1
|
Glassmire AE, Hauri KC, Turner DB, Zehr LN, Sugimoto K, Howe GA, Wetzel WC. The frequency and chemical phenotype of neighboring plants determine the effects of intraspecific plant diversity. Ecology 2024; 105:e4392. [PMID: 39113178 DOI: 10.1002/ecy.4392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/15/2024] [Accepted: 05/24/2024] [Indexed: 09/04/2024]
Abstract
Associational effects, whereby plants influence the biotic interactions of their neighbors, are an important component of plant-insect interactions. Plant chemistry has been hypothesized to mediate these interactions. The role of chemistry in associational effects, however, has been unclear in part because the diversity of plant chemistry makes it difficult to tease apart the importance and roles of particular classes of compounds. We examined the chemical ecology of associational effects using backcross-bred plants of the Solanum pennellii introgression lines. We used eight genotypes from the introgression line system to establish 14 unique neighborhood treatments that maximized differences in acyl sugars, proteinase inhibitor, and terpene chemical diversity. We found that the chemical traits of the neighboring plant, rather than simply the number of introgression lines within a neighborhood, influenced insect abundance on focal plants. Furthermore, within-chemical class diversity had contrasting effects on herbivore and predator abundances, and depended on the frequency of neighboring plant chemotypes. Notably, we found insect mobility-flying versus crawling-played a key role in insect response to phytochemistry. We highlight that the frequency and chemical phenotype of plant neighbors underlie associational effects and suggest this may be an important mechanism in maintaining intraspecific phytochemical variation within plant populations.
Collapse
Affiliation(s)
- Andrea E Glassmire
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
- Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA
| | - Kayleigh C Hauri
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
- Ecology, Evolution, & Behavior Program, Michigan State University, East Lansing, Michigan, USA
| | - Daniel B Turner
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
- Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA
- Ecology, Evolution, & Behavior Program, Michigan State University, East Lansing, Michigan, USA
| | - Luke N Zehr
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
| | - Koichi Sugimoto
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
| | - Gregg A Howe
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
| | - William C Wetzel
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
- Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA
- Ecology, Evolution, & Behavior Program, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
2
|
Simon SJ, Furches A, Chhetri H, Evans L, Abeyratne CR, Jones P, Wimp G, Macaya-Sanz D, Jacobson D, Tschaplinski TJ, Tuskan GA, DiFazio SP. Genetic underpinnings of arthropod community distributions in Populus trichocarpa. THE NEW PHYTOLOGIST 2024; 242:1307-1323. [PMID: 38488269 DOI: 10.1111/nph.19660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/21/2024] [Indexed: 04/12/2024]
Abstract
Community genetics seeks to understand the mechanisms by which natural genetic variation in heritable host phenotypes can encompass assemblages of organisms such as bacteria, fungi, and many animals including arthropods. Prior studies that focused on plant genotypes have been unable to identify genes controlling community composition, a necessary step to predict ecosystem structure and function as underlying genes shift within plant populations. We surveyed arthropods within an association population of Populus trichocarpa in three common gardens to discover plant genes that contributed to arthropod community composition. We analyzed our surveys with traditional single-trait genome-wide association analysis (GWAS), multitrait GWAS, and functional networks built from a diverse set of plant phenotypes. Plant genotype was influential in structuring arthropod community composition among several garden sites. Candidate genes important for higher level organization of arthropod communities had broadly applicable functions, such as terpenoid biosynthesis and production of dsRNA binding proteins and protein kinases, which may be capable of targeting multiple arthropod species. We have demonstrated the ability to detect, in an uncontrolled environment, individual genes that are associated with the community assemblage of arthropods on a host plant, further enhancing our understanding of genetic mechanisms that impact ecosystem structure.
Collapse
Affiliation(s)
- Sandra J Simon
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Anna Furches
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, 37996, USA
| | - Hari Chhetri
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA
- Computational Systems Biology Group, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Luke Evans
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, 80309, USA
| | | | - Piet Jones
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, 37996, USA
| | - Gina Wimp
- Department of Biology, Georgetown University, Washington, DC, 20057, USA
| | - David Macaya-Sanz
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Daniel Jacobson
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, 37996, USA
| | - Timothy J Tschaplinski
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Gerald A Tuskan
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Stephen P DiFazio
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA
| |
Collapse
|
3
|
Riehl JFL, Cole CT, Morrow CJ, Barker HL, Bernhardsson C, Rubert‐Nason K, Ingvarsson PK, Lindroth RL. Genomic and transcriptomic analyses reveal polygenic architecture for ecologically important traits in aspen ( Populus tremuloides Michx.). Ecol Evol 2023; 13:e10541. [PMID: 37780087 PMCID: PMC10534199 DOI: 10.1002/ece3.10541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Intraspecific genetic variation in foundation species such as aspen (Populus tremuloides Michx.) shapes their impact on forest structure and function. Identifying genes underlying ecologically important traits is key to understanding that impact. Previous studies, using single-locus genome-wide association (GWA) analyses to identify candidate genes, have identified fewer genes than anticipated for highly heritable quantitative traits. Mounting evidence suggests that polygenic control of quantitative traits is largely responsible for this "missing heritability" phenomenon. Our research characterized the genetic architecture of 30 ecologically important traits using a common garden of aspen through genomic and transcriptomic analyses. A multilocus association model revealed that most traits displayed a highly polygenic architecture, with most variation explained by loci with small effects (likely below the detection levels of single-locus GWA methods). Consistent with a polygenic architecture, our single-locus GWA analyses found only 38 significant SNPs in 22 genes across 15 traits. Next, we used differential expression analysis on a subset of aspen genets with divergent concentrations of salicinoid phenolic glycosides (key defense traits). This complementary method to traditional GWA discovered 1243 differentially expressed genes for a polygenic trait. Soft clustering analysis revealed three gene clusters (241 candidate genes) involved in secondary metabolite biosynthesis and regulation. Our work reveals that ecologically important traits governing higher-order community- and ecosystem-level attributes of a foundation forest tree species have complex underlying genetic structures and will require methods beyond traditional GWA analyses to unravel.
Collapse
Affiliation(s)
| | | | - Clay J. Morrow
- Department of Forest and Wildlife EcologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Hilary L. Barker
- Department of EntomologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Present address:
Office of Student SuccessWisconsin Technical College SystemMadisonWisconsinUSA
| | - Carolina Bernhardsson
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden
- Present address:
Department of Organismal Biology, Center for Evolutionary BiologyUppsala UniversityUppsalaSweden
| | - Kennedy Rubert‐Nason
- Department of EntomologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Present address:
Division of Natural SciencesUniversity of Maine at Fort KentFort KentMaineUSA
| | - Pär K. Ingvarsson
- Department of Plant BiologySwedish University of Agricultural Sciences, Uppsala BioCenterUppsalaSweden
| | | |
Collapse
|
4
|
Delord C, Petit EJ, Blanchet S, Longin G, Rinaldo R, Vigouroux R, Roussel JM, Le Bail PY, Launey S. Contrasts in riverscape patterns of intraspecific genetic variation in a diverse Neotropical fish community of high conservation value. Heredity (Edinb) 2023; 131:1-14. [PMID: 37185615 PMCID: PMC10313816 DOI: 10.1038/s41437-023-00616-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Spatial patterns of genetic variation compared across species provide information about the predictability of genetic diversity in natural populations, and areas requiring conservation measures. Due to their remarkable fish diversity, rivers in Neotropical regions are ideal systems to confront theory with observations and would benefit greatly from such approaches given their increasing vulnerability to anthropogenic pressures. We used SNP data from 18 fish species with contrasting life-history traits, co-sampled across 12 sites in the Maroni- a major river system from the Guiana Shield -, to compare patterns of intraspecific genetic variation and identify their underlying drivers. Analyses of covariance revealed a decrease in genetic diversity as distance from the river outlet increased for 5 of the 18 species, illustrating a pattern commonly observed in riverscapes for species with low-to-medium dispersal abilities. However, the mean within-site genetic diversity was lowest in the two easternmost tributaries of the Upper Maroni and around an urbanized location downstream, indicating the need to address the potential influence of local pressures in these areas, such as gold mining or fishing. Finally, the relative influence of isolation by stream distance, isolation by discontinuous river flow, and isolation by spatial heterogeneity in effective size on pairwise genetic differentiation varied across species. Species with similar dispersal and reproductive guilds did not necessarily display shared patterns of population structure. Increasing the knowledge of specific life history traits and ecological requirements of fish species in these remote areas should help further understand factors that influence their current patterns of genetic variation.
Collapse
Affiliation(s)
- Chrystelle Delord
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, 35042, Rennes, France.
- HYDRECO Guyane SARL, Laboratoire-Environnement de Petit Saut, 97310, Kourou, France.
- UMR MARBEC, Univ. Montpellier, IRD, Ifremer, CNRS, Sète, France.
| | - Eric J Petit
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, 35042, Rennes, France
| | - Simon Blanchet
- CNRS, Station d'Ecologie Théorique et Expérimentale, UAR, 2029, Moulis, France
| | | | | | - Régis Vigouroux
- HYDRECO Guyane SARL, Laboratoire-Environnement de Petit Saut, 97310, Kourou, France
| | - Jean-Marc Roussel
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, 35042, Rennes, France
| | | | - Sophie Launey
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, 35042, Rennes, France
| |
Collapse
|
5
|
Wuest SE, Schulz L, Rana S, Frommelt J, Ehmig M, Pires ND, Grossniklaus U, Hardtke CS, Hammes UZ, Schmid B, Niklaus PA. Single-gene resolution of diversity-driven overyielding in plant genotype mixtures. Nat Commun 2023; 14:3379. [PMID: 37291153 PMCID: PMC10250416 DOI: 10.1038/s41467-023-39130-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
In plant communities, diversity often increases productivity and functioning, but the specific underlying drivers are difficult to identify. Most ecological theories attribute positive diversity effects to complementary niches occupied by different species or genotypes. However, the specific nature of niche complementarity often remains unclear, including how it is expressed in terms of trait differences between plants. Here, we use a gene-centred approach to study positive diversity effects in mixtures of natural Arabidopsis thaliana genotypes. Using two orthogonal genetic mapping approaches, we find that between-plant allelic differences at the AtSUC8 locus are strongly associated with mixture overyielding. AtSUC8 encodes a proton-sucrose symporter and is expressed in root tissues. Genetic variation in AtSUC8 affects the biochemical activities of protein variants and natural variation at this locus is associated with different sensitivities of root growth to changes in substrate pH. We thus speculate that - in the particular case studied here - evolutionary divergence along an edaphic gradient resulted in the niche complementarity between genotypes that now drives overyielding in mixtures. Identifying genes important for ecosystem functioning may ultimately allow linking ecological processes to evolutionary drivers, help identify traits underlying positive diversity effects, and facilitate the development of high-performance crop variety mixtures.
Collapse
Affiliation(s)
- Samuel E Wuest
- Department of Evolutionary Biology and Environmental Studies and Zurich-Basel Plant Science Center, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland.
- Department of Geography, Remote Sensing Laboratories, University of Zurich, 8057, Zurich, Switzerland.
