1
|
Shu M, Yates TB, John C, Harman-Ware AE, Happs RM, Bryant N, Jawdy SS, Ragauskas AJ, Tuskan GA, Muchero W, Chen JG. Providing biological context for GWAS results using eQTL regulatory and co-expression networks in Populus. THE NEW PHYTOLOGIST 2024; 244:603-617. [PMID: 39169686 DOI: 10.1111/nph.20026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
Our study utilized genome-wide association studies (GWAS) to link nucleotide variants to traits in Populus trichocarpa, a species with rapid linkage disequilibrium decay. The aim was to overcome the challenge of interpreting statistical associations at individual loci without sufficient biological context, which often leads to reliance solely on gene annotations from unrelated model organisms. We employed an integrative approach that included GWAS targeting multiple traits using three individual techniques for lignocellulose phenotyping, expression quantitative trait loci (eQTL) analysis to construct transcriptional regulatory networks around each candidate locus and co-expression analysis to provide biological context for these networks, using lignocellulose biosynthesis in Populus trichocarpa as a case study. The research identified three candidate genes potentially involved in lignocellulose formation, including one previously recognized gene (Potri.005G116800/VND1, a critical regulator of secondary cell wall formation) and two genes (Potri.012G130000/AtSAP9 and Potri.004G202900/BIC1) with newly identified putative roles in lignocellulose biosynthesis. Our integrative approach offers a framework for providing biological context to loci associated with trait variation, facilitating the discovery of new genes and regulatory networks.
Collapse
Affiliation(s)
- Mengjun Shu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
| | - Timothy B Yates
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
| | - Cai John
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, 37996, TN, USA
| | - Anne E Harman-Ware
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, 80401, CO, USA
| | - Renee M Happs
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, 80401, CO, USA
| | - Nathan Bryant
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, 37996, TN, USA
| | - Sara S Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
| | - Arthur J Ragauskas
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, 37996, TN, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
| |
Collapse
|
2
|
Zhong R, Zhou D, Phillips DR, Adams ER, Chen L, Rose JP, Wang BC, Ye ZH. Identification of glycosyltransferases mediating 2-O-arabinopyranosyl and 2-O-galactosyl substitutions of glucuronosyl side chains of xylan. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:234-252. [PMID: 39145524 PMCID: PMC11424249 DOI: 10.1111/tpj.16983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
Xylan is one of the major hemicelluloses in plant cell walls and its xylosyl backbone is often decorated at O-2 with glucuronic acid (GlcA) and/or methylglucuronic acid (MeGlcA) residues. The GlcA/MeGlcA side chains may be further substituted with 2-O-arabinopyranose (Arap) or 2-O-galactopyranose (Gal) residues in some plant species, but the enzymes responsible for these substitutions remain unknown. During our endeavor to investigate the enzymatic activities of Arabidopsis MUR3-clade members of the GT47 glycosyltransferase family, we found that one of them was able to transfer Arap from UDP-Arap onto O-2 of GlcA side chains of xylan, and thus it was named xylan 2-O-arabinopyranosyltransferase 1 (AtXAPT1). The function of AtXAPT1 was verified in planta by its T-DNA knockout mutation showing a loss of the Arap substitution on xylan GlcA side chains. Further biochemical characterization of XAPT close homologs from other plant species demonstrated that while the poplar ones had the same catalytic activity as AtXAPT1, those from Eucalyptus, lemon-scented gum, sea apple, 'Ohi'a lehua, duckweed and purple yam were capable of catalyzing both 2-O-Arap and 2-O-Gal substitutions of xylan GlcA side chains albeit with differential activities. Sequential reactions with XAPTs and glucuronoxylan methyltransferase 3 (GXM3) showed that XAPTs acted poorly on MeGlcA side chains, whereas GXM3 could efficiently methylate arabinosylated or galactosylated GlcA side chains of xylan. Furthermore, molecular docking and site-directed mutagenesis analyses of Eucalyptus XAPT1 revealed critical roles of several amino acid residues at the putative active site in its activity. Together, these findings establish that XAPTs residing in the MUR3 clade of family GT47 are responsible for 2-O-arabinopyranosylation and 2-O-galactosylation of GlcA side chains of xylan.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - Dayong Zhou
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - Dennis R Phillips
- Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Earle R Adams
- Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Lirong Chen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - John P Rose
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - Bi-Cheng Wang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, USA
| |
Collapse
|
3
|
Richter P, Panchalingam J, Miebach K, Schipper K, Feldbrügge M, Mann M. Studying microbial triglyceride production from corn stover saccharides unveils insights into the galactose metabolism of Ustilago maydis. Microb Cell Fact 2024; 23:204. [PMID: 39033104 PMCID: PMC11264902 DOI: 10.1186/s12934-024-02483-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024] Open
Abstract
The global demand for plant oil has reached unprecedented levels and is relevant in all industrial sectors. Driven by the growing awareness for environmental issues of traditional plant oils and the need for eco-friendly alternatives, microbial oil emerges as a promising product with significant potential. Harnessing the capabilities of oleaginous microorganisms is an innovative approach for achieving sustainable oil production. To increase economic feasibility, it is crucial to explore feedstocks such as agricultural waste streams as renewable resource for microbial bioprocesses. The fungal model Ustilago maydis is one promising organism in the field of microbial triglyceride production. It has the ability to metabolize a wide variety of carbon sources for cell growth and accumulates high amounts of triglycerides intracellularly. In this study we asked whether this large variety of usable carbon sources can also be utilized for triglyceride production, using corn stover saccharides as a showcase.Our experiments revealed metabolization of the major saccharide building blocks present in corn stover, demonstrating the remarkable potential of U. maydis. The microorganism exhibited the capacity to synthesize triglycerides using the saccharides glucose, fructose, sucrose, xylose, arabinose, and galactose as carbon source. Notably, while galactose has been formerly considered as toxic to U. maydis, we found that the fungus can metabolize this saccharide, albeit with an extended lag phase of around 100 hours. We identified two distinct methods to significantly reduce or even prevent this lag phase, challenging previous assumptions and expanding the understanding of U. maydis metabolism.Our findings suggest that the two tested methods can prevent long lag phases on feedstocks with high galactose content and that U. maydis can produce microbial triglycerides very efficiently on many different carbon sources. Looking forward, exploring the metabolic capabilities of U. maydis on additional polymeric components of corn stover and beyond holds promise for innovative applications, marking a significant step toward environmentally sustainable bioprocessing technologies.
Collapse
Affiliation(s)
- Paul Richter
- Aachener Verfahrenstechnik - Chair of Biochemical Engineering, RWTH Aachen University, 52074, Aachen, Germany
- Bioeconomy Science Center (BioSC), 52425, Jülich, Germany
| | - Jathurshan Panchalingam
- Aachener Verfahrenstechnik - Chair of Biochemical Engineering, RWTH Aachen University, 52074, Aachen, Germany
- Bioeconomy Science Center (BioSC), 52425, Jülich, Germany
| | - Katharina Miebach
- Aachener Verfahrenstechnik - Chair of Biochemical Engineering, RWTH Aachen University, 52074, Aachen, Germany
- Bioeconomy Science Center (BioSC), 52425, Jülich, Germany
| | - Kerstin Schipper
- Institute for Microbiology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Bioeconomy Science Center (BioSC), 52425, Jülich, Germany
| | - Michael Feldbrügge
- Institute for Microbiology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Bioeconomy Science Center (BioSC), 52425, Jülich, Germany
| | - Marcel Mann
- Aachener Verfahrenstechnik - Chair of Biochemical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
- Bioeconomy Science Center (BioSC), 52425, Jülich, Germany.
| |
Collapse
|
4
|
Zhong R, Phillips DR, Clark KD, Adams ER, Lee C, Ye ZH. Biochemical Characterization of Rice Xylan Biosynthetic Enzymes in Determining Xylan Chain Elongation and Substitutions. PLANT & CELL PHYSIOLOGY 2024; 65:1065-1079. [PMID: 38501734 DOI: 10.1093/pcp/pcae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
Grass xylan consists of a linear chain of β-1,4-linked xylosyl residues that often form domains substituted only with either arabinofuranose (Araf) or glucuronic acid (GlcA)/methylglucuronic acid (MeGlcA) residues, and it lacks the unique reducing end tetrasaccharide sequence found in dicot xylan. The mechanism of how grass xylan backbone elongation is initiated and how its distinctive substitution pattern is determined remains elusive. Here, we performed biochemical characterization of rice xylan biosynthetic enzymes, including xylan synthases, glucuronyltransferases and methyltransferases. Activity assays of rice xylan synthases demonstrated that they required short xylooligomers as acceptors for their activities. While rice xylan glucuronyltransferases effectively glucuronidated unsubstituted xylohexaose acceptors, they transferred little GlcA residues onto (Araf)-substituted xylohexaoses and rice xylan 3-O-arabinosyltransferase could not arabinosylate GlcA-substituted xylohexaoses, indicating that their intrinsic biochemical properties may contribute to the distinctive substitution patterns of rice xylan. In addition, we found that rice xylan methyltransferase exhibited a low substrate binding affinity, which may explain the partial GlcA methylation in rice xylan. Furthermore, immunolocalization of xylan in xylem cells of both rice and Arabidopsis showed that it was deposited together with cellulose in secondary walls without forming xylan-rich nanodomains. Together, our findings provide new insights into the biochemical mechanisms underlying xylan backbone elongation and substitutions in grass species.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Dennis R Phillips
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Kevin D Clark
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Earle R Adams
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Chanhui Lee
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
Torres-Rodriguez A, Darvishzadeh R, Skidmore AK, Fränzel-Luiten E, Knaken B, Schuur B. High-throughput Soxhlet extraction method applied for analysis of leaf lignocellulose and non-structural substances. MethodsX 2024; 12:102644. [PMID: 38660031 PMCID: PMC11041828 DOI: 10.1016/j.mex.2024.102644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/03/2024] [Indexed: 04/26/2024] Open
Abstract
The traditional Soxhlet extraction method is commonly employed to extract soluble components from non-soluble components in a solid matrix, for example, non-structural substances in biomass samples that can be separated from structural lignocellulosic compounds in biomass samples. Conventional laboratory procedures for such extractions typically involve a low sample throughput, with each run being performed individually, resulting in time-consuming and labour-intensive processes, making them impractical for analysing large sample sets. In research fields such as Earth Observation in Forest Ecosystems, extensive fieldwork sampling is required across large study areas, resulting in a substantial number of leaf samples, each with limited mass. In this study, an innovative adaptation of the conventional National Renewable Energy Laboratory (NREL) Soxhlet method is developed to create a high-throughput mini-Soxhlet apparatus that enables the simultaneous extraction of up to nineteen samples, each with a mass of 0.3 g per sample. With this adaptation, we measured the lignocellulose and extractive in 343 leaf samples collected from four temperate forest tree species. This modified approach enhances versatility and can be applied to all solid-liquid extractions and various types of vegetation tissues, such as tree leaves, shrubs, crops, feedstock, and other non-woody samples.•The solid-liquid extraction method has been implemented in a heating block facilitating 19 small flasks to measure multiple samples simultaneously while requiring only a small sample mass.•The apparatus set-up was constructed using an alumina heating block mounted on a standard laboratory heating plate. Boiling flask tubes were placed in the heating block and equipped with condenser caps and filters on glass rods on which the solid samples were placed.•The adjustments made the method suitable for application to diverse vegetation tissues and non-woody sample types. It holds particular appeal for research areas that necessitate a high sample number.
Collapse
Affiliation(s)
- Alejandra Torres-Rodriguez
- Department of Natural Resources, Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, P.O. box 217, Enschede 7500 AE, the Netherlands
| | - Roshanak Darvishzadeh
- Department of Natural Resources, Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, P.O. box 217, Enschede 7500 AE, the Netherlands
| | - Andrew K. Skidmore
- Department of Natural Resources, Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, P.O. box 217, Enschede 7500 AE, the Netherlands
| | - Erna Fränzel-Luiten
- Sustainable Process Technology Group, Faculty of Science and Technology, University of Twente, P.O. box 217, Enschede 7500 AE, the Netherlands
| | - Benno Knaken
- Sustainable Process Technology Group, Faculty of Science and Technology, University of Twente, P.O. box 217, Enschede 7500 AE, the Netherlands
| | - Boelo Schuur
- Sustainable Process Technology Group, Faculty of Science and Technology, University of Twente, P.O. box 217, Enschede 7500 AE, the Netherlands
| |
Collapse
|
6
|
Chaoua S, Flahaut S, Cornu B, Hiligsmann S, Chaouche NK. Unlocking the potential of Algerian lignocellulosic biomass: exploring indigenous microbial diversity for enhanced enzyme and sugar production. Arch Microbiol 2024; 206:277. [PMID: 38789671 DOI: 10.1007/s00203-024-04011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Nowadays, natural resources like lignocellulosic biomass are gaining more and more attention. This study was conducted to analyse chemical composition of dried and ground samples (500 μm) of various Algerian bioresources including alfa stems (AS), dry palms (DP), olive pomace (OP), pinecones (PC), and tomato waste (TW). AS exhibited the lowest lignin content (3.60 ± 0.60%), but the highest cellulose (58.30 ± 2.06%), and hemicellulose (20.00 ± 3.07%) levels. DP, OP, and PC had around 30% cellulose, and 10% hemicellulose. OP had the highest lignin content (29.00 ± 6.40%), while TW contained (15.70 ± 2.67% cellulose, 13.70 ± 0.002% hemicellulose, and 17.90 ± 4.00% lignin). Among 91 isolated microorganisms, nine were selected for cellulase, xylanase, and/or laccase production. The ability of Bacillus mojavensis to produce laccase and cellulase, as well as B. safensis to produce cellulase and xylanase, is being reported for the first time. In submerged conditions, TW was the most suitable substrate for enzyme production. In this conditions, T. versicolor K1 was the only strain able to produce laccase (4,170 ± 556 U/L). Additionally, Coniocheata hoffmannii P4 exhibited the highest cellulase activity (907.62 ± 26.22 U/L), and B. mojavensis Y3 the highest xylanase activity (612.73 ± 12.73 U/L). T. versicolor K1 culture showed reducing sugars accumulation of 18.87% compared to initial concentrations. Sucrose was the predominant sugar detected by HPLC analysis (13.44 ± 0.02 g/L). Our findings suggest that T. versicolor K1 holds promise for laccase production, while TW represents a suitable substrate for sucrose production.
