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
ARF4-regulated shoot regeneration through competing with ARF5 for the interaction with IAA12. Plant possess the ability to regenerate shoot meristem and subsequent the whole individual. This process is the foundation for in vitro propagation and genetic engineering and provides a system for studying fundamental biological questions, such as hormonal signaling. Auxin response factor (ARF) family transcription factors are critical components of auxin signaling pathway that regulate the transcription of target genes. To date, the mechanisms underlying the functions of class-B ARFs which act as transcription repressors remains unclear. In this study, we found that ARF4, the transcriptional repressor, was involved in regulating shoot regeneration. ARF4 interacted with auxin/Indole-3-Acetic-Acid12 (IAA12). The expression signals of ARF4 displayed a dynamic pattern similar with those of ARF5 and IAA12 during shoot meristem formation. Enhanced expression of IAA12 compromised the shoot regeneration capacity. Induced expression of ARF4 complemented the regeneration phenotype of IAA12-overexpression but did not rescued the defects in the arf5 mutant, mp-S319. Further analysis revealed that ARF4 competed with ARF5 for the interaction with IAA12. The results indicate that ARF4-regulated shoot regeneration through cooperating with ARF5 and IAA12. Our findings provided new information for deciphering the function of class-B ARFs.
Collapse
Affiliation(s)
- Miao Miao Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, College of Forestry, State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Huan Kai Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, College of Forestry, State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Jun Feng Zhai
- State Key Laboratory of Crop Biology, College of Life Sciences, College of Forestry, State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, College of Forestry, State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Ya Lin Sang
- State Key Laboratory of Crop Biology, College of Life Sciences, College of Forestry, State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Zhi Juan Cheng
- State Key Laboratory of Crop Biology, College of Life Sciences, College of Forestry, State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
33
|
Yuan Y, Xu X, Luo Y, Gong Z, Hu X, Wu M, Liu Y, Yan F, Zhang X, Zhang W, Tang Y, Feng B, Li Z, Jiang C, Deng W. R2R3 MYB-dependent auxin signalling regulates trichome formation, and increased trichome density confers spider mite tolerance on tomato. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:138-152. [PMID: 32654333 PMCID: PMC7769234 DOI: 10.1111/pbi.13448] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/22/2020] [Accepted: 07/06/2020] [Indexed: 05/21/2023]
Abstract
Unicellular and multicellular tomato trichomes function as mechanical and chemical barriers against herbivores. Auxin treatment increased the formation of II, V and VI type trichomes in tomato leaves. The auxin response factor gene SlARF4, which was highly expressed in II, V and VI type trichomes, positively regulated the auxin-induced formation of II, V and VI type trichomes in the tomato leaves. SlARF4 overexpression plants with high densities of these trichomes exhibited tolerance to spider mites. Two R2R3 MYB genes, SlTHM1 and SlMYB52, were directly targeted and inhibited by SlARF4. SlTHM1 was specifically expressed in II and VI type trichomes and negatively regulated the auxin-induced formation of II and VI type trichomes in the tomato leaves. SlTHM1 down-regulation plants with high densities of II and VI type trichomes also showed tolerance to spider mites. SlMYB52 was specifically expressed in V type trichomes and negatively regulated the auxin-induced formation of V type trichome in the tomato leaves. The regulation of SlARF4 on the formation of II, V and VI type trichomes depended on SlTHM1 and SlMYB52, which directly targeted cyclin gene SlCycB2 and increased its expression. In conclusion, our data indicates that the R2R3 MYB-dependent auxin signalling pathway regulates the formation of II, V and VI type trichomes in tomato leaves. Our study provides an effective method for improving the tolerance of tomato to spider mites.
