1
|
Usmani L, Shakil A, Khan I, Alvi T, Singh S, Das D. Brassinosteroids in Micronutrient Homeostasis: Mechanisms and Implications for Plant Nutrition and Stress Resilience. PLANTS (BASEL, SWITZERLAND) 2025; 14:598. [PMID: 40006858 PMCID: PMC11859562 DOI: 10.3390/plants14040598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
Brassinosteroids (BRs) are crucial plant hormones that play a significant role in regulating various physiological processes, including micronutrient homeostasis. This review delves into the complex roles of BRs in the uptake, distribution, and utilization of essential micronutrients such as iron (Fe), zinc (Zn), manganese (Mn), copper (Cu), and boron (B). BRs influence the expression of key transporter genes responsible for the absorption and internal distribution of these micronutrients. For iron, BRs enhance the expression of genes related to iron reduction and transport, improve root architecture, and strengthen stress tolerance mechanisms. Regarding zinc, BRs regulate the expression of zinc transporters and support root development, thereby optimizing zinc uptake. Manganese homeostasis is managed through the BR-mediated regulation of manganese transporter genes and chlorophyll production, essential for photosynthesis. For copper, BRs influence the expression of copper transporters and maintain copper-dependent enzyme activities crucial for metabolic functions. Finally, BRs contribute to boron homeostasis by regulating its metabolism, which is vital for cell wall integrity and overall plant development. This review synthesizes recent findings on the mechanistic pathways through which BRs affect micronutrient homeostasis and discusses their implications for enhancing plant nutrition and stress resilience. Understanding these interactions offers valuable insights into strategies for improving micronutrient efficiency in crops, which is essential for sustainable agriculture. This comprehensive analysis highlights the significance of BRs in micronutrient management and provides a framework for future research aimed at optimizing nutrient use and boosting plant productivity.
Collapse
Affiliation(s)
- Laiba Usmani
- School of Health Sciences and Translational Research, Department of Biotechnology, Sister Nivedita University, Kolkata 700156, West Bengal, India
| | - Adiba Shakil
- School of Health Sciences and Translational Research, Department of Biotechnology, Sister Nivedita University, Kolkata 700156, West Bengal, India
| | - Iram Khan
- School of Health Sciences and Translational Research, Department of Biotechnology, Sister Nivedita University, Kolkata 700156, West Bengal, India
| | - Tanzila Alvi
- School of Health Sciences and Translational Research, Department of Biotechnology, Sister Nivedita University, Kolkata 700156, West Bengal, India
| | - Surjit Singh
- School of Health Sciences and Translational Research, Department of Biotechnology, Sister Nivedita University, Kolkata 700156, West Bengal, India
| | - Debatosh Das
- Natural Products Utilization Research, U.S. Department of Agriculture, Agricultural Research Service, Oxford, MS 38677, USA
| |
Collapse
|
2
|
Jiang Z, Yao J, Wang S, Liu L, Shi L, Xu F, Liu Z. Transcriptome and phytohormone profiling of stamen and pistil in Brassica napus under boron deficiency. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109393. [PMID: 39721193 DOI: 10.1016/j.plaphy.2024.109393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
Plant reproduction is a fundamental requirement for plants to sustain genetic inheritance. In the perspective of plant nutrition, such process is strongly influenced by boron deficiency (-B) and as documented about a century ago. To date, little is known about the mechanism of boron deficiency-induced fertility reduction. In this study, we successfully established a cultivation system for Brassica napus to precisely manipulate boron supply when the generative stage initiates. We dissected the stamen and pistil of early-developing Brassica napus flower buds for transcriptome and phytohormone analysis, and demonstrated pistil and stamen showed distinct responding processes to -B. In addition, we revealed that auxin (IAA)-related compounds and several IAA-biosynthesis genes may play important roles in reproductive organ responding to -B, suggesting the IAA metabolism pathway seems to play a crucial role in -B induced reproductive organ abortion process. Taken together, we created a reliable system to study boron deficiency induced fertility reduction, by which generated the first transcriptome result for dissected stamen and pistil under different boron regimes, and suggested IAA metabolism pathway deserves as important target for further study in such regimes.
Collapse
Affiliation(s)
- Zhexuan Jiang
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinliang Yao
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lan Liu
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhaojun Liu
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| |
Collapse
|
3
|
Liu J, Qiu S, Xue T, Yuan Y. Physiology and transcriptome of Eucommia ulmoides seeds at different germination stages. PLANT SIGNALING & BEHAVIOR 2024; 19:2329487. [PMID: 38493506 PMCID: PMC10950268 DOI: 10.1080/15592324.2024.2329487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/03/2024] [Indexed: 03/19/2024]
Abstract
E. ulmoides (Eucommia ulmoides) has significant industrial and medicinal value and high market demand. E. ulmoides grows seedlings through sowing. According to previous studies, plant hormones have been shown to regulate seed germination. To understand the relationship between hormones and E. ulmoides seed germination, we focused on examining the changes in various indicators during the germination stage of E. ulmoides seeds. We measured the levels of physiological and hormone indicators in E. ulmoides seeds at different germination stages and found that the levels of abscisic acid (ABA), gibberellin (GA), and indole acetic acid (IAA) significantly varied as the seeds germinated. Furthermore, we confirmed that ABA, GA, and IAA are essential hormones in the germination of E. ulmoides seeds using Gene Ontology and Kyoto Encyclopedia of Genes and Genomics enrichment analyses of the transcriptome. The discovery of hormone-related synthesis pathways in the control group of Eucommia seeds at different germination stages further confirmed this conclusion. This study provides a basis for further research into the regulatory mechanisms of E. ulmoides seeds at different germination stages and the relationship between other seed germination and plant hormones.
Collapse
Affiliation(s)
- Jia Liu
- Department of Civil and Architecture and Engineering, Chuzhou University, Chuzhou, Anhui, China
- Anhui Low Carbon Highway Engineering Research Center, Chuzhou University, Anhui, China
| | - Sumei Qiu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Tingting Xue
- Department of Civil and Architecture and Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Yingdan Yuan
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Chu L, Shrestha V, Schäfer CC, Niedens J, Meyer GW, Darnell Z, Kling T, Dürr-Mayer T, Abramov A, Frey M, Jessen H, Schaaf G, Hochholdinger F, Nowak-Król A, McSteen P, Angelovici R, Matthes MS. Association of the benzoxazinoid pathway with boron homeostasis in maize. PLANT PHYSIOLOGY 2024; 197:kiae611. [PMID: 39514757 DOI: 10.1093/plphys/kiae611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Both deficiency and toxicity of the micronutrient boron lead to severe reductions in crop yield. Despite this agricultural importance, the molecular basis underlying boron homeostasis in plants remains unclear. To identify molecular players involved in boron homeostasis in maize (Zea mays L.), we measured boron levels in the Goodman-Buckler association panel and performed genome-wide association studies. These analyses identified a benzoxazinless (bx) gene, bx3, involved in the biosynthesis of benzoxazinoids, such as 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), which are major defense compounds in maize. Genes involved in DIMBOA biosynthesis are all located in close proximity in the genome, and benzoxazinoid biosynthesis mutants, including bx3, are all DIMBOA deficient. We determined that leaves of the bx3 mutant have a greater boron concentration than those of B73 control plants, which corresponded with enhanced leaf tip necrosis, a phenotype associated with boron toxicity. By contrast, other DIMBOA-deficient maize mutants did not show altered boron levels or the leaf tip necrosis phenotype, suggesting that boron is not associated with DIMBOA. Instead, our analyses suggest that the accumulation of boron is linked to the benzoxazinoid intermediates indolin-2-one (ION) and 3-hydroxy-ION. Therefore, our results connect boron homeostasis to the benzoxazinoid plant defense pathway through bx3 and specific intermediates, rendering the benzoxazinoid biosynthesis pathway a potential target for crop improvement under inadequate boron conditions.
Collapse
Affiliation(s)
- Liuyang Chu
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Friedrich-Ebert-Allee 144, Bonn 53113, Germany
| | - Vivek Shrestha
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, MO 65211-7310, USA
| | - Cay Christin Schäfer
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Friedrich-Ebert-Allee 144, Bonn 53113, Germany
| | - Jan Niedens
- Boron-Containing Functional Materials, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - George W Meyer
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, MO 65211-7310, USA
| | - Zoe Darnell
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, MO 65211-7310, USA
| | - Tyler Kling
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, MO 65211-7310, USA
| | - Tobias Dürr-Mayer
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, Freiburg im Breisgau 79104, Germany
| | - Aleksej Abramov
- Chair of Plant Breeding, Technical University of Munich, Liesel-Beckman Str. 2, Freising 85354, Germany
| | - Monika Frey
- Chair of Plant Breeding, Technical University of Munich, Liesel-Beckman Str. 2, Freising 85354, Germany
| | - Henning Jessen
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, Freiburg im Breisgau 79104, Germany
| | - Gabriel Schaaf
- Institute of Crop Science and Resource Conservation, Plant Nutrition, University of Bonn, Karl-Robert-Kreiten Straße 13, Bonn 53115, Germany
| | - Frank Hochholdinger
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Friedrich-Ebert-Allee 144, Bonn 53113, Germany
| | - Agnieszka Nowak-Król
- Boron-Containing Functional Materials, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Paula McSteen
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, MO 65211-7310, USA
| | - Ruthie Angelovici
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, MO 65211-7310, USA
| | - Michaela S Matthes
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Friedrich-Ebert-Allee 144, Bonn 53113, Germany
| |
Collapse
|
5
|
Robil JM, Straube H, Tran TM. A benzoxazinoid twist to boron homeostasis story in maize. PLANT PHYSIOLOGY 2024; 197:kiaf007. [PMID: 39775831 PMCID: PMC11773796 DOI: 10.1093/plphys/kiaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/12/2024] [Accepted: 12/22/2024] [Indexed: 01/11/2025]
Affiliation(s)
- Janlo M Robil
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists
- Department of Biology, School of Science and Engineering, Ateneo de Manila University, Quezon City 1108, Philippines
| | - Henryk Straube
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists
- Faculty of Science, Department of Plant and Environmental Sciences, Section for Plant Biochemistry, University of Copenhagen, Frederiksberg, Copenhagen 1871, Denmark
| | - Thu M Tran
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
6
|
Morales Orellana RJ, Rath T, Druege U, Tandrón Moya YA, von Wirén N, Winkelmann T. Laser-wound stimulated adventitious root formation of Rosa canina cuttings involves a complex response at plant hormonal and metabolic level. FRONTIERS IN PLANT SCIENCE 2024; 15:1515990. [PMID: 39737379 PMCID: PMC11682910 DOI: 10.3389/fpls.2024.1515990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/22/2024] [Indexed: 01/01/2025]
Abstract
Introduction The presence of wounds in addition to the excision-induced wounds after severance from the stock plants is known to positively influence adventitious root formation of woody plant cuttings. Previous morphological studies highlighted laser wounding as a technique allowing to precisely control the decisive ablation depth. However, the biochemical processes involved in the response of rooting to the additional wounding remained unexplored. Methods The present study analyzed changes in the plant hormone and carbohydrate profiles in response to laser treatments of rose leafy single-node stem cuttings (Rosa canina 'Pfänder'). Concentrations of four groups of plant hormones and of carbohydrates were monitored in three different stem sections of the cutting base during the first eight days after excision of cuttings. In addition, histology was employed to investigate anatomical changes at the basal wound and the laser wounds at the start and the end of the experiment after 40 days. Results Laser ablation caused an increase of vascular tissue dimension directly in the laser wound, and increased the quantity and quality of rooting compared to control cuttings. A clear early local rise of jasmonic acid (JA) was detected directly in wounded areas after laser marking, as well as an increase in abscisic acid (ABA) that persisted for the subsequent days. Indole-3-acetic acid (IAA) levels were relatively high on day zero, but decreased thereafter. Interestingly, higher IAA levels were maintained in the stem section below the axillary bud compared with the opposite section. Laser-treated cuttings presented a clear increase in contents of IAA-amino acid conjugates (IAAGlu and IAAsp) and the oxidation product OxIAA. Differences in concentration of these IAA metabolites were related to the position of the laser wound relative to the axillary bud and leaf. Additionally, laser treatments caused gradually increased levels of the cytokinin N6-isopentenyladenine (iP) in laser-treated zones, and of zeatin riboside specifically when the laser wound was placed on the leaf-bud side. Additional laser wounding reduced starch and sucrose levels in all wounded sections at the end of the evaluation period, independently of the wounding location. Discussion The results of this study indicate that presence of additional injured tissue triggers a complex biochemical adjustment at the base of the cutting responsible of inducing vascular tissue growth and capable of generating a positive response to adventitious root formation.