- Agroscope, Group Breeding Research, Mueller-Thurgau-Strasse 29, 8820, Waedenswil, Switzerland.
| | - Lukas Schulz
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Surbhi Rana
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, Lausanne, 1015, Switzerland
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Colney Ln, Norwich, NR4 7UH, United Kingdom
| | - Julia Frommelt
- Department of Evolutionary Biology and Environmental Studies and Zurich-Basel Plant Science Center, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Merten Ehmig
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008, Zürich, Switzerland
| | - Nuno D Pires
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, Lausanne, 1015, Switzerland
| | - Ulrich Z Hammes
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Bernhard Schmid
- Department of Evolutionary Biology and Environmental Studies and Zurich-Basel Plant Science Center, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Geography, Remote Sensing Laboratories, University of Zurich, 8057, Zurich, Switzerland
| | - Pascal A Niklaus
- Department of Evolutionary Biology and Environmental Studies and Zurich-Basel Plant Science Center, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
6
|
The role of timing in intraspecific trait ecology. Trends Ecol Evol 2022; 37:997-1005. [DOI: 10.1016/j.tree.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022]
|
7
|
Li QM, Cai CN, Xu WM, Cao M, Sha LQ, Lin LX, He TH. Adaptive genetic diversity of dominant species contributes to species co-existence and community assembly. PLANT DIVERSITY 2022; 44:271-278. [PMID: 35769594 PMCID: PMC9209874 DOI: 10.1016/j.pld.2021.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 06/15/2023]
Abstract
The synthesis of evolutionary biology and community ecology aims to understand how genetic variation within one species can shape community properties and how the ecological properties of a community can drive the evolution of a species. A rarely explored aspect is whether the interaction of genetic variation and community properties depends on the species' ecological role. Here we investigated the interactions among environmental factors, species diversity, and the within-species genetic diversity of species with different ecological roles. Using high-throughput DNA sequencing, we genotyped a canopy-dominant tree species, Parashorea chinensis, and an understory-abundant species, Pittosporopsis kerrii, from fifteen plots in Xishuangbanna tropical seasonal rainforest and estimated their adaptive, neutral and total genetic diversity; we also surveyed species diversity and assayed key soil nutrients. Structural equation modelling revealed that soil nitrogen availability created an opposing effect in species diversity and adaptive genetic diversity of the canopy-dominant Pa. chinensis. The increased adaptive genetic diversity of Pa. chinensis led to greater species diversity by promoting co-existence. Increased species diversity reduced the adaptive genetic diversity of the dominant understory species, Pi. kerrii, which was promoted by the adaptive genetic diversity of the canopy-dominant Pa. chinensis. However, such relationships were absent when neutral genetic diversity or total genetic diversity were used in the model. Our results demonstrated the important ecological interaction between adaptive genetic diversity and species diversity, but the pattern of the interaction depends on the identity of the species. Our results highlight the significant ecological role of dominant species in competitive interactions and regulation of community structure.
Collapse
Affiliation(s)
- Qiao-Ming Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Chao-Nan Cai
- School of Advanced Study, Taizhou University, Taizhou, 318000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Wu-Mei Xu
- School of Energy and Environment Science, Yunnan Normal University, Kunming, 650500, Yunnan, China
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Li-Qing Sha
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Lu-Xiang Lin
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Tian-Hua He
- School of Molecular and Life Sciences, Curtin University, PO Box U1987, Perth, WA, 6845, Australia
| |
Collapse
|
8
|
Little CJ, Rizzuto M, Luhring TM, Monk JD, Nowicki RJ, Paseka RE, Stegen JC, Symons CC, Taub FB, Yen JDL. Movement with meaning: integrating information into meta‐ecology. OIKOS 2022. [DOI: 10.1111/oik.08892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chelsea J. Little
- Biodiversity Research Centre, Univ. of British Columbia Vancouver BC Canada
- School of Environmental Science, Simon Fraser Univ. Burnaby BC Canada
| | - Matteo Rizzuto
- Dept of Biology, Memorial Univ. of Newfoundland St. John's NL Canada
| | | | - Julia D. Monk
- School of the Environment, Yale Univ. New Haven CT USA
| | - Robert J. Nowicki
- Elizabeth Moore International Center for Coral Reef Research and Restoration, Mote Marine Laboratory Summerland Key FL USA
| | - Rachel E. Paseka
- Dept of Ecology, Evolution and Behavior, Univ. of Minnesota Saint Paul MN USA
| | | | - Celia C. Symons
- Dept of Ecology and Evolutionary Biology, Univ. of California Irvine CA USA
| | - Frieda B. Taub
- School of Aquatic and Fishery Sciences, Univ. of Washington Seattle WA USA
| | - Jian D. L. Yen
- School of BioSciences, Univ. of Melbourne, Melbourne, Australia, and Arthur Rylah Inst. for Environmental Reserach Heidelberg Victoria Australia
| |
Collapse
|
9
|
Reese Naesborg R, Lau MK, Michalet R, Williams CB, Whitham TG. Tree genotypes affect rock lichens and understory plants: examples of trophic-independent interactions. Ecology 2021; 103:e03589. [PMID: 34787902 PMCID: PMC9285738 DOI: 10.1002/ecy.3589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/29/2021] [Accepted: 08/24/2021] [Indexed: 11/07/2022]
Abstract
Genetic variation in foundation tree species can strongly influence communities of trophic‐dependent organisms, such as herbivorous insects, pollinators, and mycorrhizal fungi. However, the extent and manner in which this variation results in unexpected interactions that reach trophic‐independent organisms remains poorly understood, even though these interactions are essential to understanding complex ecosystems. In pinyon–juniper woodland at Sunset Crater (Arizona, USA), we studied pinyon (Pinus edulis) that were either resistant or susceptible to stem‐boring moths (Dioryctria albovittella). Moth herbivory alters the architecture of susceptible trees, thereby modifying the microhabitat beneath their crowns. We tested the hypothesis that this interaction between herbivore and tree genotype extends to affect trophic‐independent communities of saxicolous (i.e., growing on rocks) lichens and bryophytes and vascular plants beneath their crowns. Under 30 pairs of moth‐resistant and moth‐susceptible trees, we estimated percent cover of lichens, bryophytes, and vascular plants. We also quantified the cover of leaf litter and rocks as well as light availability. Four major findings emerged. (1) Compared to moth‐resistant trees, which exhibited monopodial architecture, the microhabitat under the shrub‐like susceptible trees was 60% darker and had 21% more litter resulting in 68% less rock exposure. (2) Susceptible trees had 56% and 87% less cover, 42% and 80% less richness, and 38% and 92% less diversity of saxicolous and plant communities, respectively, compared to resistant trees. (3) Both saxicolous and plant species accumulated at a slower rate beneath susceptible trees, suggesting an environment that might inhibit colonization and/or growth. (4) Both saxicolous and plant communities were negatively affected by the habitat provided by susceptible trees. The results suggest that herbivory of moth‐susceptible trees generated litter at high enough rates to reduce rock substrate availability, thereby suppressing the saxicolous communities. However, our results did not provide a causal pathway explaining the suppression of vascular plants. Nonetheless, the cascading effects of genetic variation in pinyon appear to extend beyond trophic‐dependent moths to include trophic‐independent saxicolous and vascular plant communities that are affected by specific tree–herbivore interactions that modify the local environment. We suggest that such genetically based interactions are common in nature and contribute to the evolution of complex communities.
Collapse
Affiliation(s)
- Rikke Reese Naesborg
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| | - Matthew K Lau
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| | - Richard Michalet
- UMR 5805 EPOC, University of Bordeaux, Avenue des Facultés, Talence Cedax, 33405, France
| | - Cameron B Williams
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| | - Thomas G Whitham
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011, USA.,Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| |
Collapse
|
10
|
Zhang XY, Gong H, Fang Q, Zhu X, Jiang L, Wu R. A Holling Functional Response Model for Mapping QTLs Governing Interspecific Interactions. Front Genet 2021; 12:766372. [PMID: 34721549 PMCID: PMC8554200 DOI: 10.3389/fgene.2021.766372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Genes play an important role in community ecology and evolution, but how to identify the genes that affect community dynamics at the whole genome level is very challenging. Here, we develop a Holling type II functional response model for mapping quantitative trait loci (QTLs) that govern interspecific interactions. The model, integrated with generalized Lotka-Volterra differential dynamic equations, shows a better capacity to reveal the dynamic complexity of inter-species interactions than classic competition models. By applying the new model to a published mapping data from a competition experiment of two microbial species, we identify a set of previously uncharacterized QTLs that are specifically responsible for microbial cooperation and competition. The model can not only characterize how these QTLs affect microbial interactions, but also address how change in ecological interactions activates the genetic effects of the QTLs. This model provides a quantitative means of predicting the genetic architecture that shapes the dynamic behavior of ecological communities.
Collapse
Affiliation(s)
- Xiao-Yu Zhang
- College of Science, Beijing Forestry University, Beijing, China
| | - Huiying Gong
- College of Science, Beijing Forestry University, Beijing, China
| | - Qing Fang
- Faculty of Science, Yamagata University, Yamagata, Japan
| | - Xuli Zhu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Libo Jiang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Rongling Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Center for Statistical Genetics, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
11
|
Wagner MR. Prioritizing host phenotype to understand microbiome heritability in plants. THE NEW PHYTOLOGIST 2021; 232:502-509. [PMID: 34287929 DOI: 10.1111/nph.17622] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/02/2021] [Indexed: 05/06/2023]
Abstract
Breeders and evolutionary geneticists have grappled with the complexity of the 'genotype-to-phenotype map' for decades. Now, recent studies highlight the relevance of this concept for understanding heritability of plant microbiomes. Because host phenotype is a more proximate cause of microbiome variation than host genotype, microbiome heritability varies across plant anatomy and development. Fine-scale variation of plant traits within organs suggests that the well-established concept of 'microbiome compartment' should be refined. Additionally, recent work shows that the balance of deterministic processes (including host genetic effects) vs stochastic processes also varies over time and space. Together, these findings suggest that re-centering plant phenotype - both as a predictor and a readout of microbiome function - will accelerate new insights into microbiome heritability.
Collapse
Affiliation(s)
- Maggie R Wagner
- Department of Ecology and Evolutionary Biology, Kansas Biological Survey, University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|
12
|
Jeplawy JR, Cooper HF, Marks J, Lindroth RL, Andrews MI, Compson ZG, Gehring C, Hultine KR, Grady K, Whitham TG, Allan GJ, Best RJ. Plastic responses to hot temperatures homogenize riparian leaf litter, speed decomposition, and reduce detritivores. Ecology 2021; 102:e03461. [PMID: 34236702 DOI: 10.1002/ecy.3461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/12/2021] [Accepted: 05/13/2021] [Indexed: 01/10/2023]
Abstract
Efforts to maintain the function of critical ecosystems under climate change often begin with foundation species. In the southwestern United States, cottonwood trees support diverse communities in riparian ecosystems that are threatened by rising temperatures. Genetic variation within cottonwoods shapes communities and ecosystems, but these effects may be modified by phenotypic plasticity, where genotype traits change in response to environmental conditions. Here, we investigated plasticity in Fremont cottonwood (Populus fremontii) leaf litter traits as well as the consequences of plasticity for riparian ecosystems. We used three common gardens each planted with genotypes from six genetically divergent populations spanning a 12°C temperature gradient, and a decomposition experiment in a common stream environment. We found that leaf litter area, specific leaf area, and carbon to nitrogen ratio (C:N) were determined by interactions between genetics and growing environment, as was the subsequent rate of litter decomposition. Most of the genetic variation in leaf litter traits appeared among rather than within source populations with distinct climate histories. Source populations from hotter climates generally produced litter that decomposed more quickly, but plasticity varied the magnitude of this effect. We also found that hotter growing conditions reduced the variation in litter traits produced across genotypes, homogenizing the litter inputs to riparian ecosystems. All genotypes in the hottest garden produced comparatively small leaves that decomposed quickly and supported lower abundances of aquatic invertebrates, whereas the same genotypes in the coldest garden produced litter with distinct morphologies and decomposition rates. Our results suggest that plastic responses to climate stress may constrict the expression of genetic variation in predictable ways that impact communities and ecosystems. Understanding these interactions between genetic and environmental variation is critical to our ability to plan for the role of foundation species when managing and restoring riparian ecosystems in a warming world.