Collapse
Affiliation(s)
- Yujin Yuan
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
- Center of Plant Functional GenomicsInstitute of Advanced Interdisciplinary StudiesChongqing UniversityChongqingChina
- Department of Plant SciencesUniversity of CaliforniaDavisCAUSA
| | - Xin Xu
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
- Center of Plant Functional GenomicsInstitute of Advanced Interdisciplinary StudiesChongqing UniversityChongqingChina
| | - Yingqing Luo
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
- Center of Plant Functional GenomicsInstitute of Advanced Interdisciplinary StudiesChongqing UniversityChongqingChina
| | - Zehao Gong
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
- Center of Plant Functional GenomicsInstitute of Advanced Interdisciplinary StudiesChongqing UniversityChongqingChina
| | - Xiaowei Hu
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
- Center of Plant Functional GenomicsInstitute of Advanced Interdisciplinary StudiesChongqing UniversityChongqingChina
| | - Mengbo Wu
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
- Center of Plant Functional GenomicsInstitute of Advanced Interdisciplinary StudiesChongqing UniversityChongqingChina
| | - Yudong Liu
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
- Center of Plant Functional GenomicsInstitute of Advanced Interdisciplinary StudiesChongqing UniversityChongqingChina
| | - Fang Yan
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
- Center of Plant Functional GenomicsInstitute of Advanced Interdisciplinary StudiesChongqing UniversityChongqingChina
| | - Xiaolan Zhang
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
- Center of Plant Functional GenomicsInstitute of Advanced Interdisciplinary StudiesChongqing UniversityChongqingChina
| | - Wenfa Zhang
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
- Center of Plant Functional GenomicsInstitute of Advanced Interdisciplinary StudiesChongqing UniversityChongqingChina
| | - Yuwei Tang
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
- Center of Plant Functional GenomicsInstitute of Advanced Interdisciplinary StudiesChongqing UniversityChongqingChina
| | - Bihong Feng
- College of AgricultureGuangxi UniversityNanningChina
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
- Center of Plant Functional GenomicsInstitute of Advanced Interdisciplinary StudiesChongqing UniversityChongqingChina
| | - Cai‐Zhong Jiang
- Department of Plant SciencesUniversity of CaliforniaDavisCAUSA
- Crops Pathology and Genetics Research UnitUnited States Department of AgricultureAgricultural Research ServiceDavisCAUSA
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
- Center of Plant Functional GenomicsInstitute of Advanced Interdisciplinary StudiesChongqing UniversityChongqingChina
| |
Collapse
|
34
|
CRISPR-Cas9 System for Plant Genome Editing: Current Approaches and Emerging Developments. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10071033] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Targeted genome editing using CRISPR-Cas9 has been widely adopted as a genetic engineering tool in various biological systems. This editing technology has been in the limelight due to its simplicity and versatility compared to other previously known genome editing platforms. Several modifications of this editing system have been established for adoption in a variety of plants, as well as for its improved efficiency and portability, bringing new opportunities for the development of transgene-free improved varieties of economically important crops. This review presents an overview of CRISPR-Cas9 and its application in plant genome editing. A catalog of the current and emerging approaches for the implementation of the system in plants is also presented with details on the existing gaps and limitations. Strategies for the establishment of the CRISPR-Cas9 molecular construct such as the selection of sgRNAs, PAM compatibility, choice of promoters, vector architecture, and multiplexing approaches are emphasized. Progress in the delivery and transgene detection methods, together with optimization approaches for improved on-target efficiency are also detailed in this review. The information laid out here will provide options useful for the effective and efficient exploitation of the system for plant genome editing and will serve as a baseline for further developments of the system. Future combinations and fine-tuning of the known parameters or factors that contribute to the editing efficiency, fidelity, and portability of CRISPR-Cas9 will indeed open avenues for new technological advancements of the system for targeted gene editing in plants.
Collapse
|
35
|
Xu C, Hu Y. The molecular regulation of cell pluripotency in plants. ABIOTECH 2020; 1:169-177. [PMID: 36303568 PMCID: PMC9590476 DOI: 10.1007/s42994-020-00028-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/10/2020] [Indexed: 11/28/2022]
Abstract
Plants have a remarkably regenerative capability to replace the damaged organs or form the new organs and individuals both in vivo and in vitro, which is fundamental for their developmental plasticity and the agricultural practices. The regenerative capacities of plants are highly dependent on the totipotency or pluripotency of somatic cells, whose fates are directed by phytohormones, wounding, and other stimuli. Recent studies have revealed that the two types of cellular reprogramming are involved in the acquisition of cell pluripotency during plant in vitro and in vivo regeneration programs. This review focuses on the recent advances of the cellular origin, molecular characteristic, and genetic and epigenetic regulations of cell pluripotency acquisition in plants, highlighting the molecular frameworks of cellular reprogramming activated by diverse stimuli and their possible potentials in regeneration-based plant biotechnologies.
