1
|
Mao C, Gong L, Kang W. Effect and mechanism of resveratrol on ferroptosis mediated by p53/SLC7A11 in oral squamous cell carcinoma. BMC Oral Health 2024; 24:773. [PMID: 38987730 PMCID: PMC11238462 DOI: 10.1186/s12903-024-04395-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/21/2024] [Indexed: 07/12/2024] Open
Abstract
OBJECTIVE Resveratrol (Res) is a natural phytoestrogen with antitumor activity. This study sought to investigate the role of Res in ferroptosis in oral squamous cell carcinoma (OSCC). METHODS Normal human oral keratinocyte (HOK)/oral OSCC (CAL-27/SCC-9) cell lines were treated with different doses of Res. Res toxicity was determined by MTT assay, with half maximal inhibitory concentration values of Res on CAL-27 and SCC-9 cells calculated. Cell viability/colony formation efficiency/migration/invasion/cycle were assessed by CCK-8/colony formation assay/transwell assay/flow cytometry. The expression of p53 protein in the nucleus and cytoplasm, glutathione peroxidase 4 (GPX4) expression, and SLC7A11 messenger RNA (mRNA) and protein expression levels were determined by Western blot and RT-qPCR. Fe2+ content, reactive oxygen species (ROS) level, reduced glutathione (GSH), and lactate dehydrogenase (LDH) release were assessed. RESULTS Medium- to low-dose Res had no toxic effect on HOK cells, while high-dose Res markedly reduced HOK cell viability. Res significantly suppressed the viability of OSCC cells (CAL-27 and SCC-9). Res inhibited OSCC cell colony formation/migration/invasion, and induced G1 phase arrest. Res caused the translocation of p53 protein to the nucleus, obviously increased Fe2+ content, ROS level and LDH release, decreased GSH content and GPX4 protein expression, and induced ferroptosis. Down-regulation of p53 partially reversed the inhibitory effects of Res on CAL-27 cell malignant behaviors. Res inhibited SLC7A11 transcription by promoting p53 entry into the nucleus. SLC7A11 overexpression negated the the regulatory effects of p53 knockout on the role of Res in OSCC cell malignant behaviors and ferroptosis. CONCLUSION Res accelerated ferroptosis and inhibited malignant behaviors in OSCC cells by regulating p53/SLC7A11.
Collapse
Affiliation(s)
- Chen Mao
- Department of Stomatology, Loudi Central Hospital of Hunan Province, 51 Changqing Middle Street, Loudi, 417000, Hunan, China.
| | - Liqiang Gong
- Department of Stomatology, Loudi Central Hospital of Hunan Province, 51 Changqing Middle Street, Loudi, 417000, Hunan, China
| | - Wenming Kang
- Department of Stomatology, Loudi Central Hospital of Hunan Province, 51 Changqing Middle Street, Loudi, 417000, Hunan, China
| |
Collapse
|
2
|
Fialková V, Ďúranová H, Borotová P, Klongová L, Grabacka M, Speváková I. Natural Stilbenes: Their Role in Colorectal Cancer Prevention, DNA Methylation, and Therapy. Nutr Cancer 2024; 76:760-788. [PMID: 38950568 DOI: 10.1080/01635581.2024.2364391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024]
Abstract
The resistance of colorectal cancer (CRC) to conventional therapeutic modalities, such as radiation therapy and chemotherapy, along with the associated side effects, significantly limits effective anticancer strategies. Numerous epigenetic investigations have unveiled that naturally occurring stilbenes can modify or reverse abnormal epigenetic alterations, particularly aberrant DNA methylation status, offering potential avenues for preventing or treating CRC. By modulating the activity of the DNA methylation machinery components, phytochemicals may influence the various stages of CRC carcinogenesis through multiple molecular mechanisms. Several epigenetic studies, especially preclinical research, have highlighted the effective DNA methylation modulatory effects of stilbenes with minimal adverse effects on organisms, particularly in combination therapies for CRC. However, the available preclinical and clinical data regarding the effects of commonly encountered stilbenes against CRC are currently limited. Therefore, additional epigenetic research is warranted to explore the preventive potential of these phytochemicals in CRC development and to validate their therapeutic application in the prevention and treatment of CRC. This review aims to provide an overview of selected bioactive stilbenes as potential chemopreventive agents for CRC with a focus on their modulatory mechanisms of action, especially in targeting alterations in DNA methylation machinery in CRC.
Collapse
Affiliation(s)
- Veronika Fialková
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Hana Ďúranová
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Petra Borotová
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Lucia Klongová
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Maja Grabacka
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture, Cracow, Poland
| | - Ivana Speváková
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| |
Collapse
|
3
|
Najafiyan B, Bokaii Hosseini Z, Esmaelian S, Firuzpour F, Rahimipour Anaraki S, Kalantari L, Hheidari A, Mesgari H, Nabi-Afjadi M. Unveiling the potential effects of resveratrol in lung cancer treatment: Mechanisms and nanoparticle-based drug delivery strategies. Biomed Pharmacother 2024; 172:116207. [PMID: 38295754 DOI: 10.1016/j.biopha.2024.116207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 03/03/2024] Open
Abstract
Lung cancer ranks among the most prevalent forms of cancer and remains a significant factor in cancer-related mortality across the world. It poses significant challenges to healthcare systems and society as a whole due to its high incidence, mortality rates, and late-stage diagnosis. Resveratrol (RV), a natural compound found in various plants, has shown potential as a nanomedicine for lung cancer treatment. RV has varied effects on cancer cells, including promoting apoptosis by increasing pro-apoptotic proteins (Bax and Bak) and decreasing anti-apoptotic proteins (Bcl-2). It also hinders cell proliferation by influencing important signaling pathways (MAPK, mTOR, PI3K/Akt, and Wnt/β-catenin) that govern cancer progression. In addition, RV acts as a potent antioxidant, diminishing oxidative stress and safeguarding cells against DNA damage. However, using RV alone in cancer treatment has drawbacks, such as low bioavailability, lack of targeting ability, and susceptibility to degradation. In contrast, nanoparticle-based delivery systems address these limitations and hold promise for improving treatment outcomes in lung cancer; nanoparticle formulations of RV offer advantages such as improved drug delivery, increased stability, controlled release, and targeted delivery to lung cancer cells. This article will provide an overview of lung cancer, explore the potential of RV as a therapeutic agent, discuss the benefits and challenges of nanoparticle-based drug delivery, and highlight the promise of RV nanoparticles for cancer treatment, including lung cancer. By optimizing these systems for clinical application, future studies aim to enhance overall treatment outcomes and improve the prognosis for lung cancer patients.
Collapse
Affiliation(s)
- Behnam Najafiyan
- Faculty of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
| | | | - Samar Esmaelian
- Faculty of Dentistry, Islamic Azad University, Tehran Branch, Tehran, Iran
| | - Faezeh Firuzpour
- Student of Research Committee, Babol University of Medical Sciences, Babol, Iran
| | | | - Leila Kalantari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Hheidari
- Department of Mechanical Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Hassan Mesgari
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Islamic Azad University, Tehran Branch, Tehran, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Antiangiogenic Phytochemicals Constituent of Diet as Promising Candidates for Chemoprevention of Cancer. Antioxidants (Basel) 2022; 11:antiox11020302. [PMID: 35204185 PMCID: PMC8868078 DOI: 10.3390/antiox11020302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 12/04/2022] Open
Abstract
Despite the extensive knowledge on cancer nature acquired over the last years, the high incidence of this disease evidences a need for new approaches that complement the clinical intervention of tumors. Interestingly, many types of cancer are closely related to dietary habits associated with the Western lifestyle, such as low fruit and vegetable intake. Recent advances around the old-conceived term of chemoprevention highlight the important role of phytochemicals as good candidates for the prevention or treatment of cancer. The potential to inhibit angiogenesis exhibited by many natural compounds constituent of plant foods makes them especially interesting for their use as chemopreventive agents. Here, we review the antitumoral potential, with a focus on the antiangiogenic effects, of phenolic and polyphenolic compounds, such as quercetin or myricetin; terpenoids, such as ursolic acid or kahweol; and anthraquinones from Aloe vera, in different in vitro and in vivo assays, and the available clinical data. Although clinical trials have failed to assess the preventive role of many of these compounds, encouraging preclinical data support the efficacy of phytochemicals constituent of diet in the prevention and treatment of cancer, but a deeper understanding of their mechanisms of action and better designed clinical trials are urgently needed.
Collapse
|
5
|
Bioactive natural products against experimental autoimmune encephalomyelitis: A pharmacokinetics review. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.26.4.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Resveratrol Modulation of Apoptosis and Cell Cycle Response to Cisplatin in Head and Neck Cancer Cell Lines. Int J Mol Sci 2021; 22:ijms22126322. [PMID: 34204834 PMCID: PMC8231609 DOI: 10.3390/ijms22126322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
In head and neck cancers, the effectiveness of cisplatin (CisPt) treatment is limited by its toxicity, especially when higher doses are necessary, and the possible occurrence of cisplatin resistance. This study evaluated the effects of resveratrol (RSV) on the expression of different genes involved in the response of human tumor cells (FaDu, PE/CA-PJ49) to cisplatin therapy. Our results revealed that RSV induced apoptosis amplification in both FaDu and PE/CA-PJ49 cells and modulated the expression of specific genes differently than in normal HaCaT cells. In FaDu cells, combined CisPt + RSV treatment induced an increase in apoptosis, which was associated with an increase in c-MYC and TP53 and a decrease in BCL-2 expression. While CisPt + RSV treatment induced apoptosis in PE/CA-PJ49 cells by inhibition of BCL-2 associated with high levels of MDM-2 and subsequently led to inhibition of TP53 gene expression. Decreased c-MYC expression in PE/CA-PJ49 treated with CisPt + RSV was accompanied by cell cycle blockage in G0/G1 phase. In conclusion, RSV influences tumor cell response to CisPt by inducing apoptosis and modulating gene expression. In addition, in normal HaCaT cells, RSV was able to reduce the harmful effects of CisPt.
Collapse
|
7
|
Thi Oanh H, Hac Thi N, Nhan Nguyen T, Anh Dang Thi T, Van Nguyen T, Hoang MH. Co-Encapsulation of Lycopene and Resveratrol in Polymeric Nanoparticles: Morphology and Lycopene Stability. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:3156-3164. [PMID: 33653491 DOI: 10.1166/jnn.2021.19146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lycopene and resveratrol are well-known for their high bioactivity, anti-inflammatory effects, and strong antioxidant properties. The combination of lycopene and resveratrol was synergistic in the potentializing immunity of the mammal body. In this study, the scalable co-encapsulation of lycopene and resveratrol into polymeric nanoparticles was performed using lycopene extracted from ripe gac fruit. These nanoparticles exhibited excellent water dispersion and spherical morphology with average particle diameters of 66.102 nm. The particle size was proportional to the lycopene/resveratrol ratio. The combinative use of lecithin and Tween® as surfactants and the use of a polylactide-polyethylene glycol copolymer as an encapsulation agent generated well-defined lycopene/resveratrol nanoparticles although the total content of these active compounds reached 12%. The stability of lycopene was enhanced when combined with resveratrol and antioxidants such as vitamin E and butylated hydroxytoluene. After 3 months of storage at -16 °C, the lycopene content in the lycopene/resveratrol nanopowder remained at ∼95%.
