1
|
Wang J, Zhang Y, Wang J, Ma F, Wang L, Zhan X, Li G, Hu S, Khan A, Dang H, Li T, Hu X. Promoting γ-aminobutyric acid accumulation to enhances saline-alkali tolerance in tomato. PLANT PHYSIOLOGY 2024; 196:2089-2104. [PMID: 39186533 DOI: 10.1093/plphys/kiae446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/12/2024] [Indexed: 08/28/2024]
Abstract
Saline-alkali stress is a widely distributed abiotic stress that severely limits plant growth. γ-Aminobutyric acid (GABA) accumulates rapidly in plants under saline-alkali stress, but the underlying molecular mechanisms and associated regulatory networks remain unclear. Here, we report a MYB-like protein, I-box binding factor (SlMYBI), which positively regulates saline-alkali tolerance through induced GABA accumulation by directly modulating the glutamate decarboxylase (GAD) gene SlGAD1 in tomato (Solanum lycopersicum L.). Overexpression of SlGAD1 increased GABA levels and decreased reactive oxygen species accumulation under saline-alkali stress, while silencing of SlGAD1 further suggested that SlGAD1 plays an active role in GABA synthesis and saline-alkali tolerance of tomato. In addition, we found that SlMYBI activates SlGAD1 transcription. Both overexpression of SlMYBI and editing of SlMYBI using CRISPR-Cas9 showed that SlMYBI regulates GABA synthesis by modulating SlGAD1 expression. Furthermore, the interaction of SlNF-YC1 with SlMYBI enhanced the transcriptional activity of SlMYBI on SlGAD1 to further improve saline-alkali tolerance in tomato. Interestingly, we found that ethylene signaling was involved in the GABA response to saline-alkali stress by RNA-seq analysis of SlGAD1-overexpressing lines. This study elucidates the involvement of SlMYBI in GABA synthesis regulation. Specifically, the SlMYBI-SlNF-YC1 module is involved in GABA accumulation in response to saline-alkali stress.
Collapse
Affiliation(s)
- Jingrong Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, P.R. China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, P.R. China
| | - Yong Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, P.R. China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, P.R. China
| | - Junzheng Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, P.R. China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, P.R. China
| | - Fang Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Linyang Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, P.R. China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, P.R. China
| | - Xiangqiang Zhan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Guobin Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, P.R. China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, P.R. China
| | - Songshen Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, P.R. China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, P.R. China
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur 22620, Pakistan
| | - Haoran Dang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, P.R. China
| | - Xiaohui Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, P.R. China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, P.R. China
| |
Collapse
|
2
|
Gao Y, Cui Y, Li M, Kang J, Yang Q, Ma Q, Long R. Comparative proteomic discovery of salt stress response in alfalfa roots and overexpression of MsANN2 confers salt tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109033. [PMID: 39137681 DOI: 10.1016/j.plaphy.2024.109033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Soil salinity constrains growth, development and yield of alfalfa (Medicago sativa L.). To illustrate the molecular mechanisms responsible for salt tolerance, a comparative proteome analysis was explored to characterize protein profiles of alfalfa seedling roots exposed to 100 and 200 mM NaCl for three weeks. There were 52 differentially expressed proteins identified, among which the mRNA expressions of 12 were verified by Real-Time-PCR analysis. The results showed increase in abundance of ascorbate peroxidase, POD, CBS protein and PR-10 in salt-stressed alfalfa, suggesting an effectively antioxidant and defense systems. Alfalfa enhanced protein quality control system to refold or degrade abnormal proteins induced by salt stress through upregulation of unfolded protein response (UPR) marker PDIs and molecular chaperones (eg. HSP70, TCP-1, and GroES) as well as the ubiquitin-proteasome system (UPS) including ubiquitin ligase enzyme (E3) and proteasome subunits. Upregulation of proteins responsible for calcium signal transduction including calmodulin and annexin helped alfalfa adapt to salt stress. Specifically, annexin (MsANN2), a key Ca2+-binding protein, was selected for further characterization. The heterologous of the MsANN2 in Arabidopsis conferred salt tolerance. These results provide detailed information for salt-responsive root proteins and highlight the importance of MsANN2 in adapting to salt stress in alfalfa.
Collapse
Affiliation(s)
- Yanli Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang, 311300, China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yanjun Cui
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang, 311300, China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Mingna Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Junmei Kang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Qingchuan Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Qiaoli Ma
- College of Forestry and Prataculture, Ningxia University, No. 489 West Helanshan Road, Yinchuan, Ningxia, 750021, China
| | - Ruicai Long
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
3
|
Suranjika S, Barla P, Sharma N, Dey N. A review on ubiquitin ligases: Orchestrators of plant resilience in adversity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112180. [PMID: 38964613 DOI: 10.1016/j.plantsci.2024.112180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Ubiquitin- proteasome system (UPS) is universally present in plants and animals, mediating many cellular processes needed for growth and development. Plants constantly defend themselves against endogenous and exogenous stimuli such as hormonal signaling, biotic stresses such as viruses, fungi, nematodes, and abiotic stresses like drought, heat, and salinity by developing complex regulatory mechanisms. Ubiquitination is a regulatory mechanism involving selective elimination and stabilization of regulatory proteins through the UPS system where E3 ligases play a central role; they can bind to the targets in a substrate-specific manner, followed by poly-ubiquitylation, and subsequent protein degradation by 26 S proteasome. Increasing evidence suggests different types of E3 ligases play important roles in plant development and stress adaptation. Herein, we summarize recent advances in understanding the regulatory roles of different E3 ligases and primarily focus on protein ubiquitination in plant-environment interactions. It also highlights the diversity and complexity of these metabolic pathways that enable plant to survive under challenging conditions. This reader-friendly review provides a comprehensive overview of E3 ligases and their substrates associated with abiotic and biotic stresses that could be utilized for future crop improvement.
Collapse
Affiliation(s)
- Sandhya Suranjika
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India; Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), KIIT Road, Patia, Bhubaneswar, Odisha, India
| | - Preeti Barla
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India
| | - Namisha Sharma
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India
| | - Nrisingha Dey
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India.
| |
Collapse
|
4
|
Ma L, Xing L, Li Z, Jiang D. Epigenetic control of plant abiotic stress responses. J Genet Genomics 2024:S1673-8527(24)00246-7. [PMID: 39322116 DOI: 10.1016/j.jgg.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
On top of genetic information, organisms have evolved complex and sophisticated epigenetic regulation to adjust gene expression in response to developmental and environmental signals. Key epigenetic mechanisms include DNA methylation, histone modifications and variants, chromatin remodeling, and chemical modifications of RNAs. Epigenetic control of environmental responses is particularly important for plants, which are sessile and unable to move away from adverse environments. Besides enabling plants to rapidly respond to environmental stresses, some stress-induced epigenetic changes can be maintained, providing plants with a pre-adapted state to recurring stresses. Understanding these epigenetic mechanisms offers valuable insights for developing crop varieties with enhanced stress tolerance. Here, we focus on abiotic stresses and summarize recent progress in characterizing stress-induced epigenetic changes and their regulatory mechanisms and roles in plant abiotic stress resistance.
Collapse
Affiliation(s)
- Lijun Ma
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Ministry of Education Key Laboratory of Plant Development and Environmental Adaption Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237 China
| | - Lihe Xing
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zicong Li
- Ministry of Education Key Laboratory of Plant Development and Environmental Adaption Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237 China
| | - Danhua Jiang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore.
| |
Collapse
|
5
|
Wang Z, Peng Z, Khan S, Qayyum A, Rehman A, Du X. Unveiling the power of MYB transcription factors: Master regulators of multi-stress responses and development in cotton. Int J Biol Macromol 2024; 276:133885. [PMID: 39019359 DOI: 10.1016/j.ijbiomac.2024.133885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Plants, being immobile, are subject to environmental stresses more than other creatures, necessitating highly effective stress tolerance systems. Transcription factors (TFs) play a crucial role in the adaptation mechanism as they can be activated by diverse signals and ultimately control the expression of stress-responsive genes. One of the most prominent plant TFs family is MYB (myeloblastosis), which is involved in secondary metabolites, developmental mechanisms, biological processes, cellular architecture, metabolic pathways, and stress responses. Extensive research has been conducted on the involvement of MYB TFs in crops, while their role in cotton remains largely unexplored. We also utilized genome-wide data to discover potential 440 MYB genes and investigated their plausible roles in abiotic and biotic stress conditions, as well as in different tissues across diverse transcriptome databases. This review primarily summarized the structure and classification of MYB TFs biotic and abiotic stress tolerance and their role in secondary metabolism in different crops, especially in cotton. However, it intends to identify gaps in current knowledge and emphasize the need for further research to enhance our understanding of MYB roles in plants.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China; Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Zhen Peng
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China
| | - Sana Khan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38040, Pakistan
| | - Abdul Qayyum
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Abdul Rehman
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China.
| | - Xiongming Du
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China.
| |
Collapse
|
6
|
Dhatterwal P, Sharma N, Prasad M. Decoding the functionality of plant transcription factors. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4745-4759. [PMID: 38761104 DOI: 10.1093/jxb/erae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024]
Abstract
Transcription factors (TFs) intricately govern cellular processes and responses to external stimuli by modulating gene expression. TFs help plants to balance the trade-off between stress tolerance and growth, thus ensuring their long-term survival in challenging environments. Understanding the factors and mechanisms that define the functionality of plant TFs is of paramount importance for unravelling the intricate regulatory networks governing development, growth, and responses to environmental stimuli in plants. This review provides a comprehensive understanding of these factors and mechanisms defining the activity of TFs. Understanding the dynamic nature of TFs has practical implications for modern molecular breeding programmes, as it provides insights into how to manipulate gene expression to optimize desired traits in crops. Moreover, recent studies also report the functional duality of TFs, highlighting their ability to switch between activation and repression modes; this represents an important mechanism for attuning gene expression. Here we discuss what the possible reasons for the dual nature of TFs are and how this duality instructs the cell fate decision during development, and fine-tunes stress responses in plants, enabling them to adapt to various environmental challenges.
Collapse
Affiliation(s)
| | | | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India
- Department of Genetics, University of Delhi South Campus, New Delhi, India
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
7
|
Zhang HC, Gong YH, Tao T, Lu S, Zhou WY, Xia H, Zhang XY, Yang QQ, Zhang MQ, Hong LM, Guo QQ, Ren XZ, Yang ZD, Cai XL, Ren DY, Gao JP, Jin SK, Leng YJ. Genome-wide identification of R2R3-MYB transcription factor subfamily genes involved in salt stress in rice (Oryza sativa L.). BMC Genomics 2024; 25:797. [PMID: 39179980 PMCID: PMC11342600 DOI: 10.1186/s12864-024-10693-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND R2R3-MYB transcription factors belong to one of the largest gene subfamilies in plants, and they are involved in diverse biological processes. However, the role of R2R3-MYB transcription factor subfamily genes in the response of rice (Oryza sativa L.) to salt stress has been rarely reported. RESULTS In this study, we performed a genome-wide characterization and expression identification of rice R2R3-MYB transcription factor subfamily genes. We identified a total of 117 R2R3-MYB genes in rice and characterized their gene structure, chromosomal location, and cis-regulatory elements. According to the phylogenetic relationships and amino acid sequence homologies, the R2R3-MYB genes were divided into four groups. qRT-PCR of the R2R3-MYB genes showed that the expression levels of 10 genes significantly increased after 3 days of 0.8% NaCl treatment. We selected a high expression gene OsMYB2-115 for further analysis. OsMYB2-115 was highly expressed in the roots, stem, leaf, and leaf sheath. OsMYB2-115 was found to be localized in the nucleus, and the yeast hybrid assay showed that OsMYB2-115 has transcriptional activation activity. CONCLUSION This result provides important information for the functional analyses of rice R2R3-MYB transcription factor subfamily genes related to the salt stress response and reveals that OsMYB2-115 may be an important gene associated with salt tolerance in rice.