Collapse
Affiliation(s)
- Chongyi Xu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China.,National Center for Plant Gene Research, Beijing, 100093 China
| |
Collapse
|
36
|
Ji X, Yang B, Wang D. Achieving Plant Genome Editing While Bypassing Tissue Culture. TRENDS IN PLANT SCIENCE 2020; 25:427-429. [PMID: 32304655 DOI: 10.1016/j.tplants.2020.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 05/07/2023]
Abstract
Conventional genetic transformation is a huge obstacle to the efficient development and application of plant genome-editing (GE) technologies. Recently, Maher et al. reported successful GE by de novo reprogramming plant meristems in somatic tissues, which sidesteps tissue culture-based transformation and promises to significantly enhance the utility of plant GE.
Collapse
Affiliation(s)
- Xiang Ji
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop genome Engineering, Henan Agricultural University, Zhengzhou 450046, China.
| | - Bing Yang
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO 66511, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Daowen Wang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop genome Engineering, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
37
|
Liu Z, Ge XX, Wu XM, Xu Q, Atkinson RG, Guo WW. Genome-wide analysis of the citrus B3 superfamily and their association with somatic embryogenesis. BMC Genomics 2020; 21:305. [PMID: 32299363 PMCID: PMC7161213 DOI: 10.1186/s12864-020-6715-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/03/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND In citrus, genetic improvement via biotechnology is hindered by the obstacle of in vitro regeneration via somatic embryogenesis (SE). Although a few B3 transcription factors are reported to regulate embryogenesis, little is known about the B3 superfamily in citrus, and which members might be involved in SE. RESULTS Genome-wide sequence analysis identified 72 (CsB3) and 69 (CgB3) putative B3 superfamily members in the genomes of sweet orange (Citrus sinensis, polyembryonic) and pummelo (C. grandis, monoembryonic), respectively. Genome duplication analysis indicated that segmental and tandem duplication events contributed to the expansion of the B3 superfamily in citrus, and that the B3 superfamily evolved under the effect of purifying selection. Phylogenetic relationships were well supported by conserved gene structure and motifs outside the B3 domain, which allowed possible functions to be inferred by comparison with homologous genes from Arabidopsis. Expression analysis identified 23 B3 superfamily members that were expressed during SE in citrus and 17 that may play functional roles at late SE stages. Eight B3 genes were identified that were specific to the genome of polyembryonic sweet orange compared to monoembryonic pummelo. Of these eight B3 genes, CsARF19 was found to be specifically expressed at higher levels in embryogenic callus (EC), implying its possible involvement in EC initiation. CONCLUSIONS This study provides a genome-wide analysis of the citrus B3 superfamily, including its genome organization, evolutionary features and expression profiles, and identifies specific family members that may be associated with SE.
Collapse
Affiliation(s)
- Zheng Liu
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070 China
| | - Xiao-Xia Ge
- Center of Applied Biotechnology, Wuhan University of Bioengineering, Wuhan, 430415 China
| | - Xiao-Meng Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070 China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070 China
| | - Ross G. Atkinson
- The New Zealand Institute for Plant & Food Research Limited (PFR), Private Bag 92169, Auckland, 1142 New Zealand
| | - Wen-Wu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
38
|
Kroll CK, Brenner WG. Cytokinin Signaling Downstream of the His-Asp Phosphorelay Network: Cytokinin-Regulated Genes and Their Functions. FRONTIERS IN PLANT SCIENCE 2020; 11:604489. [PMID: 33329676 PMCID: PMC7718014 DOI: 10.3389/fpls.2020.604489] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/26/2020] [Indexed: 05/17/2023]
Abstract
The plant hormone cytokinin, existing in several molecular forms, is perceived by membrane-localized histidine kinases. The signal is transduced to transcription factors of the type-B response regulator family localized in the nucleus by a multi-step histidine-aspartate phosphorelay network employing histidine phosphotransmitters as shuttle proteins across the nuclear envelope. The type-B response regulators activate a number of primary response genes, some of which trigger in turn further signaling events and the expression of secondary response genes. Most genes activated in both rounds of transcription were identified with high confidence using different transcriptomic toolkits and meta analyses of multiple individual published datasets. In this review, we attempt to summarize the existing knowledge about the primary and secondary cytokinin response genes in order to try connecting gene expression with the multitude of effects that cytokinin exerts within the plant body and throughout the lifespan of a plant.
