1
|
Gorin S, Richard G, Hervé S, Eveno E, Blanchard Y, Jardin A, Rose N, Simon G. Characterization of Influenza D Virus Reassortant Strain in Swine from Mixed Pig and Beef Farm, France. Emerg Infect Dis 2024; 30:1672-1676. [PMID: 39043445 PMCID: PMC11286067 DOI: 10.3201/eid3008.240089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Influenza D virus was isolated from pigs on a mixed pig and beef farm in France. Investigation suggested bull-to-pig transmission and spread among pigs. The swine influenza D virus recovered was a reassortant of D/660 and D/OK lineages. Reported mutations in the receptor binding site might be related to swine host adaptation.
Collapse
|
2
|
Vicosa Bauermann F, Falkenberg S, Rudd JM, Peter CM, Merchioratto I, Ritchey JW, Gilliam J, Taylor J, Ma H, Maggioli MF. Immune Responses to Influenza D Virus in Calves Previously Infected with Bovine Viral Diarrhea Virus 2. Viruses 2023; 15:2442. [PMID: 38140683 PMCID: PMC10747992 DOI: 10.3390/v15122442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Bovine viral diarrhea virus (BVDV) induces immunosuppression and thymus depletion in calves. This study explores the impact of prior BVDV-2 exposure on the subsequent immune response to influenza D virus (IDV). Twenty 3-week-old calves were divided into four groups. Calves in G1 and G3 were mock-treated on day 0, while calves in G2 and G4 received BVDV. Calves in G1 (mock) and G2 (BVDV) were necropsied on day 13 post-infection. IDV was inoculated on day 21 in G3 calves (mock + IDV) and G4 (BVDV + IDV) and necropsy was conducted on day 42. Pre-exposed BVDV calves exhibited prolonged and increased IDV shedding in nasal secretions. An approximate 50% reduction in the thymus was observed in acutely infected BVDV calves (G2) compared to controls (G1). On day 42, thymus depletion was observed in two calves in G4, while three had normal weight. BVDV-2-exposed calves had impaired CD8 T cell proliferation after IDV recall stimulation, and the α/β T cell impairment was particularly evident in those with persistent thymic atrophy. Conversely, no difference in antibody levels against IDV was noted. BVDV-induced thymus depletion varied from transient to persistent. Persistent thymus atrophy was correlated with weaker T cell proliferation, suggesting correlation between persistent thymus atrophy and impaired T cell immune response to subsequent infections.
Collapse
Affiliation(s)
- Fernando Vicosa Bauermann
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK 74078, USA
| | - Shollie Falkenberg
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Animal Research Services, National Animal Disease Center, United States Department of Agriculture, Ames, IA 50010, USA
| | - Jennifer M. Rudd
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK 74078, USA
| | - Cristina Mendes Peter
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK 74078, USA
- Center for Medical Bioinformatics, Escola Paulista de Medicina, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04039-032, Brazil
| | - Ingryd Merchioratto
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK 74078, USA
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Jerry W. Ritchey
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK 74078, USA
| | - John Gilliam
- Veterinary Clinical Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jared Taylor
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK 74078, USA
| | - Hao Ma
- Animal Research Services, National Animal Disease Center, United States Department of Agriculture, Ames, IA 50010, USA
| | - Mayara Fernanda Maggioli
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK 74078, USA
| |
Collapse
|
3
|
Uprety T, Sreenivasan CC, Thomas M, Hause B, Christopher-Hennings J, Miskimis D, Pillatzki A, Nelson E, Wang D, Li F. Prevalence and characterization of seven-segmented influenza viruses in bovine respiratory disease complex. Virology 2023; 587:109859. [PMID: 37544044 PMCID: PMC10592214 DOI: 10.1016/j.virol.2023.109859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
Bovine respiratory disease (BRD) complex is a multifactorial respiratory disease of cattle. Seven-segmented influenza C (ICV) and D (IDV) viruses have been identified in cattle with BRD, however, molecular epidemiology and prevalence of IDV and ICV in the diseased population remain poorly characterized. Here, we conducted a molecular screening of 208 lung samples of bovine pneumonia cases for the presence of IDV and ICV. Our results demonstrated that both viruses were prevalent in BRD cases and the overall positivity rates of IDV and ICV were 20.88% and 5.99% respectively. Further analysis of three IDV strains isolated from lungs of cattle with BRD showed that these lung-tropic strains belonged to D/Michigan/2019 clade and diverged antigenically from the circulating dominant IDV clades D/OK and D/660. Our results reveal that IDV and ICV are associated with BRD complex and support a role for IDV and ICV in the etiology of BRD.
