1
|
Jaén-Carrillo D, García-Pinillos F, Plaza-Florido A, Riquelme-Sebastián L, Fernández-Navarrete I, Ruiz-Alias SA. Maximal Fat Oxidation Rate in Healthy Young Adults. Influence of Cardiorespiratory Fitness Level and Sex. Am J Hum Biol 2025; 37:e24212. [PMID: 39853816 DOI: 10.1002/ajhb.24212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/23/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
INTRODUCTION The maximal fat oxidation (MFO) and the exercise intensity that provokes MFO (FATMAX) are inversely associated with cardiometabolic risk factors in healthy young sedentary adults. However, how both cardiorespiratory fitness (CRF) level and sex influence MFO during exercise and the FATMAX is seldom analyzed. OBJECTIVES This study is aimed at determining the influence of CRF and sex on MFO. METHODS Twenty healthy young adults (i.e., 12 men and 8 women) completed a graded treadmill protocol to determine MFO, MFO relative to lean mass (MFOlean), FATMAX and maximum oxygen uptake (VO2max). RESULTS The k-means cluster analysis was used to divide the sample into two different groups for CRF level (56.54 ± 2.54 and 46.94 ± 3.07 mL/kg/min, p < 0.001, respectively). The high-level group revealed higher MFO relative to lean mass (MFOlean) (3.34 ± 1.44 and 2.73 ± 0.87 g · min-1 · kg, p = 0.001, respectively), and FATMAX in km · h-1 (FATMAXv) (7.67 ± 0.90 and 7.00 ± 0.97 km · h-1, p = 0.044, respectively) but not for MFO (0.67 ± 0.19 and 0.71 ± 0.20 p = 0.124, respectively). When divided for sex, men exhibited higher values for MFO (0.76 ± 0.21 vs. 0.69 ± 0.19 g · min-1, p = 0.039) and FATMAXv (7.67 ± 0.96 vs. 7.30 ± 0.98 km · h-1, p = 0.036), while women showed higher values for MFOlean (3.92 ± 1.35 vs. 2.40 ± 0.46 g · min-1 · kg, p = 0.015). CONCLUSION This study highlights the significant influence of CRF level and sex on MFO and FATMAX, offering valuable insights for tailoring exercise programs and optimizing health and performance interventions.
Collapse
Affiliation(s)
| | - Felipe García-Pinillos
- Department of Physical Education and Sport, University of Granada, Granada, Spain
- Sport and Health University Research Center (iMUDS), Granada, Spain
- Department of Physical Education, Sports and Recreation, Universidad de La Frontera, Temuco, Chile
| | - Abel Plaza-Florido
- Pediatric Exercise and Genomics Research Center, Department of Pediatrics, School of Medicine, University of California at Irvine, Irvine, California, USA
| | - Leonardo Riquelme-Sebastián
- Department of Physical Education and Sport, University of Granada, Granada, Spain
- Sport and Health University Research Center (iMUDS), Granada, Spain
| | - Iván Fernández-Navarrete
- Department of Physical Education and Sport, University of Granada, Granada, Spain
- Sport and Health University Research Center (iMUDS), Granada, Spain
| | - Santiago A Ruiz-Alias
- Department of Physical Education and Sport, University of Granada, Granada, Spain
- Sport and Health University Research Center (iMUDS), Granada, Spain
| |
Collapse
|
2
|
Ramírez-Gallegos I, Marina-Arroyo M, López-González ÁA, Vallejos D, Martínez-Almoyna-Rifá E, Tárraga López PJ, Ramírez-Manent JI. Associations Between Metabolic Age, Sociodemographic Variables, and Lifestyle Factors in Spanish Workers. Nutrients 2024; 16:4207. [PMID: 39683600 DOI: 10.3390/nu16234207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Metabolic age is defined as an estimation of a person's age based on their basal metabolic rate (BMR) and other physiological health indicators. Unlike chronological age, which simply measures the number of years lived since birth, metabolic age is based on various health and fitness markers that estimate the body's "true" biological age and can be assessed using various methodologies, including bioimpedance. The aim of this study was to evaluate how age, sex, social class, smoking habits, physical activity, and adherence to the Mediterranean diet influence metabolic age. METHODS A cross-sectional, descriptive study was conducted on 8590 Spanish workers in the Balearic Islands. A series of sociodemographic variables and health-related habits were assessed, while metabolic age was measured using bioimpedance. A metabolic age exceeding chronological age by 12 years or more was considered high. A descriptive analysis of categorical variables was performed by calculating their frequency and distribution. By applying multivariate models, specifically multinomial logistic regression, we observe that all independent variables (sex, age, social class, physical activity, mediterranean diet, and smoking) show varying levels of association with the occurrence of high metabolic age values. Among these independent variables, those showing the highest degree of association, represented by odds ratios, are physical activity, adherence to the Mediterranean diet, and social class. In all cases, the observed differences demonstrate a high level of statistical significance (p < 0.001). RESULTS The factors with the greatest influence were physical inactivity, with an OR of 5.07; and low adherence to the Mediterranean diet, with an OR of 2.8; followed by social class, with an OR of 2.51. Metabolic age increased with chronological age and was higher in males, with an OR of 1.38. Smoking also had a negative impact on metabolic age, with an OR of 1.19. CONCLUSIONS Mediterranean diet is associated with a higher metabolic age. The most influential factors on metabolic age are physical activity and adherence to the Mediterranean diet, followed by the individual's socioeconomic class. Smoking also contributes to increased metabolic age, albeit to a lesser extent.
Collapse
Affiliation(s)
- Ignacio Ramírez-Gallegos
- ADEMA-Health Group University Institute of Health Sciences Research (IUNICS), 07009 Palma, Balearic Islands, Spain
| | - Marta Marina-Arroyo
- ADEMA-Health Group University Institute of Health Sciences Research (IUNICS), 07009 Palma, Balearic Islands, Spain
| | - Ángel Arturo López-González
- ADEMA-Health Group University Institute of Health Sciences Research (IUNICS), 07009 Palma, Balearic Islands, Spain
- Faculty of Dentistry, University School ADEMA, 07009 Palma, Balearic Islands, Spain
- Balearic Islands Institute of Health Research (IDISBA), Balearic Islands Health Research Institute Foundation, 07010 Palma, Balearic Islands, Spain
- Balearic Islands Health Service, 07010 Palma, Balearic Islands, Spain
| | - Daniela Vallejos
- ADEMA-Health Group University Institute of Health Sciences Research (IUNICS), 07009 Palma, Balearic Islands, Spain
| | - Emilio Martínez-Almoyna-Rifá
- ADEMA-Health Group University Institute of Health Sciences Research (IUNICS), 07009 Palma, Balearic Islands, Spain
| | - Pedro Juan Tárraga López
- Faculty of Medicine, University of Castilla la Mancha, 02008 Albacete, Castilla-La Mancha, Spain
- SESCAM (Servicio Salud Castilla La Mancha), 45071 Toledo, Castilla-La Mancha, Spain
| | - José Ignacio Ramírez-Manent
- ADEMA-Health Group University Institute of Health Sciences Research (IUNICS), 07009 Palma, Balearic Islands, Spain
- Balearic Islands Institute of Health Research (IDISBA), Balearic Islands Health Research Institute Foundation, 07010 Palma, Balearic Islands, Spain
- Balearic Islands Health Service, 07010 Palma, Balearic Islands, Spain
- Faculty of Medicine, University of the Balearic Islands, 07010 Palma, Balearic Islands, Spain
| |
Collapse
|
3
|
Panov AV, Mayorov VI, Dikalov SI. Role of Fatty Acids β-Oxidation in the Metabolic Interactions Between Organs. Int J Mol Sci 2024; 25:12740. [PMID: 39684455 DOI: 10.3390/ijms252312740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/19/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
In recent decades, several discoveries have been made that force us to reconsider old ideas about mitochondria and energy metabolism in the light of these discoveries. In this review, we discuss metabolic interaction between various organs, the metabolic significance of the primary substrates and their metabolic pathways, namely aerobic glycolysis, lactate shuttling, and fatty acids β-oxidation. We rely on the new ideas about the supramolecular structure of the mitochondrial respiratory chain (respirasome), the necessity of supporting substrates for fatty acids β-oxidation, and the reverse electron transfer via succinate dehydrogenase during β-oxidation. We conclude that ATP production during fatty acid β-oxidation has its upper limits and thus cannot support high energy demands alone. Meanwhile, β-oxidation creates conditions that significantly accelerate the cycle: glucose-aerobic glycolysis-lactate-gluconeogenesis-glucose. Therefore, glycolytic ATP production becomes an important energy source in high energy demand. In addition, lactate serves as a mitochondrial substrate after converting to pyruvate + H+ by the mitochondrial lactate dehydrogenase. All coupled metabolic pathways are irreversible, and the enzymes are organized into multienzyme structures.
Collapse
Affiliation(s)
- Alexander V Panov
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31201, USA
| | - Vladimir I Mayorov
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31201, USA
| | | |
Collapse
|
4
|
Fernández-Verdejo R, Gutiérrez-Pino J, Hayes-Ortiz T, Zbinden-Foncea H, Cabello-Verrugio C, Valero-Breton M, Tuñón-Suárez M, Vargas-Foitzick R, Galgani JE. Metabolic flexibility to lipid during exercise is not associated with metabolic health outcomes in individuals without obesity. Sci Rep 2024; 14:28642. [PMID: 39562632 PMCID: PMC11576753 DOI: 10.1038/s41598-024-79092-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
A low metabolic flexibility to lipid (MetF-lip) in skeletal muscle may promote ectopic lipid accumulation, thus inducing metabolic disturbances. We aimed to determine the association between MetF-lip in skeletal muscle and metabolic health outcomes in individuals without obesity. We also explored the association between MetF-lip and the inflammatory signaling pathway in skeletal muscle. This was a cross-sectional study in 17 individuals aged (median [IQR]) 55.4 [48.6, 58.5] years, with a BMI of 24.4 [22.6, 26.0] kg/m2. MetF-lip was assessed as the increase in relative lipid oxidation during a single exercise session (~ 50% VO2max, 2 hours), quantified as the drop in whole-body respiratory exchange ratio (ΔRER = RER at 2 hours - maximum RER attained). HOMA-IR, metabolic syndrome z-score, fat percentage, trunk-to-appendicular fat, and VO2max were included as metabolic health outcomes. The abundance of proteins of the inflammatory pathway was analyzed in resting muscle. Acute exercise progressively increased relative lipid oxidation (ΔRER = -0.04 [-0.08, -0.02]). MetF-lip was not associated with any metabolic health outcome but correlated inversely with p-p38Thr180/Tyr182 in muscle. A low MetF-lip in skeletal muscle does not seem a major determinant of metabolic disturbances but associates with a partial activation of the inflammatory signaling in individuals without obesity.
Collapse
Affiliation(s)
- Rodrigo Fernández-Verdejo
- Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Road, Baton Rouge, LA, USA.
- Centro de Fisiología del Ejercicio y Metabolismo, Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile.
| | - Juan Gutiérrez-Pino
- Centro de Fisiología del Ejercicio y Metabolismo, Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - Thomas Hayes-Ortiz
- Centro de Fisiología del Ejercicio y Metabolismo, Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - Hermann Zbinden-Foncea
- Centro de Fisiología del Ejercicio y Metabolismo, Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
- Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Madrid, España
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Mayalen Valero-Breton
- Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Madrid, España
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Mauro Tuñón-Suárez
- Centro de Fisiología del Ejercicio y Metabolismo, Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - Ronald Vargas-Foitzick
- Centro de Fisiología del Ejercicio y Metabolismo, Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - Jose E Galgani
- Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Road, Baton Rouge, LA, USA.