Collapse
Affiliation(s)
- Ho Thi Oanh
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
| | - Nhung Hac Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
| | - Thanh Nhan Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
| | - Tuyet Anh Dang Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
| | - Tuyen Van Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
| | - Mai Ha Hoang
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
| |
Collapse
|
8
|
Cai H, Scott EN, Britton RG, Parrott E, Ognibene TJ, Malfatti M, Khan M, Steward WP, Brown K. Distribution and metabolism of [14C]-resveratrol in human prostate tissue after oral administration of a "dietary-achievable" or "pharmacological" dose: what are the implications for anticancer activity? Am J Clin Nutr 2021; 113:1115-1125. [PMID: 33675348 PMCID: PMC8106746 DOI: 10.1093/ajcn/nqaa414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 12/08/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The dietary polyphenol resveratrol prevents various malignancies in preclinical models, including prostate cancer. Despite attempts to translate findings to humans, gaps remain in understanding pharmacokinetic-pharmacodynamic relations and how tissue concentrations affect efficacy. Such information is necessary for dose selection and is particularly important given the low bioavailability of resveratrol. OBJECTIVES This study aimed to determine concentrations of resveratrol in prostate tissue of men after a dietary-achievable (5 mg) or pharmacological (1 g) dose. We then examined whether clinically relevant concentrations of resveratrol/its metabolites had direct anticancer activity in prostate cell lines. METHODS A window trial was performed in which patients were allocated to 5 mg or 1 g resveratrol daily, or no intervention, before prostate biopsy. Patients (10/group) ingested resveratrol capsules for 7-14 d before biopsy, with the last dose [14C]-labeled, allowing detection of resveratrol species in prostate tissue using accelerator MS. Cellular uptake and antiproliferative properties of resveratrol/metabolites were assessed in cancer and nonmalignant cell cultures using HPLC with UV detection and cell counting, respectively. RESULTS [14C]-Resveratrol species were detectable in prostate tissue of all patients analyzed, with mean ± SD concentrations of 0.08 ± 0.04 compared with 22.1 ± 8.2 pmol/mg tissue for the 5 mg and the 1 g dose, respectively. However, total [14C]-resveratrol equivalents in prostate were lower than we previously reported in plasma and colorectum after identical doses. Furthermore, resveratrol was undetectable in prostate tissue; instead, sulfate and glucuronide metabolites dominated. Although resveratrol reduced prostate cell numbers in vitro over 7 d, the concentrations required (≥10 µM) exceeded the plasma maximum concentration. Resveratrol mono-sulfates and glucuronides failed to consistently inhibit cell growth, partly due to poor cellular uptake. CONCLUSIONS Low tissue concentrations of resveratrol species, coupled with weak antiproliferative activity of its conjugates, suggest daily doses of ≤1 g may not have direct effects on human prostate.This trial was registered at clinicaltrialsregister.eu as EudraCT 2007-002131-91.
Collapse
Affiliation(s)
- Hong Cai
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | - Edwina N Scott
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | - Robert G Britton
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | - Emma Parrott
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | - Ted J Ognibene
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | | | - Masood Khan
- University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - William P Steward
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | | |
Collapse
|
9
|
Dai L, Chen L, Wang W, Lin P. Resveratrol inhibits ACHN cells via regulation of histone acetylation. PHARMACEUTICAL BIOLOGY 2020; 58:231-238. [PMID: 32202448 PMCID: PMC7144206 DOI: 10.1080/13880209.2020.1738503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 01/20/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
Context: The relationship between resveratrol and histone acetylation in renal cell carcinoma (RCC) has not yet been reported.Objective: To explore the functional role of resveratrol in RCC.Materials and methods: Functional experiments were performed to determine proliferatio n of ACHN cells with treatment of resveratrol (0, 7.8125, 15.625, 31.25 and 62.5 μg/mL, for 12, 24 and 48 h of culture) or 0.1 μM SAHA. The enzyme activities of MMP-2/-9 were measured by gelatine zymography and histone acetylation by Western blot.Results: When the cells were treated with 15.625, 31.25 and 62.5 μg/mL resveratrol, ACHN cells viability was 73.2 ± 3.5%, 61.4 ± 3.1%, 50.2 ± 4.7% for 12 h, 62.7 ± 4.5%, 52.4 ± 5.5%, 40.2 ± 3.8% for 24 h, and 60.8 ± 3.7%, 39.4 ± 5.1%, 37.6 ± 2.7% for 48 h, and the wound closure (%) of migration was increased from 0.6 to 0.7, 0.85, 0.9 for 12 h and from 0.23 to 0.3, 0.48, 0.59 for 24 h. The invasion rate was 8.5 ± 0.9%, 7.4 ± 0.3% and 5.8 ± 0.6%, and cell cycle was arrested at G1 from 42.5 ± 2.9% to 55.3 ± 5.7%, 59.8 ± 3.4%, 68.7 ± 4.6%. MMP-2/-9 expression (p < 0.05) was inhibited by resveratrol. The protein levels of histone acetylation (p < 0.01) was increased by resveratrol.Discussion and conclusions: Our results suggest that these effects might be related to a high level of histone acetylation, and resveratrol can be considered as an alternative treatment for RCC.
Collapse
Affiliation(s)
- Lili Dai
- Department of Science and Education, Jiujiang University Clinical Medical College, Jiujiang, China
| | - Lingyan Chen
- Department of Rehabilitation, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenjing Wang
- TCM Basic Clinical Research Office, Guiyang University of Chinese Medicine, Guiyang, China
| | - Peizheng Lin
- Department of Encephalopathy, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
10
|
Pyo IS, Yun S, Yoon YE, Choi JW, Lee SJ. Mechanisms of Aging and the Preventive Effects of Resveratrol on Age-Related Diseases. Molecules 2020; 25:molecules25204649. [PMID: 33053864 PMCID: PMC7587336 DOI: 10.3390/molecules25204649] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 02/06/2023] Open
Abstract
Aging gradually decreases cellular biological functions and increases the risk of age-related diseases. Cancer, type 2 diabetes mellitus, cardiovascular disease, and neurological disorders are commonly classified as age-related diseases that can affect the lifespan and health of individuals. Aging is a complicated and sophisticated biological process involving damage to biochemical macromolecules including DNA, proteins, and cellular organelles such as mitochondria. Aging causes multiple alterations in biological processes including energy metabolism and nutrient sensing, thus reducing cell proliferation and causing cellular senescence. Among the polyphenolic phytochemicals, resveratrol is believed to reduce the negative effects of the aging process through its multiple biological activities. Resveratrol increases the lifespan of several model organisms by regulating oxidative stress, energy metabolism, nutrient sensing, and epigenetics, primarily by activating sirtuin 1. This review summarizes the most important biological mechanisms of aging, and the ability of resveratrol to prevent age-related diseases.
Collapse
|
11
|
Laparoscopic hepatectomy is safe and effective for the management of patients with colorectal cancer liver metastases in a population-based analysis in Ontario, Canada. A retrospective cohort study. Int J Surg 2020; 83:47-52. [PMID: 32927139 DOI: 10.1016/j.ijsu.2020.08.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/21/2020] [Accepted: 08/31/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND Laparoscopic hepatectomy (LH) has been deemed safe, and, in the case of minor hepatectomy, the standard of care. Short-, long-term outcomes and costs of LH compared with open hepatectomy (OH) in patients with colorectal cancer liver metastases have not been well described at the population level. MATERIALS AND METHODS Patients diagnosed with colorectal cancer undergoing hepatectomy were included in this population-based retrospective cohort study from 2006- to 2014. Postoperative complications (per Clavien-Dindo) and survival were analyzed using a linear mixed model and Cox-Proportional hazards model respectively. Costs of surgery and the 90-day postoperative period were considered in 2018 Canadian dollars and compared from the perspective of a third-party payer. RESULTS Over a median follow-up of 56 months, 95% confidence interval (CI): 51 to 68), there were 2991 hepatectomies (OH: 2551 (85%) and LH: 440 (15%)). LH compared to OH was more common for patients >70 years-old (30% vs. 22%, p = 0.004) and for minor hepatectomy (52% vs. 32%, p < 0.001) respectively. By multivariable analyses, OH was associated with similar 90-day mortality (Odds Ratio (OR) 1.05, 95% CI: 0.56-1.97), and overall survival (Hazard Ratio (HR) 1.08, 95% CI: 0.90-1.29), but higher rates of major postoperative complications (OR 1.34, 95% CI: 1.03-1.76), higher cost (median difference $6,163, 95% CI: $3229 to $9096), and longer length of hospital stay (LOS) (mean difference 3.04 days, 95% CI: 2.7 to 3.91). CONCLUSION LH was associated with lower postoperative complications, shorter LOS, which translated into lower costs to the healthcare system, without differences in postoperative mortality and survival.
Collapse
|
12
|
Wang J, Griffiths C, Simunovic M, Parpia S, Gu CS, Gafni A, Ruo L, Hallet J, Bogach J, Serrano PE. Simultaneous versus staged resection for synchronous colorectal liver metastases: A population-based cost analysis in Ontario, Canada - Health economic evaluation. Int J Surg 2020; 78:75-82. [PMID: 32335234 DOI: 10.1016/j.ijsu.2020.04.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Simultaneous compared to staged resection of synchronous colorectal cancer liver metastases is considered safe. We aimed to determine their cost implications. STUDY DESIGN Population-based cohort was generated by linking administrative healthcare datasets in Ontario, Canada (2006-2014). Resection of colorectal cancer and liver metastases within six months was considered synchronous. Cost analysis was performed from the perspective of a third-party payer. Median costs with range were estimated using the log-normal distribution of cost using t-test with a one-year time horizon. RESULTS Among patients undergoing staged resection (n = 678), the estimated median cost was $54,321 CAD (IQR 45,472 to 68,475) and $41,286 CAD (IQR 31,633 to 58,958) for those undergoing simultaneous resection (n = 390), median difference: $13,035 CAD (p < 0.001). Primary cost driver were all costs related to hospitalization for liver and colon resection, which was higher for the staged approach, median difference: $16,346 CAD (p < 0.001). This was mainly due to a longer median length of hospital stay in the staged vs. simultaneous group (11 vs. 8 days, p < 0.001 respectively), which was not attributable to differences in major postoperative complication rates (23% vs. 28%, p = 0.067 respectively). Other costs, including cost of chemotherapy within six months of surgery ($11,681 CAD vs. $8644 CAD, p = 0.074 respectively) and 90-day re-hospitalization cost ($2155 CAD vs. $2931 CAD, p = 0.454 respectively) were similar between groups. CONCLUSION Cost of staged resection of synchronous colorectal cancer liver metastases is significantly higher compared to the simultaneous approach, mostly driven by a longer length of hospital stay despite similar postoperative complication rates.
Collapse
Affiliation(s)
- Julian Wang
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | | | - Marko Simunovic
- Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Sameer Parpia
- Department of Oncology, McMaster University, Hamilton, ON, Canada
| | - Chu-Shu Gu
- Ontario Clinical Oncology Group, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Amiram Gafni
- Department of Health Research Methods, Evaluation and Impact, McMaster University, Hamilton, ON, Canada
| | - Leyo Ruo
- Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Julie Hallet
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Jessica Bogach
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Pablo E Serrano
- Department of Surgery, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
13
|
Abstract
Fruits come in a wide variety of colors, shapes, and flavors. This chapter will cover selected fruits that are known to be healthy and highly nutritious. These fruits were chosen due to their common usage and availability. Since it is not possible to cover all health benefits or essential nutrients and important phytochemicals of the fruit composition, this chapter will focus on the key valuable constituents and their potential health effects.
Collapse
Affiliation(s)
- Sawsan G Mohammed
- Qatar Research Leadership Program (QRLP), Qatar Foundation, Doha, Qatar.
| | - M Walid Qoronfleh
- Research & Policy Department, World Innovation Summit for Health (WISH), Qatar Foundation, Doha, Qatar.
| |
Collapse
|
14
|
Honari M, Shafabakhsh R, Reiter RJ, Mirzaei H, Asemi Z. Resveratrol is a promising agent for colorectal cancer prevention and treatment: focus on molecular mechanisms. Cancer Cell Int 2019; 19:180. [PMID: 31341423 PMCID: PMC6631492 DOI: 10.1186/s12935-019-0906-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and one of the main causes of cancer death entire the world. Environmental, dietary, and lifestyle factors including red meat consumption, cigarette smoking, alcohol intake and family history are the most important risk factors of CRC. Multiple pathways including inflammation, oxidative stress, and apoptosis are involved in its incidence and progression. Resveratrol, a polyphenolic compound, has different pharmacologic functions including anti-inflammation, cancer prevention, lipid-lowering effect, and hypoglycemic effect. Many studies have proved that resveratrol might also represent a chemo preventive effect on CRC. Thus, the aim of the current review is to depict the role of resveratrol in treatment of CRC in a molecular manner.
