1
|
Xu C, Xiang L, Huang W, Zhang X, Mao C, Wu S, Li T, Wang S, Wang S. Unraveling a Small Secreted Peptide SUBPEP3 That Positively Regulates Salt-Stress Tolerance in Pyrus betulifolia. Int J Mol Sci 2024; 25:4612. [PMID: 38731831 PMCID: PMC11083645 DOI: 10.3390/ijms25094612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Small secreted peptides (SSPs) play important roles in regulating plants' growth and development in response to external stimulus, but the genes and functions of SSPs in many species are still unknown. Therefore, it is particularly significant to characterize and annotate SSP genes in plant genomes. As a widely used stock of pears, Pyrus betulifolia has strong resistance to biotic and abiotic stresses. In this study, we analyzed the SSPs genes in the genome of P. betulifolia according to their characteristics and homology. A total of 1195 SSP genes were identified, and most of them are signaling molecules. Among these, we identified a new SSP, subtilase peptide 3 (SUBPEP3), which derived from the PA region of preSUBPEP3, increasing the expression level under salt stress. Both adding synthetic peptide SUBPEP3 to the culture medium of pears and the overexpression of SUBPEP3 in tobacco can improve the salt tolerance of plants. In summary, we annotated the SSP genes in the P. betulifolia genome and identified a small secreted peptide SUBPEP3 that regulates the salt tolerance of P. betulifolia, which provides an important theoretical basis for further revealing the function of SSPs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shengnan Wang
- College of Horticulture, China Agricultural University, Beijing 100080, China
| |
Collapse
|
2
|
Taleski M, Jin M, Chapman K, Taylor K, Winning C, Frank M, Imin N, Djordjevic MA. CEP hormones at the nexus of nutrient acquisition and allocation, root development, and plant-microbe interactions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:538-552. [PMID: 37946363 PMCID: PMC10773996 DOI: 10.1093/jxb/erad444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
A growing understanding is emerging of the roles of peptide hormones in local and long-distance signalling that coordinates plant growth and development as well as responses to the environment. C-TERMINALLY ENCODED PEPTIDE (CEP) signalling triggered by its interaction with CEP RECEPTOR 1 (CEPR1) is known to play roles in systemic nitrogen (N) demand signalling, legume nodulation, and root system architecture. Recent research provides further insight into how CEP signalling operates, which involves diverse downstream targets and interactions with other hormone pathways. Additionally, there is emerging evidence of CEP signalling playing roles in N allocation, root responses to carbon levels, the uptake of other soil nutrients such as phosphorus and sulfur, root responses to arbuscular mycorrhizal fungi, plant immunity, and reproductive development. These findings suggest that CEP signalling more broadly coordinates growth across the whole plant in response to diverse environmental cues. Moreover, CEP signalling and function appear to be conserved in angiosperms. We review recent advances in CEP biology with a focus on soil nutrient uptake, root system architecture and organogenesis, and roles in plant-microbe interactions. Furthermore, we address knowledge gaps and future directions in this research field.
Collapse
Affiliation(s)
- Michael Taleski
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| | - Marvin Jin
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| | - Kelly Chapman
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| | - Katia Taylor
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Courtney Winning
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| | - Manuel Frank
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Nijat Imin
- School of Science, Western Sydney University, Penrith, New South Wales 2751, Australia
| | - Michael A Djordjevic
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| |
Collapse
|
3
|
Nakagami S, Notaguchi M, Kondo T, Okamoto S, Ida T, Sato Y, Higashiyama T, Tsai AYL, Ishida T, Sawa S. Root-knot nematode modulates plant CLE3-CLV1 signaling as a long-distance signal for successful infection. SCIENCE ADVANCES 2023; 9:eadf4803. [PMID: 37267361 PMCID: PMC10413670 DOI: 10.1126/sciadv.adf4803] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/28/2023] [Indexed: 06/04/2023]
Abstract
Plants use many long-distance and systemic signals to modulate growth and development, as well as respond to biotic and abiotic stresses. Parasitic nematodes infect host plant roots and cause severe damage to crop plants. However, the molecular mechanisms that regulate parasitic nematode infections are still unknown. Here, we show that plant parasitic root-knot nematodes (RKNs), Meloidogyne incognita, modulate the host CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION (CLE)-CLV1 signaling module to promote the infection progression. Plants deficient in the CLE signaling pathway show enhanced RKN resistance, whereas CLE overexpression leads to increased susceptibility toward RKN. Grafting analysis shows that CLV1 expression in the shoot alone is sufficient to positively regulate RKN infection. Together with results from the split-root culture system, infection assays, and CLE3-CLV1 binding assays, we conclude that mobile root-derived CLE signals are perceived by CLV1 in the shoot, which subsequently produce systemic signals to promote gall formation and RKN reproduction.
Collapse
Affiliation(s)
- Satoru Nakagami
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Michitaka Notaguchi
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Tatsuhiko Kondo
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Satoru Okamoto
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Saitama, 332-0012, Japan
| | - Takanori Ida
- Department of Bioactive Peptides, Frontier Science Research Center, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
| | - Tetsuya Higashiyama
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Allen Yi-Lun Tsai
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
- International Research Center for Agricultural & Environmental Biology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Takashi Ishida
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto 860-8555, Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
- International Research Center for Agricultural & Environmental Biology, Kumamoto University, Kumamoto 860-8555, Japan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto 860-8555, Japan
- Institute of Industrial Nanomaterial (IINA), Kumamoto University, Kumamoto 860-8555, Japan
| |
Collapse
|
4
|
Taleski M, Chapman K, Novák O, Schmülling T, Frank M, Djordjevic MA. CEP peptide and cytokinin pathways converge on CEPD glutaredoxins to inhibit root growth. Nat Commun 2023; 14:1683. [PMID: 36973257 PMCID: PMC10042822 DOI: 10.1038/s41467-023-37282-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
AbstractC-TERMINALLY ENCODED PEPTIDE (CEP) and cytokinin hormones act over short and long distances to control plant responses to environmental cues. CEP and cytokinin pathway mutants share phenotypes, however, it is not known if these pathways intersect. We show that CEP and cytokinin signalling converge on CEP DOWNSTREAM (CEPD) glutaredoxins to inhibit primary root growth. CEP inhibition of root growth was impaired in mutants defective in trans-zeatin (tZ)-type cytokinin biosynthesis, transport, perception, and output. Concordantly, mutants affected in CEP RECEPTOR 1 showed reduced root growth inhibition in response to tZ, and altered levels of tZ-type cytokinins. Grafting and organ-specific hormone treatments showed that tZ-mediated root growth inhibition involved CEPD activity in roots. By contrast, root growth inhibition by CEP depended on shoot CEPD function. The results demonstrate that CEP and cytokinin pathways intersect, and utilise signalling circuits in separate organs involving common glutaredoxin genes to coordinate root growth.
Collapse
|
5
|
Lebedeva MA, Gancheva MS, Kulaeva OA, Zorin EA, Dobychkina DA, Romanyuk DA, Sulima AS, Zhukov VA, Lutova LA. Identification and Expression Analysis of the C-TERMINALLY ENCODED PEPTIDE Family in Pisum sativum L. Int J Mol Sci 2022; 23:14875. [PMID: 36499210 PMCID: PMC9739355 DOI: 10.3390/ijms232314875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The C-TERMINALLY ENCODED PEPTIDE(CEP) peptides play crucial roles in plant growth and response to environmental factors. These peptides were characterized as positive regulators of symbiotic nodule development in legume plants. However, little is known about the CEP peptide family in pea. Here, we discovered in pea genome 21 CEP genes (PsCEPs), among which three genes contained additional conserved motifs corresponding to the PIP (PAMP-induced secreted peptides) consensus sequences. We characterized the expression patterns of pea PsCEP genes based on transcriptomic data, and for six PsCEP genes with high expression levels in the root and symbiotic nodules the detailed expression analysis at different stages of symbiosis and in response to nitrate treatment was performed. We suggest that at least three PsCEP genes, PsCEP1, PsCEP7 and PsCEP2, could play a role in symbiotic nodule development, whereas the PsCEP1 and PsCEP13 genes, downregulated by nitrate addition, could be involved in regulation of nitrate-dependent processes in pea. Further functional studies are required to elucidate the functions of these PsCEP genes.