- Departamento de Nutrición y Dietética, Escuela de Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Departamento de Nutrición, Diabetes y Metabolismo, Facultad de Medicina, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O'Higgins 340, Santiago, Chile.
| |
Collapse
|
5
|
DiLeo MR, Hall RE, Vellers HL, Daniels CL, Levitt DE. Alcohol Alters Skeletal Muscle Bioenergetic Function: A Scoping Review. Int J Mol Sci 2024; 25:12280. [PMID: 39596345 PMCID: PMC11594450 DOI: 10.3390/ijms252212280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Bioenergetic pathways uniquely support sarcomere function which, in turn, helps to maintain functional skeletal muscle (SKM) mass. Emerging evidence supports alcohol (EtOH)-induced bioenergetic impairments in SKM and muscle precursor cells. We performed a scoping review to synthesize existing evidence regarding the effects of EtOH on SKM bioenergetics. Eligible articles from six databases were identified, and titles, abstracts, and full texts for potentially relevant articles were screened against inclusion criteria. Through the search, we identified 555 unique articles, and 21 met inclusion criteria. Three studies investigated EtOH effects on the adenosine triphosphate (ATP)-phosphocreatine (PCr) system, twelve investigated EtOH effects on glycolytic metabolism, and seventeen investigated EtOH effects on mitochondrial metabolism. Despite increased ATP-PCr system reliance, EtOH led to an overall decrease in bioenergetic function through decreased expression and activity of glycolytic and mitochondrial pathway components. However, effects varied depending on the EtOH dose and duration, model system, and sample type. The results detail the EtOH-induced shifts in energy metabolism, which may adversely affect sarcomere function and contribute to myopathy. These findings should be used to develop targeted interventions that improve SKM bioenergetic function, and thus sarcomere function, in people with Alcohol Use Disorder (AUD). Key areas in need of further investigation are also identified.
Collapse
Affiliation(s)
- Matthew R. DiLeo
- Metabolic Health and Muscle Physiology Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (M.R.D.); (R.E.H.); (C.L.D.)
| | - Rylea E. Hall
- Metabolic Health and Muscle Physiology Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (M.R.D.); (R.E.H.); (C.L.D.)
| | - Heather L. Vellers
- Mitochondrial Biology and Endurance Trainability Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA;
| | - Chelsea L. Daniels
- Metabolic Health and Muscle Physiology Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (M.R.D.); (R.E.H.); (C.L.D.)
| | - Danielle E. Levitt
- Metabolic Health and Muscle Physiology Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (M.R.D.); (R.E.H.); (C.L.D.)
| |
Collapse
|
6
|
Alcantara JMA, González-Acedo A, Amaro-Gahete FJ, Plaza-Florido A. Heart Rate and Its Variability Are Associated With Resting Metabolic Rate and Substrate Oxidation in Young Women but Not in Men. Am J Hum Biol 2024; 36:e24157. [PMID: 39300911 DOI: 10.1002/ajhb.24157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/20/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND This study aims to examine the relationship between resting vagal-related heart rate variability (HRV) parameters and heart rate (HR) with resting metabolic rate (RMR) and respiratory exchange ratio (RER) in young adults. METHODS A total of 74 young adults (22 ± 2 years old, 51 women) were included in this cross-sectional study. HRV was assessed using a HR monitor, whereas RMR and RER were determined by indirect calorimetry. RESULTS Linear regression analyses showed a positive association between HR and RER in women (standardized β = 0.384, p = 0.008), while negative associations were observed between vagal-related HRV parameters and RER in women (β ranged from -0.262 to -0.254, all p ≤ 0.042). No significant association was found between the abovementioned physiological parameters in men. CONCLUSION Here, we show that HR is positively associated with RER in young women but not in men, while vagal-related HRV parameters are inversely related to RMR, therefore suggesting a potential sexual dimorphism between cardiac rhythm and its relationship with markers of cardiometabolic health status. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT02365129.
Collapse
Affiliation(s)
- Juan M A Alcantara
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Department of Health Sciences, Institute for Innovation & Sustainable Food Chain Development, Public University of Navarre, Pamplona, Spain
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Anabel González-Acedo
- Department of Nursing, Faculty of Health Sciences, Biomedical Group (BIO277), University of Granada, Granada, Spain
| | - Francisco J Amaro-Gahete
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Biosanitaria, Ibs.Granada, Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Abel Plaza-Florido
- Pediatric Exercise and Genomics Research Center, Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, California, USA
| |
Collapse
|
7
|
Aubin A, Hornero-Ramirez H, Ranaivo H, Simon C, Van Den Berghe L, Favier NF, Dussous I, Roger L, Laville M, Béra-Maillet C, Doré J, Caussy C, Nazare JA. Assessing metabolic flexibility response to a multifibre diet: a randomised-controlled trial. J Hum Nutr Diet 2024; 37:1186-1196. [PMID: 39138876 DOI: 10.1111/jhn.13350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/30/2024] [Indexed: 08/15/2024]
Abstract
INTRODUCTION Metabolic flexibility (MetF), defined as the ability to switch between fat and glucose oxidation, is increasingly recognised as a critical marker for assessing responses to dietary interventions. Previously, we showed that the consumption of multifibre bread improved insulin sensitivity and reduced low-density lipoprotein cholesterol (LDLc) levels in overweight and obese individuals. As a secondary objective, we aimed to explore whether our intervention could also improve MetF. METHODS In this study, 39 subjects at cardiometabolic risk participated in a double-blind, randomised, crossover trial lasting 8 weeks, repeated twice. During each phase, participants consumed either 150 g of standard bread daily or bread enriched with a mixture of seven dietary fibres. MetF response was assessed using a mixed-meal tolerance test (MMTT), analysing changes in respiratory quotient (∆RQ) measured using indirect calorimetry. RESULTS Although there were no significant differences in ∆RQ changes induced by dietary fibre between the two diets, these changes were positively correlated with postprandial triglyceride excursion (∆TG) at baseline. Subgroup analysis of baseline fasting and postprandial plasma metabolites was conducted to characterise MetF responders. These responders exhibited higher baseline fasting LDLc levels and greater post-MMTT ∆TG. CONCLUSION In conclusion, although dietary fibres did not directly impact MetF in this study, our findings highlight potential determinants of MetF response, warranting further investigation in dedicated future interventions.
Collapse
Affiliation(s)
- Adrien Aubin
- Centre de Recherche En Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Cens, Fcrin/force Network, Pierre Bénite, France
- Univ-Lyon, CarMeN Laboratory, Inserm, Inrae, Université Claude Bernard Lyon-1, Oullins, France
- Département Endocrinologie, Diabète et Nutrition, Hospices Civils de Lyon, Hôpital Lyon Sud, Pierre-Bénite, France
| | - Hugo Hornero-Ramirez
- Centre de Recherche En Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Cens, Fcrin/force Network, Pierre Bénite, France
- Univ-Lyon, CarMeN Laboratory, Inserm, Inrae, Université Claude Bernard Lyon-1, Oullins, France
| | - Harimalala Ranaivo
- Centre de Recherche En Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Cens, Fcrin/force Network, Pierre Bénite, France
- Univ-Lyon, CarMeN Laboratory, Inserm, Inrae, Université Claude Bernard Lyon-1, Oullins, France
| | - Chantal Simon
- Centre de Recherche En Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Cens, Fcrin/force Network, Pierre Bénite, France
- Univ-Lyon, CarMeN Laboratory, Inserm, Inrae, Université Claude Bernard Lyon-1, Oullins, France
| | - Laurie Van Den Berghe
- Centre de Recherche En Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Cens, Fcrin/force Network, Pierre Bénite, France
- Univ-Lyon, CarMeN Laboratory, Inserm, Inrae, Université Claude Bernard Lyon-1, Oullins, France
| | - Nathalie Feugier Favier
- Centre de Recherche En Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Cens, Fcrin/force Network, Pierre Bénite, France
- Univ-Lyon, CarMeN Laboratory, Inserm, Inrae, Université Claude Bernard Lyon-1, Oullins, France
| | | | | | - Martine Laville
- Centre de Recherche En Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Cens, Fcrin/force Network, Pierre Bénite, France
- Univ-Lyon, CarMeN Laboratory, Inserm, Inrae, Université Claude Bernard Lyon-1, Oullins, France
| | - Christel Béra-Maillet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Joël Doré
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Université, Paris-Saclay, INRAE, MetaGenoPolis, Jouy-en-Josas, France
| | - Cyrielle Caussy
- Centre de Recherche En Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Cens, Fcrin/force Network, Pierre Bénite, France
- Univ-Lyon, CarMeN Laboratory, Inserm, Inrae, Université Claude Bernard Lyon-1, Oullins, France
- Département Endocrinologie, Diabète et Nutrition, Hospices Civils de Lyon, Hôpital Lyon Sud, Pierre-Bénite, France
| | - Julie-Anne Nazare
- Centre de Recherche En Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Cens, Fcrin/force Network, Pierre Bénite, France
- Univ-Lyon, CarMeN Laboratory, Inserm, Inrae, Université Claude Bernard Lyon-1, Oullins, France
| |
Collapse
|
8
|
Goldman DM, Warbeck CB, Waterfall TJ, Sud A, Quarshie M, Craddock JC. Plant-based and Early Time-restricted Eating for Prevention and Treatment of Type 2 Diabetes in Adults: A Narrative Review. Can J Diabetes 2024; 48:341-347. [PMID: 38513822 DOI: 10.1016/j.jcjd.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/21/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
Type 2 diabetes (T2D) is a significant public health challenge for which effective lifestyle interventions are needed. A growing body of evidence supports the use of both plant-based eating patterns and early time-restricted eating (eTRE) for the prevention and treatment of T2D, but research has not yet explored the potential of these dietary strategies in combination. In this narrative review, we assessed the evidence by which plant-based diets, in conjunction with eTRE, could support T2D care. The electronic databases MEDLINE and the Web of Science were searched for relevant articles published throughout the last decade. Observational research has shown that healthy plant-based eating patterns and eTRE are associated with reductions in T2D risk. Interventional trials demonstrated that plant-based diets promote improvements in glycated hemoglobin, insulin resistance, glycemic management, and cardiometabolic risk factors. These changes may be mediated, in part, by reductions in oxidative stress, dietary acid load, and hepatocellular and intramyocellular lipids. The eTRE strategies were also shown to improve insulin resistance and glycemic management, and mechanisms of action included enhanced regulation of circadian rhythm and increased metabolic flexibility. Integrating these dietary strategies may produce additive benefits, mediated by reduced visceral adiposity and beneficial shifts in gut microbiota composition. However, potential barriers to concurrent implementation of these interventions may exist, including social challenges, scheduling constraints, and tolerance. Prospective trials are needed to examine their acceptability and clinical effects.
Collapse
Affiliation(s)
| | - Cassandra B Warbeck
- Department of Family Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | - Adam Sud
- Plant-Based for Positive Change, Austin, Texas, United States
| | | | - Joel C Craddock
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
9
|
Walker S, Sahinaho UM, Vekki S, Sulonen M, Laukkanen JA, Sipilä S, Peltonen H, Laakkonen E, Lehti M. Two-week step-reduction has limited negative effects on physical function and metabolic health in older adults. Eur J Appl Physiol 2024; 124:2019-2033. [PMID: 38383794 PMCID: PMC11199225 DOI: 10.1007/s00421-024-05426-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/21/2024] [Indexed: 02/23/2024]
Abstract
PURPOSE This study determined the effects of a 2-week step-reduction period followed by 4-week exercise rehabilitation on physical function, body composition, and metabolic health in 70-80-year-olds asymptomatic for injury/illness. METHODS A parallel-group randomized controlled trial (ENDURE-study, NCT04997447) was used, where 66 older adults (79% female) were randomized to either intervention or control group. The intervention group reduced daily steps to < 2000, monitored by accelerometer, for two weeks (Period I) and then step-reduction requirement was removed with an additional exercise rehabilitation 4 times per week for 4 weeks (Period II). The control group continued their habitual physical activity throughout with no additional exercise intervention. Laboratory tests were performed at baseline, after Period I and Period II. The primary outcome measure was leg lean mass (LLM). Secondary outcomes included total lean and fat mass, blood glucose and insulin concentration, LDL cholesterol and HDL cholesterol concentration, maximal isometric leg press force (MVC), and chair rise and stair climb performance. RESULTS LLM remained unchanged in both groups and no changes occurred in physical function nor body composition in the intervention group in Period I. HDL cholesterol concentration reduced after Period I (from 1.62 ± 0.37 to 1.55 ± 0.36 mmol·L-1, P = 0.017) and returned to baseline after Period II (1.66 ± 0.38 mmol·L-1) in the intervention group (Time × Group interaction: P = 0.065). MVC improved after Period II only (Time × Group interaction: P = 0.009, Δ% = 15%, P < 0.001). CONCLUSION Short-term step-reduction in healthy older adults may not be as detrimental to health or physical function as currently thought.