Collapse
Affiliation(s)
- Mohadese Honari
- 1Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Rana Shafabakhsh
- 1Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Russel J Reiter
- 2Department of Cellular and Structural Biology, University of Texas Health Science, Center, San Antonio, TX USA
| | - Hamed Mirzaei
- 1Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Zatollah Asemi
- 1Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| |
Collapse
|
15
|
Traversi G, Staid DS, Fiore M, Percario Z, Trisciuoglio D, Antonioletti R, Morea V, Degrassi F, Cozzi R. A novel resveratrol derivative induces mitotic arrest, centrosome fragmentation and cancer cell death by inhibiting γ-tubulin. Cell Div 2019; 14:3. [PMID: 31007707 PMCID: PMC6457039 DOI: 10.1186/s13008-019-0046-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/23/2019] [Indexed: 12/31/2022] Open
Abstract
Background Resveratrol and its natural stilbene-containing derivatives have been extensively investigated as potential chemotherapeutic agents. The synthetic manipulation of the stilbene scaffold has led to the generation of new analogues with improved anticancer activity and better bioavailability. In the present study we investigated the anticancer activity of a novel trimethoxystilbene derivative (3,4,4'-trimethoxylstilbene), where two methoxyl groups are adjacent on the benzene ring (ortho configuration), and compared its activity to 3,5,4'-trimethoxylstilbene, whose methoxyl groups are in meta configuration. Results We provide evidence that the presence of the two methoxyl groups in ortho configuration renders 3,4,4'-trimethoxystilbene more efficient than the meta isomer in inhibiting cell proliferation and producing apoptotic death in colorectal cancer cells. Confocal microscopy of α- and γ-tubulin staining shows that the novel compound strongly depolymerizes the mitotic spindle and produces fragmentation of the pericentrosomal material. Computer assisted docking studies indicate that both molecules potentially interact with γ-tubulin, and that 3,4,4'-trimethoxystilbene is likely to establish stronger interactions with the protein. Conclusions These findings demonstrate the ortho configuration confers higher specificity for γ-tubulin with respect to α-tubulin on 3,4,4' trimethoxystilbene, allowing it to be defined as a new γ-tubulin inhibitor. A strong interaction with γ-tubulin might be a defining feature of molecules with high anticancer activity, as shown for the 3,4,4' isomer.
Collapse
Affiliation(s)
| | - David Sasah Staid
- 2Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome, Rome, Italy
| | - Mario Fiore
- 3Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), c/o Sapienza University of Rome, Rome, Italy
| | - Zulema Percario
- 1Department of Science, University of "Roma Tre", Rome, Italy
| | - Daniela Trisciuoglio
- 3Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), c/o Sapienza University of Rome, Rome, Italy.,4Preclinical Models and New Therapeutic Agents Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Roberto Antonioletti
- 3Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), c/o Sapienza University of Rome, Rome, Italy
| | - Veronica Morea
- 3Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), c/o Sapienza University of Rome, Rome, Italy
| | - Francesca Degrassi
- 3Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), c/o Sapienza University of Rome, Rome, Italy
| | - Renata Cozzi
- 1Department of Science, University of "Roma Tre", Rome, Italy
| |
Collapse
|
16
|
Lux S, Lobos N, Lespay-Rebolledo C, Salas-Huenuleo E, Kogan MJ, Flores C, Pinto M, Hernandez A, Pelissier T, Constandil L. The antinociceptive effect of resveratrol in bone cancer pain is inhibited by the Silent Information Regulator 1 inhibitor selisistat. J Pharm Pharmacol 2018; 71:816-825. [DOI: 10.1111/jphp.13064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/02/2018] [Indexed: 01/10/2023]
Abstract
Abstract
Objectives
To study the antinociceptive effect of single and repeated doses of resveratrol in a bone cancer pain model, and whether this effect is prevented by the Silent Information Regulator 1 (SIRT1) inhibitor selisistat.
Methods
The femoral intercondylar bone of BALB/c mice was injected with 1 000 000 BJ3Z cancer cells. Bone resorption and tumour mass growth (measured by in vivo X-ray and fluorescence imaging), as well as mechanical nociceptive thresholds (von Frey device) and dynamic functionality (rotarod machine), were evaluated during the following 4 weeks. Acute resveratrol (100 mg/kg i.p.) and/or selisistat (10 mg/kg s.c.) were administered on day 14. Chronic resveratrol (100 mg/kg i.p., daily) and/or selisistat (0.5 μg/h s.c., Alzet pump) were administered between days 14 and 20.
Key findings
Tumour growth gradually incremented until day 31, while mechanical hyperalgesia started on day 3 after cancer cell injection. Acute resveratrol increased the mechanical threshold of pain (peaking at 1.5 h), while the dynamic functionality decreased. Chronic resveratrol produced a sustained antinociceptive effect on mechanical hyperalgesia and improved the loss of dynamic functionality induced by the bone cancer tumour. Selisistat prevented all the effects of resveratrol.
Conclusions
Acute and chronic resveratrol induces antinociceptive effect in the model of metastatic osseous oncological pain, an effect that would be mediated by SIRT1 molecular signalling.
Collapse
Affiliation(s)
- Sebastian Lux
- Department of Biology, Laboratory of Neurobiology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Nicolas Lobos
- Department of Biology, Laboratory of Neurobiology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Carolyne Lespay-Rebolledo
- Program of Molecular and Clinical Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Edison Salas-Huenuleo
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Marcelo J Kogan
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Christian Flores
- Department of Biology, Laboratory of Neurobiology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Mauricio Pinto
- Department of Biology, Laboratory of Immunology of Reproduction, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Alejandro Hernandez
- Department of Biology, Laboratory of Neurobiology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Teresa Pelissier
- Department of Biology, Laboratory of Neurobiology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
- Program of Molecular and Clinical Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luis Constandil
- Department of Biology, Laboratory of Neurobiology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago, Chile
| |
Collapse
|
17
|
Matin B, Sherbini AA, Alam N, Harmatz JS, Greenblatt DJ. Resveratrol glucuronidation in vitro: potential implications of inhibition by probenecid. J Pharm Pharmacol 2018; 71:371-378. [PMID: 30417385 DOI: 10.1111/jphp.13037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Resveratrol is a naturally occurring antioxidant with therapeutic potential in prevention and treatment of neoplastic disease and other human disorders. However, net clearance of resveratrol in humans is very high, mainly due to glucuronide conjugation. This leads to extensive presystemic extraction and low plasma concentrations after oral dosage. The present study evaluated the effect of probenecid, an inhibitor of glucuronide conjugation, on resveratrol metabolism in vitro. METHODS Biotransformation of resveratrol to its 3-O-glucuronide and 4'-O-glucuronide conjugates was studied in vitro using human liver microsomal preparations. The mechanism and inhibitory potency of probenecid were evaluated based on a mixed competitive-noncompetitive inhibition model. KEY FINDINGS Probenecid inhibition of resveratrol 3-O-glucuronidation was predominantly noncompetitive, with an inhibition constant (Ki ) averaging 3.1 mm. CONCLUSIONS The ratio of in vivo maximum concentration of probenecid [I] during usual clinical use to the in vitro Ki value ([I]/Ki ) exceeds the boundary value of 0.1, used by regulatory agencies to identify the possibility of clinical drug interactions. This finding, together with the known property of probenecid as an inhibitor of glucuronide conjugation in humans, suggests that probenecid could serve as a pharmacokinetic boosting agent to enhance systemic exposure to resveratrol in humans.
Collapse
Affiliation(s)
- Bahar Matin
- Graduate Program in Pharmacology and Drug Development, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Ahmad A Sherbini
- Graduate Program in Pharmacology and Drug Development, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Novera Alam
- Graduate Program in Pharmacology and Drug Development, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Jerold S Harmatz
- Graduate Program in Pharmacology and Drug Development, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - David J Greenblatt
- Graduate Program in Pharmacology and Drug Development, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
18
|
Haghpanah S, Zarei T, Eshghi P, Zekavat O, Bordbar M, Hoormand M, Karimi M. Efficacy and safety of resveratrol, an oral hemoglobin F-augmenting agent, in patients with beta-thalassemia intermedia. Ann Hematol 2018; 97:1919-1924. [PMID: 29926158 DOI: 10.1007/s00277-018-3392-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/04/2018] [Indexed: 11/24/2022]
Abstract
Recently, resveratrol showed induction of γ-globin mRNA synthesis in human erythroid precursors and reducing oxidative stress in red cells of thalassemia patients in many in vitro studies. We aimed to investigate the efficacy and safety of resveratrol, for the first time, in non-transfusion-dependent beta-thalassemia intermedia (B-TI) in Southern Iran. In this double-blind randomized clinical trial, 54 patients with B-TI were investigated during 6 months between October 2016 and March 2017. Patients were randomly allocated into three groups by simple randomization method. Group 1 (hydroxyurea (HU) and placebo, 18 patients), group 2 (resveratrol/piperine and placebo, 16 patients), and group 3(HU and resveratrol/piperine, 20 patients). Primary end point was considered as change in hemoglobin (Hb) levels and need for blood transfusion. Drug safety was considered as a secondary end point. Mean age of the patients was 28.2 ± 5.6 (18-42) years. Response rate was not significantly different among the three groups (P > 0.05). Higher percentages of adverse events were detected in groups 2 (31.3%) and 3 (25%) compared to group 1 (5.6%). However, the difference was not statistically significant (P > 0.05). All reported adverse events were gastrointestinal symptoms. Resveratrol showed a similar efficacy with HU in the small population of non-transfusion B-TI patients during a 6-month follow-up. Complications, mostly gastrointestinal, were observed more frequently in resveratrol groups compared to the HU group. Although it was not statistically significant, more attention should be given to safety and efficacy of resveratrol as an oral HbF-augmenting agent.
Collapse
Affiliation(s)
- Sezaneh Haghpanah
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Zarei
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Peyman Eshghi
- Pediatric Congenital Hematologic Disorders Research Center, Shaheed Beheshti University of Medical Sciences, Tehran, Iran
| | - Omidreza Zekavat
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mahmood Hoormand
- Department of Pharmacology, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Karimi
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
19
|
Dai H, Deng HB, Wang YH, Guo JJ. Resveratrol inhibits the growth of gastric cancer via the Wnt/β-catenin pathway. Oncol Lett 2018; 16:1579-1583. [PMID: 30008840 PMCID: PMC6036503 DOI: 10.3892/ol.2018.8772] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/06/2017] [Indexed: 12/22/2022] Open
Abstract
The inhibitory effect of resveratrol on the growth of gastric cancer cells through downregulation of the Wnt/β-catenin signaling pathway were studied. First we determined the effective concentration of resveratrol on the growth and proliferation of MGC-803 gastric cancer cells. Methylthiazolyl tetrazolium assay showed that resveratrol significantly inhibited the proliferation of MGC-803 cells in a dose-dependent manner. Resveratrol induced apoptotic morphological changes in MGC-803 cells. Reverse transcription-polymerase chain reaction and western blot analysis showed that resveratrol downregulated the expression of three important components of the Wnt signaling pathway, β-catenin, c-myc, and cyclin D1, at the mRNA and protein levels. Overall, resveratrol inhibits the growth of MGC-803 cells by inhibiting the Wnt signaling pathway. This study provides a new idea and direction for the antitumor mechanism of resveratrol.
Collapse
Affiliation(s)
- Hui Dai
- Department of Tumor and Blood Disease, Changchun University of Traditional Chinese Medicine Affiliated Hospital, Changchun, Jilin 130021, P.R. China
| | - Hou-Bo Deng
- Department of Liver, Spleen and Stomach Disease, Changchun University of Traditional Chinese Medicine Affiliated Hospital, Changchun, Jilin 130021, P.R. China
| | - Ya-Hong Wang
- Department of Liver, Spleen and Stomach Disease, Changchun University of Traditional Chinese Medicine Affiliated Hospital, Changchun, Jilin 130021, P.R. China
| | - Jia-Juan Guo
- Department of Cardiovascular Disease, Changchun University of Traditional Chinese Medicine Affiliated Hospital, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
20
|
Differential sensitivities of bladder cancer cell lines to resveratol are unrelated to its metabolic profile. Oncotarget 2018; 8:40289-40304. [PMID: 28178690 PMCID: PMC5522211 DOI: 10.18632/oncotarget.15041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/09/2017] [Indexed: 12/27/2022] Open
Abstract
Resveratrol (RV) is a natural polyphenol compound with a wide range of activities, including inhibition of human bladder cancer (HBC) cell growth. Because RV is rapidly metabolized and has poor bioavailability, it is unclear whether the antitumor activity is due to RV or its metabolites. We therefore used liquid chromatography-mass spectroscopy, qRT-PCR, immunocytochemistry and western blotting to evaluate the metabolic profile and biotransformation of RV in the T24 and EJ HBC cell lines. Both T24 and EJ cells generated the same RV metabolite, RV monosulfate (RVS), and both exhibited upregulation of the RV-associated metabolic enzyme SULT1A1 (sulfotransferase). Despite these similarities, T24 cells were more sensitive to RV than EJ cells, yet T24 cells exhibited no sensitivity to an RVS mixture (84.13% RVS). Primary rat bladder epithelial cells showed no adverse effects when exposed to a therapeutic dose (100 μM) of RV. The differences in RV sensitivity between the two HBC cell lines did not reflect differences in the RV metabolic profile or SULT1A1 expression. Because RV exhibited stronger antitumor activity and better safety than RVS, we conclude that RV has significant therapeutic potential for HBC treatment, provided individual differences are considered during clinical research and application.
