1
|
Zhao S, Wang A, Han Y, Song C, Zhang H, He K, Chen J. Exploring Gender Differences in the Relationship Between Thyroid Function and Aggressive and Impulsive Behaviors in Patients with Major Depressive Disorder. Neuropsychiatr Dis Treat 2025; 21:563-574. [PMID: 40103619 PMCID: PMC11917436 DOI: 10.2147/ndt.s510936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
Purpose Major depressive disorder (MDD) is a widespread mental health condition with significant global impact. Exploring the gender differences in the interplay between thyroid function, aggression, and impulsivity offers valuable insights into its multifactorial nature and management. Patients and Methods A cross-sectional study was conducted at Anhui Mental Health Center and included 113 MDD patients (56 males, 57 females) and 102 healthy controls (45 males and 57 females). Thyroid function was assessed through serum thyroid hormone levels, and impulsivity and aggression were measured using the Buss-Perry Aggression Questionnaire (BPAQ) and Barratt's Impulsiveness Scale version 11 (BIS). Potential confounding factors such as age, education, and Hamilton Depression Rating Scale (HAMD) scores were adjusted for. Results Both male and female MDD patients showed significant changes in serum thyrotropin levels (F(1,213)=10.996, p=0.001), impulsivity (F(1,213)=151.521, p<0.05), and aggression (F(1,213)=44.411, p<0.05) compared to healthy controls. MANCOVA revealed significant differences in attentional impulsivity, motor impulsivity, physical aggression, anger, hostility, and self-directed aggression (all p<0.05). Moreover, significant differences between genders were observed in these areas (all p<0.05). In males, TSH levels were inversely related to several behavioral dimensions (all p<0.05), while no such correlation was found in females. Conclusion This study highlights the role of thyroid function, especially TSH levels, in influencing impulsivity and aggression in male MDD patients, suggesting a gender-specific physiological-behavioral relationship. The findings contribute to the development of gender-specific treatment strategies. In the future, longitudinal studies with larger sample sizes should be conducted to explore molecular mechanisms for more personalized treatments.
Collapse
Affiliation(s)
- Shuai Zhao
- Department of Psychiatry, the Affiliated Psychological Hospital of Anhui Medical University, Hefei, People's Republic of China
- Department of Psychiatry, Hefei Fourth People's Hospital, Hefei, People's Republic of China
- Department of Psychiatry, Anhui Mental Health Center, Hefei, People's Republic of China
- Department of Psychiatry, Anhui Clinical Research Center for Mental Disorders, Hefei, People's Republic of China
| | - Anzhen Wang
- Department of Psychiatry, the Affiliated Psychological Hospital of Anhui Medical University, Hefei, People's Republic of China
- Department of Psychiatry, Hefei Fourth People's Hospital, Hefei, People's Republic of China
- Department of Psychiatry, Anhui Mental Health Center, Hefei, People's Republic of China
- Department of Psychiatry, Anhui Clinical Research Center for Mental Disorders, Hefei, People's Republic of China
| | - Yuqin Han
- Department of Psychiatry, the Affiliated Psychological Hospital of Anhui Medical University, Hefei, People's Republic of China
- Department of Psychiatry, Hefei Fourth People's Hospital, Hefei, People's Republic of China
- Department of Psychiatry, Anhui Mental Health Center, Hefei, People's Republic of China
- Department of Psychiatry, Anhui Clinical Research Center for Mental Disorders, Hefei, People's Republic of China
| | - ChenXia Song
- Department of Psychiatry, the Affiliated Psychological Hospital of Anhui Medical University, Hefei, People's Republic of China
- Department of Psychiatry, Hefei Fourth People's Hospital, Hefei, People's Republic of China
- Department of Psychiatry, Anhui Mental Health Center, Hefei, People's Republic of China
- Department of Psychiatry, Anhui Clinical Research Center for Mental Disorders, Hefei, People's Republic of China
| | - Hongqin Zhang
- Department of Psychiatry, the Affiliated Psychological Hospital of Anhui Medical University, Hefei, People's Republic of China
- Department of Psychiatry, Hefei Fourth People's Hospital, Hefei, People's Republic of China
- Department of Psychiatry, Anhui Mental Health Center, Hefei, People's Republic of China
- Department of Psychiatry, Anhui Clinical Research Center for Mental Disorders, Hefei, People's Republic of China
| | - Kongliang He
- Department of Psychiatry, the Affiliated Psychological Hospital of Anhui Medical University, Hefei, People's Republic of China
- Department of Psychiatry, Hefei Fourth People's Hospital, Hefei, People's Republic of China
- Department of Psychiatry, Anhui Mental Health Center, Hefei, People's Republic of China
- Department of Psychiatry, Anhui Clinical Research Center for Mental Disorders, Hefei, People's Republic of China
| | - Juan Chen
- Department of Psychiatry, the Affiliated Psychological Hospital of Anhui Medical University, Hefei, People's Republic of China
- Department of Psychiatry, Hefei Fourth People's Hospital, Hefei, People's Republic of China
- Department of Psychiatry, Anhui Mental Health Center, Hefei, People's Republic of China
- Department of Psychiatry, Anhui Clinical Research Center for Mental Disorders, Hefei, People's Republic of China
| |
Collapse
|
2
|
Guan Z, Zhang X, Huang W, Li K, Chen D, Li W, Sun J, Chen L, Mao Y, Sun H, Tang X, Cao L, Li Y. A Method for Detecting Depression in Adolescence Based on an Affective Brain-Computer Interface and Resting-State Electroencephalogram Signals. Neurosci Bull 2025; 41:434-448. [PMID: 39565521 PMCID: PMC11876500 DOI: 10.1007/s12264-024-01319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/27/2024] [Indexed: 11/21/2024] Open
Abstract
Depression is increasingly prevalent among adolescents and can profoundly impact their lives. However, the early detection of depression is often hindered by the time-consuming diagnostic process and the absence of objective biomarkers. In this study, we propose a novel approach for depression detection based on an affective brain-computer interface (aBCI) and the resting-state electroencephalogram (EEG). By fusing EEG features associated with both emotional and resting states, our method captures comprehensive depression-related information. The final depression detection model, derived through decision fusion with multiple independent models, further enhances detection efficacy. Our experiments involved 40 adolescents with depression and 40 matched controls. The proposed model achieved an accuracy of 86.54% on cross-validation and 88.20% on the independent test set, demonstrating the efficiency of multimodal fusion. In addition, further analysis revealed distinct brain activity patterns between the two groups across different modalities. These findings hold promise for new directions in depression detection and intervention.
Collapse
Affiliation(s)
- Zijing Guan
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Research Center for Brain-Computer Interface, Pazhou Lab, Guangzhou, 510330, China
| | - Xiaofei Zhang
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510370, China
| | - Weichen Huang
- Research Center for Brain-Computer Interface, Pazhou Lab, Guangzhou, 510330, China
| | - Kendi Li
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Research Center for Brain-Computer Interface, Pazhou Lab, Guangzhou, 510330, China
| | - Di Chen
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Research Center for Brain-Computer Interface, Pazhou Lab, Guangzhou, 510330, China
| | - Weiming Li
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510370, China
| | - Jiaqi Sun
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510370, China
| | - Lei Chen
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510370, China
| | - Yimiao Mao
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510370, China
| | - Huijun Sun
- Research Center for Brain-Computer Interface, Pazhou Lab, Guangzhou, 510330, China
| | - Xiongzi Tang
- Research Center for Brain-Computer Interface, Pazhou Lab, Guangzhou, 510330, China
| | - Liping Cao
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510370, China.
| | - Yuanqing Li
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
- Research Center for Brain-Computer Interface, Pazhou Lab, Guangzhou, 510330, China.
| |
Collapse
|
3
|
Van Den Noortgate M, Van Den Eede F, Coppens V, Giltay EJ, De Picker L, Morrens M. Immune-neuroendocrine crosstalk in mood and psychotic disorders: A meta-analysis and systematic review. Brain Behav Immun Health 2025; 44:100965. [PMID: 40040865 PMCID: PMC11879693 DOI: 10.1016/j.bbih.2025.100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
Background Bidirectional interactions between immune and neuroendocrine mechanisms are involved in mood and psychotic disorders, although individual studies report inconsistent and even contradictory findings on the nature of this crosstalk. Our objective was to perform an up to date systematic review and meta-analysis of the association between hypothalamic-pituitary-adrenal (HPA) axis and immune system functioning in mood and psychotic disorders. Methods We searched the Pubmed, Web of Science and Embase databases for studies reporting correlations between one or more HPA- and immune markers (IM) in patients with mood or psychotic disorders. We analyzed unchallenged correlations as well as challenge studies investigating the HPA-immune interaction through dexamethasone (DEX) and/or CRH suppression, HPA-mediated challenge of immune cell proliferation, immune challenges, or psychological stressors. Finally, genetic studies focusing on HPA x immune interrelation were evaluated. For meta-analyzable data, three primary outcome measures were defined for immune functioning, namely the pro-inflammatory index (PII) and anti-inflammatory index (AII) for the molecular IM and a composite cellular immune marker score (CCIM) for the cellular IM. Secondary analyses were performed for the individual molecular and cellular IM. Heterogeneity was evaluated with the I2 statistic. Meta-regression analyses were performed to evaluate the impact of potential covariates (publication year, gender, age, symptom severity) on the primary outcome analyses. Results 93 studies (n = 8226) were included, of which 50 (n = 5649) contained meta-analyzable data. The majority of the included studies (k = 72) investigated major depressive disorder (MDD) patients, nineteen schizophrenia spectrum disorders (SSD) and six bipolar disorder (BD). Under physiological conditions, a poor association was found between cortisol and the PII only in the unmedicated subsample of MDD (k = 8; n = 425; r = .205; z = 2.151; p = .031) and the medicated subsample of SSD (k = 4; n = 152; r = .0.237; z = 2.314; p = .021). No significant correlation was found in MDD between the AII and cortisol (k = 3; n = 1243; r = .005; z = .188; p = .851). Similar results were found for the association between immune cell numbers and cortisol in both MDD (k = 10; n = 773; r = -.005; z = -.113; p = .894) and SSD (k = 4; n = 99; r = .167; z = 1.356; p = .175). A total of 42 studies discussed post-challenge associations between immune alterations and HPA disturbances, of which 12 (n = 389; all MDD) contained meta-analyzable data and 37 entered the systematic review (n = 1783). No post-DEX correlations were found between cortisol and PII (k = 3; n = 105; r = .074; z = .355; p = .722) or CCIM (k = 5; n = 259; r = -.153; z = -1.294; p = .196). However, a significant association was found between post-DEX cortisol/ACTH and PII produced by stimulated blood cells in vitro (k = 3; n = 61; r = .508; z = 4.042; p < .001) as well as for cortisol and CCIM score in MDD after in vitro mitogen stimulation (k = 4; n = 90; r = -.309; z = -2498; p = .012). Following a psychological stressor (k = 6; n = 121), cortisol responses tended to be blunted in all included pathologies, while immune activation was comparable to healthy controls. Genetic studies (k = 7; n = 464) demonstrate altered gene expression of glucocorticoid receptors (GR) in peripheral immune cells in MDD. Heterogeneity over studies tended to be moderate to high. Discussion The main limitations are the heterogeneity of outcome measures (both HPA and IM) and small sample sizes of the included studies. We conclude that, in physiological conditions, associations between HPA-axis and molecular or cellular IM are absent or poor in both MDD and SSD and psychotropic medication may influence this crosstalk differently in both patient groups. Studies using challenge paradigms in MDD populations did reveal differences in the HPA-immune crosstalk. The normally expected decrease in lymphocytes after DEX distribution tended to be less pronounced in MDD, especially in glucocorticoid-insensitive non-suppressors. It is recommended that future studies should be properly powered and assess HPA functioning using multiple cortisol assessments. Challenge studies are probably more useful than baseline biomarker studies and cellular IM are more informative than molecular IM. It is recommended to broadly assess leucocyte function and, when possible, perform subgroup analyses based on HPA- and/or immune function.
Collapse
Affiliation(s)
- Minne Van Den Noortgate
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Filip Van Den Eede
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- University Department of Psychiatry, Campus Antwerp University Hospital, Edegem, Belgium
| | - Violette Coppens
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Erik J. Giltay
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
- Department of Public Health and Primary Care, Health Campus the Hague, Leiden University Medical Center, The Hague, the Netherlands
| | - Livia De Picker
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Campus Duffel, Duffel, Belgium
| | - Manuel Morrens
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Campus Duffel, Duffel, Belgium
| |
Collapse
|
4
|
Beer C, Rae F, Semmler A, Voisey J. Biomarkers in the Diagnosis and Prediction of Medication Response in Depression and the Role of Nutraceuticals. Int J Mol Sci 2024; 25:7992. [PMID: 39063234 PMCID: PMC11277518 DOI: 10.3390/ijms25147992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Depression continues to be a significant and growing public health concern. In clinical practice, it involves a clinical diagnosis. There is currently no defined or agreed upon biomarker/s for depression that can be readily tested. A biomarker is defined as a biological indicator of normal physiological processes, pathogenic processes, or pharmacological responses to a therapeutic intervention that can be objectively measured and evaluated. Thus, as there is no such marker for depression, there is no objective measure of depression in clinical practice. The discovery of such a biomarker/s would greatly assist clinical practice and potentially lead to an earlier diagnosis of depression and therefore treatment. A biomarker for depression may also assist in determining response to medication. This is of particular importance as not all patients prescribed with medication will respond, which is referred to as medication resistance. The advent of pharmacogenomics in recent years holds promise to target treatment in depression, particularly in cases of medication resistance. The role of pharmacogenomics in routine depression management within clinical practice remains to be fully established. Equally so, the use of pharmaceutical grade nutrients known as nutraceuticals in the treatment of depression in the clinical practice setting is largely unknown, albeit frequently self-prescribed by patients. Whether nutraceuticals have a role in not only depression treatment but also in potentially modifying the biomarkers of depression has yet to be proven. The aim of this review is to highlight the potential biomarkers for the diagnosis, prediction, and medication response of depression.