Collapse
Affiliation(s)
- Samah Chaoua
- Laboratoire de Mycologie, de Biotechnologie et de l'Activité Microbienne (LaMyBAM), Département de Biologie Appliquée, Université des Frères Mentouri Constantine 1, Constantine, Algeria.
- Laboratoire de Microbiologie Appliquée, Université Libre de Bruxelles, Brussels, Belgium.
| | - Sigrid Flahaut
- Laboratoire de Microbiologie Appliquée, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Serge Hiligsmann
- Bioengineering Department, CELABOR Research Center, Herve, Belgium
| | - Noreddine Kacem Chaouche
- Laboratoire de Mycologie, de Biotechnologie et de l'Activité Microbienne (LaMyBAM), Département de Biologie Appliquée, Université des Frères Mentouri Constantine 1, Constantine, Algeria
| |
Collapse
|
7
|
Shen W, Zhang C, Wang G, Li Y, Zhang X, Cui Y, Hu Z, Shen S, Xu X, Cao Y, Li X, Wen J, Lin J. Variation pattern in the macromolecular (cellulose, hemicelluloses, lignin) composition of cell walls in Pinus tabulaeformis tree trunks at different ages as revealed using multiple techniques. Int J Biol Macromol 2024; 268:131619. [PMID: 38692998 DOI: 10.1016/j.ijbiomac.2024.131619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/27/2024] [Accepted: 04/13/2024] [Indexed: 05/03/2024]
Abstract
The plant cell wall is a complex, heterogeneous structure primarily composed of cellulose, hemicelluloses, and lignin. Exploring the variations in these three macromolecules over time is crucial for understanding wood formation to enhance chemical processing and utilization. Here, we comprehensively analyzed the chemical composition of cell walls in the trunks of Pinus tabulaeformis using multiple techniques. In situ analysis showed that macromolecules accumulated gradually in the cell wall as the plant aged, and the distribution pattern of lignin was opposite that of polysaccharides, and both showed heterogenous distribution patterns. In addition, gel permeation chromatography (GPC) results revealed that the molecular weights of hemicelluloses decreased while that of lignin increased with age. Two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance (2D-HSQC NMR) analysis indicated that hemicelluloses mainly comprised galactoglucomannan and arabinoglucuronoxylan, and the lignin types were mainly comprised guaiacyl (G) and p-hydroxyphenyl (H) units with three main linkage types: β-O-4, β-β, and β-5. Furthermore, the C-O bond (β-O-4) signals of lignin decreased while the C-C bonds (β-β and β-5) signals increased over time. Taken together, these findings shed light on wood formation in P. tabulaeformis and lay the foundation for enhancing the processing and use of wood and timber products.
Collapse
Affiliation(s)
- Weiwei Shen
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chen Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Guangchao Wang
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yujian Li
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xi Zhang
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yaning Cui
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zijian Hu
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shiya Shen
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiuping Xu
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuan Cao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiaojuan Li
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jialong Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| | - Jinxing Lin
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
8
|
Li X, Huang X, Hu X, Chong Y. Effects of hematite on two types of dissolved organic compounds in lignocellulosic anaerobic hydrolysate: Lignin-derived aromatic compounds and denitrifying carbon sources. BIORESOURCE TECHNOLOGY 2024; 399:130606. [PMID: 38499201 DOI: 10.1016/j.biortech.2024.130606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
The utilization of anaerobic hydrolysate from agroforestry wastes is limited by dissolved lignin and aromatics, which have received insufficient attention despite their potential as excellent carbon sources for denitrification. This study aims to investigate the influence of hematite on lignin-derived aromatic compounds and denitrifying carbon sources, as well as to identify iron-reducing bacteria that utilize lignin-derived aromatic compounds as electron donors. The findings revealed that hematite facilitated the anaerobic fermentation of plant biomass, resulting in the production of small molecular organic acids. Moreover, biodegradation of lignin-derived aromatic compounds led to the formation of phenolic acids, while an increased generation of denitrifying carbon sources enhanced nitrogen removal efficiency by 13.84 %. Additionally, due to adsorption by hematite and subsequent microbial degradation, there was a significant improvement (40.32%) in color removal rate within denitrification effluent. Notably, Azonexus strains were hypothesized to be involved in Fe(Ⅲ) reduction coupled with aromatic compounds oxidation.
Collapse
Affiliation(s)
- Xinjing Li
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xiangwei Huang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xingbao Hu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yunxiao Chong
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
9
|
Chen Z, Chen L, Khoo KS, Gupta VK, Sharma M, Show PL, Yap PS. Exploitation of lignocellulosic-based biomass biorefinery: A critical review of renewable bioresource, sustainability and economic views. Biotechnol Adv 2023; 69:108265. [PMID: 37783293 DOI: 10.1016/j.biotechadv.2023.108265] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/25/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
Urbanization has driven the demand for fossil fuels, however, the overly exploited resource has caused severe damage on environmental pollution. Biorefining using abundant lignocellulosic biomass is an emerging strategy to replace traditional fossil fuels. Value-added lignin biomass reduces the waste pollution in the environment and provides a green path of conversion to obtain renewable resources. The technology is designed to produce biofuels, biomaterials and value-added products from lignocellulosic biomass. In the biorefinery process, the pretreatment step is required to reduce the recalcitrant structure of lignocellulose biomass and improve the enzymatic digestion. There is still a gap in the full and deep understanding of the biorefinery process including the pretreatment process, thus it is necessary to provide optimized and adapted biorefinery solutions to cope with the conversion process in different biorefineries to further provide efficiency in industrial applications. Current research progress on value-added applications of lignocellulosic biomass still stagnates at the biofuel phase, and there is a lack of comprehensive discussion of emerging potential applications. This review article explores the advantages, disadvantages and properties of pretreatment methods including physical, chemical, physico-chemical and biological pretreatment methods. Value-added bioproducts produced from lignocellulosic biomass were comprehensively evaluated in terms of encompassing biochemical products , cosmetics, pharmaceuticals, potent functional materials from cellulose and lignin, waste management alternatives, multifunctional carbon materials and eco-friendly products. This review article critically identifies research-related to sustainability of lignocellulosic biomass to promote the development of green chemistry and to facilitate the refinement of high-value, environmentally-friendly materials. In addition, to align commercialized practice of lignocellulosic biomass application towards the 21st century, this paper provides a comprehensive analysis of lignocellulosic biomass biorefining and the utilization of biorefinery green technologies is further analyzed as being considered sustainable, including having potential benefits in terms of environmental, economic and social impacts. This facilitates sustainability options for biorefinery processes by providing policy makers with intuitive evaluation and guidance.
Collapse
Affiliation(s)
- Zhonghao Chen
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Lin Chen
- School of Civil Engineering, Chongqing University, Chongqing 400045, China; Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Centre, SRUC, Barony Campus, Parkgate, Dumfries DG1 3NE, United Kingdom.
| | | | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.
| |
Collapse
|
10
|
Wang J, Bai X, Su Y, Deng H, Cai L, Ming X, Tao YB, He H, Xu ZF, Tang M. JcSEUSS1 negatively regulates reproductive organ development in perennial woody Jatropha curcas. PLANTA 2023; 258:88. [PMID: 37755517 DOI: 10.1007/s00425-023-04244-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
MAIN CONCLUSION Overexpression of JcSEUSS1 resulted in late flowering, reduced flower number, wrinkled kernels, and decreased seed yield in Jatopha curcas, while downregulation of JcSEUSS1 increased flower number and seed production. The seed oil of Jatropha curcas is suitable as an ideal alternative for diesel fuel, yet the seed yield of Jatropha is restricted by its small number of female flowers and low seed setting rate. Therefore, it is crucial to identify genes that regulate flowering and seed set, and hence improve seed yield. In this study, overexpression of JcSEUSS1 resulted in late flowering, fewer flowers and fruits, and smaller fruits and seeds, causing reduced seed production and oil content. In contrast, the downregulation of JcSEUSS1 by RNA interference (RNAi) technology caused an increase in the flower number and seed yield. However, the flowering time, seed number per fruit, seed weight, and size exhibited no obvious changes in JcSEUSS1-RNAi plants. Moreover, the fatty acid composition also changed in JcSEUSS1 overexpression and RNAi plants, the percentage of unsaturated fatty acids (FAs) was increased in overexpression plants, and the saturated FAs were increased in RNAi plants. These results indicate that JcSEUSS1 played a negative role in regulating reproductive growth and worked redundantly with other genes in the regulation of flowering time, seed number per fruit, seed weight, and size.
Collapse
Affiliation(s)
- Jingxian Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, 666303, Yunnan, China
| | - Xue Bai
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, 666303, Yunnan, China
| | - Yiqing Su
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, 666303, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongjun Deng
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, 666303, Yunnan, China
| | - Li Cai
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550002, Guizhou, People's Republic of China
| | - Xin Ming
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, 666303, Yunnan, China
| | - Yan-Bin Tao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, 666303, Yunnan, China
| | - Huiying He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, 666303, Yunnan, China
| | - Zeng-Fu Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, 666303, Yunnan, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China.
| | - Mingyong Tang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, 666303, Yunnan, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, 666303, Mengla, China.
| |
Collapse
|
11
|
Bourdon M, Lyczakowski JJ, Cresswell R, Amsbury S, Vilaplana F, Le Guen MJ, Follain N, Wightman R, Su C, Alatorre-Cobos F, Ritter M, Liszka A, Terrett OM, Yadav SR, Vatén A, Nieminen K, Eswaran G, Alonso-Serra J, Müller KH, Iuga D, Miskolczi PC, Kalmbach L, Otero S, Mähönen AP, Bhalerao R, Bulone V, Mansfield SD, Hill S, Burgert I, Beaugrand J, Benitez-Alfonso Y, Dupree R, Dupree P, Helariutta Y. Ectopic callose deposition into woody biomass modulates the nano-architecture of macrofibrils. NATURE PLANTS 2023; 9:1530-1546. [PMID: 37666966 PMCID: PMC10505557 DOI: 10.1038/s41477-023-01459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/14/2023] [Indexed: 09/06/2023]
Abstract
Plant biomass plays an increasingly important role in the circular bioeconomy, replacing non-renewable fossil resources. Genetic engineering of this lignocellulosic biomass could benefit biorefinery transformation chains by lowering economic and technological barriers to industrial processing. However, previous efforts have mostly targeted the major constituents of woody biomass: cellulose, hemicellulose and lignin. Here we report the engineering of wood structure through the introduction of callose, a polysaccharide novel to most secondary cell walls. Our multiscale analysis of genetically engineered poplar trees shows that callose deposition modulates cell wall porosity, water and lignin contents and increases the lignin-cellulose distance, ultimately resulting in substantially decreased biomass recalcitrance. We provide a model of the wood cell wall nano-architecture engineered to accommodate the hydrated callose inclusions. Ectopic polymer introduction into biomass manifests in new physico-chemical properties and offers new avenues when considering lignocellulose engineering.
Collapse
Affiliation(s)
- Matthieu Bourdon
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK.
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland.
| | - Jan J Lyczakowski
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Sam Amsbury
- Centre for Plant Science, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Plants, Photosynthesis and Soil, School of Biosciences, The University of Sheffield, Sheffield, UK
| | - Francisco Vilaplana
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, Stockholm, Sweden
- Wallenberg Wood Science Centre (WWSC), KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Nadège Follain
- Normandie Université, UNIROUEN Normandie, INSA Rouen, CNRS, PBS, Rouen, France
| | - Raymond Wightman
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Chang Su
- Wood Development Group, University of Helsinki, Helsinki, Finland
| | - Fulgencio Alatorre-Cobos
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Conacyt-Unidad de Bioquimica y Biologia Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Maximilian Ritter
- Wood Materials Science, Institute for Building Materials, ETH Zürich, Zürich, Switzerland
- Empa Wood Tec, Cellulose and Wood Materials Laboratory, Dübendorf, Switzerland
| | - Aleksandra Liszka
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Oliver M Terrett
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Shri Ram Yadav
- Wood Development Group, University of Helsinki, Helsinki, Finland
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Anne Vatén
- Wood Development Group, University of Helsinki, Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Stomatal Development and Plasticity group, University of Helsinki, Helsinki, Finland
| | - Kaisa Nieminen
- Wood Development Group, University of Helsinki, Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Production systems / Tree Breeding Department, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Gugan Eswaran
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Juan Alonso-Serra
- Wood Development Group, University of Helsinki, Helsinki, Finland
- UMR 5667 Reproduction et Développement Des Plantes, ENS de Lyon, France
| | - Karin H Müller
- Cambridge Advanced Imaging Centre, Department of Physiology, Development and Neuroscience, Cambridge, UK
| | - Dinu Iuga
- Department of Physics, University of Warwick, Coventry, UK
| | - Pal Csaba Miskolczi
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Lothar Kalmbach
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Molecular Plant Physiology, Institute of Biology II, University of Freiburg, Freiburg, Germany
| | - Sofia Otero
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Science and Technology Office of the Congress of Deputies, Madrid, Spain
| | - Ari Pekka Mähönen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Rishikesh Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Vincent Bulone
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, Stockholm, Sweden
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Shawn D Mansfield
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stefan Hill
- Scion, Te Papa Tipu Innovation Park, Rotorua, New Zealand
| | - Ingo Burgert
- Wood Materials Science, Institute for Building Materials, ETH Zürich, Zürich, Switzerland
- Empa Wood Tec, Cellulose and Wood Materials Laboratory, Dübendorf, Switzerland
| | - Johnny Beaugrand
- Biopolymères Interactions Assemblages (BIA), INRA, Nantes, France
| | - Yoselin Benitez-Alfonso
- The Centre for Plant Science, The Bragg Centre, The Astbury Centre, University of Leeds, Leeds, UK
| | - Ray Dupree
- Department of Physics, University of Warwick, Coventry, UK
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | - Ykä Helariutta
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK.