Collapse
Affiliation(s)
- Maria A. Lebedeva
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya emb.7/9, Saint Petersburg 199034, Russia
| | - Maria S. Gancheva
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya emb.7/9, Saint Petersburg 199034, Russia
| | - Olga A. Kulaeva
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya emb.7/9, Saint Petersburg 199034, Russia
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Podbelsky Sh. 3, Saint Petersburg 196608, Russia
| | - Evgeny A. Zorin
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Podbelsky Sh. 3, Saint Petersburg 196608, Russia
| | - Daria A. Dobychkina
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya emb.7/9, Saint Petersburg 199034, Russia
| | - Daria A. Romanyuk
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Podbelsky Sh. 3, Saint Petersburg 196608, Russia
| | - Anton S. Sulima
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Podbelsky Sh. 3, Saint Petersburg 196608, Russia
| | - Vladimir A. Zhukov
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya emb.7/9, Saint Petersburg 199034, Russia
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Podbelsky Sh. 3, Saint Petersburg 196608, Russia
| | - Lyudmila A. Lutova
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya emb.7/9, Saint Petersburg 199034, Russia
| |
Collapse
|
6
|
Narasimhan M, Simon R. Spatial range, temporal span, and promiscuity of CLE-RLK signaling. FRONTIERS IN PLANT SCIENCE 2022; 13:906087. [PMID: 36092449 PMCID: PMC9459042 DOI: 10.3389/fpls.2022.906087] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) signaling through receptor-like kinases (RLKs) regulates developmental transitions and responses to biotic and abiotic inputs by communicating the physiological state of cells and tissues. CLE peptides have varying signaling ranges, which can be defined as the distance between the source, i.e., the cells or tissue that secrete the peptide, and their destination, i.e., cells or tissue where the RLKs that bind the peptide and/or respond are expressed. Case-by-case analysis substantiates that CLE signaling is predominantly autocrine or paracrine, and rarely endocrine. Furthermore, upon CLE reception, the ensuing signaling responses extend from cellular to tissue, organ and whole organism level as the downstream signal gets amplified. CLE-RLK-mediated effects on tissue proliferation and differentiation, or on subsequent primordia and organ development have been widely studied. However, studying how CLE-RLK regulates different stages of proliferation and differentiation at cellular level can offer additional insights into these processes. Notably, CLE-RLK signaling also mediates diverse non-developmental effects, which are less often observed; however, this could be due to biased experimental approaches. In general, CLEs and RLKs, owing to the sequence or structural similarity, are prone to promiscuous interactions at least under experimental conditions in which they are studied. Importantly, there are regulatory mechanisms that suppress CLE-RLK cross-talk in vivo, thereby eliminating the pressure for co-evolving binding specificity. Alternatively, promiscuity in signaling may also offer evolutionary advantages and enable different CLEs to work in combination to activate or switch off different RLK signaling pathways.
Collapse
Affiliation(s)
- Madhumitha Narasimhan
- Institute for Developmental Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | - Rüdiger Simon
- Institute for Developmental Genetics and Cluster of Excellence in Plant Sciences, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
7
|
Sin WC, Lam HM, Ngai SM. Identification of Diverse Stress-Responsive Xylem Sap Peptides in Soybean. Int J Mol Sci 2022; 23:ijms23158641. [PMID: 35955768 PMCID: PMC9369194 DOI: 10.3390/ijms23158641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 02/04/2023] Open
Abstract
Increasing evidence has revealed that plant secretory peptides are involved in the long-distance signaling pathways that help to regulate plant development and signal stress responses. In this study, we purified small peptides from soybean (Glycine max) xylem sap via o-chlorophenol extraction and conducted an in-depth peptidomic analysis using a mass spectrometry (MS) and bioinformatics approach. We successfully identified 14 post-translationally modified peptide groups belonging to the peptide families CEP (C-terminally encoded peptides), CLE (CLAVATA3/embryo surrounding region-related), PSY (plant peptides containing tyrosine sulfation), and XAP (xylem sap-associated peptides). Quantitative PCR (qPCR) analysis showed unique tissue expression patterns among the peptide-encoding genes. Further qPCR analysis of some of the peptide-encoding genes showed differential stress-response profiles toward various abiotic stress factors. Targeted MS-based quantification of the nitrogen deficiency-responsive peptides, GmXAP6a and GmCEP-XSP1, demonstrated upregulation of peptide translocation in xylem sap under nitrogen-deficiency stress. Quantitative proteomic analysis of GmCEP-XSP1 overexpression in hairy soybean roots revealed that GmCEP-XSP1 significantly impacts stress response-related proteins. This study provides new insights that root-to-shoot peptide signaling plays important roles in regulating plant stress-response mechanisms.
Collapse
|
8
|
Okamoto S, Kawasaki A, Makino Y, Ishida T, Sawa S. Long-distance translocation of CLAVATA3/ESR-related 2 peptide and its positive effect on roots sucrose status. PLANT PHYSIOLOGY 2022; 189:2357-2367. [PMID: 35567530 PMCID: PMC9342984 DOI: 10.1093/plphys/kiac227] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/25/2022] [Indexed: 06/01/2023]
Abstract
In vascular plants, roots anchor themselves into the soil and take up water and nutrients to provide them to the shoots. Therefore, continuous growth and development of the roots are important for plant life. To achieve this, photosynthesizing leaves must be able to supply sufficient photoassimilates to the roots. However, the mechanisms by which plants maintain carbon levels in roots remain elusive. Here, we focused on the Arabidopsis (Arabidopsis thaliana) CLAVATA3/ESR-related 2 (CLE2) peptide, which was detected in Arabidopsis xylem exudate, and its homologs. CLE2 and CLE3 genes responded to carbon-deficient conditions. Loss- and gain-of-function mutant analyses showed that CLE genes positively affected root sucrose level. Mutations in the CLE genes resulted in a high shoot/root ratio under sucrose-free conditions. Grafting experiments demonstrated the systemic effect of CLE peptide genes. These findings provide insights into the molecular basis for the relationship between roots and leaves in maintenance of the root sucrose levels and growth.
Collapse
Affiliation(s)
| | - Azusa Kawasaki
- Graduate School of Science and Technology, Niigata University, Niigata, 950-2181, Japan
| | - Yumiko Makino
- National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Takashi Ishida
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, 860-8555, Japan
| | | |
Collapse
|
9
|
Li Y, Pei Y, Shen Y, Zhang R, Kang M, Ma Y, Li D, Chen Y. Progress in the Self-Regulation System in Legume Nodule Development-AON (Autoregulation of Nodulation). Int J Mol Sci 2022; 23:ijms23126676. [PMID: 35743118 PMCID: PMC9224500 DOI: 10.3390/ijms23126676] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/24/2022] Open
Abstract
The formation and development of legumes nodules requires a lot of energy. Legumes must strictly control the number and activity of nodules to ensure efficient energy distribution. The AON system can limit the number of rhizobia infections and nodule numbers through the systemic signal pathway network that the aboveground and belowground parts participate in together. It can also promote the formation of nodules when plants are deficient in nitrogen. The currently known AON pathway includes four parts: soil NO3− signal and Rhizobium signal recognition and transmission, CLE-SUNN is the negative regulation pathway, CEP-CRA2 is the positive regulation pathway and the miR2111/TML module regulates nodule formation and development. In order to ensure the biological function of this important approach, plants use a variety of plant hormones, polypeptides, receptor kinases, transcription factors and miRNAs for signal transmission and transcriptional regulation. This review summarizes and discusses the research progress of the AON pathway in Legume nodule development.
Collapse
|
10
|
Characterization of Oligopeptides in Solanum lycopersicum Xylem Exudates. Life (Basel) 2022; 12:life12040592. [PMID: 35455083 PMCID: PMC9028419 DOI: 10.3390/life12040592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 11/29/2022] Open
Abstract
The xylem is the main pathway for the transport of water and molecules from roots to shoots. To date, it has been reported that secreted oligopeptides mediate root-to-shoot signaling, and some long-distance mobile oligopeptides have been detected in xylem exudates. However, the conservation of a number of oligopeptides and the overall features of peptide fragments contained in xylem exudates are poorly understood. Here, we conducted a comprehensive analysis of small proteins and peptides in tomato (Solanum lycopersicum) xylem exudates and characterized the identified peptide fragments. We found that putative secreted proteins were enriched in xylem exudates compared with all proteins in the tomato protein database. We identified seven oligopeptides that showed common features of bioactive oligopeptides, including homologs of CLV3/ESR-related (CLE), C-TERMINALLY ENCODED PEPTIDE (CEP), and CASPARIAN STRIP INTEGRITY FACTOR (CIF) peptides. Furthermore, five of the identified oligopeptides were homologs of the soybean xylem exudate-associated oligopeptides that we previously reported. Our results suggest that oligopeptides in xylem exudates are conserved across plant species and provide insights into not only root-to-shoot signaling but also the maintenance of the xylem conduit.
Collapse
|
11
|
Kuromori T, Fujita M, Takahashi F, Yamaguchi‐Shinozaki K, Shinozaki K. Inter-tissue and inter-organ signaling in drought stress response and phenotyping of drought tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:342-358. [PMID: 34863007 PMCID: PMC9300012 DOI: 10.1111/tpj.15619] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 05/10/2023]
Abstract
Plant response to drought stress includes systems for intracellular regulation of gene expression and signaling, as well as inter-tissue and inter-organ signaling, which helps entire plants acquire stress resistance. Plants sense water-deficit conditions both via the stomata of leaves and roots, and transfer water-deficit signals from roots to shoots via inter-organ signaling. Abscisic acid is an important phytohormone involved in the drought stress response and adaptation, and is synthesized mainly in vascular tissues and guard cells of leaves. In leaves, stress-induced abscisic acid is distributed to various tissues by transporters, which activates stomatal closure and expression of stress-related genes to acquire drought stress resistance. Moreover, the stepwise stress response at the whole-plant level is important for proper understanding of the physiological response to drought conditions. Drought stress is sensed by multiple types of sensors as molecular patterns of abiotic stress signals, which are transmitted via separate parallel signaling networks to induce downstream responses, including stomatal closure and synthesis of stress-related proteins and metabolites. Peptide molecules play important roles in the inter-organ signaling of dehydration from roots to shoots, as well as signaling of osmotic changes and reactive oxygen species/Ca2+ . In this review, we have summarized recent advances in research on complex plant drought stress responses, focusing on inter-tissue signaling in leaves and inter-organ signaling from roots to shoots. We have discussed the mechanisms via which drought stress adaptations and resistance are acquired at the whole-plant level, and have proposed the importance of quantitative phenotyping for measuring plant growth under drought conditions.