Collapse
Affiliation(s)
- Cristina Beer
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia; (C.B.); (F.R.)
| | - Fiona Rae
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia; (C.B.); (F.R.)
| | - Annalese Semmler
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia;
| | - Joanne Voisey
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia; (C.B.); (F.R.)
| |
Collapse
|
5
|
Chen HJC, Spiers JG, Lerskiatiphanich T, Parker SE, Lavidis NA, Fung JN, Woodruff TM, Lee JD. Complement C5a Receptor Signaling Alters Stress Responsiveness and Modulates Microglia Following Chronic Stress Exposure. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100306. [PMID: 38628385 PMCID: PMC11019103 DOI: 10.1016/j.bpsgos.2024.100306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 04/19/2024] Open
Abstract
Background Accumulating evidence underscores the pivotal role of heightened inflammation in the pathophysiology of stress-related diseases, but the underlying mechanisms remain elusive. The complement system, a key effector of the innate immune system, produces the C5-cleaved activation product C5a upon activation, initiating inflammatory responses through the canonical C5a receptor 1 (C5aR1). While C5aR1 is expressed in stress-responsive brain regions, its role in stress responsiveness remains unknown. Methods To investigate C5a-C5aR1 signaling in stress responses, mice underwent acute and chronic stress paradigms. Circulating C5a levels and messenger RNA expression of C5aR1 in the hippocampus and adrenal gland were measured. C5aR1-deficient mice were used to elucidate the effects of disrupted C5a-C5aR1 signaling across behavioral, hormonal, metabolic, and inflammation parameters. Results Chronic restraint stress elevated circulating C5a levels while reducing C5aR1 messenger RNA expression in the hippocampus and adrenal gland. Notably, the absence of C5aR1 signaling enhanced adrenal sensitivity to adrenocorticotropic hormone, concurrently reducing pituitary adrenocorticotropic hormone production and enhancing the response to acute stress. C5aR1-deficient mice exhibited attenuated reductions in locomotor activity and body weight under chronic stress. Additionally, these mice displayed increased glucocorticoid receptor sensitivity and disrupted glucose and insulin homeostasis. Chronic stress induced an increase in C5aR1-expressing microglia in the hippocampus, a response mitigated in C5aR1-deficient mice. Conclusions C5a-C5aR1 signaling emerges as a key metabolic regulator during stress, suggesting that complement activation and dysfunctional C5aR1 signaling may contribute to neuroinflammatory phenotypes in stress-related disorders. The results advocate for further exploration of complement C5aR1 as a potential therapeutic target for stress-related conditions.
Collapse
Affiliation(s)
- Hsiao-Jou Cortina Chen
- School of Biomedical Sciences, the University of Queensland, St. Lucia, Brisbane, Queensland, Australia
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Jereme G. Spiers
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
- Clear Vision Research, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and Medicine, the Australian National University, Acton, Australian Capital Territory, Australia
- School of Medicine and Psychology, College of Health and Medicine, the Australian National University, Australian Capital Territory, Australia
| | - Titaya Lerskiatiphanich
- School of Biomedical Sciences, the University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Sandra E. Parker
- School of Biomedical Sciences, the University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Nickolas A. Lavidis
- School of Biomedical Sciences, the University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Jenny N. Fung
- School of Biomedical Sciences, the University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Trent M. Woodruff
- School of Biomedical Sciences, the University of Queensland, St. Lucia, Brisbane, Queensland, Australia
- Queensland Brain Institute, the University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - John D. Lee
- School of Biomedical Sciences, the University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Adeoluwa OA, Eduviere AT, Adeoluwa GO, Otomewo LO, Adeniyi FR. The monoaminergic pathways are involved in the antidepressant-like effect of quercetin. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2497-2506. [PMID: 37851059 DOI: 10.1007/s00210-023-02789-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
Quercetin, a plant-derived flavonoid, is an antioxidant and has demonstrated antidepressant and anti-inflammatory activities in several animal models. However, there is scanty information on the underlying mechanisms of its antidepressant property. This present study aimed at assessing the involvement of monoaminergic systems in the antidepressant-like activity of quercetin in experimental animals. Mice received varying doses of quercetin (25, 50 &100 mg/kg daily) and were then subjected to open field test (OPF), despair tests, the reserpine test, and the yohimbine lethality test (YLT). In addition, monoaminergic involvement was investigated by combining quercetin (100 mg/kg) with dopaminergic antagonists (haloperidol and sulpiride), adrenergic blockers (prazosin, propranolol and yohimbine), and serotonergic blockers/inhibitors (metergoline). The results showed that quercetin produced significant anti-immobility effects in the forced swim test (FST) and tail suspension test (TST), suggesting antidepressant activity. In addition, the potentiation of yohimbine lethality by quercetin further indicates its antidepressant-like property. This antidepressant action demonstrated was, however, blocked when quercetin was co-administered with dopaminergic, adrenergic and serotonergic antagonists, suggesting involvement of the monoaminergic system in the antidepressant action of quercetin. Nevertheless, quercetin did not significantly alter the locomotor activity of mice, which implies lack of stimulant effect. Taken together, these outcomes suggest that monoaminergic systems are likely involved in the anti-depressant effect of quercetin in mice.
Collapse
Affiliation(s)
- Olusegun Adebayo Adeoluwa
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria.
| | - Anthony Taghogho Eduviere
- Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Gladys Onyinye Adeoluwa
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Lily Oghenevovwero Otomewo
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Funmilayo Racheal Adeniyi
- Department of Pharmacology and Toxicology, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
7
|
Li B, Yan Y, Zhang T, Xu H, Wu X, Yao G, Li X, Yan C, Wu LL. Quercetin reshapes gut microbiota homeostasis and modulates brain metabolic profile to regulate depression-like behaviors induced by CUMS in rats. Front Pharmacol 2024; 15:1362464. [PMID: 38595919 PMCID: PMC11002179 DOI: 10.3389/fphar.2024.1362464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/20/2024] [Indexed: 04/11/2024] Open
Abstract
Quercetin, an abundant flavonoid compound in plants, is considered a novel antidepressant; however, its mechanisms of action are poorly understood. This study aimed to investigate the therapeutic effects of quercetin on chronic unpredictable mild stress (CUMS)-induced depression-like behaviors in rats and explore the underlying mechanisms by combining untargeted metabolomics and 16S rRNA sequencing analysis of brain tissue metabolites and gut microbiota. Gut microbiota analysis revealed that at the phylum level, quercetin reduced Firmicutes and the Firmicutes/Bacteroidetes (F/B) ratio and enhanced Cyanobacteria. At the genus level, quercetin downregulated 6 and upregulated 14 bacterial species. Metabolomics analysis revealed that quercetin regulated multiple metabolic pathways, including glycolysis/gluconeogenesis, sphingolipid metabolism, the pentose phosphate pathway, and coenzyme A biosynthesis. This modulation leads to improvements in depression-like phenotypes, anxiety-like phenotypes, and cognitive function, highlighting the therapeutic potential of quercetin in treating depression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Can Yan
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Li Wu
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
8
|
Wegener AJ, Hyer MM, Targett I, Kloster A, Shaw GA, Rodriguez AMM, Dyer SK, Neigh GN. Behavior, synaptic mitochondria, and microglia are differentially impacted by chronic adolescent stress and repeated endotoxin exposure in male and female rats. Stress 2024; 27:2299971. [PMID: 38179979 PMCID: PMC11064104 DOI: 10.1080/10253890.2023.2299971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/16/2023] [Indexed: 01/06/2024] Open
Abstract
Early life adversity and chronic inflammation have both been associated with cognitive impairment and neural compromise. In this study, we investigated the interactions between a history of chronic adolescent stress (CAS) and repeated endotoxin exposure on behavior, synaptic mitochondria, and microglia in adult male and female Wistar rats. Adult rats from chronic stress and control conditions were exposed to either repeated endotoxin (lipopolysaccharide; LPS) or saline injections every 3 days for 9 weeks. In both sexes, repeated LPS, regardless of stress history, impaired working memory in the Y maze. Regarding spatial memory, LPS impaired function for females; whereas, CAS altered function in males. Although males had an increase in anxiety-like behavior shortly after CAS, there were no long-term effects on anxiety-like behavior or social interaction observed in males or females. Stress did not alter synaptic mitochondrial function in either sex. Repeated LPS altered synaptic mitochondrial function such that ATP production was increased in females only. There were no observed increases in IBA-1 positive cells within the hippocampus for either sex. However, LPS and CAS altered microglia morphology in females. Impact of repeated LPS was evident at the terminal endpoint with increased spleen weight in both sexes and decreased adrenal weight in males only. Circulating cytokines were not impacted by repeated LPS at the terminal endpoint, but evidence of CAS effects on cytokines in females were evident. These data suggest a long-term impact of chronic stress and an impact of repeated endotoxin challenge in adulthood; however, not all physiological and behavioral metrics examined were impacted by the paradigm employed in this study and the two environmental challenges rarely interacted.
Collapse
Affiliation(s)
- A J Wegener
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - M M Hyer
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - I Targett
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - A Kloster
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - G A Shaw
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - A M M Rodriguez
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - S K Dyer
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - G N Neigh
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
9
|
Rugulies R, Aust B, Greiner BA, Arensman E, Kawakami N, LaMontagne AD, Madsen IEH. Work-related causes of mental health conditions and interventions for their improvement in workplaces. Lancet 2023; 402:1368-1381. [PMID: 37838442 DOI: 10.1016/s0140-6736(23)00869-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 02/11/2023] [Accepted: 04/27/2023] [Indexed: 10/16/2023]
Abstract
Mental health problems and disorders are common among working people and are costly for the affected individuals, employers, and whole of society. This discussion paper provides an overview of the current state of knowledge on the relationship between work and mental health to inform research, policy, and practice. We synthesise available evidence, examining both the role of working conditions in the development of mental disorders, and what can be done to protect and promote mental health in the workplace. We show that exposure to some working conditions is associated with an increased risk of the onset of depressive disorders, the most studied mental disorders. The causality of the association, however, is still debated. Causal inference should be supported by more research with stronger linkage to theory, better exposure assessment, better understanding of biopsychosocial mechanisms, use of innovative analytical methods, a life-course perspective, and better understanding of the role of context, including the role of societal structures in the development of mental disorders. There is growing evidence for the effectiveness of interventions to protect and promote mental health and wellbeing in the workplace; however, there is a disproportionate focus on interventions directed towards individual workers and illnesses, compared with interventions for improving working conditions and enhancing mental health. Moreover, research on work and mental health is mainly done in high-income countries, and often does not address workers in lower socioeconomic positions. Flexible and innovative approaches tailored to local conditions are needed in implementation research on workplace mental health to complement experimental studies. Improvements in translating workplace mental health research to policy and practice, such as through workplace-oriented concrete guidance for interventions, and by national policies and programmes focusing on the people most in need, could capitalise on the growing interest in workplace mental health, possibly yielding important mental health gains in working populations.
Collapse
Affiliation(s)
- Reiner Rugulies
- National Research Centre for the Working Environment, Copenhagen, Denmark; Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Birgit Aust
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | | | - Ella Arensman
- School of Public Health, University College Cork, Cork, Ireland; National Suicide Research Foundation, University College Cork, Cork, Ireland; Australian Institute for Suicide Research and Prevention, School of Applied Psychology, Griffith University, Brisbane, QLD, Australia
| | - Norito Kawakami
- Department of Digital Mental Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Junpukai Foundation, Okayama, Japan
| | - Anthony D LaMontagne
- School of Health and Social Development, Institute for Health Transformation, Deakin University, Geelong, VIC, Australia
| | - Ida E H Madsen
- National Research Centre for the Working Environment, Copenhagen, Denmark
| |
Collapse
|
10
|
Alruwaili NS, Al-Kuraishy HM, Al-Gareeb AI, Albuhadily AK, Ragab AE, Alenazi AA, Alexiou A, Papadakis M, Batiha GES. Antidepressants and type 2 diabetes: highways to knowns and unknowns. Diabetol Metab Syndr 2023; 15:179. [PMID: 37653558 PMCID: PMC10470155 DOI: 10.1186/s13098-023-01149-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/09/2023] [Indexed: 09/02/2023] Open
Abstract
Type 2 diabetes (T2D) is a metabolic disease caused by the development of insulin resistance (IR), relative insulin deficiency, and hyperglycemia. Hyperglycemia-induced neurochemical dysregulation activates the progression of depression in T2D patients. Therefore, management of depression by antidepressant agents improves glucose homeostasis and insulin sensitivity. However, prolong use of antidepressant drugs may increase the risk for the development of T2D. However, there is strong controversy concerning the use of antidepressant drugs in T2D. Therefore, this review try to elucidate the potential effects of antidepressant drugs in T2D regarding their detrimental and beneficial effects.
Collapse
Affiliation(s)
- Nahi Sabih Alruwaili
- Eradah Complex of Mental Health -Northern Border Region, Ministry of Health, Al Bahah, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali K Albuhadily
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Amany E Ragab
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | | | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, Wien, 1030, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Wuppertal, 42283, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt
| |
Collapse
|
11
|
Aker A, Serghides L, Cotnam J, Jackson R, Robinson M, Gauvin H, Mushquash C, Gesink D, Amirault M, Benoit AC. The impact of a stress management intervention including cultural components on stress biomarker levels and mental health indicators among indigenous women. J Behav Med 2023; 46:594-608. [PMID: 36652086 PMCID: PMC10344996 DOI: 10.1007/s10865-023-00391-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023]
Abstract
We examined the effectiveness of a 26-week culture-inclusive intervention on reducing salivary stress biomarker levels, and perceived stress, depressive, and post-traumatic stress disorder (PTSD) symptoms measured using scales in 53 Indigenous women in Ontario, Canada. Statistical analyses compared the average biomarker levels, and the area under the curve (AUC) of biomarkers. Differences in biomarkers and mental health scale scores pre- and post-intervention were compared using mixed models with a random intercept. Interaction terms were included between the intervention and age, education, disability, and HIV status, individually, to test for sub-group differences. Cortisol AUC post-intervention was decreased compared to pre-intervention (β -1.29 µg/dL; 95%CI -2.35, -0.23). There was a slight decrease in perceived stress levels (aOR: -2.80; 95%CI -5.09, -0.50). The associations were stronger among women of younger age, higher education, and no disabilities. These interventions can be effective, but future interventions should target Indigenous population sub-groups to address individual needs.