- Wood Development Group, University of Helsinki, Helsinki, Finland.
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
12
|
Zhang T, Wei S, Liu Y, Cheng C, Ma J, Yue L, Gao Y, Cheng Y, Ren Y, Su S, Zhao X, Lu Z. Screening and genome-wide analysis of lignocellulose-degrading bacteria from humic soil. Front Microbiol 2023; 14:1167293. [PMID: 37637133 PMCID: PMC10450921 DOI: 10.3389/fmicb.2023.1167293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Crop straw contains huge amounts of exploitable energy, and efficient biomass degradation measures have attracted worldwide attention. Mining strains with high yields of cellulose-degrading enzymes is of great significance for developing clean energy and industrial production of related enzymes. In this study, we reported a high-quality genome sequence of Bacillus velezensis SSF6 strain using high-throughput sequencing technology (Illumina PE150 and PacBio) and assessed its lignocellulose degradation potential. The results demonstrated that the genome of B. velezensis SSF6 was 3.89 Mb and contained 4,015 genes, of which 2,972, 3,831 and 158 genes were annotated in the COGs (Clusters of Orthologous Groups), KEGG (Kyoto Encyclopedia of Genes and Genomes) and CAZyme (Carbohydrate-Active enZymes) databases, respectively, and contained a large number of genes related to carbohydrate metabolism. Furthermore, B. velezensis SSF6 has a high cellulose degradation capacity, with a filter paper assay (FPA) and an exoglucanase activity of 64.48 ± 0.28 and 78.59 ± 0.42 U/mL, respectively. Comparative genomic analysis depicted that B. velezensis SSF6 was richer in carbohydrate hydrolase gene. In conclusion, the cellulose-degrading ability of B. velezensis SSF6 was revealed by genome sequencing and the determination of cellulase activity, which laid a foundation for further cellulose degradation and bioconversion.
Collapse
Affiliation(s)
- Tianjiao Zhang
- School of Life Science, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Shuli Wei
- School of Life Science, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Yajie Liu
- School of Life Science, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Chao Cheng
- School of Life Science, Jining Normal University, Ulanqab, China
| | - Jie Ma
- School of Life Science, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Linfang Yue
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
| | - Yanrong Gao
- School of Life Science, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Yuchen Cheng
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Yongfeng Ren
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Shaofeng Su
- School of Life Science, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Xiaoqing Zhao
- School of Life Science, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Zhanyuan Lu
- School of Life Science, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| |
Collapse
|
13
|
Xu T, Liu Z, Zhan D, Pang Z, Zhang S, Li C, Kang X, Yang J. Integrated transcriptomic and metabolomic analysis reveals the effects of polyploidization on the lignin content and metabolic pathway in Eucalyptus. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:117. [PMID: 37480079 PMCID: PMC10360242 DOI: 10.1186/s13068-023-02366-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 07/07/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Lignin is a major restriction factor for the industrial production of biomass resources, such as pulp and bioenergy. Eucalyptus is one of the most important sources of pulp and bioenergy. After polyploidization, the lignin content of forest trees is generally reduced, which is considered a beneficial genetic improvement. However, the differences in the lignin content between triploid and diploid Eucalyptus and the underlying regulatory mechanism are still unclear. RESULTS We conducted a comprehensive analysis at the phenotypic, transcriptional and metabolite levels between Eucalyptus urophylla triploids and diploids to reveal the effects of polyploidization on the lignin content and lignin metabolic pathway. The results showed that the lignin content of Eucalyptus urophylla triploid stems was significantly lower than that of diploids. Lignin-related metabolites were differentially accumulated between triploids and diploids, among which coniferaldehyde, p-coumaryl alcohol, sinapaldehyde and coniferyl alcohol had significant positive correlations with lignin content, indicating that they might be primarily contributing metabolites. Most lignin biosynthetic genes were significantly downregulated, among which 11 genes were significantly positively correlated with the lignin content and above metabolites. Furthermore, we constructed a co-expression network between lignin biosynthetic genes and transcription factors based on weighted gene co-expression network analysis. The network identified some putative orthologues of secondary cell wall (SCW)-related transcription factors, among which MYB52, MYB42, NAC076, and LBD15 were significantly downregulated in Eucalyptus urophylla triploids. In addition, potential important transcription factors, including HSL1, BEE3, HHO3, and NAC046, also had high degrees of connectivity and high edge weights with lignin biosynthetic genes, indicating that they might also be involved in the variation of lignin accumulation between triploid and diploid Eucalyptus urophylla. CONCLUSIONS The results demonstrated that some lignin-related metabolites, lignin biosynthetic genes and transcription factors in Eucalyptus urophylla triploids may be relatively sensitive in response to the polyploidization effect, significantly changing their expression levels, which ultimately correlated with the varied lignin content. The analysis of the underlying formation mechanism could provide beneficial information for the development and utilization of polyploid biomass resources, which will be also valuable for genetic improvement in other bioenergy plants.
Collapse
Affiliation(s)
- Tingting Xu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Zhao Liu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Dingju Zhan
- Guangxi Bagui R&D Institute for Forest Tree and Flower Breeding, Nanning, 530025, China
| | - Zhenwu Pang
- Guangxi Bagui R&D Institute for Forest Tree and Flower Breeding, Nanning, 530025, China
| | - Shuwen Zhang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Chenhe Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xiangyang Kang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jun Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
14
|
Dang Z, Wang Y, Wang M, Cao L, Ruan N, Huang Y, Li F, Xu Q, Chen W. The Fragile culm19 (FC19) mutation largely improves plant lodging resistance, biomass saccharification, and cadmium resistance by remodeling cell walls in rice. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132020. [PMID: 37429191 DOI: 10.1016/j.jhazmat.2023.132020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/17/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Cell wall is essential for plant upright growth, biomass saccharification, and stress resistance. Although cell wall modification is suggested as an effective means to increase biomass saccharification, it is a challenge to maintain normal plant growth with improved mechanical strength and stress resistance. Here, we reported two independent fragile culm mutants, fc19-1 and fc19-2, resulting from novel mutations of OsIRX10, produced by the CRISPR/Cas9 system. Compared to wild-type, the two mutants exhibited reduced contents of xylose, hemicellulose, and cellulose, and increased arabinose and lignin without significant alteration in levels of pectin and uronic acids. Despite brittleness, the mutants displayed increased breaking force, leading to improved lodging resistance. Furthermore, the altered cell wall and increased biomass porosity in fc19 largely increased biomass saccharification. Notably, the mutants showed enhanced cadmium (Cd) resistance with lower Cd accumulation in roots and shoots. The FC19 mutation impacts transcriptional levels of key genes contributing to Cd uptake, sequestration, and translocation. Moreover, transcriptome analysis revealed that the FC19 mutation resulted in alterations of genes mainly involved in carbohydrate and phenylpropanoid metabolism. Therefore, a hypothetic model was proposed to elucidate that the FC19 mutation-mediated cell wall remodeling leads to improvements in lodging resistance, biomass saccharification, and Cd resistance.
Collapse
Affiliation(s)
- Zhengjun Dang
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| | - Ye Wang
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| | - Meihan Wang
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| | - Liyu Cao
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| | - Nan Ruan
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| | - Yuwei Huang
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| | - Fengcheng Li
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China.
| | - Quan Xu
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China.
| | - Wenfu Chen
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| |
Collapse
|
15
|
Chatterjee A, Puri S, Sharma PK, Deepa PR, Chowdhury S. Nature-inspired Enzyme engineering and sustainable catalysis: biochemical clues from the world of plants and extremophiles. Front Bioeng Biotechnol 2023; 11:1229300. [PMID: 37409164 PMCID: PMC10318364 DOI: 10.3389/fbioe.2023.1229300] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
The use of enzymes to accelerate chemical reactions for the synthesis of industrially important products is rapidly gaining popularity. Biocatalysis is an environment-friendly approach as it not only uses non-toxic, biodegradable, and renewable raw materials but also helps to reduce waste generation. In this context, enzymes from organisms living in extreme conditions (extremozymes) have been studied extensively and used in industries (food and pharmaceutical), agriculture, and molecular biology, as they are adapted to catalyze reactions withstanding harsh environmental conditions. Enzyme engineering plays a key role in integrating the structure-function insights from reference enzymes and their utilization for developing improvised catalysts. It helps to transform the enzymes to enhance their activity, stability, substrates-specificity, and substrate-versatility by suitably modifying enzyme structure, thereby creating new variants of the enzyme with improved physical and chemical properties. Here, we have illustrated the relatively less-tapped potentials of plant enzymes in general and their sub-class of extremozymes for industrial applications. Plants are exposed to a wide range of abiotic and biotic stresses due to their sessile nature, for which they have developed various mechanisms, including the production of stress-response enzymes. While extremozymes from microorganisms have been extensively studied, there are clear indications that plants and algae also produce extremophilic enzymes as their survival strategy, which may find industrial applications. Typical plant enzymes, such as ascorbate peroxidase, papain, carbonic anhydrase, glycoside hydrolases and others have been examined in this review with respect to their stress-tolerant features and further improvement via enzyme engineering. Some rare instances of plant-derived enzymes that point to greater exploration for industrial use have also been presented here. The overall implication is to utilize biochemical clues from the plant-based enzymes for robust, efficient, and substrate/reaction conditions-versatile scaffolds or reference leads for enzyme engineering.
Collapse
Affiliation(s)
| | | | | | - P. R. Deepa
- *Correspondence: P. R. Deepa, ; Shibasish Chowdhury,
| | | |
Collapse
|
16
|
Cao S, Wang Y, Gao Y, Xu R, Ma J, Xu Z, Shang-Guan K, Zhang B, Zhou Y. The RLCK-VND6 module coordinates secondary cell wall formation and adaptive growth in rice. MOLECULAR PLANT 2023:S1674-2052(23)00104-1. [PMID: 37050877 DOI: 10.1016/j.molp.2023.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/05/2023] [Accepted: 04/08/2023] [Indexed: 05/27/2023]
Abstract
The orderly deposition of secondary cell wall (SCW) in plants is implicated in various biological programs and is precisely controlled. Although many positive and negative regulators of SCW have been documented, the molecular mechanisms underlying SCW formation coordinated with distinct cellular physiological processes during plant adaptive growth remain largely unclear. Here, we report the identification of Cellulose Synthase co-expressed Kinase1 (CSK1), which encodes a receptor-like cytoplasmic kinase, as a negative regulator of SCW formation and its signaling cascade in rice. Transcriptome deep sequencing of developing internodes and genome-wide co-expression assays revealed that CSK1 is co-expressed with cellulose synthase genes and is responsive to various stress stimuli. The increased SCW thickness and vigorous vessel transport in csk1 indicate that CSK1 functions as a negative regulator of SCW biosynthesis. Through observation of green fluorescent protein-tagged CSK1 in rice protoplasts and stable transgenic plants, we found that CSK1 is localized in the nucleus and cytoplasm adjacent to the plasma membrane. Biochemical and molecular assays demonstrated that CSK1 phosphorylates VASCULAR-RELATED NAC-DOMAIN 6 (VND6), a master SCW-associated transcription factor, in the nucleus, which reduces the transcription of a suite of SCW-related genes, thereby attenuating SCW accumulation. Consistently, genetic analyses show that CSK1 functions upstream of VND6 in regulating SCW formation. Interestingly, our physiological analyses revealed that CSK1 and VND6 are involved in abscisic acid-mediated regulation of cell growth and SCW deposition. Taken together, these results indicate that the CSK1-VND6 module is an important component of the SCW biosynthesis machinery, which coordinates SCW accumulation and adaptive growth in rice. Our study not only identifies a new regulator of SCW biosynthesis but also reveals a fine-tuned mechanism for precise control of SCW deposition, offering tools for rationally tailoring agronomic traits.
Collapse
Affiliation(s)
- Shaoxue Cao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yihong Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianing Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zuopeng Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Keke Shang-Guan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
17
|
Gao Y, Lipton AS, Munson CR, Ma Y, Johnson KL, Murray DT, Scheller HV, Mortimer JC. Elongated galactan side chains mediate cellulose-pectin interactions in engineered Arabidopsis secondary cell walls. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 37029760 DOI: 10.1111/tpj.16242] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 05/17/2023]
Abstract
The plant secondary cell wall is a thickened matrix of polysaccharides and lignin deposited at the cessation of growth in some cells. It forms the majority of carbon in lignocellulosic biomass, and it is an abundant and renewable source for forage, fiber, materials, fuels, and bioproducts. The complex structure and arrangement of the cell wall polymers mean that the carbon is difficult to access in an economical and sustainable way. One solution is to alter the cell wall polymer structure so that it is more suited to downstream processing. However, it remains difficult to predict what the effects of this engineering will be on the assembly, architecture, and properties of the cell wall. Here, we make use of Arabidopsis plants expressing a suite of genes to increase pectic galactan chain length in the secondary cell wall. Using multi-dimensional solid-state nuclear magnetic resonance, we show that increasing galactan chain length enhances pectin-cellulose spatial contacts and increases cellulose crystallinity. We also found that the increased galactan content leads to fewer spatial contacts of cellulose with xyloglucan and the backbone of pectin. Hence, we propose that the elongated galactan side chains compete with xyloglucan and the pectic backbone for cellulose interactions. Due to the galactan topology, this may result in comparatively weak interactions and disrupt the cell wall architecture. Therefore, introduction of this strategy into trees or other bioenergy crops would benefit from cell-specific expression strategies to avoid negative effects on plant growth.