Collapse
Affiliation(s)
- Joann R Jeplawy
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, Arizona, 86011, USA.,Tetra Tech, Inc., Denver, Colorado, 80202, USA
| | - Hillary F Cooper
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, Arizona, 86011, USA.,Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011, USA.,Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| | - Jane Marks
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011, USA.,Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| | - Richard L Lindroth
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Morgan I Andrews
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| | - Zacchaeus G Compson
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, Texas, 76203, USA
| | - Catherine Gehring
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011, USA.,Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| | - Kevin R Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, Arizona, 85008, USA
| | - Kevin Grady
- Department of Forestry, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| | - Thomas G Whitham
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011, USA.,Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| | - Gerard J Allan
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011, USA.,Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| | - Rebecca J Best
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| |
Collapse
|
13
|
Jacob S, Legrand D. Phenotypic plasticity can reverse the relative extent of intra- and interspecific variability across a thermal gradient. Proc Biol Sci 2021; 288:20210428. [PMID: 34187192 DOI: 10.1098/rspb.2021.0428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Intra- and interspecific variability can both ensure ecosystem functions. Generalizing the effects of individual and species assemblages requires understanding how much within and between species trait variation is genetically based or results from phenotypic plasticity. Phenotypic plasticity can indeed lead to rapid and important changes of trait distributions, and in turn community functionality, depending on environmental conditions, which raises a crucial question: could phenotypic plasticity modify the relative importance of intra- and interspecific variability along environmental gradients? We quantified the fundamental niche of five genotypes in monocultures for each of five ciliate species along a wide thermal gradient in standardized conditions to assess the importance of phenotypic plasticity for the level of intraspecific variability compared to differences between species. We showed that phenotypic plasticity strongly influences trait variability and reverses the relative extent of intra- and interspecific variability along the thermal gradient. Our results show that phenotypic plasticity may lead to either increase or decrease of functional trait variability along environmental gradients, making intra- and interspecific variability highly dynamic components of ecological systems.
Collapse
Affiliation(s)
- Staffan Jacob
- Station d'Ecologie Théorique et Expérimentale du CNRS UAR5321, 2 route du CNRS, 09200, Moulis, France
| | - Delphine Legrand
- Station d'Ecologie Théorique et Expérimentale du CNRS UAR5321, 2 route du CNRS, 09200, Moulis, France
| |
Collapse
|
14
|
Heterozygous Trees Rebound the Fastest after Felling by Beavers to Positively Affect Arthropod Community Diversity. FORESTS 2021. [DOI: 10.3390/f12060694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Although genetic diversity within stands of trees is known to have community-level consequences, whether such effects are present at an even finer genetic scale is unknown. We examined the hypothesis that genetic variability (heterozygosity) within an individual plant would affect its dependent community, which adds a new dimension to the importance of genetic diversity. Our study contrasted foliar arthropod community diversity and microsatellite marker-derived measures of genetic diversity of cottonwood (Populus fremontii) trees that had been felled by beavers (Castor canadensis) and were resprouting, relative to adjacent standing, unfelled trees. Three patterns emerged: 1. Productivity (specific leaf area), phytochemical defenses (salicortin), and arthropod community richness, abundance, and diversity were positively correlated with the heterozygosity of individual felled trees, but not with that of unfelled trees; 2. These relationships were not explained by population substructure, genetic relatedness of the trees, or hybridization; 3. The underlying mechanism appears to be that beaver herbivory stimulates increased productivity (i.e., 2× increase from the most homozygous to the most heterozygous tree) that is the greatest in more heterozygous trees. Salicortin defenses in twigs were also expressed at higher concentrations in more heterozygous trees (i.e., 3× increase from the most homozygous to the most heterozygous tree), which suggests that this compound may dissuade further herbivory by beavers, as has been found for other mammalian herbivores. We suggest that high stress to trees as a consequence of felling reveals a heterozygosity–productivity linkage, which in turn is attractive to arthropods. Although experiments are required to demonstrate causality, these results link the genetic diversity of individual trees to community diversity, supporting the hypothesis that interactions among foundation species (beavers and trees) have community-level effects, and underscores the importance of genetic diversity for biodiversity, conservation, and restoration.
Collapse
|
15
|
Barbour MA, Gibert JP. Genetic and plastic rewiring of food webs under climate change. J Anim Ecol 2021; 90:1814-1830. [PMID: 34028791 PMCID: PMC8453762 DOI: 10.1111/1365-2656.13541] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022]
Abstract
Climate change is altering ecological and evolutionary processes across biological scales. These simultaneous effects of climate change pose a major challenge for predicting the future state of populations, communities and ecosystems. This challenge is further exacerbated by the current lack of integration of research focused on these different scales. We propose that integrating the fields of quantitative genetics and food web ecology will reveal new insights on how climate change may reorganize biodiversity across levels of organization. This is because quantitative genetics links the genotypes of individuals to population‐level phenotypic variation due to genetic (G), environmental (E) and gene‐by‐environment (G × E) factors. Food web ecology, on the other hand, links population‐level phenotypes to the structure and dynamics of communities and ecosystems. We synthesize data and theory across these fields and find evidence that genetic (G) and plastic (E and G × E) phenotypic variation within populations will change in magnitude under new climates in predictable ways. We then show how changes in these sources of phenotypic variation can rewire food webs by altering the number and strength of species interactions, with consequences for ecosystem resilience. We also find evidence suggesting there are predictable asymmetries in genetic and plastic trait variation across trophic levels, which set the pace for phenotypic change and food web responses to climate change. Advances in genomics now make it possible to partition G, E and G × E phenotypic variation in natural populations, allowing tests of the hypotheses we propose. By synthesizing advances in quantitative genetics and food web ecology, we provide testable predictions for how the structure and dynamics of biodiversity will respond to climate change.
Collapse
Affiliation(s)
- Matthew A Barbour
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Jean P Gibert
- Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
16
|
Whitham TG, Allan GJ, Cooper HF, Shuster SM. Intraspecific Genetic Variation and Species Interactions Contribute to Community Evolution. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011720-123655] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evolution has been viewed as occurring primarily through selection among individuals. We present a framework based on multilevel selection for evaluating evolutionary change from individuals to communities, with supporting empirical evidence. Essential to this evaluation is the role that interspecific indirect genetic effects play in shaping community organization, in generating variation among community phenotypes, and in creating community heritability. If communities vary in phenotype, and those phenotypes are heritable and subject to selection at multiple levels, then a community view of evolution must be merged with mainstream evolutionary theory. Rapid environmental change during the Anthropocene will require a better understanding of these evolutionary processes, especially selection acting at the community level, which has the potential to eliminate whole communities while favoring others.
Collapse
Affiliation(s)
- Thomas G. Whitham
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona 86011, USA
| | - Gerard J. Allan
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona 86011, USA
| | - Hillary F. Cooper
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona 86011, USA
| | - Stephen M. Shuster
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona 86011, USA
| |
Collapse
|
17
|
Stange M, Barrett RDH, Hendry AP. The importance of genomic variation for biodiversity, ecosystems and people. Nat Rev Genet 2020; 22:89-105. [PMID: 33067582 DOI: 10.1038/s41576-020-00288-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 11/09/2022]
Abstract
The 2019 United Nations Global assessment report on biodiversity and ecosystem services estimated that approximately 1 million species are at risk of extinction. This primarily human-driven loss of biodiversity has unprecedented negative consequences for ecosystems and people. Classic and emerging approaches in genetics and genomics have the potential to dramatically improve these outcomes. In particular, the study of interactions among genetic loci within and between species will play a critical role in understanding the adaptive potential of species and communities, and hence their direct and indirect effects on biodiversity, ecosystems and people. We explore these population and community genomic contexts in the hope of finding solutions for maintaining and improving ecosystem services and nature's contributions to people.
Collapse
Affiliation(s)
- Madlen Stange
- Redpath Museum, McGill University, Montreal, QC, Canada
| | | | | |
Collapse
|
18
|
Lepais O, Chancerel E, Boury C, Salin F, Manicki A, Taillebois L, Dutech C, Aissi A, Bacles CF, Daverat F, Launey S, Guichoux E. Fast sequence-based microsatellite genotyping development workflow. PeerJ 2020; 8:e9085. [PMID: 32411534 PMCID: PMC7204839 DOI: 10.7717/peerj.9085] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022] Open
Abstract
Application of high-throughput sequencing technologies to microsatellite genotyping (SSRseq) has been shown to remove many of the limitations of electrophoresis-based methods and to refine inference of population genetic diversity and structure. We present here a streamlined SSRseq development workflow that includes microsatellite development, multiplexed marker amplification and sequencing, and automated bioinformatics data analysis. We illustrate its application to five groups of species across phyla (fungi, plant, insect and fish) with different levels of genomic resource availability. We found that relying on previously developed microsatellite assay is not optimal and leads to a resulting low number of reliable locus being genotyped. In contrast, de novo ad hoc primer designs gives highly multiplexed microsatellite assays that can be sequenced to produce high quality genotypes for 20-40 loci. We highlight critical upfront development factors to consider for effective SSRseq setup in a wide range of situations. Sequence analysis accounting for all linked polymorphisms along the sequence quickly generates a powerful multi-allelic haplotype-based genotypic dataset, calling to new theoretical and analytical frameworks to extract more information from multi-nucleotide polymorphism marker systems.
Collapse
Affiliation(s)
- Olivier Lepais
- INRAE, Univ. Bordeaux, BIOGECO, Cestas, France
- INRAE, Université de Pau et Pays de l’Adour, ECOBIOP, Saint-Peé-sur-Nivelle, France
| | | | | | | | - Aurélie Manicki
- INRAE, Université de Pau et Pays de l’Adour, ECOBIOP, Saint-Peé-sur-Nivelle, France
| | - Laura Taillebois
- INRAE, Université de Pau et Pays de l’Adour, ECOBIOP, Saint-Peé-sur-Nivelle, France
| | | | | | - Cecile F.E. Bacles
- INRAE, Université de Pau et Pays de l’Adour, ECOBIOP, Saint-Peé-sur-Nivelle, France
| | | | - Sophie Launey
- INRAE, Agrocampus Ouest, ESE, Ecology and Ecosystem Health, Rennes, France
| | | |
Collapse
|
19
|
McGale E, Valim H, Mittal D, Morales Jimenez J, Halitschke R, Schuman MC, Baldwin IT. Determining the scale at which variation in a single gene changes population yields. eLife 2020; 9:e53517. [PMID: 32057293 PMCID: PMC7136025 DOI: 10.7554/elife.53517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/13/2020] [Indexed: 11/13/2022] Open
Abstract
Plant trait diversity is known to influence population yield, but the scale at which this happens remains unknown: divergent individuals might change yields of immediate neighbors (neighbor scale) or of plants across a population (population scale). We use Nicotiana attenuata plants silenced in mitogen-activated protein kinase 4 (irMPK4) - with low water-use efficiency (WUE) - to study the scale at which water-use traits alter intraspecific population yields. In the field and glasshouse, we observed overyielding in populations with low percentages of irMPK4 plants, unrelated to water-use phenotypes. Paired-plant experiments excluded the occurrence of overyielding effects at the neighbor scale. Experimentally altering field arbuscular mycorrhizal fungal associations by silencing the Sym-pathway gene NaCCaMK did not affect reproductive overyielding, implicating an effect independent of belowground AMF interactions. Additionally, micro-grafting experiments revealed dependence on shoot-expressed MPK4 for N. attenuata to vary its yield per neighbor presence. We find that variation in a single gene, MPK4, is responsible for population overyielding through a mechanism, independent of irMPK4's WUE phenotype, at the aboveground, population scale.