Collapse
Affiliation(s)
- Amira Aker
- Department of Health & Society, University of Toronto Scarborough, Toronto, ON, Canada
| | - Lena Serghides
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Immunology, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Women's College Hospital, Women's College Research Institute, University of Toronto, Toronto, ON, Canada
| | - Jasmine Cotnam
- Women's College Hospital, Women's College Research Institute, University of Toronto, Toronto, ON, Canada
| | - Randy Jackson
- McMaster Indigenous Research Institute, McMaster University, Hamilton, ON, Canada
| | - Margaret Robinson
- Department of Sociology and Social Anthropology, Dalhousie University, Nova Scotia, Canada
| | | | - Christopher Mushquash
- Centre for Rural and Northern Health Research, Lakehead University, Thunder Bay, ON, Canada
- Department of Psychology, Northern Ontario School of Medicine, Lakehead University, Thunder Bay, ON, Canada
- Dilico Anishinabek Family Care, Fort William First Nation, Thunder Bay, ON, Canada
| | - Dionne Gesink
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | | | - Anita C Benoit
- Department of Health & Society, University of Toronto Scarborough, Toronto, ON, Canada.
- Women's College Hospital, Women's College Research Institute, University of Toronto, Toronto, ON, Canada.
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
12
|
Sequeira MK, Bolton JL. Stressed Microglia: Neuroendocrine-Neuroimmune Interactions in the Stress Response. Endocrinology 2023; 164:bqad088. [PMID: 37279575 PMCID: PMC11491833 DOI: 10.1210/endocr/bqad088] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023]
Abstract
Stressful life experiences are associated with the development of neuropsychiatric disorders like depression. Emerging evidence indicates that microglia, the specialized resident macrophages of the brain, may be a key mediator of the relationship between psychosocial stressor exposure and adaptive or maladaptive responses at the level of synaptic, circuit, and neuroimmune alterations. Here, we review current literature regarding how psychosocial stressor exposure changes microglial structure and function, thereby altering behavioral and brain outcomes, with a particular focus on age- and sex-dependent effects. We argue that additional emphasis should be placed in future research on investigating sex differences and the impacts of stressor exposure during sensitive periods of development, as well as going beyond traditional morphological measurements to interrogate microglial function. The bidirectional relationship between microglia and the stress response, particularly the role of microglia in the neuroendocrine control of stress-related circuits, is also an important area for future investigation. Finally, we discuss emerging themes and future directions that point to the possibility of the development of novel therapeutics for stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Jessica L Bolton
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
13
|
Hyer MM, Wegener AJ, Targett I, Dyer SK, Neigh GN. Chronic stress beginning in adolescence decreases spatial memory following an acute inflammatory challenge in adulthood. Behav Brain Res 2023; 442:114323. [PMID: 36731657 PMCID: PMC10870254 DOI: 10.1016/j.bbr.2023.114323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/01/2023]
Abstract
Prolonged stress beginning in adolescence can contribute to the dysregulation of the neuroendocrine system in adulthood. As the neuroendocrine and neuroimmune systems participate in bi-directional regulatory control, adolescent stress can prime the neuroimmune system to future inflammatory insults. Previous work from our group demonstrates that stress exaggerates the hippocampal response to inflammation, which can lead to deficits in learning and memory. In the current study, we sought to interrogate the interaction between an acute peripheral challenge of lipopolysaccharide (LPS) in male and female Wistar rats with a history of stress beginning in adolescence (CAS). Males from the CAS group were more vulnerable to the peripheral effects of LPS compared to non-stressed males including porphyrin staining and ruffled fur. In contrast, LPS generated similar peripheral effects in females regardless of adolescent stress history. Learning and memory were differentially impacted by LPS as a function of stress history and effects manifested differently when stratified by sex. Males with a history of adolescent stress exhibited deficits in initial learning. Females from the CAS group performed similar to controls during acquisition but exhibited a slight impairment during reversal learning. Males and females with a history of stress displayed memory impairment during the probe assessments as compared to their same-sex control group. We conclude that while stress beginning in adolescence enhanced the vulnerability of learning and memory to an inflammatory challenge, the phenotype of this effect manifested differently in males and females. These data demonstrate a sustained impact of adolescent stress on the neuroimmune system which is sufficient to influence cognitive performance in both sexes.
Collapse
Affiliation(s)
- M M Hyer
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - A J Wegener
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - I Targett
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - S K Dyer
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - G N Neigh
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
14
|
Borroni E, Pesatori AC, Nosari G, Monti P, Ceresa A, Fedrizzi L, Bollati V, Buoli M, Carugno M. Understanding the Interplay between Air Pollution, Biological Variables, and Major Depressive Disorder: Rationale and Study Protocol of the DeprAir Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20065196. [PMID: 36982103 PMCID: PMC10049152 DOI: 10.3390/ijerph20065196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 05/27/2023]
Abstract
Major depressive disorder (MDD) is a serious and disabling condition, whose etiological mechanisms are not fully understood. The aim of the DeprAir study is to verify the hypothesis that air pollution exposure may exacerbate neuroinflammation with consequent alterations in DNA methylation of genes involved in circadian rhythms and hormonal dysregulation, resulting in the worsening of depressive symptoms. The study population consists of 420 depressed patients accessing the psychiatry unit of the Policlinico Hospital (Milan, Italy), from September 2020 to December 2022. Data collection is still ongoing for about 100 subjects. For each participant demographic and lifestyle information, depression history and characteristics, as well as blood samples, were collected. MDD severity was assessed through five rating scales commonly used in clinical practice to assess the severity of affective symptoms. Exposure to particulate and gaseous air pollutants is assigned to each subject using both air pollution monitoring station measurements and estimates derived from a chemical transport model. DeprAir is the first study investigating in a comprehensive picture whether air pollution exposure could be an important modifiable environmental factor associated with MDD severity and which biological mechanisms mediate the negative effect of air pollution on mental health. Its results will represent an opportunity for preventive strategies, thus entailing a tremendous impact on public health.
Collapse
Affiliation(s)
- Elisa Borroni
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Via San Barnaba 8, 20122 Milan, Italy; (E.B.); (A.C.P.); (P.M.); (V.B.)
| | - Angela Cecilia Pesatori
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Via San Barnaba 8, 20122 Milan, Italy; (E.B.); (A.C.P.); (P.M.); (V.B.)
- Occupational Health Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via san Barnaba 8, 20122 Milan, Italy;
| | - Guido Nosari
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy; (G.N.); (A.C.); (M.B.)
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Paola Monti
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Via San Barnaba 8, 20122 Milan, Italy; (E.B.); (A.C.P.); (P.M.); (V.B.)
| | - Alessandro Ceresa
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy; (G.N.); (A.C.); (M.B.)
| | - Luca Fedrizzi
- Occupational Health Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via san Barnaba 8, 20122 Milan, Italy;
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Via San Barnaba 8, 20122 Milan, Italy; (E.B.); (A.C.P.); (P.M.); (V.B.)
- Occupational Health Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via san Barnaba 8, 20122 Milan, Italy;
| | - Massimiliano Buoli
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy; (G.N.); (A.C.); (M.B.)
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Michele Carugno
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Via San Barnaba 8, 20122 Milan, Italy; (E.B.); (A.C.P.); (P.M.); (V.B.)
- Occupational Health Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via san Barnaba 8, 20122 Milan, Italy;
| |
Collapse
|
15
|
Zhang Y, Wang J, Ye Y, Zou Y, Chen W, Wang Z, Zou Z. Peripheral cytokine levels across psychiatric disorders: A systematic review and network meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110740. [PMID: 36893912 DOI: 10.1016/j.pnpbp.2023.110740] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
Immune dysregulated cytokine production is involved in mental diseases. However, the results are inconsistent and the pattern of cytokine alterations has not been compared across disorders. We performed a network impact analysis of cytokine levels for different psychiatric disorders including schizophrenia, major depressive disorder, bipolar disorder, panic disorder, post-traumatic stress disorder and obsessive compressive disorder to evaluate their clinical impact across conditions. Studies were identified by searching the electronic databases up to 31/05/2022. A total of eight cytokines, together with (high-sensitivity) C-reactive proteins (hsCRP/CRP) were included in the network meta-analysis. The levels of proinflammatory cytokines, hsCRP/CRP and interleukin 6 (IL-6) were significantly increased in patients with psychiatric disorders when compared to controls. IL-6 showed no significant difference among comparisons between disorders according to the network meta-analysis. Interleukin 10 (IL-10) is significantly increased in patients with bipolar disorder compared to major depressive disorder. Further, the level of interleukin-1 beta (IL-1β) was significantly increased in major depressive disorder as compared to bipolar disorder. The level of interleukin 8 (IL-8) varied among these psychiatric disorders based on the network meta-analysis result. Overall, abnormal cytokine levels were found in psychiatric disorders, and some of the cytokines displayed differential characteristics in these disorders, especially IL-8, pointing to a role as potential biomarkers for general and differential diagnosis.
Collapse
Affiliation(s)
- Yuan Zhang
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | | | - Yu Ye
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Yazhu Zou
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Wei Chen
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Zuxing Wang
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Zhili Zou
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China; Key Laboratory of psychosomatic medicine, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China.
| |
Collapse
|
16
|
Zhao S, Du Y, Zhang Y, Wang X, Xia Y, Sun H, Huang Y, Zou H, Wang X, Chen Z, Zhou H, Yan R, Tang H, Lu Q, Yao Z. Gray matter reduction is associated with cognitive dysfunction in depressed patients comorbid with subclinical hypothyroidism. Front Aging Neurosci 2023; 15:1106792. [PMID: 36845662 PMCID: PMC9945283 DOI: 10.3389/fnagi.2023.1106792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/17/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction To explore the association between regional gray matter volume (GMV) and cognitive impairments and ascertain whether the regional brain alterations related to cognitive impairments occur in major depressive disorder (MDD) patients with comorbid subclinical hypothyroidism (SHypo). Methods We enrolled 32 MDD patients, 32 MDD patients with comorbid SHypo, and 32 normal controls and subjected them to thyroid function tests, neurocognitive tests, and magnetic resonance imaging (MRI). Using voxel-based morphometry (VBM) analysis, we examined the pattern of gray matter (GM) in these participants. We also used ANOVA to detect group differences and partial correlation to explore the potential association between GMV alterations and cognitive tests in comorbid patients. Results The comorbid patients exhibited significantly smaller GMV in the right middle frontal gyrus (MFG) than the non-comorbid group. Furthermore, the partial correlation analysis showed that GMV of the right MFG was associated with poor executive function (EF) performance in comorbid patients. Conclusion These findings provide valuable insight into the relationship between the alteration of GMV and cognitive dysfunction of MDD patients with comorbid SHypo.
Collapse
Affiliation(s)
- Shuai Zhao
- Department of Psychiatry, The Affiliated Psychological Hospital of Anhui Medical University, Hefei, China,Hefei Fourth People’s Hospital, Hefei, China,Anhui Mental Health Center, Hefei, China,Anhui Clinical Research Center for Mental Disorders, Hefei, China,Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yishan Du
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoqin Wang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Xia
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Sun
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yinghong Huang
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, China
| | - Haowen Zou
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xumiao Wang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zhilu Chen
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hongliang Zhou
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Yan
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Tang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China,Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, China,*Correspondence: Qing Lu, ; Zhijian Yao,
| | - Zhijian Yao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China,Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, China,*Correspondence: Qing Lu, ; Zhijian Yao,
| |
Collapse
|
17
|
Kislov MA, Prikhod'ko AN, Trusova DS, Zhiganova MS, Morozova AY, Pigolkin YI. [Morphofunctional cerebral changes associated with development of suicidal behavior]. Sud Med Ekspert 2023; 66:67-72. [PMID: 37496486 DOI: 10.17116/sudmed20236604167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
THE AIM OF THE STUDY Was to identify the cerebral areas, which demonstrate the most significant structural changes and damaged functional activity in patients with suicidal behavior. The original studies, presented in PubMed database, were used to analyze the literature. Additional literature in the form of atlases, review articles and publications, written in related spheres, was used to interpret the results. The study identified the 69 cerebral regions, demonstrating significant changes and the structures with the most significant deviations among them were selected. The regions of cerebral grey matter, in particular basal ganglia (structures of striatum and limbic system), as well as selected regions of cerebral cortex, specifically frontal, insularis, singulate and parietal mostly were included in the list. The decrease in grey matter volume, changes of neuronal and glial density, special patterns of activity and variations of functional association with other cerebral regions are described within mentioned structures. The literature review found that there was a lack of postmortem examinations in suicidal cases. Advanced study of the described structures is required in cases of completed suicide using new research methods.
Collapse
Affiliation(s)
- M A Kislov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - D S Trusova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - M S Zhiganova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - A Yu Morozova
- Alekseev Psychiatric Clinical Hospital No. 1 of the Moscow Department of Health, Moscow, Russia
| | - Yu I Pigolkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
18
|
Fasakin OW, Oboh G, Ademosun AO, Lawal AO. The modulatory effects of alkaloid extracts of Cannabis sativa, Datura stramonium, Nicotiana tabacum and male Carica papaya on neurotransmitter, neurotrophic and neuroinflammatory systems linked to anxiety and depression. Inflammopharmacology 2022; 30:2447-2476. [PMID: 35665872 DOI: 10.1007/s10787-022-01006-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/08/2022] [Indexed: 01/03/2023]
Abstract
This study investigated the modulatory effects of alkaloid extracts of Cannabis sativa (CSAE), Datura stramonium (DSAE), Nicotiana tabacum (NTAE) and male Carica papaya (CMAE) on neurotransmitter, neurotrophic and neuro-inflammatory systems linked to anxiety and depression. Male Wistar rats were orally administered the alkaloid extracts in doses of 5, 50, 500, and 2000 mg/kg for 90 days. On day 91, neurobehavioural studies were evaluated, rats were sacrificed, brain hippocampus removed and tissue homogenate prepared. Biochemical, cytokine and neurotransmitter metabolisms were estimated in the hippocampus. Expressions of genes linked to anxiety and depression were evaluated by RT-qPCR. Results showed CSAE, NTAE and CMAE act as anxiolytic and antidepressant agents by depleting TNF-α, IL-1β and reactive oxygen species concentrations, and monoamine oxidase, angiotensin 1-converting enzyme and acetylcholinesterase activities while elevating IL-10 and dopamine concentrations and glutamate dehydrogenase activity at doses of 5, 50 and 500. Same doses of CSAE, NTAE and CMAE also depleted the gene expressions of GSK3β, JNK, NF-ĸB, and Nesfatin-1 while increasing expressions of CREB, BDNF, serotonin and Nrf2. However, administration of DSAE and 2000 mg/kg CSAE, NTAE and CMAE had adverse modulatory effects on the neurochemical concentrations and activities as well as the gene expressions of the evaluated neurotransmitter, neurotrophic and inflammatory systems. In conclusion, the study established the sub-chronic instrumentalization potential of CSAE, CMAE, and NTAE for anxiolytic and anti-depressive moods, though their use may be associated with dependence and addiction, which may result in more detrimental effects than any therapeutic potential they may proffer.
