1
|
Bachofen C, Tumber-Dávila SJ, Mackay DS, McDowell NG, Carminati A, Klein T, Stocker BD, Mencuccini M, Grossiord C. Tree water uptake patterns across the globe. THE NEW PHYTOLOGIST 2024. [PMID: 38649790 DOI: 10.1111/nph.19762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/13/2024] [Indexed: 04/25/2024]
Abstract
Plant water uptake from the soil is a crucial element of the global hydrological cycle and essential for vegetation drought resilience. Yet, knowledge of how the distribution of water uptake depth (WUD) varies across species, climates, and seasons is scarce relative to our knowledge of aboveground plant functions. With a global literature review, we found that average WUD varied more among biomes than plant functional types (i.e. deciduous/evergreen broadleaves and conifers), illustrating the importance of the hydroclimate, especially precipitation seasonality, on WUD. By combining records of rooting depth with WUD, we observed a consistently deeper maximum rooting depth than WUD with the largest differences in arid regions - indicating that deep taproots act as lifelines while not contributing to the majority of water uptake. The most ubiquitous observation across the literature was that woody plants switch water sources to soil layers with the highest water availability within short timescales. Hence, seasonal shifts to deep soil layers occur across the globe when shallow soils are drying out, allowing continued transpiration and hydraulic safety. While there are still significant gaps in our understanding of WUD, the consistency across global ecosystems allows integration of existing knowledge into the next generation of vegetation process models.
Collapse
Affiliation(s)
- Christoph Bachofen
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, 1015, Lausanne, Switzerland
- Functional Plant Ecology, Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, 1015, Lausanne, Switzerland
| | - Shersingh Joseph Tumber-Dávila
- Department of Environmental Studies, Dartmouth College, Hanover, NH, 03755, USA
- Harvard Forest, Harvard University, Petersham, MA, 01316, USA
| | - D Scott Mackay
- Department of Geography, University at Buffalo, Buffalo, NY, 14261, USA
| | - Nate G McDowell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- School of Biological Sciences, Washington State University, Pullman, WA, 99163, USA
| | - Andrea Carminati
- Physics of Soils and Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland
| | - Tamir Klein
- Plant & Environmental Sciences Department, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Benjamin D Stocker
- Institute of Geography, University of Bern, Bern, 3013, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, 3013, Bern, Switzerland
| | - Maurizio Mencuccini
- CREAF, Cerdanyola del Vallès, Barcelona, 08193, Spain
- ICREA at CREAF, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, 1015, Lausanne, Switzerland
- Functional Plant Ecology, Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, 1015, Lausanne, Switzerland
| |
Collapse
|
2
|
Andriantelomanana T, Améglio T, Delzon S, Cochard H, Herbette S. Unpacking the point of no return under drought in poplar: insight from stem diameter variation. THE NEW PHYTOLOGIST 2024; 242:466-478. [PMID: 38406847 DOI: 10.1111/nph.19615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/02/2024] [Indexed: 02/27/2024]
Abstract
A specific, robust threshold for drought-induced tree mortality is needed to improve the prediction of forest dieback. Here, we tested the relevance of continuous measurements of stem diameter variations for identifying such a threshold, their relationship with hydraulic and cellular damage mechanisms, and the influence of growth conditions on these relationships. Poplar saplings were grown under well-watered, water-limited, or light-limited conditions and then submitted to a drought followed by rewatering. Stem diameter was continuously measured to investigate two parameters: the percentage loss of diameter (PLD) and the percentage of diameter recovery (DR) following rewatering. Water potentials, stomatal conductance, embolism, and electrolyte leakage were also measured, and light microscopy allowed investigating cell collapse induced by drought. The water release observed through loss of diameter occurred throughout the drought, regardless of growth conditions. Poplars did not recover from drought when PLD reached a threshold and this differed according to growth conditions but remained linked to cell resistance to damage and collapse. Our findings shed new light on the mechanisms of drought-induced tree mortality and indicate that PLD could be a relevant indicator of drought-induced tree mortality, regardless of the growth conditions.
Collapse
Affiliation(s)
| | - Thierry Améglio
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, 63000, France
| | - Sylvain Delzon
- Université Bordeaux, INRAE, BIOGECO, Pessac, 33615, France
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, 63000, France
| | - Stephane Herbette
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, 63000, France
| |
Collapse
|
3
|
Blackman CJ, Billon LM, Cartailler J, Torres-Ruiz JM, Cochard H. Key hydraulic traits control the dynamics of plant dehydration in four contrasting tree species during drought. TREE PHYSIOLOGY 2023; 43:1772-1783. [PMID: 37318310 PMCID: PMC10652334 DOI: 10.1093/treephys/tpad075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
Trees are at risk of mortality during extreme drought, yet our understanding of the traits that govern the timing of drought-induced hydraulic failure remains limited. To address this, we tested SurEau, a trait-based soil-plant-atmosphere model designed to predict the dynamics of plant dehydration as represented by the changes in water potential against those observed in potted trees of four contrasting species (Pinus halepensis Mill., Populus nigra L., Quercus ilex L. and Cedrus atlantica (Endl.) Manetti ex Carriére) exposed to drought. SurEau was parameterized with a range of plant hydraulic and allometric traits, soil and climatic variables. We found a close correspondence between the predicted and observed plant water potential (in MPa) dynamics during the early phase drought, leading to stomatal closure, as well as during the latter phase of drought, leading to hydraulic failure in all four species. A global model's sensitivity analysis revealed that, for a common plant size (leaf area) and soil volume, dehydration time from full hydration to stomatal closure (Tclose) was most strongly controlled by the leaf osmotic potential (Pi0) and its influence on stomatal closure, in all four species, while the maximum stomatal conductance (gsmax) also contributed to Tclose in Q. ilex and C. atlantica. Dehydration times from stomatal closure to hydraulic failure (Tcav) was most strongly controlled by Pi0, the branch residual conductance (gres) and Q10a sensitivity of gres in the three evergreen species, while xylem embolism resistance (P50) was most influential in the deciduous species P. nigra. Our findings point to SurEau as a highly useful model for predicting changes in plant water status during drought and suggest that adjustments made in key hydraulic traits are potentially beneficial to delaying the onset of drought-induced hydraulic failure in trees.
Collapse
Affiliation(s)
- Chris J Blackman
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Natural Sciences, University of Tasmania, Hobart 7001, Australia
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand 63100, France
| | - Lise-Marie Billon
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand 63100, France
| | - Julien Cartailler
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand 63100, France
| | - José M Torres-Ruiz
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand 63100, France
| | - Hervé Cochard
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand 63100, France
| |
Collapse
|
4
|
Wei X, Fu T, He G, Zhong Z, Yang M, Lou F, He T. Types of vegetables shape composition, diversity, and co-occurrence networks of soil bacteria and fungi in karst areas of southwest China. BMC Microbiol 2023; 23:194. [PMID: 37468849 PMCID: PMC10354930 DOI: 10.1186/s12866-023-02929-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Microorganisms are of significant importance in soil. Yet their association with specific vegetable types remains poorly comprehended. This study investigates the composition of bacterial and fungal communities in soil by employing high-throughput sequencing of 16 S rRNA genes and ITS rRNA genes while considering the cultivation of diverse vegetable varieties. RESULTS The findings indicate that the presence of cultivated vegetables influenced the bacterial and fungal communities leading to discernible alterations when compared to uncultivated soil. In particular, the soil of leafy vegetables (such as cabbage and kale) exhibited higher bacterial α-diversity than melon and fruit vegetable (such as cucumber and tomato), while fungal α-diversity showed an inverse pattern. The prevailing bacterial phyla in both leafy vegetable and melon and fruit vegetable soils were Proteobacteria, Acidobacteriota, Actinobacteriota, and Chloroflexi. In leafy vegetable soil, dominant fungal phyla included Ascomycota, Olpidiomycota, Mortierellomycota, and Basidiomycota whereas in melon and fruit vegetable soil. Ascomycota, Mortierellomycota, Basidiomycota, and Rozellomycota held prominence. Notably, the relative abundance of Ascomycota was lower in leafy vegetable soil compared to melon and fruit vegetable soil. Moreover, leafy vegetable soil exhibited a more complex and stable co-occurrence network in comparison to melon and fruit vegetable soil. CONCLUSION The findings enhance our understanding of how cultivated soil bacteria and fungi respond to human disturbance, thereby providing a valuable theoretical basis for soil health in degraded karst areas of southwest China.
Collapse
Affiliation(s)
- Xiaoliao Wei
- College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Tianling Fu
- Institute of New Rural Development, Engineering Key Laboratory for Pollution Control and Resource Reuse Technology of Mountain Livestock Breeding, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, PR China
| | - Guandi He
- College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Zhuoyan Zhong
- College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Mingfang Yang
- College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Fei Lou
- College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Tengbing He
- College of Agriculture, Guizhou University, Guiyang, 550025, PR China.
- Institute of New Rural Development, Engineering Key Laboratory for Pollution Control and Resource Reuse Technology of Mountain Livestock Breeding, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, PR China.
| |
Collapse
|
5
|
Tomasella M, Calderan A, Mihelčič A, Petruzzellis F, Braidotti R, Natale S, Lisjak K, Sivilotti P, Nardini A. Best Procedures for Leaf and Stem Water Potential Measurements in Grapevine: Cultivar and Water Status Matter. PLANTS (BASEL, SWITZERLAND) 2023; 12:2412. [PMID: 37446973 DOI: 10.3390/plants12132412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
The pressure chamber is the most used tool for plant water status monitoring. However, species/cultivar and seasonal effects on protocols for reliable water potential determination have not been properly tested. In four grapevine cultivars and two times of the season (early season, Es; late season, Ls, under moderate drought), we assessed the maximum sample storage time before leaf water potential (Ψleaf) measurements and the minimum equilibration time for stem water potential (Ψstem) determination, taking 24 h leaf cover as control. In 'Pinot gris', Ψleaf already decreased after 1 h leaf storage in both campaigns, dropping by 0.4/0.5 MPa after 3 h, while in 'Refosk', it decreased by 0.1 MPa after 1 and 2 h in Es and Ls, respectively. In 'Merlot' and 'Merlot Kanthus', even 3 h storage did not affect Ψleaf. In Es, the minimum Ψstem equilibration was 1 h for 'Refošk' and 10 min for 'Pinot gris' and 'Merlot'. In Ls, 'Merlot Kanthus' required more than 2 h equilibration, while 1 h to 10 min was sufficient for the other cultivars. The observed cultivar and seasonal differences indicate that the proposed tests should be routinely performed prior to experiments to define ad hoc procedures for water status determination.
Collapse
Affiliation(s)
- Martina Tomasella
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, 34127 Trieste, Italy
| | - Alberto Calderan
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, 34127 Trieste, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Alenka Mihelčič
- Department of Fruit Growing, Agricultural Institute of Slovenia, Viticulture and Enology, Hacquetova Ulica 17, SI-1000 Ljubljana, Slovenia
| | - Francesco Petruzzellis
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, 34127 Trieste, Italy
| | - Riccardo Braidotti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Sara Natale
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, 34127 Trieste, Italy
- Department of Biology, University of Padova, Via Ugo Bassi 58B, 35121 Padova, Italy
| | - Klemen Lisjak
- Department of Fruit Growing, Agricultural Institute of Slovenia, Viticulture and Enology, Hacquetova Ulica 17, SI-1000 Ljubljana, Slovenia
| | - Paolo Sivilotti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Andrea Nardini
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, 34127 Trieste, Italy
| |
Collapse
|
6
|
Rowland L, Ramírez-Valiente JA, Hartley IP, Mencuccini M. How woody plants adjust above- and below-ground traits in response to sustained drought. THE NEW PHYTOLOGIST 2023. [PMID: 37306017 DOI: 10.1111/nph.19000] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/01/2023] [Indexed: 06/13/2023]
Abstract
Future increases in drought severity and frequency are predicted to have substantial impacts on plant function and survival. However, there is considerable uncertainty concerning what drought adjustment is and whether plants can adjust to sustained drought. This review focuses on woody plants and synthesises the evidence for drought adjustment in a selection of key above-ground and below-ground plant traits. We assess whether evaluating the drought adjustment of single traits, or selections of traits that operate on the same plant functional axis (e.g. photosynthetic traits) is sufficient, or whether a multi-trait approach, integrating across multiple axes, is required. We conclude that studies on drought adjustments in woody plants might overestimate the capacity for adjustment to drier environments if spatial studies along gradients are used, without complementary experimental approaches. We provide evidence that drought adjustment is common in above-ground and below-ground traits; however, whether this is adaptive and sufficient to respond to future droughts remains uncertain for most species. To address this uncertainty, we must move towards studying trait integration within and across multiple axes of plant function (e.g. above-ground and below-ground) to gain a holistic view of drought adjustments at the whole-plant scale and how these influence plant survival.