Collapse
Affiliation(s)
- Tirth Uprety
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA
| | - Chithra C Sreenivasan
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA
| | - Milton Thomas
- Department of Veterinary and Biomedical Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Ben Hause
- Department of Veterinary and Biomedical Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Jane Christopher-Hennings
- Department of Veterinary and Biomedical Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Dale Miskimis
- Department of Veterinary and Biomedical Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Angela Pillatzki
- Department of Veterinary and Biomedical Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Eric Nelson
- Department of Veterinary and Biomedical Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Dan Wang
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA.
| | - Feng Li
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
4
|
Sreenivasan CC, Liu R, Gao R, Guo Y, Hause BM, Thomas M, Naveed A, Clement T, Rausch D, Christopher-Hennings J, Nelson E, Druce J, Zhao M, Kaushik RS, Li Q, Sheng Z, Wang D, Li F. Influenza C and D Viruses Demonstrated a Differential Respiratory Tissue Tropism in a Comparative Pathogenesis Study in Guinea Pigs. J Virol 2023; 97:e0035623. [PMID: 37199648 PMCID: PMC10308911 DOI: 10.1128/jvi.00356-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023] Open
Abstract
Influenza C virus (ICV) is increasingly associated with community-acquired pneumonia (CAP) in children and its disease severity is worse than the influenza B virus, but similar to influenza A virus associated CAP. Despite the ubiquitous infection landscape of ICV in humans, little is known about its replication and pathobiology in animals. The goal of this study was to understand the replication kinetics, tissue tropism, and pathogenesis of human ICV (huICV) in comparison to the swine influenza D virus (swIDV) in guinea pigs. Intranasal inoculation of both viruses did not cause clinical signs, however, the infected animals shed virus in nasal washes. The huICV replicated in the nasal turbinates, soft palate, and trachea but not in the lungs while swIDV replicated in all four tissues. A comparative analysis of tropism and pathogenesis of these two related seven-segmented influenza viruses revealed that swIDV-infected animals exhibited broad tissue tropism with an increased rate of shedding on 3, 5, and 7 dpi and high viral loads in the lungs compared to huICV. Seroconversion occurred late in the huICV group at 14 dpi, while swIDV-infected animals seroconverted at 7 dpi. Guinea pigs infected with huICV exhibited mild to moderate inflammatory changes in the epithelium of the soft palate and trachea, along with mucosal damage and multifocal alveolitis in the lungs. In summary, the replication kinetics and pathobiological characteristics of ICV in guinea pigs agree with the clinical manifestation of ICV infection in humans, and hence guinea pigs could be used to study these distantly related influenza viruses. IMPORTANCE Similar to influenza A and B, ICV infections are seen associated with bacterial and viral co-infections which complicates the assessment of its real clinical significance. Further, the antivirals against influenza A and B viruses are ineffective against ICV which mandates the need to study the pathobiological aspects of this virus. Here we demonstrated that the respiratory tract of guinea pigs possesses specific viral receptors for ICV. We also compared the replication kinetics and pathogenesis of huICV and swIDV, as these viruses share 50% sequence identity. The tissue tropism and pathology associated with huICV in guinea pigs are analogous to the mild respiratory disease caused by ICV in humans, thereby demonstrating the suitability of guinea pigs to study ICV. Our comparative analysis revealed that huICV and swIDV replicated differentially in the guinea pigs suggesting that the type-specific genetic differences can result in the disparity of the viral shedding and tissue tropism.