Collapse
Affiliation(s)
- Yu Gao
- Joint BioEnergy Institute, Emeryville, California, 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California, 94720, USA
| | - Andrew S Lipton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, 99354, USA
| | - Coyla R Munson
- Department of Chemistry, University of California Davis, Davis, California, 95616, USA
| | - Yingxuan Ma
- School of BioSciences, The University of Melbourne, Parkville, Victoria, 3052, Australia
- Department of Animal, Plant and Soil Sciences, La Trobe Institute for Agriculture and Food, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Kim L Johnson
- School of BioSciences, The University of Melbourne, Parkville, Victoria, 3052, Australia
- Department of Animal, Plant and Soil Sciences, La Trobe Institute for Agriculture and Food, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Dylan T Murray
- Department of Chemistry, University of California Davis, Davis, California, 95616, USA
| | - Henrik V Scheller
- Joint BioEnergy Institute, Emeryville, California, 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, 94720, USA
| | - Jenny C Mortimer
- Joint BioEnergy Institute, Emeryville, California, 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California, 94720, USA
- School of Agriculture, Food and Wine, Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| |
Collapse
|
18
|
Wu J, Kong B, Zhou Q, Sun Q, Sang Y, Zhao Y, Yuan T, Zhang P. SCL14 Inhibits the Functions of the NAC043-MYB61 Signaling Cascade to Reduce the Lignin Content in Autotetraploid Populus hopeiensis. Int J Mol Sci 2023; 24:ijms24065809. [PMID: 36982881 PMCID: PMC10051758 DOI: 10.3390/ijms24065809] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Whole-genome duplication often results in a reduction in the lignin content in autopolyploid plants compared with their diploid counterparts. However, the regulatory mechanism underlying variation in the lignin content in autopolyploid plants remains unclear. Here, we characterize the molecular regulatory mechanism underlying variation in the lignin content after the doubling of homologous chromosomes in Populus hopeiensis. The results showed that the lignin content of autotetraploid stems was significantly lower than that of its isogenic diploid progenitor throughout development. Thirty-six differentially expressed genes involved in lignin biosynthesis were identified and characterized by RNA sequencing analysis. The expression of lignin monomer synthase genes, such as PAL, COMT, HCT, and POD, was significantly down-regulated in tetraploids compared with diploids. Moreover, 32 transcription factors, including MYB61, NAC043, and SCL14, were found to be involved in the regulatory network of lignin biosynthesis through weighted gene co-expression network analysis. We inferred that SCL14, a key repressor encoding the DELLA protein GAI in the gibberellin (GA) signaling pathway, might inhibit the NAC043-MYB61 signaling functions cascade in lignin biosynthesis, which results in a reduction in the lignin content. Our findings reveal a conserved mechanism in which GA regulates lignin synthesis after whole-genome duplication; these results have implications for manipulating lignin production.
Collapse
Affiliation(s)
- Jian Wu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Bo Kong
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qing Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qian Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Yaru Sang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yifan Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Tongqi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Pingdong Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
19
|
Wang S, Robertz S, Seven M, Kraemer F, Kuhn BM, Liu L, Lunde C, Pauly M, Ramírez V. A large-scale forward genetic screen for maize mutants with altered lignocellulosic properties. FRONTIERS IN PLANT SCIENCE 2023; 14:1099009. [PMID: 36959947 PMCID: PMC10028098 DOI: 10.3389/fpls.2023.1099009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The development of efficient pipelines for the bioconversion of grass lignocellulosic feedstocks is challenging due to the limited understanding of the molecular mechanisms controlling the synthesis, deposition, and degradation of the varying polymers unique to grass cell walls. Here, we describe a large-scale forward genetic approach resulting in the identification of a collection of chemically mutagenized maize mutants with diverse alterations in their cell wall attributes such as crystalline cellulose content or hemicellulose composition. Saccharification yield, i.e. the amount of lignocellulosic glucose (Glc) released by means of enzymatic hydrolysis, is increased in two of the mutants and decreased in the remaining six. These mutants, termed candy-leaf (cal), show no obvious plant growth or developmental defects despite associated differences in their lignocellulosic composition. The identified cal mutants are a valuable tool not only to understand recalcitrance of grass lignocellulosics to enzymatic deconstruction but also to decipher grass-specific aspects of cell wall biology once the genetic basis, i.e. the location of the mutation, has been identified.
Collapse
Affiliation(s)
- Shaogan Wang
- Institute for Plant Cell Biology and Biotechnology-Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefan Robertz
- Institute for Plant Cell Biology and Biotechnology-Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Merve Seven
- Institute for Plant Cell Biology and Biotechnology-Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Florian Kraemer
- Department of Plant and Microbial Biology, Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Benjamin M. Kuhn
- Department of Plant and Microbial Biology, Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Lifeng Liu
- Department of Plant and Microbial Biology, Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| | - China Lunde
- Plant Gene Expression Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, United States
| | - Markus Pauly
- Institute for Plant Cell Biology and Biotechnology-Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Plant and Microbial Biology, Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Vicente Ramírez
- Institute for Plant Cell Biology and Biotechnology-Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Plant and Microbial Biology, Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
20
|
Chaoua S, Chaouche NK, Songulashvili G, Gares M, Hiligsmann S, Flahaut S. Yellow laccase produced by Trametes versicolor K1 on tomato waste: A comparative study with the blue one produced on semi-synthetic medium. J Biotechnol 2023; 361:99-109. [PMID: 36509383 DOI: 10.1016/j.jbiotec.2022.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
Laccase production by fungal growth on agrifood waste is still poorly studied. Trametes versicolor K1 isolated from palm bark produced a yellow non glycosylated laccase from tomato waste based medium (TMT) and a blue glycosylated laccase on glucose medium (GLU). Lignocellulosic biomass, such as pinecones (PIN), palm leaves (PLM), olive pomace (OLV), and alfa stems (ALF) have also been used as growth medium for T. versicolor K1. In these conditions, very low or no laccase production was observed. When peptone was supplied in TMT medium, the laccase activity increased from 4170 U/L to 8618 U/L. By increasing the culture volume up to 1 L, laccase production on TMT was 9929 U/L. The yellow laccase (TmtLac) was purified from the supernatant TMT medium and has shown similar characteristics with the blue laccase (GluLac) purified from the GLU medium. Their apparent protein size was 63 kDa. Catalytic activities of the yellow form were not very different from those of the blue form, but specific activity of the purified yellow laccase produced on tomato waste was much higher. The Km and Vm values for four substrates, ABTS, DMP, guaiacol, and pyrogallol were almost similar for both isoenzymes. The optimum pH and temperature were respectively 4.0 and 50 °C. Although the level of glycosylation is clearly different, the thermostability of TmtLac and GluLac are quite similar. TmtLac is even slightly more tolerant at 60 °C for 24 h than GluLac. Moreover TmtLac showed greater stability at alkaline pH after 24 h compared to that of GluLac.We demonstrate that activity of the yellow TmtLac is not significantly affected compared to the blue laccase and that tomato waste is a simple and interesting lignocellulosic substrate to the laccase producer Trametes sp.
Collapse
Affiliation(s)
- Samah Chaoua
- Laboratoire de Mycologie, de Biotechnologie et de l'Activité Microbienne (LaMyBAM), Département de Biologie Appliquée, Université des Frères Mentouri Constantine 1, Constantine, Algeria; Laboratoire de Microbiologie Appliquée, Université Libre de Bruxelles, Brussels, Belgium.
| | - Noreddine Kacem Chaouche
- Laboratoire de Mycologie, de Biotechnologie et de l'Activité Microbienne (LaMyBAM), Département de Biologie Appliquée, Université des Frères Mentouri Constantine 1, Constantine, Algeria
| | - George Songulashvili
- Laboratoire de Microbiologie Appliquée, Université Libre de Bruxelles, Brussels, Belgium
| | - Maroua Gares
- Laboratoire de Mycologie, de Biotechnologie et de l'Activité Microbienne (LaMyBAM), Département de Biologie Appliquée, Université des Frères Mentouri Constantine 1, Constantine, Algeria
| | - Serge Hiligsmann
- Bioengineering Department, CELABOR Research Center, Herve, Belgium
| | - Sigrid Flahaut
- Laboratoire de Microbiologie Appliquée, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
21
|
Martin AF, Tobimatsu Y, Lam PY, Matsumoto N, Tanaka T, Suzuki S, Kusumi R, Miyamoto T, Takeda-Kimura Y, Yamamura M, Koshiba T, Osakabe K, Osakabe Y, Sakamoto M, Umezawa T. Lignocellulose molecular assembly and deconstruction properties of lignin-altered rice mutants. PLANT PHYSIOLOGY 2023; 191:70-86. [PMID: 36124989 PMCID: PMC9806629 DOI: 10.1093/plphys/kiac432] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Bioengineering approaches to modify lignin content and structure in plant cell walls have shown promise for facilitating biochemical conversions of lignocellulosic biomass into valuable chemicals. Despite numerous research efforts, however, the effect of altered lignin chemistry on the supramolecular assembly of lignocellulose and consequently its deconstruction in lignin-modified transgenic and mutant plants is not fully understood. In this study, we aimed to close this gap by analyzing lignin-modified rice (Oryza sativa L.) mutants deficient in 5-HYDROXYCONIFERALDEHYDE O-METHYLTRANSFERASE (CAldOMT) and CINNAMYL ALCOHOL DEHYDROGENASE (CAD). A set of rice mutants harboring knockout mutations in either or both OsCAldOMT1 and OsCAD2 was generated in part by genome editing and subjected to comparative cell wall chemical and supramolecular structure analyses. In line with the proposed functions of CAldOMT and CAD in grass lignin biosynthesis, OsCAldOMT1-deficient mutant lines produced altered lignins depleted of syringyl and tricin units and incorporating noncanonical 5-hydroxyguaiacyl units, whereas OsCAD2-deficient mutant lines produced lignins incorporating noncanonical hydroxycinnamaldehyde-derived units. All tested OsCAldOMT1- and OsCAD2-deficient mutants, especially OsCAldOMT1-deficient lines, displayed enhanced cell wall saccharification efficiency. Solid-state nuclear magnetic resonance (NMR) and X-ray diffraction analyses of rice cell walls revealed that both OsCAldOMT1- and OsCAD2 deficiencies contributed to the disruptions of the cellulose crystalline network. Further, OsCAldOMT1 deficiency contributed to the increase of the cellulose molecular mobility more prominently than OsCAD2 deficiency, resulting in apparently more loosened lignocellulose molecular assembly. Such alterations in cell wall chemical and supramolecular structures may in part account for the variations of saccharification performance of the OsCAldOMT1- and OsCAD2-deficient rice mutants.
Collapse
Affiliation(s)
- Andri Fadillah Martin
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Pui Ying Lam
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
- Center for Crossover Education, Graduate School of Engineering Science, Akita University, Akita, 010-8502, Japan
| | - Naoyuki Matsumoto
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Takuto Tanaka
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Shiro Suzuki
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Ryosuke Kusumi
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Takuji Miyamoto
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
- Sakeology Center, Niigata University, Niigata, 950-2181, Japan
| | - Yuri Takeda-Kimura
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Masaomi Yamamura
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, 770-8503, Japan
| | - Taichi Koshiba
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
- National Agriculture and Food Research Organization, Tsukuba, 305-8517, Japan
| | - Keishi Osakabe
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, 770-8503, Japan
| | - Yuriko Osakabe
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
- Research Unit for Realization of Sustainable Society (RURSS), Kyoto University, Uji, 611-0011, Japan
| |
Collapse
|
22
|
Zhang Y, Ding Z, Shahadat Hossain M, Maurya R, Yang Y, Singh V, Kumar D, Salama ES, Sun X, Sindhu R, Binod P, Zhang Z, Kumar Awasthi M. Recent advances in lignocellulosic and algal biomass pretreatment and its biorefinery approaches for biochemicals and bioenergy conversion. BIORESOURCE TECHNOLOGY 2023; 367:128281. [PMID: 36370945 DOI: 10.1016/j.biortech.2022.128281] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
As the global demand for sustainable energy increases, lignocellulosic (such as agricultural residues, forest biomass, municipal waste, and dedicated energy crops) and algal (including macroalgae and microalgae) biomass have attracted considerable attention, because of their high availability of carbohydrates. This is a potential feedstock to produce biochemical and bioenergy. Pretreatment of biomass can disrupt their complex structure, increasing conversion efficiency and product yield. Therefore, this review comprehensively discusses recent advances in different pretreatments (physical, chemical, physicochemical, and biological pretreatments) for lignocellulosic and algal biomass and their biorefining methods. Life cycle assessment (LCA) which enables the quantification of the environmental impact assessment of a biorefinery also be introduced. Biorefinery processes such as raw material acquisition, extraction, production, waste accumulation, and waste conversion are all monitored under this concept. Nevertheless, there still exist some techno-economic barriers during biorefinery and extensive research is still needed to develop cost-effective processes.