Collapse
Affiliation(s)
- Simon Walker
- Faculty of Sport and Health Sciences, University of Jyväskylä, Room VIV225, 40014-FI, Jyväskylä, Finland.
- NeuroMuscular Research Center, University of Jyväskylä, Jyväskylä, Finland.
| | - Ulla-Maria Sahinaho
- Faculty of Sport and Health Sciences, University of Jyväskylä, Room VIV225, 40014-FI, Jyväskylä, Finland
| | - Sakari Vekki
- Faculty of Sport and Health Sciences, University of Jyväskylä, Room VIV225, 40014-FI, Jyväskylä, Finland
| | - Mari Sulonen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Room VIV225, 40014-FI, Jyväskylä, Finland
| | - Jari A Laukkanen
- Institute of Clinical Medicine, Department of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Wellbeing Services County of Central Finland, Jyväskylä, Finland
| | - Sarianna Sipilä
- Faculty of Sport and Health Sciences, University of Jyväskylä, Room VIV225, 40014-FI, Jyväskylä, Finland
- Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Heikki Peltonen
- JAMK University of Applied Science, The School of Business, Sport Business, Jyväskylä, Finland
| | - Eija Laakkonen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Room VIV225, 40014-FI, Jyväskylä, Finland
- Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Maarit Lehti
- Faculty of Sport and Health Sciences, University of Jyväskylä, Room VIV225, 40014-FI, Jyväskylä, Finland
| |
Collapse
|
10
|
Hu YX, Qiu SL, Shang JJ, Wang Z, Lai XL. Pharmacological Effects of Botanical Drugs on Myocardial Metabolism in Chronic Heart Failure. Chin J Integr Med 2024; 30:458-467. [PMID: 37750985 DOI: 10.1007/s11655-023-3649-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 09/27/2023]
Abstract
Although there have been significant advances in the treatment of heart failure in recent years, chronic heart failure remains a leading cause of cardiovascular disease-related death. Many studies have found that targeted cardiac metabolic remodeling has good potential for the treatment of heart failure. However, most of the drugs that increase cardiac energy are still in the theoretical or testing stage. Some research has found that botanical drugs not only increase myocardial energy metabolism through multiple targets but also have the potential to restore the balance of myocardial substrate metabolism. In this review, we summarized the mechanisms by which botanical drugs (the active ingredients/formulas/Chinese patent medicines) improve substrate utilization and promote myocardial energy metabolism by activating AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptors (PPARs) and other related targets. At the same time, some potential protective effects of botanical drugs on myocardium, such as alleviating oxidative stress and dysbiosis signaling, caused by metabolic disorders, were briefly discussed.
Collapse
Affiliation(s)
- Yu-Xuan Hu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Sheng-Lei Qiu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Ju-Ju Shang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Zi Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Xiao-Lei Lai
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| |
Collapse
|
11
|
Yeshurun S, Cramer T, Souroujon D, Mor M. The Association of Macronutrient Consumption and BMI to Exhaled Carbon Dioxide in Lumen Users: Retrospective Real-World Study. JMIR Mhealth Uhealth 2024; 12:e56083. [PMID: 38439744 PMCID: PMC11019421 DOI: 10.2196/56083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Metabolic flexibility is the ability of the body to rapidly switch between fuel sources based on their accessibility and metabolic requirements. High metabolic flexibility is associated with improved health outcomes and a reduced risk of several metabolic disorders. Metabolic flexibility can be improved through lifestyle changes, such as increasing physical activity and eating a balanced macronutrient diet. Lumen is a small handheld device that measures metabolic fuel usage through exhaled carbon dioxide (CO2), which allows individuals to monitor their metabolic flexibility and make lifestyle changes to enhance it. OBJECTIVE This retrospective study aims to examine the postprandial CO2 response to meals logged by Lumen users and its relationship with macronutrient intake and BMI. METHODS We analyzed deidentified data from 2607 Lumen users who logged their meals and measured their exhaled CO2 before and after those meals between May 1, 2023, and October 18, 2023. A linear mixed model was fitted to test the association between macronutrient consumption, BMI, age, and gender to the postprandial CO2 response, followed by a 2-way ANOVA. RESULTS The model demonstrated significant associations (P<.001) between CO2 response after meals and both BMI and carbohydrate intake (BMI: β=-0.112, 95% CI -0.156 to -0.069; carbohydrates: β=0.046, 95% CI 0.034-0.058). In addition, a 2-way ANOVA revealed that higher carbohydrate intake resulted in a higher CO2 response compared to low carbohydrate intake (F2,2569=24.23; P<.001), and users with high BMI showed modest responses to meals compared with low BMI (F2,2569=5.88; P=.003). CONCLUSIONS In this study, we show that Lumen's CO2 response is influenced both by macronutrient consumption and BMI. The results of this study highlight a distinct pattern of reduced metabolic flexibility in users with obesity, indicating the value of Lumen for assessing postprandial metabolic flexibility.
Collapse
Affiliation(s)
| | | | - Daniel Souroujon
- Metaflow Ltd, Tel-Aviv, Israel
- School of Public Health, Tel Aviv University, Tel-Aviv, Israel
| | | |
Collapse
|
12
|
Garthwaite T, Sjöros T, Laine S, Koivumäki M, Vähä-Ypyä H, Verho T, Norha J, Kallio P, Saarenhovi M, Löyttyniemi E, Sievänen H, Houttu N, Laitinen K, Kalliokoski KK, Vasankari T, Knuuti J, Heinonen I. Sedentary time associates detrimentally and physical activity beneficially with metabolic flexibility in adults with metabolic syndrome. Am J Physiol Endocrinol Metab 2024; 326:E503-E514. [PMID: 38416072 PMCID: PMC11194051 DOI: 10.1152/ajpendo.00338.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/13/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
Metabolic flexibility (MetFlex) describes the ability to respond and adapt to changes in metabolic demand and substrate availability. The relationship between physical (in)activity and MetFlex is unclear. This study aimed to determine whether sedentary time, physical activity (PA), and cardiorespiratory fitness associate with MetFlex. Sedentary time, standing, and PA were measured with accelerometers for 4 weeks in 64 sedentary adults with metabolic syndrome [37 women, 27 men; 58.3 (SD 6.8) years]. Fitness (V̇o2max; mL·kg-1·min-1) was measured with graded maximal cycle ergometry. MetFlex was assessed with indirect calorimetry as the change in respiratory exchange ratio (ΔRER) from fasting to insulin stimulation with hyperinsulinemic-euglycemic clamp and from low-intensity to maximal exercise. Carbohydrate (CHOox) and fat oxidation (FATox) were calculated from respiratory gases. High sedentary time associated with higher fasting RER [β = 0.35 (95% confidence interval: 0.04, 0.67)], impaired insulin-stimulated MetFlex (ΔRER) [β=-0.41 (-0.72, -0.09)], and lower fasting FATox [β=-0.36 (-0.67, -0.04)]. Standing associated with lower fasting RER [β=-0.32 (-0.62, -0.02)]. Higher standing time and steps/day associated with higher fasting FATox [β = 0.31 (0.01, 0.61), and β = 0.26 (0.00, 0.53)]. Light-intensity and total PA associated with better insulin-stimulated MetFlex [β = 0.33 (0.05, 0.61)], and β = 0.33 (0.05, 0.60)]. Higher V̇o2max associated with higher CHOox during maximal exercise [β = 0.81 (0.62, 1.00)], as well as during insulin stimulation [β = 0.43 (0.13, 0.73)]. P values are less than 0.05 for all associations. Sedentary time and PA associate with MetFlex. Reducing sitting and increasing PA of even light intensity might aid in the prevention of metabolic diseases in risk populations through their potential effects on energy metabolism.NEW & NOTEWORTHY High accelerometer-assessed sedentary time associates with metabolic inflexibility measured during hyperinsulinemic-euglycemic clamp in adults with metabolic syndrome, and more light-intensity and total physical activity associate with more metabolic flexibility. Physical activity behaviors may thus play an important role in the regulation of fuel metabolism. This highlights the potential of reduced sedentary time and increased physical activity of any intensity to induce metabolic health benefits and help in disease prevention in risk populations.
Collapse
Affiliation(s)
- Taru Garthwaite
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
| | - Tanja Sjöros
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
| | - Saara Laine
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
| | - Mikko Koivumäki
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
| | - Henri Vähä-Ypyä
- The UKK Institute for Health Promotion Research, Tampere, Finland
| | - Tiina Verho
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
| | - Jooa Norha
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
| | - Petri Kallio
- Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland
- Paavo Nurmi Centre and Unit for Health and Physical Activity, University of Turku, Turku, Finland
| | - Maria Saarenhovi
- Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Eliisa Löyttyniemi
- Department of Biostatistics, University of Turku and Turku University Hospital, Turku, Finland
| | - Harri Sievänen
- The UKK Institute for Health Promotion Research, Tampere, Finland
| | - Noora Houttu
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Kirsi Laitinen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Kari K Kalliokoski
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
| | - Tommi Vasankari
- The UKK Institute for Health Promotion Research, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Juhani Knuuti
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
| | - Ilkka Heinonen
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
| |
Collapse
|
13
|
Alcantara JMA, Galgani JE. Association of metabolic flexibility indexes after an oral glucose tolerance test with cardiometabolic risk factors. Eur J Clin Nutr 2024; 78:180-186. [PMID: 38110728 DOI: 10.1038/s41430-023-01373-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND & AIMS Metabolic flexibility (MetF) is considered a metabolic health biomarker, as excess body weight is associated with lower MetF. We aimed to identify whether MetF indexes were associated with cardiometabolic risk factors before and after adjustment for body size-related factors (body weight, fat-free mass, and resting metabolic rate). METHODS We studied 51 participants (55% women; 33.6 ± 8.7 years; 26.3 ± 3.8 kg/m²) who consumed a 75-g glucose load. We measured gas exchange before (fasting) and for 3 h after glucose ingestion. MetF indexes were assessed, including the change after each hour and the 3-hour incremental area under the curve (iAUC) in respiratory exchange ratio (RER). These indexes were then related to cardiometabolic risk factors before and after adjusting for body size-related factors. RESULTS MetF indexes correlated with each other (r ≥ 0.51; P < 0.001) and related to body weight (adjusted R2 ≥ 0.09; P < 0.03). A similar pattern was noted for fat-free mass and resting metabolic rate. MetF, regardless of the index, was not related to cardiometabolic risk factors except to BMI and high-density lipoprotein-cholesterol (HDL-C). The association between BMI and MetF disappeared after adjusting for body size-related factors. Similar adjustments did not modify the association between HDL-C and MetF, especially when approached by the change in RER after the first hour (adjusted R2 = 0.20-0.22; all P < 0.02). CONCLUSIONS Inter-individual body size differences fully accounted for the associations between BMI and MetF. However, variability in body size-related factors appeared less relevant in affecting the associations of other cardiometabolic risk factors with MetF.
Collapse
Affiliation(s)
- J M A Alcantara
- Institute for Innovation & Sustainable Food Chain Development, Department of Health Sciences, Public University of Navarre, Campus Arrosadía, s/n, 31006, Pamplona, Spain.
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain.
