1
|
Hacket-Pain A, Szymkowiak J, Journé V, Barczyk MK, Thomas PA, Lageard JGA, Kelly D, Bogdziewicz M. Growth decline in European beech associated with temperature-driven increase in reproductive allocation. Proc Natl Acad Sci U S A 2025; 122:e2423181122. [PMID: 39874289 PMCID: PMC11804683 DOI: 10.1073/pnas.2423181122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025] Open
Abstract
Climate change is impacting forests in complex ways, with indirect effects arising from interactions between tree growth and reproduction often overlooked. Our 43-y study of European beech (Fagus sylvatica) showed that rising summer temperatures since 2005 have led to more frequent seed production events. This shift increases reproductive effort but depletes the trees' stored resources due to insufficient recovery periods between seed crops. Consequently, annual tree ring increments have declined by 28%, dropping from a stable average of 1.60 mm y-1 between 1980 and 2005 to 1.16 mm y-1 thereafter. Importantly, this growth decline occurred without an accompanying trend in summer drought, indicating that altered reproductive patterns-not moisture stress-are driving the reduction. This creates a "perfect storm": Increased reproductive effort drains resources, viable seed output falls due to the loss of mast-seeding benefits via pollination and lower seed predation, and the ongoing growth decline reduces current carbon uptake and future reproductive potential. These compounding factors threaten the sustainability of Europe's most widespread forest tree. Our findings unveil a critical yet underrecognized indirect mechanism by which climate change endangers forest ecosystems, emphasizing the need to consider interactions between demographic processes when assessing species vulnerability to climate change.
Collapse
Affiliation(s)
- Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, LiverpoolL69 7ZT, United Kingdom
| | - Jakub Szymkowiak
- Population Ecology Research Unit, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, 61-614Poznan, Poland
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, 61-614Poznan, Poland
| | - Valentin Journé
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, 61-614Poznan, Poland
| | - Maciej K. Barczyk
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, 61-614Poznan, Poland
| | - Peter A. Thomas
- School of Life Sciences, Keele University, StaffordshireST5 5BG, United Kingdom
| | - Jonathan G. A. Lageard
- Department of Natural Sciences, Manchester Metropolitan University, ManchesterM1 5GD, United Kingdom
| | - Dave Kelly
- School of Biological Sciences, University of Canterbury, Christchurch8140, New Zealand
| | - Michał Bogdziewicz
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, 61-614Poznan, Poland
| |
Collapse
|
2
|
Donfack LS, Mund M, Koebsch F, Schall P, Heidenreich MG, Seidel D, Ammer C. Linking sap flow and tree water deficit in an unmanaged, mixed beech forest during the summer drought 2022. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 39720945 DOI: 10.1111/plb.13754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024]
Abstract
Temperate mixed forests are currently experiencing severe drought conditions and face increased risk of degradation. However, it remains unclear how critical tree physiological functions such as sap flow density (SFD) and tree water deficit (TWD, defined as reversible stem shrinkage when water is depleted), respond to extreme environmental conditions and how they interact under dry conditions. We monitored SFD and TWD of three co-occurring European tree species (Fagus sylvatica, Fraxinus excelsior and Acer pseudoplatanus) in dry conditions, using high temporal resolution sap flow, dendrometer, and environmental measurements. Species-specific SFD responses to soil drying did not differ significantly, while TWD was significantly higher in F. excelsior. Inter-specific differences in wood anatomy and water use strategies did not consistently explain these responses. TWD and SFD responded both to soil moisture content (SWC) during wet (SWC ≥ 0.2) and dry (SWC < 0.2) phases, with SFD responding more strongly. There was a significant correlation for TWD and vapour pressure deficit (VPD) only in the wet phase, and for SFD and VPD only in the dry phase. During the dry phase, the incoming PPFD significantly correlated with SFD in all species, and with TWD only in F. sylvatica and F. excelsior. TWD negatively responded to SFD, showing hysteresis effects from which a decreasing sigmoidal phase along the soil drying gradient was observed. The nonlinear correlations between TWD and SFD may result from a time lag between the two variables, and their different sensitivities to SWC and VPD under different drought intensities. We conclude that, under drought stress, TWD cannot be used as a proxy for SFD or vice versa.
Collapse
Affiliation(s)
- L S Donfack
- Department of Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
| | - M Mund
- Forest Research and Competence Centre Gotha, Germany
| | - F Koebsch
- Department of Bioclimatology, University of Göttingen, Göttingen, Germany
| | - P Schall
- Department of Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
| | - M G Heidenreich
- Department for Spatial Structures and Digitization of Forests, University of Göttingen, Göttingen, Germany
| | - D Seidel
- Department for Spatial Structures and Digitization of Forests, University of Göttingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany
| | - C Ammer
- Department of Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
Bogdziewicz M, Kelly D, Ascoli D, Caignard T, Chianucci F, Crone EE, Fleurot E, Foest JJ, Gratzer G, Hagiwara T, Han Q, Journé V, Keurinck L, Kondrat K, McClory R, LaMontagne JM, Mundo IA, Nussbaumer A, Oberklammer I, Ohno M, Pearse IS, Pesendorfer MB, Resente G, Satake A, Shibata M, Snell RS, Szymkowiak J, Touzot L, Zwolak R, Zywiec M, Hacket-Pain AJ. Evolutionary ecology of masting: mechanisms, models, and climate change. Trends Ecol Evol 2024; 39:851-862. [PMID: 38862358 DOI: 10.1016/j.tree.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024]
Abstract
Many perennial plants show mast seeding, characterized by synchronous and highly variable reproduction across years. We propose a general model of masting, integrating proximate factors (environmental variation, weather cues, and resource budgets) with ultimate drivers (predator satiation and pollination efficiency). This general model shows how the relationships between masting and weather shape the diverse responses of species to climate warming, ranging from no change to lower interannual variation or reproductive failure. The role of environmental prediction as a masting driver is being reassessed; future studies need to estimate prediction accuracy and the benefits acquired. Since reproduction is central to plant adaptation to climate change, understanding how masting adapts to shifting environmental conditions is now a central question.