Collapse
Affiliation(s)
- Erica McGale
- Department of Molecular Ecology, Max Planck for Chemical EcologyJenaGermany
| | - Henrique Valim
- Department of Molecular Ecology, Max Planck for Chemical EcologyJenaGermany
| | - Deepika Mittal
- Department of Molecular Ecology, Max Planck for Chemical EcologyJenaGermany
| | | | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck for Chemical EcologyJenaGermany
| | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck for Chemical EcologyJenaGermany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck for Chemical EcologyJenaGermany
| |
Collapse
|
20
|
Musche M, Adamescu M, Angelstam P, Bacher S, Bäck J, Buss HL, Duffy C, Flaim G, Gaillardet J, Giannakis GV, Haase P, Halada L, Kissling WD, Lundin L, Matteucci G, Meesenburg H, Monteith D, Nikolaidis NP, Pipan T, Pyšek P, Rowe EC, Roy DB, Sier A, Tappeiner U, Vilà M, White T, Zobel M, Klotz S. Research questions to facilitate the future development of European long-term ecosystem research infrastructures: A horizon scanning exercise. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 250:109479. [PMID: 31499467 DOI: 10.1016/j.jenvman.2019.109479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
Distributed environmental research infrastructures are important to support assessments of the effects of global change on landscapes, ecosystems and society. These infrastructures need to provide continuity to address long-term change, yet be flexible enough to respond to rapid societal and technological developments that modify research priorities. We used a horizon scanning exercise to identify and prioritize emerging research questions for the future development of ecosystem and socio-ecological research infrastructures in Europe. Twenty research questions covered topics related to (i) ecosystem structures and processes, (ii) the impacts of anthropogenic drivers on ecosystems, (iii) ecosystem services and socio-ecological systems and (iv), methods and research infrastructures. Several key priorities for the development of research infrastructures emerged. Addressing complex environmental issues requires the adoption of a whole-system approach, achieved through integration of biotic, abiotic and socio-economic measurements. Interoperability among different research infrastructures needs to be improved by developing standard measurements, harmonizing methods, and establishing capacities and tools for data integration, processing, storage and analysis. Future research infrastructures should support a range of methodological approaches including observation, experiments and modelling. They should also have flexibility to respond to new requirements, for example by adjusting the spatio-temporal design of measurements. When new methods are introduced, compatibility with important long-term data series must be ensured. Finally, indicators, tools, and transdisciplinary approaches to identify, quantify and value ecosystem services across spatial scales and domains need to be advanced.
Collapse
Affiliation(s)
- Martin Musche
- Helmholtz Centre for Environmental Research - UFZ, Department of Community Ecology, Theodor-Lieser-Str. 4, 06120, Halle, Germany.
| | - Mihai Adamescu
- University of Bucharest, Research Center for Systems Ecology and Sustainability, Spl. Independentei 91 - 95, 050095, Bucharest, Romania
| | - Per Angelstam
- School for Forest Management, Swedish University of Agricultural Sciences, PO Box 43, SE-739 21, Skinnskatteberg, Sweden
| | - Sven Bacher
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Jaana Bäck
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, P.O.Box 27, 00014, University of Helsinki, Finland
| | - Heather L Buss
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol, BS8 1RJ, United Kingdom
| | - Christopher Duffy
- Department of Civil & Environmental Engineering, The Pennsylvania State University, 212 Sackett, University Park, PA, 16802, USA
| | - Giovanna Flaim
- Department of Sustainable Agro-ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Jerome Gaillardet
- CNRS and Institut de Physique du Globe de Paris, 1 rue Jussieu, 75238, Paris, cedex 05, France
| | - George V Giannakis
- School of Environmental Engineering, Technical University of Crete, University Campus, 73100, Chania, Greece
| | - Peter Haase
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystr. 12, 63571, Gelnhausen, Germany; University of Duisburg-Essen, Faculty of Biology, 45141, Essen, Germany
| | - Luboš Halada
- Institute of Landscape Ecology SAS, Branch Nitra, Akademicka 2, 949 10, Nitra, Slovakia
| | - W Daniel Kissling
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1090, GE Amsterdam, The Netherlands
| | - Lars Lundin
- Swedish University of Agricultural Sciences, P.O. Box 7050, SE-750 07, Uppsala, Sweden
| | - Giorgio Matteucci
- National Research Council of Italy, Institute for Agricultural and Forestry Systems in the Mediterranean (CNR-ISAFOM), Via Patacca, 85 I-80056, Ercolano, NA, Italy
| | - Henning Meesenburg
- Northwest German Forest Research Institute, Grätzelstr. 2, 37079, Göttingen, Germany
| | - Don Monteith
- Centre for Ecology & Hydrology, Lancaster, LA1 4AP, UK
| | - Nikolaos P Nikolaidis
- School of Environmental Engineering, Technical University of Crete, University Campus, 73100, Chania, Greece
| | - Tanja Pipan
- ZRC SAZU Karst Research Institute, Titov trg 2, SI-6230, Postojna, Slovenia; UNESCO Chair on Karst Education, University of Nova Gorica, Glavni trg 8, SI-5271, Vipava, Slovenia
| | - Petr Pyšek
- The Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology, CZ-252 43, Průhonice, Czech Republic; Department of Ecology, Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
| | - Ed C Rowe
- Centre for Ecology & Hydrology, Bangor, LL57 4NW, UK
| | - David B Roy
- Centre for Ecology & Hydrology, Wallingford, OX10 8EF, UK
| | - Andrew Sier
- Centre for Ecology & Hydrology, Lancaster, LA1 4AP, UK
| | - Ulrike Tappeiner
- Department of Ecology, University of Innsbruck, Sternwartestrasse 15, 6020, Innsbruck, Austria; Eurac research, Viale Druso 1, 39100, Bozen/Bolzano, Italy
| | - Montserrat Vilà
- Estación Biológica de Doñana-Consejo Superior de Investigaciones Científicas (EBD-CSIC), Avda. Américo Vespucio 26, Isla de la Cartuja, 41005, Sevilla, Spain
| | - Tim White
- Earth and Environmental Systems Institute, 2217 EES Building, The Pennsylvania State University, University Park, PA, 16828, USA
| | - Martin Zobel
- Institute of Ecology and Earth Sciences, University of Tartu, Lai St.40, Tartu, 51005, Estonia
| | - Stefan Klotz
- Helmholtz Centre for Environmental Research - UFZ, Department of Community Ecology, Theodor-Lieser-Str. 4, 06120, Halle, Germany
| |
Collapse
|
21
|
Selmants PC, Schweitzer JA, Adair KL, Holeski LM, Lindroth RL, Hart SC, Whitham TG. Genetic variation in tree leaf chemistry predicts the abundance and activity of autotrophic soil microorganisms. Ecosphere 2019. [DOI: 10.1002/ecs2.2795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Paul C. Selmants
- U.S. Geological Survey Western Geographic Science Center Menlo Park California USA
| | - Jennifer A. Schweitzer
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee USA
| | - Karen L. Adair
- Institute of Ecology and Evolution University of Oregon Eugene Oregon USA
| | - Liza M. Holeski
- Department of Biological Sciences Northern Arizona University Flagstaff Arizona USA
| | - Richard L. Lindroth
- Department of Entomology University of Wisconsin‐Madison Madison Wisconsin USA
| | - Stephen C. Hart
- Department of Life & Environmental Sciences Sierra Nevada Research Institute University of California Merced California USA
| | - Thomas G. Whitham
- Department of Biological Sciences Northern Arizona University Flagstaff Arizona USA
| |
Collapse
|
22
|
Zytynska SE, Guenay Y, Sturm S, Clancy MV, Senft M, Schnitzler JP, Dilip Pophaly S, Wurmser C, Weisser WW. Effect of plant chemical variation and mutualistic ants on the local population genetic structure of an aphid herbivore. J Anim Ecol 2019; 88:1089-1099. [PMID: 30980387 DOI: 10.1111/1365-2656.12995] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 03/11/2019] [Indexed: 11/27/2022]
Abstract
Plants exhibit impressive genetic and chemical diversity, not just between species but also within species, and the importance of plant intraspecific variation for structuring ecological communities is well known. When there is variation at the local population level, this can create a spatially heterogeneous habitat for specialised herbivores potentially leading to non-random distribution of individuals across host plants. Plant variation can affect herbivores directly and indirectly via a third species, resulting in variable herbivore growth rates across different host plants. Herbivores also exhibit within-species variation, with some genotypes better adapted to some plant variants than others. We genotyped aphids collected across 2 years from a field site containing ~200 patchily distributed host plants that exhibit high chemical diversity. The distribution of aphid genotypes, their ant mutualists, and other predators was assessed across the plants. We present evidence that the local distribution of aphid (Metopeurum fuscoviride) genotypes across host-plant individuals is associated with variation in the plant volatiles (chemotypes) and non-volatile metabolites (metabotypes) of their host plant tansy (Tanacetum vulgare). Furthermore, these interactions in the field were influenced by plant-host preferences of aphid-mutualist ants. Our results emphasise that plant intraspecific variation can structure ecological communities not only at the species level but also at the genetic level within species and that this effect can be enhanced through indirect interactions with a third species.
