1
|
Opazo-Díaz E, Montes-de-Oca-García A, Galán-Mercant A, Marín-Galindo A, Corral-Pérez J, Ponce-González JG. Characteristics of High-Intensity Interval Training Influence Anthropometrics, Glycemic Control, and Cardiorespiratory Fitness in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Sports Med 2024:10.1007/s40279-024-02114-0. [PMID: 39358495 DOI: 10.1007/s40279-024-02114-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Exercise is a non-pharmacological intervention for type 2 diabetes mellitus (T2DM), including moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT). Despite diverse exercise protocol variations, the impact of these variations in HIIT on T2DM anthropometrics, glycemic control, and cardiorespiratory fitness (CRF) remains unclear. OBJECTIVE The aim was to examine the influence of HIIT protocol characteristics on anthropometrics, glycemic control, and CRF in T2DM patients and compare it to control (without exercise) and MICT. METHODS This review is registered in PROSPERO (CRD42021281398) and follows Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The search, employing "high-intensity interval training" and "diabetes mellitus" in PubMed and Web of Science databases, with a "randomized controlled trial" filter, spanned articles up to January 2023. RESULTS Of 190 records, 29 trials were included, categorized by HIIT interval duration, training volume, and intervention period. Long-duration, high-volume, and long-term HIIT yields superior outcomes compared to control conditions for body mass, waist circumference, fasting plasma glucose, Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), glycosylated hemoglobin (%HbA1c), and CRF. The findings favored HIIT over MICT for body mass in long-duration, high-volume, and short-term intervals (mean difference [MD] - 3.45, - 3.13, and - 5.42, respectively, all p < 0.05) and for CRF in long and medium work intervals and high volume (MD 1.91, 2.55, and 2.43, respectively, all p < 0.05), as well as in medium and long-term intervention (MD 2.66 and 2.21, respectively, all p < 0.05). Regardless of specific HIIT characteristics, no differences were found in the HIIT versus MICT comparison for glycemic control. CONCLUSIONS Specific HIIT protocol characteristics influence changes in anthropometrics, glycemic control, and CRF compared to control groups. However, compared to MICT, only longer duration, higher volume, and short-term HIIT improved body mass, waist circumference, and CRF in individuals with T2DM.
Collapse
Affiliation(s)
- Edgardo Opazo-Díaz
- ExPhy Research Group, Department of Physical Education, University of Cadiz, Puerto Real, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
- Exercise Physiology Lab, Physical Therapy Department, University of Chile, Santiago, Chile
| | - Adrián Montes-de-Oca-García
- ExPhy Research Group, Department of Physical Education, University of Cadiz, Puerto Real, Cádiz, Spain.
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain.
| | - Alejandro Galán-Mercant
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
- MOVE-IT Research Group, Department of Nursing and Physiotherapy, Faculty of Health Sciences, University of Cádiz, Cádiz, Spain
| | - Alberto Marín-Galindo
- ExPhy Research Group, Department of Physical Education, University of Cadiz, Puerto Real, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| | - Juan Corral-Pérez
- ExPhy Research Group, Department of Physical Education, University of Cadiz, Puerto Real, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| | - Jesús Gustavo Ponce-González
- ExPhy Research Group, Department of Physical Education, University of Cadiz, Puerto Real, Cádiz, Spain.
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain.
| |
Collapse
|
2
|
Sjöros T, Laine S, Garthwaite T, Vähä-Ypyä H, Koivumäki M, Eskola O, Löyttyniemi E, Houttu N, Laitinen K, Kalliokoski KK, Sievänen H, Vasankari T, Knuuti J, Heinonen IHA. The effects of a 6-month intervention aimed to reduce sedentary time on skeletal muscle insulin sensitivity: a randomized controlled trial. Am J Physiol Endocrinol Metab 2023; 325:E152-E162. [PMID: 37378623 DOI: 10.1152/ajpendo.00018.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Sedentary behavior (SB) and physical inactivity associate with impaired insulin sensitivity. We investigated whether an intervention aimed at a 1-h reduction in daily SB during 6 mo would improve insulin sensitivity in the weight-bearing thigh muscles. Forty-four sedentary inactive adults [mean age 58 (SD 7) yr; 43% men] with metabolic syndrome were randomized into intervention and control groups. The individualized behavioral intervention was supported by an interactive accelerometer and a mobile application. SB, measured with hip-worn accelerometers in 6-s intervals throughout the 6-mo intervention, decreased by 51 (95% CI 22-80) min/day and physical activity (PA) increased by 37 (95% CI 18-55) min/day in the intervention group with nonsignificant changes in these outcomes in the control group. Insulin sensitivity in the whole body and in the quadriceps femoris and hamstring muscles, measured with hyperinsulinemic-euglycemic clamp combined with [18F]fluoro-deoxy-glucose PET, did not significantly change during the intervention in either group. However, the changes in hamstring and whole body insulin sensitivity correlated inversely with the change in SB and positively with the changes in moderate-to-vigorous PA and daily steps. In conclusion, these results suggest that the more the participants were able to reduce their SB, the more their individual insulin sensitivity increased in the whole body and in the hamstring muscles but not in quadriceps femoris. However, according to our primary randomized controlled trial results, this kind of behavioral interventions targeted to reduce sedentariness may not be effective in increasing skeletal muscle and whole body insulin sensitivity in people with metabolic syndrome at the population level.NEW & NOTEWORTHY Aiming to reduce daily SB by 1 h/day had no impact on skeletal muscle insulin sensitivity in the weight-bearing thigh muscles. However, successfully reducing SB may increase insulin sensitivity in the postural hamstring muscles. This emphasizes the importance of both reducing SB and increasing moderate-to-vigorous physical activity to improve insulin sensitivity in functionally different muscles of the body and thus induce a more comprehensive change in insulin sensitivity in the whole body.
Collapse
Affiliation(s)
- Tanja Sjöros
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
| | - Saara Laine
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
| | - Taru Garthwaite
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
| | - Henri Vähä-Ypyä
- The UKK Institute for Health Promotion Research, Tampere, Finland
| | - Mikko Koivumäki
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
| | - Olli Eskola
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
| | | | - Noora Houttu
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Kirsi Laitinen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Kari K Kalliokoski
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
| | - Harri Sievänen
- The UKK Institute for Health Promotion Research, Tampere, Finland
| | - Tommi Vasankari
- The UKK Institute for Health Promotion Research, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Juhani Knuuti
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
| | - Ilkka H A Heinonen
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
- Rydberg Laboratory of Applied Sciences, University of Halmstad, Halmstad, Sweden
| |
Collapse
|
3
|
Guo Z, Li M, Cai J, Gong W, Liu Y, Liu Z. Effect of High-Intensity Interval Training vs. Moderate-Intensity Continuous Training on Fat Loss and Cardiorespiratory Fitness in the Young and Middle-Aged a Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4741. [PMID: 36981649 PMCID: PMC10048683 DOI: 10.3390/ijerph20064741] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/26/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVES This systematic review is conducted to evaluate the effect of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on body composition and cardiorespiratory fitness (CRF) in the young and middle-aged. METHODS Seven databases were searched from their inception to 22 October 2022 for studies (randomized controlled trials only) with HIIT and MICT intervention. Meta-analysis was carried out for within-group (pre-intervention vs. post-intervention) and between-group (HIIT vs. MICT) comparisons for change in body mass (BM), body mass index (BMI), waist circumference (WC), percent fat mass (PFM), fat mass (FM), fat-free mass (FFM), and CRF. RESULTS A total of 1738 studies were retrieved from the database, and 29 studies were included in the meta-analysis. Within-group analyses indicated that both HIIT and MICT can bring significant improvement in body composition and CRF, except for FFM. Between-group analyses found that compared to MICT, HIIT brings significant benefits to WC, PFM, and VO2peak. CONCLUSIONS The effect of HIIT on fat loss and CRF in the young and middle-aged is similar to or better than MICT, which might be influenced by age (18-45 years), complications (obesity), duration (>6 weeks), frequency, and HIIT interval. Despite the clinical significance of the improvement being limited, HIIT appears to be more time-saving and enjoyable than MICT.