Collapse
Affiliation(s)
- Hao-Cheng Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Yuan-Hang Gong
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Tao Tao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Shuai Lu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Wen-Yu Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Han Xia
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Xin-Yi Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Qing-Qing Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Ming-Qiu Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Lian-Min Hong
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Qian-Qian Guo
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Xin-Zhe Ren
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Zhi-Di Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Xiu-Ling Cai
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China
| | - De-Yong Ren
- State Key Laboratory of Rice Biology and Breeding, National Rice Research Institute, Hangzhou, 310006, China
| | - Ji-Ping Gao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China.
| | - Su-Kui Jin
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Yu-Jia Leng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
8
|
Su Y, Fang J, Zeeshan Ul Haq M, Yang W, Yu J, Yang D, Liu Y, Wu Y. Genome-Wide Identification and Expression Analysis of the Casparian Strip Membrane Domain Protein-like Gene Family in Peanut ( Arachis hypogea L.) Revealed Its Crucial Role in Growth and Multiple Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:2077. [PMID: 39124195 PMCID: PMC11313903 DOI: 10.3390/plants13152077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024]
Abstract
Casparian strip membrane domain proteins (CASPs), regulating the formation of Casparian strips in plants, serve crucial functions in facilitating plant growth, development, and resilience to abiotic stress. However, little research has focused on the characteristics and functions of AhCASPs in cultivated peanuts. In this study, the genome-wide identification and expression analysis of the AhCASPs gene family was performed using bioinformatics and transcriptome data. Results showed that a total of 80 AhCASPs members on 20 chromosomes were identified and divided into three subclusters, which mainly localized to the cell membrane. Ka/Ks analysis revealed that most of the genes underwent purifying selection. Analysis of cis elements suggested the possible involvement of AhCASPs in hormonal and stress responses, including GA, MeJA, IAA, ABA, drought, and low temperature. Moreover, 20 different miRNAs for 37 different AhCASPs genes were identified by the psRNATarget service. Likewise, transcriptional analysis revealed key AhCASPs responding to various stresses, hormonal processing, and tissue types, including 33 genes in low temperature and drought stress and 41 genes in tissue-specific expression. These results provide an important theoretical basis for the functions of AhCASPs in growth, development, and multiple stress resistance in cultivated peanuts.
Collapse
Affiliation(s)
- Yating Su
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Jieyun Fang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Muhammad Zeeshan Ul Haq
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Wanli Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Jing Yu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Dongmei Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Ya Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou 570228, China
| | - Yougen Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| |
Collapse
|
9
|
Wang Y, Ye H, Ren F, Ren X, Zhu Y, Xiao Y, He J, Wang B. Comparative Transcriptome Analysis Revealed Candidate Gene Modules Involved in Salt Stress Response in Sweet Basil and Overexpression of ObWRKY16 and ObPAL2 Enhanced Salt Tolerance of Transgenic Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1487. [PMID: 38891295 PMCID: PMC11174604 DOI: 10.3390/plants13111487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Sweet basil (Ocimum basilicum L.) is an important aromatic plant with high edibility and economic value, widely distributed in many regions of the tropics including the south of China. In recent years, environmental problems, especially soil salinization, have seriously restricted the planting and spread of sweet basil. However, the molecular mechanism of the salt stress response in sweet basil is still largely unknown. In this study, seed germination, seedling growth, and chlorophyll synthesis in sweet basil were inhibited under salt stress conditions. Through comparative transcriptome analysis, the gene modules involved in the metabolic processes, oxidative response, phytohormone signaling, cytoskeleton, and photosynthesis were screened out. In addition, the landscape of transcription factors during salt treatment in sweet basil was displayed as well. Moreover, the overexpression of the WRKY transcription factor-encoding gene, ObWRKY16, and the phenylalanine ammonia-lyase-encoding gene, ObPAL2, enhanced the seed germination, seedling growth, and survival rate, respectively, of transgenic Arabidopsis, suggesting that they might be important candidates for the creation of salt-tolerant sweet basil cultivars. Our data enrich the study on salt responses in sweet basil and provide essential gene resources for genetic improvements in sweet basil in the future.
Collapse
Affiliation(s)
- Yukun Wang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China; (Y.W.); (Y.Z.); (Y.X.)
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (H.Y.); (F.R.); (X.R.)
- Engineering and Technology Research Center of Shaoguan Horticulture in Shaoguan University, Shaoguan 512005, China
| | - Hong Ye
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (H.Y.); (F.R.); (X.R.)
- Engineering and Technology Research Center of Shaoguan Horticulture in Shaoguan University, Shaoguan 512005, China
| | - Fei Ren
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (H.Y.); (F.R.); (X.R.)
- Engineering and Technology Research Center of Shaoguan Horticulture in Shaoguan University, Shaoguan 512005, China
| | - Xiaoqiang Ren
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (H.Y.); (F.R.); (X.R.)
- Engineering and Technology Research Center of Shaoguan Horticulture in Shaoguan University, Shaoguan 512005, China
| | - Yunna Zhu
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China; (Y.W.); (Y.Z.); (Y.X.)
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (H.Y.); (F.R.); (X.R.)
- Engineering and Technology Research Center of Shaoguan Horticulture in Shaoguan University, Shaoguan 512005, China
| | - Yanhui Xiao
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China; (Y.W.); (Y.Z.); (Y.X.)
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (H.Y.); (F.R.); (X.R.)
- Engineering and Technology Research Center of Shaoguan Horticulture in Shaoguan University, Shaoguan 512005, China
| | - Jinming He
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China; (Y.W.); (Y.Z.); (Y.X.)
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (H.Y.); (F.R.); (X.R.)
- Engineering and Technology Research Center of Shaoguan Horticulture in Shaoguan University, Shaoguan 512005, China
| | - Bin Wang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China; (Y.W.); (Y.Z.); (Y.X.)
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (H.Y.); (F.R.); (X.R.)
- Engineering and Technology Research Center of Shaoguan Horticulture in Shaoguan University, Shaoguan 512005, China
| |
Collapse
|
10
|
Zhang Y, Yang H, Liu Y, Hou Q, Jian S, Deng S. Molecular cloning and characterization of a salt overly sensitive3 (SOS3) gene from the halophyte Pongamia. PLANT MOLECULAR BIOLOGY 2024; 114:57. [PMID: 38743266 DOI: 10.1007/s11103-024-01459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
A high concentration of sodium (Na+) is the primary stressor for plants in high salinity environments. The Salt Overly Sensitive (SOS) pathway is one of the best-studied signal transduction pathways, which confers plants the ability to export too much Na+ out of the cells or translocate the cytoplasmic Na+ into the vacuole. In this study, the Salt Overly Sensitive3 (MpSOS3) gene from Pongamia (Millettia pinnata Syn. Pongamia pinnata), a semi-mangrove, was isolated and characterized. The MpSOS3 protein has canonical EF-hand motifs conserved in other calcium-binding proteins and an N-myristoylation signature sequence. The MpSOS3 gene was significantly induced by salt stress, especially in Pongamia roots. Expression of the wild-type MpSOS3 but not the mutated nonmyristoylated MpSOS3-G2A could rescue the salt-hypersensitive phenotype of the Arabidopsis sos3-1 mutant, which suggested the N-myristoylation signature sequence of MpSOS3 was required for MpSOS3 function in plant salt tolerance. Heterologous expression of MpSOS3 in Arabidopsis accumulated less H2O2, superoxide anion radical (O2-), and malondialdehyde (MDA) than wild-type plants, which enhanced the salt tolerance of transgenic Arabidopsis plants. Under salt stress, MpSOS3 transgenic plants accumulated a lower content of Na+ and a higher content of K+ than wild-type plants, which maintained a better K+/Na+ ratio in transgenic plants. Moreover, no development and growth discrepancies were observed in the MpSOS3 heterologous overexpression plants compared to wild-type plants. Our results demonstrated that the MpSOS3 pathway confers a conservative salt-tolerant role and provided a foundation for further study of the SOS pathway in Pongamia.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany and Xiaoliang Research Station for Tropical Coastal Ecosystems, Chinese Academy of Sciences, Guangzhou, 510650, China
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, 341000, China
| | - Heng Yang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany and Xiaoliang Research Station for Tropical Coastal Ecosystems, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujuan Liu
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany and Xiaoliang Research Station for Tropical Coastal Ecosystems, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiongzhao Hou
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany and Xiaoliang Research Station for Tropical Coastal Ecosystems, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuguang Jian
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Shulin Deng
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany and Xiaoliang Research Station for Tropical Coastal Ecosystems, Chinese Academy of Sciences, Guangzhou, 510650, China.
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
11
|
Sun Y, Tian Z, Zuo D, Wang Q, Song G. GhUBC10-2 mediates GhGSTU17 degradation to regulate salt tolerance in cotton (Gossypium hirsutum). PLANT, CELL & ENVIRONMENT 2024; 47:1606-1624. [PMID: 38282268 DOI: 10.1111/pce.14839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
Ubiquitin-conjugating enzyme (UBC) is a crucial component of the ubiquitin-proteasome system, which contributes to plant growth and development. While some UBCs have been identified as potential regulators of abiotic stress responses, the underlying mechanisms of this regulation remain poorly understood. Here, we report a cotton (Gossypium hirsutum) UBC gene, GhUBC10-2, which negatively regulates the salt stress response. We found that the gain of function of GhUBC10-2 in both Arabidopsis (Arabidopsis thaliana) and cotton leads to reduced salinity tolerance. Additionally, GhUBC10-2 interacts with glutathione S-transferase (GST) U17 (GhGSTU17), forming a heterodimeric complex that promotes GhGSTU17 degradation. Intriguingly, GhUBC10-2 can be self-polyubiquitinated, suggesting that it possesses E3-independent activity. Our findings provide new insights into the PTM of plant GST-mediated salt response pathways. Furthermore, we found that the WRKY transcription factor GhWRKY13 binds to the GhUBC10-2 promoter and suppresses its expression under salt conditions. Collectively, our study unveils a regulatory module encompassing GhWRKY13-GhUBC10-2-GhGSTU17, which orchestrates the modulation of reactive oxygen species homeostasis to enhance salt tolerance.
Collapse
Affiliation(s)
- Yaru Sun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zailong Tian
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Dongyun Zuo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Qiaolian Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Guoli Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Wang S, Jiang R, Feng J, Zou H, Han X, Xie X, Zheng G, Fang C, Zhao J. Overexpression of transcription factor FaMYB63 enhances salt tolerance by directly binding to the SOS1 promoter in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2024; 114:32. [PMID: 38512490 DOI: 10.1007/s11103-024-01431-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/20/2024] [Indexed: 03/23/2024]
Abstract
Salinity is a pivotal abiotic stress factor with far-reaching consequences on global crop growth, yield, and quality and which includes strawberries. R2R3-MYB transcription factors encompass a range of roles in plant development and responses to abiotic stress. In this study, we identified that strawberry transcription factor FaMYB63 exhibited a significant upregulation in its expression under salt stress conditions. An analysis using yeast assay demonstrated that FaMYB63 exhibited the ability to activate transcriptional activity. Compared with those in the wild-type (WT) plants, the seed germination rate, root length, contents of chlorophyll and proline, and antioxidant activities (SOD, CAT, and POD) were significantly higher in FaMYB63-overexpressing Arabidopsis plants exposed to salt stress. Conversely, the levels of malondialdehyde (MDA) were considerably lower. Additionally, the FaMYB63-overexpressed Arabidopsis plants displayed a substantially improved capacity to scavenge active oxygen. Furthermore, the activation of stress-related genes by FaMYB63 bolstered the tolerance of transgenic Arabidopsis to salt stress. It was also established that FaMYB63 binds directly to the promoter of the salt overly sensitive gene SOS1, thereby activating its expression. These findings identified FaMYB63 as a possible and important regulator of salt stress tolerance in strawberries.