Collapse
Affiliation(s)
- Sharon E Zytynska
- Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Yasemin Guenay
- Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Sarah Sturm
- Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Mary V Clancy
- Research Unit Environmental Simulation (EUS), Institute of Bio chemical Plant Pathology, Helmholtz Zentrum München GmbH, Neuherberg, Germany
| | - Matthias Senft
- Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation (EUS), Institute of Bio chemical Plant Pathology, Helmholtz Zentrum München GmbH, Neuherberg, Germany
| | - Saurabh Dilip Pophaly
- Population Genetics Research Group, Department of Plant Sciences, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Christine Wurmser
- Animal Breeding Research Group, Department of Animal Sciences, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Wolfgang W Weisser
- Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
23
|
Kramer AT, Crane B, Downing J, Hamrick J, Havens K, Highland A, Jacobi SK, Kaye TN, Lonsdorf EV, Ramp Neale J, Novy A, Smouse PE, Tallamy DW, White A, Zeldin J. Sourcing native plants to support ecosystem function in different planting contexts. Restor Ecol 2019. [DOI: 10.1111/rec.12931] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Andrea T. Kramer
- Department of Plant Science and ConservationChicago Botanic Garden Glencoe IL 60035 U.S.A
| | - Barbara Crane
- Forest Management Timber UnitUSDA Forest Service Atlanta GA 30309 U.S.A
| | | | - J.L. Hamrick
- Department of Plant BiologyUniversity of Georgia Athens GA 30602 U.S.A
| | - Kayri Havens
- Department of Plant Science and ConservationChicago Botanic Garden Glencoe IL 60035 U.S.A
| | | | - Sarah K. Jacobi
- Department of Plant Science and ConservationChicago Botanic Garden Glencoe IL 60035 U.S.A
| | - Thomas N. Kaye
- Institute for Applied EcologyCorvallis OR 97333 U.S.A
- Department of Botany and Plant PathologyOregon State University Corvallis OR 97331 U.S.A
| | - Eric V. Lonsdorf
- Institute on the EnvironmentUniversity of Minnesota St Paul MN 55108 U.S.A
| | - Jennifer Ramp Neale
- Department of Science and ResearchDenver Botanic Gardens Denver CO 80206 U.S.A
| | - Ari Novy
- San Diego Botanic Garden Encinitas CA 92024 U.S.A
- Department of AnthropologyUniversity of California‐San Diego San Diego CA 92093 U.S.A
- Department of Botany, Smithsonian InstitutionNational Museum of Natural History Washington DC 20002 U.S.A
| | - Peter E. Smouse
- Department of Ecology, Evolution & Natural ResourcesRutgers University New Brunswick NJ 08901 U.S.A
| | - Douglas W. Tallamy
- Department of Entomology and Wildlife EcologyUniversity of Delaware Newark DE 19716 U.S.A
| | - Abigail White
- Department of Plant Science and ConservationChicago Botanic Garden Glencoe IL 60035 U.S.A
| | - Jacob Zeldin
- Department of Plant Science and ConservationChicago Botanic Garden Glencoe IL 60035 U.S.A
| |
Collapse
|
24
|
Stone AC, Gehring CA, Cobb NS, Whitham TG. Genetic-Based Susceptibility of a Foundation Tree to Herbivory Interacts With Climate to Influence Arthropod Community Composition, Diversity, and Resilience. FRONTIERS IN PLANT SCIENCE 2018; 9:1831. [PMID: 30619404 PMCID: PMC6298196 DOI: 10.3389/fpls.2018.01831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
Understanding how genetic-based traits of plants interact with climate to affect associated communities will help improve predictions of climate change impacts on biodiversity. However, few community-level studies have addressed such interactions. Pinyon pine (Pinus edulis) in the southwestern U.S. shows genetic-based resistance and susceptibility to pinyon needle scale (Matsucoccus acalyptus). We sought to determine if susceptibility to scale herbivory influenced the diversity and composition of the extended community of 250+ arthropod species, and if this influence would be consistent across consecutive years, an extreme drought year followed by a moderate drought year. Because scale insects alter the architecture of susceptible trees, it is difficult to separate the direct influences of susceptibility on arthropod communities from the indirect influences of scale-altered tree architecture. To separate these influences, scales were experimentally excluded from susceptible trees for 15 years creating susceptible trees with the architecture of resistant trees, hereafter referred to as scale-excluded trees. Five patterns emerged. (1) In both years, arthropod abundance was 3-4X lower on susceptible trees compared to resistant and scale-excluded trees. (2) Species accumulation curves show that alpha and gamma diversity were 2-3X lower on susceptible trees compared to resistant and scale-excluded trees. (3) Reaction norms of arthropod richness and abundance on individual tree genotypes across years showed genotypic variation in the community response to changes in climate. (4) The genetic-based influence of susceptibility on arthropod community composition is climate dependent. During extreme drought, community composition on scale-excluded trees resembled susceptible trees indicating composition was strongly influenced by tree genetics independent of tree architecture. However, under moderate drought, community composition on scale-excluded trees resembled resistant trees indicating traits associated with tree architecture became more important. (5) One year after extreme drought, the arthropod community rebounded sharply. However, there was a much greater rebound in richness and abundance on resistant compared to susceptible trees suggesting that reduced resiliency in the arthropod community is associated with susceptibility. These results argue that individual genetic-based plant-herbivore interactions can directly and indirectly impact community-level diversity, which is modulated by climate. Understanding such interactions is important for assessing the impacts of climate change on biodiversity.
Collapse
Affiliation(s)
- Adrian C. Stone
- Department of Biology, Metropolitan State University, Denver, CO, United States
| | - Catherine A. Gehring
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States
- Merriam-Powell Center for Environmental Research, Flagstaff, AZ, United States
| | - Neil S. Cobb
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States
- Merriam-Powell Center for Environmental Research, Flagstaff, AZ, United States
| | - Thomas G. Whitham
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States
- Merriam-Powell Center for Environmental Research, Flagstaff, AZ, United States
| |
Collapse
|
25
|
Dubs F, Vergnes A, Mirlicourtois E, Le Viol I, Kerbiriou C, Goulnik J, Belghali S, Bentze L, Barot S, Porcher E. Positive effects of wheat variety mixtures on aboveground arthropods are weak and variable. Basic Appl Ecol 2018. [DOI: 10.1016/j.baae.2018.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Khudr MS, Purkiss SA, Hager R. Indirect ecological effects interact with community genetic effects in a host-parasite system and dramatically reduce parasite burden. Proc Biol Sci 2018; 285:rspb.2018.0891. [PMID: 30185645 DOI: 10.1098/rspb.2018.0891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/09/2018] [Indexed: 11/12/2022] Open
Abstract
Community genetic (CG) effects and ecological factors create a complex set of interactions that are key drivers of evolutionary dynamics in ecological systems. To date, most studies investigating trait variation have focused on either effects of intraspecific genetic variation or on genotype by environment (GxE) interactions in isolation. Poorly investigated but very important are the interactions between CGs and indirect ecological effects (IEEs) that are caused by plant-soil interactions. Here, we tested how CGs in a cabbage host and its aphid parasite depended on the ecological conditions under which the host was grown. We established microcosms of different cabbage cultivars and aphid genotypes on soils inoculated with samples of other soils previously trained with onion. We hypothesized that such IEEs will have significantly different outcomes for ecosystems than predicted from simpler CG or GxE studies. Our analysis demonstrated a large IEE that differed by context and aphid genotype causing reduced parasite population sizes by up to 90%. The IEE is induced by insect-repellent properties and the microbiome of the onion. Our results highlight the importance of interacting IEEs and CGs for ecosystems dynamics showing that IEEs offer sustainable solutions by dramatically reducing parasite burden on cash crops.
Collapse
Affiliation(s)
- Mouhammad Shadi Khudr
- Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Manchester M13 9PT, UK
| | - Samuel Alexander Purkiss
- Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Manchester M13 9PT, UK
| | - Reinmar Hager
- Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Manchester M13 9PT, UK
| |
Collapse
|
27
|
Eisen KE, Geber MA. Ecological sorting and character displacement contribute to the structure of communities of Clarkia species. J Evol Biol 2018; 31:1440-1458. [PMID: 30099807 DOI: 10.1111/jeb.13365] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/10/2018] [Accepted: 08/06/2018] [Indexed: 01/27/2023]
Abstract
Despite long-standing interest in the evolutionary ecology of plants that share pollinators, few studies have explored how these interactions may affect communities during both community assembly (ecological sorting) and through ongoing, in situ evolution (character displacement), and how the effects of these interactions may change with community context. To determine if communities display patterns consistent with ecological sorting, we assessed the frequency of co-occurrence of four species of Clarkia in the southern Sierra foothills (Kern County, CA, USA). To investigate potential character displacement, we measured pollination-related traits on plants grown in a greenhouse common garden from seed collected in communities with one, two or four Clarkia species. Among the four species of Clarkia in this region, the two species that are often found in multi-species communities also co-occur with one another more frequently than expected under a null model. This pattern is consistent with ecological sorting, although further investigation is needed to determine the role of pollinators in shaping community assembly. Patterns of trait variation in a common garden suggest that these two species have diverged in floral traits and converged in flowering time where they co-occur, which is consistent with character displacement. Trait variation across community types also suggests that the process and outcome of character displacement may vary with community context. Because community context appears to affect both the direction and magnitude of character displacement, change in more species-rich communities may not be predictable from patterns of change in simpler communities.
Collapse
Affiliation(s)
- Katherine E Eisen
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Monica A Geber
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
28
|
Pease JE, Grabowski TB, Pease AA, Bean PT. Changing environmental gradients over forty years alter ecomorphological variation in Guadalupe Bass Micropterus treculii throughout a river basin. Ecol Evol 2018; 8:8508-8522. [PMID: 30250719 PMCID: PMC6145027 DOI: 10.1002/ece3.4349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/25/2018] [Accepted: 05/31/2018] [Indexed: 12/25/2022] Open
Abstract
Understanding the degree of intraspecific variation within and among populations is a key aspect of predicting the capacity of a species to respond to anthropogenic disturbances. However, intraspecific variation is usually assessed at either limited temporal, but broad spatial scales or vice versa, which can make assessing changes in response to long-term disturbances challenging. We evaluated the relationship between the longitudinal gradient of changing flow regimes and land use/land cover patterns since 1980 and morphological variation of Guadalupe Bass Micropterus treculii throughout the Colorado River Basin of central Texas. The Colorado River Basin in Texas has experienced major alterations to the hydrologic regime due to changing land- and water-use patterns. Historical collections of Guadalupe Bass prior to rapid human-induced change present the unique opportunity to study the response of populations to varying environmental conditions through space and time. Morphological differentiation of Guadalupe Bass associated with temporal changes in flow regimes and land use/land cover patterns suggests that they are exhibiting intraspecific trait variability, with contemporary individuals showing increased body depth, in response to environmental alteration through time (specifically related to an increase in herbaceous land cover, maximum flows, and the number of low pulses and high pulses). Additionally, individuals from tributaries with increased hydrologic alteration associated with urbanization or agricultural withdrawals tended to have a greater distance between the anal and caudal fin. These results reveal trait variation that may help to buffer populations under conditions of increased urbanization and sprawl, human population growth, and climate risk, all of which impose novel selective pressures, especially on endemic species like Guadalupe Bass. Our results contribute an understanding of the adaptability and capacity of an endemic population to respond to expected future changes based on demographic or climatic projection.
Collapse
Affiliation(s)
- Jessica E. Pease
- Texas Cooperative Fish & Wildlife Research UnitTexas Tech UniversityLubbockTexas
| | - Timothy B. Grabowski
- U.S. Geological SurveyTexas Cooperative Fish & Wildlife Research UnitTexas Tech UniversityLubbockTexas
- Present address:
U.S. Geological SurveyHawaii Cooperative Fishery Research UnitUniversity of Hawaii at HiloHiloHawaii
| | - Allison A. Pease
- Department of Natural Resources ManagementTexas Tech UniversityLubbockTexas
| | - Preston T. Bean
- Heart of the Hills Fisheries Science CenterTexas Parks and WildlifeMountain HomeTexas
| |
Collapse
|
29
|
Barker HL, Holeski LM, Lindroth RL. Genotypic variation in plant traits shapes herbivorous insect and ant communities on a foundation tree species. PLoS One 2018; 13:e0200954. [PMID: 30063740 PMCID: PMC6067713 DOI: 10.1371/journal.pone.0200954] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/04/2018] [Indexed: 11/23/2022] Open
Abstract
Community genetics aims to understand the effects of intraspecific genetic variation on community composition and diversity, thereby connecting community ecology with evolutionary biology. Multiple studies have shown that different plant genotypes harbor different communities of associated organisms, such as insects. Yet, the mechanistic links that tie insect community composition to plant genetics are still not well understood. To shed light on these relationships, we explored variation in both plant traits (e.g., growth, phenology, defense) and herbivorous insect and ant communities on 328 replicated aspen (Populus tremuloides) genets grown in a common garden. We measured traits and visually surveyed insect communities annually in 2014 and 2015. We found that insect communities overall exhibited low heritability and were shaped primarily by relationships among key insects (i.e., aphids, ants, and free-feeders). Several tree traits affected insect communities and the presence/absence of species and functional groups. Of these traits, tree size and foliar phenology were the most important. Larger trees had denser (i.e., number of insects per unit tree size) and more diverse insect communities, while timing of bud break and bud set differentially influenced particular species and insect groups, especially leaf modifying insects. These findings will inform future research directed toward identification of plant genes and genetic regions that underlie the structure of associated insect communities.