Collapse
Affiliation(s)
- Lucy Rowland
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4RJ, UK
| | | | - Iain P Hartley
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4RJ, UK
| | - Maurizio Mencuccini
- CREAF, Campus de Bellaterra (UAB), Cerdanyola del Vallés, Barcelona, 08193, Spain
- ICREA, Barcelona, 08010, Spain
| |
Collapse
|
7
|
Behzad HM, Arif M, Duan S, Kavousi A, Cao M, Liu J, Jiang Y. Seasonal variations in water uptake and transpiration for plants in a karst critical zone in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160424. [PMID: 36436637 DOI: 10.1016/j.scitotenv.2022.160424] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/13/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Despite substantial drought conditions in the karst critical zone (KCZ), the KCZ landscapes are often covered with forest woody plants. However, it is not well understood how these plants balance water supply and demand to survive in such a water-limited environment. This study investigated the water uptake and transpiration relationships of four coexisting woody species in a subtropical karst forest ecosystem using measurements of microclimate, soil moisture, stable isotopes (δ18O, δ2H, and δ13C), intrinsic water-use efficiency (WUEi), sap flow, and rooting depth. The focus was on identifying differences within- and between-species across soil- and rock-dominated habitats (SDH and RDH) during the rainy growing season (September 2017) and dry season (February 2018). Species across both habitats tended to have higher transpiration with lower WUEi during the rainy season and lower transpiration with higher WUEi during the dry season. Compared to those in the SDH, species in the RDH showed lower transpiration with higher WUEi in both seasons. The dominant water sources were soil water and rainwater for supporting rainy-season transpiration in the SDH and RDH, respectively, and groundwater was the main water source for supporting dry-season transpiration in both habitats. A clear ecohydrological niche differentiation was also revealed among species. Across both habitats, shallower-rooted species with higher soil-water uptake, compared to deeper-rooted species with higher groundwater uptake, showed higher transpiration and lower WUEi during the rainy season and vice versa during the dry season. This study provides integrated insights into how forest woody plants in the KCZ regulate transpiration and WUEi in response to drought stress through interactions with seasonal water sources in the environment.
Collapse
Affiliation(s)
- Hamid M Behzad
- Chongqing Key Laboratory of Karst Environment & School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Muhammad Arif
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China; Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing 400715, China
| | - Shihui Duan
- Chongqing Key Laboratory of Karst Environment & School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Alireza Kavousi
- Institute of Groundwater Management, Technische Universität Dresden, 01069 Dresden, Germany
| | - Min Cao
- Chongqing Key Laboratory of Karst Environment & School of Geographical Sciences, Southwest University, Chongqing 400715, China; School of Earth Sciences, Yunnan University, 650500, China
| | - Jiuchan Liu
- Chongqing Key Laboratory of Karst Environment & School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Yongjun Jiang
- Chongqing Key Laboratory of Karst Environment & School of Geographical Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
8
|
Goodwin MJ, Kerhoulas LP, Zald HSJ, North MP, Hurteau MD. Conifer water-use patterns across temporal and topographic gradients in the southern Sierra Nevada. TREE PHYSIOLOGY 2023; 43:210-220. [PMID: 36263988 DOI: 10.1093/treephys/tpac124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Climate change is increasing the severity and duration of drought events experienced by forest ecosystems. Because water is essential for tree physiological processes, the ability of trees to survive prolonged droughts will largely depend on whether they have access to reliable water sources. While many woody plant species exhibit the ability to shift water sources between different depths of soil and rock water in response to changes in climate and water availability, it is unclear if Sierra Nevada conifers exhibit this plasticity. Here we analysed the δ18O and δ13C values of annual tree rings to determine the water-use patterns of large Sierra Nevada conifers during the 2012-16 California drought and 4 years before this drought event (2004-07). We analysed four species (Pinus jeffreyi Grev. & Balf. (Jeffrey pine), Pinus lambertiana Dougl. (sugar pine), Abies concolor (Gord. & Glend.) Lindl. Ex Hilderbr (white fir) and Calocedrus decurrens (Torr.) Florin (incense-cedar)) across a range of topographic positions to investigate differences in water-use patterns by species and position on the landscape. We found no significant differences in δ18O and δ13C values for the pre-drought and drought periods. This stability in δ18O values suggests that trees did not shift their water-use patterns in response to the 2012-16 drought. We did find species-specific differences in water-use patterns, with incense-cedar exhibiting more depleted δ18O values than all other species. We also found trends that suggest the water source used by a tree may depend on topographic and growing environment attributes such as topographic wetness and the surrounding basal area. Overall, our results suggest that the water source used by trees varies by the species and topographic position, but that Sierra Nevada conifers do not switch their water-use patterns in response to the drought. This lack of plasticity could make Sierra Nevada conifers particularly vulnerable to drought mortality as their historically reliable water sources begin to dry out with climate change.
Collapse
Affiliation(s)
- Marissa J Goodwin
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Lucy P Kerhoulas
- Department of Forestry and Wildland Resources, California State Polytechnic University, Humboldt, Arcata, CA 95521, USA
| | - Harold S J Zald
- USDA Forest Service, Pacific Northwest Research Station, Corvallis, OR 97331, USA
| | - Malcolm P North
- USDA Forest Service, Pacific Southwest Research Station, Mammoth Lakes, CA 93546, USA
| | - Matthew D Hurteau
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
9
|
Kou X, Han W, Kang J. Responses of root system architecture to water stress at multiple levels: A meta-analysis of trials under controlled conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:1085409. [PMID: 36570905 PMCID: PMC9780461 DOI: 10.3389/fpls.2022.1085409] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 05/31/2023]
Abstract
Plants are exposed to increasingly severe drought events and roots play vital roles in maintaining plant survival, growth, and reproduction. A large body of literature has investigated the adaptive responses of root traits in various plants to water stress and these studies have been reviewed in certain groups of plant species at a certain scale. Nevertheless, these responses have not been synthesized at multiple levels. This paper screened over 2000 literatures for studies of typical root traits including root growth angle, root depth, root length, root diameter, root dry weight, root-to-shoot ratio, root hair length and density and integrates their drought responses at genetic and morphological scales. The genes, quantitative trait loci (QTLs) and hormones that are involved in the regulation of drought response of the root traits were summarized. We then statistically analyzed the drought responses of root traits and discussed the underlying mechanisms. Moreover, we highlighted the drought response of 1-D and 2-D root length density (RLD) distribution in the soil profile. This paper will provide a framework for an integrated understanding of root adaptive responses to water deficit at multiple scales and such insights may provide a basis for selection and breeding of drought tolerant crop lines.
Collapse
Affiliation(s)
- Xinyue Kou
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Weihua Han
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Jian Kang
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
10
|
Kahmen A, Basler D, Hoch G, Link RM, Schuldt B, Zahnd C, Arend M. Root water uptake depth determines the hydraulic vulnerability of temperate European tree species during the extreme 2018 drought. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1224-1239. [PMID: 36219537 DOI: 10.1111/plb.13476] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
We took advantage of the European 2018 drought and assessed the mechanisms causing differences in drought vulnerability among mature individuals of nine co-occurring tree species at the Swiss Canopy Crane II site in Switzerland. Throughout the drought we monitored leaf water status and determined native embolism formation in the canopy of the trees as indicators of drought vulnerability. We also determined hydraulic vulnerability thresholds (Ψ12 -, Ψ50 - and Ψ88 -values), corresponding hydraulic safety margins (HSMs) and carbohydrate reserves for all species as well as total average leaf area per tree, and used stable isotopes to assess differences in root water uptake depth among the nine species as variables predicting differences in drought vulnerability among species. Marked differences in drought vulnerability were observed among the nine tree species. Six species maintained their water potentials above hydraulic thresholds, while three species, Fagus sylvatica, Carpinus betulus and Picea abies, were pushed beyond their hydraulic thresholds and showed loss of hydraulic conductivity in their canopies at the end of the drought. Embolism resistance thresholds and associated HSMs did not explain why the co-existing species differed in their drought vulnerability, neither did their degree of isohydry, nor their regulation of carbohydrate reserves. Instead, differences in structural-morphological traits, in particular root water uptake depth, were associated with the risk of reaching hydraulic vulnerability thresholds and embolism formation among the nine species. Our study shows that structural-morphological traits, such as root water uptake depth, determine how quickly different species approach hydraulic vulnerability thresholds during a drought event and can thus explain species differences in drought vulnerability among mature field-grown trees.
Collapse
Affiliation(s)
- A Kahmen
- Department of Environmental Sciences - Botany, University of Basel, Basel, Switzerland
| | - D Basler
- Department of Environmental Sciences - Botany, University of Basel, Basel, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - G Hoch
- Department of Environmental Sciences - Botany, University of Basel, Basel, Switzerland
| | - R M Link
- Ecophysiology and Vegetation Ecology, Universität Würzburg, Würzburg, Germany
| | - B Schuldt
- Ecophysiology and Vegetation Ecology, Universität Würzburg, Würzburg, Germany
| | - C Zahnd
- Department of Environmental Sciences - Botany, University of Basel, Basel, Switzerland
| | - M Arend
- Department of Environmental Sciences - Botany, University of Basel, Basel, Switzerland
| |
Collapse
|
11
|
Petruzzellis F, Tordoni E, Di Bonaventura A, Tomasella M, Natale S, Panepinto F, Bacaro G, Nardini A. Turgor loss point and vulnerability to xylem embolism predict species-specific risk of drought-induced decline of urban trees. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1198-1207. [PMID: 34704333 PMCID: PMC10078640 DOI: 10.1111/plb.13355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Increasing frequency and severity of drought events is posing risks to trees' health, including those planted in urban settlements. Drought-induced decline of urban trees negatively affects ecosystem services of urban green spaces and implies cost for maintenance and removal of plants. We aimed at identifying physiological traits that can explain and predict the species-specific vulnerability to climate change in urban habitats. We assessed the relationships between long-term risk of decline of different tree species in a medium-sized town and their key indicators of drought stress tolerance, i.e. turgor loss point (TLP) and vulnerability to xylem embolism (P50 ). Starting from 2012, the study area experienced several summer seasons with positive anomalies of temperature and negative anomalies of precipitation. This trend was coupled with increasing percentages of urban trees showing signs of crown die-back and mortality. The species-specific risk of decline was higher for species with less negative TLP and P50 values. The relationship between species-specific risk of climate change-induced decline of urban trees and key physiological indicators of drought tolerance confirms findings obtained in natural forests and highlights that TLP and P50 are useful indicators for species selection for tree plantation in towns, to mitigate negative impacts of climate change.
Collapse
Affiliation(s)
- F. Petruzzellis
- Dipartimento di Scienze della VitaUniversità di TriesteTriesteItalia
- Dipartimento di Scienze agroalimentari, ambientali e animaliUniversità di UdineUdineItalia
| | - E. Tordoni
- Dipartimento di Scienze della VitaUniversità di TriesteTriesteItalia
- Institute of Ecology and Earth ScienceUniversity of TartuTartuEstonia
| | - A. Di Bonaventura
- Dipartimento di Scienze della VitaUniversità di TriesteTriesteItalia
| | - M. Tomasella
- Dipartimento di Scienze della VitaUniversità di TriesteTriesteItalia
| | - S. Natale
- Dipartimento di Scienze della VitaUniversità di TriesteTriesteItalia
| | - F. Panepinto
- Unità Tecnica Alberature e ParchiServizio Strade e Verde PubblicoComune di TriesteTriesteItalia
| | - G. Bacaro
- Dipartimento di Scienze della VitaUniversità di TriesteTriesteItalia
| | - A. Nardini
- Dipartimento di Scienze della VitaUniversità di TriesteTriesteItalia
| |
Collapse
|
12
|
Wang X, Schönbeck L, Gessler A, Yang Y, Rigling A, Yu D, He P, Li M. The effects of previous summer drought and fertilization on winter non-structural carbon reserves and spring leaf development of downy oak saplings. FRONTIERS IN PLANT SCIENCE 2022; 13:1035191. [PMID: 36407605 PMCID: PMC9669721 DOI: 10.3389/fpls.2022.1035191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
It is still unknown whether the previous summer season drought and fertilization will affect the winter non-structural carbohydrate (NSC) reserves, spring leaf development, and mortality of trees in the next year. We, therefore, conducted an experiment with Quercus pubescens (downy oaks) saplings grown under four drought levels from field capacity (well-watered; ~25% volumetric water content) to wilting point (extreme drought; ~6%), in combination with two fertilizer treatments (0 vs. 50 kg/ha/year blended) for one growing season to answer this question. We measured the pre- and post-winter NSC, and calculated the over-winter NSC consumption in storage tissues (i.e. shoots and roots) following drought and fertilization treatment, and recorded the spring leaf phenology, leaf biomass, and mortality next year. The results showed that, irrespective of drought intensity, carbon reserves were abundant in storage tissues, especially in roots. Extreme drought did not significantly alter NSC levels in tissues, but delayed the spring leaf expansion and reduced the leaf biomass. Previous season fertilization promoted shoot NSC use in extreme drought-stressed saplings over winter (showing reduced carbon reserves in shoots after winter), but it also showed positive effects on survival next year. We conclude that: (1) drought-stressed downy oak saplings seem to be able to maintain sufficient mobile carbohydrates for survival, (2) fertilization can alleviate the negative effects of extreme drought on survival and recovery growth of tree saplings.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Jiyang College, Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Leonie Schönbeck
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, United States
- Plant Ecology Research Laboratory, School of Architecture, Civil and Environmental Engineering, Swiss Federal Institute of Technology Lausanne, Lausanne, Geneva, Switzerland
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, Eidgenössische Technische Hochschule Zürich (ETH Zürich), Zurich, Switzerland
| | - Yue Yang
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
- College of Ecology and Environment, Hainan University, Haikou, Hainan, China
| | - Andreas Rigling
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, Eidgenössische Technische Hochschule Zürich (ETH Zürich), Zurich, Switzerland
| | - Dapao Yu
- Institute of Applied Ecology, Chinese Academy of Sciences (CAS), Shenyang, Liaoning, China
| | - Peng He
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Maihe Li
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, School of Geographical Sciences, Northeast Normal University, Changchun, Jilin, China
- School of Life Science, Hebei University, Baoding, Hebei, China
| |
Collapse
|
13
|
Qin T, Kazim A, Wang Y, Richard D, Yao P, Bi Z, Liu Y, Sun C, Bai J. Root-Related Genes in Crops and Their Application under Drought Stress Resistance—A Review. Int J Mol Sci 2022; 23:ijms231911477. [PMID: 36232779 PMCID: PMC9569943 DOI: 10.3390/ijms231911477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Crop growth and development are frequently affected by biotic and abiotic stresses. The adaptation of crops to stress is mostly achieved by regulating specific genes. The root system is the primary organ for nutrient and water uptake, and has an important role in drought stress response. The improvement of stress tolerance to increase crop yield potential and yield stability is a traditional goal of breeders in cultivar development using integrated breeding methods. An improved understanding of genes that control root development will enable the formulation of strategies to incorporate stress-tolerant genes into breeding for complex agronomic traits and provide opportunities for developing stress-tolerant germplasm. We screened the genes associated with root growth and development from diverse plants including Arabidopsis, rice, maize, pepper and tomato. This paper provides a theoretical basis for the application of root-related genes in molecular breeding to achieve crop drought tolerance by the improvement of root architecture.