Collapse
Affiliation(s)
- Takashi Kuromori
- Gene Discovery Research GroupRIKEN Center for Sustainable Resource Science2‐1 HirosawaWakoSaitama351‐0198Japan
| | - Miki Fujita
- Gene Discovery Research GroupRIKEN Center for Sustainable Resource Science3‐1‐1 KoyadaiTsukubaIbaraki305‐0074Japan
| | - Fuminori Takahashi
- Gene Discovery Research GroupRIKEN Center for Sustainable Resource Science3‐1‐1 KoyadaiTsukubaIbaraki305‐0074Japan
- Department of Biological Science and TechnologyGraduate School of Advanced EngineeringTokyo University of Science6‐3‐1 Niijyuku, Katsushika‐kuTokyo125‐8585Japan
| | - Kazuko Yamaguchi‐Shinozaki
- Laboratory of Plant Molecular PhysiologyGraduate School of Agricultural and Life SciencesThe University of Tokyo1‐1‐1 Yayoi, Bunkyo‐kuTokyo113‐8657Japan
- Research Institute for Agricultural and Life SciencesTokyo University of Agriculture1‐1‐1 Sakuragaoka, Setagaya‐kuTokyo156‐8502Japan
| | - Kazuo Shinozaki
- Gene Discovery Research GroupRIKEN Center for Sustainable Resource Science2‐1 HirosawaWakoSaitama351‐0198Japan
- Gene Discovery Research GroupRIKEN Center for Sustainable Resource Science3‐1‐1 KoyadaiTsukubaIbaraki305‐0074Japan
- Biotechonology CenterNational Chung Hsing University (NCHU)Taichung402Taiwan
| |
Collapse
|
12
|
Lebedeva M, Azarakhsh M, Sadikova D, Lutova L. At the Root of Nodule Organogenesis: Conserved Regulatory Pathways Recruited by Rhizobia. PLANTS (BASEL, SWITZERLAND) 2021; 10:2654. [PMID: 34961125 PMCID: PMC8705049 DOI: 10.3390/plants10122654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 05/13/2023]
Abstract
The interaction between legume plants and soil bacteria rhizobia results in the formation of new organs on the plant roots, symbiotic nodules, where rhizobia fix atmospheric nitrogen. Symbiotic nodules represent a perfect model to trace how the pre-existing regulatory pathways have been recruited and modified to control the development of evolutionary "new" organs. In particular, genes involved in the early stages of lateral root development have been co-opted to regulate nodule development. Other regulatory pathways, including the players of the KNOX-cytokinin module, the homologues of the miR172-AP2 module, and the players of the systemic response to nutrient availability, have also been recruited to a unique regulatory program effectively governing symbiotic nodule development. The role of the NIN transcription factor in the recruitment of such regulatory modules to nodulation is discussed in more details.
Collapse
Affiliation(s)
- Maria Lebedeva
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya emb.7/9, 199034 Saint Petersburg, Russia; (D.S.); (L.L.)
- Center for Genetic Technologies, N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 Saint Petersburg, Russia
| | - Mahboobeh Azarakhsh
- Cell and Molecular Biology Department, Kosar University of Bojnord, 9415615458 Bojnord, Iran;
| | - Darina Sadikova
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya emb.7/9, 199034 Saint Petersburg, Russia; (D.S.); (L.L.)
- Center for Genetic Technologies, N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 Saint Petersburg, Russia
| | - Lyudmila Lutova
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya emb.7/9, 199034 Saint Petersburg, Russia; (D.S.); (L.L.)
- Center for Genetic Technologies, N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 Saint Petersburg, Russia
| |
Collapse
|
13
|
Zhang G, Kong G, Li Y. Long-distance communication through systemic macromolecular signaling mediates stress defense responses in plants. PHYSIOLOGIA PLANTARUM 2021; 173:1926-1934. [PMID: 34431527 DOI: 10.1111/ppl.13535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/23/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Land plants have a unique vascular bundle system that ranges in length from a few centimeters to hundreds of meters. These systems integrate the various organs of the whole plant, perform material exchange between different plant tissues and mediate the transmission of signals between cells or over long distances. Grafting and parasitism can reshape the vascular tissues of different ecotypes or species and represent two important systems for studying plant systemic signaling. In recent years, with the advancement of genomics and sequencing technology, the transportation, identification, and function of systemic plant macromolecules have been extensively studied. Here, we review the current body of knowledge of the transport pathways and regulatory mechanisms of macromolecules in plants and assess systemic, long-distance signal trafficking that mediates stress responses, and plant-environment or plant-insect community interactions. Additionally, we propose several methods for identifying mobile mRNAs and proteins. Finally, we discuss the challenges facing systemic signaling research and put forth the most urgent questions that need to be answered to advance our understanding of plant systemic signaling.
Collapse
Affiliation(s)
- Guanghai Zhang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Guanghui Kong
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Yongping Li
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| |
Collapse
|
14
|
Lee HC, Binos S, Chapman K, Pulsford SB, Ivanovici A, Rathjen JP, Djordjevic MA. A new method to visualize CEP hormone-CEP receptor interactions in vascular tissue in vivo. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6164-6174. [PMID: 34059899 DOI: 10.1093/jxb/erab244] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
C-TERMINALLY ENCODED PEPTIDEs (CEPs) control diverse responses in plants including root development, root system architecture, nitrogen demand signalling, and nutrient allocation that influences yield, and there is evidence that different ligands impart different phenotypic responses. Thus, there is a need for a simple method that identifies bona fide CEP hormone-receptor pairings in vivo and examines whether different CEP family peptides bind the same receptor. We used formaldehyde or photoactivation to cross-link fluorescently tagged group 1 or group 2 CEPs to receptors in semi-purified Medicago truncatula or Arabidopsis thaliana leaf vascular tissues to verify that COMPACT ROOT ARCHITECTURE 2 (CRA2) is the Medicago CEP receptor, and to investigate whether sequence diversity within the CEP family influences receptor binding. Formaldehyde cross-linked the fluorescein isothiocyanate (FITC)-tagged Medicago group 1 CEP (MtCEP1) to wild-type Medicago or Arabidopsis vascular tissue cells, but not to the CEP receptor mutants, cra2 or cepr1. Binding competition showed that unlabelled MtCEP1 displaces FITC-MtCEP1 from CRA2. In contrast, the group 2 CEP, FITC-AtCEP14, bound to vascular tissue independently of CEPR1 or CRA2, and AtCEP14 did not complete with FITC-MtCEP1 to bind CEP receptors. The binding of a photoactivatable FITC-MtCEP1 to the periphery of Medicago vascular cells suggested that CRA2 localizes to the plasma membrane. We separated and visualized a fluorescent 105 kDa protein corresponding to the photo-cross-linked FITC-MtCEP1-CRA2 complex using SDS-PAGE. Mass spectrometry identified CRA2-specific peptides in this protein band. The results indicate that FITC-MtCEP1 binds to CRA2, MtCRA2 and AtCEPR1 are functionally equivalent, and the binding specificities of group 1 and group 2 CEPs are distinct. Using formaldehyde or photoactivated cross-linking of biologically active, fluorescently tagged ligands may find wider utility by identifying CEP-CEP receptor pairings in diverse plants.