Collapse
Affiliation(s)
- Hilary L. Barker
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Liza M. Holeski
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Richard L. Lindroth
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
30
|
Delord C, Lassalle G, Oger A, Barloy D, Coutellec M, Delcamp A, Evanno G, Genthon C, Guichoux E, Le Bail P, Le Quilliec P, Longin G, Lorvelec O, Massot M, Reveillac E, Rinaldo R, Roussel J, Vigouroux R, Launey S, Petit EJ. A cost‐and‐time effective procedure to develop
SNP
markers for multiple species: A support for community genetics. Methods Ecol Evol 2018. [DOI: 10.1111/2041-210x.13034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Chrystelle Delord
- ESE, Ecology and Ecosystem HealthAgrocampus OuestINRA Rennes France
- HYDRECO Guyane SARLLaboratoire‐Environnement de Petit Saut Kourou France
| | - Gilles Lassalle
- ESE, Ecology and Ecosystem HealthAgrocampus OuestINRA Rennes France
| | - Adrien Oger
- ESE, Ecology and Ecosystem HealthAgrocampus OuestINRA Rennes France
| | - Dominique Barloy
- ESE, Ecology and Ecosystem HealthAgrocampus OuestINRA Rennes France
| | | | | | - Guillaume Evanno
- ESE, Ecology and Ecosystem HealthAgrocampus OuestINRA Rennes France
| | | | | | | | | | | | - Olivier Lorvelec
- ESE, Ecology and Ecosystem HealthAgrocampus OuestINRA Rennes France
| | | | - Elodie Reveillac
- ESE, Ecology and Ecosystem HealthAgrocampus OuestINRA Rennes France
| | | | | | - Regis Vigouroux
- HYDRECO Guyane SARLLaboratoire‐Environnement de Petit Saut Kourou France
| | - Sophie Launey
- ESE, Ecology and Ecosystem HealthAgrocampus OuestINRA Rennes France
| | - Eric J. Petit
- ESE, Ecology and Ecosystem HealthAgrocampus OuestINRA Rennes France
| |
Collapse
|
31
|
Adam N, Kallenbach M, Meldau S, Veit D, van Dam NM, Baldwin IT, Schuman MC. Functional variation in a key defense gene structures herbivore communities and alters plant performance. PLoS One 2018; 13:e0197221. [PMID: 29874269 PMCID: PMC5991399 DOI: 10.1371/journal.pone.0197221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/28/2018] [Indexed: 11/19/2022] Open
Abstract
Plant genetic diversity structures animal communities and affects plant population productivity. However, few studies have investigated which traits are involved and the mechanisms mediating these effects. We studied the consequences of varying the expression of a single biosynthetic gene in jasmonate (JA) defense hormones, which are essential for defense against herbivores but constrain plant growth, in experimental mesocosm populations of wild tobacco (Nicotiana attenuata) plants under attack from three native herbivores. Empoasca leafhoppers preferentially attack JA-deficient N. attenuata plants in nature, and the specialist Tupiocoris notatus mirids avoid Empoasca-damaged plants. However, in experimental mesocosm populations having equal numbers of wild-type (WT) and JA-deficient plants that are silenced in the expression of the biosynthetic gene lipoxygenase 3 (LOX3), Empoasca sp. attacked both genotypes. Empoasca sp. damage, rather than JA, determined T. notatus damage, which was reduced in mixed populations. The growth of specialist Manduca sexta larvae was reduced on WT vs. asLOX3 monocultures, but differed in mixtures depending on caterpillar density. However, seed capsule number remained similar for WT and asLOX3 plants in mixtures, not in monocultures, in two experimental scenarios reflecting high and low caterpillar attack. At high caterpillar density, WT plants growing in mixtures produced more seed capsules than those growing in monocultures while seed production of asLOX3 plants did not differ by population type. However, at low caterpillar density, asLOX3 plants growing in mixed populations produced more seed capsules than those growing in monoculture, while seed capsule production did not differ for WT by population type. Thus, mixed populations had a more stable output of seed capsules under the two scenarios. This may result from a balance between JA-mediated herbivore defense and plant competitive ability in mixed populations.
Collapse
Affiliation(s)
- Nora Adam
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Mario Kallenbach
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Stefan Meldau
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Daniel Veit
- Technical Service, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Nicole M. van Dam
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Meredith C. Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| |
Collapse
|
32
|
Shao X, Brown C, Worthy SJ, Liu L, Cao M, Li Q, Lin L, Swenson NG. Intra‐specific relatedness, spatial clustering and reduced demographic performance in tropical rainforest trees. Ecol Lett 2018; 21:1174-1181. [DOI: 10.1111/ele.13086] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/07/2018] [Accepted: 04/16/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Xiaona Shao
- Key Laboratory of Tropical Forest Ecology Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Kunming Yunnan 650201 China
- University of Chinese Academy of Sciences Beijing100049 China
| | - Calum Brown
- Institute of Meteorology and Climate Research Atmospheric Environmental Research Karlsruhe Institute of Technology Kreuzeckbahnstraße 19 82467 Garmisch‐Partenkirchen Germany
| | | | - Lu Liu
- Key Laboratory of Tropical Forest Ecology Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Kunming Yunnan 650201 China
- University of Chinese Academy of Sciences Beijing100049 China
| | - Min Cao
- Key Laboratory of Tropical Forest Ecology Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Kunming Yunnan 650201 China
| | - Qiaoming Li
- Key Laboratory of Tropical Forest Ecology Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Kunming Yunnan 650201 China
| | - Luxiang Lin
- Key Laboratory of Tropical Forest Ecology Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Kunming Yunnan 650201 China
- Southeast Asia Biodiversity Research Institute Chinese Academy of Sciences Menglun Mengla Yunnan666303 China
| | - Nathan G. Swenson
- Key Laboratory of Tropical Forest Ecology Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Kunming Yunnan 650201 China
- Department of Biology University of Maryland College Park MD 20742 USA
| |
Collapse
|
33
|
Williams RS, Howells JM. Effects of Intraspecific Genetic Variation and Prior Herbivory in an Old-Field Plant on the Abundance of the Specialist Aphid Uroleucon nigrotuberculatum (Hemiptera: Aphididae). ENVIRONMENTAL ENTOMOLOGY 2018; 47:422-431. [PMID: 29425269 DOI: 10.1093/ee/nvx196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Intraspecific genetic variation in plants can contribute to the diversity and abundance of associated insects, though many questions remain about why some genotypes support more insects than others. Since plant secondary metabolites, which may be induced after insect attack, may potentially vary among genotypes, these compounds provide a possible explanation for insect abundance variation in plants with substantial genetic variation. In this study, we examined four genotypes of the old-field plant species Solidago altissima (L.; Asterales: Asteraceae) and asked if the abundance of the specialist aphid Uroleucon nigrotuberculatum (Olive; Hemiptera: Aphididae) was affected by genotype and previous foliage damage by a specialist beetle. We hypothesized that different genotypes and prior herbivory would result in different quantities of terpenes produced by S. altissima, and that terpenes would affect aphid abundance. We found evidence of foliar terpene induction in a greenhouse environment, and significant differences in terpene production among genotypes in a field setting, though prior damage had little effect on aphid abundance in the field. There were significant effects of genotypes on aphid abundance, as well as genotype effects on terpenes and foliar nutrients (leaf N and C:N). Noteworthy was a change in the allocation of particular terpenes among genotypes that related to aphid abundance. Our analyses demonstrated that phytochemicals, and especially terpenes, related to aphid abundance. This study adds to a previous finding that variation in leaf terpenes in S. altissima provides a partial explanation for variable abundance among genotypes of a specialist aphid, and suggests that differences in the allocation of compounds is important.
Collapse
Affiliation(s)
- Ray S Williams
- Department of Biology, Appalachian State University, Rivers Street, Boone, NC
| | | |
Collapse
|
34
|
Valencia-Cuevas L, Mussali-Galante P, Cano-Santana Z, Pujade-Villar J, Equihua-Martínez A, Tovar-Sánchez E. Genetic variation in foundation species governs the dynamics of trophic interactions. Curr Zool 2018; 64:13-22. [PMID: 29492034 PMCID: PMC5809035 DOI: 10.1093/cz/zox015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 10/11/2016] [Accepted: 02/27/2017] [Indexed: 11/25/2022] Open
Abstract
Various studies have demonstrated that the foundation species genetic diversity can have direct effects that extend beyond the individual or population level, affecting the dependent communities. Additionally, these effects may be indirectly extended to higher trophic levels throughout the entire community. Quercus castanea is an oak species with characteristics of foundation species beyond presenting a wide geographical distribution and being a dominant element of Mexican temperate forests. In this study, we analyzed the influence of population (He) and individual (HL) genetic diversity of Q. castanea on its canopy endophagous insect community and associated parasitoids. Specifically, we studied the composition, richness (S) and density of leaf-mining moths (Lepidoptera: Tischeridae, Citheraniidae), gall-forming wasps (Hymenoptera: Cynipidae), and canopy parasitoids of Q. castanea. We sampled 120 trees belonging to six populations (20/site) through the previously recognized gradient of genetic diversity. In total, 22 endophagous insect species belonging to three orders (Hymenoptera, Lepidoptera, and Diptera) and 20 parasitoid species belonging to 13 families were identified. In general, we observed that the individual genetic diversity of the host plant (HL) has a significant positive effect on the S and density of the canopy endophagous insect communities. In contrast, He has a significant negative effect on the S of endophagous insects. Additionally, indirect effects of HL were observed, affecting the S and density of parasitoid insects. Our results suggest that genetic variation in foundation species can be one of the most important factors governing the dynamics of tritrophic interactions that involve oaks, herbivores, and parasitoids.
Collapse
Affiliation(s)
- Leticia Valencia-Cuevas
- Laboratorio de Marcadores Moleculares, Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, CP 62209, México
| | - Patricia Mussali-Galante
- Laboratorio de Investigaciones Ambientales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, CP 62209, México
| | - Zenón Cano-Santana
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Delegación Coyoacán, DF 04510, México
| | - Juli Pujade-Villar
- Departamento de Biología Animal, Universitat de Barcelona, Facultat de Biología, Av. Diagonal, 645, Barcelona 08028, España
| | | | - Efraín Tovar-Sánchez
- Laboratorio de Marcadores Moleculares, Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, CP 62209, México
| |
Collapse
|
35
|
Keith AR, Bailey JK, Lau MK, Whitham TG. Genetics-based interactions of foundation species affect community diversity, stability and network structure. Proc Biol Sci 2018; 284:rspb.2016.2703. [PMID: 28490623 DOI: 10.1098/rspb.2016.2703] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/05/2017] [Indexed: 11/12/2022] Open
Abstract
We examined the hypothesis that genetics-based interactions between strongly interacting foundation species, the tree Populus angustifolia and the aphid Pemphigus betae, affect arthropod community diversity, stability and species interaction networks of which little is known. In a 2-year experimental manipulation of the tree and its aphid herbivore four major findings emerged: (i) the interactions of these two species determined the composition of an arthropod community of 139 species; (ii) both tree genotype and aphid presence significantly predicted community diversity; (iii) the presence of aphids on genetically susceptible trees increased the stability of arthropod communities across years; and (iv) the experimental removal of aphids affected community network structure (network degree, modularity and tree genotype contribution to modularity). These findings demonstrate that the interactions of foundation species are genetically based, which in turn significantly contributes to community diversity, stability and species interaction networks. These experiments provide an important step in understanding the evolution of Darwin's 'entangled bank', a metaphor that characterizes the complexity and interconnectedness of communities in the wild.
