1
|
Liu C, Peltoniemi M, Alekseychik P, Mäkelä A, Hölttä T. A Coupled Model of Hydraulic Eco-Physiology and Cambial Growth - Accounting for Biophysical Limitations and Phenology Improves Stem Diameter Prediction at High Temporal Resolution. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39449245 DOI: 10.1111/pce.15239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Traditional photosynthesis-driven growth models have considerable uncertainties in predicting tree growth under changing climates, partially because sink activities are directly affected by the environment but not adequately addressed in growth modelling. Therefore, we developed a semi-mechanistic model coupling stomatal optimality, temperature control of enzymatic activities and phenology of cambial growth. Parameterized using Bayesian inference and measured data on Picea abies and Pinus sylvestris in peatland and mineral soils in Finland, the coupled model simulates transpiration and assimilation rates and stem radial dimension (SRD) simultaneously at 30 min resolution. The results suggest that both the sink and phenological formulations with environmental effects are indispensable for capturing SRD dynamics across hourly to seasonal scales. Simulated using the model, growth was more sensitive than assimilation to temperature and soil water, suggesting carbon gain is not driving growth at the current temporal scale. Also, leaf-specific production was occasionally positively correlated with growth duration but not with growth onset timing or annual cambial area increment. Thus, as it is hardly explained by carbon gain, phenology itself should be included in sink-driven growth models of the trees in the boreal zone and possibly other environments where sink activities and photosynthesis are both restrained by harsh conditions.
Collapse
Affiliation(s)
- Che Liu
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| | | | | | - Annikki Mäkelä
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| | - Teemu Hölttä
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Matthews A, Katul G, Porporato A. Multiple time scale optimization explains functional trait responses to leaf water potential. THE NEW PHYTOLOGIST 2024; 244:426-435. [PMID: 39160672 DOI: 10.1111/nph.20035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024]
Abstract
Plant response to water stress involves multiple timescales. In the short term, stomatal adjustments optimize some fitness function commonly related to carbon uptake, while in the long term, traits including xylem resilience are adjusted. These optimizations are usually considered independently, the former involving stomatal aperture and the latter carbon allocation. However, short- and long-term adjustments are interdependent, as 'optimal' in the short term depends on traits set in the longer term. An economics framework is used to optimize long-term traits that impact short-term stomatal behavior. Two traits analyzed here are the resilience of xylem and the resilience of nonstomatal limitations (NSLs) to photosynthesis at low-water potentials. Results show that optimality requires xylem resilience to increase with climatic aridity. Results also suggest that the point at which xylem reach 50% conductance and the point at which NSLs reach 50% capacity are constrained to approximately a 2 : 1 linear ratio; however, this awaits further experimental verification. The model demonstrates how trait coordination arises mathematically, and it can be extended to many other traits that cross timescales. With further verification, these results could be used in plant modelling when information on plant traits is limited.
Collapse
Affiliation(s)
- Aidan Matthews
- Department of Civil and Environmental Engineering and High Meadows Environmental Institute, Princeton University, Princeton, NJ, 08540, USA
| | - Gabriel Katul
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, 27708, USA
| | - Amilcare Porporato
- Department of Civil and Environmental Engineering and High Meadows Environmental Institute, Princeton University, Princeton, NJ, 08540, USA
| |
Collapse
|
3
|
Flo V, Joshi J, Sabot M, Sandoval D, Prentice IC. Incorporating photosynthetic acclimation improves stomatal optimisation models. PLANT, CELL & ENVIRONMENT 2024; 47:3478-3493. [PMID: 38589983 DOI: 10.1111/pce.14891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 04/10/2024]
Abstract
Stomatal opening in plant leaves is regulated through a balance of carbon and water exchange under different environmental conditions. Accurate estimation of stomatal regulation is crucial for understanding how plants respond to changing environmental conditions, particularly under climate change. A new generation of optimality-based modelling schemes determines instantaneous stomatal responses from a balance of trade-offs between carbon gains and hydraulic costs, but most such schemes do not account for biochemical acclimation in response to drought. Here, we compare the performance of six instantaneous stomatal optimisation models with and without accounting for photosynthetic acclimation. Using experimental data from 37 plant species, we found that accounting for photosynthetic acclimation improves the prediction of carbon assimilation in a majority of the tested models. Photosynthetic acclimation contributed significantly to the reduction of photosynthesis under drought conditions in all tested models. Drought effects on photosynthesis could not accurately be explained by the hydraulic impairment functions embedded in the stomatal models alone, indicating that photosynthetic acclimation must be considered to improve estimates of carbon assimilation during drought.
Collapse
Affiliation(s)
- Victor Flo
- Department of Life Sciences, Georgina Mace Centre for the Living Planet, Imperial College London, Silwood Park Campus, Ascot, UK
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Univ Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Jaideep Joshi
- Department of Geosciences, Institute of Geography, University of Bern, Bern, Switzerland
- Oeschger Centre for Climate Change Research, Faculty of Science, University of Bern, Bern, Switzerland
- Advancing Systems Analysis Program, International Institute for Applied Systems Analysis, Laxenburg, Austria
- Complexity Science and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Manon Sabot
- ARC Centre of Excellence for Climate Extremes, Sydney, New South Wales, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
- Department of Biogeochemical Signals, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - David Sandoval
- Department of Life Sciences, Georgina Mace Centre for the Living Planet, Imperial College London, Silwood Park Campus, Ascot, UK
| | - Iain Colin Prentice
- Department of Life Sciences, Georgina Mace Centre for the Living Planet, Imperial College London, Silwood Park Campus, Ascot, UK
| |
Collapse
|
4
|
Wang X, Ma WT, Sun YR, Xu YN, Li L, Miao G, Tcherkez G, Gong XY. The response of mesophyll conductance to short-term CO 2 variation is related to stomatal conductance. PLANT, CELL & ENVIRONMENT 2024; 47:3590-3604. [PMID: 39031544 DOI: 10.1111/pce.15006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 07/22/2024]
Abstract
The response of mesophyll conductance (gm) to CO2 plays a key role in photosynthesis and ecosystem carbon cycles under climate change. Despite numerous studies, there is still debate about how gm responds to short-term CO2 variations. Here we used multiple methods and looked at the relationship between stomatal conductance to CO2 (gsc) and gm to address this aspect. We measured chlorophyll fluorescence parameters and online carbon isotope discrimination (Δ) at different CO2 mole fractions in sunflower (Helianthus annuus L.), cowpea (Vigna unguiculata L.), and wheat (Triticum aestivum L.) leaves. The variable J and Δ based methods showed that gm decreased with an increase in CO2 mole fraction, and so did stomatal conductance. There were linear relationships between gm and gsc across CO2 mole fractions. gm obtained from A-Ci curve fitting method was higher than that from the variable J method and was not representative of gm under the growth CO2 concentration. gm could be estimated by empirical models analogous to the Ball-Berry model and the USO model for stomatal conductance. Our results suggest that gm and gsc respond in a coordinated manner to short-term variations in CO2, providing new insight into the role of gm in photosynthesis modelling.
Collapse
Affiliation(s)
- Xuming Wang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, College of Geographical Sciences, Fuzhou, China
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fuzhou, China
| | - Wei Ting Ma
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, College of Geographical Sciences, Fuzhou, China
| | - Yan Ran Sun
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, College of Geographical Sciences, Fuzhou, China
| | - Yi Ning Xu
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, College of Geographical Sciences, Fuzhou, China
| | - Lei Li
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, College of Geographical Sciences, Fuzhou, China
| | - Guofang Miao
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, College of Geographical Sciences, Fuzhou, China
| | - Guillaume Tcherkez
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, Beaucouzé, France
- Research, School of Biology, ANU College of Sciences, Australian National University, Canberra, Acton, Australia
| | - Xiao Ying Gong
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, College of Geographical Sciences, Fuzhou, China
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fuzhou, China
| |
Collapse
|
5
|
Wilkening JV, Feng X, Dawson TE, Thompson SE. Different roads, same destination: The shared future of plant ecophysiology and ecohydrology. PLANT, CELL & ENVIRONMENT 2024; 47:3447-3465. [PMID: 38725360 DOI: 10.1111/pce.14937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 08/16/2024]
Abstract
Terrestrial water fluxes are substantially mediated by vegetation, while the distribution, growth, health, and mortality of plants are strongly influenced by the availability of water. These interactions, playing out across multiple spatial and temporal scales, link the disciplines of plant ecophysiology and ecohydrology. Despite this connection, the disciplines have provided complementary, but largely independent, perspectives on the soil-plant-atmosphere continuum since their crystallization as modern scientific disciplines in the late 20th century. This review traces the development of the two disciplines, from their respective origins in engineering and ecology, their largely independent growth and maturation, and the eventual development of common conceptual and quantitative frameworks. This common ground has allowed explicit coupling of the disciplines to better understand plant function. Case studies both illuminate the limitations of the disciplines working in isolation, and reveal the exciting possibilities created by consilience between the disciplines. The histories of the two disciplines suggest opportunities for new advances will arise from sharing methodologies, working across multiple levels of complexity, and leveraging new observational technologies. Practically, these exchanges can be supported by creating shared scientific spaces. This review argues that consilience and collaboration are essential for robust and evidence-based predictions and policy responses under global change.
Collapse
Affiliation(s)
- Jean V Wilkening
- Civil, Environmental, and Geo- Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xue Feng
- Civil, Environmental, and Geo- Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, Minnesota, USA
| | - Todd E Dawson
- Integrative Biology, University of California, Berkeley, California, USA
- Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| | - Sally E Thompson
- Civil, Environmental, and Mining Engineering, University of Western Australia, Perth, Western Australia, Australia
- Centre for Water and Spatial Science, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
6
|
Sun W, Maseyk K, Lett C, Seibt U. Restricted internal diffusion weakens transpiration-photosynthesis coupling during heatwaves: Evidence from leaf carbonyl sulphide exchange. PLANT, CELL & ENVIRONMENT 2024; 47:1813-1833. [PMID: 38321806 DOI: 10.1111/pce.14840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/13/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
Increasingly frequent and intense heatwaves threaten ecosystem health in a warming climate. However, plant responses to heatwaves are poorly understood. A key uncertainty concerns the intensification of transpiration when heatwaves suppress photosynthesis, known as transpiration-photosynthesis decoupling. Field observations of such decoupling are scarce, and the underlying physiological mechanisms remain elusive. Here, we use carbonyl sulphide (COS) as a leaf gas exchange tracer to examine potential mechanisms leading to transpiration-photosynthesis decoupling on a coast live oak in a southern California woodland in spring 2013. We found that heatwaves suppressed both photosynthesis and leaf COS uptake but increased transpiration or sustained it at non-heatwave levels throughout the day. Despite statistically significant decoupling between transpiration and photosynthesis, stomatal sensitivity to environmental factors did not change during heatwaves. Instead, midday photosynthesis during heatwaves was restricted by internal diffusion, as indicated by the lower internal conductance to COS. Thus, increased evaporative demand and nonstomatal limitation to photosynthesis act jointly to decouple transpiration from photosynthesis without altering stomatal sensitivity. Decoupling offered limited potential cooling benefits, questioning its effectiveness for leaf thermoregulation in xeric ecosystems. We suggest that adding COS to leaf and ecosystem flux measurements helps elucidate diverse physiological mechanisms underlying transpiration-photosynthesis decoupling.
Collapse
Affiliation(s)
- Wu Sun
- Department of Global Ecology, Carnegie Institution for Science, Stanford, California, USA
| | - Kadmiel Maseyk
- School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, UK
| | - Céline Lett
- Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Ulli Seibt
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, California, USA
| |
Collapse
|
7
|
Kim D, Guadagno CR, Ewers BE, Mackay DS. Combining PSII photochemistry and hydraulics improves predictions of photosynthesis and water use from mild to lethal drought. PLANT, CELL & ENVIRONMENT 2024; 47:1255-1268. [PMID: 38178610 DOI: 10.1111/pce.14806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
Rising temperatures and increases in drought negatively impact the efficiency and sustainability of both agricultural and forest ecosystems. Although hydraulic limitations on photosynthesis have been extensively studied, a solid understanding of the links between whole plant hydraulics and photosynthetic processes at the cellular level under changing environmental conditions is still missing, hampering our predictive power for plant mortality. Here, we examined plant hydraulic traits and CO2 assimilation rate under progressive water limitation by implementing Photosystem II (PSII) dynamics with a whole plant process model (TREES). The photosynthetic responses to plant water status were parameterized based on measurements of chlorophyll a fluorescence, gas exchange and water potential for Brassica rapa (R500) grown in a greenhouse under fully watered to lethal drought conditions. The updated model significantly improved predictions of photosynthesis, stomatal conductance and leaf water potential. TREES with PSII knowledge predicted a larger hydraulic safety margin and a decrease in percent loss of conductivity. TREES predicted a slower decrease in leaf water potential, which agreed with measurements. Our results highlight the pressing need for incorporating PSII drought photochemistry into current process models to capture cross-scale plant water dynamics from cell to whole plant level.
Collapse
Affiliation(s)
- Dohyoung Kim
- Department of Geography, State University of New York at Buffalo, Buffalo, New York, USA
| | | | - Brent E Ewers
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
| | - D Scott Mackay
- Department of Geography, State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
8
|
Preisler Y, Grünzweig JM, Ahiman O, Amer M, Oz I, Feng X, Muller JD, Ruehr N, Rotenberg E, Birami B, Yakir D. Vapour pressure deficit was not a primary limiting factor for gas exchange in an irrigated, mature dryland Aleppo pine forest. PLANT, CELL & ENVIRONMENT 2023; 46:3775-3790. [PMID: 37680062 DOI: 10.1111/pce.14712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
Climate change is often associated with increasing vapour pressure deficit (VPD) and changes in soil moisture (SM). While atmospheric and soil drying often co-occur, their differential effects on plant functioning and productivity remain uncertain. We investigated the divergent effects and underlying mechanisms of soil and atmospheric drought based on continuous, in situ measurements of branch gas exchange with automated chambers in a mature semiarid Aleppo pine forest. We investigated the response of control trees exposed to combined soil-atmospheric drought (low SM, high VPD) during the rainless Mediterranean summer and that of trees experimentally unconstrained by soil dryness (high SM; using supplementary dry season water supply) but subjected to atmospheric drought (high VPD). During the seasonal dry period, branch conductance (gbr ), transpiration rate (E) and net photosynthesis (Anet ) decreased in low-SM trees but greatly increased in high-SM trees. The response of E and gbr to the massive rise in VPD (to 7 kPa) was negative in low-SM trees and positive in high-SM trees. These observations were consistent with predictions based on a simple plant hydraulic model showing the importance of plant water potential in the gbr and E response to VPD. These results demonstrate that avoiding drought on the supply side (SM) and relying on plant hydraulic regulation constrains the effects of atmospheric drought (VPD) as a stressor on canopy gas exchange in mature pine trees under field conditions.