Collapse
Affiliation(s)
- Raul Javier Morales Orellana
- Hochschule Osnabrück - University of Applied Sciences, Biosystem Engineering Laboratory (BLab), Osnabrück, Germany
- Leibniz University Hannover, Institute of Horticultural Production Systems, Section Woody Plant and Propagation Physiology, Hannover, Germany
| | - Thomas Rath
- Hochschule Osnabrück - University of Applied Sciences, Biosystem Engineering Laboratory (BLab), Osnabrück, Germany
| | - Uwe Druege
- Erfurt Research Centre for Horticultural Crops, University of Applied Sciences Erfurt, Erfurt, Germany
| | - Yudelsy A. Tandrón Moya
- Leibniz Institute of Plant Genetics and Crop Plant Research, Department of Physiology and Cell Biology, Gatersleben, Germany
| | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research, Department of Physiology and Cell Biology, Gatersleben, Germany
| | - Traud Winkelmann
- Leibniz University Hannover, Institute of Horticultural Production Systems, Section Woody Plant and Propagation Physiology, Hannover, Germany
| |
Collapse
|
7
|
Frank S, Saeid Nia M, Schäfer A, Desel C, Mulisch M, Voigt U, Nowara D, Tandron Moya YA, von Wiren N, Bilger W, Hensel G, Krupinska K. Over-accumulation of chloroplast-nucleus located WHIRLY1 in barley leads to a decrease in growth and an enhanced stress resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1210-1225. [PMID: 38843114 DOI: 10.1111/tpj.16819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/24/2024] [Accepted: 05/03/2024] [Indexed: 08/15/2024]
Abstract
WHIRLY1 is a chloroplast-nucleus located DNA/RNA-binding protein with functions in development and stress tolerance. By overexpression of HvWHIRLY1 in barley, one line with a 10-fold and two lines with a 50-fold accumulation of the protein were obtained. In these lines, the relative abundance of the nuclear form exceeded that of the chloroplast form. Growth of the plants was shown to be compromised in a WHIRLY1 abundance-dependent manner. Over-accumulation of WHIRLY1 in chloroplasts had neither an evident impact on nucleoid morphology nor on the composition of the photosynthetic apparatus. Nevertheless, oeW1 plants were found to be compromised in the light reactions of photosynthesis as well as in carbon fixation. The reduction in growth and photosynthesis was shown to be accompanied by a decrease in the levels of cytokinins and an increase in the level of jasmonic acid. Gene expression analyses revealed that in nonstress conditions the oeW1 plants had enhanced levels of pathogen response (PR) gene expression indicating activation of constitutive defense. During growth in continuous light of high irradiance PR gene expression increased indicating that under stress conditions oeW1 are capable to further enhance defense.
Collapse
Affiliation(s)
- Susann Frank
- Institute of Botany, Christian-Albrechts-University (CAU), Kiel, Germany
| | - Monireh Saeid Nia
- Institute of Botany, Christian-Albrechts-University (CAU), Kiel, Germany
| | - Anke Schäfer
- Institute of Botany, Christian-Albrechts-University (CAU), Kiel, Germany
| | - Christine Desel
- Institute of Botany, Christian-Albrechts-University (CAU), Kiel, Germany
| | - Maria Mulisch
- Central Microscopy of the Center of Biology, CAU, Kiel, Germany
| | - Ulrike Voigt
- Institute of Botany, Christian-Albrechts-University (CAU), Kiel, Germany
| | - Daniela Nowara
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, OT Gatersleben, Germany
| | | | - Nicolaus von Wiren
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, OT Gatersleben, Germany
| | - Wolfgang Bilger
- Institute of Botany, Christian-Albrechts-University (CAU), Kiel, Germany
| | - Götz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, OT Gatersleben, Germany
| | - Karin Krupinska
- Institute of Botany, Christian-Albrechts-University (CAU), Kiel, Germany
| |
Collapse
|
8
|
Lin J, Zheng X, Xia J, Xie R, Gao J, Ye R, Liang T, Qu M, Luo Y, Wang Y, Ke Y, Li C, Guo J, Lu J, Tang W, Li W, Chen S. Integrative analysis of the transcriptome and proteome reveals the molecular responses of tobacco to boron deficiency. BMC PLANT BIOLOGY 2024; 24:689. [PMID: 39030471 PMCID: PMC11264865 DOI: 10.1186/s12870-024-05391-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 07/05/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Boron (B) is an essential micronutrient for plants. Inappropriate B supply detrimentally affects the productivity of numerous crops. Understanding of the molecular responses of plants to different B supply levels would be of significance in crop improvement and cultivation practices to deal with the problem. RESULTS We conducted a comprehensive analysis of the transcriptome and proteome of tobacco seedlings to investigate the expression changes of genes/proteins in response to different B supply levels, with a particular focus on B deficiency. The global gene and protein expression profiles revealed the potential mechanisms involved in the responses of tobacco to B deficiency, including up-regulation of the NIP5;1-BORs module, complex regulation of genes/proteins related to cell wall metabolism, and up-regulation of the antioxidant machinery. CONCLUSION Our results demonstrated that B deficiency caused severe morphological and physiological disorders in tobacco seedlings, and revealed dynamic expression changes of tobacco genes/proteins in response to different B supply levels, especially to B deficiency, thus offering valuable insights into the molecular responses of tobacco to B deficiency.
Collapse
Affiliation(s)
- Jinbin Lin
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Xiangli Zheng
- Fujian Key Laboratory of Agricultural Ecological Process of Red Soil Mountain, Agricultural Ecology Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Jing Xia
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rongrong Xie
- Fujian Institute of Tobacco Sciences, Fuzhou, 350003, China
- International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingjuan Gao
- Fujian Institute of Tobacco Sciences, Fuzhou, 350003, China
- International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rongrong Ye
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Tingmin Liang
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengyu Qu
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yaxin Luo
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Yuemin Wang
- Fujian Institute of Tobacco Sciences, Fuzhou, 350003, China
| | - Yuqin Ke
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chunying Li
- Fujian Institute of Tobacco Sciences, Fuzhou, 350003, China
| | - Jinping Guo
- Fujian Institute of Tobacco Sciences, Fuzhou, 350003, China
| | - Jianjun Lu
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Weiqi Tang
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China.
| | - Wenqing Li
- Fujian Institute of Tobacco Sciences, Fuzhou, 350003, China.
| | - Songbiao Chen
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
9
|
Lilay GH, Thiébaut N, du Mee D, Assunção AGL, Schjoerring JK, Husted S, Persson DP. Linking the key physiological functions of essential micronutrients to their deficiency symptoms in plants. THE NEW PHYTOLOGIST 2024; 242:881-902. [PMID: 38433319 DOI: 10.1111/nph.19645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
In this review, we untangle the physiological key functions of the essential micronutrients and link them to the deficiency responses in plants. Knowledge of these responses at the mechanistic level, and the resulting deficiency symptoms, have improved over the last decade and it appears timely to review recent insights for each of them. A proper understanding of the links between function and symptom is indispensable for an accurate and timely identification of nutritional disorders, thereby informing the design and development of sustainable fertilization strategies. Similarly, improved knowledge of the molecular and physiological functions of micronutrients will be important for breeding programmes aiming to develop new crop genotypes with improved nutrient-use efficiency and resilience in the face of changing soil and climate conditions.
Collapse
Affiliation(s)
- Grmay Hailu Lilay
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Noémie Thiébaut
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
- Earth and Life Institute, Faculty of Bioscience Engineering, Université Catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | - Dorine du Mee
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Ana G L Assunção
- CIBIO-InBIO, Research Centre in Biodiversity and Genetic Resources, University of Porto, Vairão, 4485-661, Portugal
| | - Jan Kofod Schjoerring
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Søren Husted
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Daniel Pergament Persson
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| |
Collapse
|
10
|
Cid GA, Francioli D, Kolb S, Tandron Moya YA, von Wirén N, Hajirezaei MR. Transcriptomic and metabolomic approaches elucidate the systemic response of wheat plants under waterlogging. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1510-1529. [PMID: 38014629 DOI: 10.1093/jxb/erad453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
Extreme weather conditions lead to significant imbalances in crop productivity, which in turn affect food security. Flooding events cause serious problems for many crop species such as wheat. Although metabolic readjustments under flooding are important for plant regeneration, underlying processes remain poorly understood. Here, we investigated the systemic response of wheat to waterlogging using metabolomics and transcriptomics. A 12 d exposure to excess water triggered nutritional imbalances and disruption of metabolite synthesis and translocation, reflected by reductions in plant biomass and growth performance. Metabolic and transcriptomic profiling in roots, xylem sap, and leaves indicated anaerobic fermentation processes as a local response in roots. Differentially expressed genes and ontological categories revealed that carbohydrate metabolism plays an important role in the systemic response. Analysis of the composition of xylem exudates revealed decreased root-to-shoot translocation of nutrients, hormones, and amino acids. Interestingly, among all metabolites measured in xylem exudates, alanine was the most abundant. Immersion of excised leaves derived from waterlogged plants in alanine solution led to increased leaf glucose concentration. Our results suggest an important role of alanine not only as an amino-nitrogen donor but also as a vehicle for carbon skeletons to produce glucose de novo and meet the energy demand during waterlogging.
Collapse
Affiliation(s)
- Geeisy Angela Cid
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Davide Francioli
- Department of Soil Science and Plant Nutrition, Hochschule Geisenheim University, Geisenheim, Germany
| | - Steffen Kolb
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | | | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | |
Collapse
|
11
|
Hu G, Zhang D, Luo D, Sun W, Zhou R, Hong Z, Munir S, Ye Z, Yang C, Zhang J, Wang T. SlTCP24 and SlTCP29 synergistically regulate compound leaf development through interacting with SlAS2 and activating transcription of SlCKX2 in tomato. THE NEW PHYTOLOGIST 2023; 240:1275-1291. [PMID: 37615215 DOI: 10.1111/nph.19221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023]
Abstract
The complexity of compound leaves results primarily from the leaflet initiation and arrangement during leaf development. However, the molecular mechanism underlying compound leaf development remains a central research question. SlTCP24 and SlTCP29, two plant-specific transcription factors with the conserved TCP motif, are shown here to synergistically regulate compound leaf development in tomato. When both of them were knocked out simultaneously, the number of leaflets significantly increased, and the shape of the leaves became more complex. SlTCP24 and SlTCP29 could form both homodimers and heterodimers, and such dimerization was impeded by the leaf polarity regulator SlAS2, which interacted with SlTCP24 and SlTCP29. SlTCP24 and SlTCP29 could bind to the TCP-binding cis-element of the SlCKX2 promoter and activate its transcription. Transgenic plants with SlTCP24 and SlTCP29 double-gene knockout had a lowered transcript level of SlCKX2 and an elevated level of cytokinin. This work led to the identification of two key regulators of tomato compound leaf development and their targeted genes involved in cytokinin metabolic pathway. A model of regulation of compound leaf development was proposed based on observations of this study.