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
| | - J E Galgani
- Department of Health Sciences, Nutrition and Dietetics Career, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Department of Nutrition, Diabetes and Metabolism, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Pennington Biomedical Research Center, Baton Rouge, LA, USA.
| |
Collapse
|
14
|
Diaz-Vegas A, Madsen S, Cooke KC, Carroll L, Khor JXY, Turner N, Lim XY, Astore MA, Morris JC, Don AS, Garfield A, Zarini S, Zemski Berry KA, Ryan AP, Bergman BC, Brozinick JT, James DE, Burchfield JG. Mitochondrial electron transport chain, ceramide, and coenzyme Q are linked in a pathway that drives insulin resistance in skeletal muscle. eLife 2023; 12:RP87340. [PMID: 38149844 PMCID: PMC10752590 DOI: 10.7554/elife.87340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
Insulin resistance (IR) is a complex metabolic disorder that underlies several human diseases, including type 2 diabetes and cardiovascular disease. Despite extensive research, the precise mechanisms underlying IR development remain poorly understood. Previously we showed that deficiency of coenzyme Q (CoQ) is necessary and sufficient for IR in adipocytes and skeletal muscle (Fazakerley et al., 2018). Here, we provide new insights into the mechanistic connections between cellular alterations associated with IR, including increased ceramides, CoQ deficiency, mitochondrial dysfunction, and oxidative stress. We demonstrate that elevated levels of ceramide in the mitochondria of skeletal muscle cells result in CoQ depletion and loss of mitochondrial respiratory chain components, leading to mitochondrial dysfunction and IR. Further, decreasing mitochondrial ceramide levels in vitro and in animal models (mice, C57BL/6J) (under chow and high-fat diet) increased CoQ levels and was protective against IR. CoQ supplementation also rescued ceramide-associated IR. Examination of the mitochondrial proteome from human muscle biopsies revealed a strong correlation between the respirasome system and mitochondrial ceramide as key determinants of insulin sensitivity. Our findings highlight the mitochondrial ceramide-CoQ-respiratory chain nexus as a potential foundation of an IR pathway that may also play a critical role in other conditions associated with ceramide accumulation and mitochondrial dysfunction, such as heart failure, cancer, and aging. These insights may have important clinical implications for the development of novel therapeutic strategies for the treatment of IR and related metabolic disorders.
Collapse
Affiliation(s)
- Alexis Diaz-Vegas
- Charles Perkins Centre, School of life and Environmental Sciences, University of SydneySydneyAustralia
| | - Søren Madsen
- Charles Perkins Centre, School of life and Environmental Sciences, University of SydneySydneyAustralia
| | - Kristen C Cooke
- Charles Perkins Centre, School of life and Environmental Sciences, University of SydneySydneyAustralia
| | - Luke Carroll
- Charles Perkins Centre, School of life and Environmental Sciences, University of SydneySydneyAustralia
| | - Jasmine XY Khor
- Charles Perkins Centre, School of life and Environmental Sciences, University of SydneySydneyAustralia
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, University of SydneySydneyAustralia
| | - Nigel Turner
- Cellular Bioenergetics Laboratory, Victor Chang Cardiac Research InstituteSydneyAustralia
| | - Xin Y Lim
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, University of SydneySydneyAustralia
| | - Miro A Astore
- Center for Computational Biology and Center for Computational Mathematics, Flatiron InstituteNew YorkUnited States
| | | | - Anthony S Don
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, University of SydneySydneyAustralia
| | - Amanda Garfield
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Simona Zarini
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Karin A Zemski Berry
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Andrew P Ryan
- Lilly Research Laboratories, Division of Eli Lilly and CompanyIndianapolisUnited States
| | - Bryan C Bergman
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Joseph T Brozinick
- Lilly Research Laboratories, Division of Eli Lilly and CompanyIndianapolisUnited States
| | - David E James
- Charles Perkins Centre, School of life and Environmental Sciences, University of SydneySydneyAustralia
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, University of SydneySydneyAustralia
| | - James G Burchfield
- Charles Perkins Centre, School of life and Environmental Sciences, University of SydneySydneyAustralia
| |
Collapse
|
15
|
Fernández-Verdejo R, Galgani JE. Metabolic elasticity - a new trait associated with health? Nat Rev Endocrinol 2023; 19:689-690. [PMID: 37833385 DOI: 10.1038/s41574-023-00914-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Affiliation(s)
- Rodrigo Fernández-Verdejo
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
- Laboratorio de Fisiología del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - Jose E Galgani
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA.
- Carrera de Nutrición y Dietética, Departamento de Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Departamento de Nutrición, Diabetes y Metabolismo, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
16
|
Alcantara JMA, Jurado-Fasoli L, Dote-Montero M, Merchan-Ramirez E, Amaro-Gahete FJ, Labayen I, Ruiz JR, Sanchez-Delgado G. Impact of methods for data selection on the day-to-day reproducibility of resting metabolic rate assessed with four different metabolic carts. Nutr Metab Cardiovasc Dis 2023; 33:2179-2188. [PMID: 37586924 DOI: 10.1016/j.numecd.2023.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/01/2023] [Accepted: 07/13/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND AND AIMS Accomplishing a high day-to-day reproducibility is important to detect changes in resting metabolic rate (RMR) and respiratory exchange ratio (RER) that may be produced after an intervention or for monitoring patients' metabolism over time. We aimed to analyze: (i) the influence of different methods for selecting indirect calorimetry data on RMR and RER assessments; and, (ii) whether these methods influence RMR and RER day-to-day reproducibility. METHODS AND RESULTS Twenty-eight young adults accomplished 4 consecutive RMR assessments (30-min each), using the Q-NRG (Cosmed, Rome, Italy), the Vyntus CPX (Jaeger-CareFusion, Höchberg, Germany), the Omnical (Maastricht Instruments, Maastricht, The Netherlands), and the Ultima CardiO2 (Medgraphics Corporation, St. Paul, Minnesota, USA) carts, on 2 consecutive mornings. Three types of methods were used: (i) short (periods of 5 consecutive minutes; 6-10, 11-15, 16-20, 21-25, and 26-30 min) and long time intervals (TI) methods (6-25 and 6-30 min); (ii) steady state (SSt methods); and, (iii) methods filtering the data by thresholding from the mean RMR (filtering methods). RMR and RER were similar when using different methods (except RMR for the Vyntus and RER for the Q-NRG). Conversely, using different methods impacted RMR (all P ≤ 0.037) and/or RER (P ≤ 0.009) day-to-day reproducibility in all carts. The 6-25 min and the 6-30 min long TI methods yielded more reproducible measurements for all metabolic carts. CONCLUSION The 6-25 min and 6-30 min should be the preferred methods for selecting data, as they result in the highest day-to-day reproducibility of RMR and RER assessments.
Collapse
Affiliation(s)
- J M A Alcantara
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, 18011 Granada, Spain; Institute for Innovation & Sustainable Food Chain Development, Department of Health Sciences, Public University of Navarra, Campus Arrosadía, s/n, 31006 Pamplona, Spain; Navarra Institute for Health Research, IdiSNA, Pamplona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - L Jurado-Fasoli
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, 18011 Granada, Spain
| | - M Dote-Montero
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, 18011 Granada, Spain
| | - E Merchan-Ramirez
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, 18011 Granada, Spain
| | - F J Amaro-Gahete
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, 18011 Granada, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Investigación Biosanitaria, Ibs.Granada, Granada, Spain
| | - I Labayen
- Institute for Innovation & Sustainable Food Chain Development, Department of Health Sciences, Public University of Navarra, Campus Arrosadía, s/n, 31006 Pamplona, Spain; Navarra Institute for Health Research, IdiSNA, Pamplona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - J R Ruiz
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, 18011 Granada, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Investigación Biosanitaria, Ibs.Granada, Granada, Spain.
| | - G Sanchez-Delgado
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, 18011 Granada, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain; Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; Department of Medicine, Division of Endocrinology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, 12e Avenue N Porte 6, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
17
|
Boulé NG, Rees JL. Interaction of exercise and meal timing on blood glucose concentrations. Curr Opin Clin Nutr Metab Care 2023; 26:353-357. [PMID: 37097996 DOI: 10.1097/mco.0000000000000936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
PURPOSE OF REVIEW Exercise and diet are among the most studied behaviors that can affect blood glucose concentrations. Despite multiple studies examining these interventions in different populations and contexts, inconsistencies across studies have led to variable expectations. The purpose of this review is to more specifically examine how the timing of when exercise is performed in relation to meals can modify changes in glucose concentrations or insulin sensitivity. When possible, studies in type 2 diabetes are emphasized, but recent research in type 1 diabetes, obesity, and athletes is also considered. RECENT FINDINGS The effect of a single bout of exercise performed after an overnight fast is often comparable to that of postprandial exercise on 24 h mean glucose concentrations. However, there is recent evidence to suggest that in some situations, but not all, longer term metabolic adaptations can be more favorable when exercise is regularly performed in the fasted state. SUMMARY Exercise after an overnight fast can have different effects on glucose metabolism compared with postprandial exercise. The shorter term and longer term changes following fasting exercise can be relevant to those who are seeking greater glucoregulatory benefit from their exercise sessions, such as people with diabetes.
Collapse
Affiliation(s)
- Normand G Boulé
- Faculty of Kinesiology, Sport, and Recreation, & Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
18
|
Castro-Sepulveda M, Fernández-Verdejo R, Zbinden-Foncea H, Rieusset J. Mitochondria-SR interaction and mitochondrial fusion/fission in the regulation of skeletal muscle metabolism. Metabolism 2023; 144:155578. [PMID: 37164310 DOI: 10.1016/j.metabol.2023.155578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/20/2023] [Accepted: 04/22/2023] [Indexed: 05/12/2023]
Abstract
Mitochondria-endoplasmic/sarcoplasmic reticulum (ER/SR) interaction and mitochondrial fusion/fission are critical processes that influence substrate oxidation. This narrative review summarizes the evidence on the effects of substrate availability on mitochondrial-SR interaction and mitochondria fusion/fission dynamics to modulate substrate oxidation in human skeletal muscle. Evidence shows that an increase in mitochondria-SR interaction and mitochondrial fusion are associated with elevated fatty acid oxidation. In contrast, a decrease in mitochondria-SR interaction and an increase in mitochondrial fission are associated with an elevated glycolytic activity. Based on the evidence reviewed, we postulate two hypotheses for the link between mitochondrial dynamics and insulin resistance in human skeletal muscle. First, glucose and fatty acid availability modifies mitochondria-SR interaction and mitochondrial fusion/fission to help the cell to adapt substrate oxidation appropriately. Individuals with an impaired response to these substrate challenges will accumulate lipid species and develop insulin resistance in skeletal muscle. Second, a chronically elevated substrate availability (e.g. overfeeding) increases mitochondrial production of reactive oxygen species and induced mitochondrial fission. This decreases fatty acid oxidation, thus leading to the accumulation of lipid species and insulin resistance in skeletal muscle. Altogether, we propose mitochondrial dynamics as a potential target for disturbances associated with low fatty acid oxidation.
Collapse
Affiliation(s)
- Mauricio Castro-Sepulveda
- Laboratorio de Fisiología del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiologia, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile.
| | - Rodrigo Fernández-Verdejo
- Laboratorio de Fisiología del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiologia, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - Hermann Zbinden-Foncea
- Laboratorio de Fisiología del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiologia, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile; Centro de Salud Deportiva, Clinica Santa Maria, Santiago, Chile
| | - Jennifer Rieusset
- CarMeN Laboratory, UMR INSERM U1060/INRA U1397, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| |
Collapse
|
19
|
Fumonisin B 1 disrupts mitochondrial function in oxidatively poised HepG2 liver cells by disrupting oxidative phosphorylation complexes and potential participation of lincRNA-p21. Toxicon 2023; 225:107057. [PMID: 36796496 DOI: 10.1016/j.toxicon.2023.107057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Fumonisin B1 (FB1) is etiologically linked to cancer, yet the underlying mechanisms remain largely unclear. It is also not known if mitochondrial dysfunction is involved as a contributor to FB1-induced metabolic toxicity. This study investigated the effects of FB1 on mitochondrial toxicity and its implications in cultured human liver (HepG2) cells. HepG2 cells poised to undergo oxidative and glycolytic metabolism were exposed to FB1 for 6 h. We determined mitochondrial toxicity, reducing equivalent levels and mitochondrial sirtuin activity using luminometric, fluorometric and spectrophotometric methods. Molecular pathways involved were determined using western blots and PCR. Our data confirm that FB1 is a mitochondrial toxin capable of disrupting the stability of complexes I and V of the mitochondrial electron transport and decreasing the NAD:NADH ratio in galactose supplemented HepG2 cells. We further showed that in cells treated with FB1, p53 acts as a metabolic stress-responsive transcription factor that induces the expression of lincRNA-p21, which plays a crucial role in stabilising HIF-1α. The findings provide novel insights into the impact of this mycotoxin in the dysregulation of energy metabolism and may contribute to the growing body of evidence of its tumor promoting effects.