Collapse
Affiliation(s)
- Shuaishuai Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Rongyi Jiang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Jian Feng
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Haodong Zou
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaohuan Han
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Xingbin Xie
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Guanghui Zheng
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Congbing Fang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| | - Jing Zhao
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
13
|
Renziehausen T, Frings S, Schmidt-Schippers R. 'Against all floods': plant adaptation to flooding stress and combined abiotic stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1836-1855. [PMID: 38217848 DOI: 10.1111/tpj.16614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 01/15/2024]
Abstract
Current climate change brings with it a higher frequency of environmental stresses, which occur in combination rather than individually leading to massive crop losses worldwide. In addition to, for example, drought stress (low water availability), also flooding (excessive water) can threaten the plant, causing, among others, an energy crisis due to hypoxia, which is responded to by extensive transcriptional, metabolic and growth-related adaptations. While signalling during flooding is relatively well understood, at least in model plants, the molecular mechanisms of combinatorial flooding stress responses, for example, flooding simultaneously with salinity, temperature stress and heavy metal stress or sequentially with drought stress, remain elusive. This represents a significant gap in knowledge due to the fact that dually stressed plants often show unique responses at multiple levels not observed under single stress. In this review, we (i) consider possible effects of stress combinations from a theoretical point of view, (ii) summarize the current state of knowledge on signal transduction under single flooding stress, (iii) describe plant adaptation responses to flooding stress combined with four other abiotic stresses and (iv) propose molecular components of combinatorial flooding (hypoxia) stress adaptation based on their reported dual roles in multiple stresses. This way, more future emphasis may be placed on deciphering molecular mechanisms of combinatorial flooding stress adaptation, thereby potentially stimulating development of molecular tools to improve plant resilience towards multi-stress scenarios.
Collapse
Affiliation(s)
- Tilo Renziehausen
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, 33615, Bielefeld, Germany
- Center for Biotechnology, University of Bielefeld, 33615, Bielefeld, Germany
| | - Stephanie Frings
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, 33615, Bielefeld, Germany
- Center for Biotechnology, University of Bielefeld, 33615, Bielefeld, Germany
| | - Romy Schmidt-Schippers
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, 33615, Bielefeld, Germany
- Center for Biotechnology, University of Bielefeld, 33615, Bielefeld, Germany
| |
Collapse
|
14
|
Wang Y, Yang X, Hu Y, Liu X, Shareng T, Cao G, Xing Y, Yang Y, Li Y, Huang W, Wang Z, Bai G, Ji Y, Wang Y. Transcriptome-Based Identification of the SaR2R3-MYB Gene Family in Sophora alopecuroides and Function Analysis of SaR2R3-MYB15 in Salt Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:586. [PMID: 38475433 DOI: 10.3390/plants13050586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
As one of the most prominent gene families, R2R3-MYB transcription factors significantly regulate biochemical and physiological processes under salt stress. However, in Sophora alopecuroides, a perennial herb known for its exceptional saline alkali resistance, the comprehensive identification and characterization of SaR2R3-MYB genes and their potential functions in response to salt stress have yet to be determined. We investigated the expression profiles and biological functions of SaR2R3-MYB transcription factors in response to salt stress, utilizing a transcriptome-wide mining method. Our analysis identified 28 SaR2R3-MYB transcription factors, all sharing a highly conserved R2R3 domain, which were further divided into 28 subgroups through phylogenetic analysis. Some SaR2R3-MYB transcription factors showed induction under salt stress, with SaR2R3-MYB15 emerging as a potential regulator based on analysis of the protein-protein interaction network. Validation revealed the transcriptional activity and nuclear localization of SaR2R3-MYB15. Remarkably, overexpression of SaR2R3-MYB15 in transgenic plants could increase the activity of antioxidant enzymes and the accumulation of proline but decrease the content of malondialdehyde (MDA), compared with wild-type plants. Moreover, several salt stress-related genes showed higher expression levels in transgenic plants, implying their potential to enhance salt tolerance. Our findings shed light on the role of SaR2R3-MYB genes in salt tolerance in S. alopecuroides.
Collapse
Affiliation(s)
- Yuan Wang
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Inner Mongolia Engineering Laboratory of Economic Forest Sterile Virus-Free Cultivation, Hohhot 010021, China
| | - Xiaoming Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yongning Hu
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
| | - Xinqian Liu
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
| | - Tuya Shareng
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
- Inner Mongolia Ordos Forest Ecosystem Research Station, Ordos 016100, China
| | - Gongxiang Cao
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
- Inner Mongolia Ordos Forest Ecosystem Research Station, Ordos 016100, China
| | - Yukun Xing
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
- Inner Mongolia Ordos Forest Ecosystem Research Station, Ordos 016100, China
| | - Yuewen Yang
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
- Inner Mongolia Ordos Forest Ecosystem Research Station, Ordos 016100, China
| | - Yinxiang Li
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
| | - Weili Huang
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
- Inner Mongolia Engineering Laboratory of Economic Forest Sterile Virus-Free Cultivation, Hohhot 010021, China
| | - Zhibo Wang
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
| | - Gaowa Bai
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
| | - Yuanyuan Ji
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
| | - Yuzhi Wang
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
| |
Collapse
|
15
|
Mao K, Yang J, Sun Y, Guo X, Qiu L, Mei Q, Li N, Ma F. MdbHLH160 is stabilized via reduced MdBT2-mediated degradation to promote MdSOD1 and MdDREB2A-like expression for apple drought tolerance. PLANT PHYSIOLOGY 2024; 194:1181-1203. [PMID: 37930306 DOI: 10.1093/plphys/kiad579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 11/07/2023]
Abstract
Drought stress is a key environmental factor limiting the productivity, quality, and geographic distribution of crops worldwide. Abscisic acid (ABA) plays an important role in plant drought stress responses, but the molecular mechanisms remain unclear. Here, we report an ABA-responsive bHLH transcription factor, MdbHLH160, which promotes drought tolerance in Arabidopsis (Arabidopsis thaliana) and apple (Malus domestica). Under drought conditions, MdbHLH160 is directly bound to the MdSOD1 (superoxide dismutase 1) promoter and activated its transcription, thereby triggering reactive oxygen species (ROS) scavenging and enhancing apple drought tolerance. MdbHLH160 also promoted MdSOD1 enzyme activity and accumulation in the nucleus through direct protein interactions, thus inhibiting excessive nuclear ROS levels. Moreover, MdbHLH160 directly upregulated the expression of MdDREB2A-like, a DREB (dehydration-responsive element binding factor) family gene that promotes apple drought tolerance. Protein degradation and ubiquitination assays showed that drought and ABA treatment stabilized MdbHLH160. The BTB protein MdBT2 was identified as an MdbHLH160-interacting protein that promoted MdbHLH160 ubiquitination and degradation, and ABA treatment substantially inhibited this process. Overall, our findings provide insights into the molecular mechanisms of ABA-modulated drought tolerance at both the transcriptional and post-translational levels via the ABA-MdBT2-MdbHLH160-MdSOD1/MdDREB2A-like cascade.
Collapse
Affiliation(s)
- Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Jie Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Yunxia Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Xin Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Lina Qiu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Quanlin Mei
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Na Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
16
|
Dai JL, He YJ, Chen HH, Jiang JG. Dual Roles of Two Malic Enzymes in Lipid Biosynthesis and Salt Stress Response in Dunaliella salina. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37906521 DOI: 10.1021/acs.jafc.3c04810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Triacylglycerols (TAG) from microalgae can be used as feedstocks for biofuel production to address fuel shortages. Most of the current research has focused on the enzymes involved in TAG biosynthesis. In this study, the effects of malic enzyme (ME), which provides precursor and reducing power for TAG biosynthesis, on biomass and lipid accumulation and its response to salt stress in Dunaliella salina were investigated. The overexpression of DsME1 and DsME2 improved the lipid production, which reached 0.243 and 0.253 g/L and were 30.5 and 36.3% higher than wild type, respectively. The transcript levels of DsME1 and DsME2 increased with increasing salt concentration (0, 1, 2, 3, and 4.5 mol/L NaCl), indicating that DsMEs participated in the salt stress response in D. salina. It was found that cis-acting elements associated with the salt stress response were present on the promoters of two DsMEs. The deletion of the MYB binding site (MBS) on the DsME2 promoter confirmed that MBS drives the expression of DsME2 to participate in osmotic regulation in D. salina. In conclusion, MEs are the critical enzymes that play pivotal roles in lipid accumulation and osmotic regulation.
Collapse
Affiliation(s)
- Jv-Liang Dai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yu-Jing He
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hao-Hong Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jian-Guo Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
17
|
Chen Z, Chen T, Zhang H, Li Y, Fan J, Yao L, Zeng B, Zhang Z. Functional role of a novel zinc finger protein, AoZFA, in growth and kojic acid synthesis in Aspergillus oryzae. Appl Environ Microbiol 2023; 89:e0090923. [PMID: 37702504 PMCID: PMC10617589 DOI: 10.1128/aem.00909-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/20/2023] [Indexed: 09/14/2023] Open
Abstract
Kojic acid (KA) is a valuable secondary metabolite that is regulated by zinc finger proteins in Aspergillus oryzae. However, only two such proteins have been characterized to function in kojic acid production of A. oryzae to date. In this study, we identified a novel zinc finger protein, AoZFA, required for kojic acid biosynthesis in A. oryzae. Our results showed that disruption of AozfA led to increased expression of kojA and kojR involved in kojic acid synthesis, resulting in enhanced kojic acid production, while overexpression of AozfA had the opposite effect. Furthermore, deletion of kojR in the AozfA disruption strain abolished kojic acid production, whereas overexpression of kojR enhanced it, indicating that AoZFA regulates kojic acid production by affecting kojR. Transcriptional activation assay revealed that AoZFA is a transcriptional activator. Interestingly, when kojR was overexpressed in the AozfA overexpression strain, the production of kojic acid failed to be rescued, suggesting that AozfA plays a distinct role from kojR in kojic acid biosynthesis. Moreover, we found that AozfA was highly induced by zinc during early growth stages, and its overexpression inhibited the growth promoted by zinc, whereas its deletion had no effect, suggesting that AoZFA is non-essential but has a role in the response of A. oryzae to zinc. Overall, these findings provide new insights into the roles of zinc finger proteins in the growth and kojic acid production of A. oryzae.IMPORTANCEKojic acid (KA) is an economically valuable secondary metabolite produced by Aspergillus oryzae due to its vast biological activities. Genetic modification of A. oryzae has emerged as an efficient strategy for enhancing kojic acid production, which is dependent on the mining of genes involved in kojic acid synthesis. In this study, we have characterized a novel zinc-finger protein, AoZFA, as a negative regulator of kojic acid production by affecting kojR. AozfA is an excellent target for improving kojic acid production without any effects on the growth of A. oryzae. Furthermore, the simultaneous modification of AozfA and kojR exerts a more significant promotional effect on kojic acid production than the modification of single genes. This study provides new insights for the regulatory mechanism of zinc finger proteins in the growth and kojic acid production of A. oryzae.
Collapse
Affiliation(s)
- Ziming Chen
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Tianming Chen
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Huanxin Zhang
- Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Yuzhen Li
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Junxia Fan
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Lihua Yao
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Bin Zeng
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Zhe Zhang
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
18
|
Kovalchuk I. Role of Epigenetic Factors in Response to Stress and Establishment of Somatic Memory of Stress Exposure in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3667. [PMID: 37960024 PMCID: PMC10648063 DOI: 10.3390/plants12213667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023]
Abstract
All species are well adapted to their environment. Stress causes a magnitude of biochemical and molecular responses in plants, leading to physiological or pathological changes. The response to various stresses is genetically predetermined, but is also controlled on the epigenetic level. Most plants are adapted to their environments through generations of exposure to all elements. Many plant species have the capacity to acclimate or adapt to certain stresses using the mechanism of priming. In most cases, priming is a somatic response allowing plants to deal with the same or similar stress more efficiently, with fewer resources diverted from growth and development. Priming likely relies on multiple mechanisms, but the differential expression of non-coding RNAs, changes in DNA methylation, histone modifications, and nucleosome repositioning play a crucial role. Specifically, we emphasize the role of BRM/CHR17, BRU1, FGT1, HFSA2, and H2A.Z proteins as positive regulators, and CAF-1, MOM1, DDM1, and SGS3 as potential negative regulators of somatic stress memory. In this review, we will discuss the role of epigenetic factors in response to stress, priming, and the somatic memory of stress exposures.