Collapse
|
39
|
Maher MF, Nasti RA, Vollbrecht M, Starker CG, Clark MD, Voytas DF. Plant gene editing through de novo induction of meristems. Nat Biotechnol 2020; 38:84-89. [PMID: 31844292 PMCID: PMC6954279 DOI: 10.1038/s41587-019-0337-2] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/30/2019] [Indexed: 11/12/2022]
Abstract
Plant gene editing is typically performed by delivering reagents such as Cas9 and single guide RNAs to explants in culture. Edited cells are then induced to differentiate into whole plants by exposure to various hormones. The creation of edited plants through tissue culture is often inefficient, time-consuming, works for only limited species and genotypes, and causes unintended changes to the genome and epigenome. Here we report two methods to generate gene-edited dicotyledonous plants through de novo meristem induction. Developmental regulators and gene-editing reagents are delivered to somatic cells of whole plants. This induces meristems that produce shoots with targeted DNA modifications, and gene edits are transmitted to the next generation. The de novo induction of gene-edited meristems sidesteps the need for tissue culture and promises to overcome a bottleneck in plant gene editing.
Collapse
Affiliation(s)
- Michael F Maher
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, USA
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN, USA
| | - Ryan A Nasti
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, USA
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN, USA
| | - Macy Vollbrecht
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN, USA
| | - Colby G Starker
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, USA
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN, USA
| | - Matthew D Clark
- Department of Horticultural Sciences, University of Minnesota, St. Paul, MN, USA
| | - Daniel F Voytas
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA.
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, USA.
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN, USA.
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
40
|
Shin J, Bae S, Seo PJ. De novo shoot organogenesis during plant regeneration. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:63-72. [PMID: 31504722 DOI: 10.1093/jxb/erz395] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/22/2019] [Indexed: 05/08/2023]
Abstract
Plants exhibit remarkable regeneration capacity, ensuring developmental plasticity. In vitro tissue culture techniques are based on plant regeneration ability and facilitate production of new organs and even the whole plant from explants. Plant somatic cells can be reprogrammed to form a pluripotent cell mass called the callus. A portion of pluripotent callus cells gives rise to a fertile shoot via de novo shoot organogenesis (DNSO). Here, we reconstitute the shoot regeneration process with four phases, namely pluripotency acquisition, shoot promeristem formation, establishment of the confined shoot progenitor, and shoot outgrowth. Additionally, other biological processes, including cell cycle progression and reactive oxygen species metabolism, which further contribute to successful completion of DNSO, are also summarized. Overall, this study highlights recent advances in the molecular and cellular events involved in DNSO, as well as the regulatory mechanisms behind key steps of DNSO.
Collapse
Affiliation(s)
- Jinwoo Shin
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Soonhyung Bae
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
41
|
Hallmark HT, Rashotte AM. Review - Cytokinin Response Factors: Responding to more than cytokinin. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110251. [PMID: 31623789 DOI: 10.1016/j.plantsci.2019.110251] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 05/12/2023]
Abstract
Cytokinin Response Factors (CRFs) are a family of transcription factors which make up a side branch of the classical cytokinin two-component signaling pathway. CRFs were originally identified and have been primarily studied in Arabidopsis thaliana, although orthologs have be found throughout all land plants. Research into the evolution of CRFs as sub-group members of the larger APETALA2/Ethylene Response Factor (AP2/ERF) family has yielded interesting and useful insights related to the functional roles of CRFs in plants. Recent studies of CRFs suggest that these transcription factors are a lot more than just a group of cytokinin related genes and play important roles in both plant development and environmental stress response. This review focuses on recent advances in understanding the roles of CRFs beyond cytokinin, in reproductive development and abiotic stress response, as well as to other environmental cues.