Collapse
Affiliation(s)
- Tianyuan Qin
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Ali Kazim
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan
| | - Yihao Wang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Dormatey Richard
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Panfeng Yao
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhenzhen Bi
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuhui Liu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Chao Sun
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: (C.S.); (J.B.); Tel.: +86-189-9319-8496 (C.S.); +86-181-0942-4020 (J.B.)
| | - Jiangping Bai
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: (C.S.); (J.B.); Tel.: +86-189-9319-8496 (C.S.); +86-181-0942-4020 (J.B.)
| |
Collapse
|
14
|
N addition alters growth, non-structural carbohydrates, and C:N:P stoichiometry of Reaumuria soongorica seedlings in Northwest China. Sci Rep 2022; 12:15390. [PMID: 36100614 PMCID: PMC9470663 DOI: 10.1038/s41598-022-19280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Reaumuria soongorica is an important biological barrier for ecological protection in the Gobi Desert in northwestern China, where soil nitrogen availability is low. N deposition has recently increased significantly in Gobi Desert, and the responses of R. soongorica to N enrichment may become a problem for ecological restoration and protection. However, little is known about the effects of N addition on the biomass, non-structural carbohydrates (NSC), and carbon:nitrogen:phosphorus (C:N:P) stoichiometry of R. soongorica in this region. Here, we examined changes in biomass, NSC and C:N:P ratios of different organs of R. soongorica seedlings in four N addition treatments: 0 (N0), 4.6 (N1), 9.2 (N2), and 13.8 (N3) g m−2 year−1. N addition up to 9.2 g m−2 year−1 significantly increased the biomass of different organs, simultaneously increasing the belowground: aboveground ratio of R. soongorica seedlings. Root NSC concentrations significantly increased under all N addition treatments, but leaf and stem NSC concentrations only increased under the N1 and N2 addition treatments. Nitrogen addition enhanced the soluble sugar concentrations (SSC) of leaves and roots, and reduced starch concentrations (SC) of all organs. Stem and root N concentrations significantly increased under the N2 and N3 treatments, and leaf N concentrations only increased under the N3 treatment, but N addition had no significant effect on plant C and P concentrations. Leaf and stem C:N ratios decreased significantly under the N2 and N3 treatments, but root C:N decreased significantly in all N addition treatments. The N3 treatment significantly increased the N:P ratio of all organs. N addition significantly enhanced available N (AN), available P (AP) and total phosphorus (TP) in rhizosphere soil. Our results suggest that N addition alters the biomass, NSC, N concentrations, C:N and N:P ratios of all plant organs, but roots responded more strongly than stems or leaves to N addition, potentially allowing the plants to absorb more water from the arid soil in this region ensuring the survival of R. soongorica seedlings. Rhizosphere soil AP, AN and TP concentrations were important factors affecting the NSC concentrations and stoichiometric characteristics of R. soongorica.
Collapse
|
15
|
Chen Q, Timmermans J, Wen W, van Bodegom PM. A multi-metric assessment of drought vulnerability across different vegetation types using high resolution remote sensing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154970. [PMID: 35378176 DOI: 10.1016/j.scitotenv.2022.154970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/24/2021] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Drought impact monitoring is of crucial importance in light of climate change. However, we lack an understanding of the concomitant responses of ecosystems to a variety of drought characteristics and the links between drought and ecosystem anomaly characteristics for a comprehensive set of vegetation types to provide needed information for water management. In response, this study presents a new framework that allows us to explore the relationship between drought and its impact on ecosystems in greater detail. Specifically, our framework focuses on estimating jointly the hydrological and ecosystem temporal evolution and anomalies around a drought event using four pairs of metrics: onset-onset, duration-duration, intensity-intensity, and severity-severity of drought and vegetation damage. Additionally, we incorporated a metric on vegetation vulnerability based on changes in damage severity along a gradient of increasing drought severity. Based on this framework, we evaluated drought vulnerability patterns of various vegetation types across the Netherlands and Belgium in 2018 at high spatiotemporal resolution. Our results reveal a differential vulnerability of vegetation between ecosystems with increasing drought severity, which could aid future drought impact predictions. In particular, mosaic grasslands and tree/shrub croplands are highly sensitive to increasing drought severity. Individual characteristics (onset, duration, intensity and severity) of drought and vegetation damage behave differently in various vegetation types. For instance, broadleaved forests respond faster than other forests, while mixed forests suffer less damage than other types. The early warning threshold to drought for most vegetation types is around a Standardized Precipitation Evapotranspiration Index (SPEI) value of -1. The characterization of a suite of drought response characteristics through our impact analysis framework can be used in a wide variety of regions to understand current and possible future responses to drought.
Collapse
Affiliation(s)
- Qi Chen
- Institute of Environmental Sciences (CML), Leiden University, 9518, 2300 RA Leiden, the Netherlands.
| | - Joris Timmermans
- Institute of Environmental Sciences (CML), Leiden University, 9518, 2300 RA Leiden, the Netherlands; Virtual Laboratory and Innovation Centre (VLIC), Lifewatch ERIC, Science Park 904, 1098 XH Amsterdam, the Netherlands; Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1090 GE Amsterdam, the Netherlands.
| | - Wen Wen
- Institute of Environmental Sciences (CML), Leiden University, 9518, 2300 RA Leiden, the Netherlands.
| | - Peter M van Bodegom
- Institute of Environmental Sciences (CML), Leiden University, 9518, 2300 RA Leiden, the Netherlands.
| |
Collapse
|
16
|
Jia G, Chen L, Yu X, Liu Z. Soil water stress overrides the benefit of water-use efficiency from rising CO 2 and temperature in a cold semi-arid poplar plantation. PLANT, CELL & ENVIRONMENT 2022; 45:1172-1186. [PMID: 35037279 DOI: 10.1111/pce.14260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 09/15/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The counteractive effect of atmospheric CO2 (ca ) enrichment and drought stress on tree growth results in great uncertainty in the growth patterns of forest plantations in cold semi-arid regions. We analysed tree ring chronologies and carbon isotopes in Populus simonii plantations in cold semi-arid areas in northern China over the past four decades. We hypothesized that the hydraulic stress from drought would override the stimulating effect of increasing ca and temperature (T) on stem growth (basal area increment [BAI]). We found the stimulating effect of rising ca and T on the growth, indicated by continuous increase of intrinsic water-use efficiency in all stands and a positive correlation between T and BAI. However, these effects failed to alleviate the negative impacts of drought on tree growth. Concurrent acceleration of BAI reversed during the intensive drought episodes. Water stress resulted from inaccessibility of roots to deep soil water rather than from lack of precipitation, suggested by the decoupling of BAI from precipitation and vapour pressure deficit. Local soil water limitation might also cause greater stomatal regulation in declining trees, indicated by lower intercellular CO2 concentration. Thus, site-specific soil moisture conditions growth sensitivity to global warming resulting in site-specific decline episodes in drought-prone areas.
Collapse
Affiliation(s)
- Guodong Jia
- Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, China
- School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Lixin Chen
- Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, China
- School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Xinxiao Yu
- Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, China
- School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Ziqiang Liu
- School of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
17
|
Water Use Characteristics of Populus euphratica Oliv. and Tamarix chinensis Lour. at Different Growth Stages in a Desert Oasis. FORESTS 2022. [DOI: 10.3390/f13020236] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Understanding the water use characteristics of vegetation is crucial for guiding the rational allocation of water resources and the restoration of sustainable vegetation in natural oases in arid desert areas. To analyze the water use characteristics of Populus euphratica Oliv. and Tamarix chinensis Lour. at different stages of growth in the Daliyabuyi natural pristine oasis in northwestern China, the δ18O values of plant xylem of 15 sample trees with different sizes per species, potential water sources (i.e., river water, soil water, and groundwater), and the δ13C values of plant leaves of sample trees were measured in August 2019 and June 2020. The results show that the δ18O values of the xylem water of P. euphratica at different growth stages were similar, but water uptake proportions from deep soil water changed in P. euphratica trees at different growth stages between years with (2019) and without (2020) river water. In contrast, the main water source of young T. chinensis shrubs was deep soil water, and those of mature and overmature shrubs were deep soil water and groundwater in 2020. However, the plant leaf water use efficiency (WUE) of the P. euphratica and T. chinensis were higher without river water. Overall, the water uptake proportion from groundwater and the WUE for T. chinensis were higher than those for P. euphratica, and thus, T. chinensis was more dependent on groundwater. This means that vegetation types and growth stages are the essential factors to be considered in ecological restoration management, which can enhance the effectiveness of vegetation restoration strategies.
Collapse
|
18
|
Santos M, Nicodemos J, Santos MG. Dynamics of nonstructural carbohydrates in a deciduous woody species from tropical dry forests under recurrent water deficit. PHYSIOLOGIA PLANTARUM 2022; 174:e13632. [PMID: 35060144 DOI: 10.1111/ppl.13632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
In tropical dry forests, both the dry and the short rainy seasons have become increasingly irregular. This study replicated these conditions to investigate the effects of two water deficit cycles on Cenostigma microphyllum seedlings. Impacts were assessed by measuring growth traits, water relations, gas exchange, and dynamics of nonstructural carbohydrate (NSC) content in the whole plant under greenhouse conditions in potted plants. In the first water deficit cycle, the leaf relative water content (RWC) was maintained at the expense of a rapid drop in gas exchange. Furthermore, there was a slight accumulation of NSC, mainly soluble sugars (SS) in the stem wood and roots, to the detriment of height and stem diameter growth. In the second cycle, the leaf RWC remained 40% higher than the lowest level measured in the first water deficit, and CO2 assimilation remained twice as long in previously stressed plants. The SS content of the stems and roots was strongly correlated with the predawn leaf RWC. No strong reduction was observed in the bark stock even with the gradual increase of SS in the wood. Our data suggest that under recurrent water deficit prior to leaf drop, CO2 assimilation is maintained, with the highest possible leaf RWC, under reduced stomatal conductance. This assists in SS transport to wood and root, which is no longer used to support the growth of the aboveground parts.