Collapse
Affiliation(s)
- Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
19
|
Zhou L, Huan X, Zhao K, Jin X, Hu J, Du S, Han Y, Wang S. PagMYB205 Negatively Affects Poplar Salt Tolerance through Reactive Oxygen Species Scavenging and Root Vitality Modulation. Int J Mol Sci 2023; 24:15437. [PMID: 37895117 PMCID: PMC10607357 DOI: 10.3390/ijms242015437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Salt stress is one of the major abiotic stresses that limits plant growth and development. The MYB transcription factor family plays essential roles in plant growth and development, as well as stress tolerance processes. In this study, the cDNA of the 84K poplar (Populus abla × Populus glandulosa) was used as a template to clone the full length of the PagMYB205 gene fragment, and transgenic poplar lines with PagMYB205 overexpression (OX) or inhibited expression (RNAi, RNA interference) were cultivated. The role of PagMYB205 in poplar growth and development and salt tolerance was detected using morphological and physiological methods. The full-length CDS sequence of PagMYB205 was 906 bp, encoding 301 amino acids, and the upstream promoter sequence contained abiotic stress-related cis-acting elements. The results of subcellular localization and transactivation assays showed that the protein had no self-activating activity and was localized in the nucleus. Under salt stress, the rooting rate and root vitality of RNAi were higher than OX and wild type (WT). However, the malondialdehyde (MDA) content of the RNAi lines was significantly lower than that of the wild-type (WT) and OX lines, but the reactive oxygen species (ROS) scavenging ability, such as the peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) enzyme activities, was dramatically more powerful. Most significantly of all, the RNAi3 line with the lowest expression level of PagMYB205 had the lowest MDA content, the best enzyme activity and root vitality, and the best salt stress tolerance compared to the other lines. The above results suggest that the transcription factor PagMYB205 could negatively regulate salt stress tolerance by regulating antioxidant enzyme activity and root vitality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shengji Wang
- College of Forestry, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
20
|
Ren H, Zhang Y, Zhong M, Hussian J, Tang Y, Liu S, Qi G. Calcium signaling-mediated transcriptional reprogramming during abiotic stress response in plants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:210. [PMID: 37728763 DOI: 10.1007/s00122-023-04455-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
Calcium (Ca2+) is a second messenger in plants growth and development, as well as in stress responses. The transient elevation in cytosolic Ca2+ concentration have been reported to be involved in plants response to abiotic and biotic stresses. In plants, Ca2+-induced transcriptional changes trigger molecular mechanisms by which plants adapt and respond to environment stresses. The mechanism for transcription regulation by Ca2+ could be either rapid in which Ca2+ signals directly cause the related response through the gene transcript and protein activities, or involved amplification of Ca2+ signals by up-regulation the expression of Ca2+ responsive genes, and then increase the transmission of Ca2+ signals. Ca2+ regulates the expression of genes by directly binding to the transcription factors (TFs), or indirectly through its sensors like calmodulin, calcium-dependent protein kinases (CDPK) and calcineurin B-like protein (CBL). In recent years, significant progress has been made in understanding the role of Ca2+-mediated transcriptional regulation in different processes in plants. In this review, we have provided a comprehensive overview of Ca2+-mediated transcriptional regulation in plants in response to abiotic stresses including nutrition deficiency, temperature stresses (like heat and cold), dehydration stress, osmotic stress, hypoxic, salt stress, acid rain, and heavy metal stress.
Collapse
Affiliation(s)
- Huimin Ren
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Yuting Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Minyi Zhong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Jamshaid Hussian
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad, 22060, Pakistan
| | - Yuting Tang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China.
| | - Guoning Qi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
21
|
Baoxiang W, Zhiguang S, Yan L, Bo X, Jingfang L, Ming C, Yungao X, Bo Y, Jian L, Jinbo L, Tingmu C, Zhaowei F, Baiguan L, Dayong X, Bello BK. A pervasive phosphorylation cascade modulation of plant transcription factors in response to abiotic stress. PLANTA 2023; 258:73. [PMID: 37668677 DOI: 10.1007/s00425-023-04232-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023]
Abstract
MAIN CONCLUSION Transcriptional regulation of stress-responsive genes is a crucial step in establishing the mechanisms behind plant abiotic stress tolerance. A sensitive method of regulating transcription factors activity, stability, protein interaction, and subcellular localization is through phosphorylation. This review highlights a widespread regulation mechanism that involves phosphorylation of plant TFs in response to abiotic stress. Abiotic stress is one of the main components limiting crop yield and sustainability on a global scale. It greatly reduces the land area that is planted and lowers crop production globally. In all living organisms, transcription factors (TFs) play a crucial role in regulating gene expression. They participate in cell signaling, cell cycle, development, and plant stress response. Plant resilience to diverse abiotic stressors is largely influenced by TFs. Transcription factors modulate gene expression by binding to their target gene's cis-elements, which are impacted by genomic characteristics, DNA structure, and TF interconnections. In this review, we focus on the six major TFs implicated in abiotic stress tolerance, namely, DREB, bZIP, WRKY, ABF, MYB, and NAC, and the cruciality of phosphorylation of these transcription factors in abiotic stress signaling, as protein phosphorylation has emerged as one of the key post-translational modifications, playing a critical role in cell signaling, DNA amplification, gene expression and differentiation, and modification of other biological configurations. These TFs have been discovered after extensive study as stress-responsive transcription factors which may be major targets for crop development and important contributors to stress tolerance and crop production.
Collapse
Grants
- CARS-01-61 the earmarked funds for China Agricultural Research System
- 2015BAD01B01 National Science and Technology Support Program of China
- BE2016370-3 Science and Technology Support Program of Jiangsu Province, China
- BE2017323 Science and Technology Support Program of Jiangsu Province, China
- BK20201214 Natural Science Foundation of Jiangsu Province of China
- BK20161299 the Natural Science Foundation of Jiangsu Province, China
- QNJJ1704 the Financial Grant Support Program of Lianyungang City, Jiangsu Province, China
- QNJJ2102 the Financial Grant Support Program of Lianyungang City, Jiangsu Province, China
- QNJJ2107 the Financial Grant Support Program of Lianyungang City, Jiangsu Province, China
- QNJJ2211 the Financial Grant Support Program of Lianyungang City, Jiangsu Province, China
Collapse
Affiliation(s)
- Wang Baoxiang
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Sun Zhiguang
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Liu Yan
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Xu Bo
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Li Jingfang
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Chi Ming
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Xing Yungao
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Yang Bo
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Li Jian
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Liu Jinbo
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Chen Tingmu
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Fang Zhaowei
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Lu Baiguan
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Xu Dayong
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China.
| | - Babatunde Kazeem Bello
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China.
| |
Collapse
|
22
|
Ali A, Petrov V, Yun DJ, Gechev T. Revisiting plant salt tolerance: novel components of the SOS pathway. TRENDS IN PLANT SCIENCE 2023; 28:1060-1069. [PMID: 37117077 DOI: 10.1016/j.tplants.2023.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
The Salt Overly Sensitive (SOS) pathway plays a central role in plant salinity tolerance. Since the discovery of the SOS pathway, transcriptional and post-translational regulations of its core components have garnered considerable attention. To date, several proteins that regulate these core components, either positively or negatively at the protein and transcript levels, have been identified. Here, we review recent advances in the understanding of the functional regulation of the core proteins of the SOS pathway and an expanding spectrum of their upstream effectors in plants. Furthermore, we also discuss how these novel regulators act as key signaling nodes of multilayer control of plant development and stress adaptation through modulation of the SOS core proteins at the transcriptional and post-translational levels.
Collapse
Affiliation(s)
- Akhtar Ali
- Department Molecular Stress Physiology, Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria; Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, South Korea.
| | - Veselin Petrov
- Department Molecular Stress Physiology, Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria; Department of Plant Physiology, Biochemistry and Genetics, Agricultural University of Plovdiv, Plovdiv 4000, Bulgaria
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, South Korea
| | - Tsanko Gechev
- Department Molecular Stress Physiology, Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria; Department of Plant Physiology and Molecular Biology, University of Plovdiv, Plovdiv 4000, Bulgaria.
| |
Collapse
|
23
|
Song F, Li Z, Wang C, Jiang Y, Wang Z, He L, Ma X, Zhang Y, Song X, Liu J, Wu L. CsMYB15 positively regulates Cs4CL2-mediated lignin biosynthesis during juice sac granulation in navel orange. FRONTIERS IN PLANT SCIENCE 2023; 14:1223820. [PMID: 37457356 PMCID: PMC10348809 DOI: 10.3389/fpls.2023.1223820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
'Lane Late', a late-maturing navel orange cultivar, is mainly distributed in the Three Gorges Reservoir area, which matures in the late March of the next year and needs overwintering cultivation. Citrus fruit granulation is a physiological disorder, which is characterized by lignification and dehydration of juice sac cells, seriously affecting the commercial value of citrus fruits. The pre-harvest granulation of late-maturing navel orange is main caused by low temperature in the winter, but its mechanism and regulation pattern remain unclear. In this study, a SG2-type R2R3-MYB transcription factor, CsMYB15, was identified from Citrus sinensis, which was significantly induced by both juice sac granulation and low temperature treatment. Subcellular localization analysis and transcriptional activation assay revealed that CsMYB15 protein was localized to the nucleus, and it exhibited transcriptional activation activity in yeast. Over-expression of CsMYB15 by stable transformation in navel orange calli and transient transformation in kumquat fruits and navel orange juice sacs significantly increased lignin content in the transgenic lines. Further, Yeast one hybrid, EMSA, and LUC assays demonstrated that CsMYB15 directly bound to the Cs4CL2 promoter and activated its expression, thereby causing a high accumulation of lignin in citrus. Taken together, these results elucidated the biological function of CsMYB15 in regulating Cs4CL2-mediated lignin biosynthesis, and provided novel insight into the transcriptional regulation mechanism underlying the juice sac granulation of late-maturing navel orange.
Collapse
Affiliation(s)
- Fang Song
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Zixuan Li
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, China
| | - Ce Wang
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, China
| | - Yingchun Jiang
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Zhijing Wang
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, China
| | - Ligang He
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, China
| | - Xiaofang Ma
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, China
| | - Yu Zhang
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, China
| | - Xin Song
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, China
| | - Jihong Liu
- Hubei Hongshan Laboratory, Wuhan, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Liming Wu
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
24
|
Ren C, Li Z, Song P, Wang Y, Liu W, Zhang L, Li X, Li W, Han D. Overexpression of a Grape MYB Transcription Factor Gene VhMYB2 Increases Salinity and Drought Tolerance in Arabidopsis thaliana. Int J Mol Sci 2023; 24:10743. [PMID: 37445921 DOI: 10.3390/ijms241310743] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
In viticulture, the highly resistant rootstock 'Beta' is widely used in Chinese grape production to avoid the effects of soil salinization and drought on grape growth. However, the mechanism of high resistance to abiotic stress in the 'Beta' rootstock is not clear. In this study, we demonstrated that VhMYB2 as a transcription factor made a significant contribution to salinity and drought stress, which was isolated from the 'Beta' rootstock. The coding sequence of the VhMYB2 gene was 858 bp, encoding 285 amino acids. The subcellular localization of VhMYB2 was located in the nucleus of tobacco epidermal cells. Moreover, RT-qPCR found that VhMYB2 was predominantly expressed in the mature leaf and root of the grape. Under salinity and drought stress, overexpressing VhMYB2 showed a higher resistant phenotype and survival rates in A. thaliana while the transgenic lines had a survival advantage by measuring the contents of proline, chlorophyll, and MDA, and activities of POD, SOD, and CAT, and expression levels of related stress response genes. The results reveal that VhMYB2 may be an important transcription factor regulating 'Beta' resistance in response to abiotic stress.
Collapse
Affiliation(s)
- Chuankun Ren
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Zhenghao Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Penghui Song
- Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China
| | - Yu Wang
- Horticulture Branch of Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China
| | - Wanda Liu
- Horticulture Branch of Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China
| | - Lihua Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xingguo Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Wenhui Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Deguo Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
25
|
Lv J, Xu Y, Dan X, Yang Y, Mao C, Ma X, Zhu J, Sun M, Jin Y, Huang L. Genomic survey of MYB gene family in six pearl millet (Pennisetum glaucum) varieties and their response to abiotic stresses. Genetica 2023:10.1007/s10709-023-00188-8. [PMID: 37266766 DOI: 10.1007/s10709-023-00188-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
In addition to their roles in developmental and metabolic processes, MYB transcription factors play crucial roles in plant defense mechanisms and stress responses. A comprehensive analysis of six pearl millet genomes revealed the presence of 1133 MYB genes, which can be classified into four phylogenetically distinct subgroups. The duplication pattern of MYB genes across the pearl millet genomes demonstrates their conserved and similar evolutionary history. Overall, MYB genes were observed to be involved in drought and heat stress responses, with stronger differential expressed observed in root tissues. Multiple analyses indicated that MYB genes mediate abiotic stress responses by modulating abscisic acid-related pathways, circadian rhythms, and histone modification processes. A substantial number of duplicated genes were determined to exhibit differential expression under abiotic stress. The consistent positive expression trend observed in duplicated gene pairs, such as PMA5G04432.1 and PMA2G00728.1, across various abiotic stresses suggests that duplicated MYB genes plays a key role in the evolution of adaptive responses of pearl millet to abiotic stresses.