Collapse
Affiliation(s)
- Yakir Preisler
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - José M Grünzweig
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ori Ahiman
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Institute of Soil, Water and Environmental Sciences, ARO Volcani Center, Beit Dagan, Israel
| | - Madi Amer
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
| | - Itai Oz
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Xue Feng
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jonathan D Muller
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
- School for Climate Studies, Stellenbosch University, Stellenbosch, South Africa
| | - Nadine Ruehr
- Institute of Meteorology and Climate Research-Atmospheric Environmental Research (IMK-IFU), KIT-Campus Alpin, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - Eyal Rotenberg
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
| | - Benjamin Birami
- Institute of Meteorology and Climate Research-Atmospheric Environmental Research (IMK-IFU), KIT-Campus Alpin, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - Dan Yakir
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
9
|
Lamour J, Souza DC, Gimenez BO, Higuchi N, Chave J, Chambers J, Rogers A. Wood-density has no effect on stomatal control of leaf-level water use efficiency in an Amazonian forest. PLANT, CELL & ENVIRONMENT 2023; 46:3806-3821. [PMID: 37635450 DOI: 10.1111/pce.14704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/20/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
Forest disturbances increase the proportion of fast-growing tree species compared to slow-growing ones. To understand their relative capacity for carbon uptake and their vulnerability to climate change, and to represent those differences in Earth system models, it is necessary to characterise the physiological differences in their leaf-level control of water use efficiency and carbon assimilation. We used wood density as a proxy for the fast-slow growth spectrum and tested the assumption that trees with a low wood density (LWD) have a lower water-use efficiency than trees with a high wood density (HWD). We selected 5 LWD tree species and 5 HWD tree species growing in the same location in an Amazonian tropical forest and measured in situ steady-state gas exchange on top-of-canopy leaves with parallel sampling and measurement of leaf mass area and leaf nitrogen content. We found that LWD species invested more nitrogen in photosynthetic capacity than HWD species, had higher photosynthetic rates and higher stomatal conductance. However, contrary to expectations, we showed that the stomatal control of the balance between transpiration and carbon assimilation was similar in LWD and HWD species and that they had the same dark respiration rates.
Collapse
Affiliation(s)
- Julien Lamour
- Department of Environmental & Climate Sciences, Brookhaven National Laboratory, Upton, New York, USA
- Evolution and Biological Diversity (EDB), CNRS/IRD/UPS, Toulouse, France
| | - Daisy C Souza
- National Institute of Amazonian Research (INPA), Forest Management Laboratory (LMF), Manaus, Amazonas, Brazil
| | - Bruno O Gimenez
- National Institute of Amazonian Research (INPA), Forest Management Laboratory (LMF), Manaus, Amazonas, Brazil
- Department of Geography, University of California, Berkeley, California, USA
| | - Niro Higuchi
- National Institute of Amazonian Research (INPA), Forest Management Laboratory (LMF), Manaus, Amazonas, Brazil
| | - Jérôme Chave
- Evolution and Biological Diversity (EDB), CNRS/IRD/UPS, Toulouse, France
| | - Jeffrey Chambers
- Department of Geography, University of California, Berkeley, California, USA
| | - Alistair Rogers
- Department of Environmental & Climate Sciences, Brookhaven National Laboratory, Upton, New York, USA
| |
Collapse
|
10
|
Potkay A, Feng X. Dynamically optimizing stomatal conductance for maximum turgor-driven growth over diel and seasonal cycles. AOB PLANTS 2023; 15:plad044. [PMID: 37899972 PMCID: PMC10601388 DOI: 10.1093/aobpla/plad044] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/04/2023] [Indexed: 10/31/2023]
Abstract
Stomata have recently been theorized to have evolved strategies that maximize turgor-driven growth over plants' lifetimes, finding support through steady-state solutions in which gas exchange, carbohydrate storage and growth have all reached equilibrium. However, plants do not operate near steady state as plant responses and environmental forcings vary diurnally and seasonally. It remains unclear how gas exchange, carbohydrate storage and growth should be dynamically coordinated for stomata to maximize growth. We simulated the gas exchange, carbohydrate storage and growth that dynamically maximize growth diurnally and annually. Additionally, we test whether the growth-optimization hypothesis explains nocturnal stomatal opening, particularly through diel changes in temperature, carbohydrate storage and demand. Year-long dynamic simulations captured realistic diurnal and seasonal patterns in gas exchange as well as realistic seasonal patterns in carbohydrate storage and growth, improving upon unrealistic carbohydrate responses in steady-state simulations. Diurnal patterns of carbohydrate storage and growth in day-long simulations were hindered by faulty modelling assumptions of cyclic carbohydrate storage over an individual day and synchronization of the expansive and hardening phases of growth, respectively. The growth-optimization hypothesis cannot currently explain nocturnal stomatal opening unless employing corrective 'fitness factors' or reframing the theory in a probabilistic manner, in which stomata adopt an inaccurate statistical 'memory' of night-time temperature. The growth-optimization hypothesis suggests that diurnal and seasonal patterns of stomatal conductance are driven by a dynamic carbon-use strategy that seeks to maintain homeostasis of carbohydrate reserves.
Collapse
Affiliation(s)
- Aaron Potkay
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Twin Cities, 500 Pillsbury Drive S.E., Minneapolis, MN 55455, USA
- Saint Anthony Falls Laboratory, University of Minnesota, Twin Cities, 23rd Ave SE, Minneapolis, MN 55414, USA
| | - Xue Feng
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Twin Cities, 500 Pillsbury Drive S.E., Minneapolis, MN 55455, USA
- Saint Anthony Falls Laboratory, University of Minnesota, Twin Cities, 23rd Ave SE, Minneapolis, MN 55414, USA
| |
Collapse
|
11
|
Gao G, Hao Y, Feng Q, Guo X, Shi J, Wu B. Estimating canopy stomatal conductance and photosynthesis in apple trees by upscaling parameters from the leaf scale to the canopy scale in Jinzhong Basin on Loess Plateau. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107939. [PMID: 37557015 DOI: 10.1016/j.plaphy.2023.107939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/15/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
The estimations of stomatal conductance and photosynthesis performed by upscaling the parameters from the leaf scale to the canopy scale are key points in the fields of forest ecohydrology and physiology. The foundation for solving this scientific problem is determining the optimal models for calculating the leaf stomatal conductance (gl) and photosynthetic rate (Pl). In this study, we used the Jarvis model combined with modification factors, including leaf-air temperature (ΔT) and CO2 concentration inside and outside the stomata (ΔC), to estimate gl and the new Ye light-response model to estimate the Pl of apple trees in Jinzhong Basin on Loess Plateau. The results show that the modified Jarvis (JarvisΔT-ΔC) model and the new Ye light-response model could estimate gl and Pl, respectively, with very high accuracy, with R2 values of 0.926 and 0.959 for the former, and 0.987 and 0.983 for the latter in 2019 and 2021, respectively. Then, we estimated the canopy stomatal conductance (gc) and photosynthetic rate (Pc) by first dividing the apple tree canopy into sunlit and shaded leaves and then summing the contribution of sunlit and shaded gl, Pl and leaf area index. Our efforts will be a valid reference for estimating the gc and Pc of other tree or crop species in the future.
Collapse
Affiliation(s)
- Guanlong Gao
- College of Environment and Resource, Shanxi University, Taiyuan 030006, China; Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, China; Academy of Water Resources Conservation Forests in Qilian Mountains of Gansu Province, Zhangye 734000, China
| | - Yulian Hao
- College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| | - Qi Feng
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Xiaoyun Guo
- College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| | - Junxi Shi
- College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| | - Bo Wu
- College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
12
|
Potkay A, Feng X. Do stomata optimize turgor-driven growth? A new framework for integrating stomata response with whole-plant hydraulics and carbon balance. THE NEW PHYTOLOGIST 2023; 238:506-528. [PMID: 36377138 DOI: 10.1111/nph.18620] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Every existing optimal stomatal model uses photosynthetic carbon assimilation as a proxy for plant evolutionary fitness. However, assimilation and growth are often decoupled, making assimilation less ideal for representing fitness when optimizing stomatal conductance to water vapor and carbon dioxide. Instead, growth should be considered a closer proxy for fitness. We hypothesize stomata have evolved to maximize turgor-driven growth, instead of assimilation, over entire plants' lifetimes, improving their abilities to compete and reproduce. We develop a stomata model that dynamically maximizes whole-stem growth following principles from turgor-driven growth models. Stomata open to assimilate carbohydrates that supply growth and osmotically generate turgor, while stomata close to prevent losses of turgor and growth due to negative water potentials. In steady state, the growth optimization model captures realistic stomatal, growth, and carbohydrate responses to environmental cues, reconciles conflicting interpretations within existing stomatal optimization theories, and explains patterns of carbohydrate storage and xylem conductance observed during and after drought. Our growth optimization hypothesis introduces a new paradigm for stomatal optimization models, elevates the role of whole-plant carbon use and carbon storage in stomatal functioning, and has the potential to simultaneously predict gross productivity, net productivity, and plant mortality through a single, consistent modeling framework.
Collapse
Affiliation(s)
- Aaron Potkay
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
- Saint Anthony Falls Laboratory, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
| | - Xue Feng
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
- Saint Anthony Falls Laboratory, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
| |
Collapse
|
13
|
Davidson KJ, Lamour J, Rogers A, Ely KS, Li Q, McDowell NG, Pivovaroff AL, Wolfe BT, Wright SJ, Zambrano A, Serbin SP. Short-term variation in leaf-level water use efficiency in a tropical forest. THE NEW PHYTOLOGIST 2023; 237:2069-2087. [PMID: 36527230 DOI: 10.1111/nph.18684] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The representation of stomatal regulation of transpiration and CO2 assimilation is key to forecasting terrestrial ecosystem responses to global change. Given its importance in determining the relationship between forest productivity and climate, accurate and mechanistic model representation of the relationship between stomatal conductance (gs ) and assimilation is crucial. We assess possible physiological and mechanistic controls on the estimation of the g1 (stomatal slope, inversely proportional to water use efficiency) and g0 (stomatal intercept) parameters, using diurnal gas exchange surveys and leaf-level response curves of six tropical broadleaf evergreen tree species. g1 estimated from ex situ response curves averaged 50% less than g1 estimated from survey data. While g0 and g1 varied between leaves of different phenological stages, the trend was not consistent among species. We identified a diurnal trend associated with g1 and g0 that significantly improved model projections of diurnal trends in transpiration. The accuracy of modeled gs can be improved by accounting for variation in stomatal behavior across diurnal periods, and between measurement approaches, rather than focusing on phenological variation in stomatal behavior. Additional investigation into the primary mechanisms responsible for diurnal variation in g1 will be required to account for this phenomenon in land-surface models.
Collapse
Affiliation(s)
- Kenneth J Davidson
- Department of Environmental and Climate Sciences, Brookhaven National Laboratory, Building 490A, Upton, NY, 11973, USA
- Department of Ecology and Evolution, Stony Brook University, 650 Life Sciences Building, Stony Brook, NY, 11794, USA
| | - Julien Lamour
- Department of Environmental and Climate Sciences, Brookhaven National Laboratory, Building 490A, Upton, NY, 11973, USA
| | - Alistair Rogers
- Department of Environmental and Climate Sciences, Brookhaven National Laboratory, Building 490A, Upton, NY, 11973, USA
| | - Kim S Ely
- Department of Environmental and Climate Sciences, Brookhaven National Laboratory, Building 490A, Upton, NY, 11973, USA
| | - Qianyu Li
- Department of Environmental and Climate Sciences, Brookhaven National Laboratory, Building 490A, Upton, NY, 11973, USA
| | - Nate G McDowell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, PO Box 999, Richland, WA, 99352, USA
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA, 99164-4236, USA
| | | | - Brett T Wolfe
- School of Renewable Natural Resources, Louisiana State University, Room 227, Renewable Natural Resources Bldg, Baton Rouge, LA, 70803, USA
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Panama
| | - S Joseph Wright
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Panama
| | - Alfonso Zambrano
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Panama
| | - Shawn P Serbin
- Department of Environmental and Climate Sciences, Brookhaven National Laboratory, Building 490A, Upton, NY, 11973, USA
| |
Collapse
|
14
|
Frank DA, Becklin KM, Penner JF, Lindsay KA, Geremia CJ. Feast or famine: How is global change affecting forage supply for Yellowstone's ungulate herds? ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2735. [PMID: 36057540 PMCID: PMC10078388 DOI: 10.1002/eap.2735] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/25/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
The ecological integrity of US national parks and other protected areas are under threat in the Anthropocene. For Yellowstone National Park (YNP), the impacts that global change has already had on the park's capacity to sustain its large migratory herds of wild ungulates is incompletely understood. Here we examine how two understudied components of global change, the historical increase in atmospheric CO2 and the spread of nonnative, invasive plant species, may have altered the capacity of YNP to provide forage for ungulates over the last 200-plus years. We performed two experiments: (1) a growth chamber study that determined the growth rates of important invasive and native YNP grasses that are forages for ungulates under preindustrial (280 ppm) versus modern (410 ppm) CO2 levels and (2) a field study that compared the effect of defoliation (clipping) on the shoot growth of invasive and native mesic grassland plants under ambient CO2 conditions in 2019. The growth chamber experiment revealed that modern CO2 increased the growth rates of both invasive and native grasses, and invasive grasses grew faster regardless of CO2 conditions. The field results showed a continuum of positive to negative responses of shoot growth to defoliation, with a subgroup of invasive species responding most positively. Altogether the results indicated that the historical increase in CO2 and the spread of invasive species, some of which were planted to provide forage for ungulates in the early and mid-1900s, have likely increased the capacity of forage production in YNP. However, rising CO2 has also resulted in regional warming and increased aridity in YNP, which will likely reduce grassland productivity. The challenge for global change biologists and park managers is to determine how competing components of global change have already affected and will increasingly affect forage dynamics and the sustainability of Yellowstone's iconic ungulate herds in the Anthropocene.