Collapse
Affiliation(s)
- Mariana Santos
- Laboratório de Fisiologia Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Brazil
| | - Joana Nicodemos
- Laboratório de Fisiologia Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Brazil
| | - Mauro G Santos
- Laboratório de Fisiologia Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
19
|
Nardini A. Can trees harden up to survive global change-type droughts? TREE PHYSIOLOGY 2021; 41:2004-2007. [PMID: 34542153 DOI: 10.1093/treephys/tpab128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy
| |
Collapse
|
20
|
Liu C, Huang Y, Wu F, Liu W, Ning Y, Huang Z, Tang S, Liang Y. Plant adaptability in karst regions. JOURNAL OF PLANT RESEARCH 2021; 134:889-906. [PMID: 34258691 DOI: 10.1007/s10265-021-01330-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Karst ecosystems are formed by dissolution of soluble rocks, usually with conspicuous landscape features, such as sharp peaks, steep slopes and deep valleys. The plants in karst regions develop special adaptability. Here, we reviewed the research progresses on plant adaptability in karst regions, including drought, high temperature and light, high-calcium stresses responses and the strategies of water utilization for plants, soil nutrients impact, human interference and geographical traits on karst plants. Drought, high temperature and light change their physiological and morphological structures to adapt to karst environments. High-calcium and soil nutrients can transfer surplus nutrients to special parts of plants to avoid damage of high nutrient concentration. Therefore, karst plants can make better use of limited water. Human interference also affects geographical distribution of karst plants and their growing environment. All of these aspects may be analyzed to provide guidance and suggestions for related research on plant adaptability mechanisms.
Collapse
Affiliation(s)
- Chunni Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Life Science, Guangxi Normal University, Ministry of Education, Guilin, China
| | - Yang Huang
- School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin, China
| | - Feng Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Life Science, Guangxi Normal University, Ministry of Education, Guilin, China
| | - Wenjing Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Life Science, Guangxi Normal University, Ministry of Education, Guilin, China
| | - Yiqiu Ning
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Life Science, Guangxi Normal University, Ministry of Education, Guilin, China
| | - Zhenrong Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Life Science, Guangxi Normal University, Ministry of Education, Guilin, China
| | - Shaoqing Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Life Science, Guangxi Normal University, Ministry of Education, Guilin, China
| | - Yu Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Life Science, Guangxi Normal University, Ministry of Education, Guilin, China.
| |
Collapse
|
21
|
Chitra‐Tarak R, Xu C, Aguilar S, Anderson‐Teixeira KJ, Chambers J, Detto M, Faybishenko B, Fisher RA, Knox RG, Koven CD, Kueppers LM, Kunert N, Kupers SJ, McDowell NG, Newman BD, Paton SR, Pérez R, Ruiz L, Sack L, Warren JM, Wolfe BT, Wright C, Wright SJ, Zailaa J, McMahon SM. Hydraulically-vulnerable trees survive on deep-water access during droughts in a tropical forest. THE NEW PHYTOLOGIST 2021; 231:1798-1813. [PMID: 33993520 PMCID: PMC8457149 DOI: 10.1111/nph.17464] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/29/2021] [Indexed: 05/24/2023]
Abstract
Deep-water access is arguably the most effective, but under-studied, mechanism that plants employ to survive during drought. Vulnerability to embolism and hydraulic safety margins can predict mortality risk at given levels of dehydration, but deep-water access may delay plant dehydration. Here, we tested the role of deep-water access in enabling survival within a diverse tropical forest community in Panama using a novel data-model approach. We inversely estimated the effective rooting depth (ERD, as the average depth of water extraction), for 29 canopy species by linking diameter growth dynamics (1990-2015) to vapor pressure deficit, water potentials in the whole-soil column, and leaf hydraulic vulnerability curves. We validated ERD estimates against existing isotopic data of potential water-access depths. Across species, deeper ERD was associated with higher maximum stem hydraulic conductivity, greater vulnerability to xylem embolism, narrower safety margins, and lower mortality rates during extreme droughts over 35 years (1981-2015) among evergreen species. Species exposure to water stress declined with deeper ERD indicating that trees compensate for water stress-related mortality risk through deep-water access. The role of deep-water access in mitigating mortality of hydraulically-vulnerable trees has important implications for our predictive understanding of forest dynamics under current and future climates.
Collapse
|
22
|
Fajardo A, Piper FI. How to cope with drought and not die trying: Drought acclimation across tree species with contrasting niche breadth. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Alex Fajardo
- Instituto de Investigación Interdisciplinario (I3)Universidad de Talca Talca Chile
| | - Frida I. Piper
- Instituto de Investigación Interdisciplinario (I3)Universidad de Talca Talca Chile
| |
Collapse
|
23
|
Aranda I, Cadahía E, Fernández de Simón B. Specific leaf metabolic changes that underlie adjustment of osmotic potential in response to drought by four Quercus species. TREE PHYSIOLOGY 2021; 41:728-743. [PMID: 33231684 DOI: 10.1093/treephys/tpaa157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/11/2020] [Indexed: 05/14/2023]
Abstract
Osmotic adjustment is almost ubiquitous as a mechanism of response to drought in many forest species. Recognized as an important mechanism of increasing turgor under water stress, the metabolic basis for osmotic adjustment has been described in only a few species. We set an experiment with four species of the genus Quercus ranked according to drought tolerance and leaf habit from evergreen to broad-leaved deciduous. A cycle of watering deprivation was imposed on seedlings, resulting in well-watered (WW) and water-stressed (WS) treatments, and their water relations were assessed from pressure-volume curves. Leaf predawn water potential (Ψpd) significantly decreased in WS seedlings, which was followed by a drop in leaf osmotic potential at full turgor (Ψπ100). The lowest values of Ψπ100 followed the ranking of decreasing drought tolerance: Quercus ilex L. < Quercus faginea Lam. < Quercus pyrenaica Willd. < Quercus petraea Matt. Liebl. The leaf osmotic potential at the turgor loss point (ΨTLP) followed the same pattern as Ψπ100 across species and treatments. The pool of carbohydrates, some organic acids and cyclitols were the main osmolytes explaining osmotic potential across species, likewise to the osmotic adjustment assessed from the decrease in leaf Ψπ100 between WW and WS seedlings. Amino acids were very responsive to WS, particularly γ-aminobutyric acid in Q. pyrenaica, but made a relatively minor contribution to osmotic potential compared with other groups of compounds. In contrast, the cyclitol proto-quercitol made a prominent contribution to the changes in osmotic potential regardless of watering treatment or species. However, different metabolites, such as quinic acid, played a more important role in osmotic adjustment in Q. ilex, distinguishing it from the other species studied. In conclusion, while osmotic adjustment was present in all four Quercus species, the molecular processes underpinning this response differed according to their phylogenetic history and specific ecology.
Collapse
Affiliation(s)
- Ismael Aranda
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación Forestal, Carretera Coruña Km 7.5, E-28040 Madrid, Spain
- INAGEA, Instituto de Investigaciones Agroambientales y de Economía del Agua, 07122 Palma de Mallorca, Spain
| | - Estrella Cadahía
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación Forestal, Carretera Coruña Km 7.5, E-28040 Madrid, Spain
| | - Brígida Fernández de Simón
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación Forestal, Carretera Coruña Km 7.5, E-28040 Madrid, Spain
| |
Collapse
|
24
|
López R, Cano FJ, Martin-StPaul NK, Cochard H, Choat B. Coordination of stem and leaf traits define different strategies to regulate water loss and tolerance ranges to aridity. THE NEW PHYTOLOGIST 2021; 230:497-509. [PMID: 33452823 DOI: 10.1111/nph.17185] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Adaptation to drought involves complex interactions of traits that vary within and among species. To date, few data are available to quantify within-species variation in functional traits and they are rarely integrated into mechanistic models to improve predictions of species response to climate change. We quantified intraspecific variation in functional traits of two Hakea species growing along an aridity gradient in southeastern Australia. Measured traits were later used to parameterise the model SurEau to simulate a transplantation experiment to identify the limits of drought tolerance. Embolism resistance varied between species but not across populations. Instead, populations adjusted to drier conditions via contrasting sets of trait trade-offs that facilitated homeostasis of plant water status. The species from relatively mesic climate, Hakea dactyloides, relied on tight stomatal control whereas the species from xeric climate, Hakea leucoptera dramatically increased Huber value and leaf mass per area, while leaf area index (LAI) and epidermal conductance (gmin ) decreased. With trait variability, SurEau predicts the plasticity of LAI and gmin buffers the impact of increasing aridity on population persistence. Knowledge of within-species variability in multiple drought tolerance traits will be crucial to accurately predict species distributional limits.
Collapse
Affiliation(s)
- Rosana López
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Francisco Javier Cano
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | | | - Hervé Cochard
- Université Clermont-Auvergne, INRA, PIAF, Clermont-Ferrand, 63000, France
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
25
|
Comparative Evaluation of Microwave L-Band VOD and Optical NDVI for Agriculture Drought Detection over Central Europe. REMOTE SENSING 2021. [DOI: 10.3390/rs13071251] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Agricultural droughts impose many economic and social losses on various communities. Most of the effective tools developed for agricultural drought assessment are based on vegetation indices (VIs). The aim of this study is to compare the response of two commonly used VIs to meteorological droughts—Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) and Soil Moisture and Ocean Salinity (SMOS) vegetation optical depth (VOD). For this purpose, meteorological droughts are calculated by using a standardized precipitation index over more than 24,000 pixels at 0.25° × 0.25° spatial resolution located in central Europe. Then, to evaluate the capability of VIs in the detection of agricultural droughts, the average values of VIs anomalies during dry and wet periods obtained from meteorological droughts are statistically compared to each other. Additionally, to assess the response time of VIs to meteorological droughts, a time lag of one to six months is applied to the anomaly time series of VIs during their comparison. Results show that over 35% of the considered pixels NDVI, over 22% of VOD, and over 8% of both VIs anomalies have a significant response to drought events, while the significance level of these differences and the response time of VIs vary with different land use and climate conditions.
Collapse
|
26
|
Torres-García MT, Salinas-Bonillo MJ, Gázquez-Sánchez F, Fernández-Cortés Á, Querejeta JI, Cabello J. Squandering water in drylands: the water-use strategy of the phreatophyte Ziziphus lotus in a groundwater-dependent ecosystem. AMERICAN JOURNAL OF BOTANY 2021; 108:236-248. [PMID: 33586136 DOI: 10.1002/ajb2.1606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/19/2020] [Indexed: 06/12/2023]
Abstract
PREMISE Water is the most limiting factor in dryland ecosystems, and plants are adapted to cope with this constraint. Particularly vulnerable are phreatophytic plants from groundwater-dependent ecosystems (GDEs) in regions that have to face water regime alterations due to the impacts of climate and land-use changes. METHODS We investigated two aspects related to the water-use strategy of a keystone species that dominates one of the few terrestrial GDEs in European drylands (Ziziphus lotus): where it obtains water and how it regulates its use. We (1) evaluated plants' water sources and use patterns using a multiple-isotope approach (δ2 H, δ18 O, and Δ13 C); (2) assessed the regulation of plant water potential by characterizing the species on an isohydric-anisohydric continuum; and (3) evaluated plants' response to increasing water stress along a depth-to-groundwater (DTGW) gradient by measuring foliar gas exchange and nutrient concentrations. RESULTS Ziziphus lotus behaves as a facultative or partial phreatophyte with extreme anisohydric stomatal regulation. However, as DTGW increased, Z. lotus (1) reduced the use of groundwater, (2) reduced total water uptake, and (3) limited transpiration water loss while increasing water-use efficiency. We also found a physiological threshold at 14 m depth to groundwater, which could indicate maximum rooting length beyond which optimal plant function could not be sustained. CONCLUSIONS Species such as Z. lotus survive by squandering water in drylands because of a substantial groundwater uptake. However, the identification of DTGW thresholds indicates that drawdowns in groundwater level would jeopardize the functioning of the GDE.
Collapse
Affiliation(s)
- M Trinidad Torres-García
- Department of Biology and Geology, Universidad de Almería, Carretera de Sacramento s.n, La Cañada de San Urbano, Almería, 04120, Spain
- Andalusian Centre for the Monitoring and Assessment of Global Change (CAESCG), University of Almería, Spain
| | - María J Salinas-Bonillo
- Department of Biology and Geology, Universidad de Almería, Carretera de Sacramento s.n, La Cañada de San Urbano, Almería, 04120, Spain
- Andalusian Centre for the Monitoring and Assessment of Global Change (CAESCG), University of Almería, Spain
| | - Fernando Gázquez-Sánchez
- Department of Biology and Geology, Universidad de Almería, Carretera de Sacramento s.n, La Cañada de San Urbano, Almería, 04120, Spain
- Andalusian Centre for the Monitoring and Assessment of Global Change (CAESCG), University of Almería, Spain
| | - Ángel Fernández-Cortés
- Department of Biology and Geology, Universidad de Almería, Carretera de Sacramento s.n, La Cañada de San Urbano, Almería, 04120, Spain
- Andalusian Centre for the Monitoring and Assessment of Global Change (CAESCG), University of Almería, Spain
| | - José I Querejeta
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Murcia, Spain
| | - Javier Cabello
- Department of Biology and Geology, Universidad de Almería, Carretera de Sacramento s.n, La Cañada de San Urbano, Almería, 04120, Spain
- Andalusian Centre for the Monitoring and Assessment of Global Change (CAESCG), University of Almería, Spain
| |
Collapse
|
27
|
Ding Y, Nie Y, Chen H, Wang K, Querejeta JI. Water uptake depth is coordinated with leaf water potential, water-use efficiency and drought vulnerability in karst vegetation. THE NEW PHYTOLOGIST 2021; 229:1339-1353. [PMID: 32989748 DOI: 10.1111/nph.16971] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Root access to bedrock water storage or groundwater is an important trait allowing plant survival in seasonally dry environments. However, the degree of coordination between water uptake depth, leaf-level water-use efficiency (WUEi) and water potential in drought-prone plant communities is not well understood. We conducted a 135-d rainfall exclusion experiment in a subtropical karst ecosystem with thin skeletal soils to evaluate the responses of 11 co-occurring woody species of contrasting life forms and leaf habits to a severe drought during the wet growing season. Marked differences in xylem water isotopic composition during drought revealed distinct ecohydrological niche separation among species. The contrasting behaviour of leaf water potential in coexisting species during drought was largely explained by differences in root access to deeper, temporally stable water sources. Smaller-diameter species with shallower water uptake, more negative water potentials and lower WUEi showed extensive drought-induced canopy defoliation and/or mortality. By contrast, larger-diameter species with deeper water uptake, higher leaf-level WUEi and more isohydric behaviour survived drought with only moderate canopy defoliation. Severe water limitation imposes strong environmental filtering and/or selective pressures resulting in tight coordination between tree diameter, water uptake depth, iso/anisohydric behaviour, WUEi and drought vulnerability in karst plant communities.