Collapse
|
20
|
Chávez-Guevara IA. Assessment of metabolic flexibility by measuring maximal fat oxidation during submaximal intensity exercise: ¿Can we improve the analytical procedures? SPORTS MEDICINE AND HEALTH SCIENCE 2023. [DOI: 10.1016/j.smhs.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
|
21
|
Bourdier P, Simon C, Bessesen DH, Blanc S, Bergouignan A. The role of physical activity in the regulation of body weight: The overlooked contribution of light physical activity and sedentary behaviors. Obes Rev 2023; 24:e13528. [PMID: 36394185 PMCID: PMC10910694 DOI: 10.1111/obr.13528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/31/2022] [Accepted: 10/23/2022] [Indexed: 11/18/2022]
Abstract
The role of physical activity (PA) in the regulation of body weight is still a major topic of debate. This may be because studies have essentially focused on the effects of moderate/vigorous PA (MVPA) on body weight while overlooking the other components of PA, namely, light-intensity PA (LPA, daily life activities) and sedentary behaviors (SB, too much sitting). In this review, we will (i) describe the history of changes in PA behaviors that occurred with modernization; (ii) review data from cross-sectional and longitudinal studies that examined the associations between PA, SB, and measures of obesity; (iii) review interventional studies that investigated the effects of changes in PA and SB on body weight and adiposity; and (iv) discuss experimental studies that addressed potential biological mechanisms underlying the effects of PA and SB on weight regulation. Overall recent findings support the importance of considering all components of PA to better understand the regulation of energy balance and suggest an important role for LPA and SB in addition to MVPA on body weight regulation. Longitudinal large-scale rigorous studies are needed to advance our knowledge of the role of PA/SB in combating the obesity epidemic.
Collapse
Affiliation(s)
- Pierre Bourdier
- CNRS IPHC UMR 7178 Université de Strasbourg, Strasbourg, France
| | - Chantal Simon
- CarMen Laboratory, INSERM 1060, INRAE 1397, University of Lyon, Oullins, France
- Human Nutrition Research Centre of Rhône-Alpes, Hospices Civils de Lyon, Lyon, France
| | - Daniel H. Bessesen
- Anschutz Health and Wellness Center, Division of Endocrinology, University of Colorado, Aurora, Colorado, USA
| | - Stéphane Blanc
- CNRS IPHC UMR 7178 Université de Strasbourg, Strasbourg, France
| | - Audrey Bergouignan
- CNRS IPHC UMR 7178 Université de Strasbourg, Strasbourg, France
- Anschutz Health and Wellness Center, Division of Endocrinology, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
22
|
Huang W, Ruan W, Huo C, Lin Y, Wang T, Dai X, Zhai H, Ma J, Zhang J, Lu J, Zhuang J. The effect of 12 weeks of combined training on hepatic fat content and metabolic flexibility of individuals with non-alcoholic fatty liver disease: Protocol of an open-label, single-center randomized control trial. Front Nutr 2023; 9:1065188. [PMID: 36726820 PMCID: PMC9884837 DOI: 10.3389/fnut.2022.1065188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
Introduction Metabolic flexibility (MetF) is the capacity of an organism to oxidate substrate according to substrate availability or demand. The mismatch of substrate availability and oxidation may cause ectopic fat accumulation in the muscle and the liver. The objectives of the study are to examine the effect of 12 weeks of combined exercise on hepatic fat reduction and investigate metabolites related to MetF before and after the high-fat diet between individuals with NAFLD and healthy control with an active lifestyle. Methods This study is an open-label, single-center trial randomized controlled clinical study plus a cross-sectional comparison between individuals with NAFLD and healthy control. Individuals with NAFLD were allocated into two groups receiving resistance training (RT) combined with high-intensity interval training (HIIT) or moderate-intensity continuous training (MICT). Anthropometric indicators, clinical blood markers about glucose, lipid metabolism, and hepatic fat content (HFC) were assessed before and after the intervention. The metabolomics was also used to investigate the discrepant metabolites and mechanisms related to MetF. Discussion Metabolic flexibility reflects the capacity of an organism to switch the oxidation substrates flexibly, which is associated with ectopic fat accumulation. Our study aimed to explore the discrepant metabolites related to MetF before and after a high-fat diet between individuals with NAFLD and healthy control. In addition, the study also examined the effectiveness of RT combined with HIIT or MICT on hepatic fat reduction and quantificationally analyzed the metabolites related to MetF before and after the intervention. Our results provided a perspective on fatty liver-associated metabolic inactivity. Trial registration ClinicalTrials.gov: ChiCTR2200055110; Registered 31 December 2021, http://www.chictr.org.cn/index.aspx.
Collapse
Affiliation(s)
- Wei Huang
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China,School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Weiqi Ruan
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China,School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Cuilan Huo
- Department of Endocrinology, The First Affiliated Hospital of the Naval Medical University, Shanghai, China
| | - Yanyu Lin
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China,School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Tian Wang
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China,School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Xiangdi Dai
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China,School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Haonan Zhai
- School of Physical Education, Shanghai University of Sport, Shanghai, China
| | - Jiasheng Ma
- School of Elite Sport, Shanghai University of Sport, Shanghai, China
| | - Jingyi Zhang
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China,School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Jin Lu
- Department of Endocrinology, The First Affiliated Hospital of the Naval Medical University, Shanghai, China,*Correspondence: Jin Lu ✉
| | - Jie Zhuang
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China,School of Exercise and Health, Shanghai University of Sport, Shanghai, China,Jie Zhuang ✉
| |
Collapse
|
23
|
Reproducibility of the energy metabolism response to an oral glucose tolerance test: influence of a postcalorimetric correction procedure. Eur J Nutr 2023; 62:351-361. [PMID: 36006468 PMCID: PMC9899729 DOI: 10.1007/s00394-022-02986-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/03/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Metabolic flexibility (MetF), which is a surrogate of metabolic health, can be assessed by the change in the respiratory exchange ratio (RER) in response to an oral glucose tolerance test (OGTT). We aimed to determine the day-to-day reproducibility of the energy expenditure (EE) and RER response to an OGTT, and whether a simulation-based postcalorimetric correction of metabolic cart readouts improves day-to-day reproducibility. METHODS The EE was assessed (12 young adults, 6 women, 27 ± 2 years old) using an Omnical metabolic cart (Maastricht Instruments, Maastricht, The Netherlands) after an overnight fast (12 h) and after a 75-g oral glucose dose on 2 separate days (48 h). On both days, we assessed EE in 7 periods (one 30-min baseline and six 15-min postprandial). The ICcE was performed immediately after each recording period, and capillary glucose concentration (using a digital glucometer) was determined. RESULTS We observed a high day-to-day reproducibility for the assessed RER (coefficients of variation [CV] < 4%) and EE (CVs < 9%) in the 7 different periods. In contrast, the RER and EE areas under the curve showed a low day-to-day reproducibility (CV = 22% and 56%, respectively). Contrary to our expectations, the postcalorimetric correction procedure did not influence the day-to-day reproducibility of the energy metabolism response, possibly because the Omnical's accuracy was ~ 100%. CONCLUSION Our study demonstrates that the energy metabolism response to an OGTT is poorly reproducible (CVs > 20%) even using a very accurate metabolic cart. Furthermore, the postcalorimetric correction procedure did not influence the day-to-day reproducibility. Trial registration NCT04320433; March 25, 2020.
Collapse
|
24
|
Associations between Intra-Assessment Resting Metabolic Rate Variability and Health-Related Factors. Metabolites 2022; 12:metabo12121218. [PMID: 36557256 PMCID: PMC9781460 DOI: 10.3390/metabo12121218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022] Open
Abstract
In humans, the variation in resting metabolic rate (RMR) might be associated with health-related factors, as suggested by previous studies. This study explored whether the intra-assessment RMR variability (expressed as a coefficient of variation (CV; %)) is similar in men and women and if it is similarly associated with diverse health-related factors. The RMR of 107 young, and relatively healthy adults, was assessed using indirect calorimetry. Then, the CV for volumes of oxygen consumption (VO2) and carbon dioxide production (VCO2), respiratory exchange ratio (RER), and resting energy expenditure (REE) were computed as indicators of intra-assessment RMR variability. Body composition, cardiorespiratory fitness (peak VO2 uptake), circulating cardiometabolic risk factors, and heart rate and its variability (HR and HRV) were assessed. Men presented higher CVs for VO2, VCO2, and REE (all p ≤ 0.001) compared to women. Furthermore, in men, the intra-assessment RER variability was associated with vagal-related HRV parameters and with mean HR (standardized β = −0.36, −0.38, and 0.41, respectively; all p < 0.04). In contrast, no associations were observed in women. In conclusion, men exhibited higher variability (CVs for VO2, VCO2, and REE) compared to women. The CV for RER could be a potential marker of cardiometabolic risk in young men.
Collapse
|
25
|
González-Acedo A, Plaza-Florido A, Amaro-Gahete FJ, Sacha J, Alcantara JMA. Associations between heart rate variability and maximal fat oxidation in two different cohorts of healthy sedentary adults. Nutr Metab Cardiovasc Dis 2022; 32:2338-2347. [PMID: 35977864 DOI: 10.1016/j.numecd.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/12/2022] [Accepted: 06/15/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND AND AIMS Resting heart rate variability (HRV) and maximal fat oxidation (MFO) during exercise are both considered as a noninvasive biomarkers for early detection of cardiovascular risk factors. Thus, this study aimed to analyze the relationship between resting HRV parameters and MFO during exercise, and the intensity of exercise that elicit MFO (Fatmax) in healthy sedentary adults. METHODS AND RESULTS A total of 103 healthy young adults (22.2 ± 2.3 years old, 67% female; from the ACTIBATE cohort) and 67 healthy middle-aged adults (53.1 ± 5.0 years old, 52% female; from the FIT-AGEING cohort) were included in this cross-sectional study. HRV was assessed using a Polar RS800CX heart rate monitor, while MFO and Fatmax were determined during a graded exercise treadmill test using indirect calorimetry. No significant associations were observed for healthy young adults (standardized β coefficients ranged from -0.063 to 0.094, and all P ≥ 0.347) and for middle-aged adults (standardized β coefficients ranged from -0.234 to 0.090, and all P ≥ 0.056). Nevertheless, only a weak association was observed between one HRV parameter in time-domain (the percentage of R-R intervals that shows a difference higher than 50 ms [pNN50]) and MFO in the cohort of middle-aged adults (β coefficient = -0.279, and P = 0.033). CONCLUSION The results of this study suggest that resting HRV parameters are not associated with MFO and Fatmax during exercise in two independent cohorts of healthy sedentary young and middle-aged adults, respectively.
Collapse
Affiliation(s)
- Anabel González-Acedo
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada (Spain), Avda. Ilustración, 60, 18016, Spain.
| | - Abel Plaza-Florido
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Spain.
| | - Francisco José Amaro-Gahete
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Spain; EFFECTS-262 Research Group, Department of Physiology, School of Medicine, University of Granada, Spain.
| | - Jerzy Sacha
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, Opole, Poland; Department of Cardiology, University Hospital in Opole, University of Opole, Opole, Poland.
| | - Juan M A Alcantara
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Spain.
| |
Collapse
|
26
|
Karppinen JE, Juppi HK, Hintikka J, Wiklund P, Haapala EA, Hyvärinen M, Tammelin TH, Aukee P, Kujala UM, Laukkanen J, Laakkonen EK. Associations of resting and peak fat oxidation with sex hormone profile and blood glucose control in middle-aged women. Nutr Metab Cardiovasc Dis 2022; 32:2157-2167. [PMID: 35752543 DOI: 10.1016/j.numecd.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND AIMS Menopause may reduce fat oxidation. We investigated whether sex hormone profile explains resting fat oxidation (RFO) or peak fat oxidation (PFO) during incremental cycling in middle-aged women. Secondarily, we studied associations of RFO and PFO with glucose regulation. METHOD AND RESULTS We measured RFO and PFO of 42 women (age 52-58 years) with indirect calorimetry. Seven participants were pre- or perimenopausal, 26 were postmenopausal, and nine were postmenopausal hormone therapy users. Serum estradiol (E2), follicle-stimulating hormone, progesterone, and testosterone levels were quantified with immunoassays. Insulin sensitivity (Matsuda index) and glucose tolerance (area under the curve) were determined by glucose tolerance testing. Body composition was assessed with dual-energy X-ray absorptiometry; physical activity with self-report and accelerometry; and diet, with food diaries. Menopausal status or sex hormone levels were not associated with the fat oxidation outcomes. RFO determinants were fat mass (β = 0.44, P = 0.006) and preceding energy intake (β = -0.40, P = 0.019). Cardiorespiratory fitness (β = 0.59, P = 0.002), lean mass (β = 0.49, P = 0.002) and physical activity (self-reported β = 0.37, P = 0.020; accelerometer-measured β = 0.35, P = 0.024) explained PFO. RFO and PFO were not related to insulin sensitivity. Higher RFO was associated with poorer glucose tolerance (β = 0.52, P = 0.002). CONCLUSION Among studied middle-aged women, sex hormone profile did not explain RFO or PFO, and higher fat oxidation capacity did not indicate better glucose control.