Collapse
|
15
|
Joshi J, Stocker BD, Hofhansl F, Zhou S, Dieckmann U, Prentice IC. Towards a unified theory of plant photosynthesis and hydraulics. NATURE PLANTS 2022; 8:1304-1316. [PMID: 36303010 PMCID: PMC9663302 DOI: 10.1038/s41477-022-01244-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 08/04/2022] [Indexed: 06/01/2023]
Abstract
The global carbon and water cycles are governed by the coupling of CO2 and water vapour exchanges through the leaves of terrestrial plants, controlled by plant adaptations to balance carbon gains and hydraulic risks. We introduce a trait-based optimality theory that unifies the treatment of stomatal responses and biochemical acclimation of plants to environments changing on multiple timescales. Tested with experimental data from 18 species, our model successfully predicts the simultaneous decline in carbon assimilation rate, stomatal conductance and photosynthetic capacity during progressive soil drought. It also correctly predicts the dependencies of gas exchange on atmospheric vapour pressure deficit, temperature and CO2. Model predictions are also consistent with widely observed empirical patterns, such as the distribution of hydraulic strategies. Our unified theory opens new avenues for reliably modelling the interactive effects of drying soil and rising atmospheric CO2 on global photosynthesis and transpiration.
Collapse
Affiliation(s)
- Jaideep Joshi
- Advancing Systems Analysis Program, International Institute for Applied Systems Analysis, Laxenburg, Austria.
- Divecha Centre for Climate Change, Indian Institute of Science, Bengaluru, India.
- Complexity Science and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| | - Benjamin D Stocker
- Department of Environmental Systems Science, ETH, Universitätsstrasse 2, Zürich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Florian Hofhansl
- Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Shuangxi Zhou
- Department of Biological Sciences, Macquarie University, Macquarie Park, Australia
- CSIRO Agriculture and Food, Glen Osmond, South Australia, Australia
| | - Ulf Dieckmann
- Advancing Systems Analysis Program, International Institute for Applied Systems Analysis, Laxenburg, Austria
- Complexity Science and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies (Sokendai), Hayama, Kanagawa, Japan
| | - Iain Colin Prentice
- Department of Biological Sciences, Macquarie University, Macquarie Park, Australia
- Department of Life Sciences, Georgina Mace Centre for the Living Planet, Imperial College London, Silwood Park Campus, Ascot, UK
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
| |
Collapse
|
16
|
Liu C, Wang Q, Mäkelä A, Hökkä H, Peltoniemi M, Hölttä T. A model bridging waterlogging, stomatal behavior and water use in trees in drained peatland. TREE PHYSIOLOGY 2022; 42:1736-1749. [PMID: 35383852 PMCID: PMC9460983 DOI: 10.1093/treephys/tpac037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Waterlogging causes hypoxic or anoxic conditions in soils, which lead to decreases in root and stomatal hydraulic conductance. Although these effects have been observed in a variety of plant species, they have not been quantified continuously over a range of water table depths (WTD) or soil water contents (SWC). To provide a quantitative theoretical framework for tackling this issue, we hypothesized similar mathematical descriptions of waterlogging and drought effects on whole-tree hydraulics and constructed a hierarchical model by connecting optimal stomata and soil-to-leaf hydraulic conductance models. In the model, the soil-to-root conductance is non-monotonic with WTD to reflect both the limitations by water under low SWC and by hypoxic effects associated with inhibited oxygen diffusion under high SWC. The model was parameterized using priors from literature and data collected over four growing seasons from Scots pine (Pinus sylvestris L.) trees grown in a drained peatland in Finland. Two reference models (RMs) were compared with the new model, RM1 with no belowground hydraulics and RM2 with no waterlogging effects. The new model was more accurate than the RMs in predicting transpiration rate (fitted slope of measured against modeled transpiration rate = 0.991 vs 0.979 (RM1) and 0.984 (RM2), R2 = 0.801 vs 0.665 (RM1) and 0.776 (RM2)). Particularly, RM2's overestimation of transpiration rate under shallow water table conditions (fitted slope = 0.908, R2 = 0.697) was considerably reduced by the new model (fitted slope = 0.956, R2 = 0.711). The limits and potential improvements of the model are discussed.
Collapse
Affiliation(s)
- Che Liu
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Latokartanonkaari 7, P.O. Box 27, Helsinki 00014, Finland
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Latokartanonkaari 7, P.O. Box 27, Helsinki 00014, Finland
| | | | - Annikki Mäkelä
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Latokartanonkaari 7, P.O. Box 27, Helsinki 00014, Finland
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Latokartanonkaari 7, P.O. Box 27, Helsinki 00014, Finland
| | - Hannu Hökkä
- Natural Resources Institute Finland (Luke), Chi-Ling Street 45, 410076 Changsha, Hunan, Finland
| | - Mikko Peltoniemi
- Natural Resources Institute Finland (Luke), Chi-Ling Street 45, 410076 Changsha, Hunan, Finland
| | - Teemu Hölttä
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Latokartanonkaari 7, P.O. Box 27, Helsinki 00014, Finland
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Latokartanonkaari 7, P.O. Box 27, Helsinki 00014, Finland
| |
Collapse
|
17
|
Salvi AM, Gosetti SG, Smith DD, Adams MA, Givnish TJ, McCulloh KA. Hydroscapes, hydroscape plasticity and relationships to functional traits and mesophyll photosynthetic sensitivity to leaf water potential in Eucalyptus species. PLANT, CELL & ENVIRONMENT 2022; 45:2573-2588. [PMID: 35706133 DOI: 10.1111/pce.14380] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
The isohydric-anisohydric continuum describes the relative stringency of stomatal control of leaf water potential (ψleaf ) during drought. Hydroscape area (HA)-the water potential landscape over which stomata regulate ψleaf -has emerged as a useful metric of the iso/anisohydric continuum because it is strongly linked to several hydraulic, photosynthetic and structural traits. Previous research on HA focused on broad ecological patterns involving several plant clades. Here we investigate the relationships between HA and climatic conditions and functional traits across ecologically diverse but closely related species while accounting for phylogeny. Across a macroclimatic moisture gradient, defined by the ratio of mean annual precipitation to mean annual pan evaporation (P/Ep ), HA decreased with increased P/Ep across 10 Eucalyptus species. Greater anisohydry reflects lower turgor loss points and greater hydraulic safety, mirroring global patterns. Larger HA coincides with mesophyll photosynthetic capacity that is more sensitive to ψleaf . Hydroscapes exhibit little plasticity in response to variation in water supply, and the extent of plasticity does not vary with P/Ep of native habitats. These findings strengthen the case that HA is a useful metric for characterizing drought tolerance and water-status regulation.
Collapse
Affiliation(s)
- Amanda M Salvi
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sophia G Gosetti
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Duncan D Smith
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, USA
- School of Ecosystem and Forest Sciences, University of Melbourne, Creswick, Victoria, Australia
- Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Mark A Adams
- Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Thomas J Givnish
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | |
Collapse
|
18
|
Kohonen KM, Dewar R, Tramontana G, Mauranen A, Kolari P, Kooijmans LMJ, Papale D, Vesala T, Mammarella I. Intercomparison of methods to estimate gross primary production based on CO 2 and COS flux measurements. BIOGEOSCIENCES (ONLINE) 2022; 19:4067-4088. [PMID: 36171741 PMCID: PMC7613647 DOI: 10.5194/bg-19-4067-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Separating the components of ecosystem-scale carbon exchange is crucial in order to develop better models and future predictions of the terrestrial carbon cycle. However, there are several uncertainties and unknowns related to current photosynthesis estimates. In this study, we evaluate four different methods for estimating photosynthesis at a boreal forest at the ecosystem scale, of which two are based on carbon dioxide (CO2) flux measurements and two on carbonyl sulfide (COS) flux measurements. The CO2-based methods use traditional flux partitioning and artificial neural networks to separate the net CO2 flux into respiration and photosynthesis. The COS-based methods make use of a unique 5-year COS flux data set and involve two different approaches to determine the leaf-scale relative uptake ratio of COS and CO2 (LRU), of which one (LRUCAP) was developed in this study. LRUCAP was based on a previously tested stomatal optimization theory (CAP), while LRUPAR was based on an empirical relation to measured radiation. For the measurement period 2013-2017, the artificial neural network method gave a GPP estimate very close to that of traditional flux partitioning at all timescales. On average, the COS-based methods gave higher GPP estimates than the CO2-based estimates on daily (23% and 7% higher, using LRUPAR and LRUCAP, respectively) and monthly scales (20% and 3% higher), as well as a higher cumulative sum over 3 months in all years (on average 25% and 3% higher). LRUCAP was higher than LRU estimated from chamber measurements at high radiation, leading to underestimation of midday GPP relative to other GPP methods. In general, however, use of LRUCAP gave closer agreement with CO2-based estimates of GPP than use of LRUPAR. When extended to other sites, LRUCAP may be more robust than LRUPAR because it is based on a physiological model whose parameters can be estimated from simple measurements or obtained from the literature. In contrast, the empirical radiation relation in LRUPAR may be more site-specific. However, this requires further testing at other measurement sites.
Collapse
Affiliation(s)
- Kukka-Maaria Kohonen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Roderick Dewar
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Gianluca Tramontana
- Image Processing Laboratory (IPL), Parc Científic Universitat de València, Universitat de València, Paterna, Spain
- Terrasystem s.r.l, Viterbo, Italy
| | - Aleksanteri Mauranen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Pasi Kolari
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Linda M. J. Kooijmans
- Meteorology and Air Quality, Wageningen University and Research, Wageningen, the Netherlands
| | - Dario Papale
- DIBAF, Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy
- IAFES, Euro-Mediterranean Center for Climate Change (CMCC), Viterbo, Italy
| | - Timo Vesala
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Ivan Mammarella
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
19
|
Gong XY, Ma WT, Yu YZ, Fang K, Yang Y, Tcherkez G, Adams MA. Overestimated gains in water-use efficiency by global forests. GLOBAL CHANGE BIOLOGY 2022; 28:4923-4934. [PMID: 35490304 DOI: 10.1111/gcb.16221] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/09/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Increases in terrestrial water-use efficiency (WUE) have been reported in many studies, pointing to potential changes in physiological forcing of global carbon and hydrological cycles. However, gains in WUE are of uncertain magnitude over longer (i.e. >10 years) periods of time largely owing to difficulties in accounting for structural and physiological acclimation. 13 C signatures (i.e. δ13 C) of plant organic matter have long been used to estimate WUE at temporal scales ranging from days to centuries. Mesophyll conductance is a key uncertainty in estimated WUE owing to its influence on diffusion of CO2 to sites of carboxylation. Here we apply new knowledge of mesophyll conductance to 464 δ13 C chronologies in tree-rings of 143 species spanning global biomes. Adjusted for mesophyll conductance, gains in WUE during the 20th century (0.15 ppm year-1 ) were considerably smaller than those estimated from conventional modelling (0.26 ppm year-1 ). Across the globe, mean sensitivity of WUE to atmospheric CO2 was 0.15 ppm ppm-1 . Ratios of internal-to-atmospheric CO2 (on a mole fraction basis; ci /ca ) in leaves were mostly constant over time but differed among biomes and plant taxa-highlighting the significance of both plant structure and physiology. Together with synchronized responses in stomatal and mesophyll conductance, our results suggest that ratios of chloroplastic-to-atmospheric CO2 (cc /ca ) are constrained over time. We conclude that forest WUE may have not increased as much as previously suggested and that projections of future climate forcing via CO2 fertilization may need to be adjusted accordingly.
Collapse
Affiliation(s)
- Xiao Ying Gong
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Wei Ting Ma
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Yong Zhi Yu
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Keyan Fang
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Yusheng Yang
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Guillaume Tcherkez
- Research School of Biology, ANU College of Medicine, Biology and Environment, Australian National University, Canberra, Australia
- Institut de Recherche en Horticulture et Semences, INRAe, Université d'Angers, Beaucouzé, France
| | - Mark A Adams
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Victoria, Australia
| |
Collapse
|
20
|
De Kauwe MG, Sabot MEB, Medlyn BE, Pitman AJ, Meir P, Cernusak LA, Gallagher RV, Ukkola AM, Rifai SW, Choat B. Towards species-level forecasts of drought-induced tree mortality risk. THE NEW PHYTOLOGIST 2022; 235:94-110. [PMID: 35363880 PMCID: PMC9321630 DOI: 10.1111/nph.18129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/28/2022] [Indexed: 05/14/2023]
Abstract
Predicting species-level responses to drought at the landscape scale is critical to reducing uncertainty in future terrestrial carbon and water cycle projections. We embedded a stomatal optimisation model in the Community Atmosphere Biosphere Land Exchange (CABLE) land surface model and parameterised the model for 15 canopy dominant eucalypt tree species across South-Eastern Australia (mean annual precipitation range: 344-1424 mm yr-1 ). We conducted three experiments: applying CABLE to the 2017-2019 drought; a 20% drier drought; and a 20% drier drought with a doubling of atmospheric carbon dioxide (CO2 ). The severity of the drought was highlighted as for at least 25% of their distribution ranges, 60% of species experienced leaf water potentials beyond the water potential at which 50% of hydraulic conductivity is lost due to embolism. We identified areas of severe hydraulic stress within-species' ranges, but we also pinpointed resilience in species found in predominantly semiarid areas. The importance of the role of CO2 in ameliorating drought stress was consistent across species. Our results represent an important advance in our capacity to forecast the resilience of individual tree species, providing an evidence base for decision-making around the resilience of restoration plantings or net-zero emission strategies.
