1
|
Moreno-García P, Montaño-Centellas F, Liu Y, Reyes-Mendez EY, Jha RR, Guralnick RP, Folk R, Waller DM, Verheyen K, Baeten L, Becker-Scarpitta A, Berki I, Bernhardt-Römermann M, Brunet J, Van Calster H, Chudomelová M, Closset D, De Frenne P, Decocq G, Gilliam FS, Grytnes JA, Hédl R, Heinken T, Jaroszewicz B, Kopecký M, Lenoir J, Macek M, Máliš F, Naaf T, Orczewska A, Petřík P, Reczyńska K, Schei FH, Schmidt W, Stachurska-Swakoń A, Standovár T, Świerkosz K, Teleki B, Vild O, Li D. Long-term nitrogen deposition reduces the diversity of nitrogen-fixing plants. SCIENCE ADVANCES 2024; 10:eadp7953. [PMID: 39423266 PMCID: PMC11488573 DOI: 10.1126/sciadv.adp7953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
Biological nitrogen fixation is a fundamental part of ecosystem functioning. Anthropogenic nitrogen deposition and climate change may, however, limit the competitive advantage of nitrogen-fixing plants, leading to reduced relative diversity of nitrogen-fixing plants. Yet, assessments of changes of nitrogen-fixing plant long-term community diversity are rare. Here, we examine temporal trends in the diversity of nitrogen-fixing plants and their relationships with anthropogenic nitrogen deposition while accounting for changes in temperature and aridity. We used forest-floor vegetation resurveys of temperate forests in Europe and the United States spanning multiple decades. Nitrogen-fixer richness declined as nitrogen deposition increased over time but did not respond to changes in climate. Phylogenetic diversity also declined, as distinct lineages of N-fixers were lost between surveys, but the "winners" and "losers" among nitrogen-fixing lineages varied among study sites, suggesting that losses are context dependent. Anthropogenic nitrogen deposition reduces nitrogen-fixing plant diversity in ways that may strongly affect natural nitrogen fixation.
Collapse
Affiliation(s)
- Pablo Moreno-García
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85720, USA
| | | | - Yu Liu
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85720, USA
| | - Evelin Y. Reyes-Mendez
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Rohit Raj Jha
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Robert P. Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Ryan Folk
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Donald M. Waller
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kris Verheyen
- Forest and Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, B-9000 Melle-Gontrode, Belgium
| | - Lander Baeten
- Forest and Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, B-9000 Melle-Gontrode, Belgium
| | | | - Imre Berki
- Faculty of Forestry, University of Sopron, Bajcsy Zs. str. 4., H-9400 Sopron, Hungary
| | - Markus Bernhardt-Römermann
- Institute of Ecology and Evolution, Friedrich-Schiller-University Jena, Dornburger Str. 159, D-07743 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| | - Jörg Brunet
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Box 190, 23422 Lomma, Sweden
| | - Hans Van Calster
- Research Institute for Nature and Forest, Havenlaan 88 bus 73, B-1000 Brussel, Belgium
| | - Markéta Chudomelová
- Institute of Botany, Czech Academy of Sciences, Lidická 25/27, 60200 Brno, Czech Republic
| | - Deborah Closset
- UMR CNRS 7058 “Ecologie et Dynamique des Systèmes Anthropisés” (EDYSAN), Université de Picardie Jules Verne, 1 rue des Louvels, 80000 Amiens, France
| | - Pieter De Frenne
- Forest and Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, B-9000 Melle-Gontrode, Belgium
| | - Guillaume Decocq
- UMR CNRS 7058 “Ecologie et Dynamique des Systèmes Anthropisés” (EDYSAN), Université de Picardie Jules Verne, 1 rue des Louvels, 80000 Amiens, France
| | - Frank S. Gilliam
- Department of Earth and Environmental Sciences, University of West Florida, Pensacola, FL 32514, USA
| | - John-Arvid Grytnes
- Department of Biological Sciences, University of Bergen, Postbox 7803, 5020 Bergen, Norway
| | - Radim Hédl
- Institute of Botany, Czech Academy of Sciences, Lidická 25/27, 60200 Brno, Czech Republic
- Department of Botany, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-779 00 Olomouc, Czech Republic
| | - Thilo Heinken
- General Botany, Institute of Biochemistry and Biology, University of Potsdam, Maulbeerallee 3, D-14469 Potsdam, Germany
| | - Bogdan Jaroszewicz
- Białowieża Geobotanical Station, Faculty of Biology, University of Warsaw, Sportowa 19, PL-17-230 Warsaw, Poland
| | - Martin Kopecký
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 21 Praha 6 - Suchdol, Czech Republic
| | - Jonathan Lenoir
- UMR CNRS 7058 “Ecologie et Dynamique des Systèmes Anthropisés” (EDYSAN), Université de Picardie Jules Verne, 1 rue des Louvels, 80000 Amiens, France
| | - Martin Macek
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic
| | - František Máliš
- Technical University in Zvolen, T. G. Masaryka 24, SK-96001 Zvolen, Slovakia
| | - Tobias Naaf
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Strasse 84, D-15374 Muencheberg, Germany
| | - Anna Orczewska
- Institute of Biology Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, PL-40-032 Katowice, Poland
| | - Petr Petřík
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic
- Czech University of Life Sciences Prague, Kamýcká 129, CZ-16500 Praha, Suchdol, Czech Republic
| | | | - Fride Høistad Schei
- Norwegian Institute of Bioeconomy Research, Thormøhlensgate 55, 5006 Bergen, Norway
| | - Wolfgang Schmidt
- Department of Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Büsgenweg 1, D-37077 Göttingen, Germany
| | - Alina Stachurska-Swakoń
- Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, Gronostajowa 3, PL-30-387 Kraków, Poland
| | - Tibor Standovár
- ELTE Eötvös Loránd University Department of Plant Systematics, Ecology and Theoretical Biology, Institute of Biology, Pázmány P. sétány 1/c, H-1117 Budapest, Hungary
| | - Krzysztof Świerkosz
- Museum of Natural History, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, PL-50-335 Wrocław, Poland
| | - Balázs Teleki
- MTA-DE Lendület Functional and Restoration Ecology Research Group, H-4032 Debrecen, Hungary
| | - Ondřej Vild
- Institute of Botany, Czech Academy of Sciences, Lidická 25/27, 60200 Brno, Czech Republic
| | - Daijiang Li
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85720, USA
- Center for Computation & Technology, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
2
|
Liu T, Liu H, Xian W, Liu Z, Yuan Y, Fan J, Xiang S, Yang X, Liu Y, Liu S, Zhang M, Shen Y, Jiao Y, Cheng S, Doyle JJ, Xie F, Li J, Tian Z. Duplication and sub-functionalization of flavonoid biosynthesis genes plays important role in Leguminosae root nodule symbiosis evolution. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2191-2207. [PMID: 39092779 DOI: 10.1111/jipb.13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024]
Abstract
Gene innovation plays an essential role in trait evolution. Rhizobial symbioses, the most important N2-fixing agent in agricultural systems that exists mainly in Leguminosae, is one of the most attractive evolution events. However, the gene innovations underlying Leguminosae root nodule symbiosis (RNS) remain largely unknown. Here, we investigated the gene gain event in Leguminosae RNS evolution through comprehensive phylogenomic analyses. We revealed that Leguminosae-gain genes were acquired by gene duplication and underwent a strong purifying selection. Kyoto Encyclopedia of Genes and Genomes analyses showed that the innovated genes were enriched in flavonoid biosynthesis pathways, particular downstream of chalcone synthase (CHS). Among them, Leguminosae-gain type Ⅱ chalcone isomerase (CHI) could be further divided into CHI1A and CHI1B clades, which resulted from the products of tandem duplication. Furthermore, the duplicated CHI genes exhibited exon-intron structural divergences evolved through exon/intron gain/loss and insertion/deletion. Knocking down CHI1B significantly reduced nodulation in Glycine max (soybean) and Medicago truncatula; whereas, knocking down its duplication gene CHI1A had no effect on nodulation. Therefore, Leguminosae-gain type Ⅱ CHI participated in RNS and the duplicated CHI1A and CHI1B genes exhibited RNS functional divergence. This study provides functional insights into Leguminosae-gain genetic innovation and sub-functionalization after gene duplication that contribute to the evolution and adaptation of RNS in Leguminosae.
Collapse
Affiliation(s)
- Tengfei Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyue Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wenfei Xian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, 72076, Germany
| | - Zhi Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Hebei Key Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shi-jiazhuang, 050035, China
| | - Yaqin Yuan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingwei Fan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuaiying Xiang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xia Yang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yucheng Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shulin Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Min Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanting Shen
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuannian Jiao
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Jeff J Doyle
- School of Integrative Plant Science, Sections of Plant Biology and Plant Breeding & Genetics, Cornell University, Ithaca, 14853, New York, USA
| | - Fang Xie
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jiayang Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Yazhouwan National Laboratory, Sanya, 572024, China
| | - Zhixi Tian
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Liu T, Liu Z, Fan J, Yuan Y, Liu H, Xian W, Xiang S, Yang X, Liu Y, Liu S, Zhang M, Jiao Y, Cheng S, Doyle JJ, Xie F, Li J, Tian Z. Loss of Lateral suppressor gene is associated with evolution of root nodule symbiosis in Leguminosae. Genome Biol 2024; 25:250. [PMID: 39350172 PMCID: PMC11441212 DOI: 10.1186/s13059-024-03393-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Root nodule symbiosis (RNS) is a fascinating evolutionary event. Given that limited genes conferring the evolution of RNS in Leguminosae have been functionally validated, the genetic basis of the evolution of RNS remains largely unknown. Identifying the genes involved in the evolution of RNS will help to reveal the mystery. RESULTS Here, we investigate the gene loss event during the evolution of RNS in Leguminosae through phylogenomic and synteny analyses in 48 species including 16 Leguminosae species. We reveal that loss of the Lateral suppressor gene, a member of the GRAS-domain protein family, is associated with the evolution of RNS in Leguminosae. Ectopic expression of the Lateral suppressor (Ls) gene from tomato and its homolog MONOCULM 1 (MOC1) and Os7 from rice in soybean and Medicago truncatula result in almost completely lost nodulation capability. Further investigation shows that Lateral suppressor protein, Ls, MOC1, and Os7 might function through an interaction with NODULATION SIGNALING PATHWAY 2 (NSP2) and CYCLOPS to repress the transcription of NODULE INCEPTION (NIN) to inhibit the nodulation in Leguminosae. Additionally, we find that the cathepsin H (CTSH), a conserved protein, could interact with Lateral suppressor protein, Ls, MOC1, and Os7 and affect the nodulation. CONCLUSIONS This study sheds light on uncovering the genetic basis of the evolution of RNS in Leguminosae and suggests that gene loss plays an essential role.
Collapse
Affiliation(s)
- Tengfei Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Hebei Key Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shi-Jiazhuang, China
| | - Jingwei Fan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yaqin Yuan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiyue Liu
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenfei Xian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Shuaiying Xiang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xia Yang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yucheng Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shulin Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Min Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuannian Jiao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jeff J Doyle
- School of Integrative Plant Science, Sections of Plant Biology and Plant Breeding & Genetics, Cornell University, Ithaca, NY, USA.
| | - Fang Xie
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Yazhouwan National Laboratory, Sanya, Hainan, China.
| | - Zhixi Tian
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Yazhouwan National Laboratory, Sanya, Hainan, China.
| |
Collapse
|
4
|
Ren J, Cui Z, Wang Y, Ning Q, Gao Y. Transcriptomic insights into the potential impacts of flavonoids and nodule-specific cysteine-rich peptides on nitrogen fixation in Vicia villosa and Vicia sativa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108936. [PMID: 39018775 DOI: 10.1016/j.plaphy.2024.108936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Vicia villosa (VV) and Vicia sativa (VS) are legume forages highly valued for their excellent nitrogen fixation. However, no research has addressed the mechanisms underlying their differences in nitrogen fixation. This study employed physiological, cytological, and comparative transcriptomic approaches to elucidate the disparities in nitrogen fixation between them. Our results showed that the total amount of nitrogen fixed was 60.45% greater in VV than in VS, and the comprehensive nitrogen response performance was 94.19% greater, while the nitrogen fixation efficiency was the same. The infection zone and differentiated bacteroid proportion in mature VV root nodules were 33.76% and 19.35% greater, respectively, than those in VS. The size of the VV genome was 15.16% larger than that of the VS genome, consistent with its greater biomass. A significant enrichment of the flavonoid biosynthetic pathway was found only for VV-specific genes, among which chalcone-flavonone isomerase, caffeoyl-CoA-O-methyltransferase and stilbene synthase were extremely highly expressed. The VV-specific genes also exhibited significant enrichment in symbiotic nodulation; genes related to nodule-specific cysteine-rich peptides (NCRs) comprised 61.11% of the highly expressed genes. qRT‒PCR demonstrated that greater enrichment and expression of the dominant NCR (Unigene0004451) were associated with greater nodule bacteroid differentiation and greater nitrogen fixation in VV. Our findings suggest that the greater total nitrogen fixation of VV was attributed to its larger biomass, leading to a greater nitrogen demand and enhanced fixation physiology. This process is likely achieved by the synergistic effects of high bacteroid differentiation along with high expression of flavonoid and NCR genes.
Collapse
Affiliation(s)
- Jian Ren
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute of Grassland Science, Northeast Normal University, Changchun, 130024, China; Xinjiang Agricultural University, Key Laboratory of Grassland Resources and Ecology of Western Arid Desert Area of the Ministry of Education, College of Grassland Science, Urumqi, 830052, China
| | - Zhengguo Cui
- Soybean Research Institute, Jilin Academy of Agricultural Sciences/National Engineering Research Center for Soybean, Changchun, 130033, China
| | - Yueqiang Wang
- Soybean Research Institute, Jilin Academy of Agricultural Sciences/National Engineering Research Center for Soybean, Changchun, 130033, China
| | - Qiushi Ning
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yingzhi Gao
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute of Grassland Science, Northeast Normal University, Changchun, 130024, China; Xinjiang Agricultural University, Key Laboratory of Grassland Resources and Ecology of Western Arid Desert Area of the Ministry of Education, College of Grassland Science, Urumqi, 830052, China.
| |
Collapse
|
5
|
Doby JR, Siniscalchi CM, Pajuelo M, Krigbaum J, Soltis DE, Guralnick RP, Folk RA. Elemental and isotopic analysis of leaves predicts nitrogen-fixing phenotypes. Sci Rep 2024; 14:20065. [PMID: 39209870 PMCID: PMC11362558 DOI: 10.1038/s41598-024-70412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Nitrogen (N)-fixing symbiosis is critical to terrestrial ecosystems, yet possession of this trait is known for few plant species. Broader presence of the symbiosis is often indirectly determined by phylogenetic relatedness to taxa investigated via manipulative experiments. This data gap may ultimately underestimate phylogenetic, spatial, and temporal variation in N-fixing symbiosis. Still needed are simpler field or collections-based approaches for inferring symbiotic status. N-fixing plants differ from non-N-fixing plants in elemental and isotopic composition, but previous investigations have not tested predictive accuracy using such proxies. Here we develop a regional field study and demonstrate a simple classification model for fixer status using nitrogen and carbon content measurements, and stable isotope ratios (δ15N and δ13C), from field-collected leaves. We used mixed models and classification approaches to demonstrate that N-fixing phenotypes can be used to predict symbiotic status; the best model required all predictors and was 80-94% accurate. Predictions were robust to environmental context variation, but we identified significant variation due to native vs. non-native (exotic) status and phylogenetic affinity. Surprisingly, N content-not δ15N-was the strongest predictor, suggesting that future efforts combine elemental and isotopic information. These results are valuable for understudied taxa and ecosystems, potentially allowing higher-throughput field-based N-fixer assessments.