Collapse
Affiliation(s)
- Yue Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, the United States of America
| | - Zheli Ding
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, Hainan Province 571101, China
| | - Md Shahadat Hossain
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, the United States of America
| | - Rupesh Maurya
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Yulu Yang
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou City, 730000, Gansu Province, China
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, the United States of America
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou City, 730000, Gansu Province, China
| | - Xinwei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691505, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
23
|
Mengers HG, Guntermann N, Graf von Westarp W, Jupke A, Klankermayer J, Blank LM, Leitner W, Rother D. Three Sides of the Same Coin: Combining Microbial, Enzymatic, and Organometallic Catalysis for Integrated Conversion of Renewable Carbon Sources. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hendrik G. Mengers
- RWTH Aachen University Institute of Applied Microbiology – iAMB, Aachen Biology and Biotechnology – ABBt Worringerweg 1 52074 Aachen Germany
| | - Nils Guntermann
- RWTH Aachen University Institute of Macromolecular Chemistry – ITMC Worringerweg 2 52074 Aachen Germany
| | - William Graf von Westarp
- RWTH Aachen University Fluid Process Engineering – AVT.FVT Forckenbeckstraße 51 52074 Aachen Germany
| | - Andreas Jupke
- RWTH Aachen University Fluid Process Engineering – AVT.FVT Forckenbeckstraße 51 52074 Aachen Germany
| | - Jürgen Klankermayer
- RWTH Aachen University Institute of Macromolecular Chemistry – ITMC Worringerweg 2 52074 Aachen Germany
| | - Lars M. Blank
- RWTH Aachen University Institute of Applied Microbiology – iAMB, Aachen Biology and Biotechnology – ABBt Worringerweg 1 52074 Aachen Germany
| | - Walter Leitner
- RWTH Aachen University Institute of Macromolecular Chemistry – ITMC Worringerweg 2 52074 Aachen Germany
- Max Planck Institute for Chemical Energy Conversion Stiftstraße 34–36 45470 Mülheim a. d. Ruhr Germany
| | - Dörte Rother
- Forschungzentrum Jülich GmbH Institute of Bio- and Geosciences: Biotechnology Wilhelm-Johnen-Straße 52425 Jülich Germany
| |
Collapse
|
24
|
Ye ZH, Zhong R. Outstanding questions on xylan biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111476. [PMID: 36174800 DOI: 10.1016/j.plantsci.2022.111476] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/25/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Xylan is the second most abundant polysaccharide in plant biomass. It is a crucial component of cell wall structure as well as a significant factor contributing to biomass recalcitrance. Xylan consists of a linear chain of β-1,4-linked xylosyl residues that are often substituted with glycosyl side chains, such as glucuronosyl/methylglucuronosyl and arabinofuranosyl residues, and acetylated at O-2 and/or O-3. Xylan from gymnosperms and dicots contains a unique reducing end tetrasaccharide sequence that is not detected in xylan from grasses, bryophytes and seedless vascular plants. Grass xylan is heavily decorated at O-3 with arabinofuranosyl residues that are frequently esterified with hydroxycinnamates. Genetic and biochemical studies have uncovered a number of genes involved in xylan backbone elongation and acetylation, xylan glycosyl substitutions and their modifications, and the synthesis of the unique xylan reducing end tetrasaccharide sequence, but some outstanding issues on the biosynthesis of xylan still remain unanswered. Here, we provide a brief overview of xylan structure and focus on discussion of the current understanding and open questions on xylan biosynthesis. Further elucidation of the biochemical mechanisms underlying xylan biosynthesis will not only shed new insights into cell wall biology but also provide molecular tools for genetic modification of biomass composition tailored for diverse end uses.
Collapse
Affiliation(s)
- Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
25
|
De Meester B, Van Acker R, Wouters M, Traversari S, Steenackers M, Neukermans J, Van Breusegem F, Déjardin A, Pilate G, Boerjan W. Field and saccharification performances of poplars severely downregulated in CAD1. THE NEW PHYTOLOGIST 2022; 236:2075-2090. [PMID: 35808905 DOI: 10.1111/nph.18366] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Lignin is one of the main factors causing lignocellulosic biomass recalcitrance to enzymatic hydrolysis. Glasshouse-grown poplars severely downregulated for CINNAMYL ALCOHOL DEHYDROGENASE 1 (CAD1), the enzyme catalysing the last step in the monolignol-specific branch of lignin biosynthesis, have increased saccharification yields and normal growth. Here, we assess the performance of these hpCAD poplars in the field under short rotation coppice culture for two consecutive rotations of 1 yr and 3 yr. While 1-yr-old hpCAD wood had 10% less lignin, 3-yr-old hpCAD wood had wild-type lignin levels. Because of their altered cell wall composition, including elevated levels of cinnamaldehydes, both 1-yr-old and 3-yr-old hpCAD wood showed enhanced saccharification yields upon harsh alkaline pretreatments (up to +85% and +77%, respectively). In contrast with previous field trials with poplars less severely downregulated for CINNAMYL ALCOHOL DEHYDROGENASE (CAD), the hpCAD poplars displayed leaning phenotypes, early bud set, early flowering and yield penalties. Moreover, hpCAD wood had enlarged vessels, decreased wood density and reduced relative and free water contents. Our data show that the phenotypes of CAD-deficient poplars are strongly dependent on the environment and underpin the importance of field trials in translating basic research towards applications.
Collapse
Affiliation(s)
- Barbara De Meester
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Rebecca Van Acker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Marlies Wouters
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Silvia Traversari
- BioLabs, Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
- Research Institute on Terrestrial Ecosytems (IRET-CNR), Via Moruzzi 1, 56124, Pisa, Italy
| | - Marijke Steenackers
- Research Institute for Nature and Forest (INBO), Gaverstraat 4, 9500, Geraardsbergen, Belgium
| | - Jenny Neukermans
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Annabelle Déjardin
- INRAE, ONF, BioForA Orléans, 2163 Avenue de la pomme de pin, 45075, Ardon, France
| | - Gilles Pilate
- INRAE, ONF, BioForA Orléans, 2163 Avenue de la pomme de pin, 45075, Ardon, France
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| |
Collapse
|
26
|
Zhong R, Lee C, Cui D, Phillips DR, Adams ER, Jeong HY, Jung KH, Ye ZH. Identification of xylan arabinosyl 2-O-xylosyltransferases catalyzing the addition of 2-O-xylosyl residue onto arabinosyl side chains of xylan in grass species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:193-206. [PMID: 35959609 DOI: 10.1111/tpj.15939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/13/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Grass xylan, the major hemicellulose in both primary and secondary cell walls, is heavily decorated with α-1,3-linked arabinofuranosyl (Araf) residues that may be further substituted at O-2 with xylosyl (Xyl) or Araf residues. Although xylan 3-O-arabinosyltransferases (XATs) catalyzing 3-O-Araf addition onto xylan have been characterized, glycosyltransferases responsible for the transfer of 2-O-Xyl or 2-O-Araf onto 3-O-Araf residues of xylan to produce the Xyl-Araf and Araf-Araf disaccharide side chains remain to be identified. In this report, we showed that a rice GT61 member, named OsXAXT1 (xylan arabinosyl 2-O-xylosyltransferase 1) herein, was able to mediate the addition of Xyl-Araf disaccharide side chains onto xylan when heterologously co-expressed with OsXAT2 in the Arabidopsis gux1/2/3 (glucuronic acid substitution of xylan 1/2/3) triple mutant that lacks any glycosyl substitutions. Recombinant OsXAXT1 protein expressed in human embryonic kidney 293 cells exhibited a xylosyltransferase activity catalyzing the addition of Xyl from UDP-Xyl onto arabinosylated xylooligomers. Consistent with its function as a xylan arabinosyl 2-O-xylosyltransferase, CRISPR-Cas9-mediated mutations of the OsXAXT1 gene in transgenic rice plants resulted in a reduction in the level of Xyl-Araf disaccharide side chains in xylan. Furthermore, we revealed that XAXT1 close homologs from several other grass species, including switchgrass, maize, and Brachypodium, possessed the same functions as OsXAXT1, indicating functional conservation of XAXTs in grass species. Together, our findings establish that grass XAXTs are xylosyltransferases catalyzing Xyl transfer onto O-2 of Araf residues of xylan to form the Xyl-Araf disaccharide side chains, which furthers our understanding of genes involved in xylan biosynthesis.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Chanhui Lee
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Dongtao Cui
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Dennis R Phillips
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Earle R Adams
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Ho-Young Jeong
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Ki-Hong Jung
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
27
|
Wang F, Yao Z, Zhang X, Han Z, Chu X, Ge X, Lu F, Liu Y. High-level production of xylose from agricultural wastes using GH11 endo-xylanase and GH43 β-xylosidase from Bacillus sp. Bioprocess Biosyst Eng 2022; 45:1705-1717. [PMID: 36063213 DOI: 10.1007/s00449-022-02778-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022]
Abstract
As a promising feedstock, alkali-extracted xylan from lignocellulosic biomass is desired for producing xylose, which can be used for renewable biofuels production. In this study, an efficient pathway has been established for low-cost and high-yield production of xylose by hydrolysis of alkali-extracted xylan from agricultural wastes using an endo-1,4-xylanase (XYLA) from Bacillus safensis TCCC 111022 and a β-xylosidase (XYLO) from B. pumilus TCCC 11573. The optimum activities of recombinant XYLA (rXYLA) and XYLO (rXYLO) were 60 ℃ and pH 8.0, and 30 ℃ and pH 7.0, respectively. They were stable over a broad pH range (pH 6.0-11.0 and 7.0-10.0). rXYLO showed a relatively high xylose tolerance up to 100 mM. Furthermore, the yield of xylose from wheat straw, rice straw, corn stover, corncob and sugarcane bagasse by rXYLA and rXYLO was 63.77%, 71.76%, 68.55%, 53.81%, and 58.58%, respectively. This study demonstrated a strategy to produce xylose from agricultural wastes by integrating alkali-extracted xylan and enzymatic hydrolysis.
Collapse
Affiliation(s)
- Fenghua Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin, 300457, People's Republic of China
| | - Zhiming Yao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin, 300457, People's Republic of China
| | - Xue Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin, 300457, People's Republic of China
| | - Zhuoxuan Han
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin, 300457, People's Republic of China
| | - Xiuxiu Chu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin, 300457, People's Republic of China
| | - Xiuqi Ge
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin, 300457, People's Republic of China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin, 300457, People's Republic of China.
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
28
|
Fernandes H, Martins N, Vieira L, Salgado JM, Castro C, Oliva-Teles A, Belo I, Peres H. Pre-treatment of Ulva rigida improves its nutritional value for European seabass (Dicentrarchus labrax) juveniles. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
29
|
Allen H, Zeef L, Morreel K, Goeminne G, Kumar M, Gomez LD, Dean AP, Eckmann A, Casiraghi C, McQueen-Mason SJ, Boerjan W, Turner SR. Flexible and digestible wood caused by viral-induced alteration of cell wall composition. Curr Biol 2022; 32:3398-3406.e6. [PMID: 35732179 PMCID: PMC9616729 DOI: 10.1016/j.cub.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/29/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022]
Abstract
Woody plant material represents a vast renewable resource that has the potential to produce biofuels and other bio-based products with favorable net CO2 emissions.1,2 Its potential has been demonstrated in a recent study that generated novel structural materials from flexible moldable wood.3 Apple rubbery wood (ARW) disease is the result of a viral infection that causes woody stems to exhibit increased flexibility.4 Although ARW disease is associated with the presence of an RNA virus5 known as apple rubbery wood virus (ARWV), how the unique symptoms develop is unknown. We demonstrate that the symptoms of ARWV infections arise from reduced lignification within the secondary cell wall of xylem fibers and result in increased wood digestibility. In contrast, the mid-lamellae region and xylem ray cells are largely unaffected by the infection. Gene expression and proteomic data from symptomatic xylem clearly show the downregulation of phenylalanine ammonia lyase (PAL), the enzyme catalyzing the first committed step in the phenylpropanoid pathway leading to lignin biosynthesis. A large increase in soluble phenolics in symptomatic xylem, including the lignin precursor phenylalanine, is also consistent with PAL downregulation. ARWV infection results in the accumulation of many host-derived virus-activated small interfering RNAs (vasiRNAs). PAL-derived vasiRNAs are among the most abundant vasiRNAs in symptomatic xylem and are likely the cause of reduced PAL activity. Apparently, the mechanism used by the virus to alter lignin exhibits similarities to the RNAi strategy used to alter lignin in genetically modified trees to generate comparable improvements in wood properties.6, 7, 8 Video abstract
Apple rubbery wood (ARW) symptoms are caused by decreased lignin in woody tissue RNA-seq, proteomics, and metabolomics suggest phenylalanine levels decrease Virus-activated small interfering RNAs (vasiRNAs) are generated in response to ARWV infection VasiRNAs cause siRNA-based downregulation of phenylalanine ammonia
Collapse
Affiliation(s)
- Holly Allen
- School of Biological Science, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Leo Zeef
- School of Biological Science, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Kris Morreel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Geert Goeminne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Metabolomics Core Gent, VIB, 9052 Zwijnaarde, Belgium
| | - Manoj Kumar
- School of Biological Science, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Leonardo D Gomez
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York YO10 5DD, UK
| | - Andrew P Dean
- School of Biological Science, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Axel Eckmann
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Cinzia Casiraghi
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Simon J McQueen-Mason
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York YO10 5DD, UK
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Simon R Turner
- School of Biological Science, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
30
|
Insights into the Molecular Regulation of Lignin Content in Triploid Poplar Leaves. Int J Mol Sci 2022; 23:ijms23094603. [PMID: 35562994 PMCID: PMC9099847 DOI: 10.3390/ijms23094603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
After polyploidization, plants usually undergo some morphological and physiological changes, including the lignin content of polyploids usually becoming lower than that of diploids. However, the regulatory mechanism of the variation of lignin content in polyploid plants remains unclear. Therefore, in this research, we used full-sib poplar triploids and diploids to explore the molecular regulatory basis of lignin content in poplar triploid leaves through the determination of lignin content, the observation of xylem cells, and transcriptome sequencing. The results showed that the lignin content of triploid leaves was significantly lower than that of diploid leaves. The xylem cells of triploid leaves were significantly larger than those of diploids. Transcriptome sequencing data show that most lignin biosynthesis genes were significantly downregulated, and genes related to cell growth were mostly upregulated in triploid leaves compared with diploid leaves. In addition, co-expression network analysis showed that several transcription factors might be involved in the regulation of lignin biosynthesis. Consequently, the altered expression of genes related to lignin might lead to the reduced lignin content in triploids. These results provide a theoretical basis for further exploring the molecular mechanism of the variation of polyploid lignin content and the utilization of polyploid lignocellulosic resources.