Collapse
Affiliation(s)
| | - Manon E. B. Sabot
- ARC Centre of Excellence for Climate ExtremesSydneyNSW2052Australia
- Climate Change Research CentreUniversity of New South WalesSydneyNSW2052Australia
| | - Belinda E. Medlyn
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityLocked Bag 1797PenrithNSW2751Australia
| | - Andrew J. Pitman
- ARC Centre of Excellence for Climate ExtremesSydneyNSW2052Australia
- Climate Change Research CentreUniversity of New South WalesSydneyNSW2052Australia
| | - Patrick Meir
- School of GeosciencesThe University of EdinburghEdinburghEH9 3FFUK
| | - Lucas A. Cernusak
- College of Science and EngineeringJames Cook UniversityCairnsQld4878Australia
| | - Rachael V. Gallagher
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityLocked Bag 1797PenrithNSW2751Australia
| | - Anna M. Ukkola
- ARC Centre of Excellence for Climate ExtremesSydneyNSW2052Australia
- Climate Change Research CentreUniversity of New South WalesSydneyNSW2052Australia
| | - Sami W. Rifai
- ARC Centre of Excellence for Climate ExtremesSydneyNSW2052Australia
- Climate Change Research CentreUniversity of New South WalesSydneyNSW2052Australia
| | - Brendan Choat
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityLocked Bag 1797PenrithNSW2751Australia
| |
Collapse
|
21
|
Stangl ZR, Tarvainen L, Wallin G, Marshall JD. Limits to photosynthesis: seasonal shifts in supply and demand for CO 2 in Scots pine. THE NEW PHYTOLOGIST 2022; 233:1108-1120. [PMID: 34775610 DOI: 10.1111/nph.17856] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Boreal forests undergo a strong seasonal photosynthetic cycle; however, the underlying processes remain incompletely characterized. Here, we present a novel analysis of the seasonal diffusional and biochemical limits to photosynthesis (Anet ) relative to temperature and light limitations in high-latitude mature Pinus sylvestris, including a high-resolution analysis of the seasonality of mesophyll conductance (gm ) and its effect on the estimation of carboxylation capacity ( VCmax ). We used a custom-built gas-exchange system coupled to a carbon isotope analyser to obtain continuous measurements for the estimation of the relevant shoot gas-exchange parameters and quantified the biochemical and diffusional controls alongside the environmental controls over Anet . The seasonality of Anet was strongly dependent on VCmax and the diffusional limitations. Stomatal limitation was low in spring and autumn but increased to 31% in June. By contrast, mesophyll limitation was nearly constant (19%). We found that VCmax limited Anet in the spring, whereas daily temperatures and the gradual reduction of light availability limited Anet in the autumn, despite relatively high VCmax . We describe for the first time the role of mesophyll conductance in connection with seasonal trends in net photosynthesis of P. sylvestris, revealing a strong coordination between gm and Anet , but not between gm and stomatal conductance.
Collapse
Affiliation(s)
- Zsofia R Stangl
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Lasse Tarvainen
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-413 19, Gothenburg, Sweden
| | - Göran Wallin
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-413 19, Gothenburg, Sweden
| | - John D Marshall
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| |
Collapse
|
22
|
Wang Z, Ding X, Li Y, Xie J. The compensation effect between safety and efficiency in xylem and role in photosynthesis of gymnosperms. PHYSIOLOGIA PLANTARUM 2022; 174:e13617. [PMID: 35199364 DOI: 10.1111/ppl.13617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
The classical theory of safety-efficiency trade-off is a common theme in plant sciences. Despite safety and efficiency partly compensating for each other physiologically (namely, there is a compensation effect, CE, among traits from the "whole" organism perspective), they are always mathematically described as a trade-off against one another. However, the compensation effect has never been defined and quantified, let alone its role in the xylem water transport and subsequently photosynthesis. Here, we developed an alternative theory to define the CE as a positive relationship between safety and efficiency, and further define a new trade-off index, SETO, that is expressed as CE multiplied by a trade-off factor (differing from the classical average trade-off value). Then, we tested SETO- and CE-photosynthetic rate relationships across different levels based on a common garden experiment using nine conifers and published data for gymnosperms. The results demonstrated that the compensation effect in xylem functions was the dominant force in facilitating photosynthetic rates from species- to phylum-scale. By integrating the compensation effect into the xylem hydraulic functional strategy, our study clearly indicated that the compensation effect is the evolutionary basis for the coordination of xylem hydraulic and photosynthesis physiology.
Collapse
Affiliation(s)
- Zhongyuan Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Xiaoran Ding
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, China
| | - Jiangbo Xie
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
23
|
Lavergne A, Hemming D, Prentice IC, Guerrieri R, Oliver RJ, Graven H. Global decadal variability of plant carbon isotope discrimination and its link to gross primary production. GLOBAL CHANGE BIOLOGY 2022; 28:524-541. [PMID: 34626040 PMCID: PMC9298043 DOI: 10.1111/gcb.15924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/29/2021] [Indexed: 05/31/2023]
Abstract
Carbon isotope discrimination (Δ13 C) in C3 woody plants is a key variable for the study of photosynthesis. Yet how Δ13 C varies at decadal scales, and across regions, and how it is related to gross primary production (GPP), are still incompletely understood. Here we address these questions by implementing a new Δ13 C modelling capability in the land-surface model JULES incorporating both photorespiratory and mesophyll-conductance fractionations. We test the ability of four leaf-internal CO2 concentration models embedded in JULES to reproduce leaf and tree-ring (TR) carbon isotopic data. We show that all the tested models tend to overestimate average Δ13 C values, and to underestimate interannual variability in Δ13 C. This is likely because they ignore the effects of soil water stress on stomatal behavior. Variations in post-photosynthetic isotopic fractionations across species, sites and years, may also partly explain the discrepancies between predicted and TR-derived Δ13 C values. Nonetheless, the "least-cost" (Prentice) model shows the lowest biases with the isotopic measurements, and lead to improved predictions of canopy-level carbon and water fluxes. Overall, modelled Δ13 C trends vary strongly between regions during the recent (1979-2016) historical period but stay nearly constant when averaged over the globe. Photorespiratory and mesophyll effects modulate the simulated global Δ13 C trend by 0.0015 ± 0.005‰ and -0.0006 ± 0.001‰ ppm-1 , respectively. These predictions contrast with previous findings based on atmospheric carbon isotope measurements. Predicted Δ13 C and GPP tend to be negatively correlated in wet-humid and cold regions, and in tropical African forests, but positively related elsewhere. The negative correlation between Δ13 C and GPP is partly due to the strong dominant influences of temperature on GPP and vapor pressure deficit on Δ13 C in those forests. Our results demonstrate that the combined analysis of Δ13 C and GPP can help understand the drivers of photosynthesis changes in different climatic regions.
Collapse
Affiliation(s)
| | - Deborah Hemming
- Met Office Hadley CentreExeterUK
- Birmingham Institute of Forest ResearchBirminghamUK
| | - Iain Colin Prentice
- Department of Life SciencesGeorgina Mace Centre for the Living PlanetImperial College LondonAscotUK
- Grantham Institute – Climate Change and the EnvironmentImperial College LondonLondonUK
- Department of Biological SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
- Department of Earth System ScienceTsinghua UniversityBeijingChina
| | - Rossella Guerrieri
- Department of Agricultural and Food SciencesUniversity of BolognaBolognaItaly
| | | | - Heather Graven
- Department of PhysicsImperial College LondonLondonUK
- Grantham Institute – Climate Change and the EnvironmentImperial College LondonLondonUK
| |
Collapse
|
24
|
Dewar R, Hölttä T, Salmon Y. Exploring optimal stomatal control under alternative hypotheses for the regulation of plant sources and sinks. THE NEW PHYTOLOGIST 2022; 233:639-654. [PMID: 34637543 DOI: 10.1111/nph.17795] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Experimental evidence that nonstomatal limitations to photosynthesis (NSLs) correlate with leaf sugar and/or leaf water status suggests the possibility that stomata adjust to maximise photosynthesis through a trade-off between leaf CO2 supply and NSLs, potentially involving source-sink interactions. However, the mechanisms regulating NSLs and sink strength, as well as their implications for stomatal control, remain uncertain. We used an analytically solvable model to explore optimal stomatal control under alternative hypotheses for source and sink regulation. We assumed that either leaf sugar concentration or leaf water potential regulates NSLs, and that either phloem turgor pressure or phloem sugar concentration regulates sink phloem unloading. All hypotheses led to realistic stomatal responses to light, CO2 and air humidity, including conservative behaviour for the intercellular-to-atmospheric CO2 concentration ratio. Sugar-regulated and water-regulated NSLs are distinguished by the presence/absence of a stomatal closure response to changing sink strength. Turgor-regulated and sugar-regulated phloem unloading are distinguished by the presence/absence of stomatal closure under drought and avoidance/occurrence of negative phloem turgor. Results from girdling and drought experiments on Pinus sylvestris, Betula pendula, Populus tremula and Picea abies saplings are consistent with optimal stomatal control under sugar-regulated NSLs and turgor-regulated unloading. Our analytical results provide a simple representation of stomatal responses to above-ground and below-ground environmental factors and sink activity.
Collapse
Affiliation(s)
- Roderick Dewar
- Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014, Finland
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Teemu Hölttä
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, PO Box 27, Latokartanonkaari 7, Helsinki, 00014, Finland
| | - Yann Salmon
- Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014, Finland
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, PO Box 27, Latokartanonkaari 7, Helsinki, 00014, Finland
| |
Collapse
|
25
|
De Kauwe MG, Medlyn BE, Tissue DT. To what extent can rising [CO 2 ] ameliorate plant drought stress? THE NEW PHYTOLOGIST 2021; 231:2118-2124. [PMID: 34101183 DOI: 10.1111/nph.17540] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Plant responses to elevated atmospheric carbon dioxide (eCO2 ) have been hypothesized as a key mechanism that may ameliorate the impact of future drought. Yet, despite decades of experiments, the question of whether eCO2 reduces plant water use, yielding 'water savings' that can be used to maintain plant function during periods of water stress, remains unresolved. In this Viewpoint, we identify the experimental challenges and limitations to our understanding of plant responses to drought under eCO2 . In particular, we argue that future studies need to move beyond exploring whether eCO2 played 'a role' or 'no role' in responses to drought, but instead more carefully consider the timescales and conditions that would induce an influence. We also argue that considering emergent differences in soil water content may be an insufficient means of assessing the impact of eCO2 . We identify eCO2 impact during severe drought (e.g. to the point of mortality), interactions with future changes in vapour pressure deficit and uncertainty about changes in leaf area as key gaps in our current understanding. New insights into CO2 × drought interactions are essential to better constrain model theory that governs future climate model projections of land-atmosphere interactions during periods of water stress.
Collapse
Affiliation(s)
- Martin G De Kauwe
- ARC Centre of Excellence for Climate Extremes, Sydney, NSW, 2052, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
26
|
Harrison SP, Cramer W, Franklin O, Prentice IC, Wang H, Brännström Å, de Boer H, Dieckmann U, Joshi J, Keenan TF, Lavergne A, Manzoni S, Mengoli G, Morfopoulos C, Peñuelas J, Pietsch S, Rebel KT, Ryu Y, Smith NG, Stocker BD, Wright IJ. Eco-evolutionary optimality as a means to improve vegetation and land-surface models. THE NEW PHYTOLOGIST 2021; 231:2125-2141. [PMID: 34131932 DOI: 10.1111/nph.17558] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Global vegetation and land-surface models embody interdisciplinary scientific understanding of the behaviour of plants and ecosystems, and are indispensable to project the impacts of environmental change on vegetation and the interactions between vegetation and climate. However, systematic errors and persistently large differences among carbon and water cycle projections by different models highlight the limitations of current process formulations. In this review, focusing on core plant functions in the terrestrial carbon and water cycles, we show how unifying hypotheses derived from eco-evolutionary optimality (EEO) principles can provide novel, parameter-sparse representations of plant and vegetation processes. We present case studies that demonstrate how EEO generates parsimonious representations of core, leaf-level processes that are individually testable and supported by evidence. EEO approaches to photosynthesis and primary production, dark respiration and stomatal behaviour are ripe for implementation in global models. EEO approaches to other important traits, including the leaf economics spectrum and applications of EEO at the community level are active research areas. Independently tested modules emerging from EEO studies could profitably be integrated into modelling frameworks that account for the multiple time scales on which plants and plant communities adjust to environmental change.
Collapse
Affiliation(s)
- Sandy P Harrison
- Department of Geography and Environmental Science, University of Reading, Reading, RG6 6AB, UK
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Wolfgang Cramer
- Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale, Aix Marseille Université, CNRS, IRD, Avignon Université, Technopôle Arbois-Méditerranée, Aix-en-Provence Cedex 04, F-13545, France
| | - Oskar Franklin
- International Institute for Applied Systems Analysis, Schlossplatz 1, Laxenburg, 2361, Austria
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| | - Iain Colin Prentice
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Han Wang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Åke Brännström
- International Institute for Applied Systems Analysis, Schlossplatz 1, Laxenburg, 2361, Austria
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, 901 87, Sweden
| | - Hugo de Boer
- Copernicus Institute of Sustainable Development, Environmental Sciences, Faculty of Geosciences, Utrecht University, Vening Meinesz Building, Princetonlaan 8a, Utrecht, 3584 CB, the Netherlands
| | - Ulf Dieckmann
- International Institute for Applied Systems Analysis, Schlossplatz 1, Laxenburg, 2361, Austria
- Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies (Sokendai), Hayama, Kanagawa, 240-0193, Japan
| | - Jaideep Joshi
- International Institute for Applied Systems Analysis, Schlossplatz 1, Laxenburg, 2361, Austria
| | - Trevor F Keenan
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Aliénor Lavergne
- Department of Physics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Stefano Manzoni
- Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Giulia Mengoli
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| | - Catherine Morfopoulos
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| | - Josep Peñuelas
- CSIC, Global Ecology, CREAF-CSIC-UAB, Bellaterra, Barcelona, Catalonia, 08193, Spain
- CREAF, Cerdanyola del Valles, Barcelona, Catalonia, 08193, Spain
| | - Stephan Pietsch
- International Institute for Applied Systems Analysis, Schlossplatz 1, Laxenburg, 2361, Austria
- BOKU - University of Life Sciences and Natural Resources, Gregor-Medel-Strasse 33, Vienna, 1180, Austria
| | - Karin T Rebel
- Copernicus Institute of Sustainable Development, Environmental Sciences, Faculty of Geosciences, Utrecht University, Vening Meinesz Building, Princetonlaan 8a, Utrecht, 3584 CB, the Netherlands
| | - Youngryel Ryu
- Department of Landscape Architecture and Rural Systems Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Nicholas G Smith
- Department of Biological Sciences, Texas Tech University, 2901 Main Street, Lubbock, TX, 79409, USA
| | - Benjamin D Stocker
- Department of Environmental System Science, ETH, Universitätstrasse 2, Zürich, CH-8092, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zrcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| |
Collapse
|
27
|
Bassiouni M, Vico G. Parsimony vs predictive and functional performance of three stomatal optimization principles in a big-leaf framework. THE NEW PHYTOLOGIST 2021; 231:586-600. [PMID: 33864268 DOI: 10.1111/nph.17392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Stomatal optimization models can improve estimates of water and carbon fluxes with relatively low complexity, yet there is no consensus on which formulations are most appropriate for ecosystem-scale applications. We implemented three existing analytical equations for stomatal conductance, based on different water penalty functions, in a big-leaf comparison framework, and determined which optimization principles were most consistent with flux tower observations from different biomes. We used information theory to dissect controls of soil water supply and atmospheric demand on evapotranspiration in wet to dry conditions and to quantify missing or inadequate information in model variants. We ranked stomatal optimization principles based on parameter uncertainty, parsimony, predictive accuracy, and functional accuracy of the interactions between soil moisture, vapor pressure deficit, and evapotranspiration. Performance was high for all model variants. Water penalty functions with explicit representation of plant hydraulics did not substantially improve predictive or functional accuracy of ecosystem-scale evapotranspiration estimates, and parameterizations were more uncertain, despite having physiological underpinnings at the plant level. Stomatal optimization based on water use efficiency thus provided more information about ecosystem-scale evapotranspiration compared to those based on xylem vulnerability and proved more useful in improving ecosystem-scale models with less complexity.