Collapse
Affiliation(s)
- Joshua R Doby
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA.
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA.
| | | | - Mariela Pajuelo
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Thompson Earth Systems Institute, University of Florida, Gainesville, FL, 32611, USA
| | - John Krigbaum
- Department of Anthropology, University of Florida, Gainesville, FL, 32611, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Robert P Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA.
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA.
- Biodiversity Institute, University of Florida, Gainesville, FL, 32611, USA.
| | - Ryan A Folk
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|
6
|
Zhang X, Wu J, Kong Z. Cellular basis of legume-rhizobium symbiosis. PLANT COMMUNICATIONS 2024:101045. [PMID: 39099171 DOI: 10.1016/j.xplc.2024.101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
The legume-rhizobium symbiosis represents the most important system for terrestrial biological nitrogen fixation on land. Efficient nitrogen fixation during this symbiosis depends on successful rhizobial infection and complete endosymbiosis, which are achieved by complex cellular events including cell-wall remodeling, cytoskeletal reorganizations, and extensive membrane expansion and trafficking. In this review, we explore the dynamic remodeling of the plant-specific cell wall-membrane system-cytoskeleton (WMC) continuum during symbiotic nitrogen fixation. We focus on key processes linked to efficient nitrogen fixation, including rhizobial uptake, infection thread formation and elongation, rhizobial droplet release, cytoplasmic bridge formation, and rhizobial endosymbiosis. Additionally, we discuss the advanced techniques for investigating the cellular basis of root-nodule symbiosis and provide insights into the unsolved mysteries of robust symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Xiaxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingxia Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Houji Laboratory in Shanxi Province, Academy of Agronomy, Shanxi, China.
| |
Collapse
|
7
|
Porter SS, Dupin SE, Denison RF, Kiers ET, Sachs JL. Host-imposed control mechanisms in legume-rhizobia symbiosis. Nat Microbiol 2024:10.1038/s41564-024-01762-2. [PMID: 39095495 DOI: 10.1038/s41564-024-01762-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/17/2024] [Indexed: 08/04/2024]
Abstract
Legumes are ecologically and economically important plants that contribute to nutrient cycling and agricultural sustainability, features tied to their intimate symbiosis with nitrogen-fixing rhizobia. Rhizobia vary dramatically in quality, ranging from highly growth-promoting to non-beneficial; therefore, legumes must optimize their symbiosis with rhizobia through host mechanisms that select for beneficial rhizobia and limit losses to non-beneficial strains. In this Perspective, we examine the considerable scientific progress made in decoding host control over rhizobia, empirically examining both molecular and cellular mechanisms and their effects on rhizobia symbiosis and its benefits. We consider pre-infection controls, which require the production and detection of precise molecular signals by the legume to attract and select for compatible rhizobia strains. We also discuss post-infection mechanisms that leverage the nodule-level and cell-level compartmentalization of symbionts to enable host control over rhizobia development and proliferation in planta. These layers of host control each contribute to legume fitness by directing host resources towards a narrowing subset of more-beneficial rhizobia.
Collapse
Affiliation(s)
- Stephanie S Porter
- School of Biological Sciences, Washington State University, Vancouver, WA, USA
| | - Simon E Dupin
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - R Ford Denison
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - E Toby Kiers
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Joel L Sachs
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
8
|
Shi N, He T, Qin H, Wang Z, You S, Wang E, Hu G, Wang F, Yu M, Liu X, Liu Z. Microvirga sesbaniae sp. nov. and Microvirga yunnanensis sp. nov., Pink-Pigmented Bacteria Isolated from Root Nodules of Sesbania cannabina (Retz.) Poir. Microorganisms 2024; 12:1558. [PMID: 39203400 PMCID: PMC11356035 DOI: 10.3390/microorganisms12081558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Four pigment-producing rhizobial strains nodulating Sesbania cannabina (Retz.) Poir. formed a unique group in genus Microvirga in the phylogeny of a 16S rRNA gene and five housekeeping genes (gyrB, recA, dnaK, glnA, and atpD) in a genome analysis, phenotypic characteristics analysis, and chemotaxonomic analysis. These four strains shared as high as 99.3% similarity with Microvirga tunisiensis LmiM8T in the 16S rRNA gene sequence and, in an MLSA, were subdivided into two clusters, ANI (genome average nucleotide) and dDDH (digital DNA-DNA hybridization) which shared sequence similarities lower than the species thresholds with each other and with the reference strains for related Microvirga species. The polar lipids elucidated that phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and cardiolipin were the main components for strain SWF67558T and for strain HBU65207T, with the exception of PC. SWF67558T and HBU65207T strains had similar predominant cellular fatty acids, including C16:0, C18:0, summed feature 2, and summed feature8, but with different contents. In addition, all the four novel strains produced pink-pigment, and the main coloring material extract from strain SWF67558T was identified as zeaxanthin, which presented antioxidant ability and reduction power. With all the phylogenetic and phenotypic divergency, we proposed these pink-pigmented symbiotic bacteria as two novel species, named Microvirga sesbaniae sp. nov. and Microvirga yunnanensis sp. nov., with SWF67558T (=KCTC82331T=GDMCC1.2024T) and HBU65207T (=KCTC92125T=GDMCC1.2023T) as the type strains, respectively.
Collapse
Affiliation(s)
- Nan Shi
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Research Center of Microbial Breeding and Conservation, Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (N.S.); (T.H.); (H.Q.); (Z.W.); (S.Y.); (G.H.); (M.Y.)
| | - Teng He
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Research Center of Microbial Breeding and Conservation, Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (N.S.); (T.H.); (H.Q.); (Z.W.); (S.Y.); (G.H.); (M.Y.)
| | - Huifang Qin
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Research Center of Microbial Breeding and Conservation, Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (N.S.); (T.H.); (H.Q.); (Z.W.); (S.Y.); (G.H.); (M.Y.)
| | - Ziye Wang
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Research Center of Microbial Breeding and Conservation, Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (N.S.); (T.H.); (H.Q.); (Z.W.); (S.Y.); (G.H.); (M.Y.)
| | - Shenghao You
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Research Center of Microbial Breeding and Conservation, Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (N.S.); (T.H.); (H.Q.); (Z.W.); (S.Y.); (G.H.); (M.Y.)
| | - Entao Wang
- Affiliation Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politecnico Nacional, Mexico City 11340, Mexico;
| | - Guoli Hu
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Research Center of Microbial Breeding and Conservation, Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (N.S.); (T.H.); (H.Q.); (Z.W.); (S.Y.); (G.H.); (M.Y.)
| | - Fang Wang
- Key Laboratory of State Forestry Administration for Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China;
| | - Miao Yu
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Research Center of Microbial Breeding and Conservation, Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (N.S.); (T.H.); (H.Q.); (Z.W.); (S.Y.); (G.H.); (M.Y.)
| | - Xiaoyun Liu
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Research Center of Microbial Breeding and Conservation, Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (N.S.); (T.H.); (H.Q.); (Z.W.); (S.Y.); (G.H.); (M.Y.)
| | - Zhenyu Liu
- Institute of Agro-Resources and Environment, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| |
Collapse
|
9
|
Rycroft SL, Henry HAL. High freezing sensitivity of legumes relative to other herbaceous species in northern temperate plant communities. ANNALS OF BOTANY 2024; 134:283-294. [PMID: 38742700 PMCID: PMC11232518 DOI: 10.1093/aob/mcae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND AND AIMS Reduced snow cover and increased air temperature variability are predicted to expose overwintering herbaceous plants to more severe freezing in some northern temperate regions. Legumes are a key functional group that may exhibit lower freezing tolerance than other species in these regions, but this trend has been observed only for non-native legumes. Our aim was to confirm if this trend is restricted to non-native legumes or whether native legumes in these regions also exhibit low freezing tolerance. METHODS First, we transplanted legumes (five non-native species and four native species) into either an old field (non-native) or a prairie (native) and used snow removal to expose the plots to increased soil freezing. Second, we grew plants in mesocosms (old field) and pots (prairie species) and exposed them in controlled environment chambers to a range of freezing treatments (control, 0, -5 or -10 °C) in winter or spring. We assessed freezing responses by comparing differences in biomass, cover and nodulation between freezing (or snow removal) treatments and controls. KEY RESULTS Among legume species, lower freezing tolerance was positively correlated with a lower proportion of nodulated plants and active nodules, and under controlled conditions, freezing-induced reductions in above-ground biomass were lower on average in native legumes than in non-native legumes. Nevertheless, both non-native and native legumes (except Desmodium canadense) exhibited greater reductions in biomass in response to increased freezing than their non-leguminous neighbours, both in controlled environments and in the field. CONCLUSIONS These results demonstrate that both native and non-native legumes exhibit low freezing tolerance relative to other herbaceous species in northern temperate plant communities. By reducing legume biomass and nodulation, increased soil freezing could reduce nitrogen inputs into these systems.
Collapse
Affiliation(s)
- Samuel L Rycroft
- Department of Biology, University of Western Ontario, 1151 Richmond St. N, London, ON N6A 5B7, Canada
| | - Hugh A L Henry
- Department of Biology, University of Western Ontario, 1151 Richmond St. N, London, ON N6A 5B7, Canada
| |
Collapse
|
10
|
Souza C, Valadão-Mendes LB, Schulze-Albuquerque I, Bergamo PJ, Souza DD, Nogueira A. Nitrogen-fixing bacteria boost floral attractiveness in a tropical legume species during nutrient limitation. AMERICAN JOURNAL OF BOTANY 2024:e16363. [PMID: 38956859 DOI: 10.1002/ajb2.16363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 07/04/2024]
Abstract
PREMISE Legumes establish mutualistic interactions with pollinators and nitrogen (N)-fixing bacteria that are critical for plant reproduction and ecosystem functioning. However, we know little about how N-fixing bacteria and soil nutrient availability affect plant attractiveness to pollinators. METHODS In a two-factorial greenhouse experiment to assess the impact of N-fixing bacteria and soil types on floral traits and attractiveness to pollinators in Chamaecrista latistipula (Fabaceae), plants were inoculated with N-fixing bacteria (NF+) or not (NF-) and grown in N-rich organic soil (+N organic soil) or N-poor sand soil (-N sand soil). We counted buds and flowers and measured plant size during the experiment. We also measured leaf, petal, and anther reflectance with a spectrophotometer and analyzed reflectance curves. Using the bee hexagon model, we estimated chromatic contrasts, a crucial visual cues for attracting bees that are nearby and more distant. RESULTS NF+ plants in -N sand soil had a high floral display and color contrasts. On the other hand, NF- plants and/or plants in +N organic soil had severely reduced floral display and color contrasts, decreasing floral attractiveness to bee pollinators. CONCLUSIONS Our findings indicate that the N-fixing bacteria positively impact pollination, particularly when nutrients are limited. This study provides insights into the dynamics of plant-pollinator interactions and underscores the significant influence of root symbionts on key floral traits within tropical ecosystems. These results contribute to understanding the mechanisms governing mutualisms and their consequences for plant fitness and ecological dynamics.
Collapse
Affiliation(s)
- Caroline Souza
- Laboratório de Interações Planta-Animal (LIPA), Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Brazil
- Programa de Pós-Graduação em Evolução e Diversidade, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Lorena B Valadão-Mendes
- Programa de Pós-graduação em Ecologia, Conservação e Manejo da Vida Silvestre, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Isadora Schulze-Albuquerque
- Departamento de Botânica, Programa de Pós-Graduação em Biologia Vegetal, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Pedro J Bergamo
- Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, Av 24 1515, São Paulo, Brasil
| | - Douglas D Souza
- Laboratório de Interações Planta-Animal (LIPA), Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Brazil
- Programa de Pós-Graduação em Evolução e Diversidade, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Anselmo Nogueira
- Laboratório de Interações Planta-Animal (LIPA), Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Brazil
- Programa de Pós-Graduação em Evolução e Diversidade, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| |
Collapse
|
11
|
Adema K, Kohlen W. The symbiosome-a transient organelle in evolution. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3209-3213. [PMID: 38845354 PMCID: PMC11156803 DOI: 10.1093/jxb/erae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2024]
Abstract
This article comments on: Casaes PA, Ferreira dos Santos JM, Silva VC, Rhem MFK, Teixeira Cota MM, de Faria SM, Rando JG, James EK, Gross E. 2024. The radiation of nodulated Chamaecrista species from the rainforest into more diverse habitats has been accompanied by a reduction in growth form and a shift from fixation threads to symbiosomes. Journal of Experimental Botany 75, 3643-3662.
Collapse
Affiliation(s)
- Kelvin Adema
- Laboratory of Cell and Developmental Biology, Cluster of Plant Developmental Biology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Wouter Kohlen
- Laboratory of Cell and Developmental Biology, Cluster of Plant Developmental Biology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
12
|
Yu Y, Yang Z, Han M, Sun S, Xu G, Yang G. Beneficial rhizosphere bacteria provides active assistance in resisting Aphis gossypiis in Ageratina adenophora. FRONTIERS IN PLANT SCIENCE 2024; 15:1394153. [PMID: 38812733 PMCID: PMC11133562 DOI: 10.3389/fpls.2024.1394153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024]
Abstract
Ageratina adenophora can enhance its invasive ability by using beneficial rhizosphere bacteria. Bacillus cereus is able to promote plant growth and provide a positive feedback effect to A. adenophora. However, the interaction between A. adenophora and B. cereus under the influence of native polyphagous insect feeding is still unclear. In this study, Eupatorium lindleyanum, a local species closely related to A. adenophora, was used as a control, aimed to compare the content of B. cereus in the roots of A. adenophora and rhizosphere soil after different densities of Aphis gossypii feeding, and then investigated the variations in the population of A. gossypii and soil characteristics after the addition of B. cereus. The result showed that B. cereus content in the rhizosphere soil and root of A. adenophora increased significantly under A. gossypii feeding compared with local plants, which also led to the change of α-diversity and β-diversity of the bacterial community, as well as the increase in nitrate nitrogen (NO3 -N) content. The addition of B.cereus in the soil could also inhibit the population growth of A. gossypii on A. adenophora and increase the content of ammonium nitrogen (NH4 +-N) in the soil. Our research demonstrated that B. cereus enhances the ability of A. adenophora to resist natural enemy by increasing soil ammonium nitrogen (NH4 +-N) and accumulating other beneficial bacteria, which means that rhizosphere microorganisms help invasive plants defend themselves against local natural enemies by regulating the soil environment.