Collapse
Affiliation(s)
- H Tucker Hallmark
- 101 Rouse Life Sciences, Department of Biological Sciences, Auburn University, USA
| | - Aaron M Rashotte
- 101 Rouse Life Sciences, Department of Biological Sciences, Auburn University, USA.
| |
Collapse
|
42
|
Lee K, Park OS, Choi CY, Seo PJ. ARABIDOPSIS TRITHORAX 4 Facilitates Shoot Identity Establishment during the Plant Regeneration Process. PLANT & CELL PHYSIOLOGY 2019; 60:826-834. [PMID: 30605532 DOI: 10.1093/pcp/pcy248] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/24/2018] [Indexed: 05/08/2023]
Abstract
Plant cells have a remarkable plasticity that allows cellular reprogramming from differentiated cells and subsequent tissue regeneration. Callus formation occurs from pericycle-like cells through a lateral root developmental pathway, and even aerial parts can also undergo the cell fate transition. Pluripotent calli are then subjected primarily to shoot regeneration in in vitro tissue culture. Successful completion of plant regeneration from aerial explants thus entails a two-step conversion of tissue identity. Here we show that a single chromatin modifier, ARABIDOPSIS TRITHORAX 4 (ATX4)/SET DOMAIN GROUP 16, is dynamically regulated during plant regeneration to address proper callus formation and shoot regeneration. The ATX4 protein massively activates shoot identity genes by conferring H3K4me3 deposition at the loci. ATX4-deficient mutants display strong silencing of shoot identity and thus enhanced callus formation. Subsequently, de novo shoot organogenesis from calli is impaired in atx4 mutants. These results indicate that a series of epigenetic reprogramming of tissue identity underlies plant regeneration, and molecular components defining tissue identity can be used as invaluable genetic sources for improving crop transformation efficiency.
Collapse
Affiliation(s)
- Kyounghee Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Ok-Sun Park
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Cheol Yong Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Pil Joon Seo
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
- Department of Chemistry, Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
43
|
Gordon-Kamm B, Sardesai N, Arling M, Lowe K, Hoerster G, Betts S, Jones AT. Using Morphogenic Genes to Improve Recovery and Regeneration of Transgenic Plants. PLANTS (BASEL, SWITZERLAND) 2019; 8:E38. [PMID: 30754699 PMCID: PMC6409764 DOI: 10.3390/plants8020038] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 12/31/2022]
Abstract
Efficient transformation of numerous important crops remains a challenge, due predominantly to our inability to stimulate growth of transgenic cells capable of producing plants. For years, this difficulty has been partially addressed by tissue culture strategies that improve regeneration either through somatic embryogenesis or meristem formation. Identification of genes involved in these developmental processes, designated here as morphogenic genes, provides useful tools in transformation research. In species from eudicots and cereals to gymnosperms, ectopic overexpression of genes involved in either embryo or meristem development has been used to stimulate growth of transgenic plants. However, many of these genes produce pleiotropic deleterious phenotypes. To mitigate this, research has been focusing on ways to take advantage of growth-stimulating morphogenic genes while later restricting or eliminating their expression in the plant. Methods of controlling ectopic overexpression include the use of transient expression, inducible promoters, tissue-specific promoters, and excision of the morphogenic genes. These methods of controlling morphogenic gene expression have been demonstrated in a variety of important crops. Here, we provide a review that highlights how ectopic overexpression of genes involved in morphogenesis has been used to improve transformation efficiencies, which is facilitating transformation of numerous recalcitrant crops. The use of morphogenic genes may help to alleviate one of the bottlenecks currently slowing progress in plant genome modification.
Collapse
Affiliation(s)
- Bill Gordon-Kamm
- Corteva Agriscience™, Agriculture Division of DowDuPont, Johnston, IA 50131, USA.
| | - Nagesh Sardesai
- Corteva Agriscience™, Agriculture Division of DowDuPont, Johnston, IA 50131, USA.
| | - Maren Arling
- Corteva Agriscience™, Agriculture Division of DowDuPont, Johnston, IA 50131, USA.
| | - Keith Lowe
- Corteva Agriscience™, Agriculture Division of DowDuPont, Johnston, IA 50131, USA.
| | - George Hoerster
- Corteva Agriscience™, Agriculture Division of DowDuPont, Johnston, IA 50131, USA.
| | - Scott Betts
- Corteva Agriscience™, Agriculture Division of DowDuPont, Johnston, IA 50131, USA.
| | - And Todd Jones
- Corteva Agriscience™, Agriculture Division of DowDuPont, Johnston, IA 50131, USA.