Collapse
Affiliation(s)
- Guoyu Hu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agriculture University, Wuhan, 430070, China
| | - Danqiu Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agriculture University, Wuhan, 430070, China
| | - Dan Luo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agriculture University, Wuhan, 430070, China
| | - Wenhui Sun
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agriculture University, Wuhan, 430070, China
| | - Rijin Zhou
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agriculture University, Wuhan, 430070, China
| | - Zonglie Hong
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Shoaib Munir
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agriculture University, Wuhan, 430070, China
| | - Zhibiao Ye
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agriculture University, Wuhan, 430070, China
| | - Changxian Yang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agriculture University, Wuhan, 430070, China
| | - Junhong Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agriculture University, Wuhan, 430070, China
| | - Taotao Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agriculture University, Wuhan, 430070, China
| |
Collapse
|
12
|
Shanmugaraj N, Rajaraman J, Kale S, Kamal R, Huang Y, Thirulogachandar V, Garibay-Hernández A, Budhagatapalli N, Tandron Moya YA, Hajirezaei MR, Rutten T, Hensel G, Melzer M, Kumlehn J, von Wirén N, Mock HP, Schnurbusch T. Multilayered regulation of developmentally programmed pre-anthesis tip degeneration of the barley inflorescence. THE PLANT CELL 2023; 35:3973-4001. [PMID: 37282730 PMCID: PMC10615218 DOI: 10.1093/plcell/koad164] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/17/2023] [Accepted: 06/04/2023] [Indexed: 06/08/2023]
Abstract
Leaf and floral tissue degeneration is a common feature in plants. In cereal crops such as barley (Hordeum vulgare L.), pre-anthesis tip degeneration (PTD) starts with growth arrest of the inflorescence meristem dome, which is followed basipetally by the degeneration of floral primordia and the central axis. Due to its quantitative nature and environmental sensitivity, inflorescence PTD constitutes a complex, multilayered trait affecting final grain number. This trait appears to be highly predictable and heritable under standardized growth conditions, consistent with a developmentally programmed mechanism. To elucidate the molecular underpinnings of inflorescence PTD, we combined metabolomic, transcriptomic, and genetic approaches to show that barley inflorescence PTD is accompanied by sugar depletion, amino acid degradation, and abscisic acid responses involving transcriptional regulators of senescence, defense, and light signaling. Based on transcriptome analyses, we identified GRASSY TILLERS1 (HvGT1), encoding an HD-ZIP transcription factor, as an important modulator of inflorescence PTD. A gene-edited knockout mutant of HvGT1 delayed PTD and increased differentiated apical spikelets and final spikelet number, suggesting a possible strategy to increase grain number in cereals. We propose a molecular framework that leads to barley PTD, the manipulation of which may increase yield potential in barley and other related cereals.
Collapse
Affiliation(s)
- Nandhakumar Shanmugaraj
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Jeyaraman Rajaraman
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Sandip Kale
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Roop Kamal
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Yongyu Huang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Venkatasubbu Thirulogachandar
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Adriana Garibay-Hernández
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Nagaveni Budhagatapalli
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Yudelsy Antonia Tandron Moya
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Mohammed R Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Götz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
- Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Halle 06120,Germany
| |
Collapse
|
13
|
Chen Z, Bai X, Zeng B, Fan C, Li X, Hu B. Physiological and molecular mechanisms of Acacia melanoxylon stem in response to boron deficiency. FRONTIERS IN PLANT SCIENCE 2023; 14:1268835. [PMID: 37964998 PMCID: PMC10641760 DOI: 10.3389/fpls.2023.1268835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023]
Abstract
Boron is an essential micronutrient for plant growth as it participates in cell wall integrity. The growth and development of Acacia melanoxylon stem can be adversely affected by a lack of boron. To explore the mechanism of boron deficiency in A. melanoxylon stem, the changes in morphological attributes, physiological, endogenous hormone levels, and the cell structure and component contents were examined. In addition, the molecular mechanism of shortened internodes resulting from boron deficiency was elucidated through transcriptome analysis. The results showed that boron deficiency resulted in decreased height, shortened internodes, and reduced root length and surface area, corresponding with decreased boron content in the roots, stems, and leaves of A. melanoxylon. In shortened internodes of stems, oxidative damage, and disordered hormone homeostasis were induced, the cell wall was thickened, hemicellulose and water-soluble pectin contents decreased, while the cellulose content increased under boron deficiency. Furthermore, plenty of genes associated with cell wall metabolism and structural components, including GAUTs, CESAs, IRXs, EXPs, TBLs, and XTHs were downregulated under boron deficiency. Alterations of gene expression in hormone signaling pathways comprising IAA, GA, CTK, ET, ABA, and JA were observed under boron deficiency. TFs, homologous to HD1s, NAC10, NAC73, MYB46s, MYB58, and ERF92s were found to interact with genes related to cell wall metabolism, and the structural components were identified. We established a regulatory mechanism network of boron deficiency-induced shortened internodes in A. melanoxylon based on the above results. This research provides a theoretical basis for understanding the response mechanism of woody plants to boron deficiency.
Collapse
Affiliation(s)
- Zhaoli Chen
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, China
| | - Xiaogang Bai
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Bingshan Zeng
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, China
| | - Chunjie Fan
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, China
| | - Xiangyang Li
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, China
| | - Bing Hu
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Liu J, Chen T, Wang CL, Liu X. Transcriptome Analysis in Pyrus betulaefolia Roots in Response to Short-Term Boron Deficiency. Genes (Basel) 2023; 14:genes14040817. [PMID: 37107575 PMCID: PMC10137548 DOI: 10.3390/genes14040817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Boron (B) deficiency stress is frequently observed in pear orchards and causes a considerable loss of productivity and fruit quality. Pyrus betulaefolia is one of the most important rootstocks that has been widely used in pear production. The present study confirmed that the boron form of different tissues showed various changes, and the free boron content was significantly decreased under the short-term B deficiency condition. Moreover, the ABA and JA content also significantly accumulated in the root after short-term B deficiency treatment. A comprehensive transcriptome analysis of 24 h B deficiency treatment P. betulaefolia root was performed in this study. Transcriptome results revealed a total of 1230 up-regulated and 642 down-regulated differentially expressed genes (DEGs), respectively. B deficiency significantly increased the expression of the key aquaporin gene NIP5-1. In addition, B deficiency also increased the expression of ABA (ZEP and NCED) and JA (LOX, AOS and OPR) synthesis genes. Several MYB, WRKY, bHLH and ERF transcription factors were induced by B deficiency stress, which may relate to the regulation of B uptake and plant hormone synthesis. Overall, these findings suggested that P. betulaefolia root had adaptive responses to short-term B deficiency stress by improved boron absorption ability and hormone (JA and ABA) synthesis. The transcriptome analysis provided further information for understanding the mechanism of the pear rootstock responses to B deficiency stress.
Collapse
|
15
|
Arredondo G, Bonomelli C. Effect of Three Boron Concentrations in Soil on Growth and Physiology in Sweet Cherry Trees. PLANTS (BASEL, SWITZERLAND) 2023; 12:1240. [PMID: 36986928 PMCID: PMC10057428 DOI: 10.3390/plants12061240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Boron (B) is an essential element for plants. B availability depends on the physical and chemical characteristics of the soil and the quality of irrigation water. Under natural conditions, both toxic and deficit concentrations can occur and should be managed for crop production. However, the range between deficiency and toxicity is narrow. The objective of this study was to determine the response of cherry trees to deficient (0.04 mg kg-1), adequate (1.1 mg kg-1), and toxic (3.75 mg kg-1) B concentrations in the soil by measuring growth, biomass, photosynthetic parameters, visual symptoms, and morphological changes. Plants treated with a toxic dose had more spurs and shorter internodes than those treated with adequate and deficient doses. The white root weight (50.5 g) at low B concentrations had the most roots compared with the adequate (33.0 g) and toxic (22.0 g) concentrations. The stem weight and biomass partitioning were higher for white roots and stems at B-deficient and -adequate doses than at toxic doses. The net photosynthesis (Pn) and transpiration rate (E) were significantly higher in plants with adequate concentrations of B. Stomatal conductance (Gs) was higher in B-deficient plants. Morphological and visual differences were observed between treatments. The results showed that it is essential to adequately manage B in cherry crops to avoid the adverse effects of both low and toxic concentrations.
Collapse
Affiliation(s)
| | - Claudia Bonomelli
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| |
Collapse
|
16
|
Bolaños L, Abreu I, Bonilla I, Camacho-Cristóbal JJ, Reguera M. What Can Boron Deficiency Symptoms Tell Us about Its Function and Regulation? PLANTS (BASEL, SWITZERLAND) 2023; 12:777. [PMID: 36840125 PMCID: PMC9963425 DOI: 10.3390/plants12040777] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/11/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
On the eve of the 100th anniversary of Dr. Warington's discovery of boron (B) as a nutrient essential for higher plants, "boronists" have struggled to demonstrate a role beyond its structural function in cell walls dimerizing pectin molecules of rhamnogalacturonan II (RGII). In this regard, B deficiency has been associated with a plethora of symptoms in plants that include macroscopic symptoms like growth arrest and cell death and biochemical or molecular symptoms that include changes in cell wall pore size, apoplast acidification, or a steep ROS production that leads to an oxidative burst. Aiming to shed light on B functions in plant biology, we proposed here a unifying model integrating the current knowledge about B function(s) in plants to explain why B deficiency can cause such remarkable effects on plant growth and development, impacting crop productivity. In addition, based on recent experimental evidence that suggests the existence of different B ligands other than RGII in plant cells, namely glycolipids, and glycoproteins, we proposed an experimental pipeline to identify putative missing ligands and to determine how they would integrate into the above-mentioned model.
Collapse
Affiliation(s)
- Luis Bolaños
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Isidro Abreu
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049 Madrid, Spain
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Ildefonso Bonilla
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Juan J. Camacho-Cristóbal
- Departamento de Fisiología, Anatomía y Biología Celular, Facultad de Ciencias Experimentales, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - María Reguera
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
17
|
Zhang W, Hou H, Zhang D, Zhu B, Yuan H, Gao T. Transcriptomic and Metabolomic Analysis of Soybean Nodule Number Improvements with the Use of Water-Soluble Humic Materials. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:197-210. [PMID: 36573896 DOI: 10.1021/acs.jafc.2c06200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Water-soluble humic materials (WSHMs) can enhance the nodule numbers of soybean plants. In this study, targeted metabolomics and transcriptomics were used to understand this mechanism. Results showed that 500 mg/L WSHM increased the adsorption and colonization of rhizobia in soybean roots. High-performance liquid chromatography and targeted metabolomics showed that WSHMs could regulate the content and distribution of endogenous hormones of soybean plants at the initial stage of soybean nodulation. Transcriptomic analysis showed a total of 2406 differentially expressed genes (DEGs) by the 25th day, accounting for 4.89% of total annotation genes (49159). These DEGs were found to contribute primarily to the MAPK signaling pathway, glycolysis/gluconeogenesis, and plant hormone signal transduction according to the -log 10 (Padjust) value in the KEGG pathway. Subsequently, DEGs related to these hormones were selected for verification using quantity-PCR. The WSHM increased the number of nodules by regulating the expression of endogenous hormones in soybean plants.
Collapse
Affiliation(s)
- Wenhua Zhang
- Hebei Engineering Research Center for Resource Utilization of Agricultural Waste, College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
| | - Huiyun Hou
- Hebei Engineering Research Center for Resource Utilization of Agricultural Waste, College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
| | - Dongdong Zhang
- Hebei Engineering Research Center for Resource Utilization of Agricultural Waste, College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
| | - Baocheng Zhu
- Hebei Engineering Research Center for Resource Utilization of Agricultural Waste, College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
| | - Hongli Yuan
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tongguo Gao
- Hebei Engineering Research Center for Resource Utilization of Agricultural Waste, College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
18
|
Laha NP, Giehl RFH, Riemer E, Qiu D, Pullagurla NJ, Schneider R, Dhir YW, Yadav R, Mihiret YE, Gaugler P, Gaugler V, Mao H, Zheng N, von Wirén N, Saiardi A, Bhattacharjee S, Jessen HJ, Laha D, Schaaf G. INOSITOL (1,3,4) TRIPHOSPHATE 5/6 KINASE1-dependent inositol polyphosphates regulate auxin responses in Arabidopsis. PLANT PHYSIOLOGY 2022; 190:2722-2738. [PMID: 36124979 PMCID: PMC9706486 DOI: 10.1093/plphys/kiac425] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
The combinatorial phosphorylation of myo-inositol results in the generation of different inositol phosphates (InsPs), of which phytic acid (InsP6) is the most abundant species in eukaryotes. InsP6 is also an important precursor of the higher phosphorylated inositol pyrophosphates (PP-InsPs), such as InsP7 and InsP8, which are characterized by a diphosphate moiety and are also ubiquitously found in eukaryotic cells. While PP-InsPs regulate various cellular processes in animals and yeast, their biosynthesis and functions in plants has remained largely elusive because plant genomes do not encode canonical InsP6 kinases. Recent work has shown that Arabidopsis (Arabidopsis thaliana) INOSITOL (1,3,4) TRIPHOSPHATE 5/6 KINASE1 (ITPK1) and ITPK2 display in vitro InsP6 kinase activity and that, in planta, ITPK1 stimulates 5-InsP7 and InsP8 synthesis and regulates phosphate starvation responses. Here we report a critical role of ITPK1 in auxin-related processes that is independent of the ITPK1-controlled regulation of phosphate starvation responses. Those processes include primary root elongation, root hair development, leaf venation, thermomorphogenic and gravitropic responses, and sensitivity to exogenously applied auxin. We found that the recombinant auxin receptor complex, consisting of the F-Box protein TRANSPORT INHIBITOR RESPONSE1 (TIR1), ARABIDOPSIS SKP1 HOMOLOG 1 (ASK1), and the transcriptional repressor INDOLE-3-ACETIC ACID INDUCIBLE 7 (IAA7), binds to anionic inositol polyphosphates with high affinity. We further identified a physical interaction between ITPK1 and TIR1, suggesting a localized production of 5-InsP7, or another ITPK1-dependent InsP/PP-InsP isomer, to activate the auxin receptor complex. Finally, we demonstrate that ITPK1 and ITPK2 function redundantly to control auxin responses, as deduced from the auxin-insensitive phenotypes of itpk1 itpk2 double mutant plants. Our findings expand the mechanistic understanding of auxin perception and suggest that distinct inositol polyphosphates generated near auxin receptors help to fine-tune auxin sensitivity in plants.