Collapse
Affiliation(s)
- Youxin Yu
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Zihao Yang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Mengyang Han
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Shengnan Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Gang Xu
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Guoqing Yang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
13
|
Micciulla JL, Shor LM, Gage DJ. Enhanced transport of bacteria along root systems by protists can impact plant health. Appl Environ Microbiol 2024; 90:e0201123. [PMID: 38534145 PMCID: PMC11022564 DOI: 10.1128/aem.02011-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/25/2024] [Indexed: 03/28/2024] Open
Abstract
Soil protists have been shown to contribute to the structure and function of the rhizosphere in a variety of ways. Protists are key contributors to nutrient cycling through the microbial loop, where biomass is digested by protists and otherwise stored nutrients are returned to the environment. Protists have also been shown to feed on plant pathogenic bacteria and alter root microbiomes in ways that may benefit plants. Recently, a mechanism involving bacterial transport, facilitated by protists, has been hypothesized to contribute to the spatial distribution of bacteria in the rhizosphere. Here, we observe the differential abilities of three soil protists: a ciliate (Colpoda sp.), a flagellate (Cercomonas sp.), and a naked amoeba (Acanthamoeba castellanii) to transport nitrogen-fixing Sinorhizobium meliloti to infectible root tips. Co-inoculation of protists plus S. meliloti resulted in the movement of bacteria, as measured by the presence of nitrogen-fixing nodules, up to 15 cm farther down the root systems when compared to plants inoculated with S. meliloti alone. Co-inoculation of the ciliate, Colpoda sp., with S. meliloti, resulted in shoot weights that were similar to plants that grew in nitrogen-replete potting mix. Colpoda sp.-feeding style and motility likely contributed to their success at transporting bacteria through the rhizosphere. We observed that the addition of protists alone without the co-inoculum of S. meliloti resulted in plants with larger shoot weights than control plants. Follow-up experiments showed that protists plus their associated microbiomes were aiding in plant health, likely through means of nutrient cycling.IMPORTANCEProtists represent a significant portion of the rhizosphere microbiome and have been shown to contribute to plant health, yet they are understudied compared to their bacterial and fungal counterparts. This study elucidates their role in the rhizosphere community and suggests a mechanism by which protists can be used to move bacteria along plant roots. We found that the co-inoculation of protists with nitrogen-fixing beneficial bacteria, Sinorhizobium meliloti, resulted in nodules farther down the roots when compared to plants inoculated with S. meliloti alone, and shoot weights similar to plants that received nitrogen fertilizer. These data illustrate the ability of protists to transport viable bacteria to uninhabited regions of the root system.
Collapse
Affiliation(s)
- Jamie L. Micciulla
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Leslie M. Shor
- Center for Environmental Sciences & Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Daniel J. Gage
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
14
|
Alon M, Waitz Y, Finkel OM, Sheffer E. The native distribution of a common legume shrub is limited by the range of its nitrogen-fixing mutualist. THE NEW PHYTOLOGIST 2024; 242:77-92. [PMID: 38339826 DOI: 10.1111/nph.19577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/20/2024] [Indexed: 02/12/2024]
Abstract
Plant-microbe mutualisms, such as the legume-rhizobium symbiosis, are influenced by the geographical distributions of both partners. However, limitations on the native range of legumes, resulting from the absence of a compatible mutualist, have rarely been explored. We used a combination of a large-scale field survey and controlled experiments to determine the realized niche of Calicotome villosa, an abundant and widespread legume shrub. Soil type was a major factor affecting the distribution and abundance of C. villosa. In addition, we found a large region within its range in which neither C. villosa nor Bradyrhizobium, the bacterial genus that associates with it, were present. Seedlings grown in soil from this region failed to nodulate and were deficient in nitrogen. Inoculation of this soil with Bradyrhizobium isolated from root nodules of C. villosa resulted in the formation of nodules and higher growth rate, leaf N and shoot biomass compared with un-inoculated plants. We present evidence for the exclusion of a legume from parts of its native range by the absence of a compatible mutualist. This result highlights the importance of the co-distribution of both the host plant and its mutualist when attempting to understand present and future geographical distributions of legumes.
Collapse
Affiliation(s)
- Moshe Alon
- Department of Plant & Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Yoni Waitz
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Omri M Finkel
- Department of Plant & Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Efrat Sheffer
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| |
Collapse
|
15
|
Delavaux CS, Crowther TW, Bever JD, Weigelt P, Gora EM. Mutualisms weaken the latitudinal diversity gradient among oceanic islands. Nature 2024; 627:335-339. [PMID: 38418873 PMCID: PMC10937366 DOI: 10.1038/s41586-024-07110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
The latitudinal diversity gradient (LDG) dominates global patterns of diversity1,2, but the factors that underlie the LDG remain elusive. Here we use a unique global dataset3 to show that vascular plants on oceanic islands exhibit a weakened LDG and explore potential mechanisms for this effect. Our results show that traditional physical drivers of island biogeography4-namely area and isolation-contribute to the difference between island and mainland diversity at a given latitude (that is, the island species deficit), as smaller and more distant islands experience reduced colonization. However, plant species with mutualists are underrepresented on islands, and we find that this plant mutualism filter explains more variation in the island species deficit than abiotic factors. In particular, plant species that require animal pollinators or microbial mutualists such as arbuscular mycorrhizal fungi contribute disproportionately to the island species deficit near the Equator, with contributions decreasing with distance from the Equator. Plant mutualist filters on species richness are particularly strong at low absolute latitudes where mainland richness is highest, weakening the LDG of oceanic islands. These results provide empirical evidence that mutualisms, habitat heterogeneity and dispersal are key to the maintenance of high tropical plant diversity and mediate the biogeographic patterns of plant diversity on Earth.
Collapse
Affiliation(s)
- Camille S Delavaux
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland.
- Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, KS, USA.
| | - Thomas W Crowther
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - James D Bever
- Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, KS, USA
- Kansas Biological Survey, The University of Kansas, Lawrence, KS, USA
| | - Patrick Weigelt
- Department of Biodiversity, Macroecology and Biogeography, University of Göttingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany
- Campus Institute Data Science, Göttingen, Germany
| | - Evan M Gora
- Smithsonian Tropical Research Institute, Panamá City, Panamá
- Cary Institute of Ecosystem Studies, Millbrook, NY, USA
| |
Collapse
|
16
|
Folk RA, Charboneau JLM, Belitz M, Singh T, Kates HR, Soltis DE, Soltis PS, Guralnick RP, Siniscalchi CM. Anatomy of a mega-radiation: Biogeography and niche evolution in Astragalus. AMERICAN JOURNAL OF BOTANY 2024; 111:e16299. [PMID: 38419145 DOI: 10.1002/ajb2.16299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
PREMISE Astragalus (Fabaceae), with more than 3000 species, represents a globally successful radiation of morphologically highly similar species predominant across the northern hemisphere. It has attracted attention from systematists and biogeographers, who have asked what factors might be behind the extraordinary diversity of this important arid-adapted clade and what sets it apart from close relatives with far less species richness. METHODS Here, for the first time using extensive phylogenetic sampling, we asked whether (1) Astragalus is uniquely characterized by bursts of radiation or whether diversification instead is uniform and no different from closely related taxa. Then we tested whether the species diversity of Astragalus is attributable specifically to its predilection for (2) cold and arid habitats, (3) particular soils, or to (4) chromosome evolution. Finally, we tested (5) whether Astragalus originated in central Asia as proposed and (6) whether niche evolutionary shifts were subsequently associated with the colonization of other continents. RESULTS Our results point to the importance of heterogeneity in the diversification of Astragalus, with upshifts associated with the earliest divergences but not strongly tied to any abiotic factor or biogeographic regionalization tested here. The only potential correlate with diversification we identified was chromosome number. Biogeographic shifts have a strong association with the abiotic environment and highlight the importance of central Asia as a biogeographic gateway. CONCLUSIONS Our investigation shows the importance of phylogenetic and evolutionary studies of logistically challenging "mega-radiations." Our findings reject any simple key innovation behind high diversity and underline the often nuanced, multifactorial processes leading to species-rich clades.
Collapse
Affiliation(s)
- Ryan A Folk
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Joseph L M Charboneau
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Michael Belitz
- Florida Museum, University of Florida, Gainesville, FL, USA
| | - Tajinder Singh
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | | | - Douglas E Soltis
- Florida Museum, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Pamela S Soltis
- Florida Museum, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, USA
| | - Robert P Guralnick
- Florida Museum, University of Florida, Gainesville, FL, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, USA
| | - Carolina M Siniscalchi
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
- General Libraries, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
17
|
Zhang Y, Fu Y, Xian W, Li X, Feng Y, Bu F, Shi Y, Chen S, van Velzen R, Battenberg K, Berry AM, Salgado MG, Liu H, Yi T, Fournier P, Alloisio N, Pujic P, Boubakri H, Schranz ME, Delaux PM, Wong GKS, Hocher V, Svistoonoff S, Gherbi H, Wang E, Kohlen W, Wall LG, Parniske M, Pawlowski K, Normand P, Doyle JJ, Cheng S. Comparative phylogenomics and phylotranscriptomics provide insights into the genetic complexity of nitrogen-fixing root-nodule symbiosis. PLANT COMMUNICATIONS 2024; 5:100671. [PMID: 37553834 PMCID: PMC10811378 DOI: 10.1016/j.xplc.2023.100671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/10/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023]
Abstract
Plant root-nodule symbiosis (RNS) with mutualistic nitrogen-fixing bacteria is restricted to a single clade of angiosperms, the Nitrogen-Fixing Nodulation Clade (NFNC), and is best understood in the legume family. Nodulating species share many commonalities, explained either by divergence from a common ancestor over 100 million years ago or by convergence following independent origins over that same time period. Regardless, comparative analyses of diverse nodulation syndromes can provide insights into constraints on nodulation-what must be acquired or cannot be lost for a functional symbiosis-and the latitude for variation in the symbiosis. However, much remains to be learned about nodulation, especially outside of legumes. Here, we employed a large-scale phylogenomic analysis across 88 species, complemented by 151 RNA-seq libraries, to elucidate the evolution of RNS. Our phylogenomic analyses further emphasize the uniqueness of the transcription factor NIN as a master regulator of nodulation and identify key mutations that affect its function across the NFNC. Comparative transcriptomic assessment revealed nodule-specific upregulated genes across diverse nodulating plants, while also identifying nodule-specific and nitrogen-response genes. Approximately 70% of symbiosis-related genes are highly conserved in the four representative species, whereas defense-related and host-range restriction genes tend to be lineage specific. Our study also identified over 900 000 conserved non-coding elements (CNEs), over 300 000 of which are unique to sampled NFNC species. NFNC-specific CNEs are enriched with the active H3K9ac mark and are correlated with accessible chromatin regions, thus representing a pool of candidate regulatory elements for genes involved in RNS. Collectively, our results provide novel insights into the evolution of nodulation and lay a foundation for engineering of RNS traits in agriculturally important crops.
Collapse
Affiliation(s)
- Yu Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuan Fu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenfei Xian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xiuli Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yong Feng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Fengjiao Bu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yan Shi
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Shiyu Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Robin van Velzen
- Biosystematics Group, Department of Plant Sciences, Wageningen University, 6708PB Wageningen, the Netherlands
| | - Kai Battenberg
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Alison M Berry
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Marco G Salgado
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Hui Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road, Kunming 650201, China
| | - Tingshuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road, Kunming 650201, China
| | - Pascale Fournier
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, Ecologie Microbienne, INRA, UMR 1418, 43 bd du 11 novembre 1918, 69622 Villeurbanne, France
| | - Nicole Alloisio
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, Ecologie Microbienne, INRA, UMR 1418, 43 bd du 11 novembre 1918, 69622 Villeurbanne, France
| | - Petar Pujic
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, Ecologie Microbienne, INRA, UMR 1418, 43 bd du 11 novembre 1918, 69622 Villeurbanne, France
| | - Hasna Boubakri
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, Ecologie Microbienne, INRA, UMR 1418, 43 bd du 11 novembre 1918, 69622 Villeurbanne, France
| | - M Eric Schranz
- Biosystematics Group, Department of Plant Sciences, Wageningen University, 6708PB Wageningen, the Netherlands
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet Tolosan, France
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Valerie Hocher
- French National Research Institute for Sustainable Development (IRD), UMR LSTM (IRD/CIRAD/INRAe/Montpellier University/Supagro)- Campus International Baillarguet, TA A-82/J, 34398 Montpellier Cedex 5, France
| | - Sergio Svistoonoff
- French National Research Institute for Sustainable Development (IRD), UMR LSTM (IRD/CIRAD/INRAe/Montpellier University/Supagro)- Campus International Baillarguet, TA A-82/J, 34398 Montpellier Cedex 5, France
| | - Hassen Gherbi
- French National Research Institute for Sustainable Development (IRD), UMR LSTM (IRD/CIRAD/INRAe/Montpellier University/Supagro)- Campus International Baillarguet, TA A-82/J, 34398 Montpellier Cedex 5, France
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, China
| | - Wouter Kohlen
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708PB Wageningen, the Netherlands
| | - Luis G Wall
- Laboratory of Biochemistry, Microbiology and Soil Biological Interactions, Department of Science and Technology, National University of Quilmes, CONICET, Bernal, Argentina
| | - Martin Parniske
- Faculty of Biology, Genetics, LMU Munich, Großhaderner Strasse 2-4, 82152 Martinsried, Germany
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Philippe Normand
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, Ecologie Microbienne, INRA, UMR 1418, 43 bd du 11 novembre 1918, 69622 Villeurbanne, France
| | - Jeffrey J Doyle
- School of Integrative Plant Science, Sections of Plant Biology and Plant Breeding & Genetics, Cornell University, Ithaca, NY 14853, USA.