Collapse
|
21
|
Ko JH, Sethi G, Um JY, Shanmugam MK, Arfuso F, Kumar AP, Bishayee A, Ahn KS. The Role of Resveratrol in Cancer Therapy. Int J Mol Sci 2017; 18:ijms18122589. [PMID: 29194365 PMCID: PMC5751192 DOI: 10.3390/ijms18122589] [Citation(s) in RCA: 458] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 12/26/2022] Open
Abstract
Natural product compounds have recently attracted significant attention from the scientific community for their potent effects against inflammation-driven diseases, including cancer. A significant amount of research, including preclinical, clinical, and epidemiological studies, has indicated that dietary consumption of polyphenols, found at high levels in cereals, pulses, vegetables, and fruits, may prevent the evolution of an array of diseases, including cancer. Cancer development is a carefully orchestrated progression where normal cells acquires mutations in their genetic makeup, which cause the cells to continuously grow, colonize, and metastasize to other organs such as the liver, lungs, colon, and brain. Compounds that modulate these oncogenic processes can be considered as potential anti-cancer agents that may ultimately make it to clinical application. Resveratrol, a natural stilbene and a non-flavonoid polyphenol, is a phytoestrogen that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. It has been reported that resveratrol can reverse multidrug resistance in cancer cells, and, when used in combination with clinically used drugs, it can sensitize cancer cells to standard chemotherapeutic agents. Several novel analogs of resveratrol have been developed with improved anti-cancer activity, bioavailability, and pharmacokinetic profile. The current focus of this review is resveratrol’s in vivo and in vitro effects in a variety of cancers, and intracellular molecular targets modulated by this polyphenol. This is also accompanied by a comprehensive update of the various clinical trials that have demonstrated it to be a promising therapeutic and chemopreventive agent.
Collapse
Affiliation(s)
- Jeong-Hyeon Ko
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Gautam Sethi
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Jae-Young Um
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6009, Australia.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA.
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| |
Collapse
|
22
|
Cuzick J. Preventive therapy for cancer. Lancet Oncol 2017; 18:e472-e482. [PMID: 28759386 DOI: 10.1016/s1470-2045(17)30536-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/08/2016] [Accepted: 12/22/2016] [Indexed: 12/14/2022]
Abstract
Therapeutic cancer prevention is a developing area that can gain a lot from the successes in the prevention of cardiovascular diseases. Although weight control and physical activity are important in the prevention of both diseases, several other preventive measures exist. Low-dose aspirin for cancer prevention is often cited as the most important approach in terms of population benefit, and should be offered to those older than 50 years of age without hypertension or risk factors for gastrointestinal bleeding. Universal vaccination against the human papillomavirus, ideally with the nine-valent vaccine, also offers substantial benefits for the whole population if given before infection occurs (ie, typically at age 12-14 years). Other therapies, such as anti-oestrogen drugs for breast cancer prevention, should be targeted to high-risk groups to maintain a favourable benefit-risk ratio. Better algorithms for identification and improved platforms to reach these groups, such as during a screening visit, remain a key priority to allow existing knowledge to inform public health. Many other promising compounds have been identified, often as components of food, but results suggesting increased disease incidence with β carotene and vitamin E administration indicate that such treatments need rigorous evaluation before acceptance.
Collapse
Affiliation(s)
- Jack Cuzick
- Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK.
| |
Collapse
|
23
|
Lodi A, Saha A, Lu X, Wang B, Sentandreu E, Collins M, Kolonin MG, DiGiovanni J, Tiziani S. Combinatorial treatment with natural compounds in prostate cancer inhibits prostate tumor growth and leads to key modulations of cancer cell metabolism. NPJ Precis Oncol 2017; 1:18. [PMID: 29202102 PMCID: PMC5705091 DOI: 10.1038/s41698-017-0024-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/12/2017] [Accepted: 04/20/2017] [Indexed: 12/22/2022] Open
Abstract
High-throughput screening of a natural compound library was performed to identify the most efficacious combinatorial treatment on prostate cancer. Ursolic acid, curcumin and resveratrol were selected for further analyses and administered in vivo via the diet, either alone or in combination, in a mouse allograft model of prostate cancer. All possible combinations of these natural compounds produced synergistic effects on tumor size and weight, as predicted in the screens. A subsequent untargeted metabolomics and metabolic flux analysis using isotopically labeled glutamine indicated that the compound combinations modulated glutamine metabolism. In addition, ASCT2 levels and STAT3, mTORC1 and AMPK activity were modulated to a greater extent by the combinations compared to the individual compounds. Overall, this approach can be useful for identifying synergistic combinations of natural compounds for chemopreventive and therapeutic interventions.
Collapse
Affiliation(s)
- Alessia Lodi
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX USA
| | - Achinto Saha
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX USA
| | - Xiyuan Lu
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX USA
| | - Bo Wang
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX USA
| | - Enrique Sentandreu
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX USA
| | - Meghan Collins
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX USA
| | - Mikhail G. Kolonin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX USA
- Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX USA
| | - Stefano Tiziani
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX USA
- Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX USA
| |
Collapse
|
24
|
Redondo-Blanco S, Fernández J, Gutiérrez-Del-Río I, Villar CJ, Lombó F. New Insights toward Colorectal Cancer Chemotherapy Using Natural Bioactive Compounds. Front Pharmacol 2017; 8:109. [PMID: 28352231 PMCID: PMC5348533 DOI: 10.3389/fphar.2017.00109] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/22/2017] [Indexed: 12/12/2022] Open
Abstract
Combination therapy consists in the simultaneous administration of a conventional chemotherapy drug (or sometimes, a radiotherapy protocol) together with one or more natural bioactives (usually from plant or fungal origin) of small molecular weight. This combination of anticancer drugs may be applied to cell cultures of tumor cells, or to an animal model for a cancer type (or its xenograft), or to a clinical trial in patients. In this review, we summarize current knowledge describing diverse synergistic effects on colorectal cancer cell cultures, animal models, and clinical trials of various natural bioactives (stilbenes, flavonoids, terpenes, curcumin, and other structural families), which may be important with respect to diminish final doses of the chemotherapy drug, although maintaining its biological effect. This is important as these approaches may help reduce side effects in patients under conventional chemotherapy. Also, these molecules may exerts their synergistic effects via different cell cycle pathways, including different ones to those responsible of resistance phenotypes: transcription factors, membrane receptors, adhesion and structural molecules, cell cycle regulatory components, and apoptosis pathways.
Collapse
Affiliation(s)
- Saúl Redondo-Blanco
- Departamento de Biología Funcional, Área de Microbiología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo Oviedo, Spain
| | - Javier Fernández
- Departamento de Biología Funcional, Área de Microbiología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo Oviedo, Spain
| | - Ignacio Gutiérrez-Del-Río
- Departamento de Biología Funcional, Área de Microbiología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo Oviedo, Spain
| | - Claudio J Villar
- Departamento de Biología Funcional, Área de Microbiología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo Oviedo, Spain
| | - Felipe Lombó
- Departamento de Biología Funcional, Área de Microbiología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo Oviedo, Spain
| |
Collapse
|
25
|
Baena Ruiz R, Salinas Hernández P. Cancer chemoprevention by dietary phytochemicals: Epidemiological evidence. Maturitas 2016; 94:13-19. [DOI: 10.1016/j.maturitas.2016.08.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/30/2016] [Accepted: 08/07/2016] [Indexed: 02/08/2023]
|
26
|
Jin Z, Feng W, Ji Y, Jin L. Resveratrol mediates cell cycle arrest and cell death in human esophageal squamous cell carcinoma by directly targeting the EGFR signaling pathway. Oncol Lett 2016; 13:347-355. [PMID: 28123566 DOI: 10.3892/ol.2016.5391] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 08/25/2016] [Indexed: 12/11/2022] Open
Abstract
Resveratrol is a small polyphenol that has been intensively studied in a wide spectrum of therapeutic fields. More recently, resveratrol has been demonstrated to exert its antitumor activity in numerous tumor models. The present study reported that resveratrol exhibited a marked anti-proliferative effect on human esophageal squamous cell carcinoma (ESCC) cells by inducing cell cycle G0/G1 phase arrest and cell death, which was associated with a decrease in the expression levels of cyclin D1 and an increase in cleaved PARP/cleaved caspase-3 expression levels. The mechanisms underlying the antitumor potency of resveratrol were principally attributed to the downregulation of epidermal growth factor receptor (EGFR) signaling. The western blotting results showed that exposure of ESCC cells to resveratrol inhibited EGF-induced EGFR activation in addition to decreasing the total protein levels of EGFR and membrane/nuclear localization. In summary, the results suggested that resveratrol, or an associated analog, may have a role in the management of human ESCC.