Collapse
|
4
|
Islam H, Gillen JB. Skeletal muscle mechanisms contributing to improved glycemic control following intense interval exercise and training. SPORTS MEDICINE AND HEALTH SCIENCE 2023; 5:20-28. [PMID: 36994179 PMCID: PMC10040385 DOI: 10.1016/j.smhs.2023.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
High-intensity and sprint interval training (HIIT and SIT, respectively) enhance insulin sensitivity and glycemic control in both healthy adults and those with cardiometabolic diseases. The beneficial effects of intense interval training on glycemic control include both improvements seen in the hours to days following a single session of HIIT/SIT and those which accrue with chronic training. Skeletal muscle is the largest site of insulin-stimulated glucose uptake and plays an integral role in the beneficial effects of exercise on glycemic control. Here we summarize the skeletal muscle responses that contribute to improved glycemic control during and following a single session of interval exercise and evaluate the relationship between skeletal muscle remodelling and improved insulin sensitivity following HIIT/SIT training interventions. Recent evidence suggests that targeting skeletal muscle mechanisms via nutritional interventions around exercise, particularly with carbohydrate manipulation, can enhance the acute glycemic benefits of HIIT. There is also some evidence of sex-based differences in the glycemic benefits of intense interval exercise, with blunted responses observed after training in females relative to males. Differences in skeletal muscle metabolism between males and females may contribute to sex differences in insulin sensitivity following HIIT/SIT, but well-controlled studies evaluating purported muscle mechanisms alongside measurement of insulin sensitivity are needed. Given the greater representation of males in muscle physiology literature, there is also a need for more research involving female-only cohorts to enhance our basic understanding of how intense interval training influences muscle insulin sensitivity in females across the lifespan.
Collapse
|
5
|
Khalafi M, Ravasi AA, Malandish A, Rosenkranz SK. The impact of high-intensity interval training on postprandial glucose and insulin: A systematic review and meta-analysis. Diabetes Res Clin Pract 2022; 186:109815. [PMID: 35271876 DOI: 10.1016/j.diabres.2022.109815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 12/14/2022]
Abstract
AIMS We performed a systematic review and meta-analysis to investigate the effects of high-intensity interval training (HIIT) on postprandial glucose (PPG) and insulin (PPI) versus non-exercise control and moderate-intensity continuous training (MICT) in participants with both normal and impaired glucose. METHODS The PubMed, Scopus, and Web of Science electronic databases were searched up to October 2021 for randomized trials evaluating HIIT versus control and/or versus MICT on glucose and insulin AUC using oral glucose tolerance testing. Subgroup analyses based on intervention duration (short-duration < 8 weeks, moderate-duration ≥ 8 weeks), baseline glucose levels (normal glucose and impaired glucose) and type of HIIT (L-HIIT and SIT) were also conducted across included studies. RESULTS A total of 25 studies involving 870 participants were included in the current meta-analysis. HIIT effectively reduced glucose [-0.37 (95% CI -0.60 to -0.13), p = 0.002] and insulin [-0.36 (95% CI -0.68 to -0.04), p = 0.02] AUC when compared with a CON group. Reductions in glucose AUC were significant for those with impaired glucose at baseline (p = 0.03), but not for those with normal glucose levels (p = 0.11) and following moderate-duration (p = 0.01), but not short-duration interventions (p = 0.18). However, there were no differences in glucose (p = 0.76) or insulin (p = 0.43) AUC between HIIT and MICT intervention arms. CONCLUSIONS Our results demonstrated that both HIIT and MICT are effective for reducing postprandial glycemia and insulinemia, particularly by moderate-duration interventions, and in those with impaired glucose.
Collapse
Affiliation(s)
- Mousa Khalafi
- Department of Physical Education and Sport Sciences, Faculty of Humanities, University of Kashan, Kashan, Iran.
| | - Ali A Ravasi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
| | - Abbas Malandish
- Department of Exercise Physiology, Faculty of Sport Sciences, Urmia University, Urmia, Iran
| | - Sara K Rosenkranz
- Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
6
|
Petersen MH, de Almeida ME, Wentorf EK, Jensen K, Ørtenblad N, Højlund K. High-intensity interval training combining rowing and cycling efficiently improves insulin sensitivity, body composition and VO 2max in men with obesity and type 2 diabetes. Front Endocrinol (Lausanne) 2022; 13:1032235. [PMID: 36387850 PMCID: PMC9664080 DOI: 10.3389/fendo.2022.1032235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022] Open
Abstract
AIMS Non-weight-bearing high-intensity interval training (HIIT) involving several muscle groups may efficiently improve metabolic health without compromising adherence in obesity and type 2 diabetes. In a non-randomized intervention study, we examined the effect of a novel HIIT-protocol, recruiting both lower and upper body muscles, on insulin sensitivity, measures of metabolic health and adherence in obesity and type 2 diabetes. METHODS In 15 obese men with type 2 diabetes and age-matched obese (n=15) and lean (n=18) glucose-tolerant men, the effects of 8-weeks supervised HIIT combining rowing and cycling on ergometers (3 sessions/week) were examined by DXA-scan, incremental exercise test and hyperinsulinemic-euglycemic clamp combined with indirect calorimetry. RESULTS At baseline, insulin-stimulated glucose disposal rate (GDR) was ~40% reduced in the diabetic vs the non-diabetic groups (all p<0.01). In response to HIIT, insulin-stimulated GDR increased ~30-40% in all groups (all p<0.01) entirely explained by increased glucose storage. These changes were accompanied by ~8-15% increases in VO2max, (all p<0.01), decreased total fat mass and increased lean body mass in all groups (all p<0.05). There were no correlations between these training adaptations and no group-differences in these responses. HbA1c showed a clinically relevant decrease in men with type 2 diabetes (4±2 mmol/mol; p<0.05). Importantly, adherence was high (>95%) in all groups and no injuries were reported. CONCLUSIONS A novel HIIT-protocol recruiting lower and upper body muscles efficiently improves insulin sensitivity, VO2max and body composition with intact responses in obesity and type 2 diabetes. The high adherence and lack of injuries show that non-weight-bearing HIIT involving several muscle groups is a promising mode of exercise training in obesity and type 2 diabetes.
Collapse
Affiliation(s)
| | - Martin Eisemann de Almeida
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Emil Kleis Wentorf
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Kurt Jensen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- *Correspondence: Kurt Højlund,
| |
Collapse
|
7
|
Gillen JB, Estafanos S, Govette A. Exercise-nutrient interactions for improved postprandial glycemic control and insulin sensitivity. Appl Physiol Nutr Metab 2021; 46:856-865. [PMID: 34081875 DOI: 10.1139/apnm-2021-0168] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Type 2 diabetes (T2D) is a rapidly growing yet largely preventable chronic disease. Exaggerated increases in blood glucose concentration following meals is a primary contributor to many long-term complications of the disease that decrease quality of life and reduce lifespan. Adverse health consequences also manifest years prior to the development of T2D due to underlying insulin resistance and exaggerated postprandial concentrations of the glucose-lowering hormone insulin. Postprandial hyperglycemic and hyperinsulinemic excursions can be improved by exercise, which contributes to the well-established benefits of physical activity for the prevention and treatment of T2D. The aim of this review is to describe the postprandial dysmetabolism that occurs in individuals at risk for and with T2D, and highlight how acute and chronic exercise can lower postprandial glucose and insulin excursions. In addition to describing the effects of traditional moderate-intensity continuous exercise on glycemic control, we highlight other forms of activity including low-intensity walking, high-intensity interval exercise, and resistance training. In an effort to improve knowledge translation and implementation of exercise for maximal glycemic benefits, we also describe how timing of exercise around meals and post-exercise nutrition can modify acute and chronic effects of exercise on glycemic control and insulin sensitivity. Novelty: Exaggerated postprandial blood glucose and insulin excursions are associated with disease risk. Both a single session and repeated sessions of exercise improve postprandial glycemic control in individuals with and without T2D. The glycemic benefits of exercise can be enhanced by considering the timing and macronutrient composition of meals around exercise.