Collapse
Affiliation(s)
- Chithra C. Sreenivasan
- Department of Veterinary Science, M. H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Runxia Liu
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Rongyuan Gao
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Yicheng Guo
- Zuckerman Mind Brian Behavior Institute, Columbia University, New York, New York, USA
| | - Ben M. Hause
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Milton Thomas
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Ahsan Naveed
- Department of Veterinary Science, M. H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Travis Clement
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Dana Rausch
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Jane Christopher-Hennings
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Eric Nelson
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Julian Druce
- Virology Section, Victorian Infectious Diseases Reference Laboratory, Melbourne, Victoria, Australia
| | - Miaoyun Zhao
- Nebraska Center for Virology, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- School of Biological Sciences, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Radhey S. Kaushik
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Qingsheng Li
- Nebraska Center for Virology, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- School of Biological Sciences, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Zizhang Sheng
- Zuckerman Mind Brian Behavior Institute, Columbia University, New York, New York, USA
| | - Dan Wang
- Department of Veterinary Science, M. H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Feng Li
- Department of Veterinary Science, M. H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
5
|
Robinson E, Schulein C, Jacobson BT, Jones K, Sago J, Huber V, Jutila M, Bimczok D, Rynda-Apple A. Pathophysiology of Influenza D Virus Infection in Specific-Pathogen-Free Lambs with or without Prior Mycoplasma ovipneumoniae Exposure. Viruses 2022; 14:1422. [PMID: 35891403 PMCID: PMC9321583 DOI: 10.3390/v14071422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Polymicrobial pneumonias occur frequently in cattle, swine, and sheep, resulting in major economic losses. Individual pathogens comprising these complex infections may be mild on their own but can instead exhibit synergism or increase host susceptibility. Two examples of such pathogens, Mycoplasma ovipneumoniae (M. ovipneumoniae) and influenza D viruses (IDVs), naturally infect domestic sheep. In sheep, the role of M. ovipneumoniae in chronic nonprogressive pneumonia is well-established, but the pathogenesis of IDV infection has not previously been studied. We utilized a specific-pathogen-free sheep flock to study the clinical response to IDV infection in naïve vs. M. ovipneumoniae-exposed lambs. Lambs were inoculated intranasally with M. ovipneumoniae or mock infection, followed after four weeks by infection with IDV. Pathogen shedding was tracked, and immunological responses were evaluated by measuring acute phase response and IDV-neutralizing antibody titers. While lamb health statuses remained subclinical, M. ovipneumoniae-exposed lambs had significantly elevated body temperatures during IDV infection compared to M. ovipneumoniae-naïve, IDV-infected lambs. Moreover, we found a positive correlation between prior M. ovipneumoniae burden, early-infection IDV shedding, and IDV-neutralizing antibody response. Our findings suggest that IDV infection may not induce clinical symptoms in domestic sheep, but previous M. ovipneumoniae exposure may promote mild IDV-associated inflammation.
Collapse
Affiliation(s)
- Ema Robinson
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - Clyde Schulein
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - B. Tegner Jacobson
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - Kerri Jones
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - Jonathon Sago
- Montana State Veterinary Diagnostic Laboratory, 1911 West Lincoln Street, Bozeman, MT 59718, USA;
| | - Victor Huber
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA;
| | - Mark Jutila
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - Diane Bimczok
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - Agnieszka Rynda-Apple
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| |
Collapse
|
6
|
Experimental Infection of Horses with Influenza D Virus. Viruses 2022; 14:v14040661. [PMID: 35458390 PMCID: PMC9029652 DOI: 10.3390/v14040661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/19/2022] [Accepted: 03/20/2022] [Indexed: 02/04/2023] Open
Abstract
Antibodies to influenza D virus (IDV) have been detected in horses, but no evidence of disease in the field has been reported. To determine whether IDV is infectious, immunogenic, and pathogenic in horses, four 2-year-old horses seronegative for both influenza A (H3N8) and D viruses were intranasally inoculated with 6.25 × 107 TCID50/animal of D/bovine/California/0363/2019 (D/CA2019) virus, using a portable equine nebulizer system. Horses were observed daily for clinical signs including rectal temperature, nasal discharge, coughing, lung sounds, tachycardia, and tachypnea. No horses exhibited clinical signs of disease. Nasopharyngeal swabs collected from 1–8 days post-infection demonstrated virus shedding by qRT-PCR. The horses showed evidence of seroconversion as early as 13 days post-infection (dpi) and the geometric mean of the antibody titers (GMT) of all four horses ranged from 16.82–160 as demonstrated by the microneutralization assay. Further, deep RNA sequencing of the virus isolated in embryonated chicken eggs revealed no adaptive mutations indicating that IDV can replicate in horses, suggesting the possibility of interspecies transmission of IDV with bovine reservoir into equids in nature.
Collapse
|
7
|
Song H, Gao GF. Evaluation of the Glycan-Binding and Esterase Activities of Hemagglutinin-Esterase-Fusion Glycoprotein from Influenza D Virus. Methods Mol Biol 2022; 2556:187-203. [PMID: 36175636 DOI: 10.1007/978-1-0716-2635-1_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Influenza D virus (IDV) is a new member of influenza virus that uses cattle as the primary reservoir and infects multiple agricultural animals. Similar to influenza C virus (ICV), IDV also has seven segments in its genome and has only one major surface glycoprotein, called the hemagglutinin-esterase-fusion (HEF) protein, for receptor-binding, receptor-destroying, and membrane fusion. HEF utilizes 9-O-acetylated sialic acids as its receptor and has both receptor binding and esterase activities, thus is a critical determinant of host tropism. Here, we summarize the methods to evaluate the glycan-binding and esterase activities of HEF in vitro. The glycan-bind property is monitored through glycan microarray, MDCK cell-binding assay, Hemagglutination assay, solid-phase lectin binding assay, and immunofluorescence of tissue sections, and its esterase property is analyzed via esterase enzymatic activity assay.