Collapse
Affiliation(s)
- Nargis Parvin Laha
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany
| | - Ricardo F H Giehl
- Department of Physiology & Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant Research, Gatersleben 06466, Germany
| | - Esther Riemer
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany
| | - Danye Qiu
- Department of Chemistry and Pharmacy & CIBSS–The Center for Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| | - Naga Jyothi Pullagurla
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| | - Robin Schneider
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany
| | - Yashika Walia Dhir
- Laboratory of Signal Transduction and Plant Resistance, Regional Centre for Biotechnology, NCR-Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Ranjana Yadav
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| | - Yeshambel Emewodih Mihiret
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany
| | - Philipp Gaugler
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany
| | - Verena Gaugler
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany
| | - Haibin Mao
- Department of Pharmacology, Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| | - Ning Zheng
- Department of Pharmacology, Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| | - Nicolaus von Wirén
- Department of Physiology & Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant Research, Gatersleben 06466, Germany
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology (MRC-LMCB), University College London, London WC1E 6BT, UK
| | - Saikat Bhattacharjee
- Laboratory of Signal Transduction and Plant Resistance, Regional Centre for Biotechnology, NCR-Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Henning J Jessen
- Department of Chemistry and Pharmacy & CIBSS–The Center for Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| | - Debabrata Laha
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| | - Gabriel Schaaf
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany
| |
Collapse
|
19
|
Guo H, Bi X, Wang Z, Jiang D, Cai M, An M, Xia Z, Wu Y. Reactive oxygen species-related genes participate in resistance to cucumber green mottle mosaic virus infection regulated by boron in Nicotiana benthamiana and watermelon. FRONTIERS IN PLANT SCIENCE 2022; 13:1027404. [PMID: 36438146 PMCID: PMC9691971 DOI: 10.3389/fpls.2022.1027404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Cucumber green mottle mosaic virus (CGMMV) infection causes acidification and rot of watermelon flesh, resulting in serious economic losses. It is widely reported the interaction relationship between boron and reactive oxygen species (ROS) in regulating normal growth and disease resistance in plants. Our previous results demonstrated that exogenous boron could improve watermelon resistance to CGMMV infection. However, the roles of ROS-related genes regulated by boron in resistance to CGMMV infection are unclear. Here, we demonstrated that CGMMV symptoms were alleviated, and viral accumulations were decreased by boron application in Nicotiana benthamiana, indicating that boron contributed to inhibiting CGMMV infection. Meanwhile, we found that a number of differentially expressed genes (DEGs) associated with inositol biosynthesis, ethylene synthesis, Ca2+ signaling transduction and ROS scavenging system were up-regulated, while many DEGs involved in ABA catabolism, GA signal transduction and ascorbic acid metabolism were down-regulated by boron application under CGMMV infection. Additionally, we individually silenced nine ROS-related genes to explore their anti-CGMMV roles using a tobacco rattle virus (TRV) vector. The results showed that NbCat1, NbGME1, NbGGP and NbPrx Q were required for CGMMV infection, while NbGST and NbIPS played roles in resistance to CGMMV infection. The similar results were obtained in watermelon by silencing of ClCat, ClPrx or ClGST expression using a pV190 vector. This study proposed a new strategy for improving plant resistance to CGMMV infection by boron-regulated ROS pathway and provided several target genes for watermelon disease resistance breeding.
Collapse
Affiliation(s)
- Huiyan Guo
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xinyue Bi
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Zhiping Wang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Dong Jiang
- Green Agricultural Technology Center of Liaoning Province, Shenyang, China
| | - Ming Cai
- Green Agricultural Technology Center of Liaoning Province, Shenyang, China
| | - Mengnan An
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Zihao Xia
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuanhua Wu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
20
|
Milyaev A, Kofler J, Moya YAT, Lempe J, Stefanelli D, Hanke MV, Flachowsky H, von Wirén N, Wünsche JN. Profiling of phytohormones in apple fruit and buds regarding their role as potential regulators of flower bud formation. TREE PHYSIOLOGY 2022; 42:2319-2335. [PMID: 35867427 PMCID: PMC9912367 DOI: 10.1093/treephys/tpac083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Apple (Malus × domestica Borkh.) cropping behavior, if not regulated, is often manifested by high yields of small-sized fruit in so called ON-years, which are usually followed by strongly reduced crop loads in OFF-years. Such cropping pattern is defined as biennial bearing and causes significant losses in apple production. The growth of apple fruit overlaps with the formation of flower buds, which remain dormant until the following spring. Earlier works proposed that some fruit-derived mobile compounds, as e.g., phytohormones, could suppress flower bud formation that thereby leads to biennial bearing. We addressed this hypothesis by analyzing 39 phytohormones in apple seeds, fruit flesh and by measuring phytohormone export from the fruits of the biennial bearing cultivar 'Fuji' and of the regular bearing cultivar 'Gala'. Moreover, we analyzed the same compounds in bourse buds from fruiting (ON-trees) and non-fruiting (OFF-trees) spurs of both apple cultivars over the period of flower bud formation. Our results showed that apple fruit exported at least 14 phytohormones including indole-3-acetic acid and gibberellin A3; however, their influence on flower bud formation was inconclusive. A gibberellin-like compound, which was detected exclusively in bourse buds, was significantly more abundant in bourse buds from ON-trees compared with OFF-trees. Cultivar differences were marked by the accumulation of trans-zeatin-O-glucoside in bourse buds of 'Gala' ON-trees, whereas the levels of this compound in 'Gala' OFF were significantly lower and comparable to those in 'Fuji' ON- and OFF-trees. Particular phytohormones including five cytokinin forms as well as abscisic acid and its degradation products had higher levels in bourse buds from OFF-trees compared with ON-trees and were therefore proposed as potential promotors of flower bud initiation. The work discusses regulatory roles of phytohormones in flower bud formation in apple based on the novel and to date most comprehensive phytohormone profiles of apple fruit and buds.
Collapse
Affiliation(s)
| | - Julian Kofler
- Institute of Crop Science, Section of Crop Physiology of Specialty Crops (340f), University of Hohenheim, Emil-Wolff-Street 25, 70599 Stuttgart, Germany
| | - Yudelsy Antonia Tandron Moya
- Department Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Janne Lempe
- Julius Kühn-Institute (JKI), Institute for Breeding Research on Fruit Crops, Federal Research Centre for Cultivated Plants, Pillnitzer Platz 3a, 01326 Dresden, Germany
| | - Dario Stefanelli
- Department of Primary Industries and Regional Development, Government of Western Australia, Locked Bag 7, 6258 Manjimup, Australia
| | - Magda-Viola Hanke
- Julius Kühn-Institute (JKI), Institute for Breeding Research on Fruit Crops, Federal Research Centre for Cultivated Plants, Pillnitzer Platz 3a, 01326 Dresden, Germany
| | - Henryk Flachowsky
- Julius Kühn-Institute (JKI), Institute for Breeding Research on Fruit Crops, Federal Research Centre for Cultivated Plants, Pillnitzer Platz 3a, 01326 Dresden, Germany
| | - Nicolaus von Wirén
- Department Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Jens-Norbert Wünsche
- Institute of Crop Science, Section of Crop Physiology of Specialty Crops (340f), University of Hohenheim, Emil-Wolff-Street 25, 70599 Stuttgart, Germany
| |
Collapse
|
21
|
Bi X, Guo H, Li X, Zheng L, An M, Xia Z, Wu Y. A novel strategy for improving watermelon resistance to cucumber green mottle mosaic virus by exogenous boron application. MOLECULAR PLANT PATHOLOGY 2022; 23:1361-1380. [PMID: 35671152 PMCID: PMC9366068 DOI: 10.1111/mpp.13234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The molecular mode controlling cucumber green mottle mosaic virus (CGMMV)-induced watermelon blood flesh disease (WBFD) is largely unknown. In this study, we have found that application of exogenous boron suppressed CGMMV infection in watermelon fruit and alleviated WBFD symptoms. Our transcriptome analysis showed that the most up-regulated differentially expressed genes (DEGs) were associated with polyamine and auxin biosynthesis, abscisic acid catabolism, defence-related pathways, cell wall modification, and energy and secondary metabolism, while the down-regulated DEGs were mostly involved in ethylene biosynthesis, cell wall catabolism, and plasma membrane functions. Our virus-induced gene silencing results showed that silencing of SPDS expression in watermelon resulted in a higher putrescine content and an inhibited CGMMV infection correlating with no WBFD symptoms. SBT and TUBB1 were also required for CGMMV infection. In contrast, silencing of XTH23 and PE/PEI7 (low-level lignin, cellulose and pectin) and ATPS1 (low-level glutathione) promoted CGMMV accumulation. Furthermore, RAP2-3, MYB6, WRKY12, H2A, and DnaJ11 are likely to participate in host antiviral resistance. In addition, a higher (spermidine + spermine):putrescine ratio, malondialdehyde content, and lactic acid content were responsible for fruit decay and acidification. Our results provide new knowledge on the roles of boron in watermelon resistance to CGMMV-induced WBFD. This new knowledge can be used to design better control methods for CGMMV in the field and to breed CGMMV resistant watermelon and other cucurbit crops.
Collapse
Affiliation(s)
- Xinyue Bi
- Liaoning Key Laboratory of Plant Pathology, College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - Huiyan Guo
- Liaoning Key Laboratory of Plant Pathology, College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - Xiaodong Li
- Liaoning Key Laboratory of Plant Pathology, College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
- Centre for Biological Disaster Prevention and ControlNational Forestry and Grassland AdministrationShenyangChina
| | - Lijiao Zheng
- Xinmin City Agricultural Technology Extension CentreShenyangChina
| | - Mengnan An
- Liaoning Key Laboratory of Plant Pathology, College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - Zihao Xia
- Liaoning Key Laboratory of Plant Pathology, College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - Yuanhua Wu
- Liaoning Key Laboratory of Plant Pathology, College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| |
Collapse
|
22
|
Pommerrenig B, Faber M, Hajirezaei MR, von Wirén N, Bienert GP. Cytokinins as boron deficiency signals to sustain shoot development in boron-efficient oilseed rape. PHYSIOLOGIA PLANTARUM 2022; 174:e13776. [PMID: 36066313 DOI: 10.1111/ppl.13776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Boron (B) deficiency is a highly prominent nutrient disorder. While B-efficient accessions have recently been identified in the highly B-demanding crop oilseed rape, it remained unclear which physiological processes underlie B efficiency and which signaling pathways trigger an efficient B-deficiency response. Here, we compared, under three different B supply conditions, two Brassica napus accessions with contrasting B efficiency. Shoot biomass formation, B distribution patterns and metabolic dynamics of different phytohormone species were studied using a combination of mass spectrometry-based analyses and physiological measurements. Our results show that the B-efficient accession CR2267 does not differ from the B-inefficient accession CR2262 in terms of B accumulation and subcellular B-partitioning, although it displays no morphological B-deficiency symptoms under severe B-deficient conditions. Investigating phytohormone metabolism revealed a strong accumulation of cytokinins in CR2267 at a developmental stage when striking B-dependent differences in biomass and organ formation emerge in the two B. napus accessions. In contrast, elevated levels of the stress hormone abscisic acid as well as bioactive auxins, representing functional antagonists of cytokinins in shoots, were detected only in CR2262. Our results indicate that superior B efficiency in CR2267 relies on a higher B utilization efficiency that builds on an earlier and higher cytokinin biosynthesis required for the maintenance of the shoot meristem activity and proper leaf development. We further conclude that an elevated abundance of cytokinins is not a consequence of better plant growth but rather a presumption for better plant growth under low-B conditions.