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.
| |
Collapse
|
18
|
Tomás-Gallardo L, Cabrera JJ, Mesa S. Surface Plasmon Resonance as a Tool to Elucidate the Molecular Determinants of Key Transcriptional Regulators Controlling Rhizobial Lifestyles. Methods Mol Biol 2024; 2751:145-163. [PMID: 38265715 DOI: 10.1007/978-1-0716-3617-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Bacteria must be provided with a battery of tools integrated into regulatory networks, in order to respond and, consequently, adapt their physiology to changing environments. Within these networks, transcription factors finely orchestrate the expression of genes in response to a variety of signals, by recognizing specific DNA sequences at their promoter regions. Rhizobia are host-interacting soil bacteria that face severe changes to adapt their physiology from free-living conditions to the nitrogen-fixing endosymbiotic state inside root nodules associated with leguminous plants. One of these cues is the low partial pressure of oxygen within root nodules.Surface plasmon resonance (SPR) constitutes a technique that allows to measure molecular interactions dynamics at real time by detecting changes in the refractive index of a surface. Here, we implemented the SPR methodology to analyze the discriminatory determinants of transcription factors for specific interaction with their target genes. We focused on FixK2, a CRP/FNR-type protein with a central role in the complex oxygen-responsive regulatory network in the soybean endosymbiont Bradyrhizobium diazoefficiens. Our study unveiled relevant residues for protein-DNA interaction as well as allowed us to monitor kinetics and stability protein-DNA complex. We believe that this approach can be employed for the characterization of other relevant transcription factors which can assist to the better understanding of the adaptation of bacteria with agronomic or human interest to their different modes of life.
Collapse
Affiliation(s)
- Laura Tomás-Gallardo
- Proteomics and Biochemistry Unit, Andalusian Centre for Developmental Biology, CSIC-Junta de Andalucía-Pablo de Olavide University, Seville, Spain.
| | - Juan J Cabrera
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Socorro Mesa
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain
| |
Collapse
|
19
|
Zhang N, Jin CZ, Zhuo Y, Li T, Jin FJ, Lee HG, Jin L. Genetic diversity into a novel free-living species of Bradyrhizobium from contaminated freshwater sediment. Front Microbiol 2023; 14:1295854. [PMID: 38075887 PMCID: PMC10708946 DOI: 10.3389/fmicb.2023.1295854] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/30/2023] [Indexed: 10/10/2024] Open
Abstract
A free-living Bradyrhizobium strain isolated from a contaminated sediment sample collected at a water depth of 4 m from the Hongze Lake in China was characterized. Phylogenetic investigation of the 16S rRNA gene, concatenated housekeeping gene sequences, and phylogenomic analysis placed this strain in a lineage distinct from all previously described Bradyrhizobium species. The sequence similarities of the concatenated housekeeping genes support its distinctiveness with the type strains of the named species. The complete genome of strain S12-14-2 consists of a single chromosome of size 7.3M. The strain lacks both a symbiosis island and important nodulation genes. Based on the data presented here, the strain represents a new species, for which the name Bradyrhizobium roseus sp. nov. is proposed for the type strain S12-14-2T. Several functional differences between the isolate and other published genomes indicate that the genus Bradyrhizobium is extremely heterogeneous and has functions within the community, such as non-symbiotic nitrogen fixation. Functional denitrification and nitrogen fixation genes were identified on the genomes of strain S12-14-2T. Genes encoding proteins for sulfur oxidation, sulfonate transport, phosphonate degradation, and phosphonate production were also identified. Lastly, the B. roseus genome contained genes encoding ribulose 1,5-bisphosphate carboxylase/oxygenase, a trait that presumably enables autotrophic flexibility under varying environmental conditions. This study provides insights into the dynamics of a genome that could enhance our understanding of the metabolism and evolutionary characteristics of the genus Bradyrhizobium and a new genetic framework for future research.
Collapse
Affiliation(s)
- Naxue Zhang
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Chun-Zhi Jin
- Cell Factory Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ye Zhuo
- Cell Factory Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Taihua Li
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Feng-Jie Jin
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Hyung-Gwan Lee
- Cell Factory Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Long Jin
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
20
|
Jenkins SN, Middleton JA, Huang Z, Mickan BS, Andersen MO, Wheat L, Waite IS, Abbott LK. Combining frass and fatty acid co-products derived from Black soldier fly larvae farming shows potential as a slow release fertiliser. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165371. [PMID: 37422234 DOI: 10.1016/j.scitotenv.2023.165371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/15/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Use of black soldier fly larvae (BSFL) to process large volumes of organic waste is an emerging industry to produce protein. A co-product of this industry, the larval faeces (frass), has potential to be used as an organic fertiliser in a circular economy. However, BSFL frass has a high ammonium (N-NH4+) content which could result in nitrogen (N) loss following its application to land. One solution is to process the frass by combining it with solid fatty acids (FA) that have previously been used to manufacture slow-release inorganic fertilisers. We investigated the slow-releasing effect of N after combining BSFL frass with three FAs - lauric, myristic and stearic acid. Soil was amended with the three forms of FA processed (FA-P) frass, unprocessed frass or a control and incubated for 28 days. The impact of treatments on soil properties and soil bacterial communities were characterised during the incubation. Lower N-NH4+ concentrations occurred in soil treated with FA-P frass compared to unprocessed frass, and N-NH4+ release was slowest for lauric acid processed frass. Initially, all frass treatments caused a large shift in the soil bacterial community towards a dominance of fast-growing r-strategists that were correlated with increased organic carbon levels. FA-P frass appeared to enhance the immobilisation of N-NH4+ (from frass) by diverting it into microbial biomass. Unprocessed and stearic acid processed frass became enriched by slow-growing K-strategist bacteria at the latter stages of the incubation. Consequently, when frass was combined with FAs, FA chain length played an important role in regulating the composition of r-/K- strategists in soil and N and carbon cycling. Modifying frass with FAs could be developed into a slow release fertiliser leading to reduced soil N loss, improved fertiliser use efficiency, increased profitability and lower production costs.
Collapse
Affiliation(s)
- Sasha N Jenkins
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6000, Australia.
| | - Jen A Middleton
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6000, Australia
| | - ZhouDa Huang
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6000, Australia
| | - Bede S Mickan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6000, Australia
| | - Morten O Andersen
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6000, Australia; The Department of Green Technology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Luke Wheat
- Future Green Solutions, Moresby, WA 6530, Australia
| | - Ian S Waite
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6000, Australia
| | - Lynette K Abbott
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6000, Australia
| |
Collapse
|
21
|
Duo L, Yang Y, Gao Y, Zhao S. Graphene oxide affects the symbiosis of legume-rhizobium and associated rhizosphere rhizobial communities. CHEMOSPHERE 2023; 342:140166. [PMID: 37714489 DOI: 10.1016/j.chemosphere.2023.140166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
The large-scale production and utilization of graphene oxide (GO) have raised concerns regarding its environmental exposure and potential risks. However, existing research on GO toxicity has primarily focused on individual organisms. Little attention has been given to the interaction between GO and the nitrogen-fixing symbiosis of legume-rhizobium. In this study, we focused on alfalfa (Medicago sativa L.), a typical leguminous nitrogen-fixing plant, to investigate the effects of GO on various aspects of this symbiotic relationship, including root nodulation, rhizobial viability, nodule nitrogen fixation, DNA damage, and the composition of the rhizobial community in the rhizosphere. As the dosage of GO increased, a significant inhibition in nodulation development was observed. Exposure to GO resulted in decreased growth and viability of rhizobia, as well as induced DNA damage in nodule cells. Furthermore, with increasing GO dosage, there were significant reductions in nitrogenase activity, leghemoglobin level, and cytoplasmic ammonia content within the root nodules. Additionally, the presence of GO led to notable changes in the rhizobial community in the rhizosphere. Our findings support the existence of the damage promoted by GO in the symbiosis of nitrogen fixing rhizobia with legumes. This underscores the importance of careful soil GO management.
Collapse
Affiliation(s)
- Lian Duo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Yaqian Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Yingyue Gao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Shulan Zhao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.
| |
Collapse
|
22
|
Kostrakiewicz-Gierałt K. Products for Sportspeople Containing Constituents Derived from the Common Bean Phaseolus vulgaris L. (Fabaceae)-A Narrative Literature Review. Sports (Basel) 2023; 11:211. [PMID: 37999428 PMCID: PMC10674398 DOI: 10.3390/sports11110211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/04/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023] Open
Abstract
The third-largest land plant family, Fabaceae (Papilionaceae), includes trees, shrubs, and perennial or annual herbaceous plants containing both numerous beneficial constituents (e.g., proteins, carbohydrates, dietary fibre) and antinutrients (e.g., saponins, tannins, phytic acid, gossypol, lectins). The consumption of leguminous plants allows sports people to complete their requirements for nourishment but, on the other hand, it contributes to digestive system ailments. Therefore, the aim of the presented study was to review the experimental articles and patents referring to the application of common (kidney) bean (Phaseolus vulgaris L.)-based nutritional products for athletes. The survey of the literature was carried out according to PRISMA statements by browsing Scopus, PubMed and ISI Web of Science databases, as well as Google Scholar, Google Patents and Espacenet Patent Search engines using factorial combinations of the following keywords: ('common bean' or 'kidney bean' or 'Phaseolus vulgaris') and ('athlete' or 'sport') and ('food' or 'nutrition' or 'diet'). Altogether, 84 patents issued in the years 1995-2023 were noted. The majority of patents were developed by research teams consisting of at least four authors representing scientists affiliated in the United States of America and China. The patents refer to the production of food ingredients, nutritional products, and compositions: (i) for relieving fatigue, enhancing endurance, and increasing muscle mass and strength, (ii) for maintaining physical and mental health, and (iii) for controlling body weight. Moreover, the analysis of 19 original articles indicated the substantial acceptability of meals containing the common bean. To summarize, the performed investigations demonstrate the considerable use of Phaseolus vulgaris in sport nutrition and the growing acceptance of this trend.
Collapse
Affiliation(s)
- Kinga Kostrakiewicz-Gierałt
- Department of Tourism Geography and Ecology, Institute of Tourism, Faculty of Tourism and Recreation, University of Physical Education in Kraków, Jana Pawła II 78, 31-571 Cracow, Poland
| |
Collapse
|
23
|
Gunununu RP, Mohammed M, Jaiswal SK, Dakora FD. Phylogeny and symbiotic effectiveness of indigenous rhizobial microsymbionts of common bean (Phaseolus vulgaris L.) in Malkerns, Eswatini. Sci Rep 2023; 13:17029. [PMID: 37813863 PMCID: PMC10562383 DOI: 10.1038/s41598-023-43634-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
In most legumes, the rhizobial symbionts exhibit diversity across different environments. Although common bean (Phaseolus vulgaris L.) is one of the important legumes in southern Africa, there is no available information on the genetic diversity and N2-fixing effectiveness of its symbionts in Malkerns, Eswatini. In this study, we assessed the phylogenetic positions of rhizobial microsymbionts of common bean from Malkerns in Eswatini. The isolates obtained showed differences in morpho-physiology and N2-fixing efficiency. A dendrogram constructed from the ERIC-PCR banding patterns, grouped a total of 88 tested isolates into 80 ERIC-PCR types if considered at a 70% similarity cut-off point. Multilocus sequence analysis using 16S rRNA, rpoB, dnaK, gyrB, and glnII and symbiotic (nifH and nodC) gene sequences closely aligned the test isolates to the type strains of Rhizobium muluonense, R. paranaense, R. pusense, R. phaseoli and R. etli. Subjecting the isolates in this study to further description can potentially reveal novel species. Most of the isolates tested were efficient in fixing nitrogen and elicited greater stomatal conductance and photosynthetic rates in the common bean. Relative effectiveness (RE) varied from 18 to 433%, with 75 (85%) out of the 88 tested isolates being more effective than the nitrate fed control plants.
Collapse
Affiliation(s)
- Rotondwa P Gunununu
- Department of Crop Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Mustapha Mohammed
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
- Department of Crop Science, University for Development Studies, P.O. Box TL1882, Tamale, Ghana
| | - Sanjay K Jaiswal
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Felix D Dakora
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa.
| |
Collapse
|
24
|
Bitire TD, Abberton M, Tella EO, Edemodu A, Oyatomi O, Babalola OO. Impact of nitrogen-fixation bacteria on nitrogen-fixation efficiency of Bambara groundnut [ Vigna subterranea (L) Verdc] genotypes. Front Microbiol 2023; 14:1187250. [PMID: 37822737 PMCID: PMC10562726 DOI: 10.3389/fmicb.2023.1187250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/24/2023] [Indexed: 10/13/2023] Open
Abstract
Nitrogen fixation by bacteria is essential for sustaining the growth, development, and yield of legumes. Pot experiments were carried out at the International Institute of Tropical Agriculture (IITA) in the glasshouse between August to December 2018/2019 cropping season in Ibadan, Nigeria. Field studies were also performed in two different agroecological zones, "Ibadan and Ikenne" between August and December of 2019/2020 cropping season. The studies were set up to determine the potential of nitrogen-fixation bacteria strain inoculation on the nitrogen-fixation potential of 10 Bambara groundnut (BGN) genotypes, namely, TVSu-378, TVSu-506, TVSu-787, TVSu-1,606, TVSu-1,698, TVSu-1739, TVSu-710, TVSu-365, TVSu-475, and TVSu-305. The strains were inoculated as a broth to seedlings of each BGN genotype in the pot experiment. While six seeds from each BGN genotype were coated with each of the following nitrogen-fixation bacteria (Bradyrhizobium japonicum strains), FA3, USDA110, IRJ2180A, and RACA6, nitrogen fertilizer (urea, 20 kg/ha) was applied as a check to the nitrogen-fixation bacteria to seedlings of BGN genotypes 2 weeks after planting in both glasshouses and fields. Uninoculated plants served as controls (zero inoculation and zero fertilization). The field experiments were arranged in Randomized Complete Block Design (RCBD), while the glasshouse experiments were arranged in Complete Randomized Design (CRD) in triplicate. The result gotten showed that higher nodule numbers and weight were recorded in TVSu-1739 and TVSu-475 in both locations and seasons compared to other genotypes; the highest nitrogen fixed values were recorded among BGN genotypes TVSu-1739, TVSu-1,698, TVSu-787, TVSu-365, TVSu-305, TVSu-710, and TVSu-1,606, with a range of (62-67 kg ha-1), and were mostly enhanced by RACA6 and USDA110 strains compared to other strains that were used.