Collapse
Affiliation(s)
- Yali Ding
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang, Guangxi, 547100, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunpeng Nie
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang, Guangxi, 547100, China
| | - Hongsong Chen
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang, Guangxi, 547100, China
| | - Kelin Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang, Guangxi, 547100, China
| | - José I Querejeta
- Soil and Water Conservation Department, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, E30100, Spain
| |
Collapse
|
28
|
Walthert L, Ganthaler A, Mayr S, Saurer M, Waldner P, Walser M, Zweifel R, von Arx G. From the comfort zone to crown dieback: Sequence of physiological stress thresholds in mature European beech trees across progressive drought. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141792. [PMID: 33207466 DOI: 10.1016/j.scitotenv.2020.141792] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Drought responses of mature trees are still poorly understood making it difficult to predict species distributions under a warmer climate. Using mature European beech (Fagus sylvatica L.), a widespread and economically important tree species in Europe, we aimed at developing an empirical stress-level scheme to describe its physiological response to drought. We analysed effects of decreasing soil and leaf water potential on soil water uptake, stem radius, native embolism, early defoliation and crown dieback with comprehensive measurements from overall nine hydrologically distinct beech stands across Switzerland, including records from the exceptional 2018 drought and the 2019/2020 post-drought period. Based on the observed responses to decreasing water potential we derived the following five stress levels: I (predawn leaf water potential >-0.4 MPa): no detectable hydraulic limitations; II (-0.4 to -1.3): persistent stem shrinkage begins and growth ceases; III (-1.3 to -2.1): onset of native embolism and defoliation; IV (-2.1 to -2.8): onset of crown dieback; V (<-2.8): transpiration ceases and crown dieback is >20%. Our scheme provides, for the first time, quantitative thresholds regarding the physiological downregulation of mature European beech trees under drought and therefore synthesises relevant and fundamental information for process-based species distribution models. Moreover, our study revealed that European beech is drought vulnerable, because it still transpires considerably at high levels of embolism and because defoliation occurs rather as a result of embolism than preventing embolism. During the 2018 drought, an exposure to the stress levels III-V of only one month was long enough to trigger substantial crown dieback in beech trees on shallow soils. On deep soils with a high water holding capacity, in contrast, water reserves in deep soil layers prevented drought stress in beech trees. This emphasises the importance to include local data on soil water availability when predicting the future distribution of European beech.
Collapse
Affiliation(s)
- Lorenz Walthert
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland.
| | - Andrea Ganthaler
- Department of Botany, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria
| | - Stefan Mayr
- Department of Botany, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria
| | - Matthias Saurer
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Peter Waldner
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Marco Walser
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Roman Zweifel
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| |
Collapse
|
29
|
Nardini A, Petruzzellis F, Marusig D, Tomasella M, Natale S, Altobelli A, Calligaris C, Floriddia G, Cucchi F, Forte E, Zini L. Water 'on the rocks': a summer drink for thirsty trees? THE NEW PHYTOLOGIST 2021; 229:199-212. [PMID: 32772381 DOI: 10.1111/nph.16859] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Drought-induced tree mortality frequently occurs in patches with different spatial and temporal distributions, which is only partly explained by inter- and intraspecific variation in drought tolerance. We investigated whether bedrock properties, with special reference to rock water storage capacity, affects tree water status and drought response in a rock-dominated landscape. We measured primary porosity and available water content of breccia (B) and dolostone (D) rocks. Saplings of Fraxinus ornus were grown in pots filled with soil or soil mixed with B and D rocks, and subjected to an experimental drought. Finally, we measured seasonal changes in water status of trees in field sites overlying B or D bedrock. B rocks were more porous and stored more available water than D rocks. Potted saplings grown with D rocks had less biomass and suffered more severe water stress than those with B rocks. Trees in sites with B bedrock had more favourable water status than those on D bedrock which also suffered drought-induced canopy dieback. Bedrock represents an important water source for plants under drought. Different bedrock features translate into contrasting below-ground water availability, leading to landscape-level heterogeneity of the impact of drought on tree water status and dieback.
Collapse
Affiliation(s)
- Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, 34127, Italia
| | - Francesco Petruzzellis
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, 34127, Italia
| | - Daniel Marusig
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, 34127, Italia
- Dipartimento di Scienze delle Produzioni Vegetali Sostenibili, Università Cattolica del Sacro Cuore, Via E. Parmense 84, Piacenza, 29122, Italia
| | - Martina Tomasella
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, 34127, Italia
| | - Sara Natale
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, 34127, Italia
| | - Alfredo Altobelli
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, 34127, Italia
| | - Chiara Calligaris
- Dipartimento di Matematica e Geoscienze, Università di Trieste, Via E. Weiss 2, Trieste, 34128, Italia
| | - Gabriele Floriddia
- Dipartimento di Matematica e Geoscienze, Università di Trieste, Via E. Weiss 2, Trieste, 34128, Italia
| | - Franco Cucchi
- Dipartimento di Matematica e Geoscienze, Università di Trieste, Via E. Weiss 2, Trieste, 34128, Italia
| | - Emanuele Forte
- Dipartimento di Matematica e Geoscienze, Università di Trieste, Via E. Weiss 2, Trieste, 34128, Italia
| | - Luca Zini
- Dipartimento di Matematica e Geoscienze, Università di Trieste, Via E. Weiss 2, Trieste, 34128, Italia
| |
Collapse
|
30
|
Lihui M, Xiaoli L, Jie C, Youke W, Jingui Y. Effects of Slope Aspect and Rainfall on Belowground Deep Fine Root Traits and Aboveground Tree Height. FRONTIERS IN PLANT SCIENCE 2021; 12:684468. [PMID: 34737758 PMCID: PMC8562384 DOI: 10.3389/fpls.2021.684468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/27/2021] [Indexed: 05/02/2023]
Abstract
The vertical root distribution and rooting depth are the main belowground plant functional traits used to indicate drought resistance in arid and semiarid regions. The effects of the slope aspect on the aboveground traits are visible but not the belowground deep root traits. We aimed to investigate the fine root traits of the locust tree (Robinia pseudoacacia L.) planted on southerly and northerly aspects, and the variations in the rooting depth in regions with different rainfall, as well as assessing how deep rooting, might affect the response to drought in a loess region. We selected three study sites with different rainfall amounts, with six sampling plots at each site (three each with southerly and northerly aspects). Soil core samples were collected down to the depth where no roots were present. The locust trees tended to develop deeper fine roots rather than greater heights. The tree height and diameter were greater for locust trees on northerly aspects, whereas trees on southerly aspects had significantly deeper rooting depths. Fine root traits (root length, root area, and root dry weight density) were higher in the southerly aspect for both Changwu and Ansai, but lower in Suide. The ratio of the root front depth tree height ranged from 1.04 to 3.17, which was higher on southerly than northerly aspects, and it increased as the rainfall decreased. Locust tree growth traits (belowground fine root and aboveground tree height) were positively correlated with the mean annual rainfall. The soil moisture content of the topsoil decreased as the rainfall decreased, but the pattern varied in the deep layer. Our results suggest that the variations in the belowground rooting depth under different slope aspects may be related to plant survival strategies. The vertical extension of the rooting depth and tree height may be key functional traits that determine plant growth in drought-prone regions.
Collapse
Affiliation(s)
- Ma Lihui
- Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, China
| | - Liu Xiaoli
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, China
- *Correspondence: Liu Xiaoli,
| | - Chai Jie
- Language Culture College, Northwest A&F University, Yangling, China
| | - Wang Youke
- Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, China
| | - Yang Jingui
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
31
|
Li Y, Xu Y, Chen Y, Ling L, Jiang Y, Duan H, Liu J. Effects of drought regimes on growth and physiological traits of a typical shrub species in subtropical China. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
32
|
Guo T, Tian C, Chen C, Duan Z, Zhu Q, Sun LZ. Growth and carbohydrate dynamic of perennial ryegrass seedlings during PEG-simulated drought and subsequent recovery. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:85-93. [PMID: 32535324 DOI: 10.1016/j.plaphy.2020.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Due to the increasing occurrence of drought events, drought recovery has become equally important as drought resistance for long-term growth and survival of plants. However, information regarding the mechanism that controls growth recovery of herbaceous perennials is not available. In this study, perennial ryegrass (Lolium perenne) was rewatered after eight-day exposure to three drought intensities simulated by polyethylene glycol-6000. The growth, nonstructural carbohydrates (NSC, i.e. sucrose, glucose, fructose and starch), shoot δ13C, and activities of enzymes for sucrose conversion were monitored for 24 days after rewatering, allowing investigation of the dynamic of NSCs and its relation with growth in the recovery phase. In response to drought, growth and NSC content decreased mainly in shoot rather than root, and the total dry matter was negatively correlated to shoot δ13C. After rewatering, the growth of drought-treated groups still lagged behind that of control (CK) group for more than 16 days, but it was no longer correlated to shoot δ13C, suggesting that the limited growth is caused by non-stomatal factors related to photosynthesis. On day 24 after rewatering, the final growth of drought-treated groups caught up or even exceeded that of CK group, and was accompanied by higher dry weight root to shoot ratio (R/S) and root NSC content, which may facilitate water and nutrient acquisition and emergency of new tillers, respectively. During drought and subsequent recovery, the variation of R/S and root NSC content mainly attributed to root acid invertase rather than leaf sucrose phosphate synthase activity.
Collapse
Affiliation(s)
- Tongtian Guo
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chen Tian
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunyan Chen
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhaoyang Duan
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qi Zhu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Luan Zi Sun
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
33
|
Zhou Y, Wigley BJ, Case MF, Coetsee C, Staver AC. Rooting depth as a key woody functional trait in savannas. THE NEW PHYTOLOGIST 2020; 227:1350-1361. [PMID: 32306404 DOI: 10.1111/nph.16613] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/08/2020] [Indexed: 05/17/2023]
Abstract
Dimensions of tree root systems in savannas are poorly understood, despite being essential in resource acquisition and post-disturbance recovery. We studied tree rooting patterns in Southern African savannas to ask: how tree rooting strategies affected species responses to severe drought; and how potential rooting depths varied across gradients in soil texture and rainfall. First, detailed excavations of eight species in Kruger National Park suggest that the ratio of deep to shallow taproot diameters provides a reasonable proxy for potential rooting depth, facilitating extensive interspecific comparison. Detailed excavations also suggest that allocation to deep roots traded off with shallow lateral root investment, and that drought-sensitive species rooted more shallowly than drought-resistant ones. More broadly across 57 species in Southern Africa, potential rooting depths were phylogenetically constrained, with investment to deep roots evident among miombo Detarioids, consistent with results suggesting they green up before onset of seasonal rains. Soil substrate explained variation, with deeper roots on sandy, nutrient-poor soils relative to clayey, nutrient-rich ones. Although potential rooting depth decreased with increasing wet season length, mean annual rainfall had no systematic effect on rooting depth. Overall, our results suggest that rooting depth systematically structures the ecology of savanna trees. Further work examining other anatomical and physiological root traits should be a priority for understanding savanna responses to changing climate and disturbances.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA
| | - Benjamin J Wigley
- Department of Environmental Biology, Sapienza University of Rome, Ple A. Moro 5, Rome, Italy
- School of Natural Resource Management, Nelson Mandela University, George, 6529, South Africa
| | - Madelon F Case
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA
| | - Corli Coetsee
- School of Natural Resource Management, Nelson Mandela University, George, 6529, South Africa
- Scientific Services, Kruger National Park, Private Bag X402, Skukuza, 1350, South Africa
| | - Ann Carla Staver
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
34
|
Peltier DMP, Ogle K. Tree growth sensitivity to climate is temporally variable. Ecol Lett 2020; 23:1561-1572. [DOI: 10.1111/ele.13575] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/14/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Drew M. P. Peltier
- Center for Ecosystem Science and Society Northern Arizona University Flagstaff Arizona USA
- School of Informatics, Computing, and Cyber Systems Northern Arizona University Flagstaff Arizona USA
| | - Kiona Ogle
- Center for Ecosystem Science and Society Northern Arizona University Flagstaff Arizona USA
- School of Informatics, Computing, and Cyber Systems Northern Arizona University Flagstaff Arizona USA
- Department of Biological Sciences Northern Arizona University Flagstaff Arizona USA
| |
Collapse
|
35
|
Retrospective Analysis of Tree Decline Based on Intrinsic Water-Use Efficiency in Semi-Arid Areas of North China. ATMOSPHERE 2020. [DOI: 10.3390/atmos11060577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Long-term tree growth is significantly affected by climate change, which have become a global concern. Tree-ring width and isotopic information can show how trees respond to climate change on a long-term scale and reveal some phenomena of tree decline or death. In this study, we used isotopic techniques and investigated annual changes in carbon isotope composition and tree-ring width of Populus simonii Carr. in Zhangbei, as well as trends in tree-ring carbon discrimination (Δ13C) and iWUE in normal, mildly declining and severely declining trees, in order to make a retrospective analysis and further understand the process of tree decline. We found that there were significant differences (p < 0.01 **) in δ13C, Δ13C, ci and iWUE at different decline stages, meaning that the δ13C and iWUE could be new indicators of tree health. The iWUE of all groups increased significantly, while the growth rate of declined P. simonii was much higher than that of normal growth P. simonii. According to the analysis, there may be a threshold of iWUE for healthy trees, which once the threshold value is exceeded, it indicates that trees are resistant to adversity and their growth is under stress. Similarly, the changing trend of BAI supports our conclusion with its changes showed that tree growth became slower and slower as degradation progressed. iWUE inferred from tree-ring stable carbon isotope composition is a strong modulator of adaptation capacity in response to environmental stressors under climate change. Elevated annual temperatures and increased groundwater depth are all contributing to the decline of P. simonii in north China.