Collapse
Affiliation(s)
- Maoya Bassiouni
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences (SLU), Uppsala, 750 07, Sweden
| | - Giulia Vico
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences (SLU), Uppsala, 750 07, Sweden
| |
Collapse
|
28
|
Salvi AM, Smith DD, Adams MA, McCulloh KA, Givnish TJ. Mesophyll photosynthetic sensitivity to leaf water potential in Eucalyptus: a new dimension of plant adaptation to native moisture supply. THE NEW PHYTOLOGIST 2021; 230:1844-1855. [PMID: 33630331 DOI: 10.1111/nph.17304] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Photosynthetic sensitivity to drought is a fundamental constraint on land-plant evolution and ecosystem function. However, little is known about how the sensitivity of photosynthesis to nonstomatal limitations varies among species in the context of phylogenetic relationships. Using saplings of 10 Eucalyptus species, we measured maximum CO2 -saturated photosynthesis using A-ci curves at several different leaf water potentials (ψleaf ) to quantify mesophyll photosynthetic sensitivity to ψleaf (MPS), a measure of how rapidly nonstomatal limitations to carbon uptake increase with declining ψleaf . MPS was compared to the macroclimatic moisture availability of the species' native habitats, while accounting for phylogenetic relationships. We found that species native to mesic habitats have greater MPS but higher maximum photosynthetic rates during non-water-stressed conditions, revealing a trade-off between maximum photosynthesis and drought sensitivity. Species with lower turgor loss points have lower MPS, indicating coordination among photosynthetic and water-relations traits. By accounting for phylogenetic relationships among closely related species, we provide the first compelling evidence that MPS in Eucalyptus evolved in an adaptive fashion with climatically determined moisture availability, opening the way for further study of this poorly explored dimension of plant adaptation to drought.
Collapse
Affiliation(s)
- Amanda M Salvi
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Duncan D Smith
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53705, USA
- School of Ecosystem and Forest Sciences, University of Melbourne, Creswick, Vic., 3363, Australia
- Swinburne University of Technology, John Street, Hawthorn, Vic., 3122, Australia
| | - Mark A Adams
- Swinburne University of Technology, John Street, Hawthorn, Vic., 3122, Australia
| | | | - Thomas J Givnish
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
29
|
Peng Y, Bloomfield KJ, Cernusak LA, Domingues TF, Colin Prentice I. Global climate and nutrient controls of photosynthetic capacity. Commun Biol 2021; 4:462. [PMID: 33846550 PMCID: PMC8042000 DOI: 10.1038/s42003-021-01985-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/10/2021] [Indexed: 11/08/2022] Open
Abstract
There is huge uncertainty about how global exchanges of carbon between the atmosphere and land will respond to continuing environmental change. A better representation of photosynthetic capacity is required for Earth System models to simulate carbon assimilation reliably. Here we use a global leaf-trait dataset to test whether photosynthetic capacity is quantitatively predictable from climate, based on optimality principles; and to explore how this prediction is modified by soil properties, including indices of nitrogen and phosphorus availability, measured in situ. The maximum rate of carboxylation standardized to 25 °C (Vcmax25) was found to be proportional to growing-season irradiance, and to increase-as predicted-towards both colder and drier climates. Individual species' departures from predicted Vcmax25 covaried with area-based leaf nitrogen (Narea) but community-mean Vcmax25 was unrelated to Narea, which in turn was unrelated to the soil C:N ratio. In contrast, leaves with low area-based phosphorus (Parea) had low Vcmax25 (both between and within communities), and Parea increased with total soil P. These findings do not support the assumption, adopted in some ecosystem and Earth System models, that leaf-level photosynthetic capacity depends on soil N supply. They do, however, support a previously-noted relationship between photosynthesis and soil P supply.
Collapse
Affiliation(s)
- Yunke Peng
- Masters Programme in Ecosystems and Environmental Change, Department of Life Sciences, Imperial College London, Ascot, UK
- Department of Environmental Systems Science, ETH, Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | | | - Lucas A Cernusak
- Centre for Tropical Environmental Sustainability Studies, James Cook University, Cairns, QLD, Australia
| | - Tomas F Domingues
- FFCLRP, Department of Biology, University of São Paulo, Ribeirão Preto, Brazil
| | - I Colin Prentice
- Department of Life Sciences, Imperial College London, Ascot, UK.
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia.
- Department of Earth System Science, Tsinghua University, Beijing, China.
| |
Collapse
|
30
|
Schiestl‐Aalto P, Stangl ZR, Tarvainen L, Wallin G, Marshall J, Mäkelä A. Linking canopy-scale mesophyll conductance and phloem sugar δ 13 C using empirical and modelling approaches. THE NEW PHYTOLOGIST 2021; 229:3141-3155. [PMID: 33222199 PMCID: PMC7986199 DOI: 10.1111/nph.17094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/16/2020] [Indexed: 05/26/2023]
Abstract
Interpreting phloem carbohydrate or xylem tissue carbon isotopic composition as measures of water-use efficiency or past tree productivity requires in-depth knowledge of the factors altering the isotopic composition within the pathway from ambient air to phloem contents and tree ring. One of least understood of these factors is mesophyll conductance (gm ). We formulated a dynamic model describing the leaf photosynthetic pathway including seven alternative gm descriptions and a simple transport of sugars from foliage down the trunk. We parameterised the model for a boreal Scots pine stand and compared simulated gm responses with weather variations. We further compared the simulated δ13 C of new photosynthates among the different gm descriptions and against measured phloem sugar δ13 C. Simulated gm estimates of the seven descriptions varied according to weather conditions, resulting in varying estimates of phloem δ13 C during cold/moist and warm/dry periods. The model succeeded in predicting a drought response and a postdrought release in phloem sugar δ13 C indicating suitability of the model for inverse prediction of leaf processes from phloem isotopic composition. We suggest short-interval phloem sampling during and after extreme weather conditions to distinguish between mesophyll conductance drivers for future model development.
Collapse
Affiliation(s)
- Pauliina Schiestl‐Aalto
- Institute for Atmospheric and Earth System Research (INAR)/Forest SciencesHelsinki00014Finland
- Department of Forest Ecology and ManagementSLUUmeå901 83Sweden
| | | | - Lasse Tarvainen
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburg405 30Sweden
| | - Göran Wallin
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburg405 30Sweden
| | - John Marshall
- Department of Forest Ecology and ManagementSLUUmeå901 83Sweden
| | - Annikki Mäkelä
- Institute for Atmospheric and Earth System Research (INAR)/Forest SciencesHelsinki00014Finland
- Department of Forest Ecology and ManagementSLUUmeå901 83Sweden
| |
Collapse
|
31
|
Walker AP, De Kauwe MG, Bastos A, Belmecheri S, Georgiou K, Keeling RF, McMahon SM, Medlyn BE, Moore DJP, Norby RJ, Zaehle S, Anderson-Teixeira KJ, Battipaglia G, Brienen RJW, Cabugao KG, Cailleret M, Campbell E, Canadell JG, Ciais P, Craig ME, Ellsworth DS, Farquhar GD, Fatichi S, Fisher JB, Frank DC, Graven H, Gu L, Haverd V, Heilman K, Heimann M, Hungate BA, Iversen CM, Joos F, Jiang M, Keenan TF, Knauer J, Körner C, Leshyk VO, Leuzinger S, Liu Y, MacBean N, Malhi Y, McVicar TR, Penuelas J, Pongratz J, Powell AS, Riutta T, Sabot MEB, Schleucher J, Sitch S, Smith WK, Sulman B, Taylor B, Terrer C, Torn MS, Treseder KK, Trugman AT, Trumbore SE, van Mantgem PJ, Voelker SL, Whelan ME, Zuidema PA. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO 2. THE NEW PHYTOLOGIST 2021; 229:2413-2445. [PMID: 32789857 DOI: 10.1111/nph.16866] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/06/2020] [Indexed: 05/22/2023]
Abstract
Atmospheric carbon dioxide concentration ([CO2 ]) is increasing, which increases leaf-scale photosynthesis and intrinsic water-use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substantial global terrestrial carbon sink would slow the rate of [CO2 ] increase and thus climate change. However, ecosystem CO2 responses are complex or confounded by concurrent changes in multiple agents of global change and evidence for a [CO2 ]-driven terrestrial carbon sink can appear contradictory. Here we synthesize theory and broad, multidisciplinary evidence for the effects of increasing [CO2 ] (iCO2 ) on the global terrestrial carbon sink. Evidence suggests a substantial increase in global photosynthesis since pre-industrial times. Established theory, supported by experiments, indicates that iCO2 is likely responsible for about half of the increase. Global carbon budgeting, atmospheric data, and forest inventories indicate a historical carbon sink, and these apparent iCO2 responses are high in comparison to experiments and predictions from theory. Plant mortality and soil carbon iCO2 responses are highly uncertain. In conclusion, a range of evidence supports a positive terrestrial carbon sink in response to iCO2 , albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.
Collapse
Affiliation(s)
- Anthony P Walker
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Martin G De Kauwe
- ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, NSW, 2052, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ana Bastos
- Ludwig Maximilians University of Munich, Luisenstr. 37, Munich, 80333, Germany
| | - Soumaya Belmecheri
- Laboratory of Tree Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA
| | - Katerina Georgiou
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Ralph F Keeling
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, 92093, USA
| | - Sean M McMahon
- Smithsonian Environmental Research Center, Edgewater, MD, 21037, USA
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - David J P Moore
- School of Natural Resources and the Environment, 1064 East Lowell Street, Tucson, AZ, 85721, USA
| | - Richard J Norby
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Sönke Zaehle
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena, 07745, Germany
| | - Kristina J Anderson-Teixeira
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, MRC 5535, Front Royal, VA, 22630, USA
- Center for Tropical Forest Science-Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama City, Panama
| | - Giovanna Battipaglia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università della Campania, Caserta, 81100, Italy
| | | | - Kristine G Cabugao
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Maxime Cailleret
- INRAE, UMR RECOVER, Aix-Marseille Université, 3275 route de Cézanne, Aix-en-Provence Cedex 5, 13182, France
- Swiss Federal Institute for Forest Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Elliott Campbell
- Department of Geography, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Josep G Canadell
- CSIRO Oceans and Atmosphere, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, F-91191, France
| | - Matthew E Craig
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - David S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Graham D Farquhar
- Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Simone Fatichi
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore
- Institute of Environmental Engineering, ETH Zurich, Stefano-Franscini Platz 5, Zurich, 8093, Switzerland
| | - Joshua B Fisher
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA
| | - David C Frank
- Laboratory of Tree Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA
| | - Heather Graven
- Department of Physics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Lianhong Gu
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Vanessa Haverd
- CSIRO Oceans and Atmosphere, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Kelly Heilman
- Laboratory of Tree Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA
| | - Martin Heimann
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena, 07745, Germany
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Colleen M Iversen
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Fortunat Joos
- Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, Sidlerstr. 5, Bern, CH-3012, Switzerland
| | - Mingkai Jiang
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Trevor F Keenan
- Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, CA, 94720, USA
- Earth and Environmental Sciences Area, Lawrence Berkeley National Lab., Berkeley, CA, 94720, USA
| | - Jürgen Knauer
- CSIRO Oceans and Atmosphere, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Christian Körner
- Department of Environmental Sciences, Botany, University of Basel, Basel, 4056, Switzerland
| | - Victor O Leshyk
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Sebastian Leuzinger
- School of Science, Auckland University of Technology, Auckland, 1142, New Zealand
| | - Yao Liu
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Natasha MacBean
- Department of Geography, Indiana University, Bloomington, IN, 47405, USA
| | - Yadvinder Malhi
- School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK
| | - Tim R McVicar
- CSIRO Land and Water, GPO Box 1700, Canberra, ACT, 2601, Australia
- Australian Research Council Centre of Excellence for Climate Extremes, 142 Mills Rd, Australian National University, Canberra, ACT, 2601, Australia
| | - Josep Penuelas
- CSIC, Global Ecology CREAF-CSIC-UAB, Bellaterra, Barcelona, Catalonia, 08193, Spain
- CREAF, Cerdanyola del Vallès, Barcelona, Catalonia, 08193, Spain
| | - Julia Pongratz
- Ludwig Maximilians University of Munich, Luisenstr. 37, Munich, 80333, Germany
- Max Planck Institute for Meteorology, Bundesstr. 53, 20146 Hamburg, Germany
| | - A Shafer Powell
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Terhi Riutta
- School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK
| | - Manon E B Sabot
- ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, NSW, 2052, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Juergen Schleucher
- Department of Medical Biochemistry & Biophysics, Umeå University, Umea, 901 87, Sweden
| | - Stephen Sitch
- College of Life and Environmental Sciences, University of Exeter, Exeter, Laver Building, EX4 4QF, UK
| | - William K Smith
- School of Natural Resources and the Environment, 1064 East Lowell Street, Tucson, AZ, 85721, USA
| | - Benjamin Sulman
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Benton Taylor
- Smithsonian Environmental Research Center, Edgewater, MD, 21037, USA
| | - César Terrer
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Margaret S Torn
- Earth and Environmental Sciences Area, Lawrence Berkeley National Lab., Berkeley, CA, 94720, USA
| | - Kathleen K Treseder
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
| | - Anna T Trugman
- Department of Geography, 1832 Ellison Hall, Santa Barbara, CA, 93016, USA
| | - Susan E Trumbore
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena, 07745, Germany
| | | | - Steve L Voelker
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Mary E Whelan
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ, 08901, USA
| | - Pieter A Zuidema
- Forest Ecology and Forest Management group, Wageningen University, PO Box 47, Wageningen, 6700 AA, the Netherlands
| |
Collapse
|
32
|
Peters RL, Steppe K, Cuny HE, De Pauw DJW, Frank DC, Schaub M, Rathgeber CBK, Cabon A, Fonti P. Turgor - a limiting factor for radial growth in mature conifers along an elevational gradient. THE NEW PHYTOLOGIST 2021; 229:213-229. [PMID: 32790914 DOI: 10.1111/nph.16872] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/29/2020] [Indexed: 05/17/2023]
Abstract
A valid representation of intra-annual wood formation processes in global vegetation models is vital for assessing climate change impacts on the forest carbon stock. Yet, wood formation is generally modelled with photosynthesis, despite mounting evidence that cambial activity is rather directly constrained by limiting environmental factors. Here, we apply a state-of-the-art turgor-driven growth model to simulate 4 yr of hourly stem radial increment from Picea abies (L.) Karst. and Larix decidua Mill. growing along an elevational gradient. For the first time, wood formation observations were used to validate weekly to annual stem radial increment simulations, while environmental measurements were used to assess the climatic constraints on turgor-driven growth. Model simulations matched the observed timing and dynamics of wood formation. Using the detailed model outputs, we identified a strict environmental regulation on stem growth (air temperature > 2°C and soil water potential > -0.6 MPa). Warmer and drier summers reduced the growth rate as a result of turgor limitation despite warmer temperatures being favourable for cambial activity. These findings suggest that turgor is a central driver of the forest carbon sink and should be considered in next-generation vegetation models, particularly in the context of global warming and increasing frequency of droughts.