Collapse
Affiliation(s)
- Olamide Wilson Fasakin
- Department of Biochemistry, School of Life Sciences, Federal University of Technology, P.M.B. 704, Akure, 340001, Nigeria
| | - Ganiyu Oboh
- Department of Biochemistry, School of Life Sciences, Federal University of Technology, P.M.B. 704, Akure, 340001, Nigeria.
| | - Ayokunle Olubode Ademosun
- Department of Biochemistry, School of Life Sciences, Federal University of Technology, P.M.B. 704, Akure, 340001, Nigeria
| | - Akeem O Lawal
- Department of Biochemistry, School of Life Sciences, Federal University of Technology, P.M.B. 704, Akure, 340001, Nigeria
| |
Collapse
|
19
|
Markiewicz R, Markiewicz-Gospodarek A, Dobrowolska B. Galvanic Skin Response Features in Psychiatry and Mental Disorders: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13428. [PMID: 36294009 PMCID: PMC9603244 DOI: 10.3390/ijerph192013428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
This narrative review is aimed at presenting the galvanic skin response (GSR) Biofeedback method and possibilities for its application in persons with mental disorders as a modern form of neurorehabilitation. In the treatment of mental disorders of various backgrounds and courses, attention is focused on methods that would combine pharmacological treatment with therapies improving functioning. Currently, the focus is on neuronal mechanisms which, being physiological markers, offer opportunities for correction of existing deficits. One such indicator is electrodermal activity (EDA), providing information about emotions, cognitive processes, and behavior, and thus, about the function of various brain regions. Measurement of the galvanic skin response (GSR), both skin conductance level (SCL) and skin conductance responses (SCR), is used in diagnostics and treatment of mental disorders, and the training method itself, based on GSR Biofeedback, allows for modulation of the emotional state depending on needs occurring. Summary: It is relatively probable that neurorehabilitation based on GSR-BF is a method worth noticing, which-in the future-can represent an interesting area of rehabilitation supplementing a comprehensive treatment for people with mental disorders.
Collapse
Affiliation(s)
- Renata Markiewicz
- Department of Neurology, Neurological and Psychiatric Nursing, Medical University of Lublin, 20-093 Lublin, Poland
| | | | - Beata Dobrowolska
- Department of Holistic Care and Management in Nursing, Medical University of Lublin, 20-081 Lublin, Poland
| |
Collapse
|
20
|
Relationship between the expression level of miRNA-4485 and the severity of depressive symptoms in major depressive disorder patients. THE EUROPEAN JOURNAL OF PSYCHIATRY 2022. [DOI: 10.1016/j.ejpsy.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Changes in regulators of lipid metabolism in the brain: a study of animal models of depression and hypothyroidism. Pharmacol Rep 2022; 74:859-870. [PMID: 35951260 PMCID: PMC9584974 DOI: 10.1007/s43440-022-00395-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/27/2022]
Abstract
Metabolic disturbances in the brain are assumed to be early changes involved in the pathogenesis of depression, and these alterations may be intensified by a deficiency of thyroid hormones. In contrast to glucose metabolism, the link between altered brain lipids and the pathogenesis of depression is poorly understood, therefore in the present study, we determine transcription factors and enzymes regulating cholesterol and fatty acid biosynthesis in the brain structures in an animal model of depression, hypothyroidism and the coexistence of these diseases. In used model of depression, a decrease in the active form of the transcription factor SREBP-2 in the hippocampus was demonstrated, thus suggesting a reduction in cholesterol biosynthesis. In turn, in the hypothyroidism model, the reduction of cholesterol biosynthesis in the frontal cortex was demonstrated by both the reduction of mature SREBP-2 and the concentration of enzymes involved in cholesterol biosynthesis. The lower expression of LDL receptors in the frontal cortex indicates the restriction of cholesterol uptake into the cells in the model of coexistence of depression and hypothyroidism. Moreover, the identified changes in the levels of SNAP-25, GLP-1R and GLP-2R pointed to disturbances in synaptic plasticity and neuroprotection mechanisms in the examined brain structures. In conclusion, a reduction in cholesterol synthesis in the hippocampus in the model of depression may be the reason for the reduction of synaptic plasticity, whereas a lower level of LDL-R occurring in the frontal cortex in rats from the model of depression and hypothyroidism coexistence could be the reason of anxiogenic and depression-like behaviors.
Collapse
|
22
|
Kühnel A, Czisch M, Sämann PG, Binder EB, Kroemer NB. Spatiotemporal Dynamics of Stress-Induced Network Reconfigurations Reflect Negative Affectivity. Biol Psychiatry 2022; 92:158-169. [PMID: 35260225 DOI: 10.1016/j.biopsych.2022.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Maladaptive stress responses are important risk factors in the etiology of mood and anxiety disorders, but exact pathomechanisms remain to be understood. Mapping individual differences of acute stress-induced neurophysiological changes, especially on the level of neural activation and functional connectivity (FC), could provide important insights in how variation in the individual stress response is linked to disease risk. METHODS Using an established psychosocial stress task flanked by two resting states, we measured subjective, physiological, and brain responses to acute stress and recovery in 217 participants with and without mood and anxiety disorders. To estimate blockwise changes in stress-induced activation and FC, we used hierarchical mixed-effects models based on denoised time series within predefined stress-related regions. We predicted inter- and intraindividual differences in stress phases (anticipation vs. stress vs. recovery) and transdiagnostic dimensions of stress reactivity using elastic net and support vector machines. RESULTS We identified four subnetworks showing distinct changes in FC over time. FC but not activation trajectories predicted the stress phase (accuracy = 70%, pperm < .001) and increases in heart rate (R2 = 0.075, pperm < .001). Critically, individual spatiotemporal trajectories of changes across networks also predicted negative affectivity (ΔR2 = 0.075, pperm = .030) but not the presence or absence of a mood and anxiety disorder. CONCLUSIONS Spatiotemporal dynamics of brain network reconfiguration induced by stress reflect individual differences in the psychopathology dimension of negative affectivity. These results support the idea that vulnerability for mood and anxiety disorders can be conceptualized best at the level of network dynamics, which may pave the way for improved prediction of individual risk.
Collapse
Affiliation(s)
- Anne Kühnel
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany; International Max Planck Research School for Translational Psychiatry, Munich, Germany.
| | | | | | -
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.
| | - Nils B Kroemer
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
| |
Collapse
|
23
|
Alteration in the Expression of Genes Involved in Cerebral Glucose Metabolism as a Process of Adaptation to Stressful Conditions. Brain Sci 2022; 12:brainsci12040498. [PMID: 35448030 PMCID: PMC9030173 DOI: 10.3390/brainsci12040498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
Exposure to chronic stress leads to disturbances in glucose metabolism in the brain, and changes in the functioning of neurons coexisting with the development of depression. The detailed molecular mechanism and cerebral gluconeogenesis during depression are not conclusively established. The aim of the research was to assess the expression of selected genes involved in cerebral glucose metabolism of mice in the validated animal paradigm of chronic stress. To confirm the induction of depression-like disorders, we performed three behavioral tests: sucrose preference test (SPT), forced swim test (FST), and tail suspension test (TST). In order to study the cerebral glucose metabolism of the brain, mRNA levels of the following genes were determined in the prefrontal cortex of mice: Slc2a3, Gapdh, Ldha, Ldhb, and Pkfb3. It has been shown that exogenous, chronic administration of corticosterone developed a model of depression in behavioral tests. There were statistically significant changes in the mRNA level of the Slc2a3, Ldha, Gapdh, and Ldhb genes. The obtained results suggest changes in cerebral glucose metabolism as a process of adaptation to stressful conditions, and may provide the basis for introducing new therapeutic strategies for chronic stress-related depression.
Collapse
|
24
|
Chen S, Tang Y, Gao Y, Nie K, Wang H, Su H, Wang Z, Lu F, Huang W, Dong H. Antidepressant Potential of Quercetin and its Glycoside Derivatives: A Comprehensive Review and Update. Front Pharmacol 2022; 13:865376. [PMID: 35462940 PMCID: PMC9024056 DOI: 10.3389/fphar.2022.865376] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/23/2022] [Indexed: 12/27/2022] Open
Abstract
Depression is a global health problem with growing prevalence rates and serious impacts on the daily life of patients. However, the side effects of currently used antidepressants greatly reduce the compliance of patients. Quercetin is a flavonol present in fruits, vegetables, and Traditional Chinese medicine (TCM) that has been proved to have various pharmacological effects such as anti-depressant, anti-cancer, antibacterial, antioxidant, anti-inflammatory, and neuroprotective. This review summarizes the evidence for the pharmacological application of quercetin to treat depression. We clarified the mechanisms of quercetin regulating the levels of neurotransmitters, promoting the regeneration of hippocampal neurons, improving hypothalamic-pituitary-adrenal (HPA) axis dysfunction, and reducing inflammatory states and anti-oxidative stress. We also summarized the antidepressant effects of some quercetin glycoside derivatives to provide a reference for further research and clinical application.
Collapse
Affiliation(s)
- Shen Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Grade 2017 of Integrated Traditional Chinese and Western Clinical Medicine, Second Clinical School, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yueheng Tang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Su
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenya Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hui Dong,
| |
Collapse
|
25
|
Abstract
BACKGROUND Blood platelets, due to shared biochemical and functional properties with presynaptic serotonergic neurons, constituted, over the years, an attractive peripheral biomarker of neuronal activity. Therefore, the literature strongly focused on the investigation of eventual structural and functional platelet abnormalities in neuropsychiatric disorders, particularly in depressive disorder. Given their impact in biological psychiatry, the goal of the present paper was to review and critically analyze studies exploring platelet activity, functionality, and morpho-structure in subjects with depressive disorder. METHODS According to the PRISMA guidelines, we performed a systematic review through the PubMed database up to March 2020 with the search terms: (1) platelets in depression [Title/Abstract]"; (2) "(platelets[Title]) AND depressive disorder[Title/Abstract]"; (3) "(Platelet[Title]) AND major depressive disorder[Title]"; (4) (platelets[Title]) AND depressed[Title]"; (5) (platelets[Title]) AND depressive episode[Title]"; (6) (platelets[Title]) AND major depression[Title]"; (7) platelet activation in depression[All fields]"; and (8) platelet reactivity in depression[All fields]." RESULTS After a detailed screening analysis and the application of specific selection criteria, we included in our review a total of 106 for qualitative synthesis. The studies were classified into various subparagraphs according to platelet characteristics analyzed: serotonergic system (5-HT2A receptors, SERT activity, and 5-HT content), adrenergic system, MAO activity, biomarkers of activation, responsivity, morphological changes, and other molecular pathways. CONCLUSIONS Despite the large amount of the literature examined, nonunivocal and, occasionally, conflicting results emerged. However, the findings on structural and metabolic alterations, modifications in the expression of specific proteins, changes in the aggregability, or in the responsivity to different pro-activating stimuli, may be suggestive of potential platelet dysfunctions in depressed subjects, which would result in a kind of hyperreactive state. This condition could potentially lead to an increased cardiovascular risk. In line with this hypothesis, we speculated that antidepressant treatments would seem to reduce this hyperreactivity while representing a potential tool for reducing cardiovascular risk in depressed patients and, maybe, in other neuropsychiatric conditions. However, the problem of the specificity of platelet biomarkers is still at issue and would deserve to be deepened in future studies.
Collapse
|
26
|
Delgado I, Dexpert S, Sauvant J, Cryan JF, Capuron L. Influence of pro-obesogenic dietary habits on stress-induced cognitive alterations in healthy adult volunteers. Neurobiol Stress 2021; 15:100353. [PMID: 34189193 PMCID: PMC8220106 DOI: 10.1016/j.ynstr.2021.100353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/06/2021] [Accepted: 06/09/2021] [Indexed: 11/15/2022] Open
Abstract
Stress is a fundamental biological response that can be associated with alterations in cognitive processes. Unhealthy dietary habits are proposed to modulate this effect, notably through their pro-inflammatory potential. This cross-sectional study aimed to evaluate the influence of an obesogenic dietary pattern with inflammatory potential on stress-induced cognitive alterations in healthy volunteers. Fifty healthy adult participants were stratified into two diet groups: obesogenic vs. non-obesogenic, based on their self-reported consumption of fat, sugar, and salt, assessed by the French National Program for Nutrition and Health questionnaire and a food frequency questionnaire. Serum high-sensitive C-reactive protein (hsCRP) was measured as a marker of systemic inflammation using ELISA. Verbal memory and sustained attention were evaluated through the Verbal Recognition Memory (VRM) test and the Rapid Visual Information Processing (RVP) test respectively, from the Cambridge Neuropsychological Test Automated Battery. Assessments were performed before and after exposure to the psychological stressor Trier Social Stress Test (TSST). Stress response was evaluated by subjective stress perception, salivary cortisol, blood pressure, and heart rate. Twenty-two participants (44%) presented an obesogenic diet. Systemic inflammation was significantly higher in the obesogenic diet group (p=0.005). The TSST induced a significant stress response, regardless of dietary habits (Time effect p < 0.001). In the whole sample, exposure to TSST was associated with cognitive changes in the form of impaired performance on the VRM test and overall improved RVP scores. However, the obesogenic diet group exhibited an increased total number of false alarms (Time x Diet: p=0.014) on the RVP test after TSST exposure as well as a greater impairment in immediate verbal recognition on the VRM test (Time x Diet: p=0.002). This effect was not associated with the inflammatory component of the obesogenic diet. These results suggest that an obesogenic diet may sensitize healthy individuals to the detrimental effects of acute stress on cognitive performance.