| |
Collapse
|
44
|
Gallardo C, Hufnagel B, Casset C, Alcon C, Garcia F, Divol F, Marquès L, Doumas P, Péret B. Anatomical and hormonal description of rootlet primordium development along white lupin cluster root. PHYSIOLOGIA PLANTARUM 2019; 165:4-16. [PMID: 29493786 DOI: 10.1111/ppl.12714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 05/29/2023]
Abstract
Cluster root (CR) is one of the most spectacular plant developmental adaptations to hostile environment. It can be found in a few species from a dozen botanical families, including white lupin (Lupinus albus) in the Fabaceae family. These amazing structures are produced in phosphate-deprived conditions and are made of hundreds of short roots also known as rootlets. White lupin is the only crop bearing CRs and is considered as the model species for CR studies. However, little information is available on CRs atypical development, including the molecular events that trigger their formation. To provide insights on CR formation, we performed an anatomical and cellular description of rootlet development in white lupin. Starting with a classic histological approach, we described rootlet primordium development and defined eight developmental stages from rootlet initiation to their emergence. Due to the major role of hormones in the developmental program of root system, we next focussed on auxin-related mechanisms. We observed the establishment of an auxin maximum through rootlet development in transgenic roots expressing the DR5:GUS auxin reporter. Expression analysis of the main auxin-related genes [TIR, Auxin Response Factor (ARF) and AUX/IAA] during a detailed time course revealed specific expression associated with the formation of the rootlet primordium. We showed that L. albus TRANSPORT INHIBITOR RESPONSE 1b is expressed during rootlet primordium formation and that L. albus AUXIN RESPONSE FACTOR 5 is expressed in the vasculature but absent in the primordium itself. Altogether, our results describe the very early cellular events leading to CR formation and reveal some of the auxin-related mechanisms.
Collapse
Affiliation(s)
- Cécilia Gallardo
- BPMP, University of Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Bárbara Hufnagel
- BPMP, University of Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Célia Casset
- BPMP, University of Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Carine Alcon
- BPMP, University of Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Fanny Garcia
- BPMP, University of Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Fanchon Divol
- BPMP, University of Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Laurence Marquès
- BPMP, University of Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Patrick Doumas
- BPMP, University of Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Benjamin Péret
- BPMP, University of Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| |
Collapse
|
45
|
Yuan Y, Xu X, Gong Z, Tang Y, Wu M, Yan F, Zhang X, Zhang Q, Yang F, Hu X, Yang Q, Luo Y, Mei L, Zhang W, Jiang CZ, Lu W, Li Z, Deng W. Auxin response factor 6A regulates photosynthesis, sugar accumulation, and fruit development in tomato. HORTICULTURE RESEARCH 2019; 6:85. [PMID: 31645946 PMCID: PMC6804849 DOI: 10.1038/s41438-019-0167-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 05/21/2023]
Abstract
Auxin response factors (ARFs) are involved in auxin-mediated transcriptional regulation in plants. In this study, we performed functional characterization of SlARF6A in tomato. SlARF6A is located in the nucleus and exhibits transcriptional activator activity. Overexpression of SlARF6A increased chlorophyll contents in the fruits and leaves of tomato plants, whereas downregulation of SlARF6A decreased chlorophyll contents compared with those of wild-type (WT) plants. Analysis of chloroplasts using transmission electron microscopy indicated increased sizes of chloroplasts in SlARF6A-overexpressing plants and decreased numbers of chloroplasts in SlARF6A-downregulated plants. Overexpression of SlARF6A increased the photosynthesis rate and accumulation of starch and soluble sugars, whereas knockdown of SlARF6A resulted in opposite phenotypes in tomato leaves and fruits. RNA-sequence analysis showed that regulation of SlARF6A expression altered the expression of genes involved in chlorophyll metabolism, photosynthesis and sugar metabolism. SlARF6A directly bound to the promoters of SlGLK1, CAB, and RbcS genes and positively regulated the expression of these genes. Overexpression of SlARF6A also inhibited fruit ripening and ethylene production, whereas downregulation of SlARF6A increased fruit ripening and ethylene production. SlARF6A directly bound to the SAMS1 promoter and negatively regulated SAMS1 expression. Taken together, these results expand our understanding of ARFs with regard to photosynthesis, sugar accumulation and fruit development and provide a potential target for genetic engineering to improve fruit nutrition in horticulture crops.