Collapse
Affiliation(s)
- Jenna B Gillen
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada
| | - Stephanie Estafanos
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada
| | - Alexa Govette
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada
| |
Collapse
|
8
|
Mattioni Maturana F, Martus P, Zipfel S, NIEß AM. Effectiveness of HIIE versus MICT in Improving Cardiometabolic Risk Factors in Health and Disease: A Meta-analysis. Med Sci Sports Exerc 2021; 53:559-573. [PMID: 32890201 DOI: 10.1249/mss.0000000000002506] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE We aimed to investigate differences between high-intensity interval exercise (HIIE, including high-intensity interval training and sprint interval training) and moderate-intensity continuous training (MICT) on physical fitness, body composition, blood pressure, blood lipids, insulin and glucose metabolism, inflammation, and endothelial function. METHODS Differences between HIIE and MICT were summarized using a random-effects meta-analysis on the effect size (Cohen's d). A meta-regression was conducted using the following subgroups: population, age, training duration, men ratio, exercise type, baseline values (clinical relevant ranges), and type of HIIE. Studies were included if at least one of the following outcomes were reported: maximal oxygen uptake (V˙O2max), flow-mediated dilation (FMD), body mass index (BMI), body mass, percent body fat, systolic and diastolic blood pressure, high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglycerides, total cholesterol, C-reactive protein (CRP), fasting glucose and insulin, glycated hemoglobin (HbA1c), and insulin resistance (HOMA-IR). A total of 55 studies were included. RESULTS Overall, HIIE was superior to MICT in improving V˙O2max (d = 0.40, P < 0.001) and FMD (d = 0.54, P < 0.05). Oppositely, MICT was superior to HIIE in improving HbA1c (d = -0.27, P < 0.05). No differences were observed in BMI (d = -0.02), body mass (d = -0.05), percent body fat (d = 0.04), systolic blood pressure (d = -0.04), diastolic blood pressure (d = 0.03), HDL (d = -0.05), LDL (d = 0.08), triglycerides (d = 0.03), total cholesterol (d = 0.14), CRP (d = -0.11), fasting insulin (d = 0.02), fasting glucose (d = 0.02), and HOMA-IR (d = -0.04). Moderator analyses indicated that the difference between HIIE and MICT was affected by different subgroups. CONCLUSION Overall, HIIE showed to be more effective in improving cardiovascular health and cardiorespiratory fitness, whereas MICT was superior in improving long-term glucose metabolism. In the process of personalized training counseling, health-enhancing effects of exercise training may be improved by considering the individual risk profiles.
Collapse
Affiliation(s)
| | - Peter Martus
- Clinical Epidemiology and Applied Biometrics Department, University Hospital of Tübingen, Tübingen, GERMANY
| | - Stephan Zipfel
- Psychosomatic Medicine and Psychotherapy Department, University Hospital of Tübingen, Tübingen, GERMANY
| | - Andreas M NIEß
- Sports Medicine Department, University Hospital of Tübingen, Tübingen, GERMANY
| |
Collapse
|
9
|
Heiskanen MA, Honkala SM, Hentilä J, Ojala R, Lautamäki R, Koskensalo K, Lietzén MS, Saunavaara V, Saunavaara J, Helmiö M, Löyttyniemi E, Nummenmaa L, Collado MC, Malm T, Lahti L, Pietiläinen KH, Kaprio J, Rinne JO, Hannukainen JC. Systemic cross-talk between brain, gut, and peripheral tissues in glucose homeostasis: effects of exercise training (CROSSYS). Exercise training intervention in monozygotic twins discordant for body weight. BMC Sports Sci Med Rehabil 2021; 13:16. [PMID: 33627179 PMCID: PMC7905681 DOI: 10.1186/s13102-021-00241-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Obesity and physical inactivity are major global public health concerns, both of which increase the risk of insulin resistance and type 2 diabetes. Regulation of glucose homeostasis involves cross-talk between the central nervous system, peripheral tissues, and gut microbiota, and is affected by genetics. Systemic cross-talk between brain, gut, and peripheral tissues in glucose homeostasis: effects of exercise training (CROSSYS) aims to gain new systems-level understanding of the central metabolism in human body, and how exercise training affects this cross-talk. METHODS CROSSYS is an exercise training intervention, in which participants are monozygotic twins from pairs discordant for body mass index (BMI) and within a pair at least the other is overweight. Twins are recruited from three population-based longitudinal Finnish twin studies, including twins born in 1983-1987, 1975-1979, and 1945-1958. The participants undergo 6-month-long exercise intervention period, exercising four times a week (including endurance, strength, and high-intensity training). Before and after the exercise intervention, comprehensive measurements are performed in Turku PET Centre, Turku, Finland. The measurements include: two positron emission tomography studies (insulin-stimulated whole-body and tissue-specific glucose uptake and neuroinflammation), magnetic resonance imaging (brain morphology and function, quantification of body fat masses and organ volumes), magnetic resonance spectroscopy (quantification of fat within heart, pancreas, liver and tibialis anterior muscle), echocardiography, skeletal muscle and adipose tissue biopsies, a neuropsychological test battery as well as biosamples from blood, urine and stool. The participants also perform a maximal exercise capacity test and tests of muscular strength. DISCUSSION This study addresses the major public health problems related to modern lifestyle, obesity, and physical inactivity. An eminent strength of this project is the possibility to study monozygotic twin pairs that share the genome at the sequence level but are discordant for BMI that is a risk factor for metabolic impairments such as insulin resistance. Thus, this exercise training intervention elucidates the effects of obesity on metabolism and whether regular exercise training is able to reverse obesity-related impairments in metabolism in the absence of the confounding effects of genetic factors. TRIAL REGISTRATION ClinicalTrials.gov , NCT03730610 . Prospectively registered 5 November 2018.
Collapse
Affiliation(s)
- Marja A Heiskanen
- Turku PET Centre, University of Turku, P.O. Box 52, FIN-20521, Turku, Finland
| | - Sanna M Honkala
- Turku PET Centre, University of Turku, P.O. Box 52, FIN-20521, Turku, Finland
| | - Jaakko Hentilä
- Turku PET Centre, University of Turku, P.O. Box 52, FIN-20521, Turku, Finland
| | - Ronja Ojala
- Turku PET Centre, University of Turku, P.O. Box 52, FIN-20521, Turku, Finland
| | | | - Kalle Koskensalo
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Martin S Lietzén
- Turku PET Centre, University of Turku, P.O. Box 52, FIN-20521, Turku, Finland
| | - Virva Saunavaara
- Turku PET Centre, University of Turku, P.O. Box 52, FIN-20521, Turku, Finland
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Jani Saunavaara
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Mika Helmiö
- Division of Digestive Surgery and Urology, Turku University Hospital, Turku, Finland
| | | | - Lauri Nummenmaa
- Turku PET Centre, University of Turku, P.O. Box 52, FIN-20521, Turku, Finland
- Department of Psychology, University of Turku, Turku, Finland
| | - Maria C Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
- Functional Food Forum, University of Turku, Turku, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Leo Lahti
- Department of Future Technologies, University of Turku, Turku, Finland
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Abdominal Center, Obesity Center, Endocrinology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Juha O Rinne
- Turku PET Centre, University of Turku, P.O. Box 52, FIN-20521, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Jarna C Hannukainen
- Turku PET Centre, University of Turku, P.O. Box 52, FIN-20521, Turku, Finland.
| |
Collapse
|
10
|
Laine S, Högel H, Ishizu T, Toivanen J, Yli-Karjanmaa M, Grönroos TJ, Rantala J, Mäkelä R, Hannukainen JC, Kalliokoski KK, Heinonen I. Effects of Different Exercise Training Protocols on Gene Expression of Rac1 and PAK1 in Healthy Rat Fast- and Slow-Type Muscles. Front Physiol 2020; 11:584661. [PMID: 33329033 PMCID: PMC7711069 DOI: 10.3389/fphys.2020.584661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
Purpose Rac1 and its downstream target PAK1 are novel regulators of insulin and exercise-induced glucose uptake in skeletal muscle. However, it is not yet understood how different training intensities affect the expression of these proteins. Therefore, we studied the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on Rac1 and PAK1 expression in fast-type (gastrocnemius, GC) and slow-type (soleus, SOL) muscles in rats after HIIT and MICT swimming exercises. Methods The mRNA expression was determined using qPCR and protein expression levels with reverse-phase protein microarray (RPPA). Results HIIT significantly decreased Rac1 mRNA expression in GC compared to MICT (p = 0.003) and to the control group (CON) (p = 0.001). At the protein level Rac1 was increased in GC in both training groups, but only the difference between HIIT and CON was significant (p = 0.02). HIIT caused significant decrease of PAK1 mRNA expression in GC compared to MICT (p = 0.007) and to CON (p = 0.001). At the protein level, HIIT increased PAK1 expression in GC compared to MICT and CON (by ∼17%), but the difference was not statistically significant (p = 0.3, p = 0.2, respectively). There were no significant differences in the Rac1 or PAK1 expression in SOL between the groups. Conclusion Our results indicate that HIIT, but not MICT, decreases Rac1 and PAK1 mRNA expression and increases the protein expression of especially Rac1 but only in fast-type muscle. These exercise training findings may reveal new therapeutic targets to treat patients with metabolic diseases.