Collapse
Affiliation(s)
- Tope Daniel Bitire
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- Genetic Resources Center, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Michael Abberton
- Genetic Resources Center, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Esther Oluwabukunola Tella
- Department of Microbiology, Faculty of Natural and Applied Science, Lead City University, Ibadan, Nigeria
| | - Alex Edemodu
- Yam Breeding Unit, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Olaniyi Oyatomi
- Genetic Resources Center, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
25
|
Abe JNA, Dhungana I, Nguyen NH. Legume-nodulating rhizobia are widespread in soils and plants across the island of O'ahu, Hawai'i. PLoS One 2023; 18:e0291250. [PMID: 37695782 PMCID: PMC10495000 DOI: 10.1371/journal.pone.0291250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023] Open
Abstract
Legumes and their interaction with rhizobia represent one of the most well-characterized symbioses that are widespread across both natural and agricultural environments. However, larger distribution patterns and host associations on isolated Pacific islands with many native and introduced hosts have not been well-documented. Here, we used molecular and culturing techniques to characterize rhizobia from soils and 24 native and introduced legume species on the island of O'ahu, Hawai'i. We chose two of these isolates to inoculate an endemic legume tree, Erythina sandwicensis to measure nodulation potentials and host benefits. We found that all rhizobia genera can be found in the soil, where only Cupriavidus was found at all sites, although at lower abundance relative to other more common genera such as Rhizobium (and close relatives), Bradyzhizobium, and Devosia. Bradyrhizobium was the most common nodulator of legumes, where the strain Bradyrhizobium sp. strain JA1 is a generalist capable of forming nodules on nine different host species, including two native species. In greenhouse nursery inoculations, the two different Bradyrhizobium strains successfully nodulate the endemic E. sandwicensis; both strains equally and significantly increased seedling biomass in nursery inoculations. Overall, this work provides a molecular-based framework in which to study potential native and introduced rhizobia on one of the most isolated archipelagos on the planet.
Collapse
Affiliation(s)
- Jonathan N. A. Abe
- Department of Tropical Plant and Soil Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
| | - Ishwora Dhungana
- Department of Tropical Plant and Soil Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
| | - Nhu H. Nguyen
- Department of Tropical Plant and Soil Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
| |
Collapse
|
26
|
Mangena P. Cell Mutagenic Autopolyploidy Enhances Salinity Stress Tolerance in Leguminous Crops. Cells 2023; 12:2082. [PMID: 37626892 PMCID: PMC10453822 DOI: 10.3390/cells12162082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/30/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Salinity stress affects plant growth and development by causing osmotic stress and nutrient imbalances through excess Na+, K+, and Cl- ion accumulations that induce toxic effects during germination, seedling development, vegetative growth, flowering, and fruit set. However, the effects of salt stress on growth and development processes, especially in polyploidized leguminous plants, remain unexplored and scantly reported compared to their diploid counterparts. This paper discusses the physiological and molecular response of legumes towards salinity stress-based osmotic and ionic imbalances in plant cells. A multigenic response involving various compatible solutes, osmolytes, ROS, polyamines, and antioxidant activity, together with genes encoding proteins involved in the signal transduction, regulation, and response mechanisms to this stress, were identified and discussed. This discussion reaffirms polyploidization as the driving force in plant evolution and adaptation to environmental stress constraints such as drought, feverish temperatures, and, in particular, salt stress. As a result, thorough physiological and molecular elucidation of the role of gene duplication through induced autopolyploidization and possible mechanisms regulating salinity stress tolerance in grain legumes must be further studied.
Collapse
Affiliation(s)
- Phetole Mangena
- Department of Biodiversity, School of Molecular and Life Sciences, Faculty of Science and Agriculture, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| |
Collapse
|
27
|
James EK. Intimacy stabilizes symbiotic nodulation. NATURE PLANTS 2023:10.1038/s41477-023-01438-5. [PMID: 37322126 DOI: 10.1038/s41477-023-01438-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Affiliation(s)
- Euan K James
- Department of Ecological Sciences at the James Hutton Institute, Dundee, UK.
| |
Collapse
|
28
|
Myrtsi ED, Evergetis E, Koulocheri SD, Haroutounian SA. Bioactivity of Wild and Cultivated Legumes: Phytochemical Content and Antioxidant Properties. Antioxidants (Basel) 2023; 12:antiox12040852. [PMID: 37107225 PMCID: PMC10135128 DOI: 10.3390/antiox12040852] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
The global demand for increased meat production has brought to the surface several obstacles concerning environmental impacts, animals’ welfare, and quality features, revealing the need to produce safe foodstuffs with an environmentally acceptable procedure. In this regard, the incorporation of legumes into animal diets constitutes a sustainable way out that prevents these apprehensions. Legumes are plant crops belonging to the Fabaceae family and are known for their rich content of secondary metabolites., displaying significant antioxidant properties and a series of health and environmental benefits. The study herein aims to investigate the chemical composition and antioxidant activities of indigenous and cultivated legume plants used for food and feed. The respective results indicate that the methanolic extract of Lathyrus laxiflorus (Desf.) Kuntze displayed the highest phenolic (64.8 mg gallic acid equivalents/g extract) and tannin (419.6 mg catechin equivalents/g extract) content, while the dichloromethane extract of Astragalus glycyphyllos L., Trifolium physodes Steven ex M.Bieb. and Bituminaria bituminosa (L.) C.H.Stirt. plant samples exhibited the richest content in carotenoids lutein (0.0431 mg/g A. glycyphyllos extract and 0.0546 mg/g B. bituminosa extract), α-carotene (0.0431 mg/g T. physodes extract) and β-carotene (0.090 mg/g T. physodes extract and 0.3705 mg/g B. bituminosa extract) establishing their potential role as vitamin A precursor sources. Results presented herein verify the great potential of Fabaceae family plants for utilization as pasture plants and/or dietary ingredients, since their cultivation has a positive impact on the environment, and they were found to contain essential nutrients capable to improve health, welfare, and safety.
Collapse
Affiliation(s)
- Eleni D. Myrtsi
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Epameinondas Evergetis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Sofia D. Koulocheri
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Serkos A. Haroutounian
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
29
|
Msaddak A, Mars M, Quiñones MA, Lucas MM, Pueyo JJ. Lupin, a Unique Legume That Is Nodulated by Multiple Microsymbionts: The Role of Horizontal Gene Transfer. Int J Mol Sci 2023; 24:ijms24076496. [PMID: 37047476 PMCID: PMC10094711 DOI: 10.3390/ijms24076496] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Lupin is a high-protein legume crop that grows in a wide range of edaphoclimatic conditions where other crops are not viable. Its unique seed nutrient profile can promote health benefits, and it has been proposed as a phytoremediation plant. Most rhizobia nodulating Lupinus species belong to the genus Bradyrhizobium, comprising strains that are phylogenetically related to B. cytisi, B. hipponenese, B. rifense, B. iriomotense/B. stylosanthis, B. diazoefficiens, B. japonicum, B. canariense/B. lupini, and B. retamae/B. valentinum. Lupins are also nodulated by fast-growing bacteria within the genera Microvirga, Ochrobactrum, Devosia, Phyllobacterium, Agrobacterium, Rhizobium, and Neorhizobium. Phylogenetic analyses of the nod and nif genes, involved in microbial colonization and symbiotic nitrogen fixation, respectively, suggest that fast-growing lupin-nodulating bacteria have acquired their symbiotic genes from rhizobial genera other than Bradyrhizobium. Horizontal transfer represents a key mechanism allowing lupin to form symbioses with bacteria that were previously considered as non-symbiotic or unable to nodulate lupin, which might favor lupin’s adaptation to specific habitats. The characterization of yet-unstudied Lupinus species, including microsymbiont whole genome analyses, will most likely expand and modify the current lupin microsymbiont taxonomy, and provide additional knowledge that might help to further increase lupin’s adaptability to marginal soils and climates.
Collapse
Affiliation(s)
- Abdelhakim Msaddak
- Department of Soil. Plant and Environmental Quality, Institute of Agricultural Sciences, ICA-CSIC, 28006 Madrid, Spain
- Laboratory of Biodiversity and Valorization of Arid Areas Bioresources, BVBAA, Faculty of Sciences, University of Gabès, Erriadh, Zrig, Gabès 6072, Tunisia
| | - Mohamed Mars
- Laboratory of Biodiversity and Valorization of Arid Areas Bioresources, BVBAA, Faculty of Sciences, University of Gabès, Erriadh, Zrig, Gabès 6072, Tunisia
| | - Miguel A. Quiñones
- Department of Soil. Plant and Environmental Quality, Institute of Agricultural Sciences, ICA-CSIC, 28006 Madrid, Spain
| | - M. Mercedes Lucas
- Department of Soil. Plant and Environmental Quality, Institute of Agricultural Sciences, ICA-CSIC, 28006 Madrid, Spain
| | - José J. Pueyo
- Department of Soil. Plant and Environmental Quality, Institute of Agricultural Sciences, ICA-CSIC, 28006 Madrid, Spain
| |
Collapse
|
30
|
Maroyi A. Medicinal Uses of the Fabaceae Family in Zimbabwe: A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:1255. [PMID: 36986943 PMCID: PMC10051751 DOI: 10.3390/plants12061255] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
The current study is aimed at providing a systematic review of the ethnomedicinal, phytochemical and pharmacological properties of Fabaceae species used as sources of traditional medicinies in Zimbabwe. Fabaceae is one of the well-known plant families of ethnopharmacological importance. Of the approximately 665 species of the Fabaceae family occurring in Zimbabwe, about 101 are used for medicinal purposes. Many communities in the country, mainly in peri-urban, rural and marginalized areas with limited access to healthcare facilities, rely on traditional medicines as their primary healthcare. The study reviewed research studies undertaken on Zimbabwe's Fabaceae species during 1959 to 2022. Information was gathered from literature sourced from Google Scholar, Science Direct, Scopus, PubMed, books, dissertations, theses and scientific reports. This study showed that 101 species are traditionally used to manage human and animal diseases in Zimbabwe. The genera with the highest number of medicinal uses are Indigofera, Senna, Albizia, Rhynchosia and Vachellia. Species of these genera are used as traditional medicines against 134 medical conditions, mainly gastrointestinal conditions, female reproductive conditions, respiratory conditions and sexually transmitted infections. Shrubs (39.0%), trees (37.0%) and herbs (18.0%) are the primary sources of traditional medicines, while roots (80.2%), leaves (36.6%), bark (27.7%) and fruits (8.9%) are the most widely used plant parts. Many of Zimbabwe's Fabaceae species used as sources of traditional medicines have been assessed for their phytochemical and pharmacological properties, corroborating their medicinal uses. However, there is a need to unravel the therapeutic potential of the family through further ethnopharmacological research focusing on toxicological studies, in vitro and in vivo models, biochemical assays and pharmacokinetic studies.
Collapse
Affiliation(s)
- Alfred Maroyi
- Department of Botany, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| |
Collapse
|
31
|
Nitrogen-Fixing Symbiotic Paraburkholderia Species: Current Knowledge and Future Perspectives. NITROGEN 2023. [DOI: 10.3390/nitrogen4010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
A century after the discovery of rhizobia, the first Beta-proteobacteria species (beta-rhizobia) were isolated from legume nodules in South Africa and South America. Since then, numerous species belonging to the Burkholderiaceae family have been isolated. The presence of a highly branching lineage of nodulation genes in beta-rhizobia suggests a long symbiotic history. In this review, we focus on the beta-rhizobial genus Paraburkholderia, which includes two main groups: the South American mimosoid-nodulating Paraburkholderia and the South African predominantly papilionoid-nodulating Paraburkholderia. Here, we discuss the latest knowledge on Paraburkholderia nitrogen-fixing symbionts in each step of the symbiosis, from their survival in the soil, through the first contact with the legumes until the formation of an efficient nitrogen-fixing symbiosis in root nodules. Special attention is given to the strain P. phymatum STM815T that exhibits extraordinary features, such as the ability to: (i) enter into symbiosis with more than 50 legume species, including the agriculturally important common bean, (ii) outcompete other rhizobial species for nodulation of several legumes, and (iii) endure stressful soil conditions (e.g., high salt concentration and low pH) and high temperatures.
Collapse
|
32
|
Qin W, Chen Y, Wang X, Zhao H, Hou Y, Zhang Q, Guo X, Zhang Z, Zhu B. Whole-soil warming shifts species composition without affecting diversity, biomass and productivity of the plant community in an alpine meadow. FUNDAMENTAL RESEARCH 2023; 3:160-169. [PMID: 38932915 PMCID: PMC11197663 DOI: 10.1016/j.fmre.2022.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022] Open
Abstract
The structure and function of plant communities in alpine meadow ecosystems are potentially susceptible to climate warming. Here, we utilized a unique field manipulation experiment in an alpine meadow on the Qinghai-Tibetan Plateau and investigated the responses of plant species diversity, composition, biomass, and net primary productivity (NPP) at both community and functional group levels to whole-soil-profile warming (3-4 °C across 0-100 cm) during 2018-2021. Plant species diversity, biomass and NPP (both above- and belowground) at the community level showed remarkable resistance to warming. However, plant community composition gradually shifted over time. Over the whole experimental warming period, aboveground biomass of legumes significantly decreased by 45%. Conversely, warming significantly stimulated aboveground biomass of forbs by 84%, likely because of better growth and competitive advantages from the warming-induced stimulation of soil water and other variables. However, warming showed minor effects on aboveground biomass of grasses and sedges. Overall, we emphasize that experimental warming may significantly affect plant community composition in a short term by triggering adjustments in plant interspecific competition or survival strategies, which may cause potential changes in plant productivity over a more extended period and lead to changes in carbon source-sink dynamics in the alpine meadow ecosystem.