Collapse
Affiliation(s)
- Michal Bogdziewicz
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland.
| | - Dave Kelly
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
| | - Davide Ascoli
- Department of Agriculture, Forest, and Food Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, (TO), Italy
| | - Thomas Caignard
- University of Bordeaux, INRAE, BIOGECO, F-33610 Cestas, France
| | - Francesco Chianucci
- CREA - Research Centre for Forestry and Wood, viale S. Margherita 80, Arezzo, Italy
| | - Elizabeth E Crone
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Emilie Fleurot
- Department of Agriculture, Forest, and Food Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, (TO), Italy; Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Jessie J Foest
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Georg Gratzer
- Institute of Forest Ecology, Department of Forest and Soil Sciences, BOKU University, Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria
| | - Tomika Hagiwara
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Qingmin Han
- Department of Plant Ecology, Forestry, and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan
| | - Valentin Journé
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Léa Keurinck
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Katarzyna Kondrat
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Ryan McClory
- School of Agriculture, Policy, and Development, University of Reading, Reading, UK
| | - Jalene M LaMontagne
- Department of Biological Sciences, DePaul University, Chicago, IL 60614, USA
| | - Ignacio A Mundo
- Laboratorio de Dendrocronología e Historia Ambiental, IANIGLA-CONICET, Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Anita Nussbaumer
- Swiss Federal Institute for Forest, Snow, and Landscape Research WSL, Birmensdorf, Switzerland
| | - Iris Oberklammer
- Institute of Forest Ecology, Department of Forest and Soil Sciences, BOKU University, Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria
| | - Misuzu Ohno
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Ian S Pearse
- US Geological Survey, Fort Collins Science Center, Fort Collins, CO 80526, USA
| | - Mario B Pesendorfer
- Institute of Forest Ecology, Department of Forest and Soil Sciences, BOKU University, Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria
| | - Giulia Resente
- Department of Agriculture, Forest, and Food Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, (TO), Italy
| | - Akiko Satake
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Mitsue Shibata
- Department of Forest Vegetation, Forestry, and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan
| | - Rebecca S Snell
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, USA
| | - Jakub Szymkowiak
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; Population Ecology Research Unit, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Laura Touzot
- Institut National de Recherche Pour Agriculture (INRAE), Alimentation et Environnement (IN23-RAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), Université Grenoble Alpes, St Martin-d'Hères, 38402, France
| | - Rafal Zwolak
- Department of Systematic Zoology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Magdalena Zywiec
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland
| | - Andrew J Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|
4
|
Szymkowiak J, Foest J, Hacket-Pain A, Journé V, Ascoli D, Bogdziewicz M. Tail-dependence of masting synchrony results in continent-wide seed scarcity. Ecol Lett 2024; 27:e14474. [PMID: 38994849 DOI: 10.1111/ele.14474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024]
Abstract
Spatial synchrony may be tail-dependent, meaning it is stronger for peaks rather than troughs, or vice versa. High interannual variation in seed production in perennial plants, called masting, can be synchronized at subcontinental scales, triggering extensive resource pulses or famines. We used data from 99 populations of European beech (Fagus sylvatica) to examine whether masting synchrony differs between mast peaks and years of seed scarcity. Our results revealed that seed scarcity occurs simultaneously across the majority of the species range, extending to populations separated by distances up to 1800 km. Mast peaks were spatially synchronized at distances up to 1000 km and synchrony was geographically concentrated in northeastern Europe. Extensive synchrony in the masting lower tail means that famines caused by beech seed scarcity are amplified by their extensive spatial synchrony, with diverse consequences for food web functioning and climate change biology.
Collapse
Affiliation(s)
- Jakub Szymkowiak
- Faculty of Biology, Forest Biology Center, Institute of Environmental Biology, Adam Mickiewicz University, Poznan, Poland
- Population Ecology Research Unit, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Poznan, Poland
| | - Jessie Foest
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Valentin Journé
- Faculty of Biology, Forest Biology Center, Institute of Environmental Biology, Adam Mickiewicz University, Poznan, Poland
| | - Davide Ascoli
- Department of Agriculture, Forest and Food Sciences, University of Torino, Grugliasco, TO, Italy
| | - Michał Bogdziewicz
- Faculty of Biology, Forest Biology Center, Institute of Environmental Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
5
|
Foest JJ, Bogdziewicz M, Pesendorfer MB, Ascoli D, Cutini A, Nussbaumer A, Verstraeten A, Beudert B, Chianucci F, Mezzavilla F, Gratzer G, Kunstler G, Meesenburg H, Wagner M, Mund M, Cools N, Vacek S, Schmidt W, Vacek Z, Hacket-Pain A. Widespread breakdown in masting in European beech due to rising summer temperatures. GLOBAL CHANGE BIOLOGY 2024; 30:e17307. [PMID: 38709196 DOI: 10.1111/gcb.17307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 05/07/2024]
Abstract
Climate change effects on tree reproduction are poorly understood, even though the resilience of populations relies on sufficient regeneration to balance increasing rates of mortality. Forest-forming tree species often mast, i.e. reproduce through synchronised year-to-year variation in seed production, which improves pollination and reduces seed predation. Recent observations in European beech show, however, that current climate change can dampen interannual variation and synchrony of seed production and that this masting breakdown drastically reduces the viability of seed crops. Importantly, it is unclear under which conditions masting breakdown occurs and how widespread breakdown is in this pan-European species. Here, we analysed 50 long-term datasets of population-level seed production, sampled across the distribution of European beech, and identified increasing summer temperatures as the general driver of masting breakdown. Specifically, increases in site-specific mean maximum temperatures during June and July were observed across most of the species range, while the interannual variability of population-level seed production (CVp) decreased. The declines in CVp were greatest, where temperatures increased most rapidly. Additionally, the occurrence of crop failures and low seed years has decreased during the last four decades, signalling altered starvation effects of masting on seed predators. Notably, CVp did not vary among sites according to site mean summer temperature. Instead, masting breakdown occurs in response to warming local temperatures (i.e. increasing relative temperatures), such that the risk is not restricted to populations growing in warm average conditions. As lowered CVp can reduce viable seed production despite the overall increase in seed count, our results warn that a covert mechanism is underway that may hinder the regeneration potential of European beech under climate change, with great potential to alter forest functioning and community dynamics.