Collapse
Affiliation(s)
- Han-Chung Lee
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Steve Binos
- Thermo Fisher Scientific, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Kelly Chapman
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Sacha B Pulsford
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Ariel Ivanovici
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - John P Rathjen
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Michael A Djordjevic
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
15
|
Zhu F, Ye Q, Chen H, Dong J, Wang T. Multigene editing reveals that MtCEP1/2/12 redundantly control lateral root and nodule number in Medicago truncatula. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3661-3676. [PMID: 33640986 PMCID: PMC8096600 DOI: 10.1093/jxb/erab093] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/25/2021] [Indexed: 05/26/2023]
Abstract
The multimember CEP (C-terminally Encoded Peptide) gene family is a complex group that is involved in various physiological activities in plants. Previous studies demonstrated that MtCEP1 and MtCEP7 control lateral root formation or nodulation, but these studies were based only on gain of function or artificial miRNA (amiRNA)/RNAi approaches, never knockout mutants. Moreover, an efficient multigene editing toolkit is not currently available for Medicago truncatula. Our quantitative reverse transcription-PCR data showed that MtCEP1, 2, 4, 5, 6, 7, 8, 9, 12, and 13 were up-regulated under nitrogen starvation conditions and that MtCEP1, 2, 7, 9, and 12 were induced by rhizobial inoculation. Treatment with synthetic MtCEP peptides of MtCEP1, 2, 4, 5, 6, 8, and 12 repressed lateral root emergence and promoted nodulation in the R108 wild type but not in the cra2 mutant. We optimized CRISPR/Cas9 [clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9] genome editing system for M. truncatula, and thus created single mutants of MtCEP1, 2, 4, 6, and 12 and the double mutants Mtcep1/2C and Mtcep5/8C; however, these mutants did not exhibit significant differences from R108. Furthermore, a triple mutant Mtcep1/2/12C and a quintuple mutant Mtcep1/2/5/8/12C were generated and exhibited more lateral roots and fewer nodules than R108. Overall, MtCEP1, 2, and 12 were confirmed to be redundantly important in the control of lateral root number and nodulation. Moreover, the CRISPR/Cas9-based multigene editing protocol provides an additional tool for research on the model legume M. truncatula, which is highly efficient at multigene mutant generation.
Collapse
Affiliation(s)
- Fugui Zhu
- State Key Laboratory of Agrobiotechnology, College of Grassland Sciences, China Agricultural University, Beijing, China
| | - Qinyi Ye
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hong Chen
- State Key Laboratory of Agrobiotechnology, College of Grassland Sciences, China Agricultural University, Beijing, China
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Yuan N, Furumizu C, Zhang B, Sawa S. Database mining of plant peptide homologues. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:137-143. [PMID: 34177333 PMCID: PMC8215471 DOI: 10.5511/plantbiotechnology.20.0720a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In plant-pathogen interactions, pathogens employ secreted molecules, known as effectors to overcome physical barriers, modulate plant immunity, and facilitate colonization. Among these diverse effectors, some are found to mimic the plant peptides, to target host's peptide receptors, and intervene in the peptide-regulated defense pathways and/or plant development. To better understand how pathogens have co-evolved with their plant hosts in order to improve disease management, we explored the presence of plant peptide mimics in microbes by bioinformatic analysis. In total, 36 novel peptide mimics belong to five plant peptide families were detected in bacterial and fungal kingdoms. Among them, phytosulfokine homologues were widely distributed in 22 phytopathogens and one bacterium, thereby constituted the largest proportion of the identified mimics. The putative functional peptide region is well conserved between plant and microbes, while the existence of a putative signal peptide varies between species. Our findings will increase understanding of plant-pathogen interactions, and provide new ideas for future studies of pathogenic mechanisms and disease management.
Collapse
Affiliation(s)
- Na Yuan
- Institute of Crop Germplasm and Biotechnology, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Chihiro Furumizu
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Baolong Zhang
- Institute of Crop Germplasm and Biotechnology, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shinichiro Sawa
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
- E-mail: Tel & Fax: +81-96-342-3439
| |
Collapse
|
17
|
Yoshida T, Fernie AR, Shinozaki K, Takahashi F. Long-distance stress and developmental signals associated with abscisic acid signaling in environmental responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:477-488. [PMID: 33249671 DOI: 10.1111/tpj.15101] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 05/03/2023]
Abstract
Flowering plants consist of highly differentiated organs, including roots, leaves, shoots and flowers, which have specific roles: root system for water and nutrient uptake, leaves for photosynthesis and gas exchange and reproductive organs for seed production. The communication between organs through the vascular system, by which water, nutrient and signaling molecules are transported, is essential for coordinated growth and development of the whole plant, particularly under adverse conditions. Here, we highlight recent progress in understanding how signaling pathways of plant hormones are associated with long-distance stress and developmental signals, with particular focus on environmental stress responses. In addition to the root-to-shoot peptide signal that induces abscisic acid accumulation in leaves under drought stress conditions, we summarize the diverse stress-responsive peptide signals reported to date to play a role in environmental responses.
Collapse
Affiliation(s)
- Takuya Yoshida
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| | - Fuminori Takahashi
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| |
Collapse
|
18
|
Prince SJ, Vuong TD, Wu X, Bai Y, Lu F, Kumpatla SP, Valliyodan B, Shannon JG, Nguyen HT. Mapping Quantitative Trait Loci for Soybean Seedling Shoot and Root Architecture Traits in an Inter-Specific Genetic Population. FRONTIERS IN PLANT SCIENCE 2020; 11:1284. [PMID: 32973843 PMCID: PMC7466435 DOI: 10.3389/fpls.2020.01284] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/06/2020] [Indexed: 05/27/2023]
Abstract
Wild soybean species (Glycine soja Siebold & Zucc.) comprise a unique resource to widen the genetic base of cultivated soybean [Glycine max (L.) Merr.] for various agronomic traits. An inter-specific mapping population derived from a cross of cultivar Williams 82 and PI 483460B, a wild soybean accession, was utilized for genetic characterization of root architecture traits. The objectives of this study were to identify and characterize quantitative trait loci (QTL) for seedling shoot and root architecture traits, as well as to determine additive/epistatic interaction effects of identified QTLs. A total of 16,469 single nucleotide polymorphisms (SNPs) developed for the Illumina beadchip genotyping platform were used to construct a high resolution genetic linkage map. Among the 11 putative QTLs identified, two significant QTLs on chromosome 7 were determined to be associated with total root length (RL) and root surface area (RSA) with favorable alleles from the wild soybean parent. These seedling root traits, RL (BARC_020495_04641 ~ BARC_023101_03769) and RSA (SNP02285 ~ SNP18129_Magellan), could be potential targets for introgression into cultivated soybean background to improve both tap and lateral roots. The RL QTL region harbors four candidate genes with higher expression in root tissues: Phosphofructokinase (Glyma.07g126400), Snf7 protein (Glyma.07g127300), unknown functional gene (Glyma.07g127900), and Leucine Rich-Repeat protein (Glyma.07g127100). The novel alleles inherited from the wild soybean accession could be used as molecular markers to improve root system architecture and productivity in elite soybean lines.
Collapse
Affiliation(s)
- Silvas J. Prince
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
- Plant Biology Division, Noble Research Institute, LLC, Ardmore, OK, United States
| | - Tri D. Vuong
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | - Xiaolei Wu
- BASF Agricultural Solutions, Morrisville, NC, United States
| | - Yonghe Bai
- Nuseed Americas, Woodland, CA, United States
| | - Fang Lu
- Amgen Inc., Thousand Oaks, CA, United States
| | | | - Babu Valliyodan
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
- Department of Agriculture and Environmental Sciences, Lincoln University, Jefferson City, MO, United States
| | - J. Grover Shannon
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | - Henry T. Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
19
|
Boschiero C, Lundquist PK, Roy S, Dai X, Zhao PX, Scheible WR. Identification and Functional Investigation of Genome-Encoded, Small, Secreted Peptides in Plants. ACTA ACUST UNITED AC 2020; 4:e20098. [PMID: 31479208 DOI: 10.1002/cppb.20098] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hundreds to thousands of small secreted peptides (SSPs) are encoded in plant genomes but have been overlooked, and most remain unannotated and unstudied. Despite their low profile, they have been found to confer dramatic effects on growth and development of plants. With the growing appreciation of their significance, the development of appropriate methods to identify and functionally assess the myriad SSPs encoded in plant genomes has become critical. Here, we provide protocols for the computational and physiological analysis of SSPs in plant genomes. We first describe our methodology successfully used for genome-wide identification and annotation of SSP-coding genes in the model legume Medicago truncatula, which can be readily adapted for other plant species. We then provide protocols for the functional analysis of SSPs using various synthetic peptide screens. Considerations for the design and handling of peptides are included. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
| | - Peter K Lundquist
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan.,Plant Resilience Institute, Michigan State University, East Lansing, Michigan
| | - Sonali Roy
- Noble Research Institute, LLC, Ardmore, Oklahoma
| | - Xinbin Dai
- Noble Research Institute, LLC, Ardmore, Oklahoma
| | | | | |
Collapse
|
20
|
Chakraborty S, Nguyen B, Wasti SD, Xu G. Plant Leucine-Rich Repeat Receptor Kinase (LRR-RK): Structure, Ligand Perception, and Activation Mechanism. Molecules 2019. [PMID: 31450667 DOI: 10.3390/molecules2473081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
In recent years, secreted peptides have been recognized as essential mediators of intercellular communication which governs plant growth, development, environmental interactions, and other mediated biological responses, such as stem cell homeostasis, cell proliferation, wound healing, hormone sensation, immune defense, and symbiosis, among others. Many of the known secreted peptide ligand receptors belong to the leucine-rich repeat receptor kinase (LRR-RK) family of membrane integral receptors, which contain more than 200 members within Arabidopsis making it the largest family of plant receptor kinases (RKs). Genetic and biochemical studies have provided valuable data regarding peptide ligands and LRR-RKs, however, visualization of ligand/LRR-RK complex structures at the atomic level is vital to understand the functions of LRR-RKs and their mediated biological processes. The structures of many plant LRR-RK receptors in complex with corresponding ligands have been solved by X-ray crystallography, revealing new mechanisms of ligand-induced receptor kinase activation. In this review, we briefly elaborate the peptide ligands, and aim to detail the structures and mechanisms of LRR-RK activation as induced by secreted peptide ligands within plants.