Collapse
Affiliation(s)
- Benjamin Pommerrenig
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Plant Physiology, University Kaiserslautern, Kaiserslautern, Germany
| | - Maximilian Faber
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Mohammad-Reza Hajirezaei
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Nicolaus von Wirén
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Gerd Patrick Bienert
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Crop Physiology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
23
|
Mandal S, Ghorai M, Anand U, Samanta D, Kant N, Mishra T, Rahman MH, Jha NK, Jha SK, Lal MK, Tiwari RK, Kumar M, Radha, Prasanth DA, Mane AB, Gopalakrishnan AV, Biswas P, Proćków J, Dey A. Cytokinin and abiotic stress tolerance -What has been accomplished and the way forward? Front Genet 2022; 13:943025. [PMID: 36017502 PMCID: PMC9395584 DOI: 10.3389/fgene.2022.943025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/30/2022] [Indexed: 11/27/2022] Open
Abstract
More than a half-century has passed since it was discovered that phytohormone cytokinin (CK) is essential to drive cytokinesis and proliferation in plant tissue culture. Thereafter, cytokinin has emerged as the primary regulator of the plant cell cycle and numerous developmental processes. Lately, a growing body of evidence suggests that cytokinin has a role in mitigating both abiotic and biotic stress. Cytokinin is essential to defend plants against excessive light exposure and a unique kind of abiotic stress generated by an altered photoperiod. Secondly, cytokinin also exhibits multi-stress resilience under changing environments. Furthermore, cytokinin homeostasis is also affected by several forms of stress. Therefore, the diverse roles of cytokinin in reaction to stress, as well as its interactions with other hormones, are discussed in detail. When it comes to agriculture, understanding the functioning processes of cytokinins under changing environmental conditions can assist in utilizing the phytohormone, to increase productivity. Through this review, we briefly describe the biological role of cytokinin in enhancing the performance of plants growth under abiotic challenges as well as the probable mechanisms underpinning cytokinin-induced stress tolerance. In addition, the article lays forth a strategy for using biotechnological tools to modify genes in the cytokinin pathway to engineer abiotic stress tolerance in plants. The information presented here will assist in better understanding the function of cytokinin in plants and their effective investigation in the cropping system.
Collapse
Affiliation(s)
- Sayanti Mandal
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Uttpal Anand
- CytoGene Research & Development LLP, Barabanki, Uttar Pradesh, India
| | - Dipu Samanta
- Department of Botany, Dr. Kanailal Bhattacharyya College, Howrah, West Bengal, India
| | - Nishi Kant
- School of Health and Allied Science, ARKA Jain University, Jamshedpur, Jharkhand, India
| | - Tulika Mishra
- Department of Botany, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, South Korea
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
| | - Milan Kumar Lal
- Division of Crop Physiology, Biochemistry and Post Harvest Technology, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Rahul Kumar Tiwari
- Division of Crop Physiology, Biochemistry and Post Harvest Technology, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | | | - Abhijit Bhagwan Mane
- Department of Zoology, Dr. Patangrao Kadam Mahavidhyalaya (affiliated to Shivaji University Kolhapur), Ramanandnagar (Burli), Sangli, Maharashtra, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Protha Biswas
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
24
|
Banerjee A, Roychoudhury A. Dissecting the phytohormonal, genomic and proteomic regulation of micronutrient deficiency during abiotic stresses in plants. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
25
|
Gulabani H, Goswami K, Walia Y, Roy A, Noor JJ, Ingole KD, Kasera M, Laha D, Giehl RFH, Schaaf G, Bhattacharjee S. Arabidopsis inositol polyphosphate kinases IPK1 and ITPK1 modulate crosstalk between SA-dependent immunity and phosphate-starvation responses. PLANT CELL REPORTS 2022; 41:347-363. [PMID: 34797387 DOI: 10.1007/s00299-021-02812-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/04/2021] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE Selective Arabidopsis thaliana inositol phosphate kinase functions modulate response amplitudes in innate immunity by balancing signalling adjustments with phosphate homeostasis networks. Pyrophosphorylation of InsP6 generates InsP7 and/or InsP8 containing high-energy phosphoanhydride bonds that are harnessed during energy requirements of a cell. As bona fide co-factors for several phytohormone networks, InsP7/InsP8 modulate key developmental processes. With requirements in transducing jasmonic acid (JA) and phosphate-starvation responses (PSR), InsP8 exemplifies a versatile metabolite for crosstalks between different cellular pathways during diverse stress exposures. Here we show that Arabidopsis thaliana INOSITOL PENTAKISPHOSPHATE 2-KINASE 1 (IPK1), INOSITOL 1,3,4-TRISPHOSPHATE 5/6-KINASE 1 (ITPK1), and DIPHOSPHOINOSITOL PENTAKISPHOSPHATE KINASE 2 (VIH2) implicated in InsP8 biosynthesis, suppress salicylic acid (SA)-dependent immunity. In ipk1, itpk1 or vih2 mutants, constitutive activation of defenses lead to enhanced resistance against the Pseudomonas syringae pv tomato DC3000 (PstDC3000) strain. Our data reveal that upregulated SA-signaling sectors potentiate increased expression of several phosphate-starvation inducible (PSI)-genes, previously known in these mutants. In reciprocation, upregulated PSI-genes moderate expression amplitudes of defense-associated markers. We demonstrate that SA is induced in phosphate-deprived plants, however its defense-promoting functions are likely diverted to PSR-supportive roles. Overall, our investigations reveal selective InsPs as crosstalk mediators in defense-phosphate homeostasis and in reprogramming stress-appropriate response intensities.
Collapse
Affiliation(s)
- Hitika Gulabani
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
- Manipal Academy of Higher Education (MAHE), Manipal University, Manipal, Karnataka, 576104, India
| | - Krishnendu Goswami
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Yashika Walia
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Abhisha Roy
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Jewel Jameeta Noor
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Kishor D Ingole
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
- Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha, 751024, India
| | - Mritunjay Kasera
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Debabrata Laha
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, 560 012, India
| | - Ricardo F H Giehl
- Department of Physiology and Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant Research, 06466, Gatersleben, Germany
| | - Gabriel Schaaf
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115, Bonn, Germany
| | - Saikat Bhattacharjee
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India.
| |
Collapse
|
26
|
Lemaire-Chamley M, Koutouan C, Jorly J, Assali J, Yoshida T, Nogueira M, Tohge T, Ferrand C, Peres LEP, Asamizu E, Ezura H, Fraser PD, Hajirezaei MR, Fernie AR, Rothan C. A Chimeric TGA Repressor Slows Down Fruit Maturation and Ripening in Tomato. PLANT & CELL PHYSIOLOGY 2022; 63:120-134. [PMID: 34665867 DOI: 10.1093/pcp/pcab150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
The bZIP transcription factor (TF) SlTGA2.2 was previously highlighted as a possible hub in a network regulating fruit growth and transition to ripening (maturation phase). It belongs to a clade of TFs well known for their involvement in the regulation of the salicylic acid-dependent systemic acquired resistance. To investigate if this TGA TF plays a role in tomato fruit growth and maturation, we took advantage of the fruit-specific SlPPC2 promoter (PPC2pro) to target the expression of a SlTGA2.2-SRDX chimeric repressor in a developmental window restricted to early fruit growth and maturation. Here, we show that this SlTGA2.2-SRDX repressor alters early fruit development and metabolism, including chloroplast number and structure, considerably extends the time necessary to reach the mature green stage and slows down fruit ripening. RNA sequencing and plant hormone analyses reveal that PPC2pro:SlTGA2.2-SRDX fruits are maintained in an immature stage as long as PPC2pro is active, through early modifications of plant hormonal signaling and down-regulation of MADS-RIN and NAC-NOR ripening regulators. Once PPC2pro becomes inactive and therefore SlTGA2.2-SRDX expression is reduced, ripening can proceed, albeit at a slower pace than normal. Altogether, this work emphasizes the developmental continuum between fruit growth, maturation and ripening and provides a useful tool to alter and study the molecular bases of tomato fruit transition to ripening.
Collapse
Affiliation(s)
- Martine Lemaire-Chamley
- INRAE, University of Bordeaux, UMR1332 BFP, 71 Av E Bourlaux, Villenave d'Ornon 33882, France
| | - Claude Koutouan
- INRAE, University of Bordeaux, UMR1332 BFP, 71 Av E Bourlaux, Villenave d'Ornon 33882, France
| | - Joana Jorly
- INRAE, University of Bordeaux, UMR1332 BFP, 71 Av E Bourlaux, Villenave d'Ornon 33882, France
| | - Julien Assali
- INRAE, University of Bordeaux, UMR1332 BFP, 71 Av E Bourlaux, Villenave d'Ornon 33882, France
| | - Takuya Yoshida
- Max-Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Marilise Nogueira
- Department of Biological Sciences, Holloway University of London, Egham Hill, Egham, UK
| | - Takayuki Tohge
- Max-Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Carine Ferrand
- INRAE, University of Bordeaux, UMR1332 BFP, 71 Av E Bourlaux, Villenave d'Ornon 33882, France
| | - Lázaro E P Peres
- Department of Biological Science, São Paulo University, Avenida Pádua Dias, Piracicaba 13418-900, Brazil
| | - Erika Asamizu
- Tsukuba Plant Innovation Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Shiga 520-2194, Japan
| | - Hiroshi Ezura
- Tsukuba Plant Innovation Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Paul D Fraser
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Shiga 520-2194, Japan
| | - Mohammad-Reza Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Corrensstraße 3, Seeland 06466, Germany
| | - Alisdair R Fernie
- Max-Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Christophe Rothan
- INRAE, University of Bordeaux, UMR1332 BFP, 71 Av E Bourlaux, Villenave d'Ornon 33882, France
| |
Collapse
|
27
|
Jia Z, Giehl RFH, von Wirén N. Nutrient-hormone relations: Driving root plasticity in plants. MOLECULAR PLANT 2022; 15:86-103. [PMID: 34920172 DOI: 10.1016/j.molp.2021.12.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/04/2021] [Accepted: 12/14/2021] [Indexed: 05/25/2023]
Abstract
Optimal plant development requires root uptake of 14 essential mineral elements from the soil. Since the bioavailability of these nutrients underlies large variation in space and time, plants must dynamically adjust their root architecture to optimize nutrient access and acquisition. The information on external nutrient availability and whole-plant demand is translated into cellular signals that often involve phytohormones as intermediates to trigger a systemic or locally restricted developmental response. Timing and extent of such local root responses depend on the overall nutritional status of the plant that is transmitted from shoots to roots in the form of phytohormones or other systemic long-distance signals. The integration of these systemic and local signals then determines cell division or elongation rates in primary and lateral roots, the initiation, emergence, or elongation of lateral roots, as well as the formation of root hairs. Here, we review the cascades of nutrient-related sensing and signaling events that involve hormones and highlight nutrient-hormone relations that coordinate root developmental plasticity in plants.
Collapse
Affiliation(s)
- Zhongtao Jia
- Molecular Plant Nutrition, Department of Physiology & Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Ricardo F H Giehl
- Molecular Plant Nutrition, Department of Physiology & Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Department of Physiology & Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Stadt Seeland, OT Gatersleben, Germany.
| |
Collapse
|
28
|
Mumivand H, Khanizadeh P, Morshedloo MR, Sierka E, Żuk-Gołaszewska K, Horaczek T, Kalaji HM. Improvement of Growth, Yield, Seed Production and Phytochemical Properties of Satureja khuzistanica Jamzad by Foliar Application of Boron and Zinc. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112469. [PMID: 34834832 PMCID: PMC8620972 DOI: 10.3390/plants10112469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Satureja khuzistanica Jamzad is a valuable and endemic medicinal plant. Boron and zinc are essential elements for the vegetative and reproductive growth of plants and have significant effects on yield, essential oil composition and the seed production of plants. To investigate the effects of the foliar application of zinc and boron on the growth, yield, seed production and phytochemical properties of S. khuzistanica, a study was conducted in a factorial experiment with three replicates in two consecutive years based on a randomized complete block design. The foliar application of boron (B) at three concentrations (control or distilled water, 0.4% and 0.8% as H3BO3) and zinc (Zn) at three concentrations (control or distilled water, 0.3% and 0.6% as ZnSO4) was carried out. Our results showed that the foliar application of B resulted in a significant increase in the fresh and dry weights of plants, the dry weight of stems, drug yield, seed yield, seed germination and 1000-seed weight. At the same time, the application of B resulted in a significant decrease in seed emptiness. The fresh and dry weights of plants, drug yield, seed yield, 1000-seed weight and seed germination were also significantly improved by Zn foliar spraying compared to the control. Application of 0.8% B resulted in a significant decrease in seed emptiness by 14.16% and 22.37%, as compared to the control. The foliar spraying of B and Zn improved the total phenolic content, the essential oil content and the yield and antioxidant activity of S. khuzistanica. Moreover, B application generally concentrated more carvacrol in the essential oil (in the first experimental year). In contrast, no significant differences were observed between Zn treatments in carvacrol content and total flavonoids. The use of several microelements, such as B and Zn, could improve both the quantity and quality of S. khuzistanica. Additionally, improvement of seed set and seed quality by the foliar spraying of Zn and B may be useful for growing plants in arid and semi-arid areas.