Collapse
Affiliation(s)
- Zixuan Jin
- Department of Biochemistry, The High School Attached To Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Wei Feng
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Ying Ji
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Longyu Jin
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
27
|
Traversi G, Fiore M, Percario Z, Degrassi F, Cozzi R. The resveratrol analogue trimethoxystilbene inhibits cancer cell growth by inducing multipolar cell mitosis. Mol Carcinog 2016; 56:1117-1126. [DOI: 10.1002/mc.22578] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/04/2016] [Accepted: 10/12/2016] [Indexed: 12/14/2022]
Affiliation(s)
| | - Mario Fiore
- Istituto di Biologia e Patologia Molecolari CNR; Via degli Apuli 4 Roma Italy
| | - Zulema Percario
- Dipartimento di Scienze; Università “Roma TRE”; Viale G. Marconi Roma Italy
| | - Francesca Degrassi
- Istituto di Biologia e Patologia Molecolari CNR; Via degli Apuli 4 Roma Italy
| | - Renata Cozzi
- Dipartimento di Scienze; Università “Roma TRE”; Viale G. Marconi Roma Italy
| |
Collapse
|
28
|
Block KI, Gyllenhaal C, Lowe L, Amedei A, Amin ARMR, Amin A, Aquilano K, Arbiser J, Arreola A, Arzumanyan A, Ashraf SS, Azmi AS, Benencia F, Bhakta D, Bilsland A, Bishayee A, Blain SW, Block PB, Boosani CS, Carey TE, Carnero A, Carotenuto M, Casey SC, Chakrabarti M, Chaturvedi R, Chen GZ, Chen H, Chen S, Chen YC, Choi BK, Ciriolo MR, Coley HM, Collins AR, Connell M, Crawford S, Curran CS, Dabrosin C, Damia G, Dasgupta S, DeBerardinis RJ, Decker WK, Dhawan P, Diehl AME, Dong JT, Dou QP, Drew JE, Elkord E, El-Rayes B, Feitelson MA, Felsher DW, Ferguson LR, Fimognari C, Firestone GL, Frezza C, Fujii H, Fuster MM, Generali D, Georgakilas AG, Gieseler F, Gilbertson M, Green MF, Grue B, Guha G, Halicka D, Helferich WG, Heneberg P, Hentosh P, Hirschey MD, Hofseth LJ, Holcombe RF, Honoki K, Hsu HY, Huang GS, Jensen LD, Jiang WG, Jones LW, Karpowicz PA, Keith WN, Kerkar SP, Khan GN, Khatami M, Ko YH, Kucuk O, Kulathinal RJ, Kumar NB, Kwon BS, Le A, Lea MA, Lee HY, Lichtor T, Lin LT, Locasale JW, Lokeshwar BL, Longo VD, Lyssiotis CA, MacKenzie KL, Malhotra M, Marino M, Martinez-Chantar ML, Matheu A, Maxwell C, McDonnell E, Meeker AK, Mehrmohamadi M, Mehta K, Michelotti GA, Mohammad RM, Mohammed SI, Morre DJ, Muralidhar V, Muqbil I, Murphy MP, Nagaraju GP, Nahta R, Niccolai E, Nowsheen S, Panis C, Pantano F, Parslow VR, Pawelec G, Pedersen PL, Poore B, Poudyal D, Prakash S, Prince M, Raffaghello L, Rathmell JC, Rathmell WK, Ray SK, Reichrath J, Rezazadeh S, Ribatti D, Ricciardiello L, Robey RB, Rodier F, Rupasinghe HPV, Russo GL, Ryan EP, Samadi AK, Sanchez-Garcia I, Sanders AJ, Santini D, Sarkar M, Sasada T, Saxena NK, Shackelford RE, Shantha Kumara HMC, Sharma D, Shin DM, Sidransky D, Siegelin MD, Signori E, Singh N, Sivanand S, Sliva D, Smythe C, Spagnuolo C, Stafforini DM, Stagg J, Subbarayan PR, Sundin T, Talib WH, Thompson SK, Tran PT, Ungefroren H, Vander Heiden MG, Venkateswaran V, Vinay DS, Vlachostergios PJ, Wang Z, Wellen KE, Whelan RL, Yang ES, Yang H, Yang X, Yaswen P, Yedjou C, Yin X, Zhu J, Zollo M. Designing a broad-spectrum integrative approach for cancer prevention and treatment. Semin Cancer Biol 2016; 35 Suppl:S276-S304. [PMID: 26590477 DOI: 10.1016/j.semcancer.2015.09.007] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 08/12/2015] [Accepted: 09/14/2015] [Indexed: 12/14/2022]
Abstract
Targeted therapies and the consequent adoption of "personalized" oncology have achieved notable successes in some cancers; however, significant problems remain with this approach. Many targeted therapies are highly toxic, costs are extremely high, and most patients experience relapse after a few disease-free months. Relapses arise from genetic heterogeneity in tumors, which harbor therapy-resistant immortalized cells that have adopted alternate and compensatory pathways (i.e., pathways that are not reliant upon the same mechanisms as those which have been targeted). To address these limitations, an international task force of 180 scientists was assembled to explore the concept of a low-toxicity "broad-spectrum" therapeutic approach that could simultaneously target many key pathways and mechanisms. Using cancer hallmark phenotypes and the tumor microenvironment to account for the various aspects of relevant cancer biology, interdisciplinary teams reviewed each hallmark area and nominated a wide range of high-priority targets (74 in total) that could be modified to improve patient outcomes. For these targets, corresponding low-toxicity therapeutic approaches were then suggested, many of which were phytochemicals. Proposed actions on each target and all of the approaches were further reviewed for known effects on other hallmark areas and the tumor microenvironment. Potential contrary or procarcinogenic effects were found for 3.9% of the relationships between targets and hallmarks, and mixed evidence of complementary and contrary relationships was found for 7.1%. Approximately 67% of the relationships revealed potentially complementary effects, and the remainder had no known relationship. Among the approaches, 1.1% had contrary, 2.8% had mixed and 62.1% had complementary relationships. These results suggest that a broad-spectrum approach should be feasible from a safety standpoint. This novel approach has potential to be relatively inexpensive, it should help us address stages and types of cancer that lack conventional treatment, and it may reduce relapse risks. A proposed agenda for future research is offered.
Collapse
Affiliation(s)
- Keith I Block
- Block Center for Integrative Cancer Treatment, Skokie, IL, United States.
| | | | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada; Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster, United Kingdom.
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - A R M Ruhul Amin
- Winship Cancer Institute of Emory University, Atlanta, GA, United States
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Jack Arbiser
- Winship Cancer Institute of Emory University, Atlanta, GA, United States; Atlanta Veterans Administration Medical Center, Atlanta, GA, United States; Department of Dermatology, Emory University School of Medicine, Emory University, Atlanta, GA, United States
| | - Alexandra Arreola
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | - Alla Arzumanyan
- Department of Biology, Temple University, Philadelphia, PA, United States
| | - S Salman Ashraf
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Fabian Benencia
- Department of Biomedical Sciences, Ohio University, Athens, OH, United States
| | - Dipita Bhakta
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, Tamil Nadu, India
| | | | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin Health Sciences Institute, Miami, FL, United States
| | - Stacy W Blain
- Department of Pediatrics, State University of New York, Downstate Medical Center, Brooklyn, NY, United States
| | - Penny B Block
- Block Center for Integrative Cancer Treatment, Skokie, IL, United States
| | - Chandra S Boosani
- Department of BioMedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Thomas E Carey
- Head and Neck Cancer Biology Laboratory, University of Michigan, Ann Arbor, MI, United States
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, Consejo Superior de Investigaciones Cientificas, Seville, Spain
| | - Marianeve Carotenuto
- Centro di Ingegneria Genetica e Biotecnologia Avanzate, Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Stephanie C Casey
- Stanford University, Division of Oncology, Department of Medicine and Pathology, Stanford, CA, United States
| | - Mrinmay Chakrabarti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina, School of Medicine, Columbia, SC, United States
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Georgia Zhuo Chen
- Winship Cancer Institute of Emory University, Atlanta, GA, United States
| | - Helen Chen
- Department of Pediatrics, University of British Columbia, Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Sophie Chen
- Ovarian and Prostate Cancer Research Laboratory, Guildford, Surrey, United Kingdom
| | - Yi Charlie Chen
- Department of Biology, Alderson Broaddus University, Philippi, WV, United States
| | - Beom K Choi
- Cancer Immunology Branch, Division of Cancer Biology, National Cancer Center, Goyang, Gyeonggi, Republic of Korea
| | | | - Helen M Coley
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Andrew R Collins
- Department of Nutrition, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marisa Connell
- Department of Pediatrics, University of British Columbia, Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Sarah Crawford
- Cancer Biology Research Laboratory, Southern Connecticut State University, New Haven, CT, United States
| | - Colleen S Curran
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Charlotta Dabrosin
- Department of Oncology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Giovanna Damia
- Department of Oncology, Istituto Di Ricovero e Cura a Carattere Scientifico - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Santanu Dasgupta
- Department of Cellular and Molecular Biology, the University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas - Southwestern Medical Center, Dallas, TX, United States
| | - William K Decker
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Punita Dhawan
- Department of Surgery and Cancer Biology, Division of Surgical Oncology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Anna Mae E Diehl
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Jin-Tang Dong
- Winship Cancer Institute of Emory University, Atlanta, GA, United States
| | - Q Ping Dou
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Janice E Drew
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Eyad Elkord
- College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassel El-Rayes
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, United States
| | - Mark A Feitelson
- Department of Biology, Temple University, Philadelphia, PA, United States
| | - Dean W Felsher
- Stanford University, Division of Oncology, Department of Medicine and Pathology, Stanford, CA, United States
| | - Lynnette R Ferguson
- Discipline of Nutrition and Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Carmela Fimognari
- Dipartimento di Scienze per la Qualità della Vita Alma Mater Studiorum-Università di Bologna, Rimini, Italy
| | - Gary L Firestone
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Mark M Fuster
- Medicine and Research Services, Veterans Affairs San Diego Healthcare System & University of California, San Diego, CA, United States
| | - Daniele Generali
- Department of Medical, Surgery and Health Sciences, University of Trieste, Trieste, Italy; Molecular Therapy and Pharmacogenomics Unit, Azienda Ospedaliera Istituti Ospitalieri di Cremona, Cremona, Italy
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematics and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Frank Gieseler
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | | | - Michelle F Green
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - Brendan Grue
- Departments of Environmental Science, Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Gunjan Guha
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - Dorota Halicka
- Department of Pathology, New York Medical College, Valhalla, NY, United States
| | | | - Petr Heneberg
- Charles University in Prague, Third Faculty of Medicine, Prague, Czech Republic
| | - Patricia Hentosh
- School of Medical Laboratory and Radiation Sciences, Old Dominion University, Norfolk, VA, United States
| | - Matthew D Hirschey
- Department of Medicine, Duke University Medical Center, Durham, NC, United States; Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - Lorne J Hofseth
- College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Randall F Holcombe
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Hsue-Yin Hsu
- Department of Life Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Gloria S Huang
- Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Lasse D Jensen
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Wen G Jiang
- Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Lee W Jones
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, United States
| | | | | | - Sid P Kerkar
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | | | - Mahin Khatami
- Inflammation and Cancer Research, National Cancer Institute (Retired), National Institutes of Health, Bethesda, MD, United States
| | - Young H Ko
- University of Maryland BioPark, Innovation Center, KoDiscovery, Baltimore, MD, United States
| | - Omer Kucuk
- Winship Cancer Institute of Emory University, Atlanta, GA, United States
| | - Rob J Kulathinal
- Department of Biology, Temple University, Philadelphia, PA, United States
| | - Nagi B Kumar
- Moffitt Cancer Center, University of South Florida College of Medicine, Tampa, FL, United States
| | - Byoung S Kwon
- Cancer Immunology Branch, Division of Cancer Biology, National Cancer Center, Goyang, Gyeonggi, Republic of Korea; Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, United States
| | - Anne Le
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michael A Lea
- New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Ho-Young Lee
- College of Pharmacy, Seoul National University, South Korea
| | - Terry Lichtor
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, United States
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jason W Locasale
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Bal L Lokeshwar
- Department of Medicine, Georgia Regents University Cancer Center, Augusta, GA, United States
| | - Valter D Longo
- Andrus Gerontology Center, Division of Biogerontology, University of Southern California, Los Angeles, CA, United States
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology and Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, United States
| | - Karen L MacKenzie
- Children's Cancer Institute Australia, Kensington, New South Wales, Australia
| | - Meenakshi Malhotra
- Department of Biomedical Engineering, McGill University, Montréal, Canada
| | - Maria Marino
- Department of Science, University Roma Tre, Rome, Italy
| | - Maria L Martinez-Chantar
- Metabolomic Unit, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Technology Park of Bizkaia, Bizkaia, Spain
| | | | - Christopher Maxwell
- Department of Pediatrics, University of British Columbia, Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Eoin McDonnell
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - Alan K Meeker
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mahya Mehrmohamadi
- Field of Genetics, Genomics, and Development, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| | - Kapil Mehta
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Gregory A Michelotti
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Ramzi M Mohammad
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | - D James Morre
- Mor-NuCo, Inc, Purdue Research Park, West Lafayette, IN, United States
| | - Vinayak Muralidhar
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, United States; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Irfana Muqbil
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Hills Road, Cambridge, United Kingdom
| | | | - Rita Nahta
- Winship Cancer Institute of Emory University, Atlanta, GA, United States
| | | | - Somaira Nowsheen
- Medical Scientist Training Program, Mayo Graduate School, Mayo Medical School, Mayo Clinic, Rochester, MN, United States
| | - Carolina Panis
- Laboratory of Inflammatory Mediators, State University of West Paraná, UNIOESTE, Paraná, Brazil
| | - Francesco Pantano
- Medical Oncology Department, University Campus Bio-Medico, Rome, Italy
| | - Virginia R Parslow