Collapse
Affiliation(s)
- Jari E Karppinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
| | - Hanna-Kaarina Juppi
- Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Jukka Hintikka
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Petri Wiklund
- Exercise Translational Medicine Center, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China; Huawei Helsinki R&D Center, Huawei Technologies Ltd, Helsinki, Finland
| | - Eero A Haapala
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland; Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Matti Hyvärinen
- Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | | | - Pauliina Aukee
- Department of Obstetrics and Gynecology, Central Finland Health Care District, Jyväskylä, Finland
| | - Urho M Kujala
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Jari Laukkanen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland; Department of Internal Medicine, Central Finland Healthcare District, Jyväskylä, Finland; Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Eija K Laakkonen
- Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
27
|
Hu L, Xia X, Zong Y, Gu Y, Wei L, Yin J. Calorie Restriction Enhanced Glycogen Metabolism to Compensate for Lipid Insufficiency. Mol Nutr Food Res 2022; 66:e2200182. [PMID: 35972028 DOI: 10.1002/mnfr.202200182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/07/2022] [Indexed: 11/11/2022]
Abstract
SCOPE This study aimed to investigate the metabolic phenotype and mechanism of 40% calorie restriction (CR) in mice. METHODS AND RESULTS CR mice exhibited super-stable blood glucose, as evidenced by increased fasting blood glucose (FBG), decreased postprandial blood glucose, and reduced glucose fluctuations. Additionally, both fasting plasma insulin and the homeostasis model assessment of insulin resistance increased significantly in CR mice. Compared with control, the phosphorylation of insulin receptor substrates-1 and serine/threonine kinase decreased in liver and fat but increased in muscle of CR mice after insulin administration, indicating hepatic and adipose insulin resistance, and muscle insulin sensitization. CR reduced visceral fat much more than subcutaneous fat. The elevated FBG was negatively correlated with low-level fasting β-hydroxybutyrate, which may result from insufficient free fatty acids and diminished ketogenic ability in CR mice. Furthermore, liver glycogen increased dramatically in CR mice. Analysis of glycogen metabolism related proteins indicated active glycogen synthesis and decomposition. Additionally, CR elevated plasma corticosterone and hypothalamic orexigenic gene expression. CONCLUSION CR induced lipid insufficiency and stress, resulting in global physiological insulin resistance except muscle and enhanced glycogen metabolism, culminating in the stability of blood glucose manifested in increased FBG, which compensated for insufficient blood ketones. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lili Hu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai Clinical Center for Metabolic Diseases, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, 200233, China
| | - Xinyi Xia
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai Clinical Center for Metabolic Diseases, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, 200233, China
| | - Yue Zong
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai Clinical Center for Metabolic Diseases, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, 200233, China.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch, Germany
| | - Yunjie Gu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai Clinical Center for Metabolic Diseases, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, 200233, China
| | - Li Wei
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai Clinical Center for Metabolic Diseases, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, 200233, China
| | - Jun Yin
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai Clinical Center for Metabolic Diseases, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, 200233, China.,Department of Endocrinology and Metabolism, Shanghai Eighth People's Hospital, Shanghai, 200233, China
| |
Collapse
|
28
|
Imig JD. Frontiers in metabolic physiology grand challenges. Front Physiol 2022; 13:879617. [PMID: 36035475 PMCID: PMC9399398 DOI: 10.3389/fphys.2022.879617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
|
29
|
Roach LA, Meyer BJ, Fitton JH, Winberg P. Improved Plasma Lipids, Anti-Inflammatory Activity, and Microbiome Shifts in Overweight Participants: Two Clinical Studies on Oral Supplementation with Algal Sulfated Polysaccharide. Mar Drugs 2022; 20:md20080500. [PMID: 36005503 PMCID: PMC9410082 DOI: 10.3390/md20080500] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 02/06/2023] Open
Abstract
Seaweed polysaccharides in the diet may influence both inflammation and the gut microbiome. Here we describe two clinical studies with an Ulva sp. 84-derived sulfated polysaccharide—“xylorhamnoglucuronan” (SXRG84)—on metabolic markers, inflammation, and gut flora composition. The first study was a double-blind, randomized placebo-controlled trial with placebo, and either 2 g/day or 4 g/day of SXRG84 daily for six weeks in 64 overweight or obese participants (median age 55 years, median body mass index (BMI) 29 kg/m2). The second study was a randomized double-blind placebo-controlled crossover trial with 64 participants (median BMI 29 kg/m2, average age 52) on placebo for six weeks and then 2 g/day of SXRG84 treatment for six weeks, or vice versa. In Study 1, the 2 g/day dose exhibited a significant reduction in non-HDL (high-density lipoprotein) cholesterol (−10% or −0.37 mmol/L, p = 0.02) and in the atherogenic index (−50%, p = 0.05), and two-hour insulin (−12% or −4.83 mU/L) showed trends for reduction in overweight participants. CRP (C-reactive protein) was significantly reduced (−27% or −0.78 mg/L, p = 0.03) with the 4 g/day dose in overweight participants. Significant gut flora shifts included increases in Bifidobacteria, Akkermansia, Pseudobutyrivibrio, and Clostridium and a decrease in Bilophila. In Study 2, no significant differences in lipid measures were observed, but inflammatory cytokines were improved. At twelve weeks after the SXRG84 treatment, plasma cytokine concentrations were significantly lower than at six weeks post placebo for IFN-γ (3.4 vs. 7.3 pg/mL), IL-1β (16.2 vs. 23.2 pg/mL), TNF-α (9.3 vs. 12.6 pg/mL), and IL-10 (1.6 vs. 2.1 pg/mL) (p < 0.05). Gut microbiota abundance and composition did not significantly differ between groups (p > 0.05). Together, the studies illustrate improvements in plasma lipids and an anti-inflammatory effect of dietary SXRG84 that is participant specific.
Collapse
Affiliation(s)
- Lauren A. Roach
- Molecular Horizons, Illawarra Health and Medical Research Institute, School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
- Correspondence: (L.A.R.); (B.J.M.); (P.W.)
| | - Barbara J. Meyer
- Molecular Horizons, Illawarra Health and Medical Research Institute, School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
- Correspondence: (L.A.R.); (B.J.M.); (P.W.)
| | | | - Pia Winberg
- Venus Shell Systems Pty Ltd., Nowra, NSW 2540, Australia
- Correspondence: (L.A.R.); (B.J.M.); (P.W.)
| |
Collapse
|
30
|
Jackstadt MM, Chamberlain CA, Doonan SR, Shriver LP, Patti GJ. A multidimensional metabolomics workflow to image biodistribution and evaluate pharmacodynamics in adult zebrafish. Dis Model Mech 2022; 15:dmm049550. [PMID: 35972155 PMCID: PMC9411795 DOI: 10.1242/dmm.049550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/13/2022] [Indexed: 12/16/2022] Open
Abstract
An integrated evaluation of the tissue distribution and pharmacodynamic properties of a therapeutic is essential for successful translation to the clinic. To date, however, cost-effective methods to measure these parameters at the systems level in model organisms are lacking. Here, we introduce a multidimensional workflow to evaluate drug activity that combines mass spectrometry-based imaging, absolute drug quantitation across different biological matrices, in vivo isotope tracing and global metabolome analysis in the adult zebrafish. As a proof of concept, we quantitatively determined the whole-body distribution of the anti-rheumatic agent hydroxychloroquine sulfate (HCQ) and measured the systemic metabolic impacts of drug treatment. We found that HCQ distributed to most organs in the adult zebrafish 24 h after addition of the drug to water, with the highest accumulation of both the drug and its metabolites being in the liver, intestine and kidney. Interestingly, HCQ treatment induced organ-specific alterations in metabolism. In the brain, for example, HCQ uniquely elevated pyruvate carboxylase activity to support increased synthesis of the neuronal metabolite, N-acetylaspartate. Taken together, this work validates a multidimensional metabolomics platform for evaluating the mode of action of a drug and its potential off-target effects in the adult zebrafish. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Madelyn M. Jackstadt
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Casey A. Chamberlain
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Steven R. Doonan
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Leah P. Shriver
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Gary J. Patti
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
31
|
Galgani JE, Bergouignan A, Rieusset J, Moro C, Nazare JA. Editorial: Metabolic Flexibility. Front Nutr 2022; 9:946300. [PMID: 35719158 PMCID: PMC9201900 DOI: 10.3389/fnut.2022.946300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jose E. Galgani
- Nutrition & Dietetics-Department of Health Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Nutrition, Diabetes and Metabolism, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Audrey Bergouignan
- National Center for Scientific Research (CNRS), Pluridisciplinary Institute Hubert Curien (IPHC), University of Strasbourg, Strasbourg, France
- Division of Endocrinology, Metabolism and Diabetes, Anschutz Health & Wellness Center, University of Colorado, Aurora, CO, United States
| | - Jennifer Rieusset
- Univ-Lyon, CarMeN Laboratory, Inserm, Inrae, Université Claude Bernard Lyon-1, Lyon, France
| | - Cedric Moro
- Institute of Metabolic and Cardiovascular Diseases, Team MetaDiab, Inserm/Paul Sabatier University, Toulouse, France
| | - Julie-Anne Nazare
- Univ-Lyon, CarMeN Laboratory, Inserm, Inrae, Université Claude Bernard Lyon-1, Lyon, France
- Centre de Recherche En Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Hospices Civils de Lyon, Cens, Université Claude Bernard Lyon1, Lyon, France
| |
Collapse
|
32
|
Beyond the Calorie Paradigm: Taking into Account in Practice the Balance of Fat and Carbohydrate Oxidation during Exercise? Nutrients 2022; 14:nu14081605. [PMID: 35458167 PMCID: PMC9027421 DOI: 10.3390/nu14081605] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
Recent literature shows that exercise is not simply a way to generate a calorie deficit as an add-on to restrictive diets but exerts powerful additional biological effects via its impact on mitochondrial function, the release of chemical messengers induced by muscular activity, and its ability to reverse epigenetic alterations. This review aims to summarize the current literature dealing with the hypothesis that some of these effects of exercise unexplained by an energy deficit are related to the balance of substrates used as fuel by the exercising muscle. This balance of substrates can be measured with reliable techniques, which provide information about metabolic disturbances associated with sedentarity and obesity, as well as adaptations of fuel metabolism in trained individuals. The exercise intensity that elicits maximal oxidation of lipids, termed LIPOXmax, FATOXmax, or FATmax, provides a marker of the mitochondrial ability to oxidize fatty acids and predicts how much fat will be oxidized over 45–60 min of low- to moderate-intensity training performed at the corresponding intensity. LIPOXmax is a reproducible parameter that can be modified by many physiological and lifestyle influences (exercise, diet, gender, age, hormones such as catecholamines, and the growth hormone-Insulin-like growth factor I axis). Individuals told to select an exercise intensity to maintain for 45 min or more spontaneously select a level close to this intensity. There is increasing evidence that training targeted at this level is efficient for reducing fat mass, sparing muscle mass, increasing the ability to oxidize lipids during exercise, lowering blood pressure and low-grade inflammation, improving insulin secretion and insulin sensitivity, reducing blood glucose and HbA1c in type 2 diabetes, and decreasing the circulating cholesterol level. Training protocols based on this concept are easy to implement and accept in very sedentary patients and have shown an unexpected efficacy over the long term. They also represent a useful add-on to bariatric surgery in order to maintain and improve its weight-lowering effect. Additional studies are required to confirm and more precisely analyze the determinants of LIPOXmax and the long-term effects of training at this level on body composition, metabolism, and health.