Collapse
Affiliation(s)
- Hasan Mumivand
- Department of Horticultural Science, Faculty of Agriculture, Lorestan University, Khorramabad 68151-44316, Iran;
| | - Parisa Khanizadeh
- Department of Horticultural Science, Faculty of Agriculture, Lorestan University, Khorramabad 68151-44316, Iran;
| | - Mohammad Reza Morshedloo
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh 83111-55181, Iran;
| | - Edyta Sierka
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 28 Jagiellonska, 40-032 Katowice, Poland;
| | - Krystyna Żuk-Gołaszewska
- Department of Agrotechnology and Agribusiness, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Oczapowskiego 8, 10-719 Olsztyn, Poland;
| | - Tomasz Horaczek
- Institute of Technology and Life Sciences—National Research Institute, Falenty, Al. Hrabska 3, 05-090 Raszyn, Poland; (T.H.); (H.M.K.)
| | - Hazem M. Kalaji
- Institute of Technology and Life Sciences—National Research Institute, Falenty, Al. Hrabska 3, 05-090 Raszyn, Poland; (T.H.); (H.M.K.)
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, 02-776 Warsaw, Poland
| |
Collapse
|
29
|
A Metabolic Choreography of Maize Plants Treated with a Humic Substance-Based Biostimulant under Normal and Starved Conditions. Metabolites 2021; 11:metabo11060403. [PMID: 34202973 PMCID: PMC8235525 DOI: 10.3390/metabo11060403] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022] Open
Abstract
Humic substance (HS)-based biostimulants show potentials as sustainable strategies for improved crop development and stress resilience. However, cellular and molecular mechanisms governing the agronomically observed effects of HS on plants remain enigmatic. Here, we report a global metabolic reprogramming of maize leaves induced by a humic biostimulant under normal and nutrient starvation conditions. This reconfiguration of the maize metabolism spanned chemical constellations, as revealed by molecular networking approaches. Plant growth and development under normal conditions were characterized by key differential metabolic changes such as increased levels of amino acids, oxylipins and the tricarboxylic acid (TCA) intermediate, isocitric acid. Furthermore, under starvation, the humic biostimulant significantly impacted pathways that are involved in stress-alleviating mechanisms such as redox homeostasis, strengthening of the plant cell wall, osmoregulation, energy production and membrane remodelling. Thus, this study reveals that the humic biostimulant induces a remodelling of inter-compartmental metabolic networks in maize, subsequently readjusting the plant physiology towards growth promotion and stress alleviation. Such insights contribute to ongoing efforts in elucidating modes of action of biostimulants, generating fundamental scientific knowledge that is necessary for development of the biostimulant industry, for sustainable food security.
Collapse
|
30
|
Huang Y, Wang S, Wang C, Ding G, Cai H, Shi L, Xu F. Induction of jasmonic acid biosynthetic genes inhibits Arabidopsis growth in response to low boron. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:937-948. [PMID: 33289292 PMCID: PMC8252524 DOI: 10.1111/jipb.13048] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/02/2020] [Indexed: 05/31/2023]
Abstract
The essential micronutrient boron (B) has key roles in cell wall integrity and B deficiency inhibits plant growth. The role of jasmonic acid (JA) in plant growth inhibition under B deficiency remains unclear. Here, we report that low B elevates JA biosynthesis in Arabidopsis thaliana by inducing the expression of JA biosynthesis genes. Treatment with JA inhibited plant growth and, a JA biosynthesis inhibitor enhanced plant growth, indicating that the JA induced by B deficiency affects plant growth. Furthermore, examination of the JA signaling mutants jasmonate resistant1, coronatine insensitive1-2, and myc2 showed that JA signaling negatively regulates plant growth under B deficiency. We identified a low-B responsive transcription factor, ERF018, and used yeast one-hybrid assays and transient activation assays in Nicotiana benthamiana leaf cells to demonstrate that ERF018 activates the expression of JA biosynthesis genes. ERF018 overexpression (OE) lines displayed stunted growth and up-regulation of JA biosynthesis genes under normal B conditions, compared to Col-0 and the difference between ERF018 OE lines and Col-0 diminished under low B. These results suggest that ERF018 enhances JA biosynthesis and thus negatively regulates plant growth. Taken together, our results highlight the importance of JA in the effect of low B on plant growth.
Collapse
Affiliation(s)
- Yupu Huang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
- Microelement Research Center, College of Resources & EnvironmentHuazhong Agricultural UniversityWuhan430070China
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
- Microelement Research Center, College of Resources & EnvironmentHuazhong Agricultural UniversityWuhan430070China
| | - Chuang Wang
- Microelement Research Center, College of Resources & EnvironmentHuazhong Agricultural UniversityWuhan430070China
| | - Guangda Ding
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
- Microelement Research Center, College of Resources & EnvironmentHuazhong Agricultural UniversityWuhan430070China
| | - Hongmei Cai
- Microelement Research Center, College of Resources & EnvironmentHuazhong Agricultural UniversityWuhan430070China
| | - Lei Shi
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
- Microelement Research Center, College of Resources & EnvironmentHuazhong Agricultural UniversityWuhan430070China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
- Microelement Research Center, College of Resources & EnvironmentHuazhong Agricultural UniversityWuhan430070China
| |
Collapse
|
31
|
Huang Y, Wang S, Shi L, Xu F. JASMONATE RESISTANT 1 negatively regulates root growth under boron deficiency in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3108-3121. [PMID: 33530106 DOI: 10.1093/jxb/erab041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Boron (B) is an essential micronutrient for plant growth and development. Jasmonic acid (JA) plays pivotal roles in plant growth, but the underlying molecular mechanism of JA involvement in B-deficiency-induced root growth inhibition is yet to be explored. In this study, we investigated the response of JA to B deficiency and the mechanism of JAR1-dependent JA signaling in root growth inhibition under B deficiency in Arabidopsis. B deficiency enhanced JA signaling in roots, and root growth inhibition was partially restored by JA biosynthesis inhibition. The jar1-1 (jasmonate-resistant 1, JAR1) mutant, and mutants of coronatine-insensitive 1 (coi1-2) and myc2 defective in JA signaling showed insensitivity to B deficiency. The ethylene-overproduction mutant eto1 and ethylene-insensitive mutant etr1 showed sensitivity and insensitivity to B deficiency, respectively, suggesting that ethylene is involved in the inhibition of primary root growth under B deficiency. Furthermore, after a decline in levels of EIN3, which may contribute to root growth, ethylene signaling was weakened in the jar1-1 mutant root under B deficiency. Under B deficiency, B concentrations were increased in the roots and shoots of the jar1-1 mutant, owing to the large root system and its activity. Therefore, our findings revealed that JA, which is involved in the inhibition of root growth under B deficiency, is regulated by JAR1-activated JA and ethylene signaling pathways.
Collapse
Affiliation(s)
- Yupu Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - Sheliang Wang
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
32
|
Jia Z, Bienert MD, von Wirén N, Bienert GP. Genome-wide association mapping identifies HvNIP2;2/HvLsi6 accounting for efficient boron transport in barley. PHYSIOLOGIA PLANTARUM 2021; 171:809-822. [PMID: 33481273 DOI: 10.1111/ppl.13340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/18/2020] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Boron (B) is an essential mineral element for plant growth, and the seed B pool of crops can be crucial when seedlings need to establish on low-B soils. To date, it is poorly understood how B accumulation in grain crops is genetically controlled. Here, we assessed the genotypic variation of the B concentration in grains of a spring barley (Hordeum vulgare L.) association panel that represents broad genetic diversity. We found a large genetic variation of the grain B concentration and detected in total 23 quantitative trait loci (QTLs) using genome-wide association mapping. HvNIP2;2/HvLsi6, encoding a potential B-transporting membrane protein, mapped closely to a major-effect QTL accounting for the largest proportion of grain B variation. Based on transport studies using heterologous expression systems and gene expression analysis, we demonstrate that HvNIP2;2/HvLsi6 represents a functional B channel and that expression variation in its transcript level associates with root and shoot B concentrations as well as with root dry mass formation under B-deficient conditions.
Collapse
Affiliation(s)
- Zhongtao Jia
- Department of Physiology and Cell Biology, Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Manuela Désirée Bienert
- Department of Physiology and Cell Biology, Metalloid Transport, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Crop Physiology, Department of Molecular Life Sciences, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Nicolaus von Wirén
- Department of Physiology and Cell Biology, Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Gerd Patrick Bienert
- Department of Physiology and Cell Biology, Metalloid Transport, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Crop Physiology, Department of Molecular Life Sciences, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
33
|
Torti S, Schlesier R, Thümmler A, Bartels D, Römer P, Koch B, Werner S, Panwar V, Kanyuka K, Wirén NV, Jones JDG, Hause G, Giritch A, Gleba Y. Transient reprogramming of crop plants for agronomic performance. NATURE PLANTS 2021; 7:159-171. [PMID: 33594264 DOI: 10.1038/s41477-021-00851-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/11/2021] [Indexed: 05/02/2023]
Abstract
The development of a new crop variety is a time-consuming and costly process due to the reliance of plant breeding on gene shuffling to introduce desired genes into elite germplasm, followed by backcrossing. Here, we propose alternative technology that transiently targets various regulatory circuits within a plant, leading to operator-specified alterations of agronomic traits, such as time of flowering, vernalization requirement, plant height or drought tolerance. We redesigned techniques of gene delivery, amplification and expression around RNA viral transfection methods that can be implemented on an industrial scale and with many crop plants. The process does not involve genetic modification of the plant genome and is thus limited to a single plant generation, is broadly applicable, fast, tunable and versatile, and can be used throughout much of the crop cultivation cycle. The RNA-based reprogramming may be especially useful in plant pathogen pandemics but also for commercial seed production and for rapid adaptation of orphan crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stefan Werner
- Nomad Bioscience GmbH, Halle, Germany
- Icon Genetics GmbH, Halle, Germany
| | - Vinay Panwar
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Kostya Kanyuka
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Germany
| | | | - Gerd Hause
- Biocenter, Electron Microscopy, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | | | | |
Collapse
|
34
|
Gao S, Chu C. Gibberellin Metabolism and Signaling: Targets for Improving Agronomic Performance of Crops. PLANT & CELL PHYSIOLOGY 2020; 61:1902-1911. [PMID: 32761079 PMCID: PMC7758032 DOI: 10.1093/pcp/pcaa104] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/24/2020] [Indexed: 05/19/2023]
Abstract
Gibberellins (GAs) are a class of tetracyclic diterpenoid phytohormones that regulate many aspects of plant development, including seed germination, stem elongation, leaf expansion, pollen maturation, and the development of flowers, fruits and seeds. During the past decades, the primary objective of crop breeding programs has been to increase productivity or yields. 'Green Revolution' genes that can produce semidwarf, high-yielding crops were identified as GA synthesis or response genes, confirming the value of research on GAs in improving crop productivity. The manipulation of GA status either by genetic alteration or by exogenous application of GA or GA biosynthesis inhibitors is often used to optimize plant growth and yields. In this review, we summarize the roles of GAs in major aspects of crop growth and development and present the possible targets for the fine-tuning of GA metabolism and signaling as a promising strategy for crop improvement.