Collapse
|
36
|
Väänänen PJ, Osem Y, Cohen S, Grünzweig JM. Differential drought resistance strategies of co-existing woodland species enduring the long rainless Eastern Mediterranean summer. TREE PHYSIOLOGY 2020; 40:305-320. [PMID: 31860712 DOI: 10.1093/treephys/tpz130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/28/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
In anticipation of a drier climate and to project future changes in forest dynamics, it is imperative to understand species-specific differences in drought resistance. The objectives of this study were to form a comprehensive understanding of the drought resistance strategies adopted by Eastern Mediterranean woodland species, and to elaborate specific ecophysiological traits that can explain the observed variation in survival among these species. We examined leaf water potential (𝛹), gas exchange and stem hydraulics during 2-3 years in mature individuals of the key woody species Phillyrea latifolia L., Pistacia lentiscus L. and Quercus calliprinos Webb that co-exist in a dry woodland experiencing ~ 6 rainless summer months. As compared with the other two similarly functioning species, Phillyrea displayed considerably lower 𝛹 (minimum 𝛹 of -8.7 MPa in Phillyrea vs -4.2 MPa in Pistacia and Quercus), lower 𝛹 at stomatal closure and lower leaf turgor loss point (𝛹TLP ), but reduced hydraulic vulnerability and wider safety margins. Notably, Phillyrea allowed 𝛹 to drop below 𝛹TLP under severe drought, whereas the other two species maintained positive turgor. These results indicate that Phillyrea adopted a more anisohydric drought resistance strategy, while Pistacia and Quercus exhibited a more isohydric strategy and probably relied on deeper water reserves. Unlike the two relatively isohydric species, Phillyrea reached complete stomatal closure at the end of the dry summer. Despite assessing a large number of physiological traits, none of them could be directly related to tree mortality. Higher mortality was observed for Quercus than for the other two species, which may result from higher water consumption due to its 2.5-10 times larger crown volume. The observed patterns suggest that similar levels of drought resistance in terms of survival can be achieved via different drought resistance strategies. Conversely, similar resistance strategies in terms of isohydricity can lead to different levels of vulnerability to extreme drought.
Collapse
Affiliation(s)
- Päivi J Väänänen
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
- Department of Natural Resources, Agricultural Research Organization, Volcani Center, Bet-Dagan 50250, Israel
| | - Yagil Osem
- Department of Natural Resources, Agricultural Research Organization, Volcani Center, Bet-Dagan 50250, Israel
| | - Shabtai Cohen
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Bet-Dagan 50250, Israel
| | - José M Grünzweig
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| |
Collapse
|
37
|
Torquato PR, Zou CB, Adhikari A, Adams HD, Will RE. Drought Tolerance and Competition in Eastern Redcedar ( Juniperus virginiana) Encroachment of the Oak-Dominated Cross Timbers. FRONTIERS IN PLANT SCIENCE 2020; 11:59. [PMID: 32117395 PMCID: PMC7020614 DOI: 10.3389/fpls.2020.00059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
On the dry, western edge of the eastern deciduous forest of the USA (Cross Timbers), the drought-tolerant, evergreen eastern redcedar (Juniperus virginiana) is encroaching into post oak- (Quercus stellata) dominated woodlands. The overall goal of this study was to examine whether the drought tolerance strategies of eastern redcedar provide it a competitive advantage over post oak and whether this is a key attribute facilitating its successful establishment in the Cross Timbers. Specifically, we assessed xylem water potential and leaf gas exchange of these two species growing in single-species stands and in a mixed-species stand. We found that both species exhibit a similar degree of isohydry and close their stomates to the same extent in response to declining xylem water potentials. Both species had similar relative reductions in gas exchange in response to drought, despite differences in xylem anatomy. However, post oak had leaf-level gas exchange rates approximately 5× greater than eastern redcedar during periods of high moisture availability. Therefore, it did not appear that eastern redcedar encroachment into an oak-dominated forest is facilitated by growing season differences in carbon gain, although evergreen eastern redcedar can conduct gas exchange year-round when conditions are favorable while post oak is deciduous. We found that volumetric soil water content (0-45 cm) was lower in the pure eastern redcedar stand than the mixed-species or pure post oak stand which may indicate that eastern redcedar may experience favorable soil moisture conditions when encroaching into open oak woodlands. Moreover, water potentials in eastern redcedar tended to be more negative in pure stands compared to the mixed stand. Our results suggest the two species may be using water from different depths, reducing competition. Overall, our findings indicate that eastern redcedar encroachment into formerly oak-dominated Cross Timbers forests likely will continue under moderate drought, in the absence of fire, with consequences for water budgets, carbon cycling, grazing forage, wildlife habitat, and wildfire risk.
Collapse
Affiliation(s)
- Patricia R. Torquato
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, United States
- School of Ecosystem and Forest Sciences, The University of Melbourne, Burnley, VIC, Australia
| | - Chris B. Zou
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, United States
| | - Arjun Adhikari
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, United States
| | - Henry D. Adams
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK, United States
| | - Rodney E. Will
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
38
|
Tree-Ring Analysis Reveals Density-Dependent Vulnerability to Drought in Planted Mongolian Pines. FORESTS 2020. [DOI: 10.3390/f11010098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Population density influences tree responses to environmental stresses, such as drought and high temperature. Prolonged drought negatively affects the health of Mongolian pines in forests planted by the Three-North Shelter Forest Program in North China. To understand the relationship between stand density and drought-induced forest decline, and to generate information regarding the development of future management strategies, we analyzed the vulnerability to drought of planted Mongolian pines at three stand densities. A tree-ring width index for trees from each density was established from tree-ring data covering the period 1988–2018 and was compared for differences in radial growth. Resistance (Rt), recovery (Rc), resilience (Rs), and relative resilience (RRs) in response to drought events were calculated from the smoothed basal area increment (BAI) curves. The high-density (HDT) group showed a consistently lower tree-ring width than the border trees (BT) and low-density (LDT) groups. The BAI curve of the HDT group started to decrease five years earlier than the LDT and BT groups. Pearson correlation analysis revealed that the radial growth of all of the groups was related to precipitation, relative humidity (RH), potential evapotranspiration (ET0), and standardized precipitation evapotranspiration index (SPEI) in the previous October and the most recent July, indicating that Mongolian pine trees of different densities had similar growth–climate relationships. Over the three decades, the trees experienced three severe drought events, each causing reduced tree-ring width and BAI. All of the groups showed similar Rc to each drought event, but the HDT group exhibited significantly lower Rt, Rs, and RRs than the BT group, suggesting that the HDT trees were more vulnerable to repeated drought stress. The RRs of the HDT group decreased progressively after each drought event and attained <0 after the third event. All of the groups showed similar trends regarding water consumption under varying weather conditions, but the HDT group showed significantly reduced whole-tree hydraulic capability compared with the other two groups. From these results, HDT trees exhibit ecophysiological memory effects from successive droughts, including sap flux dysfunction and higher competition index, which may prevent recovery of pre-drought growth rates. HDT trees may be at greater risk of mortality under future drought disturbance.
Collapse
|
39
|
Tomasella M, Casolo V, Aichner N, Petruzzellis F, Savi T, Trifilò P, Nardini A. Non-structural carbohydrate and hydraulic dynamics during drought and recovery in Fraxinus ornus and Ostrya carpinifolia saplings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 145:1-9. [PMID: 31665662 DOI: 10.1016/j.plaphy.2019.10.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
The maintenance of hydraulic function during and after a drought event is crucial for tree survival, but the importance of non-structural carbohydrates (NSCs) in the recovery phase is still debated. We tested whether higher NSC availability facilitates post-drought hydraulic recovery, by applying a short-term drought (Sdr) and a long-term drought combined with shading (Ldr+sh) in Fraxinus ornus and Ostrya carpinifolia. Plants were then re-irrigated and recovery was checked 24 h later, by measuring water potential, stem percentage loss of hydraulic conductance (PLC) and NSC content. The relative magnitude of hydraulic and carbon constraints was also assessed in desiccated plants. During drought, PLC increased only in F. ornus, while it was maintained almost constant in O. carpinifolia due to tighter stomatal control of xylem pressure (i.e. more isohydric). In F. ornus, only Sdr plants maintained high NSC contents at the end of drought and, when re-irrigated, recovered PLC to control values. Whereas hydraulic failure was ubiquitous, only F. ornus depleted NSC reserves at mortality. Our results suggest that preserving higher NSC content at the end of a drought can be important for the hydraulic resilience of trees.
Collapse
Affiliation(s)
- Martina Tomasella
- Dipartimento di Scienze della Vita, Università di Trieste. Via L. Giorgieri 10, 34127, Trieste, Italy
| | - Valentino Casolo
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine. Via delle Scienze 91, 33100, Udine, Italy
| | - Natalie Aichner
- Dipartimento di Scienze della Vita, Università di Trieste. Via L. Giorgieri 10, 34127, Trieste, Italy
| | - Francesco Petruzzellis
- Dipartimento di Scienze della Vita, Università di Trieste. Via L. Giorgieri 10, 34127, Trieste, Italy
| | - Tadeja Savi
- Institute of Botany, Department of Integrative Biology and Biodiversity Research, BOKU, Gregor-Mendel-Straße 33, Vienna, 1190, Austria
| | - Patrizia Trifilò
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste. Via L. Giorgieri 10, 34127, Trieste, Italy.
| |
Collapse
|
40
|
Savi T, Petruzzellis F, Moretti E, Stenni B, Zini L, Martellos S, Lisjak K, Nardini A. Grapevine water relations and rooting depth in karstic soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:669-675. [PMID: 31539975 DOI: 10.1016/j.scitotenv.2019.07.096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/25/2019] [Accepted: 07/06/2019] [Indexed: 06/10/2023]
Abstract
Environmental sustainability of viticulture is negatively affected by prolonged droughts. In limestone dominated regions, there is limited knowledge on grapevine water status and on methods for accurate evaluation of actual water demand, necessary to appropriately manage irrigation. During a dry vintage, we monitored plant and soil water relations in old and young vines of Istrian Malvasia on Karst red soil. The vineyard with young vines was additionally subdivided into two areas, based on their soil type, 1) karst silty-clay loam, and 2) mixture of crushed rocks and karst silty-clay loam (stony soil). Seasonal changes in exploited water resources were estimated via analysis of oxygen isotope composition (δ18O) of rainfall, deep soil water, and xylem sap. We hypothesized that plants are able to thrive during drought thanks to the water stored in deep soil layers, while they rely less on superficial soil horizons. Our results show that vines growing on karstic substrates have deep roots securing the use of stable water sources during summer, with consequent favourable plant water status. In fact, both young and mature vines approached the threshold of severe water stress, but never surpassed it, as midday leaf water potentials were >-1.3MPa in all study sites. Vines roots showed flexible water uptake, i.e. the ability to absorb water from deep or shallow soil horizons during drought and after late-summer thunderstorms, which was particularly evident in vines growing on the stony soil. In fact, precipitations of 20mm were enough for plant water status recovery, due to fast infiltration. On the other hand, at least 50mm of rainfall were necessary to induce water status recovery in more compact soil (karst silty-clay loam). Our findings provide new knowledge on the rooting depth and water needs of vines growing on shallow soils overlying fractured limestone bedrock.