Collapse
Affiliation(s)
- Wenkuan Qin
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Ying Chen
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Xudong Wang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Hongyang Zhao
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Yanhui Hou
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Qiufang Zhang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Xiaowei Guo
- Qinghai Haibei National Field Research Station of Alpine Grassland Ecosystem, and Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Zhenhua Zhang
- Qinghai Haibei National Field Research Station of Alpine Grassland Ecosystem, and Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Biao Zhu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
33
|
Wang Y, Li Y, Duan T. Arbuscular mycorrhizal fungus changes alfalfa response to pathogen infection activated by pea aphid infestation. Front Microbiol 2023; 13:1074592. [PMID: 36845970 PMCID: PMC9945236 DOI: 10.3389/fmicb.2022.1074592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/22/2022] [Indexed: 02/10/2023] Open
Abstract
Introduction Arbuscular mycorrhizal (AM) fungi are important for the resistance of plants to insect infestation and diseases. However, the effect of AM fungal colonization of plants response to pathogen infection activated by pea aphid infestation is unknown. Pea aphid (Acyrthosiphon pisum) and the fungal pathogen Phoma medicaginis severely limit alfalfa production worldwide. Methods This study established an alfalfa (Medicago sativa)-AM fungus (Rhizophagus intraradices)-pea aphid-P. medicaginis experimental system to clarify the effects of an AM fungus on the host plant response to insect infestation and subsequent fungal pathogen infection. Results Pea aphid increased the disease incidence of P. medicaginis by 24.94%. The AM fungus decreased the disease index by 22.37% and enhanced alfalfa growth by increasing the uptake of total nitrogen and total phosphorus. The aphid induced polyphenol oxidase activity of alfalfa, and the AM fungus enhanced plant-defense enzyme activity against aphid infestation and subsequent P. medicaginis infection. In addition, the AM fungus increased the contents of jasmonic acid and abscisic acid in plants exposed to aphid infestation or pathogen infection. Abscisic acid and genes associated with the gene ontology term "hormone binding" were upregulated in aphid-infested or pathogen-infected alfalfa. Discussion The results demonstrate that an AM fungus enhances plant defense and signaling components induced by aphid infestation, which may contribute to improved defense against subsequent pathogen infection.
Collapse
Affiliation(s)
- Yajie Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China,Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, China,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yingde Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China,Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, China,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Tingyu Duan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China,Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, China,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China,*Correspondence: Tingyu Duan,
| |
Collapse
|
34
|
Fan K, Ferguson BJ, Muñoz NB, Li MW, Lam HM. Editorial: Metabolic adjustments and gene expression reprogramming for symbiotic nitrogen fixation in legume nodules, volume II. FRONTIERS IN PLANT SCIENCE 2023; 14:1141269. [PMID: 36760634 PMCID: PMC9903052 DOI: 10.3389/fpls.2023.1141269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Kejing Fan
- Center for Soybean Research of The State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Brett James Ferguson
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, QLD, Australia
| | | | - Man-Wah Li
- Center for Soybean Research of The State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hon-Ming Lam
- Center for Soybean Research of The State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
35
|
Sepp SK, Vasar M, Davison J, Oja J, Anslan S, Al-Quraishy S, Bahram M, Bueno CG, Cantero JJ, Fabiano EC, Decocq G, Drenkhan R, Fraser L, Garibay Oriel R, Hiiesalu I, Koorem K, Kõljalg U, Moora M, Mucina L, Öpik M, Põlme S, Pärtel M, Phosri C, Semchenko M, Vahter T, Vasco Palacios AM, Tedersoo L, Zobel M. Global diversity and distribution of nitrogen-fixing bacteria in the soil. FRONTIERS IN PLANT SCIENCE 2023; 14:1100235. [PMID: 36743494 PMCID: PMC9895822 DOI: 10.3389/fpls.2023.1100235] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Our knowledge of microbial biogeography has advanced in recent years, yet we lack knowledge of the global diversity of some important functional groups. Here, we used environmental DNA from 327 globally collected soil samples to investigate the biodiversity patterns of nitrogen-fixing bacteria by focusing on the nifH gene but also amplifying the general prokaryotic 16S SSU region. Globally, N-fixing prokaryotic communities are driven mainly by climatic conditions, with most groups being positively correlated with stable hot or seasonally humid climates. Among soil parameters, pH, but also soil N content were most often shown to correlate with the diversity of N-fixer groups. However, specific groups of N-fixing prokaryotes show contrasting responses to the same variables, notably in Cyanobacteria that were negatively correlated with stable hot climates, and showed a U-shaped correlation with soil pH, contrary to other N-fixers. Also, the non-N-fixing prokaryotic community composition was differentially correlated with the diversity and abundance of N-fixer groups, showing the often-neglected impact of biotic interactions among bacteria.
Collapse
Affiliation(s)
- Siim-Kaarel Sepp
- Institute of Ecology and Earth Sciences, University of Tartu, Taru, Estonia
| | - Martti Vasar
- Institute of Ecology and Earth Sciences, University of Tartu, Taru, Estonia
| | - John Davison
- Institute of Ecology and Earth Sciences, University of Tartu, Taru, Estonia
| | - Jane Oja
- Institute of Ecology and Earth Sciences, University of Tartu, Taru, Estonia
| | - Sten Anslan
- Institute of Ecology and Earth Sciences, University of Tartu, Taru, Estonia
| | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - C. Guillermo Bueno
- Institute of Ecology and Earth Sciences, University of Tartu, Taru, Estonia
| | - Juan José Cantero
- Universidad Nacional de Córdoba, Instituto Multidisciplinario de Biología Vegetal, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Universidad Nacional de Río Cuarto, Departamento de Biología Agrícola, Facultad de Agronomía y Veterinaria, Córdoba, Argentina
| | | | - Guillaume Decocq
- Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, UMR CNRS 7058), Jules Verne University of Picardie, Amiens, France
| | - Rein Drenkhan
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Lauchlan Fraser
- Department of Natural Resource Sciences, Thompson Rivers University, Kamloops, BC, Canada
| | - Roberto Garibay Oriel
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Inga Hiiesalu
- Institute of Ecology and Earth Sciences, University of Tartu, Taru, Estonia
| | - Kadri Koorem
- Institute of Ecology and Earth Sciences, University of Tartu, Taru, Estonia
| | - Urmas Kõljalg
- Institute of Ecology and Earth Sciences, University of Tartu, Taru, Estonia
| | - Mari Moora
- Institute of Ecology and Earth Sciences, University of Tartu, Taru, Estonia
| | - Ladislav Mucina
- Iluka Chair in Vegetation Science and Biogeography, Harry Butler Institute, Murdoch University, Perth, Australia
- Department of Geography & Environmental Studies, Stellenbosch University, Stellenbosch, South Africa
| | - Maarja Öpik
- Institute of Ecology and Earth Sciences, University of Tartu, Taru, Estonia
| | - Sergei Põlme
- Center of Mycology and Microbiology, University of Tartu, Tartu, Estonia
| | - Meelis Pärtel
- Institute of Ecology and Earth Sciences, University of Tartu, Taru, Estonia
| | - Cherdchai Phosri
- Department of Biology, Nakhon Phanom University, Nakhon Phanom, Thailand
| | - Marina Semchenko
- Institute of Ecology and Earth Sciences, University of Tartu, Taru, Estonia
| | - Tanel Vahter
- Institute of Ecology and Earth Sciences, University of Tartu, Taru, Estonia
| | - Aida M. Vasco Palacios
- Grupo de Microbiología Ambiental y Grupo BioMicro, Escuela de Microbiología, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Leho Tedersoo
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Center of Mycology and Microbiology, University of Tartu, Tartu, Estonia
| | - Martin Zobel
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
36
|
Li J, Shen J, Wang R, Chen Y, Zhang T, Wang H, Guo C, Qi J. The nearly complete assembly of the Cercis chinensis genome and Fabaceae phylogenomic studies provide insights into new gene evolution. PLANT COMMUNICATIONS 2023; 4:100422. [PMID: 35957520 PMCID: PMC9860166 DOI: 10.1016/j.xplc.2022.100422] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 05/27/2023]
Abstract
Fabaceae is a large family of angiosperms with high biodiversity that contains a variety of economically important crops and model plants for the study of biological nitrogen fixation. Polyploidization events have been extensively studied in some Fabaceae plants, but the occurrence of new genes is still concealed, owing to a lack of genomic information on certain species of the basal clade of Fabaceae. Cercis chinensis (Cercidoideae) is one such species; it diverged earliest from Fabaceae and is essential for phylogenomic studies and new gene predictions in Fabaceae. To facilitate genomic studies on Fabaceae, we performed genome sequencing of C. chinensis and obtained a 352.84 Mb genome, which was further assembled into seven pseudochromosomes with 30 612 predicted protein-coding genes. Compared with other legume genomes, that of C. chinensis exhibits no lineage-specific polyploidization event. Further phylogenomic analyses of 22 legumes and 11 other angiosperms revealed that many gene families are lineage specific before and after the diversification of Fabaceae. Among them, dozens of genes are candidates for new genes that have evolved from intergenic regions and are thus regarded as de novo-originated genes. They differ significantly from established genes in coding sequence length, exon number, guanine-cytosine content, and expression patterns among tissues. Functional analysis revealed that many new genes are related to asparagine metabolism. This study represents an important advance in understanding the evolutionary pattern of new genes in legumes and provides a valuable resource for plant phylogenomic studies.
Collapse
Affiliation(s)
- Jinglong Li
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jingting Shen
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Rui Wang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yamao Chen
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Taikui Zhang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Haifeng Wang
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Chunce Guo
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Forestry College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ji Qi
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China.
| |
Collapse
|
37
|
Czyż KB, Taylor CM, Kawaliło M, Koczyk G. Gain or Loss? Evidence for Legume Predisposition to Symbiotic Interactions with Rhizobia via Loss of Pathogen-Resistance-Related Gene Families. Int J Mol Sci 2022; 23:ijms232416003. [PMID: 36555644 PMCID: PMC9783688 DOI: 10.3390/ijms232416003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Nodulation is a hallmark yet non-universal characteristic of legumes. It is unknown whether the mechanisms underlying nitrogen-fixing symbioses evolved within legumes and the broader nitrogen-fixing clade (NFC) repeatedly de novo or based on common ancestral pathways. Ten new transcriptomes representing members from the Cercidoideae and Caesalpinioideae subfamilies were supplemented with published omics data from 65 angiosperms, to investigate how gene content correlates with nodulation capacity within Fabaceae and the NFC. Orthogroup analysis categorized annotated genes into 64150 orthogroups, of which 19 were significantly differentially represented between nodulating versus non-nodulating NFC species and were most commonly absent in nodulating taxa. The distribution of six over-represented orthogroups within Viridiplantae representatives suggested that genomic evolution events causing gene family expansions, including whole-genome duplications (WGDs), were unlikely to have facilitated the development of stable symbioses within Fabaceae as a whole. Instead, an absence of representation of 13 orthogroups indicated that losses of genes involved in trichome development, defense and wounding responses were strongly associated with rhizobial symbiosis in legumes. This finding provides novel evidence of a lineage-specific predisposition for the evolution and/or stabilization of nodulation in Fabaceae, in which a loss of pathogen resistance genes may have allowed for stable mutualistic interactions with rhizobia.
Collapse
Affiliation(s)
- Katarzyna B. Czyż
- Biometry and Bioinformatics Team, Institute of Plant Genetics Polish Academy of Science, 60-479 Poznań, Poland
- Correspondence:
| | - Candy M. Taylor
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - Michał Kawaliło
- Biometry and Bioinformatics Team, Institute of Plant Genetics Polish Academy of Science, 60-479 Poznań, Poland
| | - Grzegorz Koczyk
- Biometry and Bioinformatics Team, Institute of Plant Genetics Polish Academy of Science, 60-479 Poznań, Poland
| |
Collapse
|
38
|
Identification of the symbiovar maamori in Mesorhizobium isolated from nodules of Ononis repens in the Maamora forest (Morocco). Symbiosis 2022. [DOI: 10.1007/s13199-022-00890-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Ghantasala S, Roy Choudhury S. Nod factor perception: an integrative view of molecular communication during legume symbiosis. PLANT MOLECULAR BIOLOGY 2022; 110:485-509. [PMID: 36040570 DOI: 10.1007/s11103-022-01307-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Compatible interaction between rhizobial Nod factors and host receptors enables initial recognition and signaling events during legume-rhizobia symbiosis. Molecular communication is a new paradigm of information relay, which uses chemical signals or molecules as dialogues for communication and has been witnessed in prokaryotes, plants as well as in animal kingdom. Understanding this fascinating relay of signals between plants and rhizobia during the establishment of a synergistic relationship for biological nitrogen fixation represents one of the hotspots in plant biology research. Predominantly, their interaction is initiated by flavonoids exuding from plant roots, which provokes changes in the expression profile of rhizobial genes. Compatible interactions promote the secretion of Nod factors (NFs) from rhizobia, which are recognised by cognate host receptors. Perception of NFs by host receptors initiates the symbiosis and ultimately leads to the accommodation of rhizobia within root nodules via a series of mutual exchange of signals. This review elucidates the bacterial and plant perspectives during the early stages of symbiosis, explicitly emphasizing the significance of NFs and their cognate NF receptors.
Collapse
Affiliation(s)
- Swathi Ghantasala
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India
| | - Swarup Roy Choudhury
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India.
| |
Collapse
|
40
|
Nitrogen-fixing symbiotic bacteria act as a global filter for plant establishment on islands. Commun Biol 2022; 5:1209. [DOI: 10.1038/s42003-022-04133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
AbstractIsland biogeography has classically focused on abiotic drivers of species distributions. However, recent work has highlighted the importance of mutualistic biotic interactions in structuring island floras. The limited occurrence of specialist pollinators and mycorrhizal fungi have been found to restrict plant colonization on oceanic islands. Another important mutualistic association occurs between nearly 15,000 plant species and nitrogen-fixing (N-fixing) bacteria. Here, we look for evidence that N-fixing bacteria limit establishment of plants that associate with them. Globally, we find that plants associating with N-fixing bacteria are disproportionately underrepresented on islands, with a 22% decline. Further, the probability of N-fixing plants occurring on islands decreases with island isolation and, where present, the proportion of N-fixing plant species decreases with distance for large, but not small islands. These findings suggest that N-fixing bacteria serve as a filter to plant establishment on islands, altering global plant biogeography, with implications for ecosystem development and introduction risks.
Collapse
|
41
|
Crameri S, Fior S, Zoller S, Widmer A. A target capture approach for phylogenomic analyses at multiple evolutionary timescales in rosewoods (Dalbergia spp.) and the legume family (Fabaceae). Mol Ecol Resour 2022; 22:3087-3105. [PMID: 35689779 PMCID: PMC9796917 DOI: 10.1111/1755-0998.13666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/29/2022] [Accepted: 06/01/2022] [Indexed: 01/07/2023]
Abstract
Understanding the genetic changes associated with the evolution of biological diversity is of fundamental interest to molecular ecologists. The assessment of genetic variation at hundreds or thousands of unlinked genetic loci forms a sound basis to address questions ranging from micro- to macroevolutionary timescales, and is now possible thanks to advances in sequencing technology. Major difficulties are associated with (i) the lack of genomic resources for many taxa, especially from tropical biodiversity hotspots; (ii) scaling the numbers of individuals analysed and loci sequenced; and (iii) building tools for reproducible bioinformatic analyses of such data sets. To address these challenges, we developed target capture probes for genomic studies of the highly diverse, pantropically distributed and economically significant rosewoods (Dalbergia spp.), explored the performance of an overlapping probe set for target capture across the legume family (Fabaceae), and built the general purpose bioinformatic pipeline CaptureAl. Phylogenomic analyses of Malagasy Dalbergia species yielded highly resolved and well supported hypotheses of evolutionary relationships. Population genomic analyses identified differences between closely related species and revealed the existence of a potentially new species, suggesting that the diversity of Malagasy Dalbergia species has been underestimated. Analyses at the family level corroborated previous findings by the recovery of monophyletic subfamilies and many well-known clades, as well as high levels of gene tree discordance, especially near the root of the family. The new genomic and bioinformatic resources, including the Fabaceae1005 and Dalbergia2396 probe sets, will hopefully advance systematics and ecological genetics research in legumes, and promote conservation of the highly diverse and endangered Dalbergia rosewoods.