Collapse
Affiliation(s)
- Shaopei Gao
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education/Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Corresponding author: E-mail, ; Fax, +86 010 64806608
| |
Collapse
|
35
|
Liu Z, Giehl RFH, Hartmann A, Hajirezaei MR, Carpentier S, von Wirén N. Seminal and Nodal Roots of Barley Differ in Anatomy, Proteome and Nitrate Uptake Capacity. PLANT & CELL PHYSIOLOGY 2020; 61:1297-1308. [PMID: 32379871 DOI: 10.1093/pcp/pcaa059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
The root system of barley plants is composed of embryogenic, seminal roots as well as lateral and nodal roots that are formed postembryonically from seminal roots and from the basal part of shoots, respectively. Due to their distinct developmental origin, seminal and nodal roots may differ in function during plant development; however, a clear comparison between these two root types has not yet been undertaken. In this study, anatomical, proteomic and physiological traits were compared between seminal and nodal roots of similar developmental stages. Nodal roots have larger diameter, larger metaxylem area and a larger number of metaxylem vessels than seminal roots. Proteome profiling uncovered a set of root-type-specific proteins, including proteins related to the cell wall and cytoskeleton organization, which could potentially be implicated with differential metaxylem development. We also found that nodal roots have higher levels of auxin, which is known to trigger metaxylem development. At millimolar nitrate supply, nodal roots had approximately 2-fold higher nitrate uptake and root-to-shoot translocation capacities than seminal roots, whereas no differences were found at micromolar nitrate supply. Since these marked differences were not reflected by the transcript levels of low-affinity nitrate transporter genes, we hypothesize that the larger metaxylem volume of nodal roots enhances predominantly the low-affinity uptake and translocation capacities of nutrients that are transported with the bulk flow of water, like nitrate.
Collapse
Affiliation(s)
- Zhaojun Liu
- Molecular Plant Nutrition, Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Ricardo Fabiano Hettwer Giehl
- Molecular Plant Nutrition, Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Anja Hartmann
- Molecular Plant Nutrition, Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Mohammad Reza Hajirezaei
- Molecular Plant Nutrition, Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Sebastien Carpentier
- Proteomics Core Facility, SYBIOMA, KU Leuven, O&N II Herestraat 49, Bus 901, 3000 Leuven, Belgium
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, Box 2455, 3001 Leuven, Belgium
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstrasse 3, 06466 Gatersleben, Germany
| |
Collapse
|
36
|
Pandey A, Devi LL, Singh AP. Review: Emerging roles of brassinosteroid in nutrient foraging. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110474. [PMID: 32540004 DOI: 10.1016/j.plantsci.2020.110474] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/04/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Brassinosteroids (BRs) are well-characterized growth hormones that are critical for plant growth, development, and productivity. Genetic and molecular studies have revealed the key components of BR biosynthesis and signaling pathways. The membrane-localized BR signaling receptor, BRASSINOSTEROID INSENSITIVE1 (BRI1) binds directly to its ligand and initiates series of signaling events that led to the activation of BR transcriptional regulators, BRASSINAZOLE RESISTANT1 (BZR1) and BRI1-ETHYL METHANESULFONATE-SUPPRESSOR1 (BES1/BZR2) to regulate the cellular processes. Insights from Arabidopsis research revealed tissue and cell type-specific roles of BR in controlling cell elongation and maintenance of stem cell niche in roots. More recently, BRs have gained much attention in regulating the root growth during nutrient deficiency such as nitrogen, phosphorus, and boron. Differential distribution of nutrients in the rhizosphere alters BR hormone levels and signaling to reprogram spatial distribution of root system architecture (RSA) such as a change in primary root growth, lateral root numbers, length, and angle, root hair formation and elongation. These morpho-physiological changes in RSA are also known as an adaptive root trait or foraging response of the plant. In this review, we highlight the role of BRs in regulating RSA to increase root foraging response during fluctuating nutrient availability.
Collapse
Affiliation(s)
- Anshika Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | - Amar Pal Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
37
|
Matthes MS, Robil JM, McSteen P. From element to development: the power of the essential micronutrient boron to shape morphological processes in plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1681-1693. [PMID: 31985801 PMCID: PMC7067301 DOI: 10.1093/jxb/eraa042] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/25/2020] [Indexed: 05/27/2023]
Abstract
Deficiency of the essential nutrient boron (B) in the soil is one of the most widespread micronutrient deficiencies worldwide, leading to developmental defects in root and shoot tissues of plants, and severe yield reductions in many crops. Despite this agricultural importance, the underlying mechanisms of how B shapes plant developmental and morphological processes are still not unequivocally understood in detail. This review evaluates experimental approaches that address our current understanding of how B influences plant morphological processes by focusing on developmental defects observed under B deficiency. We assess what is known about mechanisms that control B homeostasis and specifically highlight: (i) limitations in the methodology that is used to induce B deficiency; (ii) differences between mutant phenotypes and normal plants grown under B deficiency; and (iii) recent research on analyzing interactions between B and phytohormones. Our analysis highlights the need for standardized methodology to evaluate the roles of B in the cell wall versus other parts of the cell.
Collapse
Affiliation(s)
- Michaela S Matthes
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, LSC, Columbia, MO, USA
| | - Janlo M Robil
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, LSC, Columbia, MO, USA
| | - Paula McSteen
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, LSC, Columbia, MO, USA
| |
Collapse
|
38
|
Heuermann D, Hahn H, von Wirén N. Seed Yield and Nitrogen Efficiency in Oilseed Rape After Ammonium Nitrate or Urea Fertilization. FRONTIERS IN PLANT SCIENCE 2020; 11:608785. [PMID: 33584751 PMCID: PMC7874180 DOI: 10.3389/fpls.2020.608785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/15/2020] [Indexed: 05/06/2023]
Abstract
In agricultural plant production, nitrate, ammonium, and urea are the major fertilized nitrogen forms, which differ in root uptake and downstream signaling processes in plants. Nitrate is known to stimulate cytokinin synthesis in roots, while for urea no hormonal effect has been described yet. Elevated cytokinin levels can delay plant senescence favoring prolonged nitrogen uptake. As the cultivation of winter oilseed rape provokes high nitrogen-balance surpluses, we tested the hypotheses whether nitrogen use efficiency increases under ammonium nitrate- relative to urea-based nutrition and whether this is subject to genotypic variation. In a 2-year field study, 15 oilseed rape lines were fertilized either with ammonium nitrate or with urease inhibitor-stabilized urea and analyzed for seed yield and nitrogen-related yield parameters. Despite a significant environmental impact on the performance of the individual lines, which did not allow revealing consistent impact of the genotype, ammonium nitrate-based nutrition tended to increase seed yield in average over all lines. To resolve whether the fertilizer N forms act on grain yield via phytohormones, we collected xylem exudates at three developmental stages and determined the translocation rates of cytokinins and N forms. Relative to urea, ammonium nitrate-based nutrition enhanced the translocation of nitrate or total nitrogen together with cytokinins, whereas in the urea treatment translocation rates were lower as long as urea remained stable in the soil solution. At later developmental stages, i.e., when urea became hydrolyzed, nitrogen and cytokinin translocation increased. In consequence, urea tended to increase nitrogen partitioning in the shoot toward generative organs. However, differences in overall nitrogen accumulation in shoots were not present at the end of the vegetation period, and neither nitrogen uptake nor utilization efficiency was consistently different between the two applied nitrogen forms.
Collapse
Affiliation(s)
- Diana Heuermann
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Heike Hahn
- Agricultural Application Research, SKW Stickstoffwerke Piesteritz GmbH, Borsdorf, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- *Correspondence: Nicolaus von Wirén,
| |
Collapse
|
39
|
Wang L, Zou Y, Kaw HY, Wang G, Sun H, Cai L, Li C, Meng LY, Li D. Recent developments and emerging trends of mass spectrometric methods in plant hormone analysis: a review. PLANT METHODS 2020; 16:54. [PMID: 32322293 PMCID: PMC7161177 DOI: 10.1186/s13007-020-00595-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 04/04/2020] [Indexed: 05/18/2023]
Abstract
Plant hormones are naturally occurring small molecule compounds which are present at trace amounts in plant. They play a pivotal role in the regulation of plant growth. The biological activity of plant hormones depends on their concentrations in the plant, thus, accurate determination of plant hormone is paramount. However, the complex plant matrix, wide polarity range and low concentration of plant hormones are the main hindrances to effective analyses of plant hormone even when state-of-the-art analytical techniques are employed. These factors substantially influence the accuracy of analytical results. So far, significant progress has been realized in the analysis of plant hormones, particularly in sample pretreatment techniques and mass spectrometric methods. This review describes the classic extraction and modern microextraction techniques used to analyze plant hormone. Advancements in solid phase microextraction (SPME) methods have been driven by the ever-increasing requirement for dynamic and in vivo identification of the spatial distribution of plant hormones in real-life plant samples, which would contribute greatly to the burgeoning field of plant hormone investigation. In this review, we describe advances in various aspects of mass spectrometry methods. Many fragmentation patterns are analyzed to provide the theoretical basis for the establishment of a mass spectral database for the analysis of plant hormones. We hope to provide a technical guide for further discovery of new plant hormones. More than 140 research studies on plant hormone published in the past decade are reviewed, with a particular emphasis on the recent advances in mass spectrometry and sample pretreatment techniques in the analysis of plant hormone. The potential progress for further research in plant hormones analysis is also highlighted.
Collapse
Affiliation(s)
- Liyuan Wang
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Yilin Zou
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Han Yeong Kaw
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Gang Wang
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Huaze Sun
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Long Cai
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Chengyu Li
- State Key Laboratory of Application of Rare Earth Resources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Long-Yue Meng
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
- Department of Environmental Science, Yanbian University, Yanji, 133002 China
| | - Donghao Li
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| |
Collapse
|
40
|
Zhou GF, Zhang LP, Li BX, Sheng O, Wei QJ, Yao FX, Guan G, Liu GD. Genome-Wide Identification of Long Non-coding RNA in Trifoliate Orange ( Poncirus trifoliata (L.) Raf) Leaves in Response to Boron Deficiency. Int J Mol Sci 2019; 20:ijms20215419. [PMID: 31683503 PMCID: PMC6862649 DOI: 10.3390/ijms20215419] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play important roles in plant growth and stress responses. As a dominant abiotic stress factor in soil, boron (B) deficiency stress has impacted the growth and development of citrus in the red soil region of southern China. In the present work, we performed a genome-wide identification and characterization of lncRNAs in response to B deficiency stress in the leaves of trifoliate orange (Poncirus trifoliata), an important rootstock of citrus. A total of 2101 unique lncRNAs and 24,534 mRNAs were predicted. Quantitative real-time polymerase chain reaction (qRT-PCR) experiments were performed for a total of 16 random mRNAs and lncRNAs to validate their existence and expression patterns. Expression profiling of the leaves of trifoliate orange under B deficiency stress identified 729 up-regulated and 721 down-regulated lncRNAs, and 8419 up-regulated and 8395 down-regulated mRNAs. Further analysis showed that a total of 84 differentially expressed lncRNAs (DELs) were up-regulated and 31 were down-regulated, where the number of up-regulated DELs was 2.71-fold that of down-regulated. A similar trend was also observed in differentially expressed mRNAs (DEMs, 4.21-fold). Functional annotation of these DEMs was performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, and the results demonstrated an enrichment of the categories of the biosynthesis of secondary metabolites (including phenylpropanoid biosynthesis/lignin biosynthesis), plant hormone signal transduction and the calcium signaling pathway. LncRNA target gene enrichment identified several target genes that were involved in plant hormones, and the expression of lncRNAs and their target genes was significantly influenced. Therefore, our results suggest that lncRNAs can regulate the metabolism and signal transduction of plant hormones, which play an important role in the responses of citrus plants to B deficiency stress. Co-expression network analysis indicated that 468 significantly differentially expressed genes may be potential targets of 90 lncRNAs, and a total of 838 matched lncRNA-mRNA pairs were identified. In summary, our data provides a rich resource of candidate lncRNAs and mRNAs, as well as their related pathways, thereby improving our understanding of the role of lncRNAs in response to B deficiency stress, and in symptom formation caused by B deficiency in the leaves of trifoliate orange.