Collapse
|
33
|
Pino-de la Fuente F, Bórquez JC, Díaz-Castro F, Espinosa A, Chiong M, Troncoso R. Exercise regulation of hepatic lipid droplet metabolism. Life Sci 2022; 298:120522. [PMID: 35367244 DOI: 10.1016/j.lfs.2022.120522] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/16/2022] [Accepted: 03/27/2022] [Indexed: 01/02/2023]
Abstract
Lipid droplets (LD) are not just lipid stores. They are now recognized as highly dynamic organelles, having a life cycle that includes biogenesis, growth, steady-state, transport, and catabolism. Importantly, LD exhibit different features in terms of size, number, lipid composition, proteins, and interaction with other organelles, and all these features exert an impact on cellular homeostasis. The imbalance of LD function causes non-alcoholic fatty liver disease (NAFLD). Studies show that exercise attenuates NAFLD by decreasing LD content; however, reports show metabolic benefits without changes in LD amount (intrahepatic triglyceride levels) in NAFLD. Due to the multiple effects of exercise in LD features, we think that these metabolic benefits occur through changes in LD features in NAFLD, rather than only the reduction in content. Exercise increases energy mobilization and utilization from storages such as LD, and is one of the non-pharmacological treatments against NAFLD. Therefore, exercise modification of LD could be a target for NAFLD treatment. Here, we review the most up-to-date literature on this topic, and focus on recent findings showing that LD features could play an important role in the severity of NAFLD.
Collapse
Affiliation(s)
- Francisco Pino-de la Fuente
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile; Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Juan Carlos Bórquez
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Francisco Díaz-Castro
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Alejandra Espinosa
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Rodrigo Troncoso
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
34
|
An amino acid-defined diet impairs tumour growth in mice by promoting endoplasmic reticulum stress and mTOR inhibition. Mol Metab 2022; 60:101478. [PMID: 35367410 PMCID: PMC9014392 DOI: 10.1016/j.molmet.2022.101478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 12/17/2022] Open
|
35
|
Fernández-Verdejo R, Malo-Vintimilla L, Gutiérrez-Pino J, López-Fuenzalida A, Olmos P, Irarrazaval P, Galgani JE. Similar Metabolic Health in Overweight/Obese Individuals With Contrasting Metabolic Flexibility to an Oral Glucose Tolerance Test. Front Nutr 2021; 8:745907. [PMID: 34869522 PMCID: PMC8637191 DOI: 10.3389/fnut.2021.745907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/13/2021] [Indexed: 01/14/2023] Open
Abstract
Background: Low metabolic flexibility (MetF) may be an underlying factor for metabolic health impairment. Individuals with low MetF are thus expected to have worse metabolic health than subjects with high MetF. Therefore, we aimed to compare metabolic health in individuals with contrasting MetF to an oral glucose tolerance test (OGTT). Methods: In individuals with excess body weight, we measured MetF as the change in respiratory quotient (RQ) from fasting to 1 h after ingestion of a 75-g glucose load (i.e., OGTT). Individuals were then grouped into low and high MetF (Low-MetF n = 12; High-MetF n = 13). The groups had similar body mass index, body fat, sex, age, and maximum oxygen uptake. Metabolic health markers (clinical markers, insulin sensitivity/resistance, abdominal fat, and intrahepatic fat) were compared between groups. Results: Fasting glucose, triglycerides (TG), and high-density lipoprotein (HDL) were similar between groups. So were insulin sensitivity/resistance, visceral, and intrahepatic fat. Nevertheless, High-MetF individuals had higher diastolic blood pressure, a larger drop in TG concentration during the OGTT, and a borderline significant (P = 0.05) higher Subcutaneous Adipose Tissue (SAT). Further, compared to Low-MetF, High-MetF individuals had an about 2-fold steeper slope for the relationship between SAT and fat mass index. Conclusion: Individuals with contrasting MetF to an OGTT had similar metabolic health. Yet High-MetF appears related to enhanced circulating TG clearance and enlarged subcutaneous fat.
Collapse
Affiliation(s)
- Rodrigo Fernández-Verdejo
- Carrera de Nutrición y Dietética, Departamento de Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Laboratorio de Fisiología del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - Lorena Malo-Vintimilla
- Departamento de Nutrición, Diabetes y Metabolismo, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Gutiérrez-Pino
- Departamento de Nutrición, Diabetes y Metabolismo, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antonio López-Fuenzalida
- Carrera de Kinesiología, Departamento de Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Disciplinary Department of Kinesiology, Faculty of Health Science, Universidad de Playa Ancha, Valparaíso, Chile
| | - Pablo Olmos
- Departamento de Nutrición, Diabetes y Metabolismo, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Irarrazaval
- Departamento de Ingeniería Eléctrica e Instituto de Ingeniería Biológica y Médica, Escuelas de Ingeniería, Medicina y Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jose E Galgani
- Carrera de Nutrición y Dietética, Departamento de Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Nutrición, Diabetes y Metabolismo, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
36
|
Glaves A, Díaz-Castro F, Farías J, Ramírez-Romero R, Galgani JE, Fernández-Verdejo R. Association Between Adipose Tissue Characteristics and Metabolic Flexibility in Humans: A Systematic Review. Front Nutr 2021; 8:744187. [PMID: 34926544 PMCID: PMC8678067 DOI: 10.3389/fnut.2021.744187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/01/2021] [Indexed: 12/23/2022] Open
Abstract
Adipose tissue total amount, distribution, and phenotype influence metabolic health. This may be partially mediated by the metabolic effects that these adipose tissue characteristics exert on the nearby and distant tissues. Thus, adipose tissue may influence the capacity of cells, tissues, and the organism to adapt fuel oxidation to fuel availability, i.e., their metabolic flexibility (MetF). Our aim was to systematically review the evidence for an association between adipose tissue characteristics and MetF in response to metabolic challenges in human adults. We searched in PubMed (last search on September 4, 2021) for reports that measured adipose tissue characteristics (total amount, distribution, and phenotype) and MetF in response to metabolic challenges (as a change in respiratory quotient) in humans aged 18 to <65 years. Any study design was considered, and the risk of bias was assessed with a checklist for randomized and non-randomized studies. From 880 records identified, 22 remained for the analysis, 10 of them measured MetF in response to glucose plus insulin stimulation, nine in response to dietary challenges, and four in response to other challenges. Our main findings were that: (a) MetF to glucose plus insulin stimulation seems inversely associated with adipose tissue total amount, waist circumference, and visceral adipose tissue; and (b) MetF to dietary challenges does not seem associated with adipose tissue total amount or distribution. In conclusion, evidence suggests that adipose tissue may directly or indirectly influence MetF to glucose plus insulin stimulation, an effect probably explained by skeletal muscle insulin sensitivity. Systematic Review Registration: PROSPERO [CRD42020167810].
Collapse
Affiliation(s)
- Alice Glaves
- Departamento de Nutrición, Diabetes y Metabolismo, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Díaz-Castro
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Javiera Farías
- Carrera de Nutrición y Dietética, Departamento de Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Ramírez-Romero
- Carrera de Nutrición y Dietética, Departamento de Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jose E. Galgani
- Departamento de Nutrición, Diabetes y Metabolismo, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Carrera de Nutrición y Dietética, Departamento de Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Fernández-Verdejo
- Carrera de Nutrición y Dietética, Departamento de Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratorio de Fisiología del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| |
Collapse
|
37
|
Saed CT, Greenwell AA, Tabatabaei Dakhili SA, Gopal K, Eaton F, Ussher JR. The antianginal ranolazine does not confer beneficial actions against hepatic steatosis in male mice subjected to high-fat diet and streptozotocin induced type 2 diabetes. Can J Physiol Pharmacol 2021; 100:393-401. [PMID: 34851748 DOI: 10.1139/cjpp-2021-0559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by the accumulation of excess fat in the liver in the absence of alcohol and increases one's risk for both diabetes and cardiovascular disease (e.g. angina). We have shown that the second-line anti-anginal therapy, ranolazine, mitigates obesity-induced NAFLD, and our aim was to determine whether these actions of ranolazine also extend to NAFLD associated with type 2 diabetes (T2D). 8-week-old male C57BL/6J mice were fed either a low-fat diet or a high-fat diet for 15-weeks, with a single dose of streptozotocin (STZ; 75 mg/kg) administered in the high-fat diet fed mice at 4-weeks to induce experimental T2D. Mice were treated with either vehicle control or ranolazine during the final 7-weeks (50 mg/kg once daily). We assessed glycemia via monitoring glucose tolerance, insulin tolerance, and pyruvate tolerance, whereas hepatic steatosis was assessed via quantifying triacylglycerol content. We observed that ranolazine did not improve glycemia in mice with experimental T2D, while also having no impact on hepatic triacylglycerol content. Therefore, the salutary actions of ranolazine against NAFLD may be limited to obese individuals but not those who are obese with T2D.
Collapse
Affiliation(s)
| | | | | | - Keshav Gopal
- University of Alberta, 3158, University of Alberta, Edmonton, Alberta, Canada, T6G2E1;
| | - Farah Eaton
- University of Alberta, 3158, Pharmacy, 2-055 Katz, Edmonton, Alberta, Canada, T6G 2R3.,Canada;
| | - John R Ussher
- University of Alberta, 2-020C Katz Centre for Pharmacy and Health Research, Edmonton, Alberta, Canada, T6G 2E1;
| |
Collapse
|
38
|
Abstract
Known as metabolic flexibility, oxidized substrate is selected in response to changes in the nutritional state. Sleep imposes an extended duration of fasting, and oxidized substrates during sleep were assumed to progressively shift from carbohydrate to fat, thereby gradually decreasing the respiratory quotient (RQ). Contrary to this assumption, whole-room indirect calorimetry with improved time resolution revealed that RQ re-ascended prior to awakening, and nadir of RQ in non-obese young adults occurred earlier in women than men after bedtime. The transient decrease in RQ during sleep was blunted in metabolically inflexible men with smaller amplitude of diurnal rhythm in RQ. Similarly, the effect of 10 years difference in age on RQ became significant during sleep; the decrease in RQ during sleep was blunted in older subjects. Inter-individual difference in RQ become apparent during sleep, and it might serve as a window to gain insight into the early-stage pathogenesis of metabolic inflexibility.
Collapse
|
39
|
Yu EA, Le NA, Stein AD. Measuring Postprandial Metabolic Flexibility to Assess Metabolic Health and Disease. J Nutr 2021; 151:3284-3291. [PMID: 34293154 PMCID: PMC8562077 DOI: 10.1093/jn/nxab263] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/25/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Metabolic abnormalities substantially increase the risk of noncommunicable diseases, which are among the leading causes of mortality globally. Mitigating and preventing these adverse consequences remains challenging due to a limited understanding of metabolic health. Metabolic flexibility, a key tenet of metabolic health, encompasses the responsiveness of interrelated pathways to maintain energy homeostasis throughout daily physiologic challenges, such as the response to meal challenges. One critical underlying research gap concerns the measurement of postprandial metabolic flexibility, which remains incompletely understood. We concisely review the methodology for assessment of postprandial metabolic flexibility in recent human studies. We identify 3 commonalities of study design, specifically the nature of the challenge, nature of the response measured, and approach to data analysis. Primary interventions were acute short-term nutrition challenges, including single- and multiple-macronutrient tolerance tests. Postmeal challenge responses were measured via laboratory assays and instrumentation, based on a diverse set of metabolic flexibility indicators [e.g., energy expenditure (whole-body indirect calorimetry), glucose and insulin kinetics, metabolomics, transcriptomics]. Common standard approaches have been diabetes-centric with single-macronutrient challenges (oral-glucose-tolerance test) to characterize the postprandial response based on glucose and insulin metabolism; or broad measurements of energy expenditure with calculated macronutrient oxidation via indirect calorimetry. Recent methodological advances have included the use of multiple-macronutrient meal challenges that are more representative of physiologic meals consumed by free-living humans, combinatorial approaches for assays and instruments, evaluation of other metabolic flexibility indicators via precision health, systems biology, and temporal perspectives. Omics studies have identified potential novel indicators of metabolic flexibility, which provide greater granularity to prior evidence from canonical approaches. In summary, recent findings indicate the potential for an expanded understanding of postprandial metabolic flexibility, based on nonclassical measurements and methodology, which could represent novel dynamic indicators of metabolic diseases.