Collapse
Affiliation(s)
- Jinhang Lv
- Department of Grassland Science and Technology, Sichuan Agricultural University, Sichuan, China
| | - Yue Xu
- Department of Grassland Science and Technology, Sichuan Agricultural University, Sichuan, China
| | - Xuming Dan
- Department of The College of Life Sciences, Sichuan University, Sichuan, China
| | - Yuchen Yang
- Department of Grassland Science and Technology, Sichuan Agricultural University, Sichuan, China
| | - Chunli Mao
- Department of Grassland Science and Technology, Sichuan Agricultural University, Sichuan, China
| | - Xixi Ma
- Department of Grassland Science and Technology, Sichuan Agricultural University, Sichuan, China
| | - Jie Zhu
- Department of Grassland Science and Technology, Sichuan Agricultural University, Sichuan, China
| | - Min Sun
- Department of Grassland Science and Technology, Sichuan Agricultural University, Sichuan, China
| | - Yarong Jin
- Department of Grassland Science and Technology, Sichuan Agricultural University, Sichuan, China
| | - Linkai Huang
- Department of Grassland Science and Technology, Sichuan Agricultural University, Sichuan, China.
| |
Collapse
|
26
|
Liu Y, Wang M, Huang Y, Zhu P, Qian G, Zhang Y, Li L. Genome-Wide Identification and Analysis of R2R3-MYB Genes Response to Saline-Alkali Stress in Quinoa. Int J Mol Sci 2023; 24:ijms24119132. [PMID: 37298082 DOI: 10.3390/ijms24119132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Soil saline-alkalization inhibits plant growth and development and seriously affects crop yields. Over their long-term evolution, plants have formed complex stress response systems to maintain species continuity. R2R3-MYB transcription factors are one of the largest transcription factor families in plants, widely involved in plant growth and development, metabolism, and stress response. Quinoa (Chenopodium quinoa Willd.), as a crop with high nutritional value, is tolerant to various biotic and abiotic stress. In this study, we identified 65 R2R3-MYB genes in quinoa, which are divided into 26 subfamilies. In addition, we analyzed the evolutionary relationships, protein physicochemical properties, conserved domains and motifs, gene structure, and cis-regulatory elements of CqR2R3-MYB family members. To investigate the roles of CqR2R3-MYB transcription factors in abiotic stress response, we performed transcriptome analysis to figure out the expression file of CqR2R3-MYB genes under saline-alkali stress. The results indicate that the expression of the six CqMYB2R genes was altered significantly in quinoa leaves that had undergone saline-alkali stress. Subcellular localization and transcriptional activation activity analysis revealed that CqMYB2R09, CqMYB2R16, CqMYB2R25, and CqMYB2R62, whose Arabidopsis homologues are involved in salt stress response, are localized in the nucleus and exhibit transcriptional activation activity. Our study provides basic information and effective clues for further functional investigation of CqR2R3-MYB transcription factors in quinoa.
Collapse
Affiliation(s)
- Yuqi Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Mingyu Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yongshun Huang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Peng Zhu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Guangtao Qian
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yiming Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Lixin Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
27
|
Zheng H, Gao Y, Sui Y, Dang Y, Wu F, Wang X, Zhang F, Du X, Sui N. R2R3 MYB transcription factor SbMYBHv33 negatively regulates sorghum biomass accumulation and salt tolerance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:5. [PMID: 36656365 DOI: 10.1007/s00122-023-04292-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
SbMYBHv33 negatively regulated biomass accumulation and salt tolerance in sorghum and Arabidopsis by regulating reactive oxygen species accumulation and ion levels. Salt stress is one of the main types of environmental stress leading to a reduction in crop yield worldwide. Plants have also evolved a variety of corresponding regulatory pathways to resist environmental stress damage. This study aimed to identify a SbMYBHv33 transcription factor that downregulates in salt, drought, and abscisic acid (ABA) in the salt-tolerant inbred line sorghum M-81E. The findings revealed that overexpression of SbMYBHv33 in sorghum significantly reduced sorghum biomass accumulation at the seedling stage and also salinity tolerance. Meanwhile, a heterologous transformation of Arabidopsis with SbMYBHv33 produced a similar phenotype. The loss of function of the Arabidopsis homolog of SbMYBHv33 resulted in longer roots and increased salt tolerance. Under normal conditions, SbMYBHV33 overexpression promoted the expression of ABA pathway genes in sorghum and inhibited growth. Under salt stress conditions, the gene expression of SbMYBHV33 decreased in the overexpressed lines, and the promotion of these genes in the ABA pathway was attenuated. This might be an important reason for the difference in growth and stress resistance between SbMYBHv33-overexpressed sorghum and ectopic expression Arabidopsis. Hence, SbMYBHv33 is an important component of sorghum growth and development and the regulation of salt stress response, and it could negatively regulate salt tolerance and biomass accumulation in sorghum.
Collapse
Affiliation(s)
- Hongxiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Yinping Gao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Yi Sui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yingying Dang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Fenghui Wu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Fangning Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xihua Du
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
28
|
Nunez-Vazquez R, Desvoyes B, Gutierrez C. Histone variants and modifications during abiotic stress response. FRONTIERS IN PLANT SCIENCE 2022; 13:984702. [PMID: 36589114 PMCID: PMC9797984 DOI: 10.3389/fpls.2022.984702] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/28/2022] [Indexed: 06/17/2023]
Abstract
Plants have developed multiple mechanisms as an adaptive response to abiotic stresses, such as salinity, drought, heat, cold, and oxidative stress. Understanding these regulatory networks is critical for coping with the negative impact of abiotic stress on crop productivity worldwide and, eventually, for the rational design of strategies to improve plant performance. Plant alterations upon stress are driven by changes in transcriptional regulation, which rely on locus-specific changes in chromatin accessibility. This process encompasses post-translational modifications of histone proteins that alter the DNA-histones binding, the exchange of canonical histones by variants that modify chromatin conformation, and DNA methylation, which has an implication in the silencing and activation of hypervariable genes. Here, we review the current understanding of the role of the major epigenetic modifications during the abiotic stress response and discuss the intricate relationship among them.
Collapse
Affiliation(s)
| | - Bénédicte Desvoyes
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Programa de Dinámica y Función del Genoma, Madrid, Spain
| | - Crisanto Gutierrez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Programa de Dinámica y Función del Genoma, Madrid, Spain
| |
Collapse
|
29
|
Yang Y, Wu C, Shan W, Wei W, Zhao Y, Kuang J, Chen J, Jiang Y, Lu W. Mitogen-activated protein kinase 14-mediated phosphorylation of MaMYB4 negatively regulates banana fruit ripening. HORTICULTURE RESEARCH 2022; 10:uhac243. [PMID: 36643754 PMCID: PMC9832833 DOI: 10.1093/hr/uhac243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
Mitogen-activated protein kinase (MAPK/MPK) cascades play crucial parts in plant growth, development processes, immune ability, and stress responses; however, the regulatory mechanism by which MAPK affects fruit ripening remains largely unexplored. Here, we reported that MaMPK14 cooperated with MaMYB4 to mediate postharvest banana fruit ripening. Transient overexpression of individual MaMPK14 and MaMYB4 in banana fruit delayed fruit ripening, confirming the negative roles in the ripening. The ripening negative regulator MaMYB4 could repress the transcription of genes associated with ethylene biosynthesis and fruit softening, such as MaACS1, MaXTH5, MaPG3, and MaEXPA15. Furthermore, MaMPK14 phosphorylated MaMYB4 at Ser160 via a direct interaction. Mutation at Ser160 of MaMYB4 reduced its interaction with MaMPK14 but did not affect its subcellular localization. Importantly, phosphorylation of MaMYB4 by MaMPK14 enhanced the MaMYB4-mediated transcriptional inhibition, binding strength, protein stability, and the repression of fruit ripening. Taken together, our results delineated the regulation pathway of MAPK module during banana fruit ripening, which involved the phosphorylation modification of MaMYB4 mediated by MaMPK14.
Collapse
Affiliation(s)
| | | | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yating Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jianfei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jianye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yueming Jiang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Wangjin Lu
- Corresponding author. Email address: (W. Lu). Telephone: +86-020-85285527. Fax: +86-020-85285527
| |
Collapse
|
30
|
Lim J, Lim CW, Lee SC. Role of pepper MYB transcription factor CaDIM1 in regulation of the drought response. FRONTIERS IN PLANT SCIENCE 2022; 13:1028392. [PMID: 36304389 PMCID: PMC9592997 DOI: 10.3389/fpls.2022.1028392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Abscisic acid (ABA) is a major phytohormone that plays important roles in stress responses, including regulation of gene expression and stomatal closure. Regulation of gene expression by transcription factors is a key cellular process for initiating defense responses to biotic and abiotic stresses. Here, using pepper (Capsicum annuum) leaves, we identified the MYB transcription factor CaDIM1 (Capsicum annuum Drought Induced MYB 1), which was highly induced by ABA and drought stress. CaDIM1 has an MYB domain in the N-terminal region and an acidic domain in the C-terminal region, which are responsible for recognition and transactivation of the target gene, respectively. Compared to control plants, CaDIM1-silenced pepper plants displayed ABA-insensitive and drought-sensitive phenotypes with reduced expression of stress-responsive genes. On the other hand, overexpression of CaDIM1 in Arabidopsis exhibited the opposite phenotypes of CaDIM1-silenced pepper plants, accompanied by enhanced ABA sensitivity and drought tolerance. Taken together, we demonstrate that CaDIM1 functions as a positive regulator of the drought-stress response via modulating ABA-mediated gene expression.
Collapse
|
31
|
Wang S, Cao L, Willick IR, Wang H, Tanino KK. Arabidopsis Ubiquitin-Conjugating Enzymes UBC4, UBC5, and UBC6 Have Major Functions in Sugar Metabolism and Leaf Senescence. Int J Mol Sci 2022; 23:11143. [PMID: 36232444 PMCID: PMC9569852 DOI: 10.3390/ijms231911143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022] Open
Abstract
The ubiquitin-conjugating enzyme (E2) is required for protein ubiquitination. Arabidopsis has 37 E2s grouped into 14 subfamilies and the functions for many of them are unknown. We utilized genetic and biochemical methods to study the roles of Arabidopsis UBC4, UBC5, and UBC6 of the E2 subfamily IV. The Arabidopsis ubc4/5/6 triple mutant plants had higher levels of glucose, sucrose, and starch than the control plants, as well as a higher protein level of a key gluconeogenic enzyme, cytosolic fructose 1,6-bisphosphatase 1 (cyFBP). In an in vitro assay, the proteasome inhibitor MG132 inhibited the degradation of recombinant cyFBP whereas ATP promoted cyFBP degradation. In the quadruple mutant ubc4/5/6 cyfbp, the sugar levels returned to normal, suggesting that the increased sugar levels in the ubc4/5/6 mutant were due to an increased cyFBPase level. In addition, the ubc4/5/6 mutant plants showed early leaf senescence at late stages of plant development as well as accelerated leaf senescence using detached leaves. Further, the leaf senescence phenotype remained in the quadruple ubc4/5/6 cyfbp mutant. Our results suggest that UBC4/5/6 have two lines of important functions, in sugar metabolism through regulating the cyFBP protein level and in leaf senescence likely through a cyFBP-independent mechanism.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Ling Cao
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Ian R. Willick
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Hong Wang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Karen K. Tanino
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
32
|
Chen Z, Wu Z, Dong W, Liu S, Tian L, Li J, Du H. MYB Transcription Factors Becoming Mainstream in Plant Roots. Int J Mol Sci 2022; 23:ijms23169262. [PMID: 36012533 PMCID: PMC9409031 DOI: 10.3390/ijms23169262] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022] Open
Abstract
The function of the root system is crucial for plant survival, such as anchoring plants, absorbing nutrients and water from the soil, and adapting to stress. MYB transcription factors constitute one of the largest transcription factor families in plant genomes with structural and functional diversifications. Members of this superfamily in plant development and cell differentiation, specialized metabolism, and biotic and abiotic stress processes are widely recognized, but their roles in plant roots are still not well characterized. Recent advances in functional studies remind us that MYB genes may have potentially key roles in roots. In this review, the current knowledge about the functions of MYB genes in roots was summarized, including promoting cell differentiation, regulating cell division through cell cycle, response to biotic and abiotic stresses (e.g., drought, salt stress, nutrient stress, light, gravity, and fungi), and mediate phytohormone signals. MYB genes from the same subfamily tend to regulate similar biological processes in roots in redundant but precise ways. Given their increasing known functions and wide expression profiles in roots, MYB genes are proposed as key components of the gene regulatory networks associated with distinct biological processes in roots. Further functional studies of MYB genes will provide an important basis for root regulatory mechanisms, enabling a more inclusive green revolution and sustainable agriculture to face the constant changes in climate and environmental conditions.