Collapse
Affiliation(s)
- Sayan Chakraborty
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Brian Nguyen
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Syed Danyal Wasti
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Guozhou Xu
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
21
|
Plant Leucine-Rich Repeat Receptor Kinase (LRR-RK): Structure, Ligand Perception, and Activation Mechanism. Molecules 2019; 24:molecules24173081. [PMID: 31450667 PMCID: PMC6749341 DOI: 10.3390/molecules24173081] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/07/2019] [Accepted: 08/22/2019] [Indexed: 11/16/2022] Open
Abstract
In recent years, secreted peptides have been recognized as essential mediators of intercellular communication which governs plant growth, development, environmental interactions, and other mediated biological responses, such as stem cell homeostasis, cell proliferation, wound healing, hormone sensation, immune defense, and symbiosis, among others. Many of the known secreted peptide ligand receptors belong to the leucine-rich repeat receptor kinase (LRR-RK) family of membrane integral receptors, which contain more than 200 members within Arabidopsis making it the largest family of plant receptor kinases (RKs). Genetic and biochemical studies have provided valuable data regarding peptide ligands and LRR-RKs, however, visualization of ligand/LRR-RK complex structures at the atomic level is vital to understand the functions of LRR-RKs and their mediated biological processes. The structures of many plant LRR-RK receptors in complex with corresponding ligands have been solved by X-ray crystallography, revealing new mechanisms of ligand-induced receptor kinase activation. In this review, we briefly elaborate the peptide ligands, and aim to detail the structures and mechanisms of LRR-RK activation as induced by secreted peptide ligands within plants.
Collapse
|
22
|
Kaufmann C, Sauter M. Sulfated plant peptide hormones. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4267-4277. [PMID: 31231771 PMCID: PMC6698702 DOI: 10.1093/jxb/erz292] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/11/2019] [Indexed: 05/08/2023]
Abstract
Sulfated peptides are plant hormones that are active at nanomolar concentrations. The sulfation at one or more tyrosine residues is catalysed by tyrosylprotein sulfotransferase (TPST), which is encoded by a single-copy gene. The sulfate group is provided by the co-substrate 3´-phosphoadenosine 5´-phosphosulfate (PAPS), which links synthesis of sulfated signaling peptides to sulfur metabolism. The precursor proteins share a conserved DY-motif that is implicated in specifying tyrosine sulfation. Several sulfated peptides undergo additional modification such as hydroxylation of proline and glycosylation of hydroxyproline. The modifications render the secreted signaling molecules active and stable. Several sulfated signaling peptides have been shown to be perceived by leucine-rich repeat receptor-like kinases (LRR-RLKs) but have signaling pathways that, for the most part, are yet to be elucidated. Sulfated peptide hormones regulate growth and a wide variety of developmental processes, and intricately modulate immunity to pathogens. While basic research on sulfated peptides has made steady progress, their potential in agricultural and pharmaceutical applications has yet to be explored.
Collapse
Affiliation(s)
- Christine Kaufmann
- Plant Developmental Biology and Physiology, University of Kiel, Am Botanischen Garten, Kiel, Germany
- Correspondence:
| | - Margret Sauter
- Plant Developmental Biology and Physiology, University of Kiel, Am Botanischen Garten, Kiel, Germany
| |
Collapse
|
23
|
Chapman K, Taleski M, Ogilvie HA, Imin N, Djordjevic MA. CEP-CEPR1 signalling inhibits the sucrose-dependent enhancement of lateral root growth. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3955-3967. [PMID: 31056646 PMCID: PMC6685651 DOI: 10.1093/jxb/erz207] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/29/2019] [Indexed: 05/22/2023]
Abstract
Lateral root (LR) proliferation is a major determinant of soil nutrient uptake. How resource allocation controls the extent of LR growth remains unresolved. We used genetic, physiological, transcriptomic, and grafting approaches to define a role for C-TERMINALLY ENCODED PEPTIDE RECEPTOR 1 (CEPR1) in controlling sucrose-dependent LR growth. CEPR1 inhibited LR growth in response to applied sucrose, other metabolizable sugars, and elevated light intensity. Pathways through CEPR1 restricted LR growth by reducing LR meristem size and the length of mature LR cells. RNA-sequencing of wild-type (WT) and cepr1-1 roots with or without sucrose treatment revealed an intersection of CEP-CEPR1 signalling with the sucrose transcriptional response. Sucrose up-regulated several CEP genes, supporting a specific role for CEP-CEPR1 in the response to sucrose. Moreover, genes with basally perturbed expression in cepr1-1 overlap with WT sucrose-responsive genes significantly. We found that exogenous CEP inhibited LR growth via CEPR1 by reducing LR meristem size and mature cell length. This result is consistent with CEP-CEPR1 acting to curtail the extent of sucrose-dependent LR growth. Reciprocal grafting indicates that LR growth inhibition requires CEPR1 in both the roots and shoots. Our results reveal a new role for CEP-CEPR1 signalling in controlling LR growth in response to sucrose.
Collapse
Affiliation(s)
- Kelly Chapman
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Michael Taleski
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Huw A Ogilvie
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, Australia
- Present address: Department of Computer Science, Rice University, Houston, TX 77005, USA
| | - Nijat Imin
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, Australia
- Present address: School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Michael A Djordjevic
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, Australia
- Correspondence:
| |
Collapse
|
24
|
Steyn M, Oberholster PJ, Botha AM, Genthe B, van den Heever-Kriek PE, Weyers C. Treated acid mine drainage and stream recovery: Downstream impacts on benthic macroinvertebrate communities in relation to multispecies toxicity bioassays. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 235:377-388. [PMID: 30708275 DOI: 10.1016/j.jenvman.2019.01.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
The success and long term effectiveness of extensive and expensive engineering solutions to restore streams impacted by Acid Mine Drainage (AMD) is rarely tested. Concentrations of pollutants were measured in water along a longitudinal gradient from a stretch of the Tweelopie stream, South Africa, that receives pH-treated acid mine drainage (AMD) from an abandoned gold mine. The biotoxic effects of treated AMD were determined through macroinvertebrate biotic indices (SASS5) and a battery of toxicity bioassays. These included the L. sativa, A. cepa, D. magna toxicity and Ames mutagenicity tests, as well as an in vitro human liver cancer cell line HepG2. Even though the Tweelopie stream was moderately to severely degraded by multiple anthropogenic stressors, the impact of the treated AMD was masked by the improvement in the system downstream after mixing with the domestic wastewater effluent receiving stream, and subsequent further dilution as a result of the karst springs downstream. The general improvement of the system downstream was clearly shown by the decrease in the ecotoxicity and mutagenicity in relation to the in-stream macroinvertebrates. PCA multivariate analysis successfully displayed associations between the different environmental variables and the decrease in toxicity and subsequent ecosystem improvement downstream. This study indicated that environmental management of AMD remediation should consider long term assessment strategies, including multiple factors, to promote biological ecosystem recovery.
Collapse
Affiliation(s)
- M Steyn
- CSIR, Natural Resources and the Environment, P.O. Box 320, Stellenbosch, 7599, South Africa.
| | - P J Oberholster
- CSIR, Natural Resources and the Environment, P.O. Box 320, Stellenbosch, 7599, South Africa
| | - A M Botha
- Department of Genetics, University of Stellenbosch, Stellenbosch, South Africa
| | - B Genthe
- CSIR, Natural Resources and the Environment, P.O. Box 320, Stellenbosch, 7599, South Africa
| | | | - C Weyers
- Department of Life Sciences, Central University of Technology, Free State, South Africa
| |
Collapse
|
25
|
Yoro E, Nishida H, Ogawa-Ohnishi M, Yoshida C, Suzaki T, Matsubayashi Y, Kawaguchi M. PLENTY, a hydroxyproline O-arabinosyltransferase, negatively regulates root nodule symbiosis in Lotus japonicus. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:507-517. [PMID: 30351431 PMCID: PMC6322572 DOI: 10.1093/jxb/ery364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 10/12/2018] [Indexed: 05/21/2023]
Abstract
Legumes can survive in nitrogen-deficient environments by forming root-nodule symbioses with rhizobial bacteria; however, forming nodules consumes energy, and nodule numbers must thus be strictly controlled. Previous studies identified major negative regulators of nodulation in Lotus japonicus, including the small peptides CLAVATA3/ESR (CLE)-RELATED-ROOT SIGNAL1 (CLE-RS1), CLE-RS2, and CLE-RS3, and their putative major receptor HYPERNODULATION AND ABERRANT ROOT FORMATION1 (HAR1). CLE-RS2 is known to be expressed in rhizobia-inoculated roots, and is predicted to be post-translationally arabinosylated, a modification essential for its activity. Moreover, all three CLE-RSs suppress nodulation in a HAR1-dependent manner. Here, we identified PLENTY as a gene responsible for the previously isolated hypernodulation mutant plenty. PLENTY encoded a hydroxyproline O-arabinosyltransferase orthologous to ROOT DETERMINED NODULATION1 in Medicago truncatula. PLENTY was localized to the Golgi, and an in vitro analysis of the recombinant protein demonstrated its arabinosylation activity, indicating that CLE-RS1/2/3 may be substrates for PLENTY. The constitutive expression experiments showed that CLE-RS3 was the major candidate substrate for PLENTY, suggesting the substrate preference of PLENTY for individual CLE-RS peptides. Furthermore, a genetic analysis of the plenty har1 double mutant indicated the existence of another PLENTY-dependent and HAR1-independent pathway negatively regulating nodulation.