Collapse
Affiliation(s)
- Jessie J Foest
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Michał Bogdziewicz
- Faculty of Biology, Forest Biology Center, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Mario B Pesendorfer
- Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Davide Ascoli
- Department of Agriculture, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Andrea Cutini
- CREA - Research Centre for Forestry and Wood, Arezzo, Italy
| | - Anita Nussbaumer
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Arne Verstraeten
- Research Institute for Nature and Forest (INBO), Geraardsbergen, Belgium
| | - Burkhard Beudert
- Department of Conservation and Research, Bavarian Forest National Park, Grafenau, Germany
| | | | | | - Georg Gratzer
- Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Georges Kunstler
- Université Grenoble Alpes, INRAE, LESSEM, Saint-Martin-d'Hères, France
| | - Henning Meesenburg
- Department of Environmental Control, Northwest German Forest Research Institute, Göttingen, Germany
| | - Markus Wagner
- Department of Environmental Control, Northwest German Forest Research Institute, Göttingen, Germany
| | - Martina Mund
- Forestry Research and Competence Centre Gotha, Gotha, Germany
| | - Nathalie Cools
- Research Institute for Nature and Forest (INBO), Geraardsbergen, Belgium
| | - Stanislav Vacek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Wolfgang Schmidt
- Department of Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
| | - Zdeněk Vacek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
6
|
Wei J, von Arx G, Fan Z, Ibrom A, Mund M, Knohl A, Peters RL, Babst F. Drought alters aboveground biomass production efficiency: Insights from two European beech forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170726. [PMID: 38331275 DOI: 10.1016/j.scitotenv.2024.170726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/03/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
The fraction of photosynthetically assimilated carbon that trees allocate to long-lasting woody biomass pools (biomass production efficiency - BPE), is a key metric of the forest carbon balance. Its apparent simplicity belies the complex interplay between underlying processes of photosynthesis, respiration, litter and fruit production, and tree growth that respond differently to climate variability. Whereas the magnitude of BPE has been routinely quantified in ecological studies, its temporal dynamics and responses to extreme events such as drought remain less well understood. Here, we combine long-term records of aboveground carbon increment (ACI) obtained from tree rings with stand-level gross primary productivity (GPP) from eddy covariance (EC) records to empirically quantify aboveground BPE (= ACI/GPP) and its interannual variability in two European beech forests (Hainich, DE-Hai, Germany; Sorø, DK-Sor, Denmark). We found significant negative correlations between BPE and a daily-resolved drought index at both sites, indicating that woody growth is de-prioritized under water limitation. During identified extreme years, early-season drought reduced same-year BPE by 29 % (Hainich, 2011), 31 % (Sorø, 2006), and 14 % (Sorø, 2013). By contrast, the 2003 late-summer drought resulted in a 17 % reduction of post-drought year BPE at Hainich. Across the entire EC period, the daily-to-seasonal drought response of BPE resembled that of ACI, rather than that of GPP. This indicates that BPE follows sink dynamics more closely than source dynamics, which appear to be decoupled given the distinctive climate response patterns of GPP and ACI. Based on our observations, we caution against estimating the magnitude and variability of the carbon sink in European beech (and likely other temperate forests) based on carbon fluxes alone. We also encourage comparable studies at other long-term EC measurement sites from different ecosystems to further constrain the BPE response to rare climatic events.
Collapse
Affiliation(s)
- Jingshu Wei
- School of Natural Resources and the Environment, University of Arizona, 1064 E Lowell Street, Tucson, AZ 85721, USA; Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zuercherstrasse 111, CH-8903 Birmensdorf, Switzerland; CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun Town, Mengla County, Yunnan Province 666303, China.
| | - Georg von Arx
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zuercherstrasse 111, CH-8903 Birmensdorf, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, Hochschulstrasse 4, CH-3012 Bern, Switzerland
| | - Zexin Fan
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun Town, Mengla County, Yunnan Province 666303, China
| | - Andreas Ibrom
- Biosystems Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark, Denmark
| | - Martina Mund
- Forestry Research and Competence Centre Gotha, Jägerstraße1, D-99867 Gotha, Germany
| | - Alexander Knohl
- Bioclimatology, University of Göttingen, Büsgenweg 2, D-37077 Göttingen, Germany
| | - Richard L Peters
- Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, Basel CH-4056, Switzerland
| | - Flurin Babst
- School of Natural Resources and the Environment, University of Arizona, 1064 E Lowell Street, Tucson, AZ 85721, USA; Laboratory of Tree-Ring Research, University of Arizona, 1215 E Lowell Street, Tucson, AZ 85721, USA
| |
Collapse
|
7
|
Journé V, Szymkowiak J, Foest J, Hacket-Pain A, Kelly D, Bogdziewicz M. Summer solstice orchestrates the subcontinental-scale synchrony of mast seeding. NATURE PLANTS 2024; 10:367-373. [PMID: 38459130 DOI: 10.1038/s41477-024-01651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/31/2024] [Indexed: 03/10/2024]
Abstract
High interannual variation in seed production in perennial plants can be synchronized at subcontinental scales with wide consequences for ecosystem functioning, but how such synchrony is generated is unclear1-3. We investigated the factors contributing to masting synchrony in European beech (Fagus sylvatica), which extends to a geographic range of 2,000 km. Maximizing masting synchrony via spatial weather coordination, known as the Moran effect, requires a simultaneous response to weather conditions across distant populations. A celestial cue that occurs simultaneously across the entire hemisphere is the longest day (the summer solstice). We show that European beech abruptly opens its temperature-sensing window on the solstice, and hence widely separated populations all start responding to weather signals in the same week. This celestial 'starting gun' generates ecological events with high spatial synchrony across the continent.