Collapse
Affiliation(s)
- Elaine A Yu
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Ngoc-Anh Le
- Biomarker Core Laboratory, Foundation for Atlanta Veterans Education and Research (FAVER), Atlanta Veterans Affairs Health Care System (AVAHCS), Atlanta, GA, USA
| | | |
Collapse
|
40
|
Castro-Sepulveda M, Fernández-Verdejo R, Tuñón-Suárez M, Morales-Zúñiga J, Troncoso M, Jannas-Vela S, Zbinden-Foncea H. Low abundance of Mfn2 protein correlates with reduced mitochondria-SR juxtaposition and mitochondrial cristae density in human men skeletal muscle: Examining organelle measurements from TEM images. FASEB J 2021; 35:e21553. [PMID: 33749943 DOI: 10.1096/fj.202002615rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 12/29/2022]
Abstract
The role of mitofusin 2 (Mfn2) in the regulation of skeletal muscle (SM) mitochondria-sarcoplasmic (SR) juxtaposition, mitochondrial morphology, mitochondrial cristae density (MCD), and SM quality has not been studied in humans. In in vitro studies, whether Mfn2 increases or decreases mitochondria-SR juxtaposition remains controversial. Transmission electron microscopy (TEM) images are commonly used to measure the organelle juxtaposition, but the measurements are performed "by-hand," thus potentially leading to between-rater differences. The purposes of this study were to: (1) examine the repeatability and reproducibility of mitochondrial-SR juxtaposition measurement from TEM images of human SM between three raters with different experience and (2) compare the mitochondrial-SR juxtaposition, mitochondrial morphology, MCD (stereological-method), and SM quality (cross-sectional area [CSA] and the maximum voluntary contraction [MVC]) between subjects with high abundance (Mfn2-HA; n = 6) and low abundance (Mfn2-LA; n = 6) of Mfn2 protein. The mitochondria-SR juxtaposition had moderate repeatability and reproducibility, with the most experienced raters showing the best values. There were no differences between Mfn2-HA and Mfn2-LA groups in mitochondrial size, distance from mitochondria to SR, CSA, or MVC. Nevertheless, the Mfn2-LA group showed lower mitochondria-SR interaction, MCD, and VO2max . In conclusion, mitochondrial-SR juxtaposition measurement depends on the experience of the rater, and Mfn2 protein seems to play a role in the metabolic control of human men SM, by regulating the mitochondria-SR interaction.
Collapse
Affiliation(s)
- Mauricio Castro-Sepulveda
- Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile.,Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Fernández-Verdejo
- Carrera de Nutrición y Dietética, Departamento de Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mauro Tuñón-Suárez
- Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - Jorge Morales-Zúñiga
- Laboratorio de Ciencias del Deporte, Clínica Sports Medicina Deportiva, Viña del Mar, Chile
| | - Mayarling Troncoso
- Faculty of Chemical and Pharmaceutical Science & Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - Sebastian Jannas-Vela
- Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - Hermann Zbinden-Foncea
- Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile.,Centro de Salud Deportiva, Clinica Santa Maria, Santiago, Chile
| |
Collapse
|
41
|
Fonseca LM, de Sousa DS, Cardoso JC, Severino P, Cano A, Souto EB, Lima SO, de Oliveira CCC, Reis FP. Epidemiology of COVID-19 in the State of Sergipe/Brazil and Its Relationship with Social Indicators. EPIDEMIOLOGIA 2021; 2:262-270. [PMID: 36417225 PMCID: PMC9620914 DOI: 10.3390/epidemiologia2030020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/25/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
A pandemic is capable of generating a great impact, not only from the point of view of health, but also socioeconomically. In March 2020, the World Health Organization (WHO) declared that a new pandemic situation had arisen, due to the SARS-CoV-2 virus, whose probable origin was zoonotic. The largest number of cases of this disease is concentrated in the United States of America (USA), India, and Brazil. The mortality rate is estimated at 3.4%, but regional differences may exist, and places with a high demographic density have become true epicentres and may be related to higher rates of transmission. In addition to the above, lower human development indexes (HDI) can be related to worse outcomes, especially in the North and Northeast regions of Brazil since they are the least developed places. The Northeast region is the second-most-affected place in the number of COVID-19 cases in Brazil. An analytical observational study of an ecological type was carried out from April to October 2020 to assess the epidemiological situation of COVID-19 in the state of Sergipe and specifically to analyse the incidence of cases and deaths resulting from COVID-19 in the different health regions of the state of Sergipe, in relation to the values of the HDI and demographic density. During the study period, 84,325 cases of COVID-19 were identified, in which 2205 resulted in death. In most of the regions studied, there was a positive association between the number of cases and deaths and the greater the demographic density, but there was no increase in the risk of becoming ill, nor of dying the lower the HDI. Large and crowded cities are places of greatest vulnerability to illness, due to their greater capacity of transmitting the virus; however, further studies are needed to identify other factors that are decisive in the outcomes of this new disease.
Collapse
Affiliation(s)
- Larissa M. Fonseca
- Post-Graduation Program in Health and Environment, University of Tiradentes, Aracaju 49010-390, Sergipe, Brazil; (L.M.F.); (D.S.d.S.); (J.C.C.); (S.O.L.); (C.C.C.d.O.)
| | - Derijuli S. de Sousa
- Post-Graduation Program in Health and Environment, University of Tiradentes, Aracaju 49010-390, Sergipe, Brazil; (L.M.F.); (D.S.d.S.); (J.C.C.); (S.O.L.); (C.C.C.d.O.)
| | - Juliana C. Cardoso
- Post-Graduation Program in Health and Environment, University of Tiradentes, Aracaju 49010-390, Sergipe, Brazil; (L.M.F.); (D.S.d.S.); (J.C.C.); (S.O.L.); (C.C.C.d.O.)
- Institute of Technology and Research (ITP), University of Tiradentes, Aracaju 49010-390, Sergipe, Brazil;
| | - Patricia Severino
- Institute of Technology and Research (ITP), University of Tiradentes, Aracaju 49010-390, Sergipe, Brazil;
- Post-Graduation Program in Biotechnology, University of Tiradentes, Aracaju 49010-390, Sergipe, Brazil
| | - Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, 28031 Madrid, Spain
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Sônia O. Lima
- Post-Graduation Program in Health and Environment, University of Tiradentes, Aracaju 49010-390, Sergipe, Brazil; (L.M.F.); (D.S.d.S.); (J.C.C.); (S.O.L.); (C.C.C.d.O.)
- Institute of Technology and Research (ITP), University of Tiradentes, Aracaju 49010-390, Sergipe, Brazil;
| | - Cristiane C. C. de Oliveira
- Post-Graduation Program in Health and Environment, University of Tiradentes, Aracaju 49010-390, Sergipe, Brazil; (L.M.F.); (D.S.d.S.); (J.C.C.); (S.O.L.); (C.C.C.d.O.)
- Institute of Technology and Research (ITP), University of Tiradentes, Aracaju 49010-390, Sergipe, Brazil;
| | - Francisco P. Reis
- Post-Graduation Program in Health and Environment, University of Tiradentes, Aracaju 49010-390, Sergipe, Brazil; (L.M.F.); (D.S.d.S.); (J.C.C.); (S.O.L.); (C.C.C.d.O.)
- Institute of Technology and Research (ITP), University of Tiradentes, Aracaju 49010-390, Sergipe, Brazil;
| |
Collapse
|
42
|
Chávez-Guevara IA, Hernández-Torres RP, Trejo-Trejo M, González-Rodríguez E, Moreno-Brito V, Wall-Medrano A, Pérez-León JA, Ramos-Jiménez A. Exercise Fat Oxidation Is Positively Associated with Body Fatness in Men with Obesity: Defying the Metabolic Flexibility Paradigm. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136945. [PMID: 34209545 PMCID: PMC8297250 DOI: 10.3390/ijerph18136945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022]
Abstract
Obesity is thought to be associated with a reduced capacity to increase fat oxidation in response to physical exercise; however, scientific evidence supporting this paradigm remains scarce. This study aimed to determine the interrelationship of different submaximal exercise metabolic flexibility (Metflex) markers and define its association with body fatness on subjects with obesity. Twenty-one male subjects with obesity performed a graded-intensity exercise protocol (Test 1) during which cardiorespiratory fitness (CRF), maximal fat oxidation (MFO) and its corresponding exercise intensity (FATmax) were recorded. A week afterward, each subject performed a 60-min walk (treadmill) at FATmax (Test 2), and the resulting fat oxidation area under the curve (TFO) and maximum respiratory exchange ratio (RERpeak) were recorded. Blood lactate (LAb) levels was measured during both exercise protocols. Linear regression analysis was used to study the interrelationship of exercise Metflex markers. Pearson’s correlation was used to evaluate all possible linear relationships between Metflex and anthropometric measurement, controlling for CRF). The MFO explained 38% and 46% of RERpeak and TFO’s associated variance (p < 0.01) while TFO and RERpeak were inversely related (R2 = 0.54, p < 0.01). Body fatness positively correlated with MFO (r = 0.64, p < 0.01) and TFO (r = 0.63, p < 0.01) but inversely related with RERpeak (r = −0.67, p < 0.01). This study shows that MFO and RERpeak are valid indicators of TFO during steady-state exercise at FATmax. The fat oxidation capacity is directly associated with body fatness in males with obesity.
Collapse
Affiliation(s)
- Isaac A. Chávez-Guevara
- Chemical Biological Sciences PhD Graduate Program, Department of Chemical Sciences, Biomedical Sciences Institute, Ciudad Juarez Autonomous University, Chihuahua 32310, Mexico; (I.A.C.-G.); (A.W.-M.); (J.A.P.-L.)
| | - Rosa P. Hernández-Torres
- Faculty of Physical Culture Sciences, Autonomous University of Chihuahua, Chihuahua 31000, Mexico;
| | - Marina Trejo-Trejo
- Faculty of Sports, Autonomous University of Baja California, Mexicali, Baja California 21289, Mexico;
| | - Everardo González-Rodríguez
- Faculty of Medicine and Biomedical Sciences, Autonomous University of Chihuahua, Circuito Universitario, Campus II, Chihuahua 31109, Mexico; (E.G.-R.); (V.M.-B.)
| | - Verónica Moreno-Brito
- Faculty of Medicine and Biomedical Sciences, Autonomous University of Chihuahua, Circuito Universitario, Campus II, Chihuahua 31109, Mexico; (E.G.-R.); (V.M.-B.)
| | - Abraham Wall-Medrano
- Chemical Biological Sciences PhD Graduate Program, Department of Chemical Sciences, Biomedical Sciences Institute, Ciudad Juarez Autonomous University, Chihuahua 32310, Mexico; (I.A.C.-G.); (A.W.-M.); (J.A.P.-L.)
| | - Jorge A. Pérez-León
- Chemical Biological Sciences PhD Graduate Program, Department of Chemical Sciences, Biomedical Sciences Institute, Ciudad Juarez Autonomous University, Chihuahua 32310, Mexico; (I.A.C.-G.); (A.W.-M.); (J.A.P.-L.)
| | - Arnulfo Ramos-Jiménez
- Chemical Biological Sciences PhD Graduate Program, Department of Chemical Sciences, Biomedical Sciences Institute, Ciudad Juarez Autonomous University, Chihuahua 32310, Mexico; (I.A.C.-G.); (A.W.-M.); (J.A.P.-L.)
- Correspondence: ; Tel.: +52-656-167-9309
| |
Collapse
|