Collapse
Affiliation(s)
- Emiko Yoro
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| | - Hanna Nishida
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mari Ogawa-Ohnishi
- Division of Biological Science, Graduate School of Science, Nagoya University Chikusa, Nagoya, Japan
| | - Chie Yoshida
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Takuya Suzaki
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshikatsu Matsubayashi
- Division of Biological Science, Graduate School of Science, Nagoya University Chikusa, Nagoya, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| |
Collapse
|
26
|
Hastwell AH, Corcilius L, Williams JT, Gresshoff PM, Payne RJ, Ferguson BJ. Triarabinosylation is required for nodulation-suppressive CLE peptides to systemically inhibit nodulation in Pisum sativum. PLANT, CELL & ENVIRONMENT 2019; 42:188-197. [PMID: 29722016 DOI: 10.1111/pce.13325] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 05/23/2023]
Abstract
Legumes form root nodules to house beneficial nitrogen-fixing rhizobia bacteria. However, nodulation is resource demanding; hence, legumes evolved a systemic signalling mechanism called autoregulation of nodulation (AON) to control nodule numbers. AON begins with the production of CLE peptides in the root, which are predicted to be glycosylated, transported to the shoot, and perceived. We synthesized variants of nodulation-suppressing CLE peptides to test their activity using petiole feeding to introduce CLE peptides into the shoot. Hydroxylated, monoarabinosylated, and triarabinosylated variants of soybean GmRIC1a and GmRIC2a were chemically synthesized and fed into recipient Pisum sativum (pea) plants, which were used due to the availability of key AON pathway mutants unavailable in soybean. Triarabinosylated GmRIC1a and GmRIC2a suppressed nodulation of wild-type pea, whereas no other peptide variant tested had this ability. Suppression also occurred in the supernodulating hydroxyproline O-arabinosyltransferase mutant, Psnod3, but not in the supernodulating receptor mutants, Pssym29, and to some extent, Pssym28. During our study, bioinformatic resources for pea became available and our analyses identified 40 CLE peptide-encoding genes, including orthologues of nodulation-suppressive CLE peptides. Collectively, we demonstrated that soybean nodulation-suppressive CLE peptides can function interspecifically in the AON pathway of pea and require arabinosylation for their activity.
Collapse
Affiliation(s)
- April H Hastwell
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Leo Corcilius
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - James T Williams
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Peter M Gresshoff
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Brett J Ferguson
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
27
|
Huang J, Huang Z, Zhou X, Xia C, Imran M, Wang S, Xu C, Zha M, Liu Y, Zhang C. Tissue-specific transcriptomic profiling of Plantago major provides insights for the involvement of vasculature in phosphate deficiency responses. Mol Genet Genomics 2018; 294:159-175. [PMID: 30267144 DOI: 10.1007/s00438-018-1496-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/24/2018] [Indexed: 01/26/2023]
Abstract
The vasculature of higher plants is important with transport of both nutrient and information molecules. To understand the correspondence of this tissue in molecular responses under phosphate (Pi) deficiency, Plantago major, a model plant for vasculature biology study, was chosen in our analysis. After RNA-Seq and de novo transcriptome assembly of 24 libraries prepared from the vasculature of P. major, 37,309 unigenes with a mean length of 1571 base pairs were obtained. Upon 24 h of Pi deficiency, 237 genes were shown to be differentially expressed in the vasculature of P. major. Among these genes, only 27 have been previously identified to be specifically expressed in the vasculature tissues in other plant species. Temporal expression of several marker genes associated with Pi deficiency showed that the time period of first 24 h is at the beginning stage of more dynamic expression patterns. In this study, we found several physiological processes, e.g., "phosphate metabolism and remobilization", "sucrose metabolism, loading and synthesis", "plant hormone metabolism and signal transduction", "transcription factors", and "metabolism of other minerals", were mainly involved in early responses to Pi deficiency in the vasculature. A number of vasculature genes with promising roles in Pi deficiency adaptation have been identified and deserve further functional characterization. This study clearly demonstrated that plant vasculature is actively involved in Pi deficiency responses and understanding of this process may help to create plants proficient to offset Pi deficiency.
Collapse
Affiliation(s)
- Jing Huang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | | | - Xiangjun Zhou
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Chao Xia
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Muhammad Imran
- Department of Soil and Environmental Sciences, University College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan
| | - Shujuan Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Congshan Xu
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Manrong Zha
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Yan Liu
- The Institute of Sericulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Cankui Zhang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA. .,Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
28
|
AtPep3 is a hormone-like peptide that plays a role in the salinity stress tolerance of plants. Proc Natl Acad Sci U S A 2018; 115:5810-5815. [PMID: 29760074 DOI: 10.1073/pnas.1719491115] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Peptides encoded by small coding genes play an important role in plant development, acting in a similar manner as phytohormones. Few hormone-like peptides, however, have been shown to play a role in abiotic stress tolerance. In the current study, 17 Arabidopsis genes coding for small peptides were found to be up-regulated in response to salinity stress. To identify peptides leading salinity stress tolerance, we generated transgenic Arabidopsis plants overexpressing these small coding genes and assessed survivability and root growth under salinity stress conditions. Results indicated that 4 of the 17 overexpressed genes increased salinity stress tolerance. Further studies focused on AtPROPEP3, which was the most highly up-regulated gene under salinity stress. Treatment of plants with synthetic peptides encoded by AtPROPEP3 revealed that a C-terminal peptide fragment (AtPep3) inhibited the salt-induced bleaching of chlorophyll in seedlings. Conversely, knockdown AtPROPEP3 transgenic plants exhibited a hypersensitive phenotype under salinity stress, which was complemented by the AtPep3 peptide. This functional AtPep3 peptide region overlaps with an AtPep3 elicitor peptide that is related to the immune response of plants. Functional analyses with a receptor mutant of AtPep3 revealed that AtPep3 was recognized by the PEPR1 receptor and that it functions to increase salinity stress tolerance in plants. Collectively, these data indicate that AtPep3 plays a significant role in both salinity stress tolerance and immune response in Arabidopsis.
Collapse
|
29
|
Taleski M, Imin N, Djordjevic MA. CEP peptide hormones: key players in orchestrating nitrogen-demand signalling, root nodulation, and lateral root development. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1829-1836. [PMID: 29579226 DOI: 10.1093/jxb/ery037] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Secreted peptide hormones play pivotal roles in plant growth and development. So far, CEPs (C-TERMINALLY ENCODED PEPTIDEs) have been shown to act through CEP receptors (CEPRs) to control nitrogen (N)-demand signalling, nodulation, and lateral root development. Secreted CEP peptides can enter the xylem stream to act as long-distance signals, but evidence also exists for CEPs acting in local circuits. Recently, CEP peptide species varying in sequence, length, and post-translational modifications have been identified. A more comprehensive understanding of CEP biology requires insight into the in planta function of CEP genes, CEP peptide biogenesis, the components of CEP signalling cascades and, finally, how CEP peptide length, amino-acid composition, and post-translational modifications affect biological activity. In this review, we highlight recent studies that have advanced our understanding in these key areas and discuss some future directions.