- Discipline of Nutrition and Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Graham Pawelec
- Center for Medical Research, University of Tübingen, Tübingen, Germany
| | - Peter L Pedersen
- Departments of Biological Chemistry and Oncology, Member at Large, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Brad Poore
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Deepak Poudyal
- College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Satya Prakash
- Department of Biomedical Engineering, McGill University, Montréal, Canada
| | - Mark Prince
- Department of Otolaryngology-Head and Neck, Medical School, University of Michigan, Ann Arbor, MI, United States
| | | | - Jeffrey C Rathmell
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - W Kimryn Rathmell
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina, School of Medicine, Columbia, SC, United States
| | - Jörg Reichrath
- Center for Clinical and Experimental Photodermatology, Clinic for Dermatology, Venerology and Allergology, The Saarland University Hospital, Homburg, Germany
| | - Sarallah Rezazadeh
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy & National Cancer Institute Giovanni Paolo II, Bari, Italy
| | - Luigi Ricciardiello
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - R Brooks Robey
- White River Junction Veterans Affairs Medical Center, White River Junction, VT, United States; Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Francis Rodier
- Centre de Rechercher du Centre Hospitalier de l'Université de Montréal and Institut du Cancer de Montréal, Montréal, Quebec, Canada; Université de Montréal, Département de Radiologie, Radio-Oncologie et Médicine Nucléaire, Montréal, Quebec, Canada
| | - H P Vasantha Rupasinghe
- Department of Environmental Sciences, Faculty of Agriculture and Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Gian Luigi Russo
- Institute of Food Sciences National Research Council, Avellino, Italy
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | | | - Isidro Sanchez-Garcia
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Andrew J Sanders
- Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Daniele Santini
- Medical Oncology Department, University Campus Bio-Medico, Rome, Italy
| | - Malancha Sarkar
- Department of Biology, University of Miami, Miami, FL, United States
| | - Tetsuro Sasada
- Department of Immunology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Neeraj K Saxena
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rodney E Shackelford
- Department of Pathology, Louisiana State University, Health Shreveport, Shreveport, LA, United States
| | - H M C Shantha Kumara
- Department of Surgery, St. Luke's Roosevelt Hospital, New York, NY, United States
| | - Dipali Sharma
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| | - Dong M Shin
- Winship Cancer Institute of Emory University, Atlanta, GA, United States
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Markus David Siegelin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, United States
| | - Emanuela Signori
- National Research Council, Institute of Translational Pharmacology, Rome, Italy
| | - Neetu Singh
- Advanced Molecular Science Research Centre (Centre for Advanced Research), King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Sharanya Sivanand
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel Sliva
- DSTest Laboratories, Purdue Research Park, Indianapolis, IN, United States
| | - Carl Smythe
- Department of Biomedical Science, Sheffield Cancer Research Centre, University of Sheffield, Sheffield, United Kingdom
| | - Carmela Spagnuolo
- Institute of Food Sciences National Research Council, Avellino, Italy
| | - Diana M Stafforini
- Huntsman Cancer Institute and Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Faculté de Pharmacie et Institut du Cancer de Montréal, Montréal, Quebec, Canada
| | - Pochi R Subbarayan
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Tabetha Sundin
- Department of Molecular Diagnostics, Sentara Healthcare, Norfolk, VA, United States
| | - Wamidh H Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science University, Amman, Jordan
| | - Sarah K Thompson
- Department of Surgery, Royal Adelaide Hospital, Adelaide, Australia
| | - Phuoc T Tran
- Departments of Radiation Oncology & Molecular Radiation Sciences, Oncology and Urology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Vasundara Venkateswaran
- Department of Surgery, University of Toronto, Division of Urology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Dass S Vinay
- Section of Clinical Immunology, Allergy, and Rheumatology, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, United States
| | - Panagiotis J Vlachostergios
- Department of Internal Medicine, New York University Lutheran Medical Center, Brooklyn, New York, NY, United States
| | - Zongwei Wang
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Kathryn E Wellen
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Richard L Whelan
- Department of Surgery, St. Luke's Roosevelt Hospital, New York, NY, United States
| | - Eddy S Yang
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Huanjie Yang
- The School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Xujuan Yang
- University of Illinois at Urbana Champaign, Champaign, IL, United States
| | - Paul Yaswen
- Life Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, United States
| | - Clement Yedjou
- Department of Biology, Jackson State University, Jackson, MS, United States
| | - Xin Yin
- Medicine and Research Services, Veterans Affairs San Diego Healthcare System & University of California, San Diego, CA, United States
| | - Jiyue Zhu
- Washington State University College of Pharmacy, Spokane, WA, United States
| | - Massimo Zollo
- Centro di Ingegneria Genetica e Biotecnologia Avanzate, Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, Federico II, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
29
|
Supercritical Fluid Technology-Based Trans-Resveratrol SLN for Long Circulation and Improved Radioprotection. J Pharm Innov 2016. [DOI: 10.1007/s12247-016-9254-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Clark PA, Bhattacharya S, Elmayan A, Darjatmoko SR, Thuro BA, Yan MB, van Ginkel PR, Polans AS, Kuo JS. Resveratrol targeting of AKT and p53 in glioblastoma and glioblastoma stem-like cells to suppress growth and infiltration. J Neurosurg 2016; 126:1448-1460. [PMID: 27419830 DOI: 10.3171/2016.1.jns152077] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Glioblastoma multiforme (GBM) is an aggressive brain cancer with median survival of less than 2 years with current treatment. Glioblastomas exhibit extensive intratumoral and interpatient heterogeneity, suggesting that successful therapies should produce broad anticancer activities. Therefore, the natural nontoxic pleiotropic agent, resveratrol, was studied for antitumorigenic effects against GBM. METHODS Resveratrol's effects on cell proliferation, sphere-forming ability, and invasion were tested using multiple patient-derived GBM stem-like cell (GSC) lines and established U87 glioma cells, and changes in oncogenic AKT and tumor suppressive p53 were analyzed. Resveratrol was also tested in vivo against U87 glioma flank xenografts in mice by using multiple delivery methods, including direct tumor injection. Finally, resveratrol was delivered directly to brain tissue to determine toxicity and achievable drug concentrations in the brain parenchyma. RESULTS Resveratrol significantly inhibited proliferation in U87 glioma and multiple patient-derived GSC lines, demonstrating similar inhibitory concentrations across these phenotypically heterogeneous lines. Resveratrol also inhibited the sphere-forming ability suggesting anti-stem cell effects. Additionally, resveratrol blocked U87 glioma and GSC invasion in an in vitro Matrigel Transwell assay at doses similar to those mediating antiproliferative effects. In U87 glioma cells and GSCs, resveratrol reduced AKT phosphorylation and induced p53 expression and activation that led to transcription of downstream p53 target genes. Resveratrol administration via oral gavage or ad libitum in the water supply significantly suppressed GBM xenograft growth; intratumoral or peritumoral resveratrol injection further suppressed growth and approximated tumor regression. Intracranial resveratrol injection resulted in 100-fold higher local drug concentration compared with intravenous delivery, and with no apparent toxicity. CONCLUSIONS Resveratrol potently inhibited GBM and GSC growth and infiltration, acting partially via AKT deactivation and p53 induction, and suppressed glioblastoma growth in vivo. The ability of resveratrol to modulate AKT and p53, as well as reportedly many other antitumorigenic pathways, is attractive for therapy against a genetically heterogeneous tumor such as GBM. Although resveratrol exhibits low bioavailability when administered orally or intravenously, novel delivery methods such as direct injection (i.e., convection-enhanced delivery) could potentially be used to achieve and maintain therapeutic doses in the brain. Resveratrol's nontoxic nature and broad anti-GBM effects make it a compelling candidate to supplement current GBM therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Arthur S Polans
- Ophthalmology and Visual Sciences, and.,Carbone Cancer Center, and
| | - John S Kuo
- Departments of 1 Neurological Surgery and.,Carbone Cancer Center, and.,Department of Surgery, National University of Singapore
| |
Collapse
|
31
|
Resveratrol augments ER stress and the cytotoxic effects of glycolytic inhibition in neuroblastoma by downregulating Akt in a mechanism independent of SIRT1. Exp Mol Med 2016; 48:e210. [PMID: 26891914 PMCID: PMC4892869 DOI: 10.1038/emm.2015.116] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 09/07/2015] [Accepted: 09/22/2015] [Indexed: 12/15/2022] Open
Abstract
Cancer cells typically display increased rates of aerobic glycolysis that are correlated with tumor aggressiveness and a poor prognosis. Targeting the glycolytic pathway has emerged as an attractive therapeutic route mainly because it should spare normal cells. Here, we evaluate the effects of combining the inhibition of glycolysis with application of the polyphenolic compound resveratrol (RSV) in neuroblastoma (NB) cancer cell lines. Inhibiting glycolysis with 2-deoxy-D-glucose (2-DG) significantly reduced NB cell viability and was associated with increased endoplasmic reticulum (ER) stress and Akt activity. Administration of 2-DG increased the expression of the ER molecular chaperones GRP78 and GRP94, the prodeath protein C/EBP homology protein (CHOP) and the phosphorylation of Akt at S473, T450 and T308. Combined treatment with both RSV and 2-DG reduced GRP78, GRP94 and Akt phosphorylation but increased CHOP and NB cell death when compared with the administration of 2-DG alone. The selective inhibition of Akt activity also decreased 2-DG-induced GRP78 and GRP94 expression and increased CHOP expression, suggesting that Akt can modulate ER stress. Protein phosphatase 1α (PP1α) was activated by RSV, as indicated by a reduction in PP1α phosphorylation at T320. Pretreatment of cells with tautomycin, a selective PP1α inhibitor, prevented the RSV-mediated decrease in Akt phosphorylation, suggesting that RSV enhances 2-DG-induced cell death by activating PP1 and downregulating Akt. The RSV-mediated inhibition of Akt in the presence of 2-DG was not prevented by the selective inhibition of SIRT1, a known target of RSV, indicating that the effects of RSV on this pathway are independent of SIRT1. We propose that RSV inhibits Akt activity by increasing PP1α activity, thereby potentiating 2-DG-induced ER stress and NB cell death.
Collapse
|
32
|
Safety of synthetic trans‐resveratrol as a novel food pursuant to Regulation (EC) No 258/97. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.4368] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
33
|
Guntuku L, Naidu VGM, Yerra VG. Mitochondrial Dysfunction in Gliomas: Pharmacotherapeutic Potential of Natural Compounds. Curr Neuropharmacol 2016; 14:567-83. [PMID: 26791479 PMCID: PMC4981742 DOI: 10.2174/1570159x14666160121115641] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/08/2015] [Accepted: 01/20/2016] [Indexed: 11/22/2022] Open
Abstract
Gliomas are the most common primary brain tumors either benign or malignant originating from the glial tissue. Glioblastoma multiforme (GBM) is the most prevalent and aggressive form among all gliomas, associated with decimal prognosis due to it`s high invasive nature. GBM is also characterized by high recurrence rate and apoptosis resistance features which make the therapeutic targeting very challenging. Mitochondria are key cellular organelles that are acting as focal points in diverse array of cellular functions such as cellular energy metabolism, regulation of ion homeostasis, redox signaling and cell death. Eventual findings of mitochondrial dysfunction include preference of glycolysis over oxidative phosphorylation, enhanced reactive oxygen species generation and abnormal mitochondria mediated apoptotic machinery are frequently observed in various malignancies including gliomas. In particular, gliomas harbor mitochondrial structure abnormalities, genomic mutations in mtDNA, altered energy metabolism (Warburg effect) along with mutations in isocitrate dehydrogenase (IDH) enzyme. Numerous natural compounds have shown efficacy in the treatment of gliomas by targeting mitochondrial aberrant signaling cascades. Some of the natural compounds directly target the components of mitochondria whereas others act indirectly through modulating metabolic abnormalities that are consequence of the mitochondrial dysfunction. The present review offers a molecular insight into mitochondrial pathology in gliomas and therapeutic mechanisms of some of the promising natural compounds that target mitochondrial dysfunction. This review also sheds light on the challenges and possible ways to overcome the hurdles associated with these natural compounds to enter into the clinical market.
Collapse
Affiliation(s)
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, India.
| | | |
Collapse
|
34
|
Zhu Y, He W, Gao X, Li B, Mei C, Xu R, Chen H. Resveratrol overcomes gefitinib resistance by increasing the intracellular gefitinib concentration and triggering apoptosis, autophagy and senescence in PC9/G NSCLC cells. Sci Rep 2015; 5:17730. [PMID: 26635117 PMCID: PMC4669414 DOI: 10.1038/srep17730] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/05/2015] [Indexed: 01/21/2023] Open
Abstract
Gefitinib (Gef) provides clinical benefits to non-small cell lung cancer (NSCLC) patients with activating EGFR mutations. However, acquired resistance (AR) is a major obstacle to effective Gef therapy. This study demonstrated that resveratrol (Res) could synergize with Gef to inhibit the proliferation of Gef-resistant NSCLC cells. The underlying mechanisms of synergism were investigated, and the results showed that cotreatment with Gef and Res could inhibit EGFR phosphorylation by increasing intracellular Gef accumulation through the impairment of Gef elimination from PC9/G cells. Consistently, CYP1A1 and ABCG2 expression were inhibited. Meanwhile, the cotreatment significantly induced cell apoptosis, autophagy, cell cycle arrest and senescence accompanied by increased expression of cleaved caspase-3, LC3B-II, p53 and p21. Further studies revealed that autophagy inhibition enhanced apoptosis and abrogated senescence while apoptosis inhibition had no notable effect on cell autophagy and senescence during cotreatment with Gef and Res. These results indicated that in addition to apoptosis, senescence promoted by autophagy contributes to the antiproliferation effect of combined Gef and Res on PC9/G cells. In conclusion, combined treatment with Gef and Res may represent a rational strategy to overcome AR in NSCLC cells.