Collapse
Affiliation(s)
- Saara Laine
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Heidi Högel
- Turku Centre for Biotechnology, University of Turku, Åbo Akademi University, Turku, Finland.,Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Tamiko Ishizu
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland.,TuDMM Doctoral Programmes, University of Turku, Turku, Finland
| | - Jussi Toivanen
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Minna Yli-Karjanmaa
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Tove J Grönroos
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | | | | | - Jarna C Hannukainen
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
| | - Kari K Kalliokoski
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
| | - Ilkka Heinonen
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland.,Rydberg Laboratory of Applied Sciences, University of Halmstad, Halmstad, Sweden
| |
Collapse
|
11
|
Ribeiro VB, Kogure GS, Lopes IP, Silva RC, Pedroso DCC, de Melo AS, de Souza HCD, Ferriani RA, Miranda Furtado CL, Dos Reis RM. Effects of continuous and intermittent aerobic physical training on hormonal and metabolic profile, and body composition in women with polycystic ovary syndrome: A randomized controlled trial. Clin Endocrinol (Oxf) 2020; 93:173-186. [PMID: 32286711 DOI: 10.1111/cen.14194] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/20/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To evaluate the effects of continuous (CA) and intermittent (IA) aerobic training on hormonal and metabolic parameters and body composition of women with polycystic ovary syndrome (PCOS). DESIGN Prospective, interventional, randomized study. METHODS Randomized controlled training (RCT) with sample allocation and stratification into three groups: CAT (n = 28) and IAT (n = 29) training and no training [control (CG), n = 30]. Before and after 16 weeks of intervention (CAT or IAT) or observation (CG), hormonal and metabolic parameters, body composition and anthropometric indices were evaluated. Aerobic physical training on a treadmill consisted of 30- to 50-minute sessions with intensities ranging from 60% to 90% of the maximum heart rate. RESULTS In the CA group, there was reduction in waist circumference (WC) (P = .045), hip circumference (P = .032), cholesterol (P ≤ .001), low-density lipoprotein (P = .030) and testosterone (P ≤ .001). In the IAT group, there was a reduction in WC (P = .014), waist-to-hip ratio (P = .012), testosterone (P = .019) and the free androgen index (FAI) (P = .037). The CG showed increases in WC (P = .049), total body mass (P = .015), body fat percentage (P = .034), total mass of the arms (P ≤ .001), trunk fat percentage (P = .033), leg fat percentage (P = .021) and total gynoid mass (P = .011). CONCLUSION CAT and IAT training reduced anthropometric indices and hyperandrogenism in PCOS, whereas only IAT training reduced the FAI. Furthermore, only CAT training improved the lipid profile.
Collapse
Affiliation(s)
- Victor B Ribeiro
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP) Ribeirão Preto, Ribeirão Preto, Brazil
- Federal Institute of São Paulo, Jacareí, Brazil
| | - Gislaine Satyko Kogure
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP) Ribeirão Preto, Ribeirão Preto, Brazil
| | - Iris Palma Lopes
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP) Ribeirão Preto, Ribeirão Preto, Brazil
| | - Rafael C Silva
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP) Ribeirão Preto, Ribeirão Preto, Brazil
| | - Daiana Cristina Chielli Pedroso
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP) Ribeirão Preto, Ribeirão Preto, Brazil
| | - Anderson S de Melo
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP) Ribeirão Preto, Ribeirão Preto, Brazil
| | - Hugo C D de Souza
- Department of Biomechanics, Medicine and Rehabilitation of the Locomotor Apparatus, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Rui Alberto Ferriani
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP) Ribeirão Preto, Ribeirão Preto, Brazil
| | - Cristiana Libardi Miranda Furtado
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP) Ribeirão Preto, Ribeirão Preto, Brazil
- Drug Research and Development Center, Postgraduate Program in Medical and Surgical Sciences, Federal University of Ceará, Fortaleza, Brazil
| | - Rosana Maria Dos Reis
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP) Ribeirão Preto, Ribeirão Preto, Brazil
| |
Collapse
|
12
|
Honkala SM, Motiani P, Kivelä R, Hemanthakumar KA, Tolvanen E, Motiani KK, Eskelinen JJ, Virtanen KA, Kemppainen J, Heiskanen MA, Löyttyniemi E, Nuutila P, Kalliokoski KK, Hannukainen JC. Exercise training improves adipose tissue metabolism and vasculature regardless of baseline glucose tolerance and sex. BMJ Open Diabetes Res Care 2020; 8:e000830. [PMID: 32816872 PMCID: PMC7437884 DOI: 10.1136/bmjdrc-2019-000830] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 05/08/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION We investigated the effects of a supervised progressive sprint interval training (SIT) and moderate-intensity continuous training (MICT) on adipocyte morphology and adipose tissue metabolism and function; we also tested whether the responses were similar regardless of baseline glucose tolerance and sex. RESEARCH DESIGN AND METHODS 26 insulin-resistant (IR) and 28 healthy participants were randomized into 2-week-long SIT (4-6×30 s at maximum effort) and MICT (40-60 min at 60% of maximal aerobic capacity (VO2peak)). Insulin-stimulated glucose uptake and fasting-free fatty acid uptake in visceral adipose tissue (VAT), abdominal and femoral subcutaneous adipose tissues (SATs) were quantified with positron emission tomography. Abdominal SAT biopsies were collected to determine adipocyte morphology, gene expression markers of lipolysis, glucose and lipid metabolism and inflammation. RESULTS Training increased glucose uptake in VAT (p<0.001) and femoral SAT (p<0.001) and decreased fatty acid uptake in VAT (p=0.01) irrespective of baseline glucose tolerance and sex. In IR participants, training increased adipose tissue vasculature and decreased CD36 and ANGPTL4 gene expression in abdominal SAT. SIT was superior in increasing VO2peak and VAT glucose uptake in the IR group, whereas MICT reduced VAT fatty acid uptake more than SIT. CONCLUSIONS Short-term training improves adipose tissue metabolism both in healthy and IR participants independently of the sex. Adipose tissue angiogenesis and gene expression was only significantly affected in IR participants.
Collapse
Affiliation(s)
| | | | - Riikka Kivelä
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Erik Tolvanen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | | | | |
Collapse
|
13
|
Motiani KK, Collado MC, Eskelinen JJ, Virtanen KA, Löyttyniemi E, Salminen S, Nuutila P, Kalliokoski KK, Hannukainen JC. Exercise Training Modulates Gut Microbiota Profile and Improves Endotoxemia. Med Sci Sports Exerc 2020; 52:94-104. [PMID: 31425383 PMCID: PMC7028471 DOI: 10.1249/mss.0000000000002112] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Supplemental digital content is available in the text. Introduction Intestinal metabolism and microbiota profiles are impaired in obesity and insulin resistance. Moreover, dysbiotic gut microbiota has been suggested to promote systemic low-grade inflammation and insulin resistance through the release of endotoxins particularly lipopolysaccharides. We have previously shown that exercise training improves intestinal metabolism in healthy men. To understand whether changes in intestinal metabolism interact with gut microbiota and its release of inflammatory markers, we studied the effects of sprint interval (SIT) and moderate-intensity continuous training (MICT) on intestinal metabolism and microbiota in subjects with insulin resistance. Methods Twenty-six, sedentary subjects (prediabetic, n = 9; type 2 diabetes, n = 17; age, 49 [SD, 4] yr; body mass index, 30.5 [SD, 3]) were randomized into SIT or MICT. Intestinal insulin-stimulated glucose uptake (GU) and fatty acid uptake (FAU) from circulation were measured using positron emission tomography. Gut microbiota composition was analyzed by 16S rRNA gene sequencing and serum inflammatory markers with multiplex assays and enzyme-linked immunoassay kit. Results V˙O2peak improved only after SIT (P = 0.01). Both training modes reduced systematic and intestinal inflammatory markers (tumor necrosis factor-α, lipopolysaccharide binding protein) (time P < 0.05). Training modified microbiota profile by increasing Bacteroidetes phylum (time P = 0.03) and decreasing Firmicutes/Bacteroidetes ratio (time P = 0.04). Moreover, there was a decrease in Clostridium genus (time P = 0.04) and Blautia (time P = 0.051). Only MICT decreased jejunal FAU (P = 0.02). Training had no significant effect on intestinal GU. Colonic GU associated positively with Bacteroidetes and inversely with Firmicutes phylum, ratio Firmicutes/Bacteroidetes and Blautia genus. Conclusions Intestinal substrate uptake associates with gut microbiota composition and whole-body insulin sensitivity. Exercise training improves gut microbiota profiles and reduces endotoxemia.