Collapse
Affiliation(s)
- Tadeja Savi
- Institute of Botany, Department of Integrative Biology and Biodiversity Research, BOKU, Gregor-Mendel-Straße 33, Vienna, 1190, Austria.
| | - Francesco Petruzzellis
- University of Trieste, Dept. of Life Sciences, Via L. Giorgieri 10, 34127 Trieste, Italy
| | - Elisa Moretti
- University of Trieste, Dept. of Life Sciences, Via L. Giorgieri 10, 34127 Trieste, Italy
| | - Barbara Stenni
- University Ca' Foscari Venezia, Dept. of Environmental Sciences, Informatics and Statistics, Via Torino 155, Venezia Mestre 30170, Italy
| | - Luca Zini
- University of Trieste, Dept. of Mathematics and Geosciences, Via Weiss 2, 34127 Trieste, Italy
| | - Stefano Martellos
- University of Trieste, Dept. of Life Sciences, Via L. Giorgieri 10, 34127 Trieste, Italy
| | - Klemen Lisjak
- Agricultural Institute of Slovenia, Dept. of Fruit Growing, Viticulture and Oenology, Hacquetova ulica 17, 1000 Ljubljana, Slovenia
| | - Andrea Nardini
- University of Trieste, Dept. of Life Sciences, Via L. Giorgieri 10, 34127 Trieste, Italy
| |
Collapse
|
41
|
Blackman CJ, Li X, Choat B, Rymer PD, De Kauwe MG, Duursma RA, Tissue DT, Medlyn BE. Desiccation time during drought is highly predictable across species of Eucalyptus from contrasting climates. THE NEW PHYTOLOGIST 2019; 224:632-643. [PMID: 31264226 DOI: 10.1111/nph.16042] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/27/2019] [Indexed: 05/19/2023]
Abstract
Catastrophic failure of the water transport pathway in trees is a principal mechanism of mortality during extreme drought. To be able to predict the probability of mortality at an individual and landscape scale we need knowledge of the time for plants to reach critical levels of hydraulic failure. We grew plants of eight species of Eucalyptus originating from contrasting climates before allowing a subset to dehydrate. We tested whether a trait-based model of time to plant desiccation tcrit , from stomatal closure gs90 to a critical level of hydraulic dysfunction Ψcrit is consistent with observed dry-down times. Plant desiccation time varied among species, ranging from 96.2 to 332 h at a vapour-pressure deficit of 1 kPa, and was highly predictable using the tcrit model in conjunction with a leaf shedding function. Plant desiccation time was longest in species with high cavitation resistance, strong vulnerability segmentation, wide stomatal-hydraulic safety, and a high ratio of total plant water content to leaf area. Knowledge of tcrit in combination with water-use traits that influence stomatal closure could significantly increase our ability to predict the timing of drought-induced mortality at tree and forest scales.
Collapse
Affiliation(s)
- Chris J Blackman
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- Université Clermont-Auvergne, INRA, PIAF, 63000, Clermont-Ferrand, France
| | - Ximeng Li
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Paul D Rymer
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Martin G De Kauwe
- ARC Centre of Excellence for Extreme Climates, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Remko A Duursma
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
42
|
Deepening Rooting Depths Improve Plant Water and Carbon Status of a Xeric Tree during Summer Drought. FORESTS 2019. [DOI: 10.3390/f10070592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Exploring the effects of drought on trees of different sizes is an important research topic because the size-dependent mortality pattern of the major dominant species significantly affects the structure and function of plant communities. Here we studied the physiological performance and non-structural carbohydrates (NSCs) dynamics of a small xeric tree species, Haloxylon ammodendron (C.A.Mey.) of different tree size with varying rooting depth, during summer drought. We measured predawn (Ψpd) and midday (Ψm) leaf water potential, osmotic potential at saturated turgor (π100), and turgor lost point (Ψtlp), stomatal conductance (gs) at noon, maximum photochemical efficiency of photosystem II (Fv/Fm) in the morning, and NSCs concentration, from June–September. Our results demonstrated that the summer drought reduces the overall performance of physiological traits of the small young trees more than the larger adult trees. Ψpd, gs and Fv/Fm dropped larger in the small-diameter groups than the larger diameter groups. Substantial osmotic adjustments were observed in small size individuals (with lower π100 and Ψtlp) to cope with summer drought. Furthermore, mean concentration of NSCs for the leaf and shoot were higher in September than in July in every basal stem diameter classes suggested the leaf and shoot acted as reserve for NSC. However the root NSCs concentrations within each basal stem diameter class exhibited less increase in September than in the July. At the same time, the small young tress had lower root NSCs concentrations than the larger adult tree in both July and September. The contrasting root NSC concentrations across the basal stem diameter classes indicated that the roots of smaller trees may be more vulnerable to carbon starvation under non-lethal summer drought. The significant positive relationship between rooting depth and physiological traits & root NSCs concentration emphasize the importance of rooting depth in determining the seasonal variation of water status, gas exchange and NSCs.
Collapse
|
43
|
Blackman CJ, Creek D, Maier C, Aspinwall MJ, Drake JE, Pfautsch S, O'Grady A, Delzon S, Medlyn BE, Tissue DT, Choat B. Drought response strategies and hydraulic traits contribute to mechanistic understanding of plant dry-down to hydraulic failure. TREE PHYSIOLOGY 2019; 39:910-924. [PMID: 30865274 DOI: 10.1093/treephys/tpz016] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/01/2019] [Indexed: 05/17/2023]
Abstract
Drought-induced tree mortality alters forest structure and function, yet our ability to predict when and how different species die during drought remains limited. Here, we explore how stomatal control and drought tolerance traits influence the duration of drought stress leading to critical levels of hydraulic failure. We examined the growth and physiological responses of four woody plant species (three angiosperms and one conifer) representing a range of water-use and drought tolerance traits over the course of two controlled drought-recovery cycles followed by an extended dry-down. At the end of the final dry-down phase, we measured changes in biomass ratios and leaf carbohydrates. During the first and second drought phases, plants of all species closed their stomata in response to decreasing water potential, but only the conifer species avoided water potentials associated with xylem embolism as a result of early stomatal closure relative to thresholds of hydraulic dysfunction. The time it took plants to reach critical levels of water stress during the final dry-down was similar among the angiosperms (ranging from 39 to 57 days to stemP88) and longer in the conifer (156 days to stemP50). Plant dry-down time was influenced by a number of factors including species stomatal-hydraulic safety margin (gsP90 - stemP50), as well as leaf succulence and minimum stomatal conductance. Leaf carbohydrate reserves (starch) were not depleted at the end of the final dry-down in any species, irrespective of the duration of drought. These findings highlight the need to consider multiple structural and functional traits when predicting the timing of hydraulic failure in plants.
Collapse
Affiliation(s)
- Chris J Blackman
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
| | - Danielle Creek
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
| | - Chelsea Maier
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
| | - Michael J Aspinwall
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
- Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL, USA
| | - John E Drake
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
- Forest and Natural Resources Management, SUNY-ESF, 1 Forestry Drive, Syracuse, NY, USA
| | - Sebastian Pfautsch
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
- School of Social Science and Psychology (Urban Studies), Western Sydney University, Locked Bag 1797, Penrith, NSW, Australia
| | | | | | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
| |
Collapse
|
44
|
Tomasella M, Nardini A, Hesse BD, Machlet A, Matyssek R, Häberle KH. Close to the edge: effects of repeated severe drought on stem hydraulics and non-structural carbohydrates in European beech saplings. TREE PHYSIOLOGY 2019; 39:717-728. [PMID: 30668841 DOI: 10.1093/treephys/tpy142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/30/2018] [Accepted: 12/12/2018] [Indexed: 05/11/2023]
Abstract
Severe drought events threaten tree water transport system, productivity and survival. Woody angiosperms generally die when embolism-induced loss of hydraulic conductance (PLC) surpasses 80-90% under intense water shortage. However, the recovery capability and possible long-term carry-over effects of repeated drought events could dictate the fate of species' population under climate change scenarios. Potted saplings of European beech (Fagus sylvatica L.) were subjected to two drought cycles in two consecutive growing seasons, aiming to induce minimum leaf water potentials (Ψmd) of about -4 MPa, corresponding to hydraulic thresholds for survival of this species. In the first cycle, a well-irrigated (C) and a drought-stressed group (S) were formed, and, in the following summer, each group was divided in a well-irrigated and a drought-stressed one (four groups in total). The impact of the multiple drought events was assessed by measuring wood anatomical traits, biomass production, water relations, stem hydraulics and non-structural carbohydrate (NSC) content. We also investigated possible connections between stem hydraulics and carbon dynamics during the second drought event and following re-irrigation. S plants had lower Ψmd and maximum specific hydraulic conductivity (Ks) than C plants in the following growing season. Additionally, aboveground biomass production and leaf number were lower compared to C trees, resulting in lower water consumption. However, PLC was similar between groups, probably due to the production of new functional xylem in spring. The second drought event induced 85% PLC and promoted conversion of starch-to soluble sugars. Nevertheless, 1 week after re-irrigation, no embolism repair was observed and soluble sugars were reconverted to starch. The previous drought cycle did not influence the hydraulic performance during the second drought, and after re-irrigation S plants had 40% higher wood NSC content. Our data suggest that beech cannot recover from high embolism levels but multiple droughts might enhance stem NSC availability.
Collapse
Affiliation(s)
- Martina Tomasella
- Department of Life Sciences, Università degli Studi di Trieste, Via L. Giorgieri 10, Trieste, Italy
- Department of Ecology and Ecosystem Management-Chair for Ecophysiology of Plants, Technische Universität München, Hans-Carl-von-Carlowitz Platz 2, Freising, Germany
| | - Andrea Nardini
- Department of Life Sciences, Università degli Studi di Trieste, Via L. Giorgieri 10, Trieste, Italy
| | - Benjamin D Hesse
- Department of Ecology and Ecosystem Management-Chair for Ecophysiology of Plants, Technische Universität München, Hans-Carl-von-Carlowitz Platz 2, Freising, Germany
| | - Anna Machlet
- Department of Ecology and Ecosystem Management-Chair for Ecophysiology of Plants, Technische Universität München, Hans-Carl-von-Carlowitz Platz 2, Freising, Germany
| | - Rainer Matyssek
- Department of Ecology and Ecosystem Management-Chair for Ecophysiology of Plants, Technische Universität München, Hans-Carl-von-Carlowitz Platz 2, Freising, Germany
| | - Karl-Heinz Häberle
- Department of Ecology and Ecosystem Management-Chair for Ecophysiology of Plants, Technische Universität München, Hans-Carl-von-Carlowitz Platz 2, Freising, Germany
| |
Collapse
|
45
|
Preisler Y, Tatarinov F, Grünzweig JM, Bert D, Ogée J, Wingate L, Rotenberg E, Rohatyn S, Her N, Moshe I, Klein T, Yakir D. Mortality versus survival in drought‐affected Aleppo pine forest depends on the extent of rock cover and soil stoniness. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13302] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yakir Preisler
- Earth and Planetary Science Department Weizmann Institute of Science Rehovot Israel
- Robert H. Smith Faculty of Agriculture, Food and Environment The Hebrew University of Jerusalem Rehovot Israel
| | - Fyodor Tatarinov
- Earth and Planetary Science Department Weizmann Institute of Science Rehovot Israel
| | - José M. Grünzweig
- Robert H. Smith Faculty of Agriculture, Food and Environment The Hebrew University of Jerusalem Rehovot Israel
| | - Didier Bert
- BIOGECO INRA, University of Bordeaux Cestas France
| | - Jérôme Ogée
- ISPA, Bordeaux Science Agro INRA Villenave d'Ornon France
| | - Lisa Wingate
- ISPA, Bordeaux Science Agro INRA Villenave d'Ornon France
| | - Eyal Rotenberg
- Earth and Planetary Science Department Weizmann Institute of Science Rehovot Israel
| | - Shani Rohatyn
- Earth and Planetary Science Department Weizmann Institute of Science Rehovot Israel
- Robert H. Smith Faculty of Agriculture, Food and Environment The Hebrew University of Jerusalem Rehovot Israel
| | - Nir Her
- Forestry Department KKL Gilat Israel
| | | | - Tamir Klein
- Plant & Environmental Sciences Department Weizmann Institute of Science Rehovot Israel
| | - Dan Yakir
- Earth and Planetary Science Department Weizmann Institute of Science Rehovot Israel
| |
Collapse
|
46
|
Gričar J, Zavadlav S, Jyske T, Lavrič M, Laakso T, Hafner P, Eler K, Vodnik D. Effect of soil water availability on intra-annual xylem and phloem formation and non-structural carbohydrate pools in stem of Quercus pubescens. TREE PHYSIOLOGY 2019; 39:222-233. [PMID: 30239939 DOI: 10.1093/treephys/tpy101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/16/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
Non-structural carbohydrates (NSCs, i.e., starch and soluble sugars) are frequently quantified in the context of tree response to stressful events (e.g., drought), because they serve as a carbon reservoir for growth and respiration, as well as providing a critical osmotic function to maintain turgor and vascular transport under different environmental conditions. We investigated the impact of soil water availability on intra-annual leaf phenology, radial growth dynamics and variation in NSC amounts in the stem of pubescent oak (Quercus pubescens Willd.). from a sub-Mediterranean region. For this purpose, trees growing at two nearby plots differing in bedrock and, consequently, soil characteristics (F-eutric cambisol on eocene flysch bedrock and L-rendzic leptosol on paleogenic limestone bedrock) were sampled. Non-structural carbohydrates were analysed in outer xylem and living phloem (separately for non-collapsed and collapsed parts). Results showed that xylem and phloem increments were 41.6% and 21.2%, respectively, wider in trees from F plot due to a higher rate of cell production. In contrast, the amount of NSCs and of soluble sugars significantly differed among the tissue parts and sampling dates but not between the two plots. Starch amounts were the highest in xylem, which could be explained by the abundance of xylem parenchyma cells. Two clear seasonal peaks of the starch amount were detected in all tissues, the first in September-November, in the period of leaf colouring and falling, and the second in March-April, i.e., at the onset of cambial cell production followed by bud development. The amounts of free sugars were highest in inner phloem + cambium, at the sites of active growth. Soil water availability substantially influenced secondary growth in the stem of Q. pubescens, whereas NSC amounts seemed to be less affected. The results show how the intricate relationships between soil properties, such as water availability, and tree performance should be considered when studying the impact of stressful events on the growth and functioning of trees.