Collapse
Affiliation(s)
- Inês Delgado
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Sandra Dexpert
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Julie Sauvant
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Lucile Capuron
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| |
Collapse
|
27
|
Nehmi VA, Murata GM, Moraes RCMD, Lima GCA, De Miranda DA, Radloff K, Costa RGF, Jesus JDCRD, De Freitas JA, Viana NI, Pimenta R, Leite KRM, Otoch JP, Pessoa AFM. A novel supplement with yeast β-glucan, prebiotic, minerals and Silybum marianum synergistically modulates metabolic and inflammatory pathways and improves steatosis in obese mice. JOURNAL OF INTEGRATIVE MEDICINE 2021; 19:439-450. [PMID: 34108131 DOI: 10.1016/j.joim.2021.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/06/2021] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To evaluate the synergic effects of a novel oral supplement formulation, containing prebiotics, yeast β-glucans, minerals and silymarin (Silybum marianum), on lipid and glycidic metabolism, inflammatory and mitochondrial proteins of the liver, in control and high-fat diet-induced obese mice. METHODS After an acclimation period, 32 male C57BL/6 mice were divided into the following groups: nonfat diet (NFD) vehicle, NFD supplemented, high-fat diet (HFD) vehicle and HFD supplemented. The vehicle and experimental formulation were administered orally by gavage once a day during the last four weeks of the diet (28 consecutive days). We then evaluated energy homeostasis, inflammation, and mitochondrial protein expression in these groups of mice. RESULTS After four weeks of supplementation, study groups experienced reduced glycemia, dyslipidemia, fat, and hepatic fibrosis levels. Additionally, proliferator-activated receptor-α, AMP-activated protein kinase-1α, peroxisome proliferator-activated receptor γ co-activator-1α, and mitochondrial transcription factor A expression levels were augmented; however, levels of inhibitor of nuclear factor-κB kinase subunit α and p65 nuclear factor-κB expression, and oxidative markers were reduced. Notably, the cortisol/C-reactive protein ratio, a well-characterized marker of the hypothalamic-pituitary-adrenal axis immune interface status, was found to be modulated by the supplement. CONCLUSION We discovered that the novel supplement was able to modify different antioxidant, metabolic and inflammatory pathways, improving the energy homeostasis and inflammatory status, and consequently alleviated hepatic steatosis.
Collapse
Affiliation(s)
- Victor Abou Nehmi
- Laboratory of Medical Investigation (LIM-26), Department of Surgery, University of Sao Paulo Medical School, São Paulo, SP 01246903, Brazil
| | - Gilson Masahiro Murata
- Laboratory of Medical Investigation (LIM-29), Clinic Medical Department, University of Sao Paulo Medical School, São Paulo, SP 01246903, Brazil
| | - Ruan Carlos Macêdo de Moraes
- Laboratory of Medical Investigation (LIM-26), Department of Surgery, University of Sao Paulo Medical School, São Paulo, SP 01246903, Brazil
| | - Gabriely Cristina Alves Lima
- Laboratory of Medical Investigation (LIM-26), Department of Surgery, University of Sao Paulo Medical School, São Paulo, SP 01246903, Brazil
| | - Danielle Araujo De Miranda
- Department of Physiology, Escola Paulista de Medicina/Universidade Federal de São Paulo, São Paulo, SP 04023062, Brazil
| | - Katrin Radloff
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, BW 76131, Germany
| | - Raquel Galvão Figuerêdo Costa
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Joyce de Cassia Rosa de Jesus
- Laboratory of Medical Investigation (LIM-26), Department of Surgery, University of Sao Paulo Medical School, São Paulo, SP 01246903, Brazil
| | - Jéssica Alves De Freitas
- Laboratory of Medical Investigation (LIM-29), Clinic Medical Department, University of Sao Paulo Medical School, São Paulo, SP 01246903, Brazil
| | - Nayara Izabel Viana
- Laboratory of Medical Investigation (LIM-55), Urology Department, University of Sao Paulo Medical School, São Paulo, SP 01246903, Brazil
| | - Ruan Pimenta
- Laboratory of Medical Investigation (LIM-55), Urology Department, University of Sao Paulo Medical School, São Paulo, SP 01246903, Brazil; D'Or Institute for Research and Education, Rio de Janeiro, RJ 22281-100, Brazil
| | - Katia Ramos Moreira Leite
- Laboratory of Medical Investigation (LIM-55), Urology Department, University of Sao Paulo Medical School, São Paulo, SP 01246903, Brazil
| | - José Pinhata Otoch
- Laboratory of Medical Investigation (LIM-26), Department of Surgery, University of Sao Paulo Medical School, São Paulo, SP 01246903, Brazil; Program in Anesthesiology, Surgical Sciences, and Perioperative Medicine, University of São Paulo, São Paulo, SP 01246903, Brazil
| | - Ana Flávia Marçal Pessoa
- Laboratory of Medical Investigation (LIM-26), Department of Surgery, University of Sao Paulo Medical School, São Paulo, SP 01246903, Brazil; Program in Anesthesiology, Surgical Sciences, and Perioperative Medicine, University of São Paulo, São Paulo, SP 01246903, Brazil; Brazilian Academic Consortium for Integrative Health (CABSIN), Natural Products Committee, São Paulo, SP 05449-070, Brazil.
| |
Collapse
|
28
|
Keskitalo A, Aatsinki AK, Kortesluoma S, Pelto J, Korhonen L, Lahti L, Lukkarinen M, Munukka E, Karlsson H, Karlsson L. Gut microbiota diversity but not composition is related to saliva cortisol stress response at the age of 2.5 months. Stress 2021; 24:551-560. [PMID: 33729084 DOI: 10.1080/10253890.2021.1895110] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human brain and intestinal microbes reportedly maintain a constant bidirectional connection through diverse neural, endocrine, immune, and metabolic pathways. Increasing evidence indicates that this communication system, referred to as microbiota-gut-brain axis, enables the gut microbes to influence several aspects of brain function and behavior, including hypothalamic-pituitary-adrenal (HPA) axis stress responses, and on the other hand, stress can affect gut microbiota. However, the role of gut microbiota in the HPA axis functioning in humans remains to be specified especially in early life. This study aimed at identifying the potential link between the cortisol stress response and the gut microbiota at the age of 2.5 months. Fecal microbiota profiles were acquired by 16S rRNA gene sequencing, while salivary cortisol responses after an exposure to a mild acute stressor represented the HPA axis reactivity. We observed that a blunted cortisol stress response was weakly associated with a diverse gut microbiota diversity at the age of 2.5 months. Gut microbiota composition was not associated with cortisol stress responsiveness, but rather with covariates, i.e. factors that influence gut microbiota composition and colonization.LAY SUMMARYThis exploratory study aimed at identifying possible links between cortisol stress responses and fecal microbiota composition in early infancy. In a well-characterized study population of 2.5-month-old infants, we observed that an attenuated cortisol stress responsiveness after a mild stressor was weakly associated with a diverse fecal microbiota. Our results suggest that the gut microbiota composition is associated with environmental factors, such as delivery mode and number of siblings, rather than with cortisol stress responsiveness, in this age group.
Collapse
Affiliation(s)
- Anniina Keskitalo
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Anna-Katariina Aatsinki
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Susanna Kortesluoma
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Juho Pelto
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Laura Korhonen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Leo Lahti
- Department of Computing, Faculty of Science and Engineering, University of Turku, Turku, Finland
| | - Minna Lukkarinen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Eveliina Munukka
- Department of Clinical Microbiology, Turku University Hospital, Turku, Finland
- Microbiome Biobank, Faculty of Medicine, University of Turku, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
29
|
Huang Z, Tan S. P2X7 Receptor as a Potential Target for Major Depressive Disorder. Curr Drug Targets 2021; 22:1108-1120. [PMID: 33494675 DOI: 10.2174/1389450122666210120141908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 11/22/2022]
Abstract
Major depressive disorder (MDD) is a common mental disorder. Although the genetic, biochemical, and psychological factors have been related to the development of MDD, it is generally believed that a series of pathological changes in the brain caused by chronic stress is the main cause of MDD. However, the specific mechanisms underlying chronic stress-induced MDD are largely undermined. Recent investigations have found that increased pro-inflammatory cytokines and changes in the inflammatory pathway in the microglia cells in the brain are the potential pathophysiological mechanism of MDD. P2X7 receptor (P2X7R) and its mediated signaling pathway play a key role in microglia activation. The present review aimed to present and discuss the accumulating data on the role of P2X7R in MDD. Firstly, we summarized the research progress in the correlation between P2X7R and MDD. Subsequently, we presented the P2X7R mediated microglia activation in MDD and the role of P2X7R in increased blood-brain barrier (BBB) permeability caused by chronic stress. Lastly, we also discussed the potential mechanism underlying-P2X7R expression changes after chronic stress. In conclusion, P2X7R is a key molecule regulating the activation of microglia. Chronic stress activates microglia in the hippocampus by secreting interleukin- 1β (IL-1β) and other inflammatory cytokines, and increasing the BBB permeability, thus promoting the occurrence and development of MDD, which indicated that P2X7R might be a promising therapeutic target for MDD.
Collapse
Affiliation(s)
- Zeyi Huang
- Department of Histology and Embryology, Institute of Clinical Anatomy & Reproductive Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, 421001, Hunan, China
| | - Sijie Tan
- Department of Histology and Embryology, Institute of Clinical Anatomy & Reproductive Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, 421001, Hunan, China
| |
Collapse
|
30
|
Głombik K, Detka J, Budziszewska B. Venlafaxine and L-Thyroxine Treatment Combination: Impact on Metabolic and Synaptic Plasticity Changes in an Animal Model of Coexisting Depression and Hypothyroidism. Cells 2021; 10:cells10061394. [PMID: 34198731 PMCID: PMC8227539 DOI: 10.3390/cells10061394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/23/2022] Open
Abstract
The clinical effectiveness of supportive therapy with thyroid hormones in drug-resistant depression is well-known; however, the mechanisms of action of these hormones in the adult brain have not been fully elucidated to date. We determined the effects of venlafaxine and/or L-thyroxine on metabolic parameters and markers involved in the regulation of synaptic plasticity and cell damage in an animal model of coexisting depression and hypothyroidism, namely, Wistar Kyoto rats treated with propylthiouracil. In this model, in relation to the depression model itself, the glycolysis process in the brain was weakened, and a reduction in pyruvate dehydrogenase in the frontal cortex was normalized only by the combined treatment with L-thyroxine and venlafaxine, whereas changes in pyruvate and lactate levels were affected by all applied therapies. None of the drugs improved the decrease in the expression of mitochondrial respiratory chain enzymes. No intensification of glucocorticoid action was shown, while an unfavorable change caused by the lack of thyroid hormones was an increase in the caspase-1 level, which was not reversed by venlafaxine alone. The results indicated that the combined administration of drugs was more effective in normalizing glycolysis and the transition to the Krebs cycle than the use of venlafaxine or L-thyroxine alone.
Collapse
Affiliation(s)
- Katarzyna Głombik
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.D.); (B.B.)
- Correspondence: ; Tel.: +48-12-662-33-94
| | - Jan Detka
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.D.); (B.B.)
| | - Bogusława Budziszewska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.D.); (B.B.)
- Department of Biochemical Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
31
|
Zhu Y, Wu X, Zhou R, Sie O, Niu Z, Wang F, Fang Y. Hypothalamic-Pituitary-End-Organ Axes: Hormone Function in Female Patients with Major Depressive Disorder. Neurosci Bull 2021; 37:1176-1187. [PMID: 33909242 DOI: 10.1007/s12264-021-00689-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/27/2020] [Indexed: 12/27/2022] Open
Abstract
Classic hypothalamic-pituitary-end-organ feedback loops - the hypothalamic-pituitary-adrenal axis (HPAA), hypothalamic-pituitary-thyroidal axis (HPTA), and hypothalamic-pituitary-gonadal axis (HPGA) - are associated with the neuroendocrine and immune systems in major depressive disorder (MDD). Female patients with MDD present with evident neuroendocrine and immunological changes. Glucocorticoid, thyroid hormone, and reproductive steroid levels fluctuate with menstrual cycles, which might lead to glucocorticoid receptor resistance, impairment of triiodothyronine conversion, and sex hormone secretion disorders. In this review, we summarize the independent and interactive functions of these three axes in female MDD patients. The similar molecular structure of steroids implies an interrelationship between the hypothalamic-pituitary-end-organ axes and the competitive inhibitory effects at the receptor level, especially when considering the HPAA and HPGA.
Collapse
Affiliation(s)
- Yuncheng Zhu
- Division of Mood Disorders, Shanghai Hongkou Mental Health Center, Shanghai, 200083, China.,Clinical Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xiaohui Wu
- Clinical Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Rubai Zhou
- Clinical Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Oliver Sie
- Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhiang Niu
- Clinical Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Fang Wang
- Shanghai Yangpu Mental Health Center, Shanghai, 200093, China.
| | - Yiru Fang
- Clinical Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200031, China. .,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 201108, China.
| |
Collapse
|
32
|
Leite Dantas R, Freff J, Ambrée O, Beins EC, Forstner AJ, Dannlowski U, Baune BT, Scheu S, Alferink J. Dendritic Cells: Neglected Modulators of Peripheral Immune Responses and Neuroinflammation in Mood Disorders? Cells 2021; 10:941. [PMID: 33921690 PMCID: PMC8072712 DOI: 10.3390/cells10040941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/25/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022] Open
Abstract
Affective disorders (AD) including major depressive disorder (MDD) and bipolar disorder (BD) are common mood disorders associated with increased disability and poor health outcomes. Altered immune responses characterized by increased serum levels of pro-inflammatory cytokines and neuroinflammation are common findings in patients with AD and in corresponding animal models. Dendritic cells (DCs) represent a heterogeneous population of myeloid cells that orchestrate innate and adaptive immune responses and self-tolerance. Upon sensing exogenous and endogenous danger signals, mature DCs secrete proinflammatory factors, acquire migratory and antigen presenting capacities and thus contribute to neuroinflammation in trauma, autoimmunity, and neurodegenerative diseases. However, little is known about the involvement of DCs in the pathogenesis of AD. In this review, we summarize the current knowledge on DCs in peripheral immune responses and neuroinflammation in MDD and BD. In addition, we consider the impact of DCs on neuroinflammation and behavior in animal models of AD. Finally, we will discuss therapeutic perspectives targeting DCs and their effector molecules in mood disorders.