Collapse
|
14
|
Baasch-Skytte T, Lemgart CT, Oehlenschläger MH, Petersen PE, Hostrup M, Bangsbo J, Gunnarsson TP. Efficacy of 10-20-30 training versus moderate-intensity continuous training on HbA1c, body composition and maximum oxygen uptake in male patients with type 2 diabetes: A randomized controlled trial. Diabetes Obes Metab 2020; 22:767-778. [PMID: 31903682 DOI: 10.1111/dom.13953] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/17/2019] [Accepted: 12/28/2019] [Indexed: 01/31/2023]
Abstract
AIM To compare the efficacy of 10-20-30 training versus moderate-intensity continuous training (MICT) on HbA1c, body composition and maximum oxygen uptake (V˙O2 max) in male patients with type 2 diabetes (T2D). MATERIALS AND METHODS Fifty-one male participants with T2D were randomly assigned (1:1) to a 10-20-30 (N = 26) and a MICT (N = 25) training group. Interventions consisted of supervised cycling three times weekly for 10 weeks, lasting 29 minutes (10-20-30) and 50 minutes (MICT) in a local non-clinical setting. The primary outcome was change in HbA1c from baseline to 10-week follow-up. RESULTS Of 51 participants enrolled, 44 (mean age 61.0 ± 6.8 [mean ± SD] years, diagnosed 7.5 ± 5.8 years, baseline HbA1c 7.4% ± 1.3%) were included in the analysis. Training compliance was 84% and 86% in 10-20-30 and MICT, respectively. No adverse events occurred during the intervention. HbA1c decreased (P <0.001) by 0.5 (95% CI -0.72 to -0.21) percentage points with training in 10-20-30, with no change in MICT. The change in 10-20-30 was greater (P <0.05) than in MICT. Visceral fat mass decreased (P <0.05) only with 10-20-30 training, whereas total fat mass decreased (P <0.01) and V˙O2 max increased (P <0.01) with training in both groups. CONCLUSIONS Ten weeks of 10-20-30 training was superior to MICT in lowering HbA1c, and only 10-20-30 training decreased visceral fat mass in patients with T2D. Furthermore, 10-20-30 training was as effective as MICT in reducing total fat mass and increasing V˙O2 max, despite a 42% lower training time commitment.
Collapse
Affiliation(s)
- Thomas Baasch-Skytte
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte T Lemgart
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Mads H Oehlenschläger
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | | | - Morten Hostrup
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bangsbo
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Thomas P Gunnarsson
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Hrubeniuk TJ, Bouchard DR, Goulet EDB, Gurd B, Sénéchal M. The ability of exercise to meaningfully improve glucose tolerance in people living with prediabetes: A meta‐analysis. Scand J Med Sci Sports 2019; 30:209-216. [DOI: 10.1111/sms.13567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/23/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Travis J. Hrubeniuk
- Cardiometabolic Exercise and Lifestyle Laboratory University of New Brunswick Fredericton NB Canada
- Interdisciplinary Studies School of Graduate Studies University of New Brunswick Fredericton NB Canada
| | - Danielle R. Bouchard
- Cardiometabolic Exercise and Lifestyle Laboratory University of New Brunswick Fredericton NB Canada
- Faculty of Kinesiology University of New Brunswick Fredericton NB Canada
| | - Eric D. B. Goulet
- Faculty of Physical Activity Sciences University of Sherbrooke Sherbrooke QC Canada
- Research Centre on Aging University of Sherbrooke Sherbrooke QC Canada
| | - Brendon Gurd
- School of Kinesiology and Health Studies Queen's University Kingston ON Canada
| | - Martin Sénéchal
- Cardiometabolic Exercise and Lifestyle Laboratory University of New Brunswick Fredericton NB Canada
- Faculty of Kinesiology University of New Brunswick Fredericton NB Canada
| |
Collapse
|
16
|
Nicolo ML, Shewokis PA, Boullata J, Sukumar D, Smith S, Compher C, Volpe SL. Sedentary behavior time as a predictor of hemoglobin A1c among adults, 40 to 59 years of age, living in the United States: National Health and Nutrition Examination Survey 2003 to 2004 and 2013 to 2014. Nutr Health 2019; 25:275-279. [PMID: 31552794 DOI: 10.1177/0260106019870436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Sedentary behavior activities have been associated with an increased risk of type 2 diabetes. Aim: Our aim was to determine whether sedentary behavior time (SBT) is predictive of hemoglobin A1c (HbA1c) ≥ 6.5% (48 mmol/mol). METHODS We used cross-sectional data, adults 40 to 59 years of age, from the National Health and Nutrition Examination Survey (NHANES) for 2003 to 2004 and 2013 to 2014. Responses to questions on the Physical Activity Questionnaire regarding time watching television/videos, and time spent sitting in front of a computer per day were compiled into tertiles. Binary logistic regression analysis was used to determine whether SBT was a predictor of a HbA1c ≥ 6.5% adjusting for age, sex, race and ethnicity, and body mass index. RESULTS In a univariate model, adults reporting ≥ 8 hours of SBT in NHANES 2003-2004 had 2.02 increased odds of a HbA1c ≥ 6.5% (OR = 2.02, 95% CI: 1.31, 3.13, p < 0.0001) compared to adults reporting ≤ 3 hours. After adjusting the regression model for age, sex, race and ethnicity, and body mass index, adults reporting ≥ 8 hours of SBT in NHANES 2003 to 2004 had 1.72 increased odds of HbA1c ≥ 6.5% (OR = 2.02, 95% CI: 1.10, 2.68, p < 0.0001) compared to adults reporting ≤ 3 hours of SBT. Reported SBT was not a predictor of HbA1c ≥ 6.5% for NHANES 2013 to 2014. CONCLUSION Reported SBT was a predictor of HbA1c ≥ 6.5% among adults, 40 to 59 years of age, in NHANES 2003 to 2004, but was not a predictor in 2013 to 2014.
Collapse
Affiliation(s)
- Michele L Nicolo
- Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Patricia A Shewokis
- Department of Nutrition Sciences, Drexel University, Philadelphia, USA.,School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, USA
| | - Joseph Boullata
- Department of Nutrition Sciences, Drexel University, Philadelphia, USA
| | - Deeptha Sukumar
- Department of Nutrition Sciences, Drexel University, Philadelphia, USA
| | - Sinclair Smith
- Department of Health Sciences, Drexel University, Philadelphia, USA
| | - Charlene Compher
- School of Nursing, University of Pennsylvania, Philadelphia, USA
| | - Stella L Volpe
- Department of Nutrition Sciences, Drexel University, Philadelphia, USA
| |
Collapse
|
17
|
Newman AA, Grimm NC, Wilburn JR, Schoenberg HM, Trikha SRJ, Luckasen GJ, Biela LM, Melby CL, Bell C. Influence of Sodium Glucose Cotransporter 2 Inhibition on Physiological Adaptation to Endurance Exercise Training. J Clin Endocrinol Metab 2019; 104:1953-1966. [PMID: 30597042 DOI: 10.1210/jc.2018-01741] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022]
Abstract
CONTEXT The combination of two beneficial antidiabetes interventions, regular exercise and pharmaceuticals, is intuitively appealing. However, metformin, the most commonly prescribed diabetes medication, attenuates the favorable physiological adaptations to exercise; in turn, exercise may impede the action of metformin. OBJECTIVE We sought to determine the influence of an alternative diabetes treatment, sodium glucose cotransporter 2 (SGLT2) inhibition, on the response to endurance exercise training. DESIGN, PARTICIPANTS, AND INTERVENTION In a randomized, double-blind, repeated measures parallel design, 30 sedentary overweight and obese men and women were assigned to 12 weeks of supervised endurance exercise training, with daily ingestion of either a placebo or SGLT2 inhibitor (dapagliflozin: ≤10 mg/day). OUTCOME MEASUREMENTS AND RESULTS Endurance exercise training favorably modified body mass, body composition (dual-energy x-ray absorptiometry), peak oxygen uptake (graded exercise with indirect calorimetry), responses to standardized submaximal exercise (indirect calorimetry, heart rate, and blood lactate), and skeletal muscle (vastus lateralis) citrate synthase activity (main effects of exercise training, all P < 0.05); SGLT2 inhibition did not influence any of these physiological adaptations (exercise training × treatment interaction, all P > 0.05). However, after endurance exercise training, fasting blood glucose was greater with SGLT2 inhibition, and increased insulin sensitivity (oral glucose tolerance test/Matsuda index) was abrogated with SGLT2 inhibition (exercise training × treatment interaction, P < 0.01). CONCLUSION The efficacy of combining two beneficial antidiabetes interventions, regular endurance exercise and SGLT2 inhibition, was not supported. SGLT2 inhibition blunted endurance exercise training-induced improvements in insulin sensitivity, independent of effects on aerobic fitness or body composition.