Collapse
Affiliation(s)
- Zhuo Chen
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Zexuan Wu
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Wenyu Dong
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Shiying Liu
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Lulu Tian
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jiana Li
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Hai Du
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Correspondence: ; Tel.: +86-182-2348-0008
| |
Collapse
|
33
|
Xiao M, Wang J, Xu F. Methylation hallmarks on the histone tail as a linker of osmotic stress and gene transcription. FRONTIERS IN PLANT SCIENCE 2022; 13:967607. [PMID: 36035677 PMCID: PMC9399788 DOI: 10.3389/fpls.2022.967607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/25/2022] [Indexed: 06/12/2023]
Abstract
Plants dynamically manipulate their gene expression in acclimation to the challenging environment. Hereinto, the histone methylation tunes the gene transcription via modulation of the chromatin accessibility to transcription machinery. Osmotic stress, which is caused by water deprivation or high concentration of ions, can trigger remarkable changes in histone methylation landscape and genome-wide reprogramming of transcription. However, the dynamic regulation of genes, especially how stress-inducible genes are timely epi-regulated by histone methylation remains largely unclear. In this review, recent findings on the interaction between histone (de)methylation and osmotic stress were summarized, with emphasis on the effects on histone methylation profiles imposed by stress and how histone methylation works to optimize the performance of plants under stress.
Collapse
|
34
|
Wang JL, Di DW, Luo P, Zhang L, Li XF, Guo GQ, Wu L. The roles of epigenetic modifications in the regulation of auxin biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:959053. [PMID: 36017262 PMCID: PMC9396225 DOI: 10.3389/fpls.2022.959053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/15/2022] [Indexed: 06/01/2023]
Abstract
Auxin is one of the most important plant growth regulators of plant morphogenesis and response to environmental stimuli. Although the biosynthesis pathway of auxin has been elucidated, the mechanisms regulating auxin biosynthesis remain poorly understood. The transcription of auxin biosynthetic genes is precisely regulated by complex signaling pathways. When the genes are expressed, epigenetic modifications guide mRNA synthesis and therefore determine protein production. Recent studies have shown that different epigenetic factors affect the transcription of auxin biosynthetic genes. In this review, we focus our attention on the molecular mechanisms through which epigenetic modifications regulate auxin biosynthesis.
Collapse
Affiliation(s)
- Jun-Li Wang
- Ministry of Education (MOE) Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Dong-Wei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Pan Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Li Zhang
- Basic Forestry and Proteomics Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiao-Feng Li
- Ministry of Education (MOE) Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Guang-Qin Guo
- Ministry of Education (MOE) Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lei Wu
- Ministry of Education (MOE) Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
35
|
Ali S, Khan N, Tang Y. Epigenetic marks for mitigating abiotic stresses in plants. JOURNAL OF PLANT PHYSIOLOGY 2022; 275:153740. [PMID: 35716656 DOI: 10.1016/j.jplph.2022.153740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/02/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Abiotic stressors are one of the major factors affecting agricultural output. Plants have evolved adaptive systems to respond appropriately to various environmental cues. These responses can be accomplished by modulating or fine-tuning genetic and epigenetic regulatory mechanisms. Understanding the response of plants' molecular features to abiotic stress is a priority in the current period of continued environmental changes. Epigenetic modifications are necessary that control gene expression by changing chromatin status and recruiting various transcription regulators. The present study summarized the current knowledge on epigenetic modifications concerning plant responses to various environmental stressors. The functional relevance of epigenetic marks in regulating stress tolerance has been revealed, and epigenetic changes impact the effector genes. This study looks at the epigenetic mechanisms that govern plant abiotic stress responses, especially DNA methylation, histone methylation/acetylation, chromatin remodeling, and various metabolites. Plant breeders will benefit from a thorough understanding of these processes to create alternative crop improvement approaches. Genome editing with clustered regularly interspaced short palindromic repeat/CRISPR-associated proteins (CRISPR/Cas) provides genetic tools to make agricultural genetic engineering more sustainable and publicly acceptable.
Collapse
Affiliation(s)
- Shahid Ali
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, FL, 32611, USA
| | - Yulin Tang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
36
|
Han X, Zhao Y, Chen Y, Xu J, Jiang C, Wang X, Zhuo R, Lu MZ, Zhang J. Lignin biosynthesis and accumulation in response to abiotic stresses in woody plants. FORESTRY RESEARCH 2022; 2:9. [PMID: 39525415 PMCID: PMC11524291 DOI: 10.48130/fr-2022-0009] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 06/13/2022] [Indexed: 11/16/2024]
Abstract
Woody plants have to experience various abiotic stresses due to their immobility and perennial characteristics. However, woody plants have evolved a series of specific regulation pathways in physiological and molecular mechanisms to deal with adverse environments. Compared with herbaceous plants, perennial woody plants have the advantages of developed roots and hard stems, and increased secondary xylem, which can strengthen the vascular system of the plants. The lignification process involves the lignin deposition on the cell wall by oxidation and polymerization of lignin monomer, which plays an important role in abiotic stress tolerance. This review focuses on recent progress in the biosynthesis, content, and accumulation of lignin in response to various abiotic stresses in plants. The role of transcription factors is also discussed in regulating lignin biosynthesis to enhance abiotic stress tolerance via changing cell wall lignification. Although woody plants shared similar lignin biosynthesis mechanisms with herbaceous plants, the temporal and spatial expression and stress response profiles of lignin biosynthetic genes provide the basis for the differences in stress tolerance of various species. An in-depth understanding of the role of lignin in the abiotic stress tolerance of woody plants will lay the foundation for the next step in tree resistance breeding through genetic engineering.
Collapse
Affiliation(s)
- Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Yanqiu Zhao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Yinjie Chen
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Jing Xu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Cheng Jiang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Xiaqin Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
37
|
Zarreen F, Karim MJ, Chakraborty S. The diverse roles of histone 2B monoubiquitination in the life of plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3854-3865. [PMID: 35348666 DOI: 10.1093/jxb/erac120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Covalent modification of histones is an important tool for gene transcriptional control in eukaryotes, which coordinates growth, development, and adaptation to environmental changes. In recent years, an important role for monoubiquitination of histone 2B (H2B) has emerged in plants, where it is associated with transcriptional activation. In this review, we discuss the dynamics of the H2B monoubiquitination system in plants and its role in regulating developmental processes including flowering, circadian rhythm, photomorphogenesis, and the response to abiotic and biotic stress including drought, salinity, and fungal, bacterial, and viral pathogens. Furthermore, we highlight the crosstalk between H2B monoubiquitination and other histone modifications which fine-tunes transcription and ensures developmental plasticity. Finally, we put into perspective how this versatile regulatory mechanism can be developed as a useful tool for crop improvement.
Collapse
Affiliation(s)
- Fauzia Zarreen
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mir Jishan Karim
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
38
|
Mackinnon E, Stone SL. The Ubiquitin Proteasome System and Nutrient Stress Response. FRONTIERS IN PLANT SCIENCE 2022; 13:867419. [PMID: 35665152 PMCID: PMC9161090 DOI: 10.3389/fpls.2022.867419] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Plants utilize different molecular mechanisms, including the Ubiquitin Proteasome System (UPS) that facilitates changes to the proteome, to mitigate the impact of abiotic stresses on growth and development. The UPS encompasses the ubiquitination of selected substrates followed by the proteasomal degradation of the modified proteins. Ubiquitin ligases, or E3s, are central to the UPS as they govern specificity and facilitate the attachment of one or more ubiquitin molecules to the substrate protein. From recent studies, the UPS has emerged as an important regulator of the uptake and translocation of essential macronutrients and micronutrients. In this review, we discuss select E3s that are involved in regulating nutrient uptake and responses to stress conditions, including limited or excess levels of nitrogen, phosphorus, iron, and copper.
Collapse
|
39
|
Xia-Yu G, Meng Z, Ming-Dong Z, Ji-Rui L, Zhong-Wei W, Jian-Wu L, Bin Z, Zhi-Yong A, Hua-Feng D. Comparative transcriptomic analysis of the super hybrid rice Chaoyouqianhao under salt stress. BMC PLANT BIOLOGY 2022; 22:233. [PMID: 35525915 PMCID: PMC9077912 DOI: 10.1186/s12870-022-03586-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/06/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND Soil salinization is a threat to food security. China is rich in saline land resources for potential and current utilization. The cultivation and promotion of salt-tolerant rice varieties can greatly improve the utilization of this saline land. The super hybrid rice Chaoyouqianhao (CY1000) is one of the most salt-tolerant rice varieties and is widely used, but the molecular mechanism underlying its salt tolerance is not clear. RESULTS In this study, the characteristics of CY1000 and its parents were evaluated in the field and laboratory. The results showed that aboveground parts of CY1000 were barely influenced by salt stress, while the roots were less affected than those of its parents. A comparative transcriptomic strategy was used to analyze the differences in the response to salt stress among the male and female parents of CY1000 at the seedling stage and the model indica rice 93-11. We found that the salt tolerance of CY1000 was mainly inherited from its male parent R900, and its female parent GX24S showed hardly any salt tolerance. To adapt to salt stress, CY1000 and R900 upregulated the expression of genes associated with soluble component synthesis and cell wall synthesis and other related genes and downregulated the expression of most genes related to growth material acquisition and consumption. In CY1000 and R900, the expression of genes encoding some novel key proteins in the ubiquitination pathway was significantly upregulated. After treatment with MG-132, the salt tolerance of CY1000 and R900 was significantly decreased and was almost the same as that of the wild type after salt stress treatment, indicating that ubiquitination played an important role in the salt tolerance mechanism of CY1000. At the same time, we found that some transcription factors were also involved in the salt stress response, with some transcription factors responding only in hybrid CY1000, suggesting that salt tolerance heterosis might be regulated by transcription factors in rice. CONCLUSION Our results revealed that the ubiquitination pathway is important for salt tolerance in rice, and several novel candidate genes were identified to reveal a novel salt tolerance regulation network. Additionally, our work will help clarify the mechanism of heterosis in rice. Further exploration of the molecular mechanism underlying the salt tolerance of CY1000 can provide a theoretical basis for breeding new salt-tolerant rice varieties.