Collapse
|
31
|
Ana LM, Rogelio S, Xose Carlos S, Rosa Ana M. Cell Wall Composition Impacts Structural Characteristics of the Stems and Thereby the Biomass Yield. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3136-3141. [PMID: 35232018 PMCID: PMC8931758 DOI: 10.1021/acs.jafc.1c06986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Maize stalks support leaves and reproductive structures and functionally support water and nutrient transport; besides, their anatomical and biochemical characteristics have been described as a plant defense against stress, also impacting economically important applications. In this study, we evaluated agronomical and stem description traits in a subset of maize inbred lines that showed variability for cell wall composition in the internodes. Overall, a great proportion of lignin subunit G and a low concentration of p-coumaric acid and lignin subunit S are beneficial for greater rind puncture resistance and taller plants, with a greater biomass yield. Also, the greater the proportions of subunit H, the longer the internode. Finally, the lower the total hemicellulose content, the greater the rind puncture resistance. Our results confirmed the effect of the cell wall on agronomic and stalk traits, which would be useful in applied breeding programs focused on biomass yield improvement.
Collapse
Affiliation(s)
- López-Malvar Ana
- Facultad
de Biología, Departamento de Biología Vegetal y Ciencias
del Suelo, Universidade de Vigo, As Lagoas Marcosende, 36310 Vigo, Spain
| | - Santiago Rogelio
- Facultad
de Biología, Departamento de Biología Vegetal y Ciencias
del Suelo, Universidade de Vigo, As Lagoas Marcosende, 36310 Vigo, Spain
- Agrobiología
Ambiental, Calidad de Suelos y Plantas (UVIGO), Unidad Asociada a la MBG (CSIC), 36310 Vigo, Spain
- Misión
Biológica de Galicia (CSIC), Pazo
de Salcedo, Carballeira 8, 36143 Pontevedra, Spain
| | - Souto Xose Carlos
- Departamente
Ingeniería Recursos Naturales Y Medio Ambiente, E.E. Forestales, Universidade de Vigo, 36005 Pontevedra, Spain
| | - Malvar Rosa Ana
- Agrobiología
Ambiental, Calidad de Suelos y Plantas (UVIGO), Unidad Asociada a la MBG (CSIC), 36310 Vigo, Spain
- Misión
Biológica de Galicia (CSIC), Pazo
de Salcedo, Carballeira 8, 36143 Pontevedra, Spain
| |
Collapse
|
32
|
Aubry E, Hoffmann B, Vilaine F, Gilard F, Klemens PAW, Guérard F, Gakière B, Neuhaus HE, Bellini C, Dinant S, Le Hir R. A vacuolar hexose transport is required for xylem development in the inflorescence stem. PLANT PHYSIOLOGY 2022; 188:1229-1247. [PMID: 34865141 PMCID: PMC8825465 DOI: 10.1093/plphys/kiab551] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/02/2021] [Indexed: 05/29/2023]
Abstract
In Angiosperms, the development of the vascular system is controlled by a complex network of transcription factors. However, how nutrient availability in the vascular cells affects their development remains to be addressed. At the cellular level, cytosolic sugar availability is regulated mainly by sugar exchanges at the tonoplast through active and/or facilitated transport. In Arabidopsis (Arabidopsis thaliana), among the genes encoding tonoplastic transporters, SUGAR WILL EVENTUALLY BE EXPORTED TRANSPORTER 16 (SWEET16) and SWEET17 expression has been previously detected in the vascular system. Here, using a reverse genetics approach, we propose that sugar exchanges at the tonoplast, regulated by SWEET16, are important for xylem cell division as revealed in particular by the decreased number of xylem cells in the swt16 mutant and the accumulation of SWEET16 at the procambium-xylem boundary. In addition, we demonstrate that transport of hexoses mediated by SWEET16 and/or SWEET17 is required to sustain the formation of the xylem secondary cell wall. This result is in line with a defect in the xylem cell wall composition as measured by Fourier-transformed infrared spectroscopy in the swt16swt17 double mutant and by upregulation of several genes involved in secondary cell wall synthesis. Our work therefore supports a model in which xylem development partially depends on the exchange of hexoses at the tonoplast of xylem-forming cells.
Collapse
Affiliation(s)
- Emilie Aubry
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
- Ecole Doctorale 567 Sciences du Végétal, Univ Paris-Sud, Univ Paris-Saclay, bat 360, 91405 Orsay Cedex, France
| | - Beate Hoffmann
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Françoise Vilaine
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Françoise Gilard
- Plateforme Métabolisme-Métabolome, Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRAE, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 360, Rue de Noetzlin, 91192 Gif sur Yvette, France
| | - Patrick A W Klemens
- Universität Kaiserslautern, Pflanzenphysiologie, Postfach 3049, D-67653 Kaiserslautern, Germany
| | - Florence Guérard
- Plateforme Métabolisme-Métabolome, Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRAE, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 360, Rue de Noetzlin, 91192 Gif sur Yvette, France
| | - Bertrand Gakière
- Plateforme Métabolisme-Métabolome, Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRAE, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 360, Rue de Noetzlin, 91192 Gif sur Yvette, France
| | - H Ekkehard Neuhaus
- Universität Kaiserslautern, Pflanzenphysiologie, Postfach 3049, D-67653 Kaiserslautern, Germany
| | - Catherine Bellini
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umeå, Sweden
| | - Sylvie Dinant
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Rozenn Le Hir
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
33
|
Dong H, Sousa LDC, Ubanwa B, Jones AD, Balan V. A New Method to Overcome Carboxyamide Formation During AFEX Pretreatment of Lignocellulosic Biomass. Front Chem 2022; 9:826625. [PMID: 35127657 PMCID: PMC8814328 DOI: 10.3389/fchem.2021.826625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/28/2021] [Indexed: 12/30/2022] Open
Abstract
Lignin-carbohydrate complexes (LCCs) in the plant cell wall are responsible for providing resistance against biomass-degrading enzymes produced by microorganisms. Four major types of lignin-carbohydrate bonds are reported in the literature, namely, benzyl ethers, benzyl esters, phenyl glycosides, and acetyl ester linkages. Ester’s linkages in the plant cell wall are labile to alkaline pretreatments, such as ammonia fiber expansion (AFEX), which uses liquid or gaseous ammonia to cleave those linkages in the plant cell wall and reduce biomass recalcitrance. Two competing reactions, notably hydrolysis and ammonolysis, take place during AFEX pretreatment process, producing different aliphatic and aromatic acids, as well as their amide counterparts. AFEX pretreated grasses and agricultural residues are known to increase conversion of biomass to sugars by four- to five-fold when subjected to commercial enzyme hydrolysis, yielding a sustainable feedstock for producing biofuels, biomaterials, and animal feed. Animal feed trials on dairy cows have demonstrated a 27% increase in milk production when compared to a control feedstock. However, the presence of carboxamides in feedstocks could promote neurotoxicity in animals if consumed beyond a certain concentration. Thus, there is the need to overcome regulatory hurdles associated with commercializing AFEX pretreated biomass as animal feed in the United States. This manuscript demonstrates a modified pretreatment for increasing the digestibility of industrial byproducts such as Brewer’s spent grains (BSG) and high-fiber meal (HFM) produced from BSG and dry distillers grains with soluble (DDGS), while avoiding the production of carboxamides. The three industrial byproducts were first treated with calculated amounts of alkali such as NaOH, Ca(OH)2, or KOH followed by AFEX pretreatment. We found that 4% alkali was able to de-esterify BSG and DDGS more efficiently than using 2% alkali at both 10 and 20% solids loading. AFEX pretreatment of de-esterified BSG, HFM, and DDGS produced twofold higher glucan conversion than respective untreated biomass. This new discovery can help overcome potential regulatory issues associated with the presence of carboxamides in ammonia-pretreated animal feeds and is expected to benefit several farmers around the world.
Collapse
Affiliation(s)
- Hui Dong
- Department of Chemical Engineering and Material Science, Michigan State University, Lansing, MI, United States
| | - Leonardo da Costa Sousa
- Department of Chemical Engineering and Material Science, Michigan State University, Lansing, MI, United States
| | - Bryan Ubanwa
- Department of Engineering Technology, College of Technology, University of Houston, Sugarland, TX, United States
| | - A. Daniel Jones
- Great Lakes Bioenergy Center, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Venkatesh Balan
- Department of Chemical Engineering and Material Science, Michigan State University, Lansing, MI, United States
- Department of Engineering Technology, College of Technology, University of Houston, Sugarland, TX, United States
- *Correspondence: Venkatesh Balan,
| |
Collapse
|
34
|
Munson CR, Gao Y, Mortimer JC, Murray DT. Solid-State Nuclear Magnetic Resonance as a Tool to Probe the Impact of Mechanical Preprocessing on the Structure and Arrangement of Plant Cell Wall Polymers. FRONTIERS IN PLANT SCIENCE 2022; 12:766506. [PMID: 35095947 PMCID: PMC8790750 DOI: 10.3389/fpls.2021.766506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Efficient separation of the plant cell wall polymers during lignocellulose processing has been historically challenging due to insolubility of the polymers and their propensity for recalcitrant reassembly. Methods, such as "lignin first" extraction techniques, have advanced efficient biomass use, but the molecular mechanisms for recalcitrance remain enigmatic. Here, we discuss how solid-state Nuclear Magnetic Resonance (NMR) approaches report on the 3D organization of cellulose, xylan, and lignin in the plant cell wall. Recent results illustrate that the organization of these polymers varies across biomass sources and sample preparation methods, with even minimal physical processing causing significant effects. These structural differences contribute to variable extraction efficiencies for bioproducts after downstream processing. We propose that solid-state NMR methods can be applied to follow biomass processing, providing an understanding of the polymer rearrangements that can lead to poor yields for the desired bioproducts. The utility of the technique is illustrated for mechanical processing using lab-scale vibratory ball milling of Sorghum bicolor.
Collapse
Affiliation(s)
- Coyla R. Munson
- Department of Chemistry, University of California, Davis, Davis, CA, United States
| | - Yu Gao
- Joint BioEnergy Institute, Emeryville, CA, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jenny C. Mortimer
- Joint BioEnergy Institute, Emeryville, CA, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia
| | - Dylan T. Murray
- Department of Chemistry, University of California, Davis, Davis, CA, United States
| |
Collapse
|
35
|
Wendt LM, Wahlen BD, Walton MR, Nguyen JA, Lin Y, Brown RM, Zhao H. Exploring filamentous fungi depolymerization of corn stover in the context bioenergy queuing operations. Food Energy Secur 2021. [DOI: 10.1002/fes3.333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Lynn M. Wendt
- Idaho National Laboratory Idaho Falls Idaho USA
- University of Idaho Idaho Falls Idaho USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Sun Q, Chen WJ, Pang B, Sun Z, Lam SS, Sonne C, Yuan TQ. Ultrastructural change in lignocellulosic biomass during hydrothermal pretreatment. BIORESOURCE TECHNOLOGY 2021; 341:125807. [PMID: 34474237 DOI: 10.1016/j.biortech.2021.125807] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
In recent years, visualization and characterization of lignocellulose at different scales elucidate the modifications of its ultrastructural and chemical features during hydrothermal pretreatment which include degradation and dissolving of hemicelluloses, swelling and partial hydrolysis of cellulose, melting and redepositing a part of lignin in the surface. As a result, cell walls are swollen, deformed and de-laminated from the adjacent layer, lead to a range of revealed droplets that appear on and within cell walls. Moreover, the certain extent morphological changes significantly promote the downstream processing steps, especially for enzymatic hydrolysis and anaerobic fermentation to bioethanol by increasing the contact area with enzymes. However, the formation of pseudo-lignin hinders the accessibility of cellulase to cellulose, which decreases the efficiency of enzymatic hydrolysis. This review is intended to bridge the gap between the microstructure studies and value-added applications of lignocellulose while inspiring more research prospects to enhance the hydrothermal pretreatment process.