Collapse
Affiliation(s)
- Yinsong Zhu
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Wenjuan He
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiujuan Gao
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Bin Li
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Chenghan Mei
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Rong Xu
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hui Chen
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
35
|
Samadi AK, Bilsland A, Georgakilas AG, Amedei A, Amin A, Bishayee A, Azmi AS, Lokeshwar BL, Grue B, Panis C, Boosani CS, Poudyal D, Stafforini DM, Bhakta D, Niccolai E, Guha G, Vasantha Rupasinghe HP, Fujii H, Honoki K, Mehta K, Aquilano K, Lowe L, Hofseth LJ, Ricciardiello L, Ciriolo MR, Singh N, Whelan RL, Chaturvedi R, Ashraf SS, Shantha Kumara HMC, Nowsheen S, Mohammed SI, Keith WN, Helferich WG, Yang X. A multi-targeted approach to suppress tumor-promoting inflammation. Semin Cancer Biol 2015; 35 Suppl:S151-S184. [PMID: 25951989 PMCID: PMC4635070 DOI: 10.1016/j.semcancer.2015.03.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 12/15/2022]
Abstract
Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-κB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes.
Collapse
Affiliation(s)
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematics and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates; Faculty of Science, Cairo University, Cairo, Egypt
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin Health Sciences Institute, Miami, FL, United States
| | - Asfar S Azmi
- Department of Pathology, Wayne State Univeristy, Karmanos Cancer Center, Detroit, MI, USA
| | - Bal L Lokeshwar
- Department of Urology, University of Miami, Miller School of Medicine, Miami, FL, United States; Miami Veterans Administration Medical Center, Miami, FL, United States
| | - Brendan Grue
- Department of Environmental Science, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carolina Panis
- Laboratory of Inflammatory Mediators, State University of West Paraná, UNIOESTE, Paraná, Brazil
| | - Chandra S Boosani
- Department of BioMedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Deepak Poudyal
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Diana M Stafforini
- Huntsman Cancer Institute and Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Dipita Bhakta
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | | | - Gunjan Guha
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - H P Vasantha Rupasinghe
- Department of Environmental Sciences, Faculty of Agriculture and Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Kapil Mehta
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada.
| | - Lorne J Hofseth
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Luigi Ricciardiello
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Neetu Singh
- Advanced Molecular Science Research Centre (Centre for Advanced Research), King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Richard L Whelan
- Department of Surgery, St. Luke's Roosevelt Hospital, New York, NY, United States
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - S Salman Ashraf
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - H M C Shantha Kumara
- Department of Surgery, St. Luke's Roosevelt Hospital, New York, NY, United States
| | - Somaira Nowsheen
- Medical Scientist Training Program, Mayo Graduate School, Mayo Medical School, Mayo Clinic, Rochester, MN, United States
| | - Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | | | - Xujuan Yang
- University of Illinois at Urbana Champaign, Champaign, IL, United States
| |
Collapse
|
36
|
Liu PL, Chong IW, Lee YC, Tsai JR, Wang HM, Hsieh CC, Kuo HF, Liu WL, Chen YH, Chen HL. Anti-inflammatory Effects of Resveratrol on Hypoxia/Reoxygenation-Induced Alveolar Epithelial Cell Dysfunction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9480-9487. [PMID: 26466890 DOI: 10.1021/acs.jafc.5b01168] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Reducing oxidative stress is crucial to prevent hypoxia-reoxygenation (H/R)-induced lung injury. Resveratrol has excellent antioxidant and anti-inflammatory effects, and this study investigated its role in H/R-induced type II pneumocyte dysfunction. H/R conditions increased expression of inflammatory cytokines including interleukin (IL)-1β (142.3 ± 21.2%, P < 0.05) and IL-6 (301.9 ± 35.1%, P < 0.01) in a type II alveolar epithelial cell line (A549), while the anti-inflammatory cytokine IL-10 (64.6 ± 9.8%, P < 0.05) and surfactant proteins (SPs) decreased. However, resveratrol treatment effectively inhibited these effects. H/R significantly activated an inflammatory transcription factor, nuclear factor (NF)-κB, while resveratrol significantly inhibited H/R-induced NF-κB transcription activities. To the best of our knowledge, this is the first study showing resveratrol-mediated reversal of H/R-induced inflammatory responses and dysfunction of type II pneumocyte cells in vitro. The effects of resveratrol were partially mediated by promoting SP expression and inhibiting inflammation with NF-κB pathway involvement. Therefore, our study provides new insights into mechanisms underlying the action of resveratrol in type II pneumocyte dysfunction.
Collapse
Affiliation(s)
- Po-Len Liu
- Department of Respiratory Therapy, Department of Fragrance and Cosmetic Science, College of Medicine, Kaohsiung Medical University , Kaohsiung 807, Taiwan
| | - Inn-Wen Chong
- Department of Respiratory Therapy, Department of Fragrance and Cosmetic Science, College of Medicine, Kaohsiung Medical University , Kaohsiung 807, Taiwan
- Department of Pediatrics, Department of Internal Medicine, Department of Chest Surgery, Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Medical University Hospital , Kaohsiung 807, Taiwan
| | - Yi-Chen Lee
- Department of Respiratory Therapy, Department of Fragrance and Cosmetic Science, College of Medicine, Kaohsiung Medical University , Kaohsiung 807, Taiwan
| | - Jong-Rung Tsai
- Department of Respiratory Therapy, Department of Fragrance and Cosmetic Science, College of Medicine, Kaohsiung Medical University , Kaohsiung 807, Taiwan
- Department of Pediatrics, Department of Internal Medicine, Department of Chest Surgery, Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Medical University Hospital , Kaohsiung 807, Taiwan
| | - Hui-Min Wang
- Department of Respiratory Therapy, Department of Fragrance and Cosmetic Science, College of Medicine, Kaohsiung Medical University , Kaohsiung 807, Taiwan
| | - Chong-Chao Hsieh
- Department of Pediatrics, Department of Internal Medicine, Department of Chest Surgery, Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Medical University Hospital , Kaohsiung 807, Taiwan
| | - Hsuan-Fu Kuo
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University , Kaohsiung 801, Taiwan
| | - Wei-Lun Liu
- Department of Intensive Care Medicine, Chi Mei Medical Center , Tainan 736, Taiwan
| | - Yung-Hsiang Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University , Taichung 404, Taiwan
- Department of Medical Research, China Medical University Hospital , Taichung 404, Taiwan
- Department of Psychology, College of Medical and Health Science, Asia University , Taichung 413, Taiwan
| | - Hsiu-Lin Chen
- Department of Respiratory Therapy, Department of Fragrance and Cosmetic Science, College of Medicine, Kaohsiung Medical University , Kaohsiung 807, Taiwan
- Department of Pediatrics, Department of Internal Medicine, Department of Chest Surgery, Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Medical University Hospital , Kaohsiung 807, Taiwan
| |
Collapse
|
37
|
Chachay VS, Macdonald GA, Martin JH, Whitehead JP, O'Moore-Sullivan TM, Lee P, Franklin M, Klein K, Taylor PJ, Ferguson M, Coombes JS, Thomas GP, Cowin GJ, Kirkpatrick CMJ, Prins JB, Hickman IJ. Resveratrol does not benefit patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 2014; 12:2092-103.e1-6. [PMID: 24582567 DOI: 10.1016/j.cgh.2014.02.024] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/10/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Nonalcoholic fatty liver disease (NAFLD), characterized by accumulation of hepatic triglycerides (steatosis), is associated with abdominal obesity, insulin resistance, and inflammation. Although weight loss via calorie restriction reduces features of NAFLD, there is no pharmacologic therapy. Resveratrol is a polyphenol that prevents high-energy diet-induced steatosis and insulin resistance in animals by up-regulating pathways that regulate energy metabolism. We performed a placebo-controlled trial to assess the effects of resveratrol in patients with NAFLD. METHODS Overweight or obese men diagnosed with NAFLD were recruited from hepatology outpatient clinics in Brisbane, Australia from 2011 through 2012. They were randomly assigned to groups given 3000 mg resveratrol (n = 10) or placebo (n = 10) daily for 8 weeks. Outcomes included insulin resistance (assessed by the euglycemic-hyperinsulinemic clamp), hepatic steatosis, and abdominal fat distribution (assessed by magnetic resonance spectroscopy and imaging). Plasma markers of inflammation, as well as metabolic, hepatic, and antioxidant function, were measured; transcription of target genes was measured in peripheral blood mononuclear cells. Resveratrol pharmacokinetics and safety were assessed. RESULTS Eight-week administration of resveratrol did not reduce insulin resistance, steatosis, or abdominal fat distribution when compared with baseline. No change was observed in plasma lipids or antioxidant activity. Levels of alanine and aspartate aminotransferases increased significantly among patients in the resveratrol group until week 6 when compared with the placebo group. Resveratrol did not significantly alter transcription of NQO1, PTP1B, IL6, or HO1 in peripheral blood mononuclear cells. Resveratrol was well-tolerated. CONCLUSIONS Eight weeks administration of resveratrol did not significantly improve any features of NAFLD, compared with placebo, but it increased hepatic stress, based on observed increases in levels of liver enzymes. Further studies are needed to determine whether agents that are purported to mimic calorie restriction, such as resveratrol, are safe and effective for complications of obesity. Clinical trials registration no: ACTRN12612001135808.
Collapse
Affiliation(s)
- Veronique S Chachay
- University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Australia; Department of Nutrition and Dietetics, Princess Alexandra Hospital, Brisbane, Australia.
| | - Graeme A Macdonald
- School of Medicine Metro-South, University of Queensland, Brisbane, Australia; Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Australia
| | - Jennifer H Martin
- School of Medicine Metro-South, University of Queensland, Brisbane, Australia
| | | | - Trisha M O'Moore-Sullivan
- School of Medicine Metro-South, University of Queensland, Brisbane, Australia; Department of Endocrinology, Princess Alexandra Hospital, Brisbane, Australia
| | - Paul Lee
- School of Medicine Metro-South, University of Queensland, Brisbane, Australia; Department of Endocrinology, Princess Alexandra Hospital, Brisbane, Australia
| | - Michael Franklin
- Department of Clinical Pharmacology, Princess Alexandra Hospital, Brisbane, Australia
| | - Kerenaftali Klein
- Queensland Clinical Trials and Biostatistics Centre, University of Queensland, Brisbane, Australia
| | - Paul J Taylor
- Department of Clinical Pharmacology, Princess Alexandra Hospital, Brisbane, Australia
| | - Maree Ferguson
- Department of Nutrition and Dietetics, Princess Alexandra Hospital, Brisbane, Australia; School of Human Movement Studies, University of Queensland, Brisbane, Australia
| | - Jeff S Coombes
- School of Human Movement Studies, University of Queensland, Brisbane, Australia
| | - Gethin P Thomas
- University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Gary J Cowin
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | | | - Johannes B Prins
- University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Australia; Mater Medical Research Institute, Brisbane, Australia
| | - Ingrid J Hickman
- University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Australia; Department of Nutrition and Dietetics, Princess Alexandra Hospital, Brisbane, Australia; Mater Medical Research Institute, Brisbane, Australia
| |
Collapse
|
38
|
Brüning A, Blankenstein T, Jückstock J, Mylonas I. Function and regulation of MTA1 and MTA3 in malignancies of the female reproductive system. Cancer Metastasis Rev 2014; 33:943-51. [PMID: 25319202 DOI: 10.1007/s10555-014-9520-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The family of metastasis-associated (MTA) genes is a small group of transcriptional co-regulators which are involved in various physiological functions, ranging from lymphopoietic cell differentiation to the development and maintenance of epithelial cell adhesions. By recruiting histone-modifying enzymes to specific promoter sequences, MTA proteins can function both as transcriptional repressors and activators of a number of cancer-relevant proteins, including Snail, E-cadherin, signal transducer and activator of transcriptions (STATs), and the estrogen receptor. Their involvement in the epithelial-mesenchymal transition process and regulatory interactions with estrogen receptor activity has made MTA proteins highly interesting research candidates, especially in the field of hormone-sensitive breast cancer and malignancies of the female reproductive tract. This review focuses on the current knowledge about the function and regulation of MTA1 and MTA3 proteins in gynecological cancer, including ovarian, endometrial, and cervical tumors.