Collapse
Affiliation(s)
- Simon Crameri
- Institute of Integrative BiologyETH ZurichZürichSwitzerland
| | - Simone Fior
- Institute of Integrative BiologyETH ZurichZürichSwitzerland
| | - Stefan Zoller
- Institute of Integrative BiologyETH ZurichZürichSwitzerland
- Genetic Diversity Centre (GDC)ETH ZurichZürichSwitzerland
| | - Alex Widmer
- Institute of Integrative BiologyETH ZurichZürichSwitzerland
| |
Collapse
|
42
|
Zarrabian M, Montiel J, Sandal N, Ferguson S, Jin H, Lin YY, Klingl V, Marín M, James EK, Parniske M, Stougaard J, Andersen SU. A Promiscuity Locus Confers Lotus burttii Nodulation with Rhizobia from Five Different Genera. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:1006-1017. [PMID: 35852471 DOI: 10.1094/mpmi-06-22-0124-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Legumes acquire access to atmospheric nitrogen through nitrogen fixation by rhizobia in root nodules. Rhizobia are soil-dwelling bacteria and there is a tremendous diversity of rhizobial species in different habitats. From the legume perspective, host range is a compromise between the ability to colonize new habitats, in which the preferred symbiotic partner may be absent, and guarding against infection by suboptimal nitrogen fixers. Here, we investigate natural variation in rhizobial host range across Lotus species. We find that Lotus burttii is considerably more promiscuous than Lotus japonicus, represented by the Gifu accession, in its interactions with rhizobia. This promiscuity allows Lotus burttii to form nodules with Mesorhizobium, Rhizobium, Sinorhizobium, Bradyrhizobium, and Allorhizobium species that represent five distinct genera. Using recombinant inbred lines, we have mapped the Gifu/burttii promiscuity quantitative trait loci (QTL) to the same genetic locus regardless of rhizobial genus, suggesting a general genetic mechanism for symbiont-range expansion. The Gifu/burttii QTL now provides an opportunity for genetic and mechanistic understanding of promiscuous legume-rhizobia interactions. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Mohammad Zarrabian
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Jesús Montiel
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
- Center for Genomic Sciences, National Autonomous University of Mexico. Cuernavaca, Mexico
| | - Niels Sandal
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Shaun Ferguson
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Haojie Jin
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Yen-Yu Lin
- Faculty of Biology, University of Munich, Großhaderner Straße 2-4, 82152, Planegg-Martinsried, Germany
| | - Verena Klingl
- Faculty of Biology, University of Munich, Großhaderner Straße 2-4, 82152, Planegg-Martinsried, Germany
| | - Macarena Marín
- Faculty of Biology, University of Munich, Großhaderner Straße 2-4, 82152, Planegg-Martinsried, Germany
| | - Euan K James
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, U.K
| | - Martin Parniske
- Faculty of Biology, University of Munich, Großhaderner Straße 2-4, 82152, Planegg-Martinsried, Germany
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Stig U Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| |
Collapse
|
43
|
James EK. The seeds of nodulation. JOURNAL OF PLANT PHYSIOLOGY 2022; 278:153812. [PMID: 36183574 DOI: 10.1016/j.jplph.2022.153812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Euan K James
- Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.
| |
Collapse
|
44
|
Bouhnik O, Alami S, Lamin H, Lamrabet M, Bennis M, Ouajdi M, Bellaka M, Antri SE, Abbas Y, Abdelmoumen H, Bedmar EJ, Idrissi MME. The Fodder Legume Chamaecytisus albidus Establishes Functional Symbiosis with Different Bradyrhizobial Symbiovars in Morocco. MICROBIAL ECOLOGY 2022; 84:794-807. [PMID: 34625829 DOI: 10.1007/s00248-021-01888-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
In this work, we analyzed the symbiotic performance and diversity of rhizobial strains isolated from the endemic shrubby legume Chamaecytisus albidus grown in soils of three different agroforestry ecosystems representing arid and semi-arid forest areas in Morocco. The analysis of the rrs gene sequences from twenty-four representative strains selected after REP-PCR fingerprinting showed that all the strains belong to the genus Bradyrhizobium. Following multi-locus sequence analysis (MLSA) using the rrs, gyrB, recA, glnII, and rpoB housekeeping genes, five representative strains, CA20, CA61, CJ2, CB10, and CB61 were selected for further molecular studies. Phylogenetic analysis of the concatenated glnII, gyrB, recA, and rpoB genes showed that the strain CJ2 isolated from Sahel Doukkala soil is close to Bradyrhizobium canariense BTA-1 T (96.95%); that strains CA20 and CA61 isolated from the Amhach site are more related to Bradyrhizobium valentinum LmjM3T, with 96.40 and 94.57% similarity values; and that the strains CB10 and CB60 isolated from soil in the Bounaga site are more related to Bradyrhizobium murdochi CNPSo 4020 T and Bradyrhizobium. retamae Ro19T, with which they showed 95.45 and 97.34% similarity values, respectively. The phylogenetic analysis of the symbiotic genes showed that the strains belong to symbiovars lupini, genistearum, and retamae. All the five strains are able to nodulate Lupinus luteus, Retama monosperma, and Cytisus monspessilanus, but they do not nodulate Glycine max and Phaseolus vulgaris. The inoculation tests showed that the strains isolated from the 3 regions improve significantly the plant yield as compared to uninoculated plants. However, the strains of Bradyrhizobium sp. sv. retamae isolated from the site of Amhach were the most performing. The phenotypic analysis showed that the strains are able to use a wide range of carbohydrates and amino acids as sole carbon and nitrogen source. The strains isolated from the arid areas of Bounaga and Amhach were more tolerant to salinity and drought stress than strains isolated in the semi-arid area of Sahel Doukkala.
Collapse
Affiliation(s)
- Omar Bouhnik
- Centre de Biotechnologies Végétale Et Microbienne, Biodiversité Et Environnement, Faculté Des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Agdal, BP 1014 RP, Rabat, Morocco.
| | - Soufiane Alami
- Centre de Biotechnologies Végétale Et Microbienne, Biodiversité Et Environnement, Faculté Des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Agdal, BP 1014 RP, Rabat, Morocco
| | - Hanane Lamin
- Centre de Biotechnologies Végétale Et Microbienne, Biodiversité Et Environnement, Faculté Des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Agdal, BP 1014 RP, Rabat, Morocco
| | - Mouad Lamrabet
- Centre de Biotechnologies Végétale Et Microbienne, Biodiversité Et Environnement, Faculté Des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Agdal, BP 1014 RP, Rabat, Morocco
| | - Meryeme Bennis
- Centre de Biotechnologies Végétale Et Microbienne, Biodiversité Et Environnement, Faculté Des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Agdal, BP 1014 RP, Rabat, Morocco
| | - Mohammed Ouajdi
- Centre de Recherche Forestière, Département Des Eaux Et Forêts, Avenue Omar Ibn El KhattabAgdal, BP 763, 10050, Rabat, Morocco
| | - Mhammed Bellaka
- Centre de Recherche Forestière, Département Des Eaux Et Forêts, Avenue Omar Ibn El KhattabAgdal, BP 763, 10050, Rabat, Morocco
| | - Salwa El Antri
- Centre de Recherche Forestière, Département Des Eaux Et Forêts, Avenue Omar Ibn El KhattabAgdal, BP 763, 10050, Rabat, Morocco
| | - Younes Abbas
- Faculté Polydiciplinaire, Université Sultan Moulay Slimane, Beni Mellal, Morocco
| | - Hanaa Abdelmoumen
- Centre de Biotechnologies Végétale Et Microbienne, Biodiversité Et Environnement, Faculté Des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Agdal, BP 1014 RP, Rabat, Morocco
| | - Eulogio J Bedmar
- Departamento de Microbiología del Suelo y Sistemas Simbióticos Estación Experimental del Zaidín, CSIC Apartado Postal 419, Granada, 18008, Spain
| | - Mustapha Missbah El Idrissi
- Centre de Biotechnologies Végétale Et Microbienne, Biodiversité Et Environnement, Faculté Des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Agdal, BP 1014 RP, Rabat, Morocco
| |
Collapse
|
45
|
Mathesius U. Are legumes different? Origins and consequences of evolving nitrogen fixing symbioses. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153765. [PMID: 35952452 DOI: 10.1016/j.jplph.2022.153765] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 05/14/2023]
Abstract
Nitrogen fixing symbioses between plants and bacteria are ancient and, while not numerous, are formed in diverse lineages of plants ranging from microalgae to angiosperms. One symbiosis stands out as the most widespread one is that between legumes and rhizobia, leading to the formation of nitrogen-fixing nodules. The legume family is one of the largest and most diverse group of plants and legumes have been used by humans since the beginning of agriculture, both as high nitrogen food, as well as pastures and rotation crops. One open question is whether their ability to form a nitrogen-fixing symbiosis has contributed to legumes' success, and whether legumes have any unique characteristics that have made them more diverse and widespread than other groups of plants. This review examines the evolutionary journey that has led to the diversification of legumes, in particular its nitrogen-fixing symbiosis, and asks four questions to investigate which legume traits might have contributed to their success: 1. In what ways do legumes differ from other plant groups that have evolved nitrogen-fixing symbioses? In order to answer this question, the characteristics of the symbioses, and efficiencies of nitrogen fixation are compared between different groups of nitrogen fixing plants. 2. Could certain unique features of legumes be a reason for their success? This section examines the manifestations and possible benefits of a nitrogen-rich 'lifestyle' in legumes. 3. If nitrogen fixation was a reason for such a success, why have some species lost the symbiosis? Formation of symbioses has trade-offs, and while these are less well known for non-legumes, there are known energetic and ecological reasons for loss of symbiotic potential in legumes. 4. What can we learn from the unique traits of legumes for future crop improvements? While exploiting some of the physiological properties of legumes could be used to improve legume breeding, our increasing molecular understanding of the essential regulators of root nodule symbioses raise hope of creating new nitrogen fixing symbioses in other crop species.
Collapse
Affiliation(s)
- Ulrike Mathesius
- Division of Plant Sciences, Research School of Biology, The Australian National University, 134 Linnaeus Way, Canberra, ACT, 2601, Australia.
| |
Collapse
|
46
|
de Faria SM, Ringelberg JJ, Gross E, Koenen EJM, Cardoso D, Ametsitsi GKD, Akomatey J, Maluk M, Tak N, Gehlot HS, Wright KM, Teaumroong N, Songwattana P, de Lima HC, Prin Y, Zartman CE, Sprent JI, Ardley J, Hughes CE, James EK. The innovation of the symbiosome has enhanced the evolutionary stability of nitrogen fixation in legumes. THE NEW PHYTOLOGIST 2022; 235:2365-2377. [PMID: 35901264 PMCID: PMC9541511 DOI: 10.1111/nph.18321] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/31/2022] [Indexed: 05/12/2023]
Abstract
Nitrogen-fixing symbiosis is globally important in ecosystem functioning and agriculture, yet the evolutionary history of nodulation remains the focus of considerable debate. Recent evidence suggesting a single origin of nodulation followed by massive parallel evolutionary losses raises questions about why a few lineages in the N2 -fixing clade retained nodulation and diversified as stable nodulators, while most did not. Within legumes, nodulation is restricted to the two most diverse subfamilies, Papilionoideae and Caesalpinioideae, which show stable retention of nodulation across their core clades. We characterize two nodule anatomy types across 128 species in 56 of the 152 genera of the legume subfamily Caesalpinioideae: fixation thread nodules (FTs), where nitrogen-fixing bacteroids are retained within the apoplast in modified infection threads, and symbiosomes, where rhizobia are symplastically internalized in the host cell cytoplasm within membrane-bound symbiosomes (SYMs). Using a robust phylogenomic tree based on 997 genes from 147 Caesalpinioideae genera, we show that losses of nodulation are more prevalent in lineages with FTs than those with SYMs. We propose that evolution of the symbiosome allows for a more intimate and enduring symbiosis through tighter compartmentalization of their rhizobial microsymbionts, resulting in greater evolutionary stability of nodulation across this species-rich pantropical legume clade.