Collapse
Affiliation(s)
- Jožica Gričar
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, Ljubljana, Slovenia
| | - Saša Zavadlav
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, Ljubljana, Slovenia
| | - Tuula Jyske
- Natural Resources Institute Finland, Production Systems Unit, Biomass Properties and Characterization, Tietotie 2, Espoo, Finland
| | - Martina Lavrič
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, Ljubljana, Slovenia
| | - Tapio Laakso
- Natural Resources Institute Finland, Production Systems Unit, Biomass Properties and Characterization, Tietotie 2, Espoo, Finland
| | - Polona Hafner
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, Ljubljana, Slovenia
| | - Klemen Eler
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, Slovenia
| | - Dominik Vodnik
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, Slovenia
| |
Collapse
|
47
|
Petruzzellis F, Nardini A, Savi T, Tonet V, Castello M, Bacaro G. Less safety for more efficiency: water relations and hydraulics of the invasive tree Ailanthus altissima (Mill.) Swingle compared with native Fraxinus ornus L. TREE PHYSIOLOGY 2019; 39:76-87. [PMID: 29982793 DOI: 10.1093/treephys/tpy076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/03/2018] [Indexed: 05/23/2023]
Abstract
Invasion of natural habitats by alien trees is a threat to forest conservation. Our understanding of fundamental ecophysiological mechanisms promoting plant invasions is still limited, and hydraulic and water relation traits have been only seldom included in studies comparing native and invasive trees. We compared several leaf and wood functional and mechanistic traits in co-occurring Ailanthus altissima (Mill.) Swingle (Aa) and Fraxinus ornus L. (Fo). Aa is one of the most invasive woody species in Europe and North America, currently outcompeting several native trees including Fo. We aimed at quantifying inter-specific differences in terms of: (i) performance in resource use and acquisition; (ii) hydraulic efficiency and safety; (iii) carbon costs associated to leaf and wood construction; and (iv) plasticity of functional and mechanistic traits in response to light availability. Traits related to leaf and wood construction and drought resistance significantly differed between the two species. Fo sustained higher structural costs than Aa, but was more resistant to drought. The lower resistance to drought stress of Aa was counterbalanced by higher water transport efficiency, but possibly required mechanisms of resilience to drought-induced hydraulic damage. Larger phenotypic plasticity of Aa in response to light availability could also promote the invasive potential of the species.
Collapse
Affiliation(s)
- Francesco Petruzzellis
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, Italy
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, Italy
| | - Tadeja Savi
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, Italy
- University of Natural Resources and Life Sciences, Division of Viticulture and Pomology, Department of Crop Sciences, Konrad Lorenz Straße 24, Tulln, Vienna, Austria
| | - Vanessa Tonet
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, Italy
| | - Miris Castello
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, Italy
| | - Giovanni Bacaro
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, Italy
| |
Collapse
|
48
|
Allocation Mechanisms of Non-Structural Carbohydrates of Robinia pseudoacacia L. Seedlings in Response to Drought and Waterlogging. FORESTS 2018. [DOI: 10.3390/f9120754] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Climate change is likely to lead to an increased frequency of droughts and floods, both of which are implicated in large-scale carbon allocation and tree mortality worldwide. Non-structural carbohydrates (NSCs) play an important role in tree survival under stress, but how NSC allocation changes in response to drought or waterlogging is still unclear. We measured soluble sugars (SS) and starch in leaves, twigs, stems and roots of Robinia pseudoacacia L. seedlings that had been subjected to a gradient in soil water availability from extreme drought to waterlogged conditions for a period of 30 days. Starch concentrations decreased and SS concentrations increased in tissues of R. pseudoacacia seedlings, such that the ratio of SS to starch showed a progressive increase under both drought and waterlogging stress. The strength of the response is asymmetric, with the largest increase occurring under extreme drought. While the increase in SS concentration in response to extreme drought is the largest in roots, the increase in the ratio of SS to starch is the largest in leaves. Individual components of SS showed different responses to drought and waterlogging across tissues: glucose concentrations increased significantly with drought in all tissues but showed little response to waterlogging in twigs and stems; sucrose and fructose concentrations showed marked increases in leaves and roots in response to drought but a greater response to drought and waterlogging in stems and twigs. These changes are broadly compatible with the roles of individual SS under conditions of water stress. While it is important to consider the role of NSC in buffering trees against mortality under stress, modelling this behaviour is unlikely to be successful unless it accounts for different responses within organs and the type of stress involved.
Collapse
|
49
|
Landhäusser SM, Chow PS, Dickman LT, Furze ME, Kuhlman I, Schmid S, Wiesenbauer J, Wild B, Gleixner G, Hartmann H, Hoch G, McDowell NG, Richardson AD, Richter A, Adams HD. Standardized protocols and procedures can precisely and accurately quantify non-structural carbohydrates. TREE PHYSIOLOGY 2018; 38:1764-1778. [PMID: 30376128 PMCID: PMC6301340 DOI: 10.1093/treephys/tpy118] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/02/2018] [Indexed: 05/08/2023]
Abstract
Non-structural carbohydrates (NSCs), the stored products of photosynthesis, building blocks for growth and fuel for respiration, are central to plant metabolism, but their measurement is challenging. Differences in methods and procedures among laboratories can cause results to vary widely, limiting our ability to integrate and generalize patterns in plant carbon balance among studies. A recent assessment found that NSC concentrations measured for a common set of samples can vary by an order of magnitude, but sources for this variability were unclear. We measured a common set of nine plant material types, and two synthetic samples with known NSC concentrations, using a common protocol for sugar extraction and starch digestion, and three different sugar quantification methods (ion chromatography, enzyme, acid) in six laboratories. We also tested how sample handling, extraction solvent and centralizing parts of the procedure in one laboratory affected results. Non-structural carbohydrate concentrations measured for synthetic samples were within about 11.5% of known values for all three methods. However, differences among quantification methods were the largest source of variation in NSC measurements for natural plant samples because the three methods quantify different NSCs. The enzyme method quantified only glucose, fructose and sucrose, with ion chromatography we additionally quantified galactose, while the acid method quantified a large range of mono- and oligosaccharides. For some natural samples, sugars quantified with the acid method were two to five times higher than with other methods, demonstrating that trees allocate carbon to a range of sugar molecules. Sample handling had little effect on measurements, while ethanol sugar extraction improved accuracy over water extraction. Our results demonstrate that reasonable accuracy of NSC measurements can be achieved when different methods are used, as long as protocols are robust and standardized. Thus, we provide detailed protocols for the extraction, digestion and quantification of NSCs in plant samples, which should improve the comparability of NSC measurements among laboratories.
Collapse
Affiliation(s)
- Simon M Landhäusser
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
- Corresponding author ()
| | - Pak S Chow
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - L Turin Dickman
- Los Alamos National Laboratory, Earth and Environmental Sciences, Los Alamos, NM, USA
| | - Morgan E Furze
- Harvard University, Department of Organismic and Evolutionary Biology, 26 Oxford Street, Cambridge, MA, USA
| | - Iris Kuhlman
- Max Planck Institute for Biogeochemistry, Hans-Knöll Str. 10, Jena, Germany
| | - Sandra Schmid
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, Basel, Switzerland
| | - Julia Wiesenbauer
- University of Vienna, Department of Microbiology and Ecosystem Science, Althanstraße 14, Vienna, Austria
| | - Birgit Wild
- Stockholm University, Department of Environmental Science and Analytical Chemistry, Stockholm, Sweden
- University of Gothenburg, Department of Earth Sciences, Guldhedsgatan 5 A, Gothenburg, Sweden
| | - Gerd Gleixner
- Max Planck Institute for Biogeochemistry, Hans-Knöll Str. 10, Jena, Germany
| | - Henrik Hartmann
- Max Planck Institute for Biogeochemistry, Hans-Knöll Str. 10, Jena, Germany
| | - Günter Hoch
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, Basel, Switzerland
| | | | - Andrew D Richardson
- Harvard University, Department of Organismic and Evolutionary Biology, 26 Oxford Street, Cambridge, MA, USA
- Northern Arizona University, Center for Ecosystem Science and Society and School of Informatics, Computing and Cyber Systems, Flagstaff, AZ, USA
| | - Andreas Richter
- University of Vienna, Department of Microbiology and Ecosystem Science, Althanstraße 14, Vienna, Austria
| | - Henry D Adams
- Oklahoma State University, Department of Plant Biology, Ecology, and Evolution, 301 Physical Sciences, Stillwater, OK, USA
| |
Collapse
|
50
|
Antunes C, Chozas S, West J, Zunzunegui M, Diaz Barradas MC, Vieira S, Máguas C. Groundwater drawdown drives ecophysiological adjustments of woody vegetation in a semi-arid coastal ecosystem. GLOBAL CHANGE BIOLOGY 2018; 24:4894-4908. [PMID: 30030867 DOI: 10.1111/gcb.14403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/25/2018] [Accepted: 07/02/2018] [Indexed: 05/14/2023]
Abstract
Predicted droughts and anthropogenic water use will increase groundwater lowering rates and intensify groundwater limitation, particularly for Mediterranean semi-arid ecosystems. These hydrological changes may be expected to elicit differential functional responses of vegetation either belowground or aboveground. Yet, our ability to predict the impacts of groundwater changes on these ecosystems is still poor. Thus, we sought to better understand the impact of falling water table on the physiology of woody vegetation. We specifically ask (a) how is woody vegetation ecophysiological performance affected by water table depth during the dry season? and (b) does the vegetation response to increasing depth to groundwater differ among water-use functional types? We examined a suite of physiological parameters and water-uptake depths of the dominant, functionally distinct woody vegetation along a water-table depth gradient in a Mediterranean semi-arid coastal ecosystem that is currently experiencing anthropogenic groundwater extraction pressure. We found that groundwater drawdown did negatively affect the ecophysiological performance of the woody vegetation. Across all studied environmental factors, depth to groundwater was the most important driver of ecophysiological adjustments. Plant functional types, independent of groundwater dependence, showed consistent declines in water content and generally reduced C and N acquisition with increasing depths to groundwater. Functional types showed distinct operating physiological ranges, but common physiological sensitivity to greater water table depth. Thus, although differences in water-source use exist, a physiological convergence appeared to happen among different functional types. These results strongly suggest that hydrological drought has an important impact on fundamental physiological processes, constraining the performance of woody vegetation under semi-arid conditions. By disentangling the functional responses and vulnerability of woody vegetation to groundwater limitation, our study establishes the basis for predicting the physiological responses of woody vegetation in semi-arid coastal ecosystems to groundwater drawdown.
Collapse
Affiliation(s)
- Cristina Antunes
- Centre for Ecology Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
- PPG - Ecologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Sergio Chozas
- Centre for Ecology Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Jason West
- Department of Ecosystem Science and Management, Texas A&M University, College Station, Texas
| | - Maria Zunzunegui
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | | | - Simone Vieira
- Núcleo de Estudos e Pesquisas Ambientais, Universidade Estadual de Campinas, Campinas, Brazil
| | - Cristina Máguas
- Centre for Ecology Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|