Collapse
Affiliation(s)
- Valentin Journé
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Jakub Szymkowiak
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
- Population Ecology Research Unit, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Jessie Foest
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Dave Kelly
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Michał Bogdziewicz
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| |
Collapse
|
8
|
Shestakova TA, Sin E, Gordo J, Voltas J. Tree-ring isotopic imprints on time series of reproductive effort indicate warming-induced co-limitation by sink and source processes in stone pine. TREE PHYSIOLOGY 2024; 44:tpad147. [PMID: 38079520 DOI: 10.1093/treephys/tpad147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/01/2023] [Indexed: 02/09/2024]
Abstract
Increasing evidence indicates that tree growth processes, including reproduction, can be either sink- or source-limited, or simultaneously co-limited by sink and source, depending on the interplay between internal and environmental factors. We tested the hypothesis that the relative strengths of photosynthate supply and demand by stem growth and reproduction create variable competition for substrate that is imprinted in the tree-ring isotopes (C and O) of stone pine (Pinus pinea L.), a masting gymnosperm with large costs of reproduction, under warming-induced drought. Across five representative stands of the Spanish Northern Plateau, we also identified reproductive phases where weather drivers of cone yield (CY) have varied over a 60-year period (1960-2016). We found that these drivers gradually shifted from winter-spring conditions 3 years before seed rain (cone setting) to a combination of 3- and 1-year lagged effects (kernel filling). Additionally, we observed positive regional associations between carbon isotope discrimination (Δ13C) of the year of kernel filling and CY arising at the turn of this century, which progressively offset similarly positive relationships between Δ13C of the year of cone setting and CY found during the first half of the study period. Altogether, these results pinpoint the increasing dependence of reproduction on fresh assimilates and suggest sink and source co-limitation superseding the sink-limited functioning of reproduction dominant before 2000. Under climate warming, it could be expected that drier conditions reinforce the role of source limitation on reproduction and, hence, on regeneration, forest structure and economic profit of the nutlike seeds of the species.
Collapse
Affiliation(s)
- Tatiana A Shestakova
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida, Av. Alcalde Rovira Roure 191, Lleida, Catalonia E-25198, Spain
- Joint Research Unit CTFC-AGROTECNIO-CERCA, Av. Alcalde Rovira Roure 191, Lleida, Catalonia E-25198, Spain
| | - Ester Sin
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida, Av. Alcalde Rovira Roure 191, Lleida, Catalonia E-25198, Spain
| | - Javier Gordo
- Servicio Territorial de Medio Ambiente, Junta de Castilla y León, Duque de la Victoria 5, Valladolid, Castile and León E-47071, Spain
| | - Jordi Voltas
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida, Av. Alcalde Rovira Roure 191, Lleida, Catalonia E-25198, Spain
- Joint Research Unit CTFC-AGROTECNIO-CERCA, Av. Alcalde Rovira Roure 191, Lleida, Catalonia E-25198, Spain
| |
Collapse
|
9
|
Bogdziewicz M, Kelly D, Tanentzap AJ, Thomas P, Foest J, Lageard J, Hacket-Pain A. Reproductive collapse in European beech results from declining pollination efficiency in large trees. GLOBAL CHANGE BIOLOGY 2023. [PMID: 37177909 DOI: 10.1111/gcb.16730] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023]
Abstract
Climate warming increases tree mortality which will require sufficient reproduction to ensure population viability. However, the response of tree reproduction to climate change remains poorly understood. Warming can reduce synchrony and interannual variability of seed production ("masting breakdown") which can increase seed predation and decrease pollination efficiency in trees. Here, using 40 years of observations of individual seed production in European beech (Fagus sylvatica), we showed that masting breakdown results in declining viable seed production over time, in contrast to the positive trend apparent in raw seed count data. Furthermore, tree size modulates the consequences of masting breakdown on viable seed production. While seed predation increased over time mainly in small trees, pollination efficiency disproportionately decreased in larger individuals. Consequently, fecundity declined over time across all size classes, but the overall effect was greatest in large trees. Our study showed that a fundamental biological relationship-correlation between tree size and viable seed production-has been reversed as the climate has warmed. That reversal has diverse consequences for forest dynamics; including for stand- and biogeographical-level dynamics of forest regeneration. The tree size effects suggest management options to increase forest resilience under changing climates.
Collapse
Affiliation(s)
- Michał Bogdziewicz
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Dave Kelly
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Andrew J Tanentzap
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Peter Thomas
- School of Life Sciences, Keele University, Keele, UK
| | - Jessie Foest
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Jonathan Lageard
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
10
|
Plavcová L, Mészáros M, Šilhán K, Jupa R. Relationships between trunk radial growth and fruit yield in apple and pear trees on size-controlling rootstocks. ANNALS OF BOTANY 2022; 130:477-489. [PMID: 35788818 PMCID: PMC9510948 DOI: 10.1093/aob/mcac089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Understanding the mutual co-ordination of vegetative and reproductive growth is important in both agricultural and ecological settings. A competitive relationship between vegetative growth and fruiting is often highlighted, resulting in an apparent trade-off between structural growth and fruit production. However, our understanding of factors driving this relationship is limited. METHODS We used four scions grafted onto a series of size-controlling rootstocks to evaluate the relationships between the annual fruit yield and radial growth of trunks, branches and roots. To assess tree radial growth, we measured ring widths on extracted tree cores, which is an approach not frequently used in a horticultural setting. KEY RESULTS We found that the yield and radial growth were negatively related when plotted in absolute terms or as detrended and normalized indices. The relationship was stronger in low vigour trees, but only after the age-related trend was removed. In contrast, when trunk radial growth was expressed as basal area increment, the negative relationship disappeared, suggesting that the relationship between trunk radial growth and fruit yield might not be a true trade-off related to the competition between the two sinks. The effect of low yield was associated with increased secondary growth not only in trunks but also in branches and roots. In trunks, we observed that overcropping was associated with reduced secondary growth in a subsequent year, possibly due to the depletion of reserves. CONCLUSIONS Our results show that variation in annual fruit yield due to tree ageing, weather cueing and inherent alternate bearing behaviour is reflected in the magnitude of secondary growth of fruit trees. We found little support for the competition/architecture theory of rootstock-induced growth vigour control. More broadly, our study aimed at bridging the gap between forest ecology and horticulture.