Collapse
Affiliation(s)
- Alissa A Newman
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado
| | - Nathan C Grimm
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado
| | - Jessie R Wilburn
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado
| | - Hayden M Schoenberg
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado
| | - S Raj J Trikha
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado
| | - Gary J Luckasen
- Medical Center of the Rockies Foundation, University of Colorado Health, Loveland, Colorado
| | - Laurie M Biela
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado
| | - Christopher L Melby
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado
| | - Christopher Bell
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
18
|
Dela F, Ingersen A, Andersen NB, Nielsen MB, Petersen HHH, Hansen CN, Larsen S, Wojtaszewski J, Helge JW. Effects of one-legged high-intensity interval training on insulin-mediated skeletal muscle glucose homeostasis in patients with type 2 diabetes. Acta Physiol (Oxf) 2019; 226:e13245. [PMID: 30585698 DOI: 10.1111/apha.13245] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/06/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022]
Abstract
AIM To examine the effect of high-intensity interval training (HIIT) on glucose clearance rates in skeletal muscle and explore the mechanism within the muscle. METHODS Ten males with type 2 diabetes mellitus (T2DM) and ten matched healthy subjects performed 2 weeks of one-legged HIIT (total of eight sessions, each comprised of 10 × 1 minute ergometer bicycle exercise at >80% of maximal heart rate, interspersed with one min of rest). Insulin sensitivity was assessed by an isoglycaemic, hyperinsulinaemic clamp combined with arteriovenous leg balance technique of the trained (T) and the untrained (UT) leg and muscle biopsies of both legs. RESULTS Insulin-stimulated glucose clearance in T legs was ~30% higher compared with UT legs in both groups due to increased blood flow in T vs UT legs and maintained glucose extraction. With each training session, muscle glycogen content decreased only in the training leg, and after the training, glycogen synthase and citrate synthase activities were higher in T vs UT legs. No major changes occurred in the expression of proteins in the insulin signalling cascade. Mitochondrial respiratory capacity was similar in T2DM and healthy subjects, and unchanged by HIIT. CONCLUSION HIIT improves skeletal muscle insulin sensitivity. With HIIT, the skeletal muscle of patients with T2DM becomes just as insulin sensitive as untrained muscle in healthy subjects. The mechanism includes oscillations in muscle glycogen stores and a maintained ability to extract glucose from the blood in the face of increased blood flow in the trained leg.
Collapse
Affiliation(s)
- Flemming Dela
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Department of Geriatrics Bispebjerg University Hospital Copenhagen Denmark
| | - Arthur Ingersen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Nynne B. Andersen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Maria B. Nielsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Helga H. H. Petersen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Christina N. Hansen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Clinical Research Centre Medical University of Bialystok Bialystok Poland
| | - Jørgen Wojtaszewski
- Department of Nutrition, Exercise and Sports, Faculty of Science University of Copenhagen Copenhagen Denmark
| | - Jørn Wulff Helge
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
19
|
Motiani KK, Savolainen AM, Toivanen J, Eskelinen JJ, Yli-Karjanmaa M, Virtanen KA, Saunavaara V, Heiskanen MA, Parkkola R, Haaparanta-Solin M, Solin O, Savisto N, Löyttyniemi E, Knuuti J, Nuutila P, Kalliokoski KK, Hannukainen JC. Effects of short-term sprint interval and moderate-intensity continuous training on liver fat content, lipoprotein profile, and substrate uptake: a randomized trial. J Appl Physiol (1985) 2019; 126:1756-1768. [PMID: 30998125 DOI: 10.1152/japplphysiol.00900.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Type 2 diabetes (T2D) and increased liver fat content (LFC) alter lipoprotein profile and composition and impair liver substrate uptake. Exercise training mitigates T2D and reduces LFC, but the benefits of different training intensities in terms of lipoprotein classes and liver substrate uptake are unclear. The aim of this study was to evaluate the effects of moderate-intensity continuous training (MICT) or sprint interval training (SIT) on LFC, liver substrate uptake, and lipoprotein profile in subjects with normoglycemia or prediabetes/T2D. We randomized 54 subjects (normoglycemic group, n = 28; group with prediabetes/T2D, n = 26; age = 40-55 yr) to perform either MICT or SIT for 2 wk and measured LFC with magnetic resonance spectroscopy, lipoprotein composition with NMR, and liver glucose uptake (GU) and fatty acid uptake (FAU) using PET. At baseline, the group with prediabetes/T2D had higher LFC, impaired lipoprotein profile, and lower whole body insulin sensitivity and aerobic capacity compared with the normoglycemic group. Both training modes improved aerobic capacity (P < 0.001) and lipoprotein profile (reduced LDL and increased large HDL subclasses; all P < 0.05) with no training regimen (SIT vs. MICT) or group effect (normoglycemia vs. prediabetes/T2D). LFC tended to be reduced in the group with prediabetes/T2D compared with the normoglycemic group posttraining (P = 0.051). When subjects were divided according to LFC (high LFC, >5.6%; low LFC, <5.6%), training reduced LFC in subjects with high LFC (P = 0.009), and only MICT increased insulin-stimulated liver GU (P = 0.03). Short-term SIT and MICT are effective in reducing LFC in subjects with fatty liver and in improving lipoprotein profile regardless of baseline glucose tolerance. Short-term MICT is more efficient in improving liver insulin sensitivity compared with SIT. NEW & NOTEWORTHY In the short term, both sprint interval training and moderate-intensity continuous training (MICT) reduce liver fat content and improve lipoprotein profile; however, MICT seems to be preferable in improving liver insulin sensitivity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Virva Saunavaara
- Turku PET Centre, University of Turku , Turku , Finland.,Department of Medical Physics, Turku University Hospital , Turku , Finland
| | | | - Riitta Parkkola
- Department of Radiology, Turku University Hospital , Turku , Finland
| | - Merja Haaparanta-Solin
- Turku PET Centre, University of Turku , Turku , Finland.,MediCity Research Laboratory Turku, University of Turku , Turku , Finland
| | - Olof Solin
- Turku PET Centre, University of Turku , Turku , Finland.,Department of Chemistry, University of Turku , Turku , Finland.,Turku PET Centre, Åbo Akademi University , Turku , Finland
| | - Nina Savisto
- Turku PET Centre, University of Turku , Turku , Finland
| | | | - Juhani Knuuti
- Turku PET Centre, University of Turku , Turku , Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku , Turku , Finland.,Department of Endocrinology, Turku University Hospital , Turku , Finland
| | | | | |
Collapse
|
20
|
Suryanegara J, Cassidy S, Ninkovic V, Popovic D, Grbovic M, Okwose N, Trenell MI, MacGowan GG, Jakovljevic DG. High intensity interval training protects the heart during increased metabolic demand in patients with type 2 diabetes: a randomised controlled trial. Acta Diabetol 2019; 56:321-329. [PMID: 30387015 PMCID: PMC6394729 DOI: 10.1007/s00592-018-1245-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/18/2018] [Indexed: 02/02/2023]
Abstract
AIM The present study assessed the effect of high intensity interval training on cardiac function during prolonged submaximal exercise in patients with type 2 diabetes. METHODS Twenty-six patients with type 2 diabetes were randomized to a 12 week of high intensity interval training (3 sessions/week) or standard care control group. All patients underwent prolonged (i.e. 60 min) submaximal cardiopulmonary exercise testing (at 50% of previously assess maximal functional capacity) with non-invasive gas-exchange and haemodynamic measurements including cardiac output and stroke volume before and after the intervention. RESULTS At baseline (prior to intervention) there was no significant difference between the intervention and control group in peak exercise oxygen consumption (20.3 ± 6.1 vs. 21.7 ± 5.5 ml/kg/min, p = 0.21), and peak exercise heart rate (156.3 ± 15.0 vs. 153.8 ± 12.5 beats/min, p = 0.28). During follow-up assessment both groups utilized similar amount of oxygen during prolonged submaximal exercise (15.0 ± 2.4 vs. 15.2 ± 2.2 ml/min/kg, p = 0.71). However, cardiac function i.e. cardiac output during submaximal exercise decreased significantly by 21% in exercise group (16.2 ± 2.7-12.8 ± 3.6 L/min, p = 0.03), but not in the control group (15.7 ± 4.9-16.3 ± 4.1 L/min, p = 0.12). Reduction in exercise cardiac output observed in the exercise group was due to a significant decrease in stroke volume by 13% (p = 0.03) and heart rate by 9% (p = 0.04). CONCLUSION Following high intensity interval training patients with type 2 diabetes demonstrate reduced cardiac output during prolonged submaximal cardiopulmonary exercise testing. Ability of patients to maintain prolonged increased metabolic demand but with reduced cardiac output suggests cardiac protective role of high intensity interval training in type 2 diabetes. TRIAL REGISTRATION ISRCTN78698481. Registered 23 January 2013, retrospectively registered.