Collapse
Affiliation(s)
- Qian Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No.35 Tsinghua East Road, Beijing 100083, PR China
| | - Wei-Jing Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No.35 Tsinghua East Road, Beijing 100083, PR China
| | - Bo Pang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No.35 Tsinghua East Road, Beijing 100083, PR China
| | - Zhuohua Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No.35 Tsinghua East Road, Beijing 100083, PR China
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (Akuatrop), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Tong-Qi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No.35 Tsinghua East Road, Beijing 100083, PR China.
| |
Collapse
|
37
|
Zhong R, Cui D, Phillips DR, Sims NT, Ye ZH. Functional analysis of GT61 glycosyltransferases from grass species in xylan substitutions. PLANTA 2021; 254:131. [PMID: 34821996 DOI: 10.1007/s00425-021-03794-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Multiple rice GT61 members were demonstrated to be xylan arabinosyltransferases (XATs) mediating 3-O-arabinosylation of xylan and the functions of XATs and xylan 2-O-xylosyltransferases were shown to be conserved in grass species. Xylan is the major hemicellulose in the cell walls of grass species and it is typified by having arabinofuranosyl (Araf) substitutions. In this report, we demonstrated that four previously uncharacterized, Golgi-localized glycosyltransferases residing in clade A or B of the rice GT61 family were able to mediate 3-O-arabinosylation of xylan when heterologously expressed in the Arabidopsis gux1/2/3 triple mutant. Biochemical characterization of their recombinant proteins established that they were xylan arabinosyltransferases (XATs) capable of transferring Araf residues onto xylohexaose acceptors, and thus they were named OsXAT4, OsXAT5, OsXAT6 and OsXAT7. OsXAT5 and the previously identified OsXAT2 were shown to be able to arabinosylate xylooligomers with a degree of polymerization of as low as 3. Furthermore, a number of XAT homologs from maize, sorghum, Brachypodium and switchgrass were found to exhibit activities catalyzing Araf transfer onto xylohexaose, indicating that they are XATs involved in xylan arabinosylation in these grass species. Moreover, we revealed that homologs of another GT61 member, xylan 2-O-xylosyltransferase (XYXT1), from these grass species could mediate 2-O-xylosylation of xylan when expressed in the Arabidopsis gux1/2/3 mutant. Together, our findings indicate that multiple OsXATs are involved in 3-O-arabinosylation of xylan and the functions of XATs and XYXTs are conserved in grass species.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Dongtao Cui
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Dennis R Phillips
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Nathanael T Sims
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
38
|
De Meester B, Vanholme R, de Vries L, Wouters M, Van Doorsselaere J, Boerjan W. Vessel- and ray-specific monolignol biosynthesis as an approach to engineer fiber-hypolignification and enhanced saccharification in poplar. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:752-765. [PMID: 34403547 DOI: 10.1111/tpj.15468] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Lignin is one of the main factors determining recalcitrance to processing of lignocellulosic biomass towards bio-based materials and fuels. Consequently, wood of plants engineered for low lignin content is typically more amenable to processing. However, lignin-modified plants often exhibit collapsed vessels and associated growth defects. Vessel-specific reintroduction of lignin biosynthesis in dwarfed low-lignin cinnamoyl-CoA reductase1 (ccr1) Arabidopsis mutants using the ProSNBE:AtCCR1 construct overcame the yield penalty while maintaining high saccharification yields, and showed that monolignols can be transported between the different xylem cells acting as 'good neighbors' in Arabidopsis. Here, we translated this research into the bio-energy crop poplar. By expressing ProSNBE:AtCCR1 into CRISPR/Cas9-generated ccr2 poplars, we aimed for vessel-specific lignin biosynthesis to: (i) achieve growth restoration while maintaining high saccharification yields; and (ii) study the existence of 'good neighbors' in poplar wood. Analyzing the resulting ccr2 ProSNBE:AtCCR1 poplars showed that vessels and rays act as good neighbors for lignification in poplar. If sufficient monolignols are produced by these cells, monolignols migrate over multiple cell layers, resulting in a restoration of the lignin amount to wild-type levels. If the supply of monolignols is limited, the monolignols are incorporated into the cell walls of the vessels and rays producing them and their adjoining cells resulting in fiber hypolignification. One such fiber-hypolignified line had 18% less lignin and, despite its small yield penalty, had an increase of up to 71% in sugar release on a plant base upon saccharification.
Collapse
Affiliation(s)
- Barbara De Meester
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Lisanne de Vries
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Marlies Wouters
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Jan Van Doorsselaere
- Higher Institute for Nursing and Biotechnology, VIVES University College, Wilgenstraat 32, Roeselare, 8800, Belgium
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| |
Collapse
|
39
|
de Vries L, Brouckaert M, Chanoca A, Kim H, Regner MR, Timokhin VI, Sun Y, De Meester B, Van Doorsselaere J, Goeminne G, Chiang VL, Wang JP, Ralph J, Morreel K, Vanholme R, Boerjan W. CRISPR-Cas9 editing of CAFFEOYL SHIKIMATE ESTERASE 1 and 2 shows their importance and partial redundancy in lignification in Populus tremula × P. alba. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2221-2234. [PMID: 34160888 PMCID: PMC8541784 DOI: 10.1111/pbi.13651] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 05/06/2023]
Abstract
Lignins are cell wall-located aromatic polymers that provide strength and hydrophobicity to woody tissues. Lignin monomers are synthesized via the phenylpropanoid pathway, wherein CAFFEOYL SHIKIMATE ESTERASE (CSE) converts caffeoyl shikimate into caffeic acid. Here, we explored the role of the two CSE homologs in poplar (Populus tremula × P. alba). Reporter lines showed that the expression conferred by both CSE1 and CSE2 promoters is similar. CRISPR-Cas9-generated cse1 and cse2 single mutants had a wild-type lignin level. Nevertheless, CSE1 and CSE2 are not completely redundant, as both single mutants accumulated caffeoyl shikimate. In contrast, the cse1 cse2 double mutants had a 35% reduction in lignin and associated growth penalty. The reduced-lignin content translated into a fourfold increase in cellulose-to-glucose conversion upon limited saccharification. Phenolic profiling of the double mutants revealed large metabolic shifts, including an accumulation of p-coumaroyl, 5-hydroxyferuloyl, feruloyl and sinapoyl shikimate, in addition to caffeoyl shikimate. This indicates that the CSEs have a broad substrate specificity, which was confirmed by in vitro enzyme kinetics. Taken together, our results suggest an alternative path within the phenylpropanoid pathway at the level of the hydroxycinnamoyl-shikimates, and show that CSE is a promising target to improve plants for the biorefinery.
Collapse
Affiliation(s)
- Lisanne de Vries
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Marlies Brouckaert
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Alexandra Chanoca
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Hoon Kim
- Department of Biochemistry, and U.S. Department of Energy Great Lakes Bioenergy Research CenterWisconsin Energy InstituteUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Matthew R. Regner
- Department of Biochemistry, and U.S. Department of Energy Great Lakes Bioenergy Research CenterWisconsin Energy InstituteUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Vitaliy I. Timokhin
- Department of Biochemistry, and U.S. Department of Energy Great Lakes Bioenergy Research CenterWisconsin Energy InstituteUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Yi Sun
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Barbara De Meester
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | | | - Geert Goeminne
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
- VIB Metabolomics CoreGhentBelgium
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
- Forest Biotechnology GroupDepartment of Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighNCUSA
- Department of Forest BiomaterialsNorth Carolina State UniversityRaleighNCUSA
| | - Jack P. Wang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
- Forest Biotechnology GroupDepartment of Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighNCUSA
| | - John Ralph
- Department of Biochemistry, and U.S. Department of Energy Great Lakes Bioenergy Research CenterWisconsin Energy InstituteUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Kris Morreel
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Ruben Vanholme
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Wout Boerjan
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| |
Collapse
|
40
|
Ryan N, Yaseneva P. A critical review of life cycle assessment studies of woody biomass conversion to sugars. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200335. [PMID: 34334025 PMCID: PMC8326825 DOI: 10.1098/rsta.2020.0335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Woody biomass could potentially become a viable raw material for the future sustainable chemical industry. For this, a suitable regulatory framework must exist, that would create favourable economic conditions for wood biorefineries. Such policies must be developed on the basis of scientific evidence-in this case, data supporting the environmental advantages of the bio-based feedstocks to the chemical industry. The most suitable methodology for comprehensive evaluation of environmental performance of technologies is life cycle assessment (LCA). In this review, the available LCA studies of woody biomass fractionation and conversion to bulk chemical feedstocks are critically evaluated. It has been revealed that the majority of the openly available studies do not contain transparent inventory data and, therefore, cannot be verified or re-used; studies containing inventory data are reported in this review. The lack of inventory data also prevents comparison between studies of the same processes performed with different evaluation methods or using different system boundaries. Recommendations are proposed on how to overcome issues of commercial data sensitivity by using black-box modelling when reporting environmental information. From several comparable LCA studies, it has been concluded that today the most environmentally favourable technology for wood biomass fractionation is organosolv. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)'.
Collapse
Affiliation(s)
- Niamh Ryan
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Polina Yaseneva
- Cambridge Institute for Sustainability Leadership, University of Cambridge, 1 Trumpington Street, Cambridge CB2 1QA, UK
| |
Collapse
|
41
|
CRISPR-Knockout of CSE Gene Improves Saccharification Efficiency by Reducing Lignin Content in Hybrid Poplar. Int J Mol Sci 2021; 22:ijms22189750. [PMID: 34575913 PMCID: PMC8466951 DOI: 10.3390/ijms22189750] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Caffeoyl shikimate esterase (CSE) has been shown to play an important role in lignin biosynthesis in plants and is, therefore, a promising target for generating improved lignocellulosic biomass crops for sustainable biofuel production. Populus spp. has two CSE genes (CSE1 and CSE2) and, thus, the hybrid poplar (Populus alba × P. glandulosa) investigated in this study has four CSE genes. Here, we present transgenic hybrid poplars with knockouts of each CSE gene achieved by CRISPR/Cas9. To knockout the CSE genes of the hybrid poplar, we designed three single guide RNAs (sg1-sg3), and produced three different transgenic poplars with either CSE1 (CSE1-sg2), CSE2 (CSE2-sg3), or both genes (CSE1/2-sg1) mutated. CSE1-sg2 and CSE2-sg3 poplars showed up to 29.1% reduction in lignin deposition with irregularly shaped xylem vessels. However, CSE1-sg2 and CSE2-sg3 poplars were morphologically indistinguishable from WT and showed no significant differences in growth in a long-term living modified organism (LMO) field-test covering four seasons. Gene expression analysis revealed that many lignin biosynthetic genes were downregulated in CSE1-sg2 and CSE2-sg3 poplars. Indeed, the CSE1-sg2 and CSE2-sg3 poplars had up to 25% higher saccharification efficiency than the WT control. Our results demonstrate that precise editing of CSE by CRISPR/Cas9 technology can improve lignocellulosic biomass without a growth penalty.
Collapse
|
42
|
Differential effects of inorganic salts on cellulase kinetics in enzymatic saccharification of cellulose and lignocellulosic biomass. Bioprocess Biosyst Eng 2021; 44:2331-2344. [PMID: 34195894 DOI: 10.1007/s00449-021-02607-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
Inorganic salt pretreatment of lignocellulosic biomass has proven to be an efficient way to increase the efficiency of enzymatic saccharification. However, it is not clear that this improvement is the result of modification of the lignocellulosic substrate after pretreatment, or removal of inhibitor, or enhancement of cellulase or a combination of these events. Therefore, this study aimed to analyze the effects of inorganic salts on kinetics of cellulase enzymes (celluclast 1.5L and accellerase 1500). Two substrates rich in cellulose content [carboxymethylcellulose (CMC), avicel (AV)] and lignocellulose substrate [sugarcane bagasse (SB)] were considered. The enzymatic saccharification was carried with and without the addition of inorganic salts (NaCl and KCl) at 0.5 M and 1.0 M concentration. The kinetic parameters, Km and Vm, were determined to mechanically understand the pattern of inhibition and enhancement of inorganic salts on enzymatic saccharification. The kinetics parameters of celluclast 1.5L and accellerase 1500 for hydrolysis of CMC and AV with NaCl showed uncompetitive inhibition. Whereas, influences of KCl on both cellulase were differentiated to function in inhibition or enhancement modes when challenged with different substrates. On the other hand, enzymatic hydrolysis efficiencies of SB using both cellulases were enhanced under addition of NaCl and KCl, by increasing Vm of celluclast 1.5L from 0.303 to 0.635 mg/mL min (0.5 M KCl) and accellerase 1500 from 0.383 to 0.719 mg/mL min (1.0 M NaCl). The details of kinetic analysis in this work revealed the mechanism of inorganic salts on cellulase kinetics to be involved in substrate modification and removal of inhibitor.
Collapse
|
43
|
Abscisic acid regulates secondary cell-wall formation and lignin deposition in Arabidopsis thaliana through phosphorylation of NST1. Proc Natl Acad Sci U S A 2021; 118:2010911118. [PMID: 33495344 PMCID: PMC7865148 DOI: 10.1073/pnas.2010911118] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Lignin deposition in plants is affected by environmental stress, and stress-signaling involves increases in the levels of the plant hormone abscisic acid (ABA). Here we show, using a combination of biochemical and genetic approaches, how ABA can regulate lignin biosynthesis. This involves phosphorylation of the master lignin transcription factor NST1 by a family of protein kinases (SnRK2s) that are themselves activated by phosphorylation as a result of ABA recognition by its receptor. This work provides a basis for designing trees and other biomass plants that are better adapted to stress and climate change. Plant secondary cell-wall (SCW) deposition and lignification are affected by both seasonal factors and abiotic stress, and these responses may involve the hormone abscisic acid (ABA). However, the mechanisms involved are not clear. Here we show that mutations that limit ABA synthesis or signaling reduce the extent of SCW thickness and lignification in Arabidopsis thaliana through the core ABA-signaling pathway involving SnRK2 kinases. SnRK2.2. 3 and 6 physically interact with the SCW regulator NAC SECONDARY WALL THICKENING PROMOTING FACTOR 1 (NST1), a NAC family transcription factor that orchestrates the transcriptional activation of a suite of downstream SCW biosynthesis genes, some of which are involved in the biosynthesis of cellulose and lignin. This interaction leads to phosphorylation of NST1 at Ser316, a residue that is highly conserved among NST1 proteins from dicots, but not monocots, and is required for transcriptional activation of downstream SCW-related gene promoters. Loss of function of NST1 in the snd1 mutant background results in lack of SCWs in the interfascicular fiber region of the stem, and the Ser316Ala mutant of NST1 fails to complement this phenotype and ABA-induced lignin pathway gene expression. The discovery of NST1 as a key substrate for phosphorylation by SnRK2 suggests that the ABA-mediated core-signaling cascade provided land plants with a hormone-modulated, competitive desiccation-tolerance strategy allowing them to differentiate water-conducting and supporting tissues built of cells with thicker cell walls.