Collapse
Affiliation(s)
| | - Martin Mészáros
- Research and Breeding Institute of Pomology, Holovousy, Hořice, Czech Republic
| | - Karel Šilhán
- Department of Biology, Faculty of Science, University of Hradec Králové, Rokitanského, Hradec Králové, Czech Republic
| | - Radek Jupa
- Department of Biology, Faculty of Science, University of Hradec Králové, Rokitanského, Hradec Králové, Czech Republic
| |
Collapse
|
11
|
Multi-Year Monitoring of Deciduous Forests Ecophysiology and the Role of Temperature and Precipitation as Controlling Factors. PLANTS 2022; 11:plants11172257. [PMID: 36079636 PMCID: PMC9460110 DOI: 10.3390/plants11172257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022]
Abstract
Two deciduous forest ecosystems, one dominated by Fagus sylvatica and a mixed one with Quercus cerris and Quercus frainetto, were monitored from an ecophysiological perspective during a five-year period, in order to assess seasonal fluctuations, establish links between phenology and ecophysiology, and reveal climatic controls. Field measurements of leaf area index (LAI), chlorophyll content, leaf specific mass (LSM), water potential (Ψ) and leaf photosynthesis (Aleaf) were performed approximately on a monthly basis. LAI, chlorophylls and LSM fluctuations followed a recurrent pattern yearly, with increasing values during spring leaf burst and expansion, relatively stable values during summer and decreasing values during autumn senescence. However, pre-senescence leaf fall and chlorophyll reductions were evident in the driest year. The dynamically responsive Aleaf and Ψ presented considerable inter-annual variation. Both oak species showed more pronounced depressions of Aleaf and Ψ compared to beech, yet the time-point of their appearance coincided and was the same for all species each year. Spring temperature had a positive role in the increasing phase of all ecophysiological processes while rising autumn temperature resulted in retarded senescence. Precipitation showed asymmetric effects on the measured ecophysiological parameters. The between-species differences in responses, climate sensitivity and climate memory are identified and discussed.
Collapse
|
12
|
Nakahata R, Naramoto M, Sato M, Mizunaga H. Multifunctions of fine root phenology in vegetative and reproductive growth in mature beech forest ecosystems. Ecosphere 2021. [DOI: 10.1002/ecs2.3788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Ryo Nakahata
- Center for Ecological Research Kyoto University Kyoto Japan
- Graduate School of Agriculture Kyoto University Kyoto Japan
| | | | - Masako Sato
- Graduate School of Agriculture Shizuoka University Shizuoka Japan
| | | |
Collapse
|
13
|
Oddou-Muratorio S, Petit-Cailleux C, Journé V, Lingrand M, Magdalou JA, Hurson C, Garrigue J, Davi H, Magnanou E. Crown defoliation decreases reproduction and wood growth in a marginal European beech population. ANNALS OF BOTANY 2021; 128:193-204. [PMID: 33928352 PMCID: PMC8324029 DOI: 10.1093/aob/mcab054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/26/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND AND AIMS Abiotic and biotic stresses related to climate change have been associated with increased crown defoliation, decreased growth and a higher risk of mortality in many forest tree species, but the impact of stresses on tree reproduction and forest regeneration remains understudied. At the dry, warm margin of species distributions, flowering, pollination and seed maturation are expected to be affected by drought, late frost and other stresses, eventually resulting in reproduction failure. Moreover, inter-individual variation in reproductive performance versus other performance traits (growth, survival) could have important consequences for population dynamics. This study investigated the relationships among individual crown defoliation, growth and reproduction in a drought-prone population of European beech, Fagus sylvatica. METHODS We used a spatially explicit mating model and marker-based parentage analyses to estimate effective female and male fecundities of 432 reproductive trees, which were also monitored for basal area increment and crown defoliation over 9 years. KEY RESULTS Female and male fecundities varied markedly between individuals, more than did growth. Both female fecundity and growth decreased with increasing crown defoliation and competition, and increased with size. Moreover, the negative effect of defoliation on female fecundity was size-dependent, with a slower decline in female fecundity with increasing defoliation for the large individuals. Finally, a trade-off between growth and female fecundity was observed in response to defoliation: some large trees maintained significant female fecundity at the expense of reduced growth in response to defoliation, while some other defoliated trees maintained high growth at the expense of reduced female fecundity. CONCLUSIONS Our results suggest that, while decreasing their growth, some large defoliated trees still contribute to reproduction through seed production and pollination. This non-coordinated decline of growth and fecundity at individual level in response to stress may compromise the evolution of stress-resistance traits at population level, and increase forest tree vulnerability.
Collapse
Affiliation(s)
| | | | | | - Matthieu Lingrand
- URFM, INRAE, Avignon, France
- ECOBIOP, INRAE, St-Pée-sur-Nivelle, France
| | | | | | - Joseph Garrigue
- Réserve Naturelle Nationale de la forêt de la Massane, France
| | | | - Elodie Magnanou
- Réserve Naturelle Nationale de la forêt de la Massane, France
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650 Banyuls/Mer, France
| |
Collapse
|
14
|
Le Roncé I, Gavinet J, Ourcival JM, Mouillot F, Chuine I, Limousin JM. Holm oak fecundity does not acclimate to a drier world. THE NEW PHYTOLOGIST 2021; 231:631-645. [PMID: 33891307 DOI: 10.1111/nph.17412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Climate change might impact tree fecundity by altering the relative influences of meteorological and physiological drivers, and by modifying resource investment in reproduction. Using a 13-yr monitoring of Quercus ilex reproduction in a rainfall exclusion experiment, we analysed the interactive effects of long-term increased aridity and other environmental drivers on the inter-annual variation of fecundity (male flower biomass, number of initiated and mature fruits). Summer-autumn water stress was the main driver of fruit abortion during fruit growth. Rainfall exclusion treatment strongly reduced the number of initiated and mature fruits, even in masting years, and did not increase fruit tolerance to severe drought. Conversely, the relative contribution of the meteorological and physiological drivers, and the inter-annual variability of fruit production were not modified by rainfall exclusion. Rather than inducing an acclimation of tree fecundity to water limitation, increased aridity impacted it negatively through both lower fruit initiation due to changes in resource allocation, and more severe water and resource limitations during fruit growth. Long-term increased aridity affected tree reproduction beyond what is expected from the current response to inter-annual drought variations, suggesting that natural regeneration of holm oak forest could be jeopardised in the future.