Collapse
Affiliation(s)
- Jose Suryanegara
- Faculty of Medical Sciences, Cardiovascular Research Centre, Institutes of Cellular and Genetic Medicine, Newcastle University, 4th Floor William Leech Building M4.074, Newcastle upon Tyne, NE2 4HH UK
| | - Sophie Cassidy
- Faculty of Medical Sciences, Cardiovascular Research Centre, Institutes of Cellular and Genetic Medicine, Newcastle University, 4th Floor William Leech Building M4.074, Newcastle upon Tyne, NE2 4HH UK
| | - Vladan Ninkovic
- Department of Cardiology, Specialist Hospital for Diabetes Merkur, Vrnjacka Banja, Serbia
| | - Dejana Popovic
- Faculty of Medicine and Pharmacy, University of Belgrade, and Cardiology Department, Clinical Centre Serbia, Belgrade, Serbia
| | - Miljan Grbovic
- Faculty of Sport and Physical Education, University of Belgrade, Belgrade, Serbia
| | - Nduka Okwose
- Faculty of Medical Sciences, Cardiovascular Research Centre, Institutes of Cellular and Genetic Medicine, Newcastle University, 4th Floor William Leech Building M4.074, Newcastle upon Tyne, NE2 4HH UK
| | - Michael I. Trenell
- Faculty of Medical Sciences, Cardiovascular Research Centre, Institutes of Cellular and Genetic Medicine, Newcastle University, 4th Floor William Leech Building M4.074, Newcastle upon Tyne, NE2 4HH UK
| | - Guy G. MacGowan
- Faculty of Medical Sciences, Cardiovascular Research Centre, Institutes of Cellular and Genetic Medicine, Newcastle University, 4th Floor William Leech Building M4.074, Newcastle upon Tyne, NE2 4HH UK
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Djordje G. Jakovljevic
- Faculty of Medical Sciences, Cardiovascular Research Centre, Institutes of Cellular and Genetic Medicine, Newcastle University, 4th Floor William Leech Building M4.074, Newcastle upon Tyne, NE2 4HH UK
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- RCUK Newcastle Centre for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
21
|
Sjöros T, Saunavaara V, Löyttyniemi E, Koivumäki M, Heinonen IHA, Eskelinen J, Virtanen KA, Hannukainen JC, Kalliokoski KK. Intramyocellular lipid accumulation after sprint interval and moderate-intensity continuous training in healthy and diabetic subjects. Physiol Rep 2019; 7:e13980. [PMID: 30740933 PMCID: PMC6369060 DOI: 10.14814/phy2.13980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 11/24/2022] Open
Abstract
The effects of sprint interval training (SIT) on intramyocellular (IMCL) and extramyocellular (EMCL) lipid accumulation are unclear. We tested the effects of SIT and moderate-intensity continuous training (MICT) on IMCL and EMCL accumulation in a randomized controlled setting in two different study populations; healthy untrained men (n 28) and subjects with type 2 diabetes (T2D) or prediabetes (n 26). Proton magnetic resonance spectroscopy (1 H MRS) was used to determine IMCL and EMCL in the Tibialis anterior muscle (TA) before and after a 2-week exercise period. The exercise period comprised six sessions of SIT or MICT cycling on a cycle ergometer. IMCL increased after SIT compared to MICT (P = 0.042) in both healthy and T2D/prediabetic subjects. On EMCL the training intervention had no significant effect. In conclusion, IMCL serves as an important energy depot during exercise and can be extended by high intensity exercise. The effects of high intensity interval exercise on IMCL seem to be similar regardless of insulin sensitivity or the presence of T2D.
Collapse
Affiliation(s)
| | - Virva Saunavaara
- Turku PET CentreTurku University HospitalTurkuFinland
- Department of Medical PhysicsDivision of Medical ImagingTurku University HospitalTurkuFinland
| | | | | | | | | | - Kirsi A. Virtanen
- Turku PET CentreUniversity of TurkuTurkuFinland
- Turku PET CentreTurku University HospitalTurkuFinland
| | | | | |
Collapse
|
22
|
Heiskanen MA, Motiani KK, Mari A, Eskelinen JJ, Virtanen KA, Löyttyniemi E, Kalliokoski KK, Hannukainen JC. Comment on 'Exercise training decreases pancreatic fat content and improves beta cell function regardless of baseline glucose tolerance: a randomised controlled trial'. Reply to Amini P and Moharamzadeh S [letter]. Diabetologia 2019; 62:204-206. [PMID: 30406809 DOI: 10.1007/s00125-018-4762-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Marja A Heiskanen
- Turku PET Centre, University of Turku, P.O. Box 52, FIN-20521, Turku, Finland
| | - Kumail K Motiani
- Turku PET Centre, University of Turku, P.O. Box 52, FIN-20521, Turku, Finland
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padua, Italy
| | | | | | | | - Kari K Kalliokoski
- Turku PET Centre, University of Turku, P.O. Box 52, FIN-20521, Turku, Finland
| | - Jarna C Hannukainen
- Turku PET Centre, University of Turku, P.O. Box 52, FIN-20521, Turku, Finland.
| |
Collapse
|
23
|
Ramezani N, Vanaky B, Shakeri N, Soltanian Z, Fakhari Rad F, Shams Z. Evaluation of Bcl-2 and Bax Expression in the Heart of Diabetic Rats after Four Weeks of High Intensity Interval Training. MEDICAL LABORATORY JOURNAL 2019. [DOI: 10.29252/mlj.13.1.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
24
|
DiMenna FJ, Arad AD. Exercise as 'precision medicine' for insulin resistance and its progression to type 2 diabetes: a research review. BMC Sports Sci Med Rehabil 2018; 10:21. [PMID: 30479775 PMCID: PMC6251139 DOI: 10.1186/s13102-018-0110-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/13/2018] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes and obesity epidemics are in effect in the United States and the two pathologies are linked. In accordance with the growing appreciation that ‘exercise is medicine,’ it is intuitive to suggest that exercise can play an important role in the prevention and/or treatment of these conditions. However, if exercise is to truly be considered as a viable alternative to conventional healthcare prevention/treatment strategies involving pharmaceuticals, it must be prescribed with similar scrutiny. Indeed, it seems reasonable to posit that the recent initiative calling for ‘precision medicine’ in the US standard healthcare system should also be applied in the exercise setting. In this narrative review, we consider a number of explanations that have been forwarded regarding the pathological progression to type 2 diabetes both with and without the concurrent influence of overweight/obesity. Our goal is to provide insight regarding exercise strategies that might be useful as ‘precision medicine’ to prevent/treat this disease. Although the etiology of type 2 diabetes is complex and cause/consequence characteristics of associated dysfunctions have been debated, it is well established that impaired insulin action plays a critical early role. Consequently, an exercise strategy to prevent/treat this disease should be geared toward improving insulin sensitivity both from an acute and chronic standpoint. However, research suggests that a chronic improvement in insulin sensitivity only manifests when weight loss accompanies an exercise intervention. This has resonance because ectopic fat accumulation appears to represent a central component of disease progression regardless of whether obesity is also part of the equation. The cause/consequence characteristics of the relationship between insulin resistance, pathological fat deposition and/or mobilsation, elevated and/or poorly-distributed lipid within myocytes and an impaired capacity to use lipid as fuel remains to be clarified as does the role of muscle mitochondria in the metabolic decline. Until these issues are resolved, a multidimensional exercise strategy (e.g., aerobic exercise at a range of intensities and resistance training for muscular hypertrophy) could provide the best alternative for prevention/treatment.