Collapse
Affiliation(s)
- Rafael Leite Dantas
- Department of Mental Health, University of Münster, 48149 Münster, Germany; (R.L.D.); (J.F.); (U.D.); (B.T.B.)
- Cells in Motion Interfaculty Centre, University of Münster, 48149 Münster, Germany
| | - Jana Freff
- Department of Mental Health, University of Münster, 48149 Münster, Germany; (R.L.D.); (J.F.); (U.D.); (B.T.B.)
- Cells in Motion Interfaculty Centre, University of Münster, 48149 Münster, Germany
| | - Oliver Ambrée
- Department of Behavioural Biology, University of Osnabrück, 49076 Osnabrück, Germany;
- Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Eva C. Beins
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, 53127 Bonn, Germany; (E.C.B.); (A.J.F.)
| | - Andreas J. Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, 53127 Bonn, Germany; (E.C.B.); (A.J.F.)
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, 52428 Jülich, Germany
| | - Udo Dannlowski
- Department of Mental Health, University of Münster, 48149 Münster, Germany; (R.L.D.); (J.F.); (U.D.); (B.T.B.)
| | - Bernhard T. Baune
- Department of Mental Health, University of Münster, 48149 Münster, Germany; (R.L.D.); (J.F.); (U.D.); (B.T.B.)
- Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Parkville, VIC 3010, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, 40225 Düsseldorf, Germany;
| | - Judith Alferink
- Department of Mental Health, University of Münster, 48149 Münster, Germany; (R.L.D.); (J.F.); (U.D.); (B.T.B.)
- Cells in Motion Interfaculty Centre, University of Münster, 48149 Münster, Germany
| |
Collapse
|
33
|
Fudulu DP, Horn G, Hazell G, Lefrançois-Martinez AM, Martinez A, Angelini GD, Lightman SL, Spiga F. Co-culture of monocytes and zona fasciculata adrenal cells: An in vitro model to study the immune-adrenal cross-talk. Mol Cell Endocrinol 2021; 526:111195. [PMID: 33571577 PMCID: PMC8024787 DOI: 10.1016/j.mce.2021.111195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/05/2021] [Accepted: 01/31/2021] [Indexed: 12/13/2022]
Abstract
The hypothalamic-pituitary-adrenal axis is the primary neuroendocrine system activated to re-establish homeostasis during periods of stress, including critical illness and major surgery. During critical illness, evidence suggests that locally induced inflammation of the adrenal gland could facilitate immune-adrenal cross-talk and, in turn, modulate cortisol secretion. It has been hypothesized that immune cells are necessary to mediate the effect of inflammatory stimuli on the steroidogenic pathway that has been observed in vivo. To test this hypothesis, we developed and characterized a trans-well co-culture model of THP1 (human monocytic cell)-derived macrophages and ATC7 murine zona fasciculata adrenocortical cells. We found that co-culture of ATC7 and THP1 cells results in a significant increase in the basal levels of IL-6 mRNA in ATC7 cells, and this effect was potentiated by treatment with LPS. Addition of LPS to co-cultures of ATC7 and THP1 significantly decreased the expression of key adrenal steroidogenic enzymes (including StAR and DAX-1), and this was also found in ATC7 cells treated with pro-inflammatory cytokines. Moreover, 24-h treatment with the synthetic glucocorticoid dexamethasone prevented the effects of LPS stimulation on IL-6, StAR and DAX-1 mRNA in ATC7 cells co-cultured with THP1 cells. Our data suggest that the expression of IL-6 and steroidogenic genes in response to LPS depends on the activation of intra-adrenal immune cells. Moreover, we also show that the effects of LPS can be modulated by glucocorticoids in a time- and dose-dependent manner with potential implications for clinical practice.
Collapse
Affiliation(s)
- Daniel P Fudulu
- Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, BS1 3NY, United Kingdom; Bristol Heart Institute, University of Bristol, 68 Horfield Rd, Bristol, BS2 8ED, United Kingdom.
| | - George Horn
- Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, BS1 3NY, United Kingdom
| | - Georgina Hazell
- Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, BS1 3NY, United Kingdom
| | - Anne-Marie Lefrançois-Martinez
- Génétique Reproduction & Développement, CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 63001, Clermont-Ferrand, France
| | - Antoine Martinez
- Génétique Reproduction & Développement, CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 63001, Clermont-Ferrand, France
| | - Gianni D Angelini
- Bristol Heart Institute, University of Bristol, 68 Horfield Rd, Bristol, BS2 8ED, United Kingdom
| | - Stafford L Lightman
- Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, BS1 3NY, United Kingdom
| | - Francesca Spiga
- Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, BS1 3NY, United Kingdom.
| |
Collapse
|
34
|
Moisan MP, Foury A, Dexpert S, Cole SW, Beau C, Forestier D, Ledaguenel P, Magne E, Capuron L. Transcriptomic signaling pathways involved in a naturalistic model of inflammation-related depression and its remission. Transl Psychiatry 2021; 11:203. [PMID: 33824279 PMCID: PMC8024399 DOI: 10.1038/s41398-021-01323-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/19/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
This study aimed at identifying molecular biomarkers of inflammation-related depression in order to improve diagnosis and treatment. For this, we performed whole-genome expression profiling from peripheral blood in a naturalistic model of inflammation-associated major depressive disorder (MDD) represented by comorbid depression in obese patients. We took advantage of the marked reduction of depressive symptoms and inflammation following bariatric surgery to test the robustness of the identified biomarkers. Depression was assessed during a clinical interview using Mini-International Neuropsychiatric Interview and the 10-item, clinician-administered, Montgomery-Asberg Depression Rating Scale. From a cohort of 100 massively obese patients, we selected 33 of them for transcriptomic analysis. Twenty-four of them were again analyzed 4-12 months after bariatric surgery. We conducted differential gene expression analyses before and after surgery in unmedicated MDD and non-depressed obese subjects. We found that TP53 (Tumor Protein 53), GR (Glucocorticoid Receptor), and NFκB (Nuclear Factor kappa B) pathways were the most discriminating pathways associated with inflammation-related MDD. These signaling pathways were processed in composite z-scores of gene expression that were used as biomarkers in regression analyses. Results showed that these transcriptomic biomarkers highly predicted depressive symptom intensity at baseline and their remission after bariatric surgery. While inflammation was present in all patients, GR signaling over-activation was found only in depressed ones where it may further increase inflammatory and apoptosis pathways. In conclusion, using an original model of inflammation-related depression and its remission without antidepressants, we provide molecular predictors of inflammation-related MDD and new insights in the molecular pathways involved.
Collapse
Affiliation(s)
- Marie-Pierre Moisan
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France.
| | - Aline Foury
- grid.488493.a0000 0004 0383 684XUniv. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Sandra Dexpert
- grid.488493.a0000 0004 0383 684XUniv. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Steve W. Cole
- grid.19006.3e0000 0000 9632 6718Division of Hematology-Oncology, Department of Psychiatry & Biobehavioral Sciences and Department of Medicine, UCLA School of Medicine, Los Angeles, CA USA
| | - Cédric Beau
- Service de Chirurgie Digestive et Pariétale, Clinique Tivoli, Bordeaux, and Clinique Jean Villar, Bruges, France
| | - Damien Forestier
- Service de Chirurgie Digestive et Pariétale, Clinique Tivoli, Bordeaux, and Clinique Jean Villar, Bruges, France
| | - Patrick Ledaguenel
- Service de Chirurgie Digestive et Pariétale, Clinique Tivoli, Bordeaux, and Clinique Jean Villar, Bruges, France
| | - Eric Magne
- Service de Chirurgie Digestive et Pariétale, Clinique Tivoli, Bordeaux, and Clinique Jean Villar, Bruges, France
| | - Lucile Capuron
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France.
| |
Collapse
|
35
|
Nedic Erjavec G, Sagud M, Nikolac Perkovic M, Svob Strac D, Konjevod M, Tudor L, Uzun S, Pivac N. Depression: Biological markers and treatment. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110139. [PMID: 33068682 DOI: 10.1016/j.pnpbp.2020.110139] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022]
Abstract
Nowadays depression is considered as a systemic illness with different biological mechanisms involved in its etiology, including inflammatory response, hypothalamic-pituitary-adrenal (HPA) axis dysregulation and neurotransmitter and neurotrophic systems imbalance. Novel "omics" approaches, such as metabolomics and glycomics provide information about altered metabolic pathways and metabolites, as well as disturbances in glycosylation processes affected by or causing the development of depression. The clinical diagnosis of depression continues to be established based on the presence of the specific symptoms, but due to its heterogeneous underlying biological background, that differs according to the disease stage, there is an unmet need for treatment response biomarkers which would facilitate the process of appropriate treatment selection. This paper provides an overview of the role of major stress response system, the HPA axis, and its dysregulation in depression, possible involvement of neurotrophins, especially brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor and insulin-like growth factor-1, in the development of depression. Article discusses how activated inflammation processes and increased cytokine levels, as well as disturbed neurotransmitter systems can contribute to different stages of depression and could specific metabolomic and glycomic species be considered as potential biomarkers of depression. The second part of the paper includes the most recent findings about available medical treatment of depression. The described biological factors impose an optimistic conclusion that they could represent easy obtainable biomarkers potentially predicting more personalized treatment and diagnostic options.
Collapse
Affiliation(s)
- Gordana Nedic Erjavec
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Marina Sagud
- The University of Zagreb School of Medicine, Salata 3, 10000 Zagreb, Croatia; University Hospital Center Zagreb, Department of Psychiatry, Kispaticeva 12, 10000 Zagreb, Croatia
| | - Matea Nikolac Perkovic
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Dubravka Svob Strac
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Marcela Konjevod
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Lucija Tudor
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Sandra Uzun
- University Hospital Center Zagreb, Department for Anesthesiology, Reanimatology, and Intensive Care, Kispaticeva 12, 10000 Zagreb, Croatia
| | - Nela Pivac
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
36
|
Malik S, Singh R, Arora G, Dangol A, Goyal S. Biomarkers of Major Depressive Disorder: Knowing is Half the Battle. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2021; 19:12-25. [PMID: 33508785 PMCID: PMC7851463 DOI: 10.9758/cpn.2021.19.1.12] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/02/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022]
Abstract
Major depressive disorder (MDD) is a heterogeneous disease which is why there are currently no specific methods to accurately test the severity, endophenotype or therapy response. This lack of progress is partly attributed to the com-plexity and variability of depression, in association with analytical variability of clinical literature and the wide number of theoretically complex biomarkers. The literature accessible, indicates that markers involved in inflammatory, neuro-trophic and metabolic processes and components of neurotransmitters and neuroendocrine systems are rather strong indicators to be considered clinically and can be measured through genetic and epigenetic, transcriptomic and proteomic, metabolomics and neuroimaging assessments. Promising biologic systems/markers found were i.e., growth biomarkers, endocrine markers, oxidant stress markers, proteomic and chronic inflammatory markers, are discussed in this review. Several lines of evidence suggest that a portion of MDD is a dopamine agonist-responsive subtype. This review analyzes concise reports on the pathophysiological biomarkers of MDD and therapeutic reactions via peripheral developmental factors, inflammative cytokines, endocrine factors and metabolic markers. Various literatures also support that endocrine and metabolism changes are associated with MDD. Accumulating evidence suggests that at least a portion of MDD patients show characteristics pathological changes regarding different clinical pathological biomarkers. By this review we sum up all the different biomarkers playing an important role in the detection or treatment of the different patients suffering from MDD. The review also gives an overview of different biomarker's playing a potential role in modulating effect of MDD.
Collapse
Affiliation(s)
- Sahil Malik
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ravinder Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Govind Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Akriti Dangol
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sanjay Goyal
- Department of Internal Medicine, Government Medical College, Patiala, India
| |
Collapse
|
37
|
Roohi E, Jaafari N, Hashemian F. On inflammatory hypothesis of depression: what is the role of IL-6 in the middle of the chaos? J Neuroinflammation 2021; 18:45. [PMID: 33593388 PMCID: PMC7884972 DOI: 10.1186/s12974-021-02100-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
Many patients with major depressive disorder (MDD) are reported to have higher levels of multiple inflammatory cytokines including interleukin 6 (IL-6). Recent studies both pre-clinical and clinical have advocated for the functional role of IL-6 in development of MDD and suggested a great potential for targeting this cytokine to open new avenues in pharmacotherapy of depression. The purpose of the present narrative review was to provide an integrated account of how IL-6 may contribute to development of depression. All peer-reviewed journal articles published before July 2020 for each area discussed were searched by WOS, PubMed, MEDLINE, Scopus, Google Scholar, for original research, review articles, and book chapters. Publications between 1980 and July 2020 were included. Alterations in IL-6 levels, both within the periphery and the brain, most probably contribute to depression symptomatology in numerous ways. As IL-6 acts on multiple differing target tissues throughout the body, dysregulation of this particular cytokine can precipitate a multitude of events relevant to depression and blocking its effects can prevent further escalation of inflammatory responses, and potentially pave the way for opening new avenues in diagnosis, treatment, and prevention of this debilitating disorder.