Collapse
Affiliation(s)
- Yujin Yuan
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China
| | - Xin Xu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China
| | - Zehao Gong
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China
| | - Yuwei Tang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China
| | - Mengbo Wu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China
| | - Fang Yan
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China
| | - Xiaolan Zhang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, 400044 Chongqing, China
| | - Fengqing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, 400044 Chongqing, China
| | - Xiaowei Hu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China
| | - Qichen Yang
- College of Basic Science, Tianjin Agricultural University, 300384 Tianjin, China
| | - Yingqing Luo
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China
| | - Lihua Mei
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China
| | - Wenfa Zhang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California, Davis, CA 95616 USA
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA 95616 USA
| | - Wangjin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, 510642 Guangzhou, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China
| |
Collapse
|
46
|
Yuan Y, Mei L, Wu M, Wei W, Shan W, Gong Z, Zhang Q, Yang F, Yan F, Zhang Q, Luo Y, Xu X, Zhang W, Miao M, Lu W, Li Z, Deng W. SlARF10, an auxin response factor, is involved in chlorophyll and sugar accumulation during tomato fruit development. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5507-5518. [PMID: 30219898 PMCID: PMC6255703 DOI: 10.1093/jxb/ery328] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Indexed: 05/03/2023]
Abstract
The photosynthesis of green tomatoes contributes to fruit growth and carbon economy. The tomato auxin response factor 10 (SlARF10) belongs to the ARF family and is located in nucleus. In this study, we found that SlARF10 was highly expressed in green fruit. Overexpression of SlARF10 in fruit produced a dark-green phenotype whilst knock-down by RNAi produced a light-green phenotype. Autofluorescence and chlorophyll content analyses confirmed the phenotypes, which indicated that SlARF10 plays an important role in chlorophyll accumulation. Overexpression of SlARF10 positively affected photosynthesis in both leaves and fruit. Furthermore, SlARF10-overexpression lines displayed improved accumulation of starch, fructose, and sucrose in fruit, whilst SlARF10-RNAi lines showed decreased accumulation of starch and sucrose. Regulation of SlARF10 expression altered the expression of AGPase starch biosynthesis genes. SlARF10 positively regulated the expression of SlGLK1, POR, CBP1, and CBP2, which are related to chlorophyll metabolism and regulation. Electrophoretic mobility shift assays confirmed that SlARF10 directly targets to the SlGLK1 promoter. Our results thus indicate that SlARF10 is involved in chlorophyll accumulation by transcriptional activation of SlGLK1 expression in tomato fruit, and provide insights into the link between auxin signaling, chloroplast activity, and sugar metabolism during tomato fruit development.
Collapse
Affiliation(s)
- Yujin Yuan
- School of Life Science, Chongqing University, Chongqing, China
| | - Lihua Mei
- School of Life Science, Chongqing University, Chongqing, China
| | - Mengbo Wu
- School of Life Science, Chongqing University, Chongqing, China
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Zehao Gong
- School of Life Science, Chongqing University, Chongqing, China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - Fengqing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - Fang Yan
- School of Life Science, Chongqing University, Chongqing, China
| | - Qiang Zhang
- School of Life Science, Chongqing University, Chongqing, China
| | - Yingqing Luo
- School of Life Science, Chongqing University, Chongqing, China
| | - Xin Xu
- School of Life Science, Chongqing University, Chongqing, China
| | - Wenfa Zhang
- School of Life Science, Chongqing University, Chongqing, China
| | - Mingjun Miao
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Wangjin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Zhengguo Li
- School of Life Science, Chongqing University, Chongqing, China
| | - Wei Deng
- School of Life Science, Chongqing University, Chongqing, China
- Correspondence:
| |
Collapse
|
47
|
Iwase A, Mita K, Favero DS, Mitsuda N, Sasaki R, Kobayshi M, Takebayashi Y, Kojima M, Kusano M, Oikawa A, Sakakibara H, Saito K, Imamura J, Sugimoto K. WIND1 induces dynamic metabolomic reprogramming during regeneration in Brassica napus. Dev Biol 2018; 442:40-52. [DOI: 10.1016/j.ydbio.2018.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/11/2018] [Accepted: 07/09/2018] [Indexed: 01/01/2023]
|
48
|