Collapse
Affiliation(s)
- Richard L Peters
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf, CH-8903, Switzerland
- Department of Environmental Sciences - Botany, Basel University, Schönbeinstrasse 6, Basel, CH-4056, Switzerland
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, B-9000, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, B-9000, Belgium
| | - Henri E Cuny
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf, CH-8903, Switzerland
- Institut National de l'Information Géographique et Forestière (IGN), 1 rue des blanches terres, Champigneulles, 54115, France
| | - Dirk J W De Pauw
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, B-9000, Belgium
| | - David C Frank
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf, CH-8903, Switzerland
- Laboratory of Tree-Ring Research, 1215 E. Lowell Street, Tucson, AZ, 8572, USA
| | - Marcus Schaub
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf, CH-8903, Switzerland
| | | | - Antoine Cabon
- Joint Research Unit CTFC - AGROTECNIO, Solsona, E-25280, Spain
- CREAF, Cerdanyola del Vallès, Barcelona, E-08193, Spain
| | - Patrick Fonti
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf, CH-8903, Switzerland
| |
Collapse
|
33
|
Lavergne A, Sandoval D, Hare VJ, Graven H, Prentice IC. Impacts of soil water stress on the acclimated stomatal limitation of photosynthesis: Insights from stable carbon isotope data. GLOBAL CHANGE BIOLOGY 2020; 26:7158-7172. [PMID: 32970907 DOI: 10.1111/gcb.15364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/15/2020] [Indexed: 05/08/2023]
Abstract
Atmospheric aridity and drought both influence physiological function in plant leaves, but their relative contributions to changes in the ratio of leaf internal to ambient partial pressure of CO2 (χ) - an index of adjustments in both stomatal conductance and photosynthetic rate to environmental conditions - are difficult to disentangle. Many stomatal models predicting χ include the influence of only one of these drivers. In particular, the least-cost optimality hypothesis considers the effect of atmospheric demand for water on χ but does not predict how soils with reduced water further influence χ, potentially leading to an overestimation of χ under dry conditions. Here, we use a large network of stable carbon isotope measurements in C3 woody plants to examine the acclimated response of χ to soil water stress. We estimate the ratio of cost factors for carboxylation and transpiration (β) expected from the theory to explain the variance in the data, and investigate the responses of β (and thus χ) to soil water content and suction across seed plant groups, leaf phenological types and regions. Overall, β decreases linearly with soil drying, implying that the cost of water transport along the soil-plant-atmosphere continuum increases as water available in the soil decreases. However, despite contrasting hydraulic strategies, the stomatal responses of angiosperms and gymnosperms to soil water tend to converge, consistent with the optimality theory. The prediction of β as a simple, empirical function of soil water significantly improves χ predictions by up to 6.3 ± 2.3% (mean ± SD of adjusted-R2 ) over 1980-2018 and results in a reduction of around 2% of mean χ values across the globe. Our results highlight the importance of soil water status on stomatal functions and plant water-use efficiency, and suggest the implementation of trait-based hydraulic functions into the model to account for soil water stress.
Collapse
Affiliation(s)
- Aliénor Lavergne
- Carbon Cycle Research Group, Space and Atmospheric Physics, Department of Physics, Imperial College London, London, UK
| | - David Sandoval
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Vincent J Hare
- Carbon Cycle Research Group, Space and Atmospheric Physics, Department of Physics, Imperial College London, London, UK
- Stable Light Isotope Laboratory, University of Cape Town, Cape Town, South Africa
| | - Heather Graven
- Carbon Cycle Research Group, Space and Atmospheric Physics, Department of Physics, Imperial College London, London, UK
- Grantham Institute - Climate Change and the Environment, Imperial College London, London, UK
| | - Iain Colin Prentice
- Department of Life Sciences, Imperial College London, Ascot, UK
- Grantham Institute - Climate Change and the Environment, Imperial College London, London, UK
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
- Department of Earth System Science, Tsinghua University, Beijing, China
| |
Collapse
|
34
|
Liu C, Hölttä T, Tian X, Berninger F, Mäkelä A. Weaker Light Response, Lower Stomatal Conductance and Structural Changes in Old Boreal Conifers Implied by a Bayesian Hierarchical Model. FRONTIERS IN PLANT SCIENCE 2020; 11:579319. [PMID: 33240299 PMCID: PMC7677260 DOI: 10.3389/fpls.2020.579319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Age-related effects on whole-tree hydraulics are one of the key challenges to better predicting the production and growth of old-growth forests. Previous models have described the optimal state of stomatal behaviour, and field studies have implied on age/size-induced trends in tree ecophysiology related to hydraulics. On these bases, we built a Bayesian hierarchical model to link sap flow density and drivers of transpiration directly. The model included parameters with physiological meanings and accounted for variations in leaf-sapwood area ratio and the time lag between sap flow and transpiration. The model well-simulated the daily pattern of sap flow density and the variation between tree age groups. The results of parameterization show that (1) the usually higher stomatal conductance in young than old trees during mid-summer was mainly because the sap flow of young trees were more activated at low to medium light intensity, and (2) leaf-sapwood area ratio linearly decreased while time lag linearly increased with increasing tree height. Uncertainty partitioning and cross-validation, respectively, indicated a reliable and fairly robust parameter estimation. The model performance may be further improved by higher data quality and more process-based expressions of the internal dynamics of trees.
Collapse
Affiliation(s)
- Che Liu
- Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| | - Teemu Hölttä
- Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| | - Xianglin Tian
- Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| | - Frank Berninger
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Annikki Mäkelä
- Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| |
Collapse
|
35
|
Paillassa J, Wright IJ, Prentice IC, Pepin S, Smith NG, Ethier G, Westerband AC, Lamarque LJ, Wang H, Cornwell WK, Maire V. When and where soil is important to modify the carbon and water economy of leaves. THE NEW PHYTOLOGIST 2020; 228:121-135. [PMID: 32455476 DOI: 10.1111/nph.16702] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
Photosynthetic 'least-cost' theory posits that the optimal trait combination for a given environment is that where the summed costs of photosynthetic water and nutrient acquisition/use are minimised. The effects of soil water and nutrient availability on photosynthesis should be stronger as climate-related costs for both resources increase. Two independent datasets of photosynthetic traits, Globamax (1509 species, 288 sites) and Glob13C (3645 species, 594 sites), were used to quantify biophysical and biochemical limitations of photosynthesis and the key variable Ci /Ca (CO2 drawdown during photosynthesis). Climate and soil variables were associated with both datasets. The biochemical photosynthetic capacity was higher on alkaline soils. This effect was strongest at more arid sites, where water unit-costs are presumably higher. Higher values of soil silt and depth increased Ci /Ca , likely by providing greater H2 O supply, alleviating biophysical photosynthetic limitation when soil water is scarce. Climate is important in controlling the optimal balance of H2 O and N costs for photosynthesis, but soil properties change these costs, both directly and indirectly. In total, soil properties modify the climate-demand driven predictions of Ci /Ca by up to 30% at a global scale.
Collapse
Affiliation(s)
- Jennifer Paillassa
- Département des Sciences de l'environnement, Université du Québec à Trois-Rivières, CP 500, Trois-Rivières, QC, G9A 5H7, Canada
- Département des sols et de Génie Agroalimentaire, Université Laval, 2480 boul. Hochelaga, Québec, QC, G1V 0A6, Canada
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - I Colin Prentice
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
- Department of Earth System Science, Tsinghua University, Haidian District, Beijing, 100084, China
| | - Steeve Pepin
- Département des sols et de Génie Agroalimentaire, Université Laval, 2480 boul. Hochelaga, Québec, QC, G1V 0A6, Canada
| | - Nicholas G Smith
- Department of Biological Sciences, Texas Tech University, 2901 Main Street, Lubbock, TX, 79409, USA
| | - Gilbert Ethier
- Département de phytologie, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Andrea C Westerband
- Département des sols et de Génie Agroalimentaire, Université Laval, 2480 boul. Hochelaga, Québec, QC, G1V 0A6, Canada
| | - Laurent J Lamarque
- Département des Sciences de l'environnement, Université du Québec à Trois-Rivières, CP 500, Trois-Rivières, QC, G9A 5H7, Canada
| | - Han Wang
- Department of Earth System Science, Tsinghua University, Haidian District, Beijing, 100084, China
| | - Will K Cornwell
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Vincent Maire
- Département des Sciences de l'environnement, Université du Québec à Trois-Rivières, CP 500, Trois-Rivières, QC, G9A 5H7, Canada
| |
Collapse
|
36
|
Peters W, Bastos A, Ciais P, Vermeulen A. A historical, geographical and ecological perspective on the 2018 European summer drought. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190505. [PMID: 32892723 DOI: 10.1098/rstb.2019.0505] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Wouter Peters
- Department of Meteorology and Air Quality, Wageningen University, Wageningen, The Netherlands.,Centre for Isotope Research Groningen, Groningen University, Groningen, The Netherlands
| | - Ana Bastos
- Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, Gif-sur-Yvette, France
| | - Alex Vermeulen
- Integrated Carbon Observing System (ICOS ERIC), Carbon Portal, Lund, Sweden
| |
Collapse
|
37
|
Gourlez de la Motte L, Beauclaire Q, Heinesch B, Cuntz M, Foltýnová L, Šigut L, Kowalska N, Manca G, Ballarin IG, Vincke C, Roland M, Ibrom A, Lousteau D, Siebicke L, Neiryink J, Longdoz B. Non-stomatal processes reduce gross primary productivity in temperate forest ecosystems during severe edaphic drought. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190527. [PMID: 32892725 DOI: 10.1098/rstb.2019.0527] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Severe drought events are known to cause important reductions of gross primary productivity (GPP) in forest ecosystems. However, it is still unclear whether this reduction originates from stomatal closure (Stomatal Origin Limitation) and/or non-stomatal limitations (Non-SOL). In this study, we investigated the impact of edaphic drought in 2018 on GPP and its origin (SOL, NSOL) using a dataset of 10 European forest ecosystem flux towers. In all stations where GPP reductions were observed during the drought, these were largely explained by declines in the maximum apparent canopy scale carboxylation rate VCMAX,APP (NSOL) when the soil relative extractable water content dropped below around 0.4. Concurrently, we found that the stomatal slope parameter (G1, related to SOL) of the Medlyn et al. unified optimization model linking vegetation conductance and GPP remained relatively constant. These results strengthen the increasing evidence that NSOL should be included in stomatal conductance/photosynthesis models to faithfully simulate both GPP and water fluxes in forest ecosystems during severe drought. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.
Collapse
Affiliation(s)
- Louis Gourlez de la Motte
- Terra Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium
| | - Quentin Beauclaire
- Terra Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium
| | - Bernard Heinesch
- Terra Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium
| | - Mathias Cuntz
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, 54000 Nancy, France
| | | | - Ladislav Šigut
- Global Change Research Institute CAS, Brno, Czech Republic
| | | | - Giovanni Manca
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Caroline Vincke
- Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | - Marilyn Roland
- Plants and Ecosystems, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Andreas Ibrom
- Department of Environmental Engineering, Technical University of Denmark (DTU), Bygningstorvet 115, 2800 Lyngby, Denmark
| | | | - Lukas Siebicke
- Bioclimatology, University of Goettingen, Büsgenweg 2, 37077 Goettingen, Germany
| | - Johan Neiryink
- Institute for Nature and Forest Research, INBO, Havenlaan 88 Box 73, 1000 Brussels, Belgium
| | - Bernard Longdoz
- Terra Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium
| |
Collapse
|
38
|
Deans RM, Brodribb TJ, Busch FA, Farquhar GD. Optimization can provide the fundamental link between leaf photosynthesis, gas exchange and water relations. NATURE PLANTS 2020; 6:1116-1125. [PMID: 32895529 DOI: 10.1038/s41477-020-00760-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/28/2020] [Indexed: 05/12/2023]
Abstract
Tight coordination in the photosynthetic, gas exchange and water supply capacities of leaves is a globally conserved trend across land plants. Strong selective constraints on leaf carbon gain create the opportunity to use quantitative optimization theory to understand the connected evolution of leaf photosynthesis and water relations. We developed an analytical optimization model that maximizes the long-term rate of leaf carbon gain, given the carbon costs in building and maintaining stomata, leaf hydraulics and osmotic pressure. Our model demonstrates that selection for optimal gain should drive coordination between key photosynthetic, gas exchange and water relations traits. It also provides predictions of adaptation to drought and the relative costs of key leaf functional traits. Our results show that optimization in terms of carbon gain, given the carbon costs of physiological traits, successfully unites leaf photosynthesis and water relations and provides a quantitative framework to consider leaf functional evolution and adaptation.