Collapse
Affiliation(s)
- Guo Xia-Yu
- College of Agronomy, Hunan Agricultural University, Changsha, 410125 P. R. China
- National Innovation Center of Saline-Alkali Tolerant Rice in Sanya, Sanya, 572000 P. R. China
- Hunan Hybrid Rice Research Center, Changsha, 410125 P. R. China
| | - Zhang Meng
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082 P. R. China
| | - Zhu Ming-Dong
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Hunan Rice Research Institute, Changsha, 410125 P. R. China
| | - Long Ji-Rui
- Hunan Hybrid Rice Research Center, Changsha, 410125 P. R. China
| | - Wei Zhong-Wei
- Hunan Hybrid Rice Research Center, Changsha, 410125 P. R. China
| | - Li Jian-Wu
- Hunan Hybrid Rice Research Center, Changsha, 410125 P. R. China
| | - Zhou Bin
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Hunan Rice Research Institute, Changsha, 410125 P. R. China
| | - Ai Zhi-Yong
- National Innovation Center of Saline-Alkali Tolerant Rice in Sanya, Sanya, 572000 P. R. China
- Hunan Hybrid Rice Research Center, Changsha, 410125 P. R. China
| | - Deng Hua-Feng
- College of Agronomy, Hunan Agricultural University, Changsha, 410125 P. R. China
- Hunan Academy of Agricultural Sciences, Changsha, 410125 P. R. China
| |
Collapse
|
40
|
Zhao Y, Wang XQ. VvMYB1 potentially affects VvTOR gene expression by regulating VvTOR promoter and participates in glucose accumulation. JOURNAL OF PLANT PHYSIOLOGY 2022; 272:153668. [PMID: 35306297 DOI: 10.1016/j.jplph.2022.153668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/12/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
MYB (v-myb avian myeloblastosis viral oncogene homolog) transcription factors make up one of the largest protein families in plants. The TOR (target of rapamycin) signaling network plays a pivotal role in sugar metabolism and plant growth. In this article, we utilized grape (Vitis vinifera) calli to explore the relationship between VvMYB1 and VvTOR. By using yeast one-hybrid and dual-luciferase reporter system, we speculated that there may be other proteins that help VvMYB1 and VvTOR promoter bond in grape calli, and the interaction action sites were located between the VvTOR 400-bp promoter fragment and the 1200-bp promoter fragment. The subcellular localization results suggest that VvMYB1 is found in the nucleus. Moreover, the expression level of VvTOR increased in the transgenic calli with overexpression of VvMYB1. These findings provide further evidence that VvMYB1 regulates VvTOR expression. We also found that overexpression of VvMYB1 increased glucose accumulation and affected expression of sugar-related genes. Our results suggest that there is a crosstalk between VvMYB1, VvTOR, and glucose accumulation.
Collapse
Affiliation(s)
- Ying Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China.
| | - Xiu-Qin Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China.
| |
Collapse
|
41
|
Effects of Azorhizobium caulinodans and Piriformospora indica Co-Inoculation on Growth and Fruit Quality of Tomato (Solanum lycopersicum L.) under Salt Stress. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040302] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Salt stress is a worldwide environmental signal, reducing the growth and yield of crops. To improve crop tolerance to salt, several beneficial microbes are utilized. Here, nitrogen-fixing bacterium Azorhizobium caulinodans and root endophytic fungus Piriformospora indica were used to inoculate tomato (Solanum lycopersicum) under salt stress, and the effects of the co-inoculation were investigated. Results showed that A. caulinodans colonized in the intercellular space in stems and roots of tomato plants, while P. indica colonized in the root cortex. Two weeks following salt treatment, co-inoculated tomato plants grew substantially taller and had larger stem base diameters. Activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and reduced and oxidized ascorbate and glutathione (i.e., AsA, DHA, GSH, and GSSG, respectively) concentrations along with the ratios of AsA/(AsA + DHA) and GSH/(GSH + GSSG) increased in the leaves of co-inoculated plants under salt stress. The co-inoculation significantly increased soluble proteins and AsA in fruits; however, concentrations of soluble sugars and proanthocyanins did not show significant changes, compared with NaCl only treatment. Data suggest that A. caulinodans and P. indica co-inoculation boosted tomato growth and improved the quality of tomato fruits under salt stress. O-inoculation of A. caulinodans and P. indica might be employed to enhance tomato plant salt tolerance.
Collapse
|
42
|
Yung WS, Wang Q, Huang M, Wong FL, Liu A, Ng MS, Li KP, Sze CC, Li MW, Lam HM. Priming-induced alterations in histone modifications modulate transcriptional responses in soybean under salt stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1575-1590. [PMID: 34961994 DOI: 10.1111/tpj.15652] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/01/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Plants that have experienced certain abiotic stress may gain tolerance to a similar stress in subsequent exposure. This phenomenon, called priming, was observed here in soybean (Glycine max) seedlings exposed to salt stress. Time-course transcriptomic profiles revealed distinctively different transcriptional responses in the primed seedlings from those in the non-primed seedlings under high salinity stress, indicating a stress response strategy of repressing unhelpful biotic stress responses and focusing on the promotion of those responses important for salt tolerance. To identify histone marks altered by the priming salinity treatment, a genome-wide profiling of histone 3 lysine 4 dimethylation (H3K4me2), H3K4me3, and histone 3 lysine 9 acetylation (H3K9ac) was performed. Our integrative analyses revealed that priming induced drastic alterations in these histone marks, which coordinately modified the stress response, ion homeostasis, and cell wall modification. Furthermore, transcriptional network analyses unveiled epigenetically modified networks which mediate the strategic downregulation of defense responses. Altering the histone acetylation status using a chemical inhibitor could elicit the priming-like transcriptional responses in non-primed seedlings, confirming the importance of histone marks in forming the priming response.
Collapse
Affiliation(s)
- Wai-Shing Yung
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Qianwen Wang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Mingkun Huang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, 332900, China
| | - Fuk-Ling Wong
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ailin Liu
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ming-Sin Ng
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kwan-Pok Li
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ching-Ching Sze
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Man-Wah Li
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
43
|
Chen C, Shang X, Sun M, Tang S, Khan A, Zhang D, Yan H, Jiang Y, Yu F, Wu Y, Xie Q. Comparative Transcriptome Analysis of Two Sweet Sorghum Genotypes with Different Salt Tolerance Abilities to Reveal the Mechanism of Salt Tolerance. Int J Mol Sci 2022; 23:2272. [PMID: 35216389 PMCID: PMC8877675 DOI: 10.3390/ijms23042272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 12/13/2022] Open
Abstract
Sweet sorghum is a C4 crop that can be grown for silage forage, fiber, syrup and fuel production. It is generally considered a salt-tolerant plant. However, the salt tolerance ability varies among genotypes, and the mechanism is not well known. To further uncover the salt tolerance mechanism, we performed comparative transcriptome analysis with RNA samples in two sweet sorghum genotypes showing different salt tolerance abilities (salt-tolerant line RIO and salt-sensitive line SN005) upon salt treatment. These response processes mainly focused on secondary metabolism, hormone signaling and stress response. The expression pattern cluster analysis showed that RIO-specific response genes were significantly enriched in the categories related to secondary metabolic pathways. GO enrichment analysis indicated that RIO responded earlier than SN005 in the 2 h after treatment. In addition, we identified more transcription factors (TFs) in RIO than SN005 that were specifically expressed differently in the first 2 h of salt treatment, and the pattern of TF change was obviously different. These results indicate that an early response in secondary metabolism might be essential for salt tolerance in sweet sorghum. In conclusion, we found that an early response, especially in secondary metabolism and hormone signaling, might be essential for salt tolerance in sweet sorghum.
Collapse
Affiliation(s)
- Chengxuan Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (C.C.); (X.S.); (M.S.); (S.T.); (A.K.); (D.Z.); (F.Y.); (Y.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoling Shang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (C.C.); (X.S.); (M.S.); (S.T.); (A.K.); (D.Z.); (F.Y.); (Y.W.)
| | - Meiyu Sun
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (C.C.); (X.S.); (M.S.); (S.T.); (A.K.); (D.Z.); (F.Y.); (Y.W.)
| | - Sanyuan Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (C.C.); (X.S.); (M.S.); (S.T.); (A.K.); (D.Z.); (F.Y.); (Y.W.)
| | - Aimal Khan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (C.C.); (X.S.); (M.S.); (S.T.); (A.K.); (D.Z.); (F.Y.); (Y.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (C.C.); (X.S.); (M.S.); (S.T.); (A.K.); (D.Z.); (F.Y.); (Y.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongdong Yan
- Crop Resources Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150080, China; (H.Y.); (Y.J.)
| | - Yanxi Jiang
- Crop Resources Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150080, China; (H.Y.); (Y.J.)
| | - Feifei Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (C.C.); (X.S.); (M.S.); (S.T.); (A.K.); (D.Z.); (F.Y.); (Y.W.)
| | - Yaorong Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (C.C.); (X.S.); (M.S.); (S.T.); (A.K.); (D.Z.); (F.Y.); (Y.W.)
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (C.C.); (X.S.); (M.S.); (S.T.); (A.K.); (D.Z.); (F.Y.); (Y.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
44
|
Zhang Z, Xu C, Zhang S, Shi C, Cheng H, Liu H, Zhong B. Origin and adaptive evolution of UV RESISTANCE LOCUS 8-mediated signaling during plant terrestrialization. PLANT PHYSIOLOGY 2022; 188:332-346. [PMID: 34662425 PMCID: PMC8774840 DOI: 10.1093/plphys/kiab486] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
UV RESISTANCE LOCUS 8 (UVR8) mediates photomorphogenic responses and acclimation to UV-B radiation by regulating the transcription of a series of transcription factors (TFs). However, the origin and evolution of UVR8-mediated signaling pathways remain largely unknown. In this study, we investigated the origin and evolution of the major components of the UVR8-mediated signaling pathway (UVR8, REPRESSOR OF UV-B PHOTOMORPHOGENESIS [RUP], BRI1-EMS-SUPPRESSOR1 [BES1], BES1-INTERACTING MYC-LIKE 1 (BIM1), WRKY DNA-BINDING PROTEIN 36 (WRKY36), MYB DOMAIN PROTEIN 73/77/13 [MYB73/MYB77/MYB13], and PHYTOCHROME INTERACTING FACTOR 4/5 [PIF4 and PIF5]) using comparative genomics and phylogenetic approaches. We showed that the central regulator UVR8 presented a conservative evolutionary route during plant evolution, and the evolutionary history of downstream negative regulators and TFs was different from that of green plant phylogeny. The canonical UVR8-CONSTITUTIVELY PHOTOMORPHOGENIC 1(COP1)/SUPPRESSOR OF PHYA-105 (SPA)-ELONGATED HYPOCOTYL 5 (HY5)-RUP signaling pathway originated in chlorophytes and conferred green algae the additional ability to cope with UV-B radiation. Moreover, the emergence of multiple UVR8-mediated signaling pathways in charophytes laid the foundations for the cross-talk between UV-B signals and endogenous hormone responses. Importantly, we observed signatures that reflect plant adaptations to high UV-B irradiance in subaerial/terrestrial environments, including positive selection in UVR8 and RUPs and increased copy number of some vital TFs. These results revealed that green plants not only experienced adaptive modifications in the canonical UVR8-COP1/SPA-HY5-RUP signaling pathway, but also diversified their UV-B signal transduction mechanisms through increasing cross-talk with other pathways, such as those associated with brassinosteroids and auxin. This study greatly expands our understanding of molecular evolution and adaptive mechanisms underlying plant UV-B acclimation.
Collapse
Affiliation(s)
- Zhenhua Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Chenjie Xu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Shiyu Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Chen Shi
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, Shanghai 200032, China
| | - Hong Cheng
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, Shanghai 200032, China
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
45
|
Yung WS, Li MW, Sze CC, Wang Q, Lam HM. Histone modifications and chromatin remodelling in plants in response to salt stress. PHYSIOLOGIA PLANTARUM 2021; 173:1495-1513. [PMID: 34028035 DOI: 10.1111/ppl.13467] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/04/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
In the face of global food security crises, it is necessary to boost agricultural production. One factor hampering the attempts to increase food production is elevated soil salinity, which can be due to salt that is naturally present in the soil or a consequence of excessive or prolonged irrigation or application of fertiliser. In response to environmental stresses, plants activate multiple molecular mechanisms, including the timely activation of stress-responsive transcriptional networks. However, in the case of salt stress, the combined effects of the initial osmotic shock and the subsequent ion-specific stress increase the complexity in the selective regulation of gene expressions involved in restoring or maintaining osmotic balance, ion homeostasis and reactive oxygen species scavenging. Histone modifications and chromatin remodelling are important epigenetic processes that regulate gene expressions by modifying the chromatin status and recruiting transcription regulators. In this review, we have specifically summarised the currently available knowledge on histone modifications and chromatin remodelling in relation to plant responses to salt stress. Current findings have revealed the functional importance of chromatin modifiers in regulating salt tolerance and identified the effector genes affected by epigenetic modifications, although counteraction between modifiers within the same family may occur. Emerging evidence has also illustrated the crosstalk between epigenetic modifications and hormone signalling pathways which involves formation of protein complexes. With an improved understanding of these processes, plant breeders will be able to develop alternative strategies using genome editing technologies for crop improvement.