Marhava P, Bassukas AEL, Zourelidou M, Kolb M, Moret B, Fastner A, Schulze WX, Cattaneo P, Hammes UZ, Schwechheimer C, Hardtke CS. A molecular rheostat adjusts auxin flux to promote root protophloem differentiation. Nature 2018; 558:297-300. [DOI: 10.1038/s41586-018-0186-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 04/24/2018] [Indexed: 01/30/2023]
|
49
|
Wang L, Liu Z, Qiao M, Xiang F. miR393 inhibits in vitro shoot regeneration in Arabidopsis thaliana via repressing TIR1. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 266:1-8. [PMID: 29241559 DOI: 10.1016/j.plantsci.2017.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/15/2017] [Accepted: 10/20/2017] [Indexed: 05/14/2023]
Abstract
A large number of genes are involved in the control of shoot regeneration from in vitro cultured plant material. The abundance of the miR393 was different between regenerable and non-regenerable calli induced from Arabidopsis thaliana explants. The regenerability of root explants derived from p35S:miR393a (the miR393a over-expressing line) was shown here to be poorer than that of the wild type (WT). Also, explants derived from plants engineered to constitutively express MIM393 (a mutated form of miR393) had an enhanced level of shoot regeneration. The number of newly formed shoot apical meristems (SAMs) was smaller in p35S:miR393a, while it was larger in p35S:MIM393, compared to the WT, indicating that miR393a inhibited shoot regeneration via repressing the de novo formation of SAMs. The capacity to regenerate shown by plants harboring mTIR1 (a form of TIR1 not cleavable by miR393) was similar to that shown by lines constitutively expressing MIM393, while regenerability of tir1-1 (a loss-of-function mutant) was similar to p35S:miR393a. miR393a and TIR1 were both transcribed at high levels in the initiation sites of nascent shoot apical meristems. Thus, the miR393-TIR1 molecular regulation pathway appears to be a component of the regulatory control over shoot regeneration from in vitro culture.
Collapse
Affiliation(s)
- Long Wang
- The Key Laboratory of the Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | - Zhenhua Liu
- The Key Laboratory of the Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | - Meng Qiao
- Shandong Province Administration of Work Safety, Jinan 250100, Shandong, China
| | - Fengning Xiang
- The Key Laboratory of the Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China.
| |
Collapse
|
50
|
Liu J, Zeng Y, Yan P, He C, Zhang J. Transcriptional and Hormonal Regulation of Weeping Trait in Salix matsudana. Genes (Basel) 2017; 8:genes8120359. [PMID: 29189719 PMCID: PMC5748677 DOI: 10.3390/genes8120359] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/24/2017] [Accepted: 11/28/2017] [Indexed: 11/16/2022] Open
Abstract
Salix matsudana is a large and rapidly-growing tree, with erect or spreading branchlets (upright willow). However, S. matsudana var. pseudomatsudana is one of the varietas, with pendulous branchlets (weeping willow). It has high ornamental value for its graceful pendulous branches. In order to study the molecular basis for this weeping trait, leaves and stems collected at different developmental stages were analyzed using RNA-seq coupled with digital gene expression. Although weeping trees are used worldwide as landscape plants, little is known about the genes that control weeping. Our growth results indicated that branches in weeping willow developed and elongated throughout all developmental stages, but branches in upright willow grew rapidly in the initial stages and then grew slowly and began shoot branching in the middle stages. A total of 613 hormone-related genes were differentially expressed in willow development. Among these, genes associated with auxin and gibberellin (GA) were highly likely to be responsible for the weeping trait, and genes associated with auxin and ethylene probably play crucial roles in shoot elongation. The genes with differential expression patterns were used to construct a network that regulated stem development, and auxin-related genes were identified as hub genes in the network in the weeping willow. Our results suggest an important role of gibberellin and auxin in regulating the weeping trait in Salix matsudana. This is the first report on the molecular aspects of hormonal effects on weeping trait in willow using transcriptomics and helps in dissecting the molecular mechanisms by which the weeping trait is controlled.
Collapse
Affiliation(s)
- Juanjuan Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Yanfei Zeng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Pengcheng Yan
- Beijing Key Laboratory of Cloud Computing Key Technology and Application, Beijing Computing Center, Beijing 100094, China.
| | - Caiyun He
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Jianguo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|