Collapse
Affiliation(s)
- Ross M Deans
- ARC Centre of Excellence in Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Florian A Busch
- ARC Centre of Excellence in Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Graham D Farquhar
- ARC Centre of Excellence in Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
39
|
Yin Q, Tian T, Kou M, Liu P, Wang L, Hao Z, Yue M. The relationships between photosynthesis and stomatal traits on the Loess Plateau. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
40
|
Azuma WA, Nakashima S, Yamakita E, Ohta T. Water Adsorption to Leaves of Tall Cryptomeria japonica Tree Analyzed by Infrared Spectroscopy under Relative Humidity Control. PLANTS 2020; 9:plants9091107. [PMID: 32867326 PMCID: PMC7569789 DOI: 10.3390/plants9091107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/22/2022]
Abstract
Leaf water storage is a complex interaction between live tissue properties (anatomy and physiology) and physicochemical properties of biomolecules and water. How leaves adsorb water molecules based on interactions between biomolecules and water, including hydrogen bonding, challenges our understanding of hydraulic acclimation in tall trees where leaves are exposed to more water stress. Here, we used infrared (IR) microspectroscopy with changing relative humidity (RH) on leaves of tall Cryptomeria japonica trees. OH band areas correlating with water content were larger for treetop (52 m) than for lower-crown (19 m) leaves, regardless of relative humidity (RH). This high water adsorption in treetop leaves was not explained by polysaccharides such as Ca-bridged pectin, but could be attributed to the greater cross-sectional area of the transfusion tissue. In both treetop and lower-crown leaves, the band areas of long (free water: around 3550 cm−1) and short (bound water: around 3200 cm−1) hydrogen bonding OH components showed similar increases with increasing RH, while the band area of free water was larger at the treetop leaves regardless of RH. Free water molecules with longer H bonds were considered to be adsorbed loosely to hydrophobic CH surfaces of polysaccharides in the leaf-cross sections.
Collapse
Affiliation(s)
- Wakana A. Azuma
- Graduate School of Agricultural Science, Kobe University, Kobe 675-8501, Japan
- Correspondence: ; Tel.: +81-78-803-5936
| | - Satoru Nakashima
- Graduate School of Science, Osaka University, Osaka 560-0043, Japan or (S.N.); (E.Y.)
- Faculty of Environmental and Urban Engineering, Kansai University, Osaka, Suita 564-8680, Japan
- Research Institute for Natural Environment, Science and Technology (RINEST), Tarumi-cho 3-6-32 Maison Esaka 1F, Suita, Osaka 564-0062, Japan
| | - Eri Yamakita
- Graduate School of Science, Osaka University, Osaka 560-0043, Japan or (S.N.); (E.Y.)
| | - Tamihisa Ohta
- Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan;
| |
Collapse
|
41
|
Wang Y, Sperry JS, Anderegg WRL, Venturas MD, Trugman AT. A theoretical and empirical assessment of stomatal optimization modeling. THE NEW PHYTOLOGIST 2020; 227:311-325. [PMID: 32248532 DOI: 10.1111/nph.16572] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/09/2020] [Indexed: 05/13/2023]
Abstract
Optimal stomatal control models have shown great potential in predicting stomatal behavior and improving carbon cycle modeling. Basic stomatal optimality theory posits that stomatal regulation maximizes the carbon gain relative to a penalty of stomatal opening. All models take a similar approach to calculate instantaneous carbon gain from stomatal opening (the gain function). Where the models diverge is in how they calculate the corresponding penalty (the penalty function). In this review, we compare and evaluate 10 different optimization models in how they quantify the penalty and how well they predict stomatal responses to the environment. We evaluate models in two ways. First, we compare their penalty functions against seven criteria that ensure a unique and qualitatively realistic solution. Second, we quantitatively test model against multiple leaf gas-exchange datasets. The optimization models with better predictive skills have penalty functions that meet our seven criteria and use fitting parameters that are both few in number and physiology based. The most skilled models are those with a penalty function based on stress-induced hydraulic failure. We conclude by proposing a new model that has a hydraulics-based penalty function that meets all seven criteria and demonstrates a highly predictive skill against our test datasets.
Collapse
Affiliation(s)
- Yujie Wang
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - John S Sperry
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - William R L Anderegg
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Martin D Venturas
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Anna T Trugman
- Department of Geography, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
42
|
Du Q, Jiao X, Song X, Zhang J, Bai P, Ding J, Li J. The Response of Water Dynamics to Long-Term High Vapor Pressure Deficit Is Mediated by Anatomical Adaptations in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:758. [PMID: 32582267 PMCID: PMC7289962 DOI: 10.3389/fpls.2020.00758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Vapor pressure deficit (VPD) is the driver of water movement in plants. However, little is known about how anatomical adaptations determine the acclimation of plant water dynamics to elevated VPD, especially at the whole plant level. Here, we examined the responses of transpiration, stomatal conductance (gs), hydraulic partitioning, and anatomical traits in two tomato cultivars (Jinpeng and Zhongza) to long-term high (2.2-2.6 kPa) and low (1.1-1.5 kPa) VPD. Compared to plants growing under low VPD, no variation in gs was found for Jinpeng under high VPD conditions; however, high VPD induced an increase in whole plant hydraulic conductance (Kplant), which was responsible for the maintenance of high transpiration. In contrast, transpiration was not influenced by high VPD in Zhongza, which was primarily attributed to a coordinated decline in gs and Kplant. The changes in gs were closely related to stomatal density and size. Furthermore, high VPD altered hydraulic partitioning among the leaf, stem, and root for both cultivars via adjustments in anatomy. The increase in lumen area of vessels in veins and large roots in Jinpeng under high VPD conditions improved water transport efficiency in the leaf and root, thus resulting in a high Kplant. However, the decreased Kplant for Zhongza under high VPD was the result of a decline of water transport efficiency in the leaf that was caused by a reduction in vein density. Overall, we concluded that the tradeoff in anatomical acclimations among plant tissues results in different water relations in plants under high VPD conditions.
Collapse
Affiliation(s)
- Qingjie Du
- College of Horticulture, Northwest A&F University, Yangling, China
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Xiaocong Jiao
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Xiaoming Song
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Jiayu Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Ping Bai
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Juping Ding
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Jianming Li
- College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
43
|
Eller CB, Rowland L, Mencuccini M, Rosas T, Williams K, Harper A, Medlyn BE, Wagner Y, Klein T, Teodoro GS, Oliveira RS, Matos IS, Rosado BHP, Fuchs K, Wohlfahrt G, Montagnani L, Meir P, Sitch S, Cox PM. Stomatal optimization based on xylem hydraulics (SOX) improves land surface model simulation of vegetation responses to climate. THE NEW PHYTOLOGIST 2020; 226:1622-1637. [PMID: 31916258 PMCID: PMC7318565 DOI: 10.1111/nph.16419] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/03/2020] [Indexed: 05/23/2023]
Abstract
Land surface models (LSMs) typically use empirical functions to represent vegetation responses to soil drought. These functions largely neglect recent advances in plant ecophysiology that link xylem hydraulic functioning with stomatal responses to climate. We developed an analytical stomatal optimization model based on xylem hydraulics (SOX) to predict plant responses to drought. Coupling SOX to the Joint UK Land Environment Simulator (JULES) LSM, we conducted a global evaluation of SOX against leaf- and ecosystem-level observations. SOX simulates leaf stomatal conductance responses to climate for woody plants more accurately and parsimoniously than the existing JULES stomatal conductance model. An ecosystem-level evaluation at 70 eddy flux sites shows that SOX decreases the sensitivity of gross primary productivity (GPP) to soil moisture, which improves the model agreement with observations and increases the predicted annual GPP by 30% in relation to JULES. SOX decreases JULES root-mean-square error in GPP by up to 45% in evergreen tropical forests, and can simulate realistic patterns of canopy water potential and soil water dynamics at the studied sites. SOX provides a parsimonious way to incorporate recent advances in plant hydraulics and optimality theory into LSMs, and an alternative to empirical stress factors.
Collapse
Affiliation(s)
- Cleiton B. Eller
- College of Life and Environmental SciencesUniversity of ExeterExeterEX4 4QFUK
- Department of Plant BiologyUniversity of CampinasCampinas13083‐862Brazil
| | - Lucy Rowland
- College of Life and Environmental SciencesUniversity of ExeterExeterEX4 4QFUK
| | - Maurizio Mencuccini
- CREAFBellaterra08193BarcelonaSpain
- ICREAPg. Lluís Companys 2308010BarcelonaSpain
| | - Teresa Rosas
- CREAFBellaterra08193BarcelonaSpain
- ICREAPg. Lluís Companys 2308010BarcelonaSpain
| | | | - Anna Harper
- College of Engineering, Mathematics and Physical SciencesUniversity of ExeterExeterEX4 4QFUK
| | - Belinda E. Medlyn
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityLocked Bag 1797PenrithNSW2751Australia
| | - Yael Wagner
- Department of Plant & Environmental SciencesWeizmann Institute of Science76100RehovotIsrael
| | - Tamir Klein
- Department of Plant & Environmental SciencesWeizmann Institute of Science76100RehovotIsrael
| | | | - Rafael S. Oliveira
- Department of Plant BiologyUniversity of CampinasCampinas13083‐862Brazil
| | - Ilaine S. Matos
- Department of Ecology – IBRAGRio de Janeiro State University (UERJ)Rio de Janeiro20550‐013Brazil
| | - Bruno H. P. Rosado
- Department of Ecology – IBRAGRio de Janeiro State University (UERJ)Rio de Janeiro20550‐013Brazil
| | - Kathrin Fuchs
- Department of Environmental Systems ScienceETH ZurichUniversitätstrasse 28092ZurichSwitzerland
| | - Georg Wohlfahrt
- Department of EcologyUniversity of InnsbruckInnsbruck6020Austria
| | - Leonardo Montagnani
- Forest ServicesAutonomous Province of BolzanoVia Brennero 639100BolzanoItaly
| | - Patrick Meir
- Research School of BiologyThe Australian National UniversityActonACT2601Australia
- School of GeosciencesUniversity of EdinburghEdinburghEH9 3FFUK
| | - Stephen Sitch
- College of Life and Environmental SciencesUniversity of ExeterExeterEX4 4QFUK
| | - Peter M. Cox
- College of Engineering, Mathematics and Physical SciencesUniversity of ExeterExeterEX4 4QFUK
| |
Collapse
|
44
|
Velikova V, Arena C, Izzo LG, Tsonev T, Koleva D, Tattini M, Roeva O, De Maio A, Loreto F. Functional and Structural Leaf Plasticity Determine Photosynthetic Performances during Drought Stress and Recovery in Two Platanus orientalis Populations from Contrasting Habitats. Int J Mol Sci 2020; 21:E3912. [PMID: 32486179 PMCID: PMC7312932 DOI: 10.3390/ijms21113912] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/23/2020] [Accepted: 05/28/2020] [Indexed: 11/25/2022] Open
Abstract
In the context of climatic change, more severe and long-lasting droughts will modify the fitness of plants, with potentially worse consequences on the relict trees. We have investigated the leaf phenotypic (anatomical, physiological and biochemical) plasticity in well-watered, drought-stressed and re-watered plants of two populations of Platanus orientalis, an endangered species in the west of the Mediterranean area. The two populations originated in contrasting climate (drier and warmer, Italy (IT) population; more humid and colder, Bulgaria (BG) population). The IT control plants had thicker leaves, enabling them to maintain higher leaf water content in the dry environment, and more spongy parenchyma, which could improve water conductivity of these plants and may result in easier CO2 diffusion than in BG plants. Control BG plants were also characterized by higher photorespiration and leaf antioxidants compared to IT plants. BG plants responded to drought with greater leaf thickness shrinkage. Drought also caused substantial reduction in photosynthetic parameters of both IT and BG plants. After re-watering, photosynthesis did not fully recover in either of the two populations. However, IT leaves became thicker, while photorespiration in BG plants further increased, perhaps indicating sustained activation of defensive mechanisms. Overall, our hypothesis, that plants with a fragmented habitat (i.e., the IT population) lose phenotypic plasticity but acquire traits allowing better resistance to the climate where they became adapted, remains confirmed.
Collapse
Affiliation(s)
- Violeta Velikova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl. 21, Sofia 1113, Bulgaria
| | - Carmen Arena
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (C.A.); (A.D.M.)
| | - Luigi Gennaro Izzo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy;
| | - Tsonko Tsonev
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia 1113, Bulgaria; (T.T.); (O.R.)
| | | | - Massimiliano Tattini
- Institute for Sustainable Plant Protection, Department of Biology, Agriculture and Food Sciences, The National Research Council of Italy (CNR), I-50019 Sesto Fiorentino (Florence), Italy;
| | - Olympia Roeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia 1113, Bulgaria; (T.T.); (O.R.)
| | - Anna De Maio
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (C.A.); (A.D.M.)