Collapse
Affiliation(s)
- Iris Le Roncé
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, Montpellier Cedex 5, 34293, France
| | - Jordane Gavinet
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, Montpellier Cedex 5, 34293, France
| | - Jean-Marc Ourcival
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, Montpellier Cedex 5, 34293, France
| | - Florent Mouillot
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, Montpellier Cedex 5, 34293, France
| | - Isabelle Chuine
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, Montpellier Cedex 5, 34293, France
| | - Jean-Marc Limousin
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, Montpellier Cedex 5, 34293, France
| |
Collapse
|
15
|
Zhou Q, Shi H, He R, Liu H, Zhu W, Yu D, Zhang Q, Dang H. Prioritized carbon allocation to storage of different functional types of species at the upper range limits is driven by different environmental drivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145581. [PMID: 33582346 DOI: 10.1016/j.scitotenv.2021.145581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
The upper elevational range limit of tree species (including treeline and non-treeline species) is generally considered to result from either carbon limitation or sink limitation. Some evidence also suggests that tree line might reflect preferential carbon allocation to NSC storage at the expense of growth. How might the importance of these potential mechanisms be determined? We used an elevational gradient to examine light-saturated photosynthesis (Asat) and NSC concentrations in plant tissues of three different functional types of tree species. We also examined the effects of consecutive 4 years of in situ defoliation on growth and NSCs at the upper elevational range limit. Declining temperature with increasing elevation did not reduce Asat in any of the species. We found NSC increased with elevation in major storage tissues (e.g., roots and twigs) but not in leaves. The defoliation showed that C storage took priority over growth. Such preferential carbon allocation, directly caused by growth decline, always existed in the deciduous tree species. In the evergreen tree species, however, growth decline resulted from preferential carbon allocation to storage was only detected in 2017 and then disappeared as the intensity of defoliation increased. Our results showed that trees prioritized sustaining stores of C more highly than allocation of growth, regardless of the trees' C or sink limitations. At the cold range limits, the prioritized carbon allocation to storage in deciduous tree species was in response to low temperature stress, while in evergreen tree species, the prioritization of carbon allocation was only a transient physiological response to defoliation disturbances.
Collapse
Affiliation(s)
- Quan Zhou
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, PR China; Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China; The University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hang Shi
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, PR China; Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China; The University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Rui He
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, PR China; Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China; The University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Haikun Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, PR China; Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China; The University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wenting Zhu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, PR China; Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China; College of Science, Tibet University, Lhasa 850000, PR China
| | - Dongyue Yu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, PR China; Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China; The University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Quanfa Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, PR China; Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Haishan Dang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, PR China; Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China.
| |
Collapse
|
16
|
Bogdziewicz M, Hacket-Pain A, Ascoli D, Szymkowiak J. Environmental variation drives continental-scale synchrony of European beech reproduction. Ecology 2021; 102:e03384. [PMID: 33950521 DOI: 10.1002/ecy.3384] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/05/2021] [Accepted: 03/16/2021] [Indexed: 11/07/2022]
Abstract
Spatial synchrony is the tendency of spatially separated populations to display similar temporal fluctuations. Synchrony affects regional ecosystem functioning, but it remains difficult to disentangle its underlying mechanisms. We leveraged regression on distance matrices and geography of synchrony to understand the processes driving synchrony of European beech masting over the European continent. Masting in beech shows distance-decay, but significant synchrony is maintained at spatial scales of up to 1,500 km. The spatial synchrony of the weather cues that drive interannual variation in reproduction also explains the regional spatial synchrony of masting. Proximity played no apparent role in influencing beech masting synchrony after controlling for synchrony in environmental variation. Synchrony of beech reproduction shows a clear biogeographical pattern, decreasing from the northwest to southeast Europe. Synchrony networks for weather cues resemble networks for beech masting, indicating that the geographical structure of weather synchrony underlies the biogeography of masting synchrony. Our results support the hypothesis that environmental factors, the Moran effect, are key drivers of spatial synchrony in beech seed production at regional scales. The geographical patterns of regional synchronization of masting have implications for regional forest production, gene flow, carbon cycling, disease dynamics, biodiversity, and conservation.
Collapse
Affiliation(s)
- Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Davide Ascoli
- Department of Agricultural, Forestry and Food Sciences, University of Torino, Grugliasco, Italy
| | - Jakub Szymkowiak
- Population Ecology Research Unit, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
17
|
Lauriks F, Salomón RL, Steppe K. Temporal variability in tree responses to elevated atmospheric CO 2. PLANT, CELL & ENVIRONMENT 2021; 44:1292-1310. [PMID: 33368341 DOI: 10.1111/pce.13986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
At leaf level, elevated atmospheric CO2 concentration (eCO2 ) results in stimulation of carbon net assimilation and reduction of stomatal conductance. However, a comprehensive understanding of the impact of eCO2 at larger temporal (seasonal and annual) and spatial (from leaf to whole-tree) scales is still lacking. Here, we review overall trends, magnitude and drivers of dynamic tree responses to eCO2 , including carbon and water relations at the leaf and the whole-tree level. Spring and early season leaf responses are most susceptible to eCO2 and are followed by a down-regulation towards the onset of autumn. At the whole-tree level, CO2 fertilization causes consistent biomass increments in young seedlings only, whereas mature trees show a variable response. Elevated CO2 -induced reductions in leaf stomatal conductance do not systematically translate into limitation of whole-tree transpiration due to the unpredictable response of canopy area. Reduction in the end-of-season carbon sink demand and water-limiting strategies are considered the main drivers of seasonal tree responses to eCO2 . These large temporal and spatial variabilities in tree responses to eCO2 highlight the risk of predicting tree behavior to eCO2 based on single leaf-level point measurements as they only reveal snapshots of the dynamic responses to eCO2 .
Collapse
Affiliation(s)
- Fran Lauriks
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Roberto Luis Salomón
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Department of Natural Resources and Systems, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Babst F, Friend AD, Karamihalaki M, Wei J, von Arx G, Papale D, Peters RL. Modeling Ambitions Outpace Observations of Forest Carbon Allocation. TRENDS IN PLANT SCIENCE 2021; 26:210-219. [PMID: 33168468 DOI: 10.1016/j.tplants.2020.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/17/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
There have been vociferous calls for 'tree-centered' vegetation models to refine predictions of forest carbon (C) cycling. Unfortunately, our global survey at flux-tower sites indicates insufficient empirical data support for this much-needed model development. We urge for a new generation of studies across large environmental gradients that strategically pair long-term ecosystem monitoring with manipulative experiments on mature trees. For this, we outline a versatile experimental framework to build cross-scale data archives of C uptake and allocation to structural, non-structural, and respiratory sinks. Community-wide efforts and discussions are needed to implement this framework, especially in hitherto underrepresented tropical forests. Global coordination and realistic priorities for data collection will thereby be key to achieve and maintain adequate empirical support for tree-centered vegetation modeling.