Collapse
Affiliation(s)
- Wai-Shing Yung
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Man-Wah Li
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ching-Ching Sze
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qianwen Wang
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hon-Ming Lam
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
46
|
Piao M, Zou J, Li Z, Zhang J, Yang L, Yao N, Li Y, Li Y, Tang H, Zhang L, Yang D, Yang Z, Du X, Zuo Z. The Arabidopsis HY2 Gene Acts as a Positive Regulator of NaCl Signaling during Seed Germination. Int J Mol Sci 2021; 22:ijms22169009. [PMID: 34445714 PMCID: PMC8396667 DOI: 10.3390/ijms22169009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/30/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Phytochromobilin (PΦB) participates in the regulation of plant growth and development as an important synthetase of photoreceptor phytochromes (phy). In addition, Arabidopsis long hypocotyl 2 (HY2) appropriately works as a key PΦB synthetase. However, whether HY2 takes part in the plant stress response signal network remains unknown. Here, we described the function of HY2 in NaCl signaling. The hy2 mutant was NaCl-insensitive, whereas HY2-overexpressing lines showed NaCl-hypersensitive phenotypes during seed germination. The exogenous NaCl induced the transcription and the protein level of HY2, which positively mediated the expression of downstream stress-related genes of RD29A, RD29B, and DREB2A. Further quantitative proteomics showed the patterns of 7391 proteins under salt stress. HY2 was then found to specifically mediate 215 differentially regulated proteins (DRPs), which, according to GO enrichment analysis, were mainly involved in ion homeostasis, flavonoid biosynthetic and metabolic pathways, hormone response (SA, JA, ABA, ethylene), the reactive oxygen species (ROS) metabolic pathway, photosynthesis, and detoxification pathways to respond to salt stress. More importantly, ANNAT1–ANNAT2–ANNAT3–ANNAT4 and GSTU19–GSTF10–RPL5A–RPL5B–AT2G32060, two protein interaction networks specifically regulated by HY2, jointly participated in the salt stress response. These results direct the pathway of HY2 participating in salt stress, and provide new insights for the plant to resist salt stress.
Collapse
Affiliation(s)
- Mingxin Piao
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (M.P.); (J.Z.); (L.Y.); (L.Z.); (Z.Y.)
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (Z.L.); (N.Y.); (Y.L.); (Y.L.); (H.T.)
| | - Jinpeng Zou
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (Z.L.); (N.Y.); (Y.L.); (Y.L.); (H.T.)
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China;
| | - Zhifang Li
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (Z.L.); (N.Y.); (Y.L.); (Y.L.); (H.T.)
| | - Junchuan Zhang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (M.P.); (J.Z.); (L.Y.); (L.Z.); (Z.Y.)
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (Z.L.); (N.Y.); (Y.L.); (Y.L.); (H.T.)
| | - Liang Yang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (M.P.); (J.Z.); (L.Y.); (L.Z.); (Z.Y.)
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (Z.L.); (N.Y.); (Y.L.); (Y.L.); (H.T.)
| | - Nan Yao
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (Z.L.); (N.Y.); (Y.L.); (Y.L.); (H.T.)
| | - Yuhong Li
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (Z.L.); (N.Y.); (Y.L.); (Y.L.); (H.T.)
| | - Yaxing Li
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (Z.L.); (N.Y.); (Y.L.); (Y.L.); (H.T.)
| | - Haohao Tang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (Z.L.); (N.Y.); (Y.L.); (Y.L.); (H.T.)
| | - Li Zhang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (M.P.); (J.Z.); (L.Y.); (L.Z.); (Z.Y.)
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (Z.L.); (N.Y.); (Y.L.); (Y.L.); (H.T.)
| | - Deguang Yang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China;
| | - Zhenming Yang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (M.P.); (J.Z.); (L.Y.); (L.Z.); (Z.Y.)
| | - Xinglin Du
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (M.P.); (J.Z.); (L.Y.); (L.Z.); (Z.Y.)
- Correspondence: (X.D.); (Z.Z.)
| | - Zecheng Zuo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (M.P.); (J.Z.); (L.Y.); (L.Z.); (Z.Y.)
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (Z.L.); (N.Y.); (Y.L.); (Y.L.); (H.T.)
- Correspondence: (X.D.); (Z.Z.)
| |
Collapse
|
47
|
Wang S, Shi M, Zhang Y, Xie X, Sun P, Fang C, Zhao J. FvMYB24, a strawberry R2R3-MYB transcription factor, improved salt stress tolerance in transgenic Arabidopsis. Biochem Biophys Res Commun 2021; 569:93-99. [PMID: 34237433 DOI: 10.1016/j.bbrc.2021.06.085] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022]
Abstract
Salinity is one of the major environmental stresses that limit crop growth and productivity. In this study, the FvMYB24 gene that encodes an R2R3-type MYB transcription factor was cloned and characterized. An expression analysis showed that FvMYB24 had a tissue- and stage-specific profile and was induced by salt treatment. Arabidopsis plants that overexpressed transgenic FvMYB24 exhibited a higher germination rate, fresh weight, chlorophyll content, and longer root length than the wild type (WT) under salt stress. The transgenic plants had higher activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) and the accumulation of proline, while these plants accumulated lower amounts of malondialdehyde (MDA) compared with the WT. Furthermore, our results also revealed that the overexpression of FvMYB24 up-regulated the expression of several stress-related genes (AtSOS1, AtSOS2, AtSOS3, AtSOD, AtPOD, AtCAT1, AtNHX1, and AtLEA3) in response to salt stress, thus, enhancing the tolerance of transgenic Arabidopsis. An analysis of the cis-acting elements in the SOS1, SOS2, and SOS3 promoters revealed MYB-binding sites. However, FvMYB24 could only bind to the SOS1 promoter to mediate salt tolerance but not to the SOS2 and SOS3 promoters. These findings suggest that FvMYB24 could potentially be used as a positive regulator in transgenic plant breeding to improve the tolerance of strawberry plants to salt.
Collapse
Affiliation(s)
- Shuaishuai Wang
- School of Horticulture, Anhui Agricultural University, Hefei, Anhui, 230036, PR China
| | - Mengyun Shi
- School of Horticulture, Anhui Agricultural University, Hefei, Anhui, 230036, PR China
| | - Yang Zhang
- School of Horticulture, Anhui Agricultural University, Hefei, Anhui, 230036, PR China
| | - Xingbin Xie
- School of Horticulture, Anhui Agricultural University, Hefei, Anhui, 230036, PR China
| | - Peipei Sun
- School of Horticulture, Anhui Agricultural University, Hefei, Anhui, 230036, PR China
| | - Congbing Fang
- School of Horticulture, Anhui Agricultural University, Hefei, Anhui, 230036, PR China.
| | - Jing Zhao
- School of Horticulture, Anhui Agricultural University, Hefei, Anhui, 230036, PR China.
| |
Collapse
|
48
|
Wang X, Niu Y, Zheng Y. Multiple Functions of MYB Transcription Factors in Abiotic Stress Responses. Int J Mol Sci 2021; 22:ijms22116125. [PMID: 34200125 PMCID: PMC8201141 DOI: 10.3390/ijms22116125] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 01/25/2023] Open
Abstract
Plants face a more volatile environment than other organisms because of their immobility, and they have developed highly efficient mechanisms to adapt to stress conditions. Transcription factors, as an important part of the adaptation process, are activated by different signals and are responsible for the expression of stress-responsive genes. MYB transcription factors, as one of the most widespread transcription factor families in plants, participate in plant development and responses to stresses by combining with MYB cis-elements in promoters of target genes. MYB transcription factors have been extensively studied and have proven to be critical in the biosynthesis of secondary metabolites in plants, including anthocyanins, flavonols, and lignin. Multiple studies have now shown that MYB proteins play diverse roles in the responses to abiotic stresses, such as drought, salt, and cold stresses. However, the regulatory mechanism of MYB proteins in abiotic stresses is still not well understood. In this review, we will focus mainly on the function of Arabidopsis MYB transcription factors in abiotic stresses, especially how MYB proteins participate in these stress responses. We also pay attention to how the MYB proteins are regulated in these processes at both the transcript and protein levels.
Collapse
|
49
|
Sharma S, Prasad A, Sharma N, Prasad M. Role of ubiquitination enzymes in abiotic environmental interactions with plants. Int J Biol Macromol 2021; 181:494-507. [PMID: 33798570 DOI: 10.1016/j.ijbiomac.2021.03.185] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/08/2021] [Accepted: 03/27/2021] [Indexed: 12/14/2022]
Abstract
Ubiquitination, a post-translational modification, plays a crucial role in various aspects of plant development and stress responses. Protein degradation by ubiquitination is well established and ubiquitin is the main underlying component directing the turnover of proteins. Recent reports have also revealed the non-proteolytic roles of ubiquitination in plants. In the past decade, ubiquitination has emerged to be one of the most important players in modulating plant's responses to abiotic stresses, which led to identification of specific E3 ligases and their targets involved in the process. Most of the E3 ligases play regulatory roles by modifying the stability and accumulation of stress responsive regulatory proteins, such as transcription factors, thus, modifying the downstream responses, or by degrading the proteins involved in the downstream cascade itself. In this review, we summarize and highlight the recent advances in the field of ubiquitination-mediated regulation of plant's responses to various abiotic stresses including limited nutrient availability and metal toxicity. The non-proteolytic role of ubiquitination in epigenetic regulation of abiotic stress induced response has also been discussed.
Collapse
Affiliation(s)
- Shambhavi Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashish Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Namisha Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
50
|
McCoy RM, Julian R, Kumar SRV, Ranjan R, Varala K, Li Y. A Systems Biology Approach to Identify Essential Epigenetic Regulators for Specific Biological Processes in Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10020364. [PMID: 33668664 PMCID: PMC7918732 DOI: 10.3390/plants10020364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 05/05/2023]
Abstract
Upon sensing developmental or environmental cues, epigenetic regulators transform the chromatin landscape of a network of genes to modulate their expression and dictate adequate cellular and organismal responses. Knowledge of the specific biological processes and genomic loci controlled by each epigenetic regulator will greatly advance our understanding of epigenetic regulation in plants. To facilitate hypothesis generation and testing in this domain, we present EpiNet, an extensive gene regulatory network (GRN) featuring epigenetic regulators. EpiNet was enabled by (i) curated knowledge of epigenetic regulators involved in DNA methylation, histone modification, chromatin remodeling, and siRNA pathways; and (ii) a machine-learning network inference approach powered by a wealth of public transcriptome datasets. We applied GENIE3, a machine-learning network inference approach, to mine public Arabidopsis transcriptomes and construct tissue-specific GRNs with both epigenetic regulators and transcription factors as predictors. The resultant GRNs, named EpiNet, can now be intersected with individual transcriptomic studies on biological processes of interest to identify the most influential epigenetic regulators, as well as predicted gene targets of the epigenetic regulators. We demonstrate the validity of this approach using case studies of shoot and root apical meristem development.
Collapse
Affiliation(s)
- Rachel M. McCoy
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA; (R.M.M.); (R.J.); (S.R.V.K.); (R.R.); (K.V.)
- Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Russell Julian
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA; (R.M.M.); (R.J.); (S.R.V.K.); (R.R.); (K.V.)
- Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Shoban R. V. Kumar
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA; (R.M.M.); (R.J.); (S.R.V.K.); (R.R.); (K.V.)
- Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Rajeev Ranjan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA; (R.M.M.); (R.J.); (S.R.V.K.); (R.R.); (K.V.)
- Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Kranthi Varala
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA; (R.M.M.); (R.J.); (S.R.V.K.); (R.R.); (K.V.)
- Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Ying Li
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA; (R.M.M.); (R.J.); (S.R.V.K.); (R.R.); (K.V.)
- Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
- Correspondence: ; Tel.: +1-765-494-0104
| |
Collapse
|