Collapse
Affiliation(s)
- Michael Taleski
- Division of Plant Sciences, Research School of Biology, ANU College of Science, Australian National University, Canberra ACT, Australia
| | - Nijat Imin
- Division of Plant Sciences, Research School of Biology, ANU College of Science, Australian National University, Canberra ACT, Australia
| | - Michael A Djordjevic
- Division of Plant Sciences, Research School of Biology, ANU College of Science, Australian National University, Canberra ACT, Australia
| |
Collapse
|
30
|
Imin N, Patel N, Corcilius L, Payne RJ, Djordjevic MA. CLE peptide tri-arabinosylation and peptide domain sequence composition are essential for SUNN-dependent autoregulation of nodulation in Medicago truncatula. THE NEW PHYTOLOGIST 2018; 218:73-80. [PMID: 29393515 DOI: 10.1111/nph.15019] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/09/2018] [Indexed: 05/23/2023]
Abstract
MtCLE12 and MtCLE13 encode CLAVATA3/EMBRYO-SURROUNDING REGION RELATED (CLE) peptides which regulate autoregulation of nodulation (AON) in Medicago through the shoot receptor, SUNN (SUPER NUMERIC NODULES). Genetics suggests RDN1 (ROOT-DETERMINED NODULATION 1) arabinosylates MtCLE12 to enable SUNN perception. The functional structures of MtCLE12 and MtCLE13 peptides, however, remain elusive. We combined genetic and chemical synthesis approaches to determine if glyco-modifications of three nodule-expressed CLE peptides are essential for AON. We also examined how root and shoot applied AON-CLEs inhibit nodulation. MtCLE12, MtCLE13 and MtCLE42 peptides were synthesized with hydroxylation, mono-arabinosylation or tri-arabinosylation (TaP) at proline 7. Only MtCLE12-TaP and MtCLE13-TaP peptides induced AON in wild-type (WT) and rdn1-1, but not in sunn-4. The application of MtCLE13-TaP to cotyledons 1 d before rhizobial inoculation completely inhibited both rhizobial infection and nodulation. By contrast, MtCLE12-TaP induced significant AON without abolishing rhizobial infection. The results indicate that key CLE domain amino acids and TaP modifications to MtCLE12 and MtCLE13 are essential for SUNN-dependent AON. We also show evidence that RDN1 does not tri-arabinosylate MtCLE13. Finally, MtCLE13-TaP can induce a strong AON response in shoots that inhibits the entire symbiotic processes in roots. We present a new model for AON in Medicago.
Collapse
Affiliation(s)
- Nijat Imin
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT2601, Australia
| | - Neha Patel
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT2601, Australia
| | - Leo Corcilius
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Michael A Djordjevic
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT2601, Australia
| |
Collapse
|
31
|
Patel N, Mohd-Radzman NA, Corcilius L, Crossett B, Connolly A, Cordwell SJ, Ivanovici A, Taylor K, Williams J, Binos S, Mariani M, Payne RJ, Djordjevic MA. Diverse Peptide Hormones Affecting Root Growth Identified in the Medicago truncatula Secreted Peptidome. Mol Cell Proteomics 2017; 17:160-174. [PMID: 29079721 DOI: 10.1074/mcp.ra117.000168] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/14/2017] [Indexed: 12/22/2022] Open
Abstract
Multigene families encoding diverse secreted peptide hormones play important roles in plant development. A need exists to efficiently elucidate the structures and post-translational-modifications of these difficult-to-isolate peptide hormones in planta so that their biological functions can be determined. A mass spectrometry and bioinformatics approach was developed to comprehensively analyze the secreted peptidome of Medicago hairy root cultures and xylem sap. We identified 759 spectra corresponding to the secreted products of twelve peptide hormones including four CEP (C-TERMINALLY ENCODED PEPTIDE), two CLE (CLV3/ENDOSPERM SURROUNDING REGION RELATED) and six XAP (XYLEM SAP ASSOCIATED PEPTIDE) peptides. The MtCEP1, MtCEP2, MtCEP5 and MtCEP8 peptides identified differed in post-translational-modifications. Most were hydroxylated at conserved proline residues but some MtCEP1 derivatives were tri-arabinosylated. In addition, many CEP peptides possessed unexpected N- and C-terminal extensions. The pattern of these extensions suggested roles for endo- and exoproteases in CEP peptide maturation. Longer than expected, hydroxylated and homogeneously modified mono- and tri-arabinosylated CEP peptides corresponding to their in vivo structures were chemically synthesized to probe the effect of these post-translational-modifications on function. The ability of CEP peptides to elevate root nodule number was increased by hydroxylation at key positions. MtCEP1 peptides with N-terminal extensions or with tri-arabinosylation modification, however, were unable to impart increased nodulation. The MtCLE5 and MtCLE17 peptides identified were of precise size, and inhibited main root growth and increased lateral root number. Six XAP peptides, each beginning with a conserved DY sulfation motif, were identified including MtXAP1a, MtXAP1b, MtXAP1c, MtXAP3, MtXAP5 and MtXAP7. MtXAP1a and MtXAP5 inhibited lateral root emergence. Transcriptional analyses demonstrated peptide hormone gene expression in the root vasculature and tip. Since hairy roots can be induced on many plants, their corresponding root cultures may represent ideal source materials to efficiently identify diverse peptide hormones in vivo in a broad range of species.
Collapse
Affiliation(s)
- Neha Patel
- From the ‡Division of Plant Sciences, Research School of Biology, College of Medicine, Biology and the Environment, The Australian National University, Canberra, ACT, Australia
| | - Nadiatul A Mohd-Radzman
- From the ‡Division of Plant Sciences, Research School of Biology, College of Medicine, Biology and the Environment, The Australian National University, Canberra, ACT, Australia
| | - Leo Corcilius
- §School of Chemistry, The University of Sydney, Sydney, Australia
| | - Ben Crossett
- ¶Sydney Mass Spectrometry, The University of Sydney, Sydney, Australia
| | - Angela Connolly
- ¶Sydney Mass Spectrometry, The University of Sydney, Sydney, Australia
| | - Stuart J Cordwell
- ¶Sydney Mass Spectrometry, The University of Sydney, Sydney, Australia.,‖Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Australia
| | - Ariel Ivanovici
- From the ‡Division of Plant Sciences, Research School of Biology, College of Medicine, Biology and the Environment, The Australian National University, Canberra, ACT, Australia
| | - Katia Taylor
- From the ‡Division of Plant Sciences, Research School of Biology, College of Medicine, Biology and the Environment, The Australian National University, Canberra, ACT, Australia
| | - James Williams
- §School of Chemistry, The University of Sydney, Sydney, Australia
| | - Steve Binos
- **Thermo Fisher Scientific Pty. Ltd., 5 Caribbean Drive, Scoresby, VIC 3179, Australia
| | - Michael Mariani
- **Thermo Fisher Scientific Pty. Ltd., 5 Caribbean Drive, Scoresby, VIC 3179, Australia
| | - Richard J Payne
- §School of Chemistry, The University of Sydney, Sydney, Australia
| | - Michael A Djordjevic
- From the ‡Division of Plant Sciences, Research School of Biology, College of Medicine, Biology and the Environment, The Australian National University, Canberra, ACT, Australia;
| |
Collapse
|
32
|
de Bang TC, Lay KS, Scheible WR, Takahashi H. Small peptide signaling pathways modulating macronutrient utilization in plants. CURRENT OPINION IN PLANT BIOLOGY 2017; 39:31-39. [PMID: 28582679 DOI: 10.1016/j.pbi.2017.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/28/2017] [Accepted: 05/07/2017] [Indexed: 06/07/2023]
Abstract
Root system architecture (RSA) and physiological functions define macronutrient uptake efficiency. Small signaling peptides (SSPs), that act in manners similar to hormones, and their cognate receptors transmit signals both locally and systemically. Several SSPs controlling morphological and physiological traits of roots have been identified to be associated with macronutrient uptake. Recent development in plant genome research has provided an avenue toward systems-based identification and prediction of additional SSPs. This review highlights recent studies on SSP pathways important for optimization of macronutrient uptake and provides new insights into the diversity of SSPs regulated in response to changes in macronutrient availabilities.
Collapse
Affiliation(s)
- Thomas C de Bang
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Katerina S Lay
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | - Hideki Takahashi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
33
|
Shahzad Z, Amtmann A. Food for thought: how nutrients regulate root system architecture. CURRENT OPINION IN PLANT BIOLOGY 2017; 39:80-87. [PMID: 28672167 PMCID: PMC5605224 DOI: 10.1016/j.pbi.2017.06.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/09/2017] [Accepted: 06/12/2017] [Indexed: 05/18/2023]
Abstract
The spatial arrangement of the plant root system (root system architecture, RSA) is very sensitive to edaphic and endogenous signals that report on the nutrient status of soil and plant. Signalling pathways underpinning RSA responses to individual nutrients, particularly nitrate and phosphate, have been unravelled. Researchers have now started to investigate interactive effects between two or more nutrients on RSA. Several proteins enabling crosstalk between signalling pathways have recently been identified. RSA is potentially an important trait for sustainable and/or marginal agriculture. It is generally assumed that RSA responses are adaptive and optimise nutrient uptake in a given environment, but hard evidence for this paradigm is still sparse. Here we summarize recent advances made in these areas of research.