Collapse
Affiliation(s)
- Hao Song
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - George F Gao
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Sreenivasan CC, Sheng Z, Wang D, Li F. Host Range, Biology, and Species Specificity of Seven-Segmented Influenza Viruses-A Comparative Review on Influenza C and D. Pathogens 2021; 10:1583. [PMID: 34959538 PMCID: PMC8704295 DOI: 10.3390/pathogens10121583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
Other than genome structure, influenza C (ICV), and D (IDV) viruses with seven-segmented genomes are biologically different from the eight-segmented influenza A (IAV), and B (IBV) viruses concerning the presence of hemagglutinin-esterase fusion protein, which combines the function of hemagglutinin and neuraminidase responsible for receptor-binding, fusion, and receptor-destroying enzymatic activities, respectively. Whereas ICV with humans as primary hosts emerged nearly 74 years ago, IDV, a distant relative of ICV, was isolated in 2011, with bovines as the primary host. Despite its initial emergence in swine, IDV has turned out to be a transboundary bovine pathogen and a broader host range, similar to influenza A viruses (IAV). The receptor specificities of ICV and IDV determine the host range and the species specificity. The recent findings of the presence of the IDV genome in the human respiratory sample, and high traffic human environments indicate its public health significance. Conversely, the presence of ICV in pigs and cattle also raises the possibility of gene segment interactions/virus reassortment between ICV and IDV where these viruses co-exist. This review is a holistic approach to discuss the ecology of seven-segmented influenza viruses by focusing on what is known so far on the host range, seroepidemiology, biology, receptor, phylodynamics, species specificity, and cross-species transmission of the ICV and IDV.
Collapse
Affiliation(s)
- Chithra C. Sreenivasan
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (C.C.S.); (D.W.)
| | - Zizhang Sheng
- Aaron Diamond AIDS Research Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA;
| | - Dan Wang
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (C.C.S.); (D.W.)
| | - Feng Li
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (C.C.S.); (D.W.)
| |
Collapse
|
9
|
Identification of One Critical Amino Acid Residue of the Nucleoprotein as a Determinant for In Vitro Replication Fitness of Influenza D Virus. J Virol 2021; 95:e0097121. [PMID: 34190601 DOI: 10.1128/jvi.00971-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The newly identified influenza D virus (IDV) of the Orthomyxoviridae family has a wide host range with a broad geographical distribution. Despite the first appearance in U.S. pig herds in 2011, subsequent studies demonstrated that IDV is widespread in global cattle populations, supporting a theory that IDV utilizes bovines as a primary reservoir. Our investigation of the two reference influenza D viruses, D/swine/Oklahoma/1334/2011 (OK/11), isolated from swine, and D/Bovine/Oklahoma/660/2013 (660/13), isolated from cattle, revealed that 660/13 replicated to titers approximately 100-fold higher than those for OK/11 in multiple cell lines. By using a recently developed IDV reverse-genetics system derived from low-titer OK/11, we generated recombinant chimeric OK/11 viruses in which one of the seven genome segments was replaced with its counterpart from high-titer 660/13 virus. Further characterization demonstrated that the replication level of the chimeric OK/11 virus was significantly increased only when harboring the 660/13 nucleoprotein (NP) segment. Finally, through both gain-of-function and loss-of-function experiments, we identified that one amino acid residue at position 381, located in the body domain of NP protein, was a key determinant for the replication difference between the low-titer OK/11 virus and the high-titer 660/13 virus. Taken together, our findings provide important insight into IDV replication fitness mediated by the NP protein, which should facilitate future study of the infectious virus particle production mechanism of IDV. IMPORTANCE Little is known about the virus infection and production mechanism for newly discovered influenza D virus (IDV), which utilizes bovines as a primary reservoir, with frequent spillover to new hosts, including swine. In this study, we showed that of two well-characterized IDVs, 660/13 replicated more efficiently (approximately 100-fold higher) than OK/11. Using a recently developed IDV reverse-genetics system, we identified viral nucleoprotein (NP) as a primary determinant of the different replication capacities observed between these two nearly identical viruses. Mechanistic investigation further revealed that a mutation at NP position 381 evidently modulated virus fitness. Taken together, these observations indicate that IDV NP protein performs a critical role in infectious virus particle production. Our study thus illustrates an NP-based mechanism for efficient IDV infection and production in vitro.
Collapse
|