Collapse
Affiliation(s)
- Flurin Babst
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Krakow, Poland; Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland.
| | - Andrew D Friend
- Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, UK
| | - Maria Karamihalaki
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Krakow, Poland; Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Jingshu Wei
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Krakow, Poland; Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Georg von Arx
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Dario Papale
- DIBAF, University of Tuscia, Largo dell'Universita, 01100 Viterbo, Italy
| | - Richard L Peters
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland; Laboratory of Plant Ecology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| |
Collapse
|
19
|
Clark JS, Andrus R, Aubry-Kientz M, Bergeron Y, Bogdziewicz M, Bragg DC, Brockway D, Cleavitt NL, Cohen S, Courbaud B, Daley R, Das AJ, Dietze M, Fahey TJ, Fer I, Franklin JF, Gehring CA, Gilbert GS, Greenberg CH, Guo Q, HilleRisLambers J, Ibanez I, Johnstone J, Kilner CL, Knops J, Koenig WD, Kunstler G, LaMontagne JM, Legg KL, Luongo J, Lutz JA, Macias D, McIntire EJB, Messaoud Y, Moore CM, Moran E, Myers JA, Myers OB, Nunez C, Parmenter R, Pearse S, Pearson S, Poulton-Kamakura R, Ready E, Redmond MD, Reid CD, Rodman KC, Scher CL, Schlesinger WH, Schwantes AM, Shanahan E, Sharma S, Steele MA, Stephenson NL, Sutton S, Swenson JJ, Swift M, Veblen TT, Whipple AV, Whitham TG, Wion AP, Zhu K, Zlotin R. Continent-wide tree fecundity driven by indirect climate effects. Nat Commun 2021; 12:1242. [PMID: 33623042 PMCID: PMC7902660 DOI: 10.1038/s41467-020-20836-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/01/2020] [Indexed: 01/31/2023] Open
Abstract
Indirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.
Collapse
Affiliation(s)
- James S. Clark
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA ,grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - Robert Andrus
- grid.266190.a0000000096214564Department of Geography, University of Colorado Boulder, Boulder, CO USA
| | - Melaine Aubry-Kientz
- grid.266096.d0000 0001 0049 1282School of Natural Sciences, University of California, Merced, Merced, CA USA
| | - Yves Bergeron
- grid.265695.bForest Research Institute, University of Quebec in Abitibi-Temiscamingue, Rouyn-Noranda, QC Canada
| | - Michal Bogdziewicz
- grid.5633.30000 0001 2097 3545Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Don C. Bragg
- grid.497399.90000 0001 2106 5338USDA Forest Service, Southern Research Station, Monticello, AR USA
| | - Dale Brockway
- grid.472551.00000 0004 0404 3120USDA Forest Service Southern Research Station, Auburn, AL USA
| | - Natalie L. Cleavitt
- grid.5386.8000000041936877XNatural Resources, Cornell University, Ithaca, NY USA
| | - Susan Cohen
- grid.10698.360000000122483208Institute for the Environment, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Benoit Courbaud
- grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - Robert Daley
- grid.454846.f0000 0001 2331 3972Greater Yellowstone Network, National Park Service, Bozeman, MT USA
| | - Adrian J. Das
- grid.2865.90000000121546924USGS Western Ecological Research Center, Three Rivers, CA USA
| | - Michael Dietze
- grid.189504.10000 0004 1936 7558Earth and Environment, Boston University, Boston, MA USA
| | - Timothy J. Fahey
- grid.472551.00000 0004 0404 3120USDA Forest Service Southern Research Station, Auburn, AL USA
| | - Istem Fer
- grid.8657.c0000 0001 2253 8678Finnish Meteorological Institute, Helsinki, Finland
| | - Jerry F. Franklin
- grid.34477.330000000122986657Forest Resources, University of Washington, Seattle, WA USA
| | - Catherine A. Gehring
- grid.261120.60000 0004 1936 8040Department of Biological Science, Northern Arizona University, Flagstaff, AZ USA
| | - Gregory S. Gilbert
- grid.205975.c0000 0001 0740 6917University of California, Santa Cruz, Santa Cruz, CA USA
| | - Cathryn H. Greenberg
- grid.472551.00000 0004 0404 3120USDA Forest Service, Bent Creek Experimental Forest, Asheville, NC USA
| | - Qinfeng Guo
- grid.472551.00000 0004 0404 3120USDA Forest Service Southern Research Station, Eastern Forest Environmental Threat Assessment Center, Research Triangle Park, NC USA
| | - Janneke HilleRisLambers
- grid.34477.330000000122986657Department of Biology, University of Washington, Seattle, WA USA
| | - Ines Ibanez
- grid.214458.e0000000086837370School for Environment and Sustainability, University of Michigan, Ann Arbor, MI USA
| | - Jill Johnstone
- grid.25152.310000 0001 2154 235XDepartment of Biology, University of Saskatchewan, Saskatoon, SK Canada
| | - Christopher L. Kilner
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Johannes Knops
- grid.440701.60000 0004 1765 4000Health and Environmental Sciences Department, Xian Jiaotong-Liverpool University, Suzhou, China
| | - Walter D. Koenig
- grid.47840.3f0000 0001 2181 7878Hastings Reservation, University of California Berkeley, Carmel Valley, CA USA
| | - Georges Kunstler
- grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - Jalene M. LaMontagne
- grid.254920.80000 0001 0707 2013Department of Biological Sciences, DePaul University, Chicago, IL USA
| | - Kristin L. Legg
- grid.454846.f0000 0001 2331 3972Greater Yellowstone Network, National Park Service, Bozeman, MT USA
| | - Jordan Luongo
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - James A. Lutz
- grid.53857.3c0000 0001 2185 8768Department of Wildland Resources, Utah State University Ecology Center, Logan, UT USA
| | - Diana Macias
- grid.266832.b0000 0001 2188 8502Department of Biology, University of New Mexico, Albuquerque, NM USA
| | | | - Yassine Messaoud
- grid.265704.20000 0001 0665 6279Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Quebec Canada
| | - Christopher M. Moore
- grid.254333.00000 0001 2296 8213Department of Biology, Colby College, Waterville, ME USA
| | - Emily Moran
- grid.266190.a0000000096214564Department of Geography, University of Colorado Boulder, Boulder, CO USA
| | - Jonathan A. Myers
- grid.4367.60000 0001 2355 7002Department of Biology, Washington University in St. Louis, St. Louis, MO USA
| | - Orrin B. Myers
- grid.266832.b0000 0001 2188 8502University of New Mexico, Albuquerque, NM USA
| | - Chase Nunez
- grid.507516.00000 0004 7661 536XDepartment for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Robert Parmenter