Collapse
Affiliation(s)
- Zaigham Shahzad
- Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Anna Amtmann
- Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| |
Collapse
|
34
|
Tsutsui H, Notaguchi M. The Use of Grafting to Study Systemic Signaling in Plants. PLANT & CELL PHYSIOLOGY 2017; 58:1291-1301. [PMID: 28961994 DOI: 10.1093/pcp/pcx098] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/10/2017] [Indexed: 05/03/2023]
Abstract
Grafting has long been an important technique in agriculture. Nowadays, grafting is a widely used technique also to study systemic long-distance signaling in plants. Plants respond to their surrounding environment, and at that time many aspects of their physiology are regulated systemically; these start from local input signals and are followed by the transmission of information to the rest of the plant. For example, soil nutrient conditions, light/photoperiod, and biotic and abiotic stresses affect plants heterogeneously, and plants perceive such information in specific plant tissues or organs. Such environmental cues are crucial determinants of plant growth and development, and plants drastically change their morphology and physiology to adapt to various events in their life. Hitherto, intensive studies have been conducted to understand systemic signaling in plants, and grafting techniques have permitted advances in this field. The breakthrough technique of micrografting in Arabidopsis thaliana was established in 2002 and led to the development of molecular genetic tools in this field. Thereafter, various phenomena of systemic signaling have been identified at the molecular level, including nutrient fixation, flowering, circadian clock and defense against pathogens. The significance of grafting is that it can clarify the transmission of the stimulus and molecules. At present, many micro- and macromolecules have been identified as mobile signals, which are transported through plant vascular tissues to co-ordinate their physiology and development. In this review, we introduce the various grafting techniques that have been developed, we report on the recent advances in the field of plant systemic signaling where grafting techniques have been applied and provide insights for the future.
Collapse
Affiliation(s)
- Hiroki Tsutsui
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Michitaka Notaguchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Japan Science and Technology Agency, PRESTO, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
35
|
Pruitt RN, Joe A, Zhang W, Feng W, Stewart V, Schwessinger B, Dinneny JR, Ronald PC. A microbially derived tyrosine-sulfated peptide mimics a plant peptide hormone. THE NEW PHYTOLOGIST 2017; 215:725-736. [PMID: 28556915 PMCID: PMC5901733 DOI: 10.1111/nph.14609] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/18/2017] [Indexed: 05/13/2023]
Abstract
The biotrophic pathogen Xanthomonas oryzae pv. oryzae (Xoo) produces a sulfated peptide named RaxX, which shares similarity to peptides in the PSY (plant peptide containing sulfated tyrosine) family. We hypothesize that RaxX mimics the growth-stimulating activity of PSY peptides. Root length was measured in Arabidopsis and rice treated with synthetic RaxX peptides. We also used comparative genomic analyses and reactive oxygen species burst assays to evaluate the activity of RaxX and PSY peptides. Here we found that a synthetic sulfated RaxX derivative comprising 13 residues (RaxX13-sY), highly conserved between RaxX and PSY, induces root growth in Arabidopsis and rice in a manner similar to that triggered by PSY. We identified residues that are required for activation of immunity mediated by the rice XA21 receptor but that are not essential for root growth induced by PSY. Finally, we showed that a Xanthomonas strain lacking raxX is impaired in virulence. These findings suggest that RaxX serves as a molecular mimic of PSY peptides to facilitate Xoo infection and that XA21 has evolved the ability to recognize and respond specifically to the microbial form of the peptide.
Collapse
Affiliation(s)
- Rory N. Pruitt
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA
- Feedstocks Division, Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anna Joe
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA
- Feedstocks Division, Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Weiguo Zhang
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA
| | - Wei Feng
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Valley Stewart
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Benjamin Schwessinger
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA
- Feedstocks Division, Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - José R. Dinneny
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Pamela C. Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA
- Feedstocks Division, Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
36
|
Okamoto S, Tabata R, Matsubayashi Y. Long-distance peptide signaling essential for nutrient homeostasis in plants. CURRENT OPINION IN PLANT BIOLOGY 2016; 34:35-40. [PMID: 27552346 DOI: 10.1016/j.pbi.2016.07.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/22/2016] [Accepted: 07/30/2016] [Indexed: 05/10/2023]
Abstract
Organ-to-organ communication is indispensable for higher organisms to maintain homeostasis over their entire life. Recent findings have uncovered that plants, like animals, mediate organ-to-organ communication by long-distance signaling through the vascular system. In particular, xylem-mobile secreted peptides have attracted much attention as root-to-shoot long-distance signaling molecules in response to fluctuating environmental nutrient status. Several leguminous CLE peptides induced by rhizobial inoculation act as 'satiety' signals in long-distance negative feedback of nodule formation. By contrast, Arabidopsis CEP family peptides induced by local nitrogen (N)-starvation behave as systemic 'hunger' signals to promote compensatory N acquisition in other parts of the roots. Xylem sap peptidomics also implies the presence of still uncharacterized long-distance signaling peptides. This review highlights the current understanding of and new insights into the mechanisms and functions of root-to-shoot long-distance peptide signaling during environmental responses.
Collapse
Affiliation(s)
- Satoru Okamoto
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Ryo Tabata
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Yoshikatsu Matsubayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.
| |
Collapse
|
37
|
Hashiguchi A, Komatsu S. Posttranslational Modifications and Plant-Environment Interaction. Methods Enzymol 2016; 586:97-113. [PMID: 28137579 DOI: 10.1016/bs.mie.2016.09.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Posttranslational modifications (PTMs) of proteins such as phosphorylation and ubiquitination are crucial for controlling protein stability, localization, and conformation. Genetic information encoded in DNA is transcribed, translated, and increases its complexity by multiple PTMs. Conformational change introduced by PTMs affects interacting partners of each proteins and their downstream signaling; therefore, PTMs are the major level of modulations of total outcome of living cells. Plants are living in harsh environment that requires unremitting physiological modulation to survive, and the plant response to various environment stresses is regulated by PTMs of proteins. This review deals with the novel knowledge of PTM-focused proteomic studies on various life conditions. PTMs are focused that mediate plant-environment interaction such as stress perception, protein homeostasis, control of energy shift, and defense by immune system. Integration of diverse signals on a protein via multiple PTMs is discussed as well, considering current situation where signal integration became an emerging area approached by systems biology into account.
Collapse
Affiliation(s)
- A Hashiguchi
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - S Komatsu
- National Institute of Crop Science, NARO, Tsukuba, Japan.
| |
Collapse
|
38
|
Nishida H, Handa Y, Tanaka S, Suzaki T, Kawaguchi M. Expression of the CLE-RS3 gene suppresses root nodulation in Lotus japonicus. JOURNAL OF PLANT RESEARCH 2016; 129:909-919. [PMID: 27294965 DOI: 10.1007/s10265-016-0842-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/12/2016] [Indexed: 05/21/2023]
Abstract
Cell-to-cell communication, principally mediated by short- or long-range mobile signals, is involved in many plant developmental processes. In root nodule symbiosis, a mutual relationship between leguminous plants and nitrogen-fixing rhizobia, the mechanism for the autoregulation of nodulation (AON) plays a key role in preventing the production of an excess number of nodules. AON is based on long-distance cell-to-cell communication between roots and shoots. In Lotus japonicus, two CLAVATA3/ESR-related (CLE) peptides, encoded by CLE-ROOT SIGNAL 1 (CLE-RS1) and -RS2, act as putative root-derived signals that transmit signals inhibiting further nodule development through interaction with a shoot-acting receptor-like kinase HYPERNODULATION ABERRANT ROOT FORMATION 1 (HAR1). Here, an in silico search and subsequent expression analyses enabled us to identify two new L. japonicus CLE genes that are potentially involved in nodulation, designated as CLE-RS3 and LjCLE40. Time-course expression patterns showed that CLE-RS1/2/3 and LjCLE40 expression is induced during nodulation with different activation patterns. Furthermore, constitutive expression of CLE-RS3 significantly suppressed nodule formation in a HAR1-dependent manner. TOO MUCH LOVE, a root-acting regulator of AON, is also required for the CLE-RS3 action. These results suggest that CLE-RS3 is a new component of AON in L. japonicus that may act as a potential root-derived signal through interaction with HAR1. Because CLE-RS2, CLE-RS3 and LjCLE40 are located in tandem in the genome and their expression is induced not only by rhizobial infection but also by nitrate, these genes may have duplicated from a common gene.
Collapse
Affiliation(s)
- Hanna Nishida
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
- School of Life Science, The Graduate University for Advanced Studies, Okazaki, 444-8585, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Yoshihiro Handa
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Sachiko Tanaka
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Takuya Suzaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan.
| | - Masayoshi Kawaguchi
- National Institute for Basic Biology, Okazaki, 444-8585, Japan.
- School of Life Science, The Graduate University for Advanced Studies, Okazaki, 444-8585, Japan.
| |
Collapse
|
39
|
Carella P, Wilson DC, Kempthorne CJ, Cameron RK. Vascular Sap Proteomics: Providing Insight into Long-Distance Signaling during Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:651. [PMID: 27242852 PMCID: PMC4863880 DOI: 10.3389/fpls.2016.00651] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/28/2016] [Indexed: 05/17/2023]
Abstract
The plant vascular system, composed of the xylem and phloem, is important for the transport of water, mineral nutrients, and photosynthate throughout the plant body. The vasculature is also the primary means by which developmental and stress signals move from one organ to another. Due to practical and technological limitations, proteomics analysis of xylem and phloem sap has been understudied in comparison to accessible sample types such as leaves and roots. However, recent advances in sample collection techniques and mass spectrometry technology are making it possible to comprehensively analyze vascular sap proteomes. In this mini-review, we discuss the emerging field of vascular sap proteomics, with a focus on recent comparative studies to identify vascular proteins that may play roles in long-distance signaling and other processes during stress responses in plants.
Collapse
|