Collapse
Affiliation(s)
- Arthur R Keith
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Joseph K Bailey
- Department of Ecology and Evolutionary Biology, The University of Tennessee, Knoxville, TN 37996, USA
| | - Matthew K Lau
- Harvard University, Harvard Forest, 324 North Main Street, Petersham, MA 01366, USA
| | - Thomas G Whitham
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA .,Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
36
|
Nell CS, Meza-Lopez MM, Croy JR, Nelson AS, Moreira X, Pratt JD, Mooney KA. Relative effects of genetic variation sensu lato and sexual dimorphism on plant traits and associated arthropod communities. Oecologia 2018; 187:389-400. [PMID: 29354878 DOI: 10.1007/s00442-018-4065-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/08/2018] [Indexed: 11/28/2022]
Abstract
Intraspecific plant trait variation can have cascading effects on plant-associated biotic communities. Sexual dimorphism is an important axis of genetic variation in dioecious plants, but the strength of such effects and the underlying mechanisms relative to genetic variation are unknown. We established a common garden with 39 genotypes of Baccharis salicifolia sampled from a single population that included male and female genotypes and measured plant traits and quantified associated arthropod communities. Genetic variation sensu lato (genotypic variation) had strong effects on most plant traits (flower number, relative growth rate, specific leaf area, percent water content, carbon-nitrogen ratio, monoterpene but not sesquiterpene concentrations) and on herbivore and predator density, and on arthropod community composition (relative abundance of 14 orders). In contrast, sexual dimorphism had weaker effects on only a few plant traits (flower number and relative growth rate), on predator density, and on arthropod community composition, but had no effect on herbivore density. Variation in flower number drove genetic variation sensu lato and sex dimorphism in predator density and arthropod community composition. There was unique genetic variation sensu lato in herbivore density (positively) associated with monoterpene concentration and in arthropod community composition associated with specific leaf area and carbon-nitrogen ratio. There was unique sexual dimorphism in arthropod community composition associated with plant relative growth rate. Together, these results demonstrate that genetic variation sensu lato and sexual dimorphism can shape plant-associated arthropod communities via both parallel and unique mechanisms, with greater overall effects of the former.
Collapse
Affiliation(s)
- Colleen S Nell
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA
| | - Maria M Meza-Lopez
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA
| | - Jordan R Croy
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA
| | - Annika S Nelson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA
| | - Xoaquín Moreira
- Biological Mission of Galicia (MBG-CSIC), Apdo. 28, 36080, Pontevedra, Galicia, Spain
| | - Jessica D Pratt
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA
| | - Kailen A Mooney
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA.
| |
Collapse
|
37
|
Bugarín-González R, Carracedo Á. Genética y medicina de familia. Semergen 2018; 44:54-60. [DOI: 10.1016/j.semerg.2017.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/04/2017] [Accepted: 08/16/2017] [Indexed: 11/30/2022]
|
38
|
Matthews B, Best RJ, Feulner PGD, Narwani A, Limberger R. Evolution as an ecosystem process: insights from genomics. Genome 2017; 61:298-309. [PMID: 29241022 DOI: 10.1139/gen-2017-0044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Evolution is a fundamental ecosystem process. The study of genomic variation of organisms can not only improve our understanding of evolutionary processes, but also of contemporary and future ecosystem dynamics. We argue that integrative research between the fields of genomics and ecosystem ecology could generate new insights. Specifically, studies of biodiversity and ecosystem functioning, evolutionary rescue, and eco-evolutionary dynamics could all benefit from information about variation in genome structure and the genetic architecture of traits, whereas genomic studies could benefit from information about the ecological context of evolutionary dynamics. We propose new ways to help link research on functional genomic diversity with (reciprocal) interactions between phenotypic evolution and ecosystem change. Despite numerous challenges, we anticipate that the wealth of genomic data being collected on natural populations will improve our understanding of ecosystems.
Collapse
Affiliation(s)
- Blake Matthews
- a Eawag, Department of Aquatic Ecology, Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland
| | - Rebecca J Best
- a Eawag, Department of Aquatic Ecology, Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland.,b School of Earth Sciences and Environmental Sustainability, Northern Arizona University, 525 S. Beaver Street, Flagstaff, AZ 86011, USA
| | - Philine G D Feulner
- c Eawag, Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland.,d University of Bern, Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, Bern, Switzerland
| | - Anita Narwani
- a Eawag, Department of Aquatic Ecology, Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland
| | - Romana Limberger
- a Eawag, Department of Aquatic Ecology, Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland.,e Research Institute for Limnology, University of Innsbruck, Mondsee, Austria
| |
Collapse
|
39
|
Jormalainen V, Danelli M, Gagnon K, Hillebrand H, Rothäusler E, Salminen JP, Sjöroos J. Genetic variation of a foundation rockweed species affects associated communities. Ecology 2017; 98:2940-2951. [PMID: 28869777 DOI: 10.1002/ecy.2002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/08/2017] [Accepted: 08/18/2017] [Indexed: 11/07/2022]
Abstract
Genetic variation in a foundation species may affect the composition of associated communities as well as modify ecosystem function. While the ecological consequences of genetic diversity of foundation species have been widely reported, the ability of individual genotypes to support dissimilar communities has been documented only in forest ecosystems. Here, for the first time in a marine ecosystem, we test whether the different genotypes of the rockweed Fucus vesiculosus harbor distinct community phenotypes and whether the genetic similarity of individual genotypes or their defensive compound content can explain the variation of the associated communities. We reared replicated genotypes in a common garden in the sea and analyzed their associated communities of periphytic algae and invertebrates as well as determined their contents of defense compounds, phlorotannins, and genetic distance based on neutral molecular markers. The periphytic community was abundant in mid-summer and its biovolume, diversity and community composition varied among the rockweed genotypes. The diversity of the periphytic community decreased with its increasing biovolume. In autumn, when grazers were abundant, periphytic community biomass was lower and less variable among rockweed genotypes, indicating different relative importance of bottom-up regulation through heritable variation of the foundation species and top-down regulation through grazing intensity. Similarly, composition of the invertebrate community varied among the rockweed genotypes. Although the genotype explained about 10-18% of the variation in associated communities, the variation was explained neither by the genetic distance nor the phlorotannin content. Thus, neither neutral genetic markers nor a single phenotypic trait could provide a mechanistic understanding of the genetic basis of community specificity. Therefore, a more comprehensive mapping of quantitative trait variation is needed to understand the underlying mechanisms. The community specificity implies that genetic variation within a foundation species is crucial for the biodiversity and assembly of associated organisms and, thus, for the functioning of associated communities. The result highlights the importance of ensuring the genetic variation of foundation species as a conservation target.
Collapse
Affiliation(s)
- Veijo Jormalainen
- Department of Biology, University of Turku, FI-20014, Turku, Finland
| | - Maria Danelli
- Institute for Chemistry and Biology of Marine Environments, Carl-von-Ossietzky University Oldenburg, Wilhelmshaven, 26382, Germany
| | - Karine Gagnon
- Department of Biology, University of Turku, FI-20014, Turku, Finland
| | - Helmut Hillebrand
- Institute for Chemistry and Biology of Marine Environments, Carl-von-Ossietzky University Oldenburg, Wilhelmshaven, 26382, Germany
| | - Eva Rothäusler
- Department of Biology, University of Turku, FI-20014, Turku, Finland
| | - Juha-Pekka Salminen
- Department of Chemistry, Laboratory of Organic Chemistry and Chemical Biology, University of Turku, Turku, FI-20014, Finland
| | - Joakim Sjöroos
- Department of Biology, University of Turku, FI-20014, Turku, Finland
| |
Collapse
|
40
|
El-Sabaawi RW. How Fishes Can Help Us Answer Important Questions about the Ecological Consequences of Evolution. COPEIA 2017. [DOI: 10.1643/ot-16-530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Mixing It Up: The Role of Hybridization in Forest Management and Conservation under Climate Change. FORESTS 2017. [DOI: 10.3390/f8070237] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
Wei SJ, Zhou Y, Fan XL, Hoffmann AA, Cao LJ, Chen XX, Xu ZF. Different genetic structures revealed resident populations of a specialist parasitoid wasp in contrast to its migratory host. Ecol Evol 2017; 7:5400-5409. [PMID: 28770077 PMCID: PMC5528221 DOI: 10.1002/ece3.3097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/21/2017] [Accepted: 05/02/2017] [Indexed: 11/08/2022] Open
Abstract
Genetic comparisons of parasitoids and their hosts are expected to reflect ecological and evolutionary processes that influence the interactions between species. The parasitoid wasp, Cotesia vestalis, and its host diamondback moth (DBM), Plutella xylostella, provide opportunities to test whether the specialist natural enemy migrates seasonally with its host or occurs as resident population. We genotyped 17 microsatellite loci and two mitochondrial genes for 158 female adults of C. vestalis collected from 12 geographical populations, as well as nine microsatellite loci for 127 DBM larvae from six separate sites. The samplings covered both the likely source (southern) and immigrant (northern) areas of DBM from China. Populations of C. vestalis fell into three groups, pointing to isolation in northwestern and southwestern China and strong genetic differentiation of these populations from others in central and eastern China. In contrast, DBM showed much weaker genetic differentiation and high rates of gene flow. TESS analysis identified the immigrant populations of DBM as showing admixture in northern China. Genetic disconnect between C. vestalis and its host suggests that the parasitoid did not migrate yearly with its host but likely consisted of resident populations in places where its host could not survive in winter.
Collapse
Affiliation(s)
- Shu-Jun Wei
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Yuan Zhou
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China.,College of Agriculture South China Agricultural University Guangzhou China
| | - Xu-Lei Fan
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Ary A Hoffmann
- School of BioSciences Bio21 Institute The University of Melbourne Parkville VIC Australia
| | - Li-Jun Cao
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Xue-Xin Chen
- Institute of Insect Sciences Zhejiang University Hangzhou China
| | - Zai-Fu Xu
- College of Agriculture South China Agricultural University Guangzhou China
| |
Collapse
|
43
|
Stevenson CR, Davies C, Rowntree JK. Biodiversity in agricultural landscapes: The effect of apple cultivar on epiphyte diversity. Ecol Evol 2017; 7:1250-1258. [PMID: 28303193 PMCID: PMC5306003 DOI: 10.1002/ece3.2683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/19/2016] [Accepted: 11/20/2016] [Indexed: 12/04/2022] Open
Abstract
In natural systems, extended phenotypes of trees can be important in determining the species composition and diversity of associated communities. Orchards are productive systems where trees dominate, and can be highly biodiverse, but few studies have considered the importance of tree genetic background in promoting associated biodiversity. We tested the effect of apple cultivar (plant genetic background) on the diversity and composition of the associated epiphytic bryophyte community across a total of seven cultivars in five productive East Anglian orchards where each orchard contained two cultivars. Data were collected from 617 individual trees, over 5 years. Species richness and community composition were significantly influenced by both orchard and cultivar. Differences among orchards explained 16% of the variation in bryophyte community data, while cultivar explained 4%. For 13 of the 41 bryophyte species recorded, apple cultivar was an important factor in explaining their distribution. While the effects of cultivar were small, we were able to detect them at multiple levels of analysis. We provide evidence that extended phenotypes act in productive as well as natural systems. With issues of food security ranking high on the international agenda, it is important to understand the impact of production regimes on associated biodiversity. Our results can inform mitigation of this potential conflict.