Collapse
Affiliation(s)
- Fred J DiMenna
- 1Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, 1111 Amsterdam Avenue, Babcock 10th Floor, Suite 1020, New York, 10025 New York USA.,2Department of Biobehavioral Sciences, Columbia University Teachers College, 525 W. 120th Street, New York, 10027 New York USA
| | - Avigdor D Arad
- 1Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, 1111 Amsterdam Avenue, Babcock 10th Floor, Suite 1020, New York, 10025 New York USA
| |
Collapse
|
25
|
Honkala SM, Johansson J, Motiani KK, Eskelinen JJ, Virtanen KA, Löyttyniemi E, Knuuti J, Nuutila P, Kalliokoski KK, Hannukainen JC. Short-term interval training alters brain glucose metabolism in subjects with insulin resistance. J Cereb Blood Flow Metab 2018; 38:1828-1838. [PMID: 28959911 PMCID: PMC6168908 DOI: 10.1177/0271678x17734998] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Brain insulin-stimulated glucose uptake (GU) is increased in obese and insulin resistant subjects but normalizes after weight loss along with improved whole-body insulin sensitivity. Our aim was to study whether short-term exercise training (moderate intensity continuous training (MICT) or sprint interval training (SIT)) alters substrates for brain energy metabolism in insulin resistance. Sedentary subjects ( n = 21, BMI 23.7-34.3 kg/m2, age 43-55 y) with insulin resistance were randomized into MICT ( n = 11, intensity≥60% of VO2peak) or SIT ( n = 10, all-out) groups for a two-week training intervention. Brain GU during insulin stimulation and fasting brain free fatty acid uptake (FAU) was measured using PET. At baseline, brain GU was positively associated with the fasting insulin level and negatively with the whole-body insulin sensitivity. The whole-body insulin sensitivity improved with both training modes (20%, p = 0.007), while only SIT led to an increase in aerobic capacity (5%, p = 0.03). SIT also reduced insulin-stimulated brain GU both in global cortical grey matter uptake (12%, p = 0.03) and in specific regions ( p < 0.05, all areas except the occipital cortex), whereas no changes were observed after MICT. Brain FAU remained unchanged after the training in both groups. These findings show that short-term SIT effectively decreases insulin-stimulated brain GU in sedentary subjects with insulin resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Juhani Knuuti
- 3 Turku PET Centre, Åbo Akademi University, Turku, Finland.,4 Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Pirjo Nuutila
- 1 Turku PET Centre, University of Turku, Turku, Finland.,4 Turku PET Centre, Turku University Hospital, Turku, Finland
| | | | | |
Collapse
|
26
|
Heiskanen MA, Motiani KK, Mari A, Saunavaara V, Eskelinen JJ, Virtanen KA, Koivumäki M, Löyttyniemi E, Nuutila P, Kalliokoski KK, Hannukainen JC. Exercise training decreases pancreatic fat content and improves beta cell function regardless of baseline glucose tolerance: a randomised controlled trial. Diabetologia 2018; 61:1817-1828. [PMID: 29717337 PMCID: PMC6061150 DOI: 10.1007/s00125-018-4627-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/22/2018] [Indexed: 12/21/2022]
Abstract
AIMS/HYPOTHESIS Pancreatic fat accumulation may contribute to the development of beta cell dysfunction. Exercise training improves whole-body insulin sensitivity, but its effects on pancreatic fat content and beta cell dysfunction are unclear. The aim of this parallel-group randomised controlled trial was to evaluate the effects of exercise training on pancreatic fat and beta cell function in healthy and prediabetic or type 2 diabetic participants and to test whether the responses were similar regardless of baseline glucose tolerance. METHODS Using newspaper announcements, a total of 97 sedentary 40-55-year-old individuals were assessed for eligibility. Prediabetes (impaired fasting glucose and/or impaired glucose tolerance) and type 2 diabetes were defined by ADA criteria. Of the screened candidates, 28 healthy men and 26 prediabetic or type 2 diabetic men and women met the inclusion criteria and were randomised into 2-week-long sprint interval or moderate-intensity continuous training programmes in a 1:1 allocation ratio using random permuted blocks. The primary outcome was pancreatic fat, which was measured by magnetic resonance spectroscopy. As secondary outcomes, beta cell function was studied using variables derived from OGTT, and whole-body insulin sensitivity and pancreatic fatty acid and glucose uptake were measured using positron emission tomography. The measurements were carried out at the Turku PET Centre, Finland. The analyses were based on an intention-to-treat principle. Given the nature of the intervention, blinding was not applicable. RESULTS At baseline, the group of prediabetic or type 2 diabetic men had a higher pancreatic fat content and impaired beta cell function compared with the healthy men, while glucose and fatty acid uptake into the pancreas was similar. Exercise training decreased pancreatic fat similarly in healthy (from 4.4% [3.0%, 6.1%] to 3.6% [2.4%, 5.2%] [mean, 95% CI]) and prediabetic or type 2 diabetic men (from 8.7% [6.0%, 11.9%] to 6.7% [4.4%, 9.6%]; p = 0.036 for time effect) without any changes in pancreatic substrate uptake (p ≥ 0.31 for time effect in both insulin-stimulated glucose and fasting state fatty acid uptake). In prediabetic or type 2 diabetic men and women, both exercise modes similarly improved variables describing beta cell function. CONCLUSIONS/INTERPRETATION Two weeks of exercise training improves beta cell function in prediabetic or type 2 diabetic individuals and decreases pancreatic fat regardless of baseline glucose tolerance. This study shows that short-term training efficiently reduces ectopic fat within the pancreas, and exercise training may therefore reduce the risk of type 2 diabetes. TRIAL REGISTRATION ClinicalTrials.gov NCT01344928 FUNDING: This study was funded by the Emil Aaltonen Foundation, the European Foundation for the Study of Diabetes, the Finnish Diabetes Foundation, the Orion Research Foundation, the Academy of Finland (grants 251399, 256470, 281440, and 283319), the Ministry of Education of the State of Finland, the Paavo Nurmi Foundation, the Novo Nordisk Foundation, the Finnish Cultural Foundation, the Hospital District of Southwest Finland, the Turku University Foundation, and the Finnish Medical Foundation.
Collapse
Affiliation(s)
- Marja A Heiskanen
- Turku PET Centre, University of Turku, P.O. Box 52, FIN-20521, Turku, Finland
| | - Kumail K Motiani
- Turku PET Centre, University of Turku, P.O. Box 52, FIN-20521, Turku, Finland
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padova, Italy
| | - Virva Saunavaara
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | | | | | - Mikko Koivumäki
- Turku PET Centre, University of Turku, P.O. Box 52, FIN-20521, Turku, Finland
| | | | - Pirjo Nuutila
- Turku PET Centre, University of Turku, P.O. Box 52, FIN-20521, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Turku PET Centre, Åbo Akademi University, Turku, Finland
| | - Kari K Kalliokoski
- Turku PET Centre, University of Turku, P.O. Box 52, FIN-20521, Turku, Finland
| | - Jarna C Hannukainen
- Turku PET Centre, University of Turku, P.O. Box 52, FIN-20521, Turku, Finland.
| |
Collapse
|
27
|
Sprint interval training decreases left-ventricular glucose uptake compared to moderate-intensity continuous training in subjects with type 2 diabetes or prediabetes. Sci Rep 2017; 7:10531. [PMID: 28874821 PMCID: PMC5585392 DOI: 10.1038/s41598-017-10931-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/17/2017] [Indexed: 01/07/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is associated with reduced myocardial glucose uptake (GU) and increased free fatty acid uptake (FFAU). Sprint interval training (SIT) improves physical exercise capacity and metabolic biomarkers, but effects of SIT on cardiac function and energy substrate metabolism in diabetic subjects are unknown. We tested the hypothesis that SIT is more effective than moderate-intensity continuous training (MICT) on adaptations in left and right ventricle (LV and RV) glucose and fatty acid metabolism in diabetic subjects. Twenty-six untrained men and women with T2DM or prediabetes were randomized into two-week-long SIT (n = 13) and MICT (n = 13) interventions. Insulin-stimulated myocardial GU and fasted state FFAU were measured by positron emission tomography and changes in LV and RV structure and function by cardiac magnetic resonance. In contrast to our hypothesis, SIT significantly decreased GU compared to MICT in LV. FFAU of both ventricles remained unchanged by training. RV end-diastolic volume (EDV) and RV mass increased only after MICT, whereas LV EDV, LV mass, and RV and LV end-systolic volumes increased similarly after both training modes. As SIT decreases myocardial insulin-stimulated GU compared to MICT which may already be reduced in T2DM, SIT may be metabolically less beneficial than MICT for a diabetic heart.
Collapse
|