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, The National Research Council of Italy (CNR), 00185 Rome, Italy
| |
Collapse
|
45
|
Salmon Y, Lintunen A, Dayet A, Chan T, Dewar R, Vesala T, Hölttä T. Leaf carbon and water status control stomatal and nonstomatal limitations of photosynthesis in trees. THE NEW PHYTOLOGIST 2020; 226:690-703. [PMID: 31955422 DOI: 10.1111/nph.16436] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/18/2019] [Indexed: 05/22/2023]
Abstract
Photosynthetic rate is concurrently limited by stomatal limitations and nonstomatal limitations (NSLs). However, the controls on NSLs to photosynthesis and their coordination with stomatal control on different timescales remain poorly understood. According to a recent optimization hypothesis, NSLs depend on leaf osmotic or water status and are coordinated with stomatal control so as to maximize leaf photosynthesis. Drought and notching experiments were conducted on Pinus sylvestris, Picea abies, Betula Pendula and Populus tremula seedlings in glasshouse conditions to study the dependence of NSLs on leaf osmotic and water status, and their coordination with stomatal control, on timescales of minutes and weeks, to test the assumptions and predictions of the optimization hypothesis. Both NSLs and stomatal conductance followed power-law functions of leaf osmotic concentration and leaf water potential. Moreover, stomatal conductance was proportional to the square root of soil-to-leaf hydraulic conductance, as predicted by the optimization hypothesis. Though the detailed mechanisms underlying the dependence of NSLs on leaf osmotic or water status lie outside the scope of this study, our results support the hypothesis that NSLs and stomatal control are coordinated to maximize leaf photosynthesis and allow the effect of NSLs to be included in models of tree gas-exchange.
Collapse
Affiliation(s)
- Yann Salmon
- Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014, Finland
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland
| | - Anna Lintunen
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland
| | - Alexia Dayet
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland
| | - Tommy Chan
- Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014, Finland
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland
| | - Roderick Dewar
- Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014, Finland
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Timo Vesala
- Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014, Finland
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland
| | - Teemu Hölttä
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland
| |
Collapse
|
46
|
Franklin O, Harrison SP, Dewar R, Farrior CE, Brännström Å, Dieckmann U, Pietsch S, Falster D, Cramer W, Loreau M, Wang H, Mäkelä A, Rebel KT, Meron E, Schymanski SJ, Rovenskaya E, Stocker BD, Zaehle S, Manzoni S, van Oijen M, Wright IJ, Ciais P, van Bodegom PM, Peñuelas J, Hofhansl F, Terrer C, Soudzilovskaia NA, Midgley G, Prentice IC. Organizing principles for vegetation dynamics. NATURE PLANTS 2020; 6:444-453. [PMID: 32393882 DOI: 10.1038/s41477-020-0655-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Plants and vegetation play a critical-but largely unpredictable-role in global environmental changes due to the multitude of contributing processes at widely different spatial and temporal scales. In this Perspective, we explore approaches to master this complexity and improve our ability to predict vegetation dynamics by explicitly taking account of principles that constrain plant and ecosystem behaviour: natural selection, self-organization and entropy maximization. These ideas are increasingly being used in vegetation models, but we argue that their full potential has yet to be realized. We demonstrate the power of natural selection-based optimality principles to predict photosynthetic and carbon allocation responses to multiple environmental drivers, as well as how individual plasticity leads to the predictable self-organization of forest canopies. We show how models of natural selection acting on a few key traits can generate realistic plant communities and how entropy maximization can identify the most probable outcomes of community dynamics in space- and time-varying environments. Finally, we present a roadmap indicating how these principles could be combined in a new generation of models with stronger theoretical foundations and an improved capacity to predict complex vegetation responses to environmental change.
Collapse
Affiliation(s)
- Oskar Franklin
- International Institute for Applied Systems Analysis, Laxenburg, Austria.
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden.
| | - Sandy P Harrison
- Department of Geography and Environmental Science, University of Reading, Reading, UK
| | - Roderick Dewar
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, Australia
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, Helsinki, Finland
| | - Caroline E Farrior
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Åke Brännström
- International Institute for Applied Systems Analysis, Laxenburg, Austria
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
| | - Ulf Dieckmann
- International Institute for Applied Systems Analysis, Laxenburg, Austria
- Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies (Sokendai), Hayama, Japan
| | - Stephan Pietsch
- International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Daniel Falster
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Wolfgang Cramer
- Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), Aix Marseille Université, CNRS, IRD, Avignon Université, Technopôle Arbois-Méditerranée, Aix-en-Provence, France
| | - Michel Loreau
- Centre for Biodiversity, Theory, and Modelling, Theoretical and Experimental Ecology Station, CNRS, Moulis, France
| | - Han Wang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
| | - Annikki Mäkelä
- Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Karin T Rebel
- Copernicus Institute of Sustainable Development, Environmental Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Ehud Meron
- Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
- Department of Physics, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Stanislaus J Schymanski
- Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Elena Rovenskaya
- International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Benjamin D Stocker
- Department of Environmental Systems Sciences, ETH Zurich, Zurich, Switzerland
- CREAF, Cerdanyola del Vallès, Spain
| | - Sönke Zaehle
- Biogeochemical Integration Department, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Stefano Manzoni
- Department of Physical Geography, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm, Sweden
| | - Marcel van Oijen
- Centre for Ecology and Hydrology (CEH-Edinburgh), Bush Estate, Penicuik, UK
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, CEA CNRS UVSQ, Gif-sur-Yvette, France
| | - Peter M van Bodegom
- Environmental Biology Department, Institute of Environmental Sciences, CML, Leiden University, Leiden, The Netherlands
| | - Josep Peñuelas
- CREAF, Cerdanyola del Vallès, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Spain
| | - Florian Hofhansl
- International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Cesar Terrer
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Nadejda A Soudzilovskaia
- Environmental Biology Department, Institute of Environmental Sciences, CML, Leiden University, Leiden, The Netherlands
| | - Guy Midgley
- Department Botany & Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - I Colin Prentice
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
- AXA Chair of Biosphere and Climate Impacts, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, UK
| |
Collapse
|
47
|
Lintunen A, Paljakka T, Salmon Y, Dewar R, Riikonen A, Hölttä T. The influence of soil temperature and water content on belowground hydraulic conductance and leaf gas exchange in mature trees of three boreal species. PLANT, CELL & ENVIRONMENT 2020; 43:532-547. [PMID: 31873942 DOI: 10.1111/pce.13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Understanding stomatal regulation is fundamental to predicting the impact of changing environmental conditions on vegetation. However, the influence of soil temperature (ST) and soil water content (SWC) on canopy conductance (gs ) through changes in belowground hydraulic conductance (kbg ) remains poorly understood, because kbg has seldom been measured in field conditions. Our aim was to (a) examine the dependence of kbg on ST and SWC, (b) examine the dependence of gs on kbg and (c) test a recent stomatal optimization model according to which gs and soil-to-leaf hydraulic conductance are strongly coupled. We estimated kbg from continuous sap flow and xylem diameter measurements in three boreal species. kbg increased strongly with increasing ST when ST was below +8°C, and typically increased with increasing SWC when ST was not limiting. gs was correlated with kbg in all three species, and modelled and measured gs were well correlated in Pinus sylvestris (a model comparison was only possible for this species). These results imply an important role for kbg in mediating linkages between the soil environment and leaf gas exchange. In particular, our finding that ST strongly influences kbg in mature trees may help us to better understand tree behaviour in cold environments.
Collapse
Affiliation(s)
- Anna Lintunen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Teemu Paljakka
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Yann Salmon
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Roderick Dewar
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, Australia
| | - Anu Riikonen
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Teemu Hölttä
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
48
|
Lavergne A, Voelker S, Csank A, Graven H, de Boer HJ, Daux V, Robertson I, Dorado-Liñán I, Martínez-Sancho E, Battipaglia G, Bloomfield KJ, Still CJ, Meinzer FC, Dawson TE, Julio Camarero J, Clisby R, Fang Y, Menzel A, Keen RM, Roden JS, Prentice IC. Historical changes in the stomatal limitation of photosynthesis: empirical support for an optimality principle. THE NEW PHYTOLOGIST 2020; 225:2484-2497. [PMID: 31696932 DOI: 10.1111/nph.16314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/31/2019] [Indexed: 05/08/2023]
Abstract
The ratio of leaf internal (ci ) to ambient (ca ) partial pressure of CO2 , defined here as χ, is an index of adjustments in both leaf stomatal conductance and photosynthetic rate to environmental conditions. Measurements and proxies of this ratio can be used to constrain vegetation model uncertainties for predicting terrestrial carbon uptake and water use. We test a theory based on the least-cost optimality hypothesis for modelling historical changes in χ over the 1951-2014 period, across different tree species and environmental conditions, as reconstructed from stable carbon isotopic measurements across a global network of 103 absolutely dated tree-ring chronologies. The theory predicts optimal χ as a function of air temperature, vapour pressure deficit, ca and atmospheric pressure. The theoretical model predicts 39% of the variance in χ values across sites and years, but underestimates the intersite variability in the reconstructed χ trends, resulting in only 8% of the variance in χ trends across years explained by the model. Overall, our results support theoretical predictions that variations in χ are tightly regulated by the four environmental drivers. They also suggest that explicitly accounting for the effects of plant-available soil water and other site-specific characteristics might improve the predictions.
Collapse
Affiliation(s)
- Aliénor Lavergne
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
- Department of Physics, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Steve Voelker
- Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Adam Csank
- Department of Geography, University of Nevada-Reno, 1664 N. Virginia St, Reno, NV, 89557, USA
| | - Heather Graven
- Department of Physics, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
- Grantham Institute - Climate Change and the Environment, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Hugo J de Boer
- Department of Environmental Sciences, Utrecht University, 3584 CB, Utrecht, the Netherlands
| | - Valérie Daux
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, 91191, Gif-sur-Yvette, France
| | - Iain Robertson
- Department of Geography, Swansea University, Swansea, SA2 8PP, UK
| | - Isabel Dorado-Liñán
- Forest Genetics and Ecophysiology Research Group, Technical University of Madrid, Madrid, 28040, Spain
| | - Elisabet Martínez-Sancho
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Giovanna Battipaglia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Via Vivaldi, 81100, Caserta, Italy
| | - Keith J Bloomfield
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| | - Christopher J Still
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331-5704, USA
| | - Frederick C Meinzer
- USDA Forest Service, Pacific Northwest Research Station, Corvallis, OR, 97331-8550, USA
| | - Todd E Dawson
- Department of Integrative Biology, University of California - Berkeley, Berkeley, CA, 94720-3200, USA
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), E-50192, Zaragoza, Spain
| | - Rory Clisby
- Department of Geography, Swansea University, Swansea, SA2 8PP, UK
| | - Yunting Fang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Annette Menzel
- Ecoclimatology, Department of Ecology and Ecosystem Management, Technical University of Munich, 85354, Freising, Germany
| | - Rachel M Keen
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - John S Roden
- Department of Biology, Southern Oregon University, Ashland, OR, 97520, USA
| | - I Colin Prentice
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
- Grantham Institute - Climate Change and the Environment, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
49
|
Qiu R, Katul GG. Maximizing leaf carbon gain in varying saline conditions: An optimization model with dynamic mesophyll conductance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:543-554. [PMID: 31571298 DOI: 10.1111/tpj.14553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/10/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
While the adverse effects of elevated salinity levels on leaf gas exchange in many crops are not in dispute, representing such effects on leaf photosynthetic rates (A) continues to draw research attention. Here, an optimization model for stomatal conductance (gc ) that maximizes A while accounting for mesophyll conductance (gm ) was used to interpret new leaf gas exchange measurements collected for five irrigation water salinity levels. A function between chloroplastic CO2 concentration (cc ) and intercellular CO2 concentration (ci ) modified by salinity stress to estimate gm was proposed. Results showed that with increased salinity, the estimated gm and maximum photosynthetic capacity were both reduced, whereas the marginal water use efficiency λ increased linearly. Adjustments of gm , λ and photosynthetic capacity were shown to be consistent with a large corpus of drought-stress experiments. The inferred model parameters were then used to evaluate the combined effects of elevated salinity and atmospheric CO2 concentration (ca ) on leaf gas exchange. For a given salinity level, increasing ca increased A linearly, but these increases were accompanied by mild reductions in gc and transpiration. The ca level needed to ameliorate A reductions due to increased salinity is also discussed using the aforementioned model calculations.
Collapse
Affiliation(s)
- Rangjian Qiu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Gabriel G Katul
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
50
|
Knauer J, Zaehle S, De Kauwe MG, Haverd V, Reichstein M, Sun Y. Mesophyll conductance in land surface models: effects on photosynthesis and transpiration. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:858-873. [PMID: 31659806 DOI: 10.1111/tpj.14587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/10/2019] [Accepted: 10/17/2019] [Indexed: 05/08/2023]
Abstract
The CO2 transfer conductance within plant leaves (mesophyll conductance, gm ) is currently not considered explicitly in most land surface models (LSMs), but instead treated implicitly as an intrinsic property of the photosynthetic machinery. Here, we review approaches to overcome this model deficiency by explicitly accounting for gm , which comprises the re-adjustment of photosynthetic parameters and a model describing the variation of gm in dependence of environmental conditions. An explicit representation of gm causes changes in the response of photosynthesis to environmental factors, foremost leaf temperature, and ambient CO2 concentration, which are most pronounced when gm is small. These changes in leaf-level photosynthesis translate into a stronger climate and CO2 response of gross primary productivity (GPP) and transpiration at the global scale. The results from two independent studies show consistent latitudinal patterns of these effects with biggest differences in GPP in the boreal zone (up to ~15%). Transpiration and evapotranspiration show spatially similar, but attenuated, changes compared with GPP. These changes are indirect effects of gm caused by the assumed strong coupling between stomatal conductance and photosynthesis in current LSMs. Key uncertainties in these simulations are the variation of gm with light and the robustness of its temperature response across plant types and growth conditions. Future research activities focusing on the response of gm to environmental factors and its relation to other plant traits have the potential to improve the representation of photosynthesis in LSMs and to better understand its present and future role in the Earth system.
Collapse
Affiliation(s)
- Jürgen Knauer
- CSIRO Oceans and Atmosphere, Canberra, ACT, 2601, Australia
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, 07745, Jena, Germany
| | - Sönke Zaehle
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, 07745, Jena, Germany
- Michael-Stifel Center Jena for Data-Driven and Simulation Science, 07745, Jena, Germany
| | - Martin G De Kauwe
- ARC Centre of Excellence for Climate Extremes and the Climate Change Research Centre, University of New South Wales, Sydney, 2052, NSW, Australia
| | - Vanessa Haverd
- CSIRO Oceans and Atmosphere, Canberra, ACT, 2601, Australia
| | - Markus Reichstein
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, 07745, Jena, Germany
- Michael-Stifel Center Jena for Data-Driven and Simulation Science, 07745, Jena, Germany
| | - Ying Sun
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|