Collapse
Affiliation(s)
| | | | - Jennifer K Rowntree
- Centre for the Genetics of Ecosystem Services Faculty of Life Sciences University of Manchester Manchester UK
| |
Collapse
|
44
|
Mimura M, Yahara T, Faith DP, Vázquez‐Domínguez E, Colautti RI, Araki H, Javadi F, Núñez‐Farfán J, Mori AS, Zhou S, Hollingsworth PM, Neaves LE, Fukano Y, Smith GF, Sato Y, Tachida H, Hendry AP. Understanding and monitoring the consequences of human impacts on intraspecific variation. Evol Appl 2017; 10:121-139. [PMID: 28127389 PMCID: PMC5253428 DOI: 10.1111/eva.12436] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/20/2016] [Indexed: 12/15/2022] Open
Abstract
Intraspecific variation is a major component of biodiversity, yet it has received relatively little attention from governmental and nongovernmental organizations, especially with regard to conservation plans and the management of wild species. This omission is ill-advised because phenotypic and genetic variations within and among populations can have dramatic effects on ecological and evolutionary processes, including responses to environmental change, the maintenance of species diversity, and ecological stability and resilience. At the same time, environmental changes associated with many human activities, such as land use and climate change, have dramatic and often negative impacts on intraspecific variation. We argue for the need for local, regional, and global programs to monitor intraspecific genetic variation. We suggest that such monitoring should include two main strategies: (i) intensive monitoring of multiple types of genetic variation in selected species and (ii) broad-brush modeling for representative species for predicting changes in variation as a function of changes in population size and range extent. Overall, we call for collaborative efforts to initiate the urgently needed monitoring of intraspecific variation.
Collapse
Affiliation(s)
- Makiko Mimura
- Department of Bioenvironmental SystemsTamagawa UniversityTokyoJapan
| | - Tetsukazu Yahara
- Department of Biology and Institute of Decision Science for a Sustainable SocietyKyushu UniversityFukuokaJapan
| | - Daniel P. Faith
- The Australian Museum Research InstituteThe Australian MuseumSydneyNSWAustralia
| | | | | | - Hitoshi Araki
- Research Faculty of AgricultureHokkaido UniversitySapporoHokkaidoJapan
| | - Firouzeh Javadi
- Department of Biology and Institute of Decision Science for a Sustainable SocietyKyushu UniversityFukuokaJapan
| | - Juan Núñez‐Farfán
- Instituto de EcologíaUniversidad Nacional Autónoma de MéxicoMéxicoMéxico
| | - Akira S. Mori
- Graduate School of Environment and Information SciencesYokohama National UniversityYokohamaJapan
| | - Shiliang Zhou
- State Key Laboratory of Systematic and Evolutionary BotanyInstitute of BotanyChinese Academy of SciencesBeijingChina
| | | | - Linda E. Neaves
- Royal Botanic Garden EdinburghEdinburghUK
- Australian Centre for Wildlife Genomics, Australian Museum Research InstituteAustralian MuseumSydneyNSWAustralia
| | - Yuya Fukano
- Department of Biology and Institute of Decision Science for a Sustainable SocietyKyushu UniversityFukuokaJapan
| | - Gideon F. Smith
- Department of BotanyNelson Mandela Metropolitan UniversityPort ElizabethSouth Africa
- Departamento de Ciências da VidaCentre for Functional EcologyUniversidade de CoimbraCoimbraPortugal
| | | | - Hidenori Tachida
- Department of Biology and Institute of Decision Science for a Sustainable SocietyKyushu UniversityFukuokaJapan
| | - Andrew P. Hendry
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
45
|
LaRue EA, Chambers SM, Emery NC. Eco-evolutionary dynamics in restored communities and ecosystems. Restor Ecol 2016. [DOI: 10.1111/rec.12458] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Elizabeth A. LaRue
- Department of Biological Sciences; Purdue University; 915 West State Street West Lafayette IN 47907 U.S.A
| | - Sally M. Chambers
- Department of Biology; University of Florida; 527 Bartram Hall Gainesville FL 32611 U.S.A
| | - Nancy C. Emery
- Department of Ecology and Evolutionary Biology; University of Colorado; Campus Box 334 Boulder CO 80309-0334 U.S.A
| |
Collapse
|
46
|
Glassmire AE, Jeffrey CS, Forister ML, Parchman TL, Nice CC, Jahner JP, Wilson JS, Walla TR, Richards LA, Smilanich AM, Leonard MD, Morrison CR, Simbaña W, Salagaje LA, Dodson CD, Miller JS, Tepe EJ, Villamarin-Cortez S, Dyer LA. Intraspecific phytochemical variation shapes community and population structure for specialist caterpillars. THE NEW PHYTOLOGIST 2016; 212:208-19. [PMID: 27279551 PMCID: PMC5089596 DOI: 10.1111/nph.14038] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/26/2016] [Indexed: 05/05/2023]
Abstract
Chemically mediated plant-herbivore interactions contribute to the diversity of terrestrial communities and the diversification of plants and insects. While our understanding of the processes affecting community structure and evolutionary diversification has grown, few studies have investigated how trait variation shapes genetic and species diversity simultaneously in a tropical ecosystem. We investigated secondary metabolite variation among subpopulations of a single plant species, Piper kelleyi (Piperaceae), using high-performance liquid chromatography (HPLC), to understand associations between plant phytochemistry and host-specialized caterpillars in the genus Eois (Geometridae: Larentiinae) and associated parasitoid wasps and flies. In addition, we used a genotyping-by-sequencing approach to examine the genetic structure of one abundant caterpillar species, Eois encina, in relation to host phytochemical variation. We found substantive concentration differences among three major secondary metabolites, and these differences in chemistry predicted caterpillar and parasitoid community structure among host plant populations. Furthermore, E. encina populations located at high elevations were genetically different from other populations. They fed on plants containing high concentrations of prenylated benzoic acid. Thus, phytochemistry potentially shapes caterpillar and wasp community composition and geographic variation in species interactions, both of which can contribute to diversification of plants and insects.
Collapse
Affiliation(s)
- Andrea E Glassmire
- Ecology, Evolution, and Conservation Biology, University of Nevada, 1664 N. Virginia St, Reno, NV, 89557, USA
| | - Christopher S Jeffrey
- Ecology, Evolution, and Conservation Biology, University of Nevada, 1664 N. Virginia St, Reno, NV, 89557, USA
- Department of Chemistry, University of Nevada, 1664 N. Virginia St, Reno, NV, 89557, USA
| | - Matthew L Forister
- Ecology, Evolution, and Conservation Biology, University of Nevada, 1664 N. Virginia St, Reno, NV, 89557, USA
| | - Thomas L Parchman
- Ecology, Evolution, and Conservation Biology, University of Nevada, 1664 N. Virginia St, Reno, NV, 89557, USA
| | - Chris C Nice
- Department of Biology, Texas State University, 601 University Dr., San Marcos, TX, 78666, USA
| | - Joshua P Jahner
- Ecology, Evolution, and Conservation Biology, University of Nevada, 1664 N. Virginia St, Reno, NV, 89557, USA
| | - Joseph S Wilson
- Department of Biology, Utah State University Tooele, 1021 W Vine St, Toole, UT, 84074, USA
| | - Thomas R Walla
- Department of Biology, Colorado Mesa University, 1100 N. Ave, Grand Junction, CO, 81501, USA
- Museo Ecuatoriano de Ciencias Naturales del Instituto Nacional de Biodiversidad Ecuador, Rumipamba 341 y Av. Shyris., Quito, Ecuador
| | - Lora A Richards
- Ecology, Evolution, and Conservation Biology, University of Nevada, 1664 N. Virginia St, Reno, NV, 89557, USA
| | - Angela M Smilanich
- Ecology, Evolution, and Conservation Biology, University of Nevada, 1664 N. Virginia St, Reno, NV, 89557, USA
| | - Michael D Leonard
- Department of Chemistry, University of Nevada, 1664 N. Virginia St, Reno, NV, 89557, USA
| | - Colin R Morrison
- Ecology, Evolution, and Conservation Biology, University of Nevada, 1664 N. Virginia St, Reno, NV, 89557, USA
| | - Wilmer Simbaña
- Yanayacu Biological Station, Cosanga, Napo Province, Ecuador
| | - Luis A Salagaje
- Yanayacu Biological Station, Cosanga, Napo Province, Ecuador
| | - Craig D Dodson
- Ecology, Evolution, and Conservation Biology, University of Nevada, 1664 N. Virginia St, Reno, NV, 89557, USA
- Department of Chemistry, University of Nevada, 1664 N. Virginia St, Reno, NV, 89557, USA
| | - Jim S Miller
- Ecology, Evolution, and Conservation Biology, University of Nevada, 1664 N. Virginia St, Reno, NV, 89557, USA
| | - Eric J Tepe
- Department of Biological Sciences, University of Cincinnati, 318 College Dr, Cincinnati, OH, 45221, USA
| | - Santiago Villamarin-Cortez
- Museo Ecuatoriano de Ciencias Naturales del Instituto Nacional de Biodiversidad Ecuador, Rumipamba 341 y Av. Shyris., Quito, Ecuador
| | - Lee A Dyer
- Ecology, Evolution, and Conservation Biology, University of Nevada, 1664 N. Virginia St, Reno, NV, 89557, USA
- Museo Ecuatoriano de Ciencias Naturales del Instituto Nacional de Biodiversidad Ecuador, Rumipamba 341 y Av. Shyris., Quito, Ecuador
| |
Collapse
|
47
|
Carmona D, Johnson MTJ. The genetics of chutes and ladders: a community genetics approach to tritrophic interactions. OIKOS 2016. [DOI: 10.1111/oik.03079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Diego Carmona
- Dept of Biology; Univ. of Toronto Mississauga; 3359 Mississauga Road Mississauga, ON L5L 1C6 Canada
| | - Marc T. J. Johnson
- Dept of Biology; Univ. of Toronto Mississauga; 3359 Mississauga Road Mississauga, ON L5L 1C6 Canada
| |
Collapse
|
48
|
Ohgushi T. Eco-evolutionary dynamics of plant-herbivore communities: incorporating plant phenotypic plasticity. CURRENT OPINION IN INSECT SCIENCE 2016; 14:40-45. [PMID: 27436645 DOI: 10.1016/j.cois.2016.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/20/2016] [Accepted: 01/20/2016] [Indexed: 05/03/2023]
Abstract
The interplay between evolution and ecological communities is critical for the integration of different levels of biological organization. Recent work has begun to unveil the importance of plant phenotypic plasticity and plant-herbivore (co)evolution to link plant evolution and associated insect communities. Specifically, herbivore-induced plant traits (i.e., plastic phenotypes) have significant effects on the structure and diversity of herbivore communities, which can in turn promote the evolution of not only the focal plant but also insect community members. Here, I will provide a conceptual framework on the eco-evolutionary dynamics of plant-herbivore communities to understand how biological organizations are integrated in plant-insect interactions. Research on eco-evolutionary dynamics of plant-herbivore communities will undoubtedly enrich understanding of a wide range of plant-insect interactions.
Collapse
|
49
|
Lennon S, Dolan L. The New Phytologist Tansley Medal 2015. THE NEW PHYTOLOGIST 2016; 210:5. [PMID: 26919692 DOI: 10.1111/nph.13891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
|