Collapse
Affiliation(s)
- Sergio M. de Faria
- Embrapa Agrobiologia465 km 07, SeropédicaRio de JaneiroBR23891‐000Brazil
| | - Jens J. Ringelberg
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZollikerstrasse 107ZurichCH‐8008Switzerland
| | - Eduardo Gross
- Departamento de Ciências Agrárias e AmbientaisUniversidade Estadual de Santa Cruz (UESC)IlhéusBA45662‐900Brazil
| | - Erik J. M. Koenen
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZollikerstrasse 107ZurichCH‐8008Switzerland
| | - Domingos Cardoso
- National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN‐TREE)Instituto de Biologia, Universidade Federal de Bahia (UFBA)Rua Barão de Jeremoabo, s.n., OndinaSalvador40170‐115BABrazil
| | | | - John Akomatey
- CSIR‐Forestry Research Institute of GhanaFUMESUAPO Box UP 63 KNUSTKumasiGhana
| | - Marta Maluk
- The James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| | - Nisha Tak
- Department of Botany, BNF and Microbial Genomics Lab.Center of Advanced Study, Jai Narain Vyas UniversityJodhpur342001RajasthanIndia
| | - Hukam S. Gehlot
- Department of Botany, BNF and Microbial Genomics Lab.Center of Advanced Study, Jai Narain Vyas UniversityJodhpur342001RajasthanIndia
| | | | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhonratchasima30000Thailand
| | - Pongpan Songwattana
- School of Biotechnology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhonratchasima30000Thailand
| | - Haroldo C. de Lima
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro (JBRJ/MMA)Rua Pacheco Leão 915Rio de Janeiro22460‐030RJBrazil
- Instituto Nacional da Mata Atlântica (INMA‐MCTI)Av. José Ruschi 4Santa Teresa29650‐000ESBrazil
| | - Yves Prin
- CIRAD, UMR LSTMCampus de Baillarguet34398Montpellier Cedex 5France
| | - Charles E. Zartman
- Departamento de BiodiversidadeInstituto Nacional de Pesquisas da Amazônia (INPA)Av. André Araújo Aleixo, Caixa Postal 478Manaus69060‐001AMBrazil
| | - Janet I. Sprent
- Division of Plant SciencesUniversity of Dundee at The James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| | - Julie Ardley
- College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWA6150Australia
| | - Colin E. Hughes
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZollikerstrasse 107ZurichCH‐8008Switzerland
| | - Euan K. James
- The James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| |
Collapse
|
47
|
Ringelberg JJ, Koenen EJM, Iganci JR, de Queiroz LP, Murphy DJ, Gaudeul M, Bruneau A, Luckow M, Lewis GP, Hughes CE. Phylogenomic analysis of 997 nuclear genes reveals the need for extensive generic re-delimitation in Caesalpinioideae (Leguminosae). PHYTOKEYS 2022; 205:3-58. [PMID: 36762007 PMCID: PMC9848904 DOI: 10.3897/phytokeys.205.85866] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/27/2022] [Indexed: 05/05/2023]
Abstract
Subfamily Caesalpinioideae with ca. 4,600 species in 152 genera is the second-largest subfamily of legumes (Leguminosae) and forms an ecologically and economically important group of trees, shrubs and lianas with a pantropical distribution. Despite major advances in the last few decades towards aligning genera with clades across Caesalpinioideae, generic delimitation remains in a state of considerable flux, especially across the mimosoid clade. We test the monophyly of genera across Caesalpinioideae via phylogenomic analysis of 997 nuclear genes sequenced via targeted enrichment (Hybseq) for 420 species and 147 of the 152 genera currently recognised in the subfamily. We show that 22 genera are non-monophyletic or nested in other genera and that non-monophyly is concentrated in the mimosoid clade where ca. 25% of the 90 genera are found to be non-monophyletic. We suggest two main reasons for this pervasive generic non-monophyly: (i) extensive morphological homoplasy that we document here for a handful of important traits and, particularly, the repeated evolution of distinctive fruit types that were historically emphasised in delimiting genera and (ii) this is an artefact of the lack of pantropical taxonomic syntheses and sampling in previous phylogenies and the consequent failure to identify clades that span the Old World and New World or conversely amphi-Atlantic genera that are non-monophyletic, both of which are critical for delimiting genera across this large pantropical clade. Finally, we discuss taxon delimitation in the phylogenomic era and especially how assessing patterns of gene tree conflict can provide additional insights into generic delimitation. This new phylogenomic framework provides the foundations for a series of papers reclassifying genera that are presented here in Advances in Legume Systematics (ALS) 14 Part 1, for establishing a new higher-level phylogenetic tribal and clade-based classification of Caesalpinioideae that is the focus of ALS14 Part 2 and for downstream analyses of evolutionary diversification and biogeography of this important group of legumes which are presented elsewhere.
Collapse
Affiliation(s)
- Jens J. Ringelberg
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH 8008, Zurich, SwitzerlandUniversity of ZurichZurichSwitzerland
| | - Erik J. M. Koenen
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH 8008, Zurich, SwitzerlandUniversity of ZurichZurichSwitzerland
- Present address: Evolutionary Biology & Ecology, Université Libre de Bruxelles, Faculté des Sciences, Campus du Solbosch - CP 160/12, Avenue F.D. Roosevelt, 50, 1050 Bruxelles, BelgiumUniversité Libre de BruxellesBruxellesBelgium
| | - João R. Iganci
- Instituto de Biologia, Universidade Federal de Pelotas, Campus Universitário Capão do Leão, Travessa André Dreyfus s/n, Capão do Leão 96010-900, Rio Grande do Sul, BrazilUniversidade Federal de PelotasRio Grande do SulBrazil
- Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, 91501-970, BrazilUniversidade Federal do Rio Grande do SulRio Grande do SulBrazil
| | - Luciano P. de Queiroz
- Departamento Ciências Biológicas, Universidade Estadual de Feira de Santana, Avenida Transnordestina s/n – Novo Horizonte, 44036-900, Feira de Santana, BrazilUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
| | - Daniel J. Murphy
- Royal Botanic Gardens Victoria, Birdwood Ave., Melbourne, VIC 3004, AustraliaRoyal Botanic Gardens VictoriaMelbourneAustralia
| | - Myriam Gaudeul
- Institut de Systématique, Evolution, Biodiversité (ISYEB), MNHN-CNRS-SU-EPHE-UA, 57 rue Cuvier, CP 39, 75231 Paris, Cedex 05, FranceInstitut de Systématique, Evolution, Biodiversité (ISYEB)ParisFrance
| | - Anne Bruneau
- Institut de Recherche en Biologie Végétale and Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke St E, Montreal, QC H1X 2B2, CanadaUniversité de MontréalMontrealCanada
| | - Melissa Luckow
- School of Integrative Plant Science, Plant Biology Section, Cornell University, 215 Garden Avenue, Roberts Hall 260, Ithaca, NY 14853, USACornell UniversityIthacaUnited States of America
| | - Gwilym P. Lewis
- Accelerated Taxonomy Department, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UKAccelerated Taxonomy Department, Royal Botanic GardensRichmondUnited Kingdom
| | - Colin E. Hughes
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH 8008, Zurich, SwitzerlandUniversity of ZurichZurichSwitzerland
| |
Collapse
|
48
|
Zucker F, Bischoff V, Olo Ndela E, Heyerhoff B, Poehlein A, Freese HM, Roux S, Simon M, Enault F, Moraru C. New Microviridae isolated from Sulfitobacter reveals two cosmopolitan subfamilies of single-stranded DNA phages infecting marine and terrestrial Alphaproteobacteria. Virus Evol 2022; 8:veac070. [PMID: 36533142 PMCID: PMC9753089 DOI: 10.1093/ve/veac070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/24/2022] [Accepted: 07/28/2022] [Indexed: 10/01/2023] Open
Abstract
The Microviridae family represents one of the major clades of single-stranded DNA (ssDNA) phages. Their cultivated members are lytic and infect Proteobacteria, Bacteroidetes, and Chlamydiae. Prophages have been predicted in the genomes from Bacteroidales, Hyphomicrobiales, and Enterobacteriaceae and cluster within the 'Alpavirinae', 'Amoyvirinae', and Gokushovirinae. We have isolated 'Ascunsovirus oldenburgi' ICBM5, a novel phage distantly related to known Microviridae. It infects Sulfitobacter dubius SH24-1b and uses both a lytic and a carrier-state life strategy. Using ICBM5 proteins as a query, we uncovered in publicly available resources sixty-five new Microviridae prophages and episomes in bacterial genomes and retrieved forty-seven environmental viral genomes (EVGs) from various viromes. Genome clustering based on protein content and phylogenetic analysis showed that ICBM5, together with Rhizobium phages, new prophages, episomes, and EVGs cluster within two new phylogenetic clades, here tentatively assigned the rank of subfamily and named 'Tainavirinae' and 'Occultatumvirinae'. They both infect Rhodobacterales. Occultatumviruses also infect Hyphomicrobiales, including nitrogen-fixing endosymbionts from cosmopolitan legumes. A biogeographical assessment showed that tainaviruses and occultatumviruses are spread worldwide, in terrestrial and marine environments. The new phage isolated here sheds light onto new and diverse branches of the Microviridae tree, suggesting that much of the ssDNA phage diversity remains in the dark.
Collapse
Affiliation(s)
- Falk Zucker
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Str. 9−11, Oldenburg D-26111, Germany
| | - Vera Bischoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Str. 9−11, Oldenburg D-26111, Germany
| | - Eric Olo Ndela
- Laboratoire Microorganismes: Genome Environment (LMGE), Université Clermont Auvergne, CNRS, 1 Imp. Amélie Murat, Aubière 63170, Frankreich
| | - Benedikt Heyerhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Str. 9−11, Oldenburg D-26111, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August-University Göttingen, Institute of Microbiology and Genetics, Grisebachstr. 8, Göttingen D-37077, Germany
| | - Heike M Freese
- Leibniz-Institut DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7 B, Braunschweig D-38124, Germany
| | - Simon Roux
- Lawrence Berkeley National Laboratory, DOE Joint Genome Institute, Berkeley, CA 94720, USA
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Str. 9−11, Oldenburg D-26111, Germany
| | - Francois Enault
- Laboratoire Microorganismes: Genome Environment (LMGE), Université Clermont Auvergne, CNRS, 1 Imp. Amélie Murat, Aubière 63170, Frankreich
| | - Cristina Moraru
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Str. 9−11, Oldenburg D-26111, Germany
| |
Collapse
|
49
|
Chouhan B, Tak N, Bissa G, Adhikari D, Barik SK, Sprent JI, James EK, Jha S, Gehlot HS. Evolution of novel strains of Ensifer nodulating the invasive legume Leucaena leucocephala (Lam.) de Wit in different climatic regions of India through lateral gene transfer. FEMS Microbiol Ecol 2022; 98:6643559. [PMID: 35833268 DOI: 10.1093/femsec/fiac086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/24/2022] [Accepted: 07/12/2022] [Indexed: 11/12/2022] Open
Abstract
More than 200 root-nodule bacterial strains were isolated from Leucaena leucocephala growing at 42 sampling sites across 12 states and three union territories of India. Genetic diversity was observed among 114 strains from various climatic zones; based on recA these were identified as strains of Ensifer, Mesorhizobium, Rhizobium and Bradyrhizobium. In MLSA strains clustered into several novel clades and lineages. Ensifer were predominant nodulating genotype isolated from majority of alkaline soils, while Mesorhizobium and Rhizobium strains were isolated from a limited sampling in North-Eastern states with acidic soils. Positive nodulation assays of selected Ensifer representing different genetic combinations of housekeeping and sym genes suggested their broad host range within the closely related mimosoid genera Vachellia, Senegalia, Mimosa and Prosopis. Leucaena selected diverse strains of Ensifer and Mesorhizobium as symbionts depending on available soil pH, climatic and other edaphic conditions in India. Lateral gene transfer seems to play a major role in genetic diversification of Ensifer exhibited in terms of Old World vs. Neotropical genetic make-up and mixed populations at several sites. Although Neotropical Ensifer strains were most symbiotically effective on Leucaena the native Ensifer are promiscuous and particularly well-adapted to a wide range of sampling sites with varied climates and edaphic factors.
Collapse
Affiliation(s)
- Bhawana Chouhan
- BNF and Microbial Genomics Lab., Department of Botany, Center of Advanced Study, Jai Narain Vyas University, Jodhpur- 342001, Rajasthan, India
| | - Nisha Tak
- BNF and Microbial Genomics Lab., Department of Botany, Center of Advanced Study, Jai Narain Vyas University, Jodhpur- 342001, Rajasthan, India
| | - Garima Bissa
- BNF and Microbial Genomics Lab., Department of Botany, Center of Advanced Study, Jai Narain Vyas University, Jodhpur- 342001, Rajasthan, India
| | - Dibyendu Adhikari
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow- 226001, Uttar Pradesh, India
| | - Saroj K Barik
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow- 226001, Uttar Pradesh, India
| | - Janet I Sprent
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Euan K James
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Shweta Jha
- Plant Functional Genomics Lab, Biotechnology Unit, Department of Botany, UGC-Centre of Advanced Study, Jai Narain Vyas University, Jodhpur- 342001, Rajasthan, India
| | - Hukam S Gehlot
- BNF and Microbial Genomics Lab., Department of Botany, Center of Advanced Study, Jai Narain Vyas University, Jodhpur- 342001, Rajasthan, India
| |
Collapse
|
50
|
Klepa MS, Helene LCF, O´Hara G, Hungria M. Bradyrhizobium cenepequi sp. nov., Bradyrhizobium semiaridum sp. nov., Bradyrhizobium hereditatis sp. nov. and Bradyrhizobium australafricanum sp. nov., symbionts of different leguminous plants of Western Australia and South Africa and definition of three novel symbiovars. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005446] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bradyrhizobium
is a heterogeneous bacterial genus capable of establishing symbiotic associations with a broad range of legume hosts, including species of economic and environmental importance. This study was focused on the taxonomic and symbiovar definition of four strains – CNPSo 4026T, WSM 1704T, WSM 1738T and WSM 4400T – previously isolated from nodules of legumes in Western Australia and South Africa. The 16S rRNA gene phylogenetic tree allocated the strains to the
Bradyrhizobium elkanii
supergroup. The multilocus sequence analysis (MLSA) with partial sequences of six housekeeping genes – atpD, dnaK, glnII, gyrB, recA and rpoB – did not cluster the strains under study as conspecific to any described
Bradyrhizobium
species. Average nucleotide identity and digital DNA–DNA hybridization values were calculated for the four strains of this study and the closest species according to the MLSA phylogeny with the highest values being 95.46 and 62.20 %, respectively; therefore, both being lower than the species delineation cut-off values. The nodC and nifH phylogenies included strains WSM 1738T and WSM 4400T in the symbiovars retamae and vignae respectively, and also allowed the definition of three new symbiovars, sv. cenepequi, sv. glycinis, and sv. cajani. Analysis of morphophysiological characterization reinforced the identification of four novel proposed
Bradyrhizobium
species that are accordingly named as follows: Bradyrhizobium cenepequi sp. nov. (CNPSo 4026T=WSM 4798T=LMG 31653T), isolated from Vigna unguiculata; Bradyrhizobium semiaridum sp. nov. (WSM 1704T=CNPSo 4028T=LMG 31654T), isolated from Tephrosia gardneri; Bradyrhizobium hereditatis sp. nov. (WSM 1738T=CNPSo 4025T=LMG 31652T), isolated from Indigofera sp.; and Bradyrhizobium australafricanum sp. nov. (WSM 4400T=CNPSo 4015T=LMG 31648T) isolated from Glycine sp.
Collapse
Affiliation(s)
- Milena Serenato Klepa
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, 70.040-020, Brasília, Distrito Federal, Brazil
- Department of Microbiology, Universidade Estadual de Londrina, C.P. 10011, 86057-970, Londrina, Paraná, Brazil
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
| | - Luisa Caroline Ferraz Helene
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, 70.040-020, Brasília, Distrito Federal, Brazil
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
| | - Graham O´Hara
- Centre for Rhizobium Studies (CRS), Murdoch University 90 South St. Murdoch, WA, Australia
| | - Mariangela Hungria
- Department of Microbiology, Universidade Estadual de Londrina, C.P. 10011, 86057-970, Londrina, Paraná, Brazil
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, 70.040-020, Brasília, Distrito Federal, Brazil
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
| |
Collapse
|