Collapse
Affiliation(s)
- Ansgar Brüning
- Department of Obstetrics/Gynecology, Molecular Biology Laboratory, University Hospital Munich, Maistrasse 11, 80337, Munich, Germany,
| | | | | | | |
Collapse
|
39
|
Saud SM, Li W, Morris NL, Matter MS, Colburn NH, Kim YS, Young MR. Resveratrol prevents tumorigenesis in mouse model of Kras activated sporadic colorectal cancer by suppressing oncogenic Kras expression. Carcinogenesis 2014; 35:2778-86. [PMID: 25280562 DOI: 10.1093/carcin/bgu209] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sporadic and non-hereditary mutations account for the majority of colorectal cancers (CRC). After the loss of adenomatous polyposis coli (APC) function and activation of the β-catenin/LEF signaling pathway, activating mutations in Kras are major drivers of sporadic CRC. Preventing the outgrowth of cells that develop sporadic mutations will decrease CRC. Resveratrol, a naturally occurring polyphenolic compound has anti-inflammatory, anti-oxidant and anti-cancer activities. We used a genetically engineered mouse model for sporadic CRC where the APC locus is knocked out and Kras is activated specifically in the distal colon to determine the effects of resveratrol on preventing and treating CRC. Feeding mice a diet supplemented with 150 or 300 ppm resveratrol (105 and 210mg daily human equivalent dose, respectively) before tumors were visible by colonoscopy resulted in a 60% inhibition of tumor production. In the 40% of mice that did develop tumors Kras expression was lost in the tumors. In a therapeutic assay where tumors were allowed to develop prior to treatment, feeding tumor bearing mice with resveratrol resulted in a complete remission in 33% of the mice and a 97% decrease in tumor size in the remaining mice. Analysis of miRNA expression in non-tumoral and tumoral colonic tissue of resveratrol treated mice showed an increased expression of miR-96, a miRNA previously shown to regulate Kras translation. These data indicate that resveratrol can prevent the formation and growth of colorectal tumors by downregulating Kras expression.
Collapse
Affiliation(s)
- Shakir M Saud
- Nutritional Science Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, MD, USA, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Weidong Li
- Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA, Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nicole L Morris
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick, MD, USA and
| | - Matthias S Matter
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Nancy H Colburn
- Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Young S Kim
- Nutritional Science Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, MD, USA
| | - Matthew R Young
- Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA,
| |
Collapse
|
40
|
The effect of resveratrol and its methylthio-derivatives on the Nrf2-ARE pathway in mouse epidermis and HaCaT keratinocytes. Cell Mol Biol Lett 2014; 19:500-16. [PMID: 25169438 PMCID: PMC6276002 DOI: 10.2478/s11658-014-0209-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 08/22/2014] [Indexed: 12/30/2022] Open
Abstract
Resveratrol is the most extensively studied stilbene derivative. We previously showed that methylthiostilbenes were more effective inhibitors of CYP1A1 and 1B1 activity than resveratrol. In this study, we investigated whether resveratrol and its methylthio-substituted derivatives, i.e. 3-M-4′-MTS (S2), 3,5-DM-4′-MTS (S5) and 3,4,5-TM-4′-MTS (S7) could activate Nrf2 signaling in the mouse epidermis and in human keratinocytes. Western blot analysis showed translocation of Nrf2 from the cytosol to the nucleus in both models. All of the tested stilbenes increased GST activity, but resveratrol was the most effective inducer. Moreover, only resveratrol increased the protein level of GSTP in the mouse epidermis. GSTM was enhanced in HaCaT cells after the treatment with derivatives S2 and S5. The same effect was observed for GSTP in the case of compound S2. Resveratrol and its derivatives reduced the NQO2 protein level in HaCaT cells. Thus, it is possible that increased expression of GSTP or GSTM and GST activity was linked with NQO2 inhibition in these cells. The results of this study indicate that resveratrol and its methylthioderivatives activate Nrf2 not only in the mouse epidermis, but also in human keratinocytes. Upregulating GST isozymes might be particularly important for deactivating chemical carcinogens, such as PAH.
Collapse
|
41
|
Grimm M, Cetindis M, Lehmann M, Biegner T, Munz A, Teriete P, Kraut W, Reinert S. Association of cancer metabolism-related proteins with oral carcinogenesis - indications for chemoprevention and metabolic sensitizing of oral squamous cell carcinoma? J Transl Med 2014; 12:208. [PMID: 25048361 PMCID: PMC4110933 DOI: 10.1186/1479-5876-12-208] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/02/2014] [Indexed: 02/07/2023] Open
Abstract
Background Tumor metabolism is a crucial factor for the carcinogenesis of oral squamous cell carcinoma (OSCC). Methods Expression of IGF-R1, glycolysis-related proteins (GLUT-1, HK 2, PFK-1, LDHA, TKTL1), mitochondrial enzymes (SDHA, SDHB, ATP synthase) were analyzed in normal oral mucosa (n = 5), oral precursor lesions (simple hyperplasia, n = 11; squamous intraepithelial neoplasia, SIN I-III, n = 35), and OSCC specimen (n = 42) by immunohistochemistry and real-time polymerase chain reaction (qPCR) analysis in OSCC cell lines. Metabolism-related proteins were correlated with proliferation activity (Ki-67) and apoptotic properties (TUNEL assay) in OSCC. Specificity of antibodies was confirmed by western blotting in cancer cell lines. Results Expression of IGF-R1, glycolysis-related proteins (GLUT-1, HK 2, LDHA, TKTL1), and mitochondrial enzymes (SDHA, SDHB, ATP synthase) were significantly increased in the carcinogenesis of OSCC. Metabolic active regions of OSCC were strongly correlated with proliferating cancer (Ki-67+) cells without detection of apoptosis (TUNEL assay). Conclusions This study provides the first evidence of the expression of IGF-R1, glycolysis-related proteins GLUT-1, HK 2, PFK-1, LDHA, and TKTL1, as well as mitochondrial enzymes SDHA, SDHB, and ATP synthase in the multi-step carcinogenesis of OSCC. Both, hypoxia-related glucose metabolism and mitochondrial oxidative phosphorylation characteristics are associated with the carcinogenesis of OSCC. Acidosis and OXPHOS may drive a metabolic shift towards the pentose phosphate pathway (PPP). Therefore, inhibition of the PPP, glycolysis, and targeted anti-mitochondrial therapies (ROS generation) by natural compounds or synthetic vitamin derivatives may act as sensitizer for apoptosis in cancer cells mediated by adjuvant therapies in OSCC.
Collapse
Affiliation(s)
- Martin Grimm
- Department of Oral and Maxillofacial Surgery, University Hospital Tuebingen, Osianderstrasse 2-8, Tuebingen 72076, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Canapè C, Catanzaro G, Terreno E, Karlsson M, Lerche MH, Jensen PR. Probing treatment response of glutaminolytic prostate cancer cells to natural drugs with hyperpolarized [5-13C]glutamine. Magn Reson Med 2014; 73:2296-305. [DOI: 10.1002/mrm.25360] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 05/19/2014] [Accepted: 06/19/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Carolina Canapè
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Center; University of Torino; Torino Italy
| | | | - Enzo Terreno
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Center; University of Torino; Torino Italy
| | - Magnus Karlsson
- Albeda Research Aps; Gamle Carlsberg Vej 10 Copenhagen Denmark
| | | | | |
Collapse
|
43
|
Newgard CB, Pessin JE. Recent progress in metabolic signaling pathways regulating aging and life span. J Gerontol A Biol Sci Med Sci 2014; 69 Suppl 1:S21-7. [PMID: 24833582 PMCID: PMC4022126 DOI: 10.1093/gerona/glu058] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The NIH Summit, Advances in Geroscience: Impact on Health Span and Chronic Disease, discusses several aspects of cellular degeneration that underlie susceptibility to chronic aging-associated diseases, morbidity, and mortality. In particular, the session on Metabolism focuses on the interrelationship between signal transduction, intermediary metabolism, and metabolic products and byproducts that contribute to pathophysiologic phenotypes and detrimental effects that occur during the aging process, thus leading to susceptibility to disease. Although it is well established that many metabolic pathways (ie, oxidative phosphorylation, insulin-stimulated glucose uptake) decline with age, it often remains uncertain if these are a cause or consequence of the aging process. Moreover, the mechanisms accounting for the decline in metabolic function remain enigmatic. Several novel and unexpected concepts are emerging that will help to define the roles of altered metabolic control in the degenerative mechanisms of aging. This brief review summarizes several of the topics to be discussed in the metabolism of aging session (http://www.geron.org/About%20Us/nih-geroscience-summit).
Collapse
Affiliation(s)
- Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina.
| | - Jeffrey E Pessin
- Department of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
44
|
Plant-derived anti-inflammatory compounds: hopes and disappointments regarding the translation of preclinical knowledge into clinical progress. Mediators Inflamm 2014; 2014:146832. [PMID: 24987194 PMCID: PMC4060065 DOI: 10.1155/2014/146832] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/07/2014] [Indexed: 01/10/2023] Open
Abstract
Many diseases have been described to be associated with inflammatory processes. The currently available anti-inflammatory drug therapy is often not successful or causes intolerable side effects. Thus, new anti-inflammatory substances are still urgently needed. Plants were the first source of remedies in the history of mankind. Since their chemical characterization in the 19th century, herbal bioactive compounds have fueled drug development. Also, nowadays, new plant-derived agents continuously enrich our drug arsenal (e.g., vincristine, galantamine, and artemisinin). The number of new, pharmacologically active herbal ingredients, in particular that of anti-inflammatory compounds, rises continuously. The major obstacle in this field is the translation of preclinical knowledge into evidence-based clinical progress. Human trials of good quality are often missing or, when available, are frequently not suitable to really prove a therapeutical value. This minireview will summarize the current situation of 6 very prominent plant-derived anti-inflammatory compounds: curcumin, colchicine, resveratrol, capsaicin, epigallocatechin-3-gallate (EGCG), and quercetin. We will highlight their clinical potential and/or pinpoint an overestimation. Moreover, we will sum up the planned trials in order to provide insights into the inflammatory disorders that are hypothesized to be beneficially influenced by the compound.
Collapse
|
45
|
Butler MS, Robertson AAB, Cooper MA. Natural product and natural product derived drugs in clinical trials. Nat Prod Rep 2014; 31:1612-61. [DOI: 10.1039/c4np00064a] [Citation(s) in RCA: 383] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The 25 Natural Product (NP)-derived drugs launched since 2008 and the 100 NP-derived compounds and 33 Antibody Drug Conjugates (ADCs) in clinical trials or in registration at the end of 2013 are reviewed.
Collapse
Affiliation(s)
- Mark S. Butler
- Division of Chemistry and Structural Biology
- Institute for Molecular Bioscience
- The University of Queensland
- Brisbane, Australia
| | - Avril A. B. Robertson
- Division of Chemistry and Structural Biology
- Institute for Molecular Bioscience
- The University of Queensland
- Brisbane, Australia
| | - Matthew A. Cooper
- Division of Chemistry and Structural Biology
- Institute for Molecular Bioscience
- The University of Queensland
- Brisbane, Australia
| |
Collapse
|
46
|
Abstract
Resveratrol (RSV) is a natural polyphenol produced by plants and is proposed to have multiple beneficial effects on health. In recent years, the interest in this molecule has increased nearly exponentially following the major findings that RSV (I) is chemo-preventive in some cancer models, (II) is cardio-protective and (III) has positive effects on metabolism in mammals and increases lifespan in lower organisms. Mechanistic target of rapamycin (mTOR) is a central controller of cell growth, proliferation, metabolism and angiogenesis. As a part of the mTORC1 and mTORC2 complexes, the mTOR kinase plays a key role in several pathways involved in cancer and metabolic diseases. Recent studies suggest that modulation of the mTOR signalling pathway could play an important role in mediating the beneficial effects of RSV. Therefore, this review summarises the current findings regarding RSV and its inhibition/activation of the proteins in the mTOR pathway, and thereby propose the proteins of the mTOR cascade to be primary targets for RSV. RSV affects many different targets related to mTOR, and it is not clear which is most relevant. However, most frequently, RSV is found to inhibit the activity of the mTOR pathway proteins, and to activate AMPK and LKB1, which can suppress mTOR signalling. Thus, it appears that RSV plays a role in modulation of proteins of the mTOR pathway although more research is still needed to fully understand the interaction.
Collapse
|