Collapse
|
44
|
Manga-Robles A, Santiago R, Malvar RA, Moreno-González V, Fornalé S, López I, Centeno ML, Acebes JL, Álvarez JM, Caparros-Ruiz D, Encina A, García-Angulo P. Elucidating compositional factors of maize cell walls contributing to stalk strength and lodging resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 307:110882. [PMID: 33902850 DOI: 10.1016/j.plantsci.2021.110882] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
Lodging is one of the causes of maize (Zea mays L.) production losses worldwide and, at least, the resistance to stalk lodging has been positively correlated with stalk strength. In order to elucidate the putative relationship between cell wall, stalk strength and lodging resistance, twelve maize inbreds varying in rind penetration strength and lodging resistance were characterized for cell wall composition and structure. Stepwise multiple regression indicates that H lignin subunits confer a greater rind penetration strength. Besides, the predictive model for lodging showed that a high ferulic acid content increases the resistance to lodging, whereas those of diferulates decrease it. These outcomes highlight that the strength and lodging susceptibility of maize stems may be conditioned by structural features of cell wall rather than by the net amount of cellulose, hemicelluloses and lignin. The results presented here provide biotechnological targets in breeding programs aimed at improving lodging in maize.
Collapse
Affiliation(s)
- Alba Manga-Robles
- Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, E-24071, León, Spain.
| | - Rogelio Santiago
- Facultad de Biología, Departamento de Biología Vegetal y Ciencias del Suelo, Universidad de Vigo E-36310. Vigo, Spain; Agrobiología Ambiental, Calidad de Suelos y Plantas (UVIGO), Unidad Asociada a la MBG (CSIC), Spain.
| | - Rosa A Malvar
- Agrobiología Ambiental, Calidad de Suelos y Plantas (UVIGO), Unidad Asociada a la MBG (CSIC), Spain; Misión Biológica de Galicia, CSIC, Pontevedra, Spain.
| | - Víctor Moreno-González
- Área de Zoología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, E-24071, León, Spain.
| | - Silvia Fornalé
- Centre de Recerca en AgriGenómica (Consorci CSIC-IRTA-UAB-UB), Campus UAB, E-08193. Bellaterra, Barcelona, Spain.
| | - Ignacio López
- Centre de Recerca en AgriGenómica (Consorci CSIC-IRTA-UAB-UB), Campus UAB, E-08193. Bellaterra, Barcelona, Spain.
| | - María Luz Centeno
- Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, E-24071, León, Spain.
| | - José L Acebes
- Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, E-24071, León, Spain.
| | - Jesús Miguel Álvarez
- Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, E-24071, León, Spain.
| | - David Caparros-Ruiz
- Centre de Recerca en AgriGenómica (Consorci CSIC-IRTA-UAB-UB), Campus UAB, E-08193. Bellaterra, Barcelona, Spain.
| | - Antonio Encina
- Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, E-24071, León, Spain.
| | - Penélope García-Angulo
- Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, E-24071, León, Spain.
| |
Collapse
|
45
|
Chukwuma OB, Rafatullah M, Tajarudin HA, Ismail N. Bacterial Diversity and Community Structure of a Municipal Solid Waste Landfill: A Source of Lignocellulolytic Potential. Life (Basel) 2021; 11:493. [PMID: 34071172 PMCID: PMC8228822 DOI: 10.3390/life11060493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/16/2021] [Accepted: 05/24/2021] [Indexed: 11/24/2022] Open
Abstract
Omics have given rise to research on sparsely studied microbial communities such as the landfill, lignocellulolytic microorganisms and enzymes. The bacterial diversity of Municipal Solid Waste sediments was determined using the illumina MiSeq system after DNA extraction and Polymerase chain reactions. Data analysis was used to determine the community's richness, diversity, and correlation with environmental factors. Physicochemical studies revealed sites with mesophilic and thermophilic temperature ranges and a mixture of acidic and alkaline pH values. Temperature and moisture content showed the highest correlation with the bacteria community. The bacterial analysis of the community DNA revealed 357,030 effective sequences and 1891 operational taxonomic units (OTUs) assigned. Forty phyla were found, with the dominant phyla Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidota, while Aerococcus, Stenotrophomonas, and Sporosarcina were the dominant species. PICRUSt provided insight on community's metabolic function, which was narrowed down to search for lignocellulolytic enzymes' function. Cellulase, xylanase, esterase, and peroxidase were gene functions inferred from the data. This article reports on the first phylogenetic analysis of the Pulau Burung landfill bacterial community. These results will help to improve the understanding of organisms dominant in the landfill and the corresponding enzymes that contribute to lignocellulose breakdown.
Collapse
Affiliation(s)
| | - Mohd Rafatullah
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (O.B.C.); (H.A.T.); (N.I.)
| | | | | |
Collapse
|
46
|
Rana AK, Frollini E, Thakur VK. Cellulose nanocrystals: Pretreatments, preparation strategies, and surface functionalization. Int J Biol Macromol 2021; 182:1554-1581. [PMID: 34029581 DOI: 10.1016/j.ijbiomac.2021.05.119] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/08/2021] [Accepted: 05/16/2021] [Indexed: 01/04/2023]
Abstract
Cellulose nanocrystals (CNCs) have attracted great interest from researchers from academic and industrial areas because of their interesting structural features and unique physicochemical properties, such as magnificent mechanical strength, high surface area, and many hydroxyl groups for chemical modification, low density, and biodegradability. CNCs are an outstanding contender for applications in assorted fields comprehensive of, e.g., biomedical, electronic gadgets, water purifications, nanocomposites, membranes. Additionally, a persistent progression is going on in the extraction and surface modification of cellulose nanocrystals to fulfill the expanding need of producers to fabricate cellulose nanocrystals-based materials. In this review, the foundation of nanocellulose that emerged from lignocellulosic biomass and recent development in extraction/preparation of cellulose nanocrystals and different types of cellulose nanocrystal surface modification techniques are summed up. The different sorts of cellulose modification reactions that have been discussed are acetylation, oxidations, esterifications, etherifications, ion-pair formation, hydrogen bonding, silanization, nucleophilic substitution reactions, and so forth. The mechanisms of surface functionalization reactions are also introduced and considered concerning the impact on the reactions. Moreover, the primary association of cellulose and different forms of nanocellulose has likewise been examined for beginners in this field.
Collapse
Affiliation(s)
| | - Elisabete Frollini
- São Carlos Institute of Chemistry, Macromolecular Materials and Lignocellulosic Fibers Group, Center for Science and Technology of BioResources, University of São Paulo, C.P. 780, São Carlos, SP CEP 13560-970, Brazil.
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, UK; Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Greater Noida, Uttar Pradesh 201314, India.
| |
Collapse
|
47
|
From lignocellulose to plastics: Knowledge transfer on the degradation approaches by fungi. Biotechnol Adv 2021; 50:107770. [PMID: 33989704 DOI: 10.1016/j.biotechadv.2021.107770] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 01/21/2023]
Abstract
In this review, we argue that there is much to be learned by transferring knowledge from research on lignocellulose degradation to that on plastic. Plastic waste accumulates in the environment to hazardous levels, because it is inherently recalcitrant to biological degradation. Plants evolved lignocellulose to be resistant to degradation, but with time, fungi became capable of utilising it for their nutrition. Examples of how fungal strategies to degrade lignocellulose could be insightful for plastic degradation include how fungi overcome the hydrophobicity of lignin (e.g. production of hydrophobins) and crystallinity of cellulose (e.g. oxidative approaches). In parallel, knowledge of the methods for understanding lignocellulose degradation could be insightful such as advanced microscopy, genomic and post-genomic approaches (e.g. gene expression analysis). The known limitations of biological lignocellulose degradation, such as the necessity for physiochemical pretreatments for biofuel production, can be predictive of potential restrictions of biological plastic degradation. Taking lessons from lignocellulose degradation for plastic degradation is also important for biosafety as engineered plastic-degrading fungi could also have increased plant biomass degrading capabilities. Even though plastics are significantly different from lignocellulose because they lack hydrolysable C-C or C-O bonds and therefore have higher recalcitrance, there are apparent similarities, e.g. both types of compounds are mixtures of hydrophobic polymers with amorphous and crystalline regions, and both require hydrolases and oxidoreductases for their degradation. Thus, many lessons could be learned from fungal lignocellulose degradation.
Collapse
|
48
|
Chen C, Zhao X, Wang X, Wang B, Li H, Feng J, Wu A. Mutagenesis of UDP-xylose epimerase and xylan arabinosyl-transferase decreases arabinose content and improves saccharification of rice straw. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:863-865. [PMID: 33471384 PMCID: PMC8131053 DOI: 10.1111/pbi.13552] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 05/27/2023]
Affiliation(s)
- Chen Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangzhouChina
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmCollege of Forestry and Landscape ArchitecturesSouth China Agricultural UniversityGuangzhouChina
| | - Xianhai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangzhouChina
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmCollege of Forestry and Landscape ArchitecturesSouth China Agricultural UniversityGuangzhouChina
| | - Xuchuan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangzhouChina
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmCollege of Forestry and Landscape ArchitecturesSouth China Agricultural UniversityGuangzhouChina
| | - Bo Wang
- College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Huiling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangzhouChina
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmCollege of Forestry and Landscape ArchitecturesSouth China Agricultural UniversityGuangzhouChina
| | - Jiaxun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangxi Research Center for Microbial and Enzyme Engineering TechnologyCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Aimin Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangzhouChina
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmCollege of Forestry and Landscape ArchitecturesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory of Lingnan Modern AgricultureGuangzhouChina
| |
Collapse
|
49
|
Zhang Y, Wang Y, Wang C, Rautengarten C, Duan E, Zhu J, Zhu X, Lei J, Peng C, Wang Y, Teng X, Tian Y, Liu X, Heazlewood JL, Wu A, Wan J. BRITTLE PLANT1 is required for normal cell wall composition and mechanical strength in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:865-877. [PMID: 33615714 DOI: 10.1111/jipb.13050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
A series of nucleotide sugar interconversion enzymes (NSEs) generate the activated sugar donors required for biosynthesis of cell wall matrix polysaccharides and glycoproteins. UDP-glucose 4-epimerases (UGEs) are NSEs that function in the interconversion of UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal). The roles of UDP-glucose 4-epimerases in monocots remain unclear due to redundancy in the pathways. Here, we report a brittle plant (bp1) rice mutant that exhibits brittle leaves and culms at all growth stages. The mutant culms had reduced levels of rhamnogalacturonan I, homogalacturonan, and arabinogalactan proteins. Moreover, the mutant had altered contents of uronic acids, neutral noncellulosic monosaccharides, and cellulose. Map-based cloning demonstrated that OsBP1 encodes a UDP-glucose 4-epimerase (OsUGE2), a cytosolic protein. We also show that BP1 can form homo- and hetero-protein complexes with other UGE family members and with UDP-galactose transporters 2 (OsUGT2) and 3 (OsUGT3), which may facilitate the channeling of Gal to polysaccharides and proteoglycans. Our results demonstrate that BP1 participates in regulating the sugar composition and structure of rice cell walls.
Collapse
Affiliation(s)
- Yuanyan Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunming Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Carsten Rautengarten
- School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Erchao Duan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianping Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaopin Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Lei
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chao Peng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunlong Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuan Teng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunlu Tian
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Joshua L Heazlewood
- School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Aimin Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, 510642, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
50
|
Mantovan J, Giraldo GAG, Marim BM, Kishima JOF, Mali S. Valorization of orange bagasse through one-step physical and chemical combined processes to obtain a cellulose-rich material. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2362-2370. [PMID: 33006399 DOI: 10.1002/jsfa.10859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/28/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Orange bagasse (OB) is an agroindustrial residue of great economic importance that has been little explored for the extraction of cellulose. The present study aimed to investigate different combinations of chemical (sodium hydroxide, peracetic acid and alkaline peroxide) and physical (autoclaving and ultrasonication) treatments performed in one-step processes for cellulose extraction from OB and to characterize the materials obtained according to their composition, morphology, crystallinity and thermal stability. RESULTS The processing yields ranged from 140 to 820 g kg-1 , with a recovery of 720-1000 g kg-1 of the original cellulose. Treatments promoted morphological changes in the fiber structure, resulting in materials with higher porosity, indicating partial removal of the noncellulosic fractions. The use of combined chemical treatments (NaOH and peracetic acid) with autoclaving was more efficient for obtaining samples with the highest cellulose contents. CONCLUSION Therefore, ACSH (processed by autoclaving with NaOH) was the most effective one-step treatment, resulting in 71.1% cellulose, 0% hemicellulose and 19.0% lignin, with a crystallinity index of 42%. The one-step treatments were able to obtain materials with higher cellulose contents and yields, reducing reaction times and the quantity of chemical reagents employed in the overall processes compared to multistep conventional processes. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Janaina Mantovan
- Department of Biochemistry and Biotechnology, CCE, State University of Londrina, Londrina, Brazil
| | - Gina A G Giraldo
- Department of Biochemistry and Biotechnology, CCE, State University of Londrina, Londrina, Brazil
| | - Beatriz M Marim
- Department of Biochemistry and Biotechnology, CCE, State University of Londrina, Londrina, Brazil
| | - João O F Kishima
- Department of Biochemistry and Biotechnology, CCE, State University of Londrina, Londrina, Brazil
| | - Suzana Mali
- Department of Biochemistry and Biotechnology, CCE, State University of Londrina, Londrina, Brazil
| |
Collapse
|