- grid.454846.f0000 0001 2331 3972Valles Caldera National Preserve, National Park Service, Jemez Springs, NM USA
| | - Sam Pearse
- grid.2865.90000000121546924Fort Collins Science Center, Fort Collins, CO USA
| | - Scott Pearson
- grid.435676.50000 0000 8528 5973Department of Natural Sciences, Mars Hill University, Mars Hill, NC USA
| | - Renata Poulton-Kamakura
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Ethan Ready
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Miranda D. Redmond
- grid.47894.360000 0004 1936 8083Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO USA
| | - Chantal D. Reid
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Kyle C. Rodman
- grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - C. Lane Scher
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - William H. Schlesinger
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Amanda M. Schwantes
- grid.17063.330000 0001 2157 2938Ecology and Evolutionary Biology, University of Toronto, Toronto, ON Canada
| | - Erin Shanahan
- grid.454846.f0000 0001 2331 3972Greater Yellowstone Network, National Park Service, Bozeman, MT USA
| | - Shubhi Sharma
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Michael A. Steele
- grid.268256.d0000 0000 8510 1943Department of Biology, Wilkes University, Wilkes-Barre, PA USA
| | - Nathan L. Stephenson
- grid.2865.90000000121546924USGS Western Ecological Research Center, Three Rivers, CA USA
| | - Samantha Sutton
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Jennifer J. Swenson
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Margaret Swift
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Thomas T. Veblen
- grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - Amy V. Whipple
- grid.261120.60000 0004 1936 8040Department of Biological Science, Northern Arizona University, Flagstaff, AZ USA
| | - Thomas G. Whitham
- grid.261120.60000 0004 1936 8040Department of Biological Science, Northern Arizona University, Flagstaff, AZ USA
| | - Andreas P. Wion
- grid.47894.360000 0004 1936 8083Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO USA
| | - Kai Zhu
- grid.205975.c0000 0001 0740 6917University of California, Santa Cruz, Santa Cruz, CA USA
| | - Roman Zlotin
- grid.411377.70000 0001 0790 959XGeography Department and Russian and East European Institute, Bloomington, IN USA
| |
Collapse
|
20
|
Zhang Z, Gong J, Li X, Ding Y, Wang B, Shi J, Liu M, Yang B. Underlying mechanism on source-sink carbon balance of grazed perennial grass during regrowth: Insights into optimal grazing regimes of restoration of degraded grasslands in a temperate steppe. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 277:111439. [PMID: 33035939 DOI: 10.1016/j.jenvman.2020.111439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/17/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Overgrazing is the main driver of grassland degradation and productivity reduction in northern China. The restoration of degraded grasslands depends on optimal grazing regimes that modify the source-sink balance to promote best carbon (C) assimilation and allocation, thereby promoting rapid compensatory growth of the grazed plants. We used in situ13CO2 labeling and field regrowth studies of Stipa grandis P.A. Smirn.to examine the effects of different grazing intensities (light, medium, heavy, and grazing exclusion) on photosynthetic C assimilation and partitioning, on reallocation of non-structural carbohydrates during regrowth, and on the underlying regulatory mechanisms. Light grazing increased the sink demand of newly expanded leaves and significantly promoted 13C fixation by increasing the photosynthetic capacity of the leaves and accelerating fructose transfer from the stem. Although C assimilation decreased under medium and heavy grazing, S. grandis exhibited a tolerance strategy that preferentially allocated more starch and 13C to the roots for storage to balance sink competition between newly expanded leaves and the roots. Sucrose phosphate synthase (SPS), sucrose synthase (SS), and other plant hormones regulated source-sink imbalances during regrowth. Abscisic acid promoted accumulation of aboveground biomass by stimulating stem SPS activity, whereas jasmonate increased root starch synthesis, thereby increasing belowground biomass. Overall, S. grandis could optimize source-sink relationships and above- and belowground C allocation to support regrowth after grazing by the regulating activities of SPS, SS and other hormones. These results provide new insights into C budgets under grazing and guidance for sustainable grazing management in semi-arid grasslands.
Collapse
Affiliation(s)
- Zihe Zhang
- Key Laboratory of Surface Processes and Resource Ecology, Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, No. 19 Xinjiekouwai Street, Haidian District, Beijing Normal University, Beijing, 100875, China.
| | - Jirui Gong
- Key Laboratory of Surface Processes and Resource Ecology, Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, No. 19 Xinjiekouwai Street, Haidian District, Beijing Normal University, Beijing, 100875, China.
| | - Xiaobing Li
- Key Laboratory of Surface Processes and Resource Ecology, Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, No. 19 Xinjiekouwai Street, Haidian District, Beijing Normal University, Beijing, 100875, China.
| | - Yong Ding
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, 120 Ulanqab East Street, Saihan District, Hohhot, Inner Mongolia, 010021, China.
| | - Biao Wang
- Key Laboratory of Surface Processes and Resource Ecology, Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, No. 19 Xinjiekouwai Street, Haidian District, Beijing Normal University, Beijing, 100875, China.
| | - Jiayu Shi
- Key Laboratory of Surface Processes and Resource Ecology, Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, No. 19 Xinjiekouwai Street, Haidian District, Beijing Normal University, Beijing, 100875, China.
| | - Min Liu
- Key Laboratory of Tourism and Resources Environment, Taishan University, Tai'an, Shandong province, 271021, China.
| | - Bo Yang
- Key Laboratory of Surface Processes and Resource Ecology, Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, No. 19 Xinjiekouwai Street, Haidian District, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
21
|
Affiliation(s)
- Christine R. Rollinson
- Center for Tree Science, The Morton Arboretum, 4100 Illinois Route 53, Lisle, IL 60532, USA
| |
Collapse
|