Collapse
Affiliation(s)
- Elnaz Roohi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99 Yakhchal Street, Shariati Avenue, Tehran, 1941933111, Iran
| | - Nematollah Jaafari
- Université de Poitiers, Unité de recherche clinique intersectorielle Pierre Deniker du Centre Hospitalier Henri Laborit F-86022 France, Groupement De Recherche CNRS 3557, Poitiers, France
| | - Farshad Hashemian
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99 Yakhchal Street, Shariati Avenue, Tehran, 1941933111, Iran.
| |
Collapse
|
38
|
The Role of Inflammatory Proteins in Anti-Glucocorticoid Therapy for Treatment-Resistant Depression. J Clin Med 2021; 10:jcm10040784. [PMID: 33669254 PMCID: PMC7920038 DOI: 10.3390/jcm10040784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/27/2021] [Accepted: 02/09/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Optimising treatments for patients with treatment-resistant depression (TRD) is key to reducing the burden of this severe illness. The anti-glucocorticoid medication metyrapone has mixed evidence supporting a role as a possible augmentation treatment in TRD. The degree of treatment resistance in depression has been associated prospectively and retrospectively with elevated inflammation, and inflammatory activity may influence responses to antidepressant treatments. AIMS To investigate whether levels of pro-inflammatory cytokines are associated with clinical outcomes to metyrapone or placebo. METHODS A double-blind RCT randomised patients with TRD to 3 weeks of placebo or metyrapone augmentation to ongoing serotonergic antidepressants. No benefit of metyrapone was reported in the primary analysis. The current study assessed levels of pro-inflammatory proteins interleukin-6 (IL-6), tumour necrosis factor (TNFα), c-reactive protein (CRP) and interleukin-10 (IL-10) before randomisation and after treatment as potential moderators and/or mediators of clinical outcomes. RESULTS The three pro-inflammatory proteins (but not IL-10) were elevated in this sample of patients with TRD compared to a non-affected control group. High pre-treatment IL-6 levels predicted a poorer response in the trial overall but did not moderate response to metyrapone versus placebo. Changes in IL-6 indirectly mediated depression outcome, with metyrapone increasing IL-6 levels and IL-6 increase associated with a poorer outcome on depression. Other inflammatory proteins did not mediate or moderate treatment outcomes. INTERPRETATION Metyrapone is hypothesised to have a therapeutic effect in depression on the basis of inhibiting the synthesis of cortisol. In this study, metyrapone did not reduce cortisol, possibly due to glucocorticoid system overcompensation). The mediation effect of IL-6 may support this and perhaps help to indicate why the treatment was not effective.
Collapse
|
39
|
Hori H, Itoh M, Lin M, Yoshida F, Niwa M, Hakamata Y, Matsui M, Kunugi H, Kim Y. Childhood maltreatment history and attention bias variability in healthy adult women: role of inflammation and the BDNF Val66Met genotype. Transl Psychiatry 2021; 11:122. [PMID: 33574220 PMCID: PMC7878504 DOI: 10.1038/s41398-021-01247-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/09/2021] [Accepted: 01/25/2021] [Indexed: 01/31/2023] Open
Abstract
Childhood maltreatment has been associated with greater attention bias to emotional information, but the findings are controversial. Recently, a novel index of attention bias, i.e., attention bias variability (ABV), has been developed to better capture trauma-related attentional dysfunction. However, ABV in relation to childhood trauma has not been studied. Here, we examined the association of childhood maltreatment history with attention bias/ABV in 128 healthy adult women. Different types of childhood maltreatment were assessed with the Childhood Trauma Questionnaire. Attention bias/ABV was measured by the dot-probe task. Possible mechanisms whereby childhood maltreatment affects attention bias/ABV were also explored, focusing on blood proinflammatory markers and the BDNF Val66Met polymorphism. We observed a significant positive correlation between childhood emotional abuse and ABV (P = 0.002). Serum high-sensitivity tumor necrosis factor-α levels were significantly positively correlated with ABV (P < 0.001), but not with childhood maltreatment. Jonckheere-Terpstra trend test showed a significant tendency toward greater ABV with increasing numbers of the BDNF Met alleles (P = 0.021). A two-way analysis of variance further revealed that the genotype-by-emotional abuse interaction for ABV was significant (P = 0.022); individuals with the Val/Met and Met/Met genotypes exhibited even greater ABV when childhood emotional abuse was present. These results indicate that childhood emotional abuse can have a long-term negative impact on emotional attention control. Increased inflammation may be involved in the mechanism of ABV, possibly independently of childhood maltreatment. The BDNF Met allele may dose-dependently increase ABV by interacting with childhood emotional abuse.
Collapse
Affiliation(s)
- Hiroaki Hori
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | - Mariko Itoh
- grid.419280.60000 0004 1763 8916Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan ,grid.39158.360000 0001 2173 7691Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Mingming Lin
- grid.419280.60000 0004 1763 8916Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Fuyuko Yoshida
- grid.419280.60000 0004 1763 8916Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Madoka Niwa
- grid.419280.60000 0004 1763 8916Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuko Hakamata
- grid.419280.60000 0004 1763 8916Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan ,grid.411731.10000 0004 0531 3030Department of Clinical Psychology, International University of Health and Welfare, Tokyo, Japan
| | - Mie Matsui
- grid.9707.90000 0001 2308 3329Department of Clinical Cognitive Neuroscience, Institute of Liberal Arts and Science, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Kunugi
- grid.419280.60000 0004 1763 8916Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan ,grid.264706.10000 0000 9239 9995Department of Psychiatry, Teikyo University School of Medicine, Tokyo, Japan
| | - Yoshiharu Kim
- grid.419280.60000 0004 1763 8916Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
40
|
Alboni S, Benatti C, Colliva C, Radighieri G, Blom JMC, Brunello N, Tascedda F. Vortioxetine Prevents Lipopolysaccharide-Induced Memory Impairment Without Inhibiting the Initial Inflammatory Cascade. Front Pharmacol 2021; 11:603979. [PMID: 33613281 PMCID: PMC7890663 DOI: 10.3389/fphar.2020.603979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/16/2020] [Indexed: 01/10/2023] Open
Abstract
Vortioxetine is a novel multimodal antidepressant that modulates a wide range of neurotransmitters throughout the brain. Preclinical and clinical studies have shown that vortioxetine exerts positive effects on different cognitive domains and neuroprotective effects. Considering the key role of microglial cells in brain plasticity and cognition, we aimed at investigating the effects of pretreatment with vortioxetine in modulating behavioral and molecular effects induced by an immune challenge: peripheral injection of lipopolysaccharide (LPS). To this purpose, C57BL/6J male mice were first exposed to a 28-day standard diet or vortioxetine-enriched diet, which was followed by an acute immune challenge with LPS. Sickness symptoms and depressive-like behaviors (anhedonia and memory impairment) were tested 6 and 24 h after exposure to LPS, respectively. Moreover, the expressions of markers of immune activation and M1/M2 markers of microglia polarization were measured in the dorsal and ventral parts of the hippocampus. The pretreatment with vortioxetine did not affect both LPS-induced sickness behavior and anhedonia but prevented the deficit in the recognition memory induced by the immune challenge. At the transcriptional level, chronic exposure to vortioxetine did not prevent LPS-induced upregulation of proinflammatory cytokines 6 h after the immune challenge but rather seemed to potentiate the immune response to the challenge also by affecting the levels of expression of markers of microglia M1 phenotype, like cluster of differentiation (CD)14 and CD86, in an area-dependent manner. However, at the same time point, LPS injection significantly increased the expression of the M2 polarization inducer, interleukin 4, only in the hippocampus of animals chronically exposed to vortioxetine. These results demonstrate that a chronic administration of vortioxetine specifically prevents LPS-induced memory impairment, without affecting acute sickness behavior and anhedonia, and suggest that hippocampal microglia may represent a cellular target of this novel antidepressant medication. Moreover, we provide a useful model to further explore the molecular mechanisms specifically underlying cognitive impairments following an immune challenge.
Collapse
Affiliation(s)
- S. Alboni
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - C. Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - C. Colliva
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - G. Radighieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - J. M. C. Blom
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - N. Brunello
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - F. Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
- CIB, Consorzio Interuniversitario Biotecnologie, Trieste, Italy
| |
Collapse
|
41
|
Palma-Gudiel H, Prather AA, Lin J, Oxendine JD, Guintivano J, Xia K, Rubinow DR, Wolkowitz O, Epel ES, Zannas AS. HPA axis regulation and epigenetic programming of immune-related genes in chronically stressed and non-stressed mid-life women. Brain Behav Immun 2021; 92:49-56. [PMID: 33221485 PMCID: PMC7897273 DOI: 10.1016/j.bbi.2020.11.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Hypothalamic-pituitary-adrenal (HPA) axis dysregulation has been associated with altered immune function, but the underlying molecular mechanisms are unclear. Epigenetic processes, including DNA methylation, respond to the glucocorticoid end-products of the HPA axis (cortisol in humans) and could be involved in this neuroendocrine-immune crosstalk. Here we examined the extent to which variations in HPA axis regulation are associated with peripheral blood DNA (CpG) methylation changes in 57 chronically stressed caregivers and 67 control women. DNA methylation was determined with the Illumina 450k array for a panel of genes involved in HPA axis and immune function. HPA axis feedback was assessed with the low-dose dexamethasone suppression test (DST), measuring the extent to which cortisol secretion is suppressed by the synthetic glucocorticoid dexamethasone. After multiple testing correction in the entire cohort, higher post-DST cortisol, reflecting blunted HPA axis negative feedback, but not baseline waking cortisol, was associated with lower DNA methylation at eight TNF and two FKBP5 CpG sites. Caregiver group status was associated with lower methylation at two IL6 CpG sites. Since associations were most robust with TNF methylation (32% of the 450k-covered sites), we further examined functionality of this epigenetic signature in cultured peripheral blood mononuclear cells in 33 participants; intriguingly, lower TNF methylation resulted in higher ex vivo TNF mRNA following immune stimulation. Taken together, our findings link chronic stress and HPA axis regulation with epigenetic signatures at immune-related genes, thereby providing novel insights into how aberrant HPA axis function may contribute to heightened inflammation and disease risk.
Collapse
Affiliation(s)
- Helena Palma-Gudiel
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA; Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain
| | - Aric A Prather
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California, San Francisco, United States
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, United States
| | - Jake D Oxendine
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Jerry Guintivano
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Kai Xia
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - David R Rubinow
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Owen Wolkowitz
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California, San Francisco, United States
| | - Elissa S Epel
- Department of Psychiatry and Behavioral Sciences, and Center for Health and Community, University of California, San Francisco, CA, USA
| | - Anthony S Zannas
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC, USA; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA; Carolina Stress Initiative, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
42
|
Zhao S, Xia Y, Huang Y, Zou H, Wang X, Chen Z, Zhou H, Han Y, Tang H, Yan R, Yao Z, Lu Q. The Correlation Between Thyroid Function, Frontal Gray Matter, and Executive Function in Patients With Major Depressive Disorder. Front Endocrinol (Lausanne) 2021; 12:779693. [PMID: 34887837 PMCID: PMC8649711 DOI: 10.3389/fendo.2021.779693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
The present study was aimed to investigate the relationships between serum thyroid hormones (THs), frontal gray matter volume, and executive function in selected patients with major depressive disorder (MDD). One hundred and four MDD patients and seventy-five healthy controls (HCs) were subjected to thyroid-stimulating hormone (TSH), free Triiodothyronine (fT3), free Thyroxine (fT4), and executive function tests and underwent structural magnetic resonance imaging (MRI). Voxel-based morphometry (VBM) analysis was performed to compare group differences in the gray matter for the frontal lobe. Furthermore, mediation analysis was used to investigate whether gray matter volumes of the frontal gyrus mediated the relationship between serum THs and executive function in MDD patients. MDD patients exhibited significant gray matter volume reduction in several brain regions, including the left rectus, right middle frontal cortex, and left middle frontal cortex. Serum TSH levels are positively associated with altered regional gray matter volume patterns within MFG and executive function. Importantly, gray matter in the right MFG was a significant mediator between serum TSH levels and executive function. These findings expand our understanding of how thyroid function affects brain structure changes and executive function in MDD patients.
Collapse
Affiliation(s)
- Shuai Zhao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Xia
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yinghong Huang
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, China
| | - Haowen Zou
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xumiao Wang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zhilu Chen
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hongliang Zhou
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yinglin Han
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Tang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Yan
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zhijian Yao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Zhijian Yao, ; Qing Lu,
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, China
- *Correspondence: Zhijian Yao, ; Qing Lu,
| |
Collapse
|
43
|
Whylings J, Rigney N, de Vries GJ, Petrulis A. Removal of vasopressin cells from the paraventricular nucleus of the hypothalamus enhances lipopolysaccharide-induced sickness behaviour in mice. J Neuroendocrinol 2021; 33:e12915. [PMID: 33617060 PMCID: PMC8543850 DOI: 10.1111/jne.12915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/07/2020] [Accepted: 10/20/2020] [Indexed: 12/26/2022]
Abstract
Vasopressin (AVP) cells in the paraventricular nucleus of the hypothalamus (PVN) are activated during sickness and project to multiple nuclei responsible for the anxiety, social and motivated behaviours affected during sickness, suggesting that these cells may play a role in sickness behaviours, typically expressed as reduced mobility, increased anxiety, anhedonia and social withdrawal. In the present study, we selectively ablated AVP neurones in the PVN of male and female mice (Mus musculus) and induced sickness behaviour via injection of bacterial lipopolysaccharide (LPS). We found that PVN AVP ablation increased the effects of LPS, specifically by further decreasing sucrose preference in males and females and decreasing the social preference of males, monitored within 24 hours of LPS injection. These results suggest that PVN AVP contributes to the change in motivated behaviours during sickness and may help promote recovery from infection..