Collapse
Affiliation(s)
- Gao-Feng Zhou
- National Navel Orange Engineering Research Center, College of Navel Orange, Gannan Normal University, Ganzhou 341000, China.
| | - Li-Ping Zhang
- National Navel Orange Engineering Research Center, College of Navel Orange, Gannan Normal University, Ganzhou 341000, China.
| | - Bi-Xian Li
- National Navel Orange Engineering Research Center, College of Navel Orange, Gannan Normal University, Ganzhou 341000, China.
| | - Ou Sheng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Qing-Jiang Wei
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Feng-Xian Yao
- National Navel Orange Engineering Research Center, College of Navel Orange, Gannan Normal University, Ganzhou 341000, China.
| | - Guan Guan
- National Navel Orange Engineering Research Center, College of Navel Orange, Gannan Normal University, Ganzhou 341000, China.
| | - Gui-Dong Liu
- National Navel Orange Engineering Research Center, College of Navel Orange, Gannan Normal University, Ganzhou 341000, China.
| |
Collapse
|
41
|
Gómez-Soto D, Galván S, Rosales E, Bienert P, Abreu I, Bonilla I, Bolaños L, Reguera M. Insights into the role of phytohormones regulating pAtNIP5;1 activity and boron transport in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110198. [PMID: 31481193 DOI: 10.1016/j.plantsci.2019.110198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/17/2019] [Accepted: 07/21/2019] [Indexed: 05/29/2023]
Abstract
Aiming to counteract B deficiency impacts, plants have developed different strategies in order to reach an optimal growth in soils with limited B availability. These include B transport mechanisms that involves a facilitated transport, via channel proteins, and a high-affinity active transport driven by borate transporters. The AtNIP5;1 channel protein is a member of Major Intrinsic Protein family which facilitates B influx into the roots under low B supply. In order to explore the phytohormone-dependent regulation of AtNIP5;1, the effects of abscisic acid (ABA), ethylene, auxins and cytokinins on the activity of AtNIP5;1 promoter were evaluated using the reporter line pNIP5;1-GUS. The results show that ABA treatment increased pAtNIP5;1 activity. Besides, a larger B uptake was found following ABA treatment under B deficiency suggesting a role of ABA inducing B uptake. The ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) caused an induction of AtNIP5;1 expression although did not correlate with higher B concentrations nor with an improvement in root growth. On the contrary, auxins and cytokinins caused slight changes in pAtNIP5;1 induction. Altogether, these results show a regulatory role of phytohormones in AtNIP5;1 promoter what may affect B transport. The herein provided information may contribute to better understand the regulation of B transport in plants towards minimizing B deficiency impacts on agriculture.
Collapse
Affiliation(s)
- D Gómez-Soto
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049, Madrid, Spain
| | - S Galván
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049, Madrid, Spain
| | - E Rosales
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049, Madrid, Spain
| | - P Bienert
- IPK-Leibniz Institute of Plant Genetics and Crop Plant Research, Department of Physiology and Cell Biology, 06466, Gatersleben, Germany
| | - I Abreu
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049, Madrid, Spain
| | - I Bonilla
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049, Madrid, Spain
| | - L Bolaños
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049, Madrid, Spain
| | - M Reguera
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
42
|
Pommerrenig B, Eggert K, Bienert GP. Boron Deficiency Effects on Sugar, Ionome, and Phytohormone Profiles of Vascular and Non-Vascular Leaf Tissues of Common Plantain ( Plantago major L.). Int J Mol Sci 2019; 20:E3882. [PMID: 31395813 PMCID: PMC6719229 DOI: 10.3390/ijms20163882] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 12/15/2022] Open
Abstract
Vascular tissues essentially regulate water, nutrient, photo-assimilate, and phytohormone logistics throughout the plant body. Boron (B) is crucial for the development of the vascular tissue in many dicotyledonous plant taxa and B deficiency particularly affects the integrity of phloem and xylem vessels, and, therefore, functionality of long-distance transport. We hypothesize that changes in the plants' B nutritional status evoke differential responses of the vasculature and the mesophyll. However, direct analyses of the vasculature in response to B deficiency are lacking, due to the experimental inaccessibility of this tissue. Here, we generated biochemical and physiological understanding of B deficiency response reactions in common plantain (Plantago major L.), from which pure and intact vascular bundles can be extracted. Low soil B concentrations affected quantitative distribution patterns of various phytohormones, sugars and macro-, and micronutrients in a tissue-specific manner. Vascular sucrose levels dropped, and sucrose loading into the phloem was reduced under low B supply. Phytohormones responded selectively to B deprivation. While concentrations of abscisic acid and salicylic acid decreased at low B supply, cytokinins and brassinosteroids increased in the vasculature and the mesophyll, respectively. Our results highlight the biological necessity to analyze nutrient deficiency responses in a tissue- rather organ-specific manner.
Collapse
Affiliation(s)
- Benjamin Pommerrenig
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, D-06466 Gatersleben, Germany
- Plant Physiology, University of Kaiserslautern, Paul-Ehrlich-Str. 22, D-67653 Kaiserslautern, Germany
| | - Kai Eggert
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, D-06466 Gatersleben, Germany
| | - Gerd P Bienert
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, D-06466 Gatersleben, Germany.
| |
Collapse
|
43
|
Lewis DH. Boron: the essential element for vascular plants that never was. THE NEW PHYTOLOGIST 2019; 221:1685-1690. [PMID: 30289999 DOI: 10.1111/nph.15519] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/26/2018] [Indexed: 05/18/2023]
Abstract
Although a requirement for boron is a well-established feature of vascular plants, its designation, for almost a century, as essential is challenged and, instead, the proposal is made that it has never been so as conventionally defined. This is because an alternative interpretation of published evidence negates its compliance with one of the criteria for essentiality, that its effects are direct. The alternative, here postulated, is that boron is, and always has been, potentially toxic, a feature which, for normal growth, development and reproduction, needed to be nullified. This was enabled by exploitation of boron's ability to be chemically bound to compounds with cis-hydroxyl groups. Although particular cell wall carbohydrate polymers, glycoproteins and membrane glycolipids are among candidates for this role, it is here proposed that soluble phenolic metabolites of, or related to, the components of the pathway of lignin biosynthesis, themselves potentially toxic, are primarily used by vascular plants. When metabolic circumstances allow these phenolics to accumulate endogenously in the cytoplasm, their own inherent toxicity is also alleviated, partially at least, by formation of complexes with boron. This chemical reciprocity, enhanced by physical sequestration of the complexes in vacuoles and/or apoplast, thus achieves, in a flexible but indirect manner, a minimization of the inherent toxicities of both boron and relevant phenolics. In these ways, the multifarious outcomes of impairments, natural or experimental, to this interplay are responsible for the lack of consensus to explain the diverse effects observed in the many searches for boron's primary metabolic role, here considered to be nonexistent. In particular, since a toxic element cannot have 'deficiency symptoms', those previously so-called are postulated to be largely due to the expressed toxicity of phenylpropanoids. A principal requirement for the otherwise toxic boron is to nullify, by means of its indirect chemical and physical sequestration, such expression. In these ways, it is therefore neither an essential nor a beneficial element as currently strictly defined.
Collapse
Affiliation(s)
- David H Lewis
- Department of Animal & Plant Sciences, The University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
44
|
Cortleven A, Leuendorf JE, Frank M, Pezzetta D, Bolt S, Schmülling T. Cytokinin action in response to abiotic and biotic stresses in plants. PLANT, CELL & ENVIRONMENT 2019; 42:998-1018. [PMID: 30488464 DOI: 10.1111/pce.13494] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/12/2018] [Accepted: 11/20/2018] [Indexed: 05/20/2023]
Abstract
The phytohormone cytokinin was originally discovered as a regulator of cell division. Later, it was described to be involved in regulating numerous processes in plant growth and development including meristem activity, tissue patterning, and organ size. More recently, diverse functions for cytokinin in the response to abiotic and biotic stresses have been reported. Cytokinin is required for the defence against high light stress and to protect plants from a novel type of abiotic stress caused by an altered photoperiod. Additionally, cytokinin has a role in the response to temperature, drought, osmotic, salt, and nutrient stress. Similarly, the full response to certain plant pathogens and herbivores requires a functional cytokinin signalling pathway. Conversely, different types of stress impact cytokinin homeostasis. The diverse functions of cytokinin in responses to stress and crosstalk with other hormones are described. Its emerging roles as a priming agent and as a regulator of growth-defence trade-offs are discussed.
Collapse
Affiliation(s)
- Anne Cortleven
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Jan Erik Leuendorf
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Manuel Frank
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Daniela Pezzetta
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Sylvia Bolt
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195, Berlin, Germany
| |
Collapse
|
45
|
Pavlů J, Novák J, Koukalová V, Luklová M, Brzobohatý B, Černý M. Cytokinin at the Crossroads of Abiotic Stress Signalling Pathways. Int J Mol Sci 2018; 19:ijms19082450. [PMID: 30126242 PMCID: PMC6121657 DOI: 10.3390/ijms19082450] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 01/13/2023] Open
Abstract
Cytokinin is a multifaceted plant hormone that plays major roles not only in diverse plant growth and development processes, but also stress responses. We summarize knowledge of the roles of its metabolism, transport, and signalling in responses to changes in levels of both macronutrients (nitrogen, phosphorus, potassium, sulphur) and micronutrients (boron, iron, silicon, selenium). We comment on cytokinin's effects on plants' xenobiotic resistance, and its interactions with light, temperature, drought, and salinity signals. Further, we have compiled a list of abiotic stress-related genes and demonstrate that their expression patterns overlap with those of cytokinin metabolism and signalling genes.
Collapse
Affiliation(s)
- Jaroslav Pavlů
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
- CEITEC-Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
| | - Vladěna Koukalová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
| | - Markéta Luklová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
- CEITEC-Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
- CEITEC-Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
- Institute of Biophysics AS CR, 612 00 Brno, Czech Republic.
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
- Phytophthora Research Centre, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
| |
Collapse
|
46
|
Pommerrenig B, Junker A, Abreu I, Bieber A, Fuge J, Willner E, Bienert MD, Altmann T, Bienert GP. Identification of Rapeseed ( Brassica napus) Cultivars With a High Tolerance to Boron-Deficient Conditions. FRONTIERS IN PLANT SCIENCE 2018; 9:1142. [PMID: 30131820 PMCID: PMC6091279 DOI: 10.3389/fpls.2018.01142] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/17/2018] [Indexed: 05/22/2023]
Abstract
Boron (B) is an essential micronutrient for seed plants. Information on B-efficiency mechanisms and B-efficient crop and model plant genotypes is very scarce. Studies evaluating the basis and consequences of B-deficiency and B-efficiency are limited by the facts that B occurs as a trace contaminant essentially everywhere, its bioavailability is difficult to control and soil-based B-deficiency growth systems allowing a high-throughput screening of plant populations have hitherto been lacking. The crop plant Brassica napus shows a very high sensitivity toward B-deficient conditions. To reduce B-deficiency-caused yield losses in a sustainable manner, the identification of B-efficient B. napus genotypes is indispensable. We developed a soil substrate-based cultivation system which is suitable to study plant growth in automated high-throughput phenotyping facilities under defined and repeatable soil B conditions. In a comprehensive screening, using this system with soil B concentrations below 0.1 mg B (kg soil)-1, we identified three highly B-deficiency tolerant B. napus cultivars (CR2267, CR2280, and CR2285) among a genetically diverse collection comprising 590 accessions from all over the world. The B-efficiency classification of cultivars was based on a detailed assessment of various physical and high-throughput imaging-based shoot and root growth parameters in soil substrate or in in vitro conditions, respectively. We identified cultivar-specific patterns of B-deficiency-responsive growth dynamics. Elemental analysis revealed striking differences only in B contents between contrasting genotypes when grown under B-deficient but not under standard conditions. Results indicate that B-deficiency tolerant cultivars can grow with a very limited amount of B which is clearly below previously described critical B-tissue concentration values. These results suggest a higher B utilization efficiency of CR2267, CR2280, and CR2285 which would represent a unique trait among so far identified B-efficient B. napus cultivars which are characterized by a higher B-uptake capacity. Testing various other nutrient deficiency treatments, we demonstrated that the tolerance is specific for B-deficient conditions and is not conferred by a general growth vigor at the seedling stage. The identified B-deficiency tolerant cultivars will serve as genetic and physiological "tools" to further understand the mechanisms regulating the B nutritional status in rapeseed and to develop B-efficient elite genotypes.
Collapse
Affiliation(s)
- Benjamin Pommerrenig
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Astrid Junker
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Isidro Abreu
- Department of Biology, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Annett Bieber
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Jacqueline Fuge
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Evelin Willner
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Manuela D. Bienert
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Thomas Altmann
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Gerd P. Bienert
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| |
Collapse
|