Collapse
Affiliation(s)
- Jack Whylings
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Nicole Rigney
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Geert J de Vries
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Aras Petrulis
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
44
|
Głombik K, Detka J, Kurek A, Budziszewska B. Impaired Brain Energy Metabolism: Involvement in Depression and Hypothyroidism. Front Neurosci 2020; 14:586939. [PMID: 33343282 PMCID: PMC7746780 DOI: 10.3389/fnins.2020.586939] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Although hypothyroidism appears to be an important factor in the pathogenesis of depression, the impact of thyroid hormones on the bioenergetics of the adult brain is still poorly known. Since metabolic changes are reported to be a key player in the manifestation of depressive disorder, we investigated whether there are differences in selected metabolic markers in the frontal cortex and hippocampus of Wistar Kyoto rats (WKY; an animal model of depression) compared to those of control Wistar rats and whether the induction of hypothyroidism by propylthiouracil (PTU) elicits similar effects in these animals or intensifies some parameters in the WKY rats. In our study, we used WKY rats as a model of depression since this strain exhibits lower levels of monoamines in the brain than control rats and exhibits behavioral and hormonal alterations resembling those of depression, including increased reactivity to stress. The findings indicate a decrease in glycolysis intensity in both brain structures in the WKY rats as well as in both strains under hypothyroidism conditions. Furthermore, hypothyroidism disrupted the connection between glycolysis and the Krebs cycle in the frontal cortex and hippocampus in the depression model used in this study. Decreased thyroid hormone action was also shown to attenuate oxidative phosphorylation, and this change was greater in the WKY rats. Our results suggest that both the depression and hypothyroidism models are characterized by similar impairments in brain energy metabolism and mitochondrial function and, additionally, that the co-occurrence of hypothyroidism and depression may exacerbate some of the metabolic changes observed in depression.
Collapse
Affiliation(s)
- Katarzyna Głombik
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Jan Detka
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Anna Kurek
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Bogusława Budziszewska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
45
|
Molecular insights into the therapeutic promise of targeting HMGB1 in depression. Pharmacol Rep 2020; 73:31-42. [PMID: 33015736 DOI: 10.1007/s43440-020-00163-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/09/2020] [Accepted: 09/19/2020] [Indexed: 12/17/2022]
Abstract
Depression is a common psychiatric disorder, the exact pathogenesis of which is still elusive. Studies have proposed that immunity disproportion and enhancement in proinflammatory cytokines might be linked with the development of depression. HMGB1 (High-mobility group box (1) protein has obtained more interest as an essential factor in inherent immune reactions and a regulating factor in various inflammation-related diseases. HMGB1 is a ubiquitous chromatin protein and is constitutively expressed in nucleated mammalian cells. HMGB1 is released by glial cells and neurons upon inflammasome activation and act as a pro-inflammatory cytokine. HMGB1 is a late mediator of inflammation and has been indicated as a major mediator in various neuroinflammatory diseases. Microglia, which is the brain immune cell, is stimulated by HMGB1 and released inflammatory mediators and induces chronic neurodegeneration in the CNS (central nervous system). In the current review, we aimed to investigate the role of HMGB1 in the pathogenesis of depression. The studies found that HMGB1 functions as proinflammatory cytokines primarily via binding receptors like RAGE (receptor for advanced glycation end product), TLR2 and TLR4 (Toll-like receptor 2 and 4). Further, HMGB1 added to the preparing impacts of stress-pretreatment and assumed a major function in neurodegenerative conditions through moderating neuroinflammation. Studies demonstrated that neuroinflammation played a major role in the development of depression. The patients of depression generally exhibited an elevated amount of proinflammatory cytokines in the serum, microglia activation and neuronal deficit in the CNS.
Collapse
|
46
|
Ren Y, Song X, Tan L, Guo C, Wang M, Liu H, Cao Z, Li Y, Peng C. A Review of the Pharmacological Properties of Psoralen. Front Pharmacol 2020; 11:571535. [PMID: 33013413 PMCID: PMC7500444 DOI: 10.3389/fphar.2020.571535] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Psoralen is the principal bioactive component in the dried fruits of Cullen corylifolium (L.) Medik (syn. Psoralea corylifolia L), termed "Buguzhi" in traditional Chinese medicine (TCM). Recent studies have demonstrated that psoralen displays multiple bioactive properties, beneficial for the treatment of osteoporosis, tumors, viruses, bacteria, and inflammation. The present review focuses on the research evidence relating to the properties of psoralen gathered over recent years. Firstly, multiple studies have demonstrated that psoralen exerts strong anti-osteoporotic effects via regulation of osteoblast/osteoclast/chondrocyte differentiation or activation due to the participation in multiple molecular mechanisms of the wnt/β-catenin, bone morphogenetic protein (BMP), inositol-requiring enzyme 1 (IRE1)/apoptosis signaling kinase 1 (ASK1)/c-jun N-terminal kinase (JNK) and the Protein Kinase B(AKT)/activator protein-1 (AP-1) axis, and the expression of miR-488, peroxisome proliferators-activated receptor-gamma (PPARγ), and matrix metalloproteinases (MMPs). In addition, the antitumor properties of psoralen are associated with the induction of ER stress-related cell death via enhancement of PERK: Pancreatic Endoplasmic Reticulum Kinase (PERK)/activating transcription factor (ATF), 78kD glucose-regulated protein (GRP78)/C/EBP homologous protein (CHOP), and 94kD glucose-regulated protein (GRP94)/CHOP signaling, and inhibition of P-glycoprotein (P-gp) or ATPase that overcomes multidrug resistance. Furthermore, multiple articles have shown that the antibacterial, anti-inflammatory and neuroprotective effects of psoralen are a result of its interaction with viral polymerase (Pol), destroying the formation of biofilm, and regulating the activation of tumor necrosis factor alpha (TNF-α), transforming growth factor beta (TGF-β), interleukin 4/5/6/8/12/13 (IL-4/5/6/8/12/13), GATA-3, acetylcholinesterase (AChE), and the hypothalamic-pituitary-adrenal (HPA) axis. Finally, the toxic effects and mechanisms of action of psoralen have also been reviewed.
Collapse
Affiliation(s)
- Yali Ren
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Xiaominting Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Lu Tan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Chuanjie Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Miao Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Hui Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China, Pharmaceutical University, Nanjing, China
| | - Zhixing Cao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Yuzhi Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| |
Collapse
|
47
|
Visentin APV, Colombo R, Scotton E, Fracasso DS, da Rosa AR, Branco CS, Salvador M. Targeting Inflammatory-Mitochondrial Response in Major Depression: Current Evidence and Further Challenges. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2972968. [PMID: 32351669 PMCID: PMC7178465 DOI: 10.1155/2020/2972968] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/26/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023]
Abstract
The prevalence of psychiatric disorders has increased in recent years. Among existing mental disorders, major depressive disorder (MDD) has emerged as one of the leading causes of disability worldwide, affecting individuals throughout their lives. Currently, MDD affects 15% of adults in the Americas. Over the past 50 years, pharmacotherapy, psychotherapy, and brain stimulation have been used to treat MDD. The most common approach is still pharmacotherapy; however, studies show that about 40% of patients are refractory to existing treatments. Although the monoamine hypothesis has been widely accepted as a molecular mechanism to explain the etiology of depression, its relationship with other biochemical phenomena remains only partially understood. This is the case of the link between MDD and inflammation, mitochondrial dysfunction, and oxidative stress. Studies have found that depressive patients usually exhibit altered inflammatory markers, mitochondrial membrane depolarization, oxidized mitochondrial DNA, and thus high levels of both central and peripheral reactive oxygen species (ROS). The effect of antidepressants on these events remains unclear. Nevertheless, the effects of ROS on the brain are well known, including lipid peroxidation of neuronal membranes, accumulation of peroxidation products in neurons, protein and DNA damage, reduced antioxidant defenses, apoptosis induction, and neuroinflammation. Antioxidants such as ascorbic acid, tocopherols, and coenzyme Q have shown promise in some depressive patients, but without consensus on their efficacy. Hence, this paper provides a review of MDD and its association with inflammation, mitochondrial dysfunction, and oxidative stress and is aimed at thoroughly discussing the putative links between these events, which may contribute to the design and development of new therapeutic approaches for patients.
Collapse
Affiliation(s)
| | - Rafael Colombo
- Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS 95070 560, Brazil
| | - Ellen Scotton
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Débora Soligo Fracasso
- Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS 95070 560, Brazil
| | - Adriane Ribeiro da Rosa
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Catia Santos Branco
- Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS 95070 560, Brazil
| | - Mirian Salvador
- Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS 95070 560, Brazil
| |
Collapse
|
48
|
Fang K, Li HR, Chen XX, Gao XR, Huang LL, Du AQ, Jiang C, Li H, Ge JF. Quercetin Alleviates LPS-Induced Depression-Like Behavior in Rats via Regulating BDNF-Related Imbalance of Copine 6 and TREM1/2 in the Hippocampus and PFC. Front Pharmacol 2020; 10:1544. [PMID: 32009956 PMCID: PMC6978986 DOI: 10.3389/fphar.2019.01544] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 11/28/2019] [Indexed: 12/25/2022] Open
Abstract
Quercetin is a polyphenol with multiple biological activities, and results of our preliminary study showed that it could shorten the immobility time of mice in the forced swimming test and tail suspending test. The aim of this study was to investigate its effects on the behavioral performance of lipopolysaccharide (LPS)-challenged rats and explore the potential mechanism. The results showed that intragastrical administration of quercetin (40 mg/kg) could improve the bodyweight gain of LPS-challenged rats, increase the saccharin preference index in the saccharin preference test and the novel arm preference index in the Y-maze, and decrease the immobility time in the FST. However, it showed no significant effect on the performance of LPS-challenged rats in the Morris water maze and the plasma concentrations of nesfatin-1, C-reactive protein (CRP), and IL-6. Results of western blot showed that the expression levels of BDNF, Copine 6, p-TrkB, and the triggering receptors expressed on myeloid cells (TREM) 1 were decreased in both the hippocampus and the prefrontal cortex (PFC) of LPS-challenged rats, while the expression of TREM2 was increased. The protein expression of synapsin-1 was decreased in the hippocampus without significant changes in the PFC. These imbalance protein expressions could be balanced by treatment with quercetin. The results suggested that quercetin could alleviate LPS-induced depression-like behaviors and impairment of learning and memory in rats, the mechanism of which might be involved with regulating the BDNF-related imbalance expression of Copine 6 and TREM1/2 in the hippocampus and the PFC.
Collapse
Affiliation(s)
- Ke Fang
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Hua-Rong Li
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xing-Xing Chen
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Xin-Ran Gao
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | | | - An-Qi Du
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Chuan Jiang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hua Li
- School of Pharmacy, Anhui Medical University, Hefei, China.,The First Clinical College, Anhui Medical University, Hefei, China
| | - Jin-Fang Ge
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| |
Collapse
|
49
|
Sauer AK, Grabrucker AM. Zinc Deficiency During Pregnancy Leads to Altered Microbiome and Elevated Inflammatory Markers in Mice. Front Neurosci 2019; 13:1295. [PMID: 31849598 PMCID: PMC6895961 DOI: 10.3389/fnins.2019.01295] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022] Open
Abstract
Zinc is an essential trace metal for bacteria of the intestinal flora. Approximately 20% of dietary zinc – intake is used by intestinal bacteria. The microbiome has recently been described as an important factor for healthy brain function via so-called gut-brain interactions. Similarly, zinc deficiency has been associated with neurological problems such as depression, mental lethargy and cognitive impairments in humans and animal models. However, the underlying pathomechanisms are currently not well understood and a link between zinc deficiency and altered microbiota composition has not been studied. Especially during pregnancy, women may be prone to low zinc status. Thus, here, we investigate whether zinc deficiency alters gut-brain interaction in pregnant mice by triggering changes in the microbiome. To that end, pregnant mice were fed different diets being zinc-adequate, deficient in zinc, or adequate in zinc but high in zinc uptake antagonists for 8 weeks. Our results show that acute zinc-deficient pregnant mice and pregnant mice on a diet high in zinc uptake antagonists have an altered composition of gastro-intestinal (GI) microbiota. These changes were accompanied by alterations in markers for GI permeability. Within the brain, we found signs of neuroinflammation. Interestingly, microbiota composition, gut pathology, and inflammatory cytokine levels were partially rescued upon supplementation of mice with zinc amino-acid conjugates (ZnAA). We conclude that zinc deficiency may contribute to abnormal gut-brain signaling by altering gut physiology, microbiota composition and triggering an increase of inflammatory markers.
Collapse
Affiliation(s)
- Ann Katrin Sauer
- WG Molecular Analysis of Synaptopathies, Neurology Department, Neurocenter of Ulm University, Ulm, Germany.,Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Andreas M Grabrucker
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland.,Bernal Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
50
|
Abbott LC, Nigussie F. Adult neurogenesis in the mammalian dentate gyrus. Anat Histol Embryol 2019; 49:3-16. [PMID: 31568602 DOI: 10.1111/ahe.12496] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/03/2019] [Accepted: 08/22/2019] [Indexed: 12/30/2022]
Abstract
Earlier observations in neuroscience suggested that no new neurons form in the mature central nervous system. Evidence now indicates that new neurons do form in the adult mammalian brain. Two regions of the mature mammalian brain generate new neurons: (a) the border of the lateral ventricles of the brain (subventricular zone) and (b) the subgranular zone (SGZ) of the dentate gyrus of the hippocampus. This review focuses only on new neuron formation in the dentate gyrus of the hippocampus. During normal prenatal and early postnatal development, neural stem cells (NSCs) give rise to differentiated neurons. NSCs persist in the dentate gyrus SGZ, undergoing cell division, with some daughter cells differentiating into functional neurons that participate in learning and memory and general cognition through integration into pre-existing neural networks. Axons, which emanate from neurons in the entorhinal cortex, synapse with dendrites of the granule cells (small neurons) of the dentate gyrus. Axons from granule cells synapse with pyramidal cells in the hippocampal CA3 region, which send axons to synapse with CA1 hippocampal pyramidal cells that send their axons out of the hippocampus proper. Adult neurogenesis includes proliferation, differentiation, migration, the death of some newly formed cells and final integration of surviving cells into neural networks. We summarise these processes in adult mammalian hippocampal neurogenesis and discuss the roles of major signalling molecules that influence neurogenesis, including neurotransmitters and some hormones. The recent controversy raised concerning whether or not adult neurogenesis occurs in humans also is discussed.
Collapse
Affiliation(s)
- Louise C Abbott
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Fikru Nigussie
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| |
Collapse
|