1
|
Koletti A, Skliros D, Kalloniati C, Marka S, Zografaki ME, Infante C, Mantecón L, Flemetakis E. Global omics study of Tetraselmis chuii reveals time-related metabolic adaptations upon oxidative stress. Appl Microbiol Biotechnol 2024; 108:138. [PMID: 38229403 DOI: 10.1007/s00253-023-12936-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024]
Abstract
Microalgae species encounter oxidative stress in their natural environments, prompting the development of species-specific adaptation mechanisms. Understanding these mechanisms can offer valuable insights for biotechnological applications in microalgal metabolic manipulation. In this study, we investigated the response of Tetraselmis chuii, an industrially important microalga, to H2O2-induced oxidative stress. Exposure to 0.5-mM H2O2 resulted in reduced cell viability, and higher concentrations led to a drastic decline. After 1 h of exposure to H2O2, photosynthetic capacity (Qy) was negatively impacted, and this reduction intensified after 6 h of continuous stress. Global multi-omics analysis revealed that T. chuii rapidly responded to H2O2-induced oxidative stress within the first hour, causing significant changes in both transcriptomic and metabolomic profiles. Among the cellular functions negatively affected were carbon and energy flow, with photosynthesis-related PSBQ having a 2.4-fold downregulation, pyruvate kinase decreased by 1.5-fold, and urea content reduced by threefold. Prolonged exposure to H2O2 incurred a high energy cost, leading to unsuccessful attempts to enhance carbon metabolism, as depicted, for example, by the upregulation of photosystems-related PETC and PETJ by more than twofold. These findings indicate that T. chuii quickly responds to oxidative stress, but extended exposure can have detrimental effects on its cellular functions. KEY POINTS: • 0.5-mM H2O2-induced oxidative stress strongly affects T. chuii • Distinct short- and long-term adaptation mechanisms are induced • Major metabolic adaptations occur within the first hour of exposure.
Collapse
Affiliation(s)
- Aikaterini Koletti
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855, Athens, Greece
| | - Dimitrios Skliros
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855, Athens, Greece
| | - Chrysanthi Kalloniati
- Department of Marine Sciences, University of the Aegean, University Hill 81100, Mytilene, Greece
| | - Sofia Marka
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855, Athens, Greece
| | - Maria-Eleftheria Zografaki
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855, Athens, Greece
| | - Carlos Infante
- Fitoplancton Marino, S.L., Dársena Comercial S/N (Muelle Pesquero), 11500, El Puerto de Santa María (Cádiz), Spain
| | - Lalia Mantecón
- Fitoplancton Marino, S.L., Dársena Comercial S/N (Muelle Pesquero), 11500, El Puerto de Santa María (Cádiz), Spain
| | - Emmanouil Flemetakis
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855, Athens, Greece.
| |
Collapse
|
2
|
Pancheri T, Baur T, Roach T. Singlet-Oxygen-Mediated Regulation of Photosynthesis-Specific Genes: A Role for Reactive Electrophiles in Signal Transduction. Int J Mol Sci 2024; 25:8458. [PMID: 39126029 PMCID: PMC11313482 DOI: 10.3390/ijms25158458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
During photosynthesis, reactive oxygen species (ROS) are formed, including hydrogen peroxide (H2O2) and singlet oxygen (1O2), which have putative roles in signalling, but their involvement in photosynthetic acclimation is unclear. Due to extreme reactivity and a short lifetime, 1O2 signalling occurs via its reaction products, such as oxidised poly-unsaturated fatty acids in thylakoid membranes. The resulting lipid peroxides decay to various aldehydes and reactive electrophile species (RES). Here, we investigated the role of ROS in the signal transduction of high light (HL), focusing on GreenCut2 genes unique to photosynthetic organisms. Using RNA seq. data, the transcriptional responses of Chlamydomonas reinhardtii to 2 h HL were compared with responses under low light to exogenous RES (acrolein; 4-hydroxynonenal), β-cyclocitral, a β-carotene oxidation product, as well as Rose Bengal, a 1O2-producing photosensitiser, and H2O2. HL induced significant (p < 0.05) up- and down-regulation of 108 and 23 GreenCut2 genes, respectively. Of all HL up-regulated genes, over half were also up-regulated by RES, including RBCS1 (ribulose bisphosphate carboxylase small subunit), NPQ-related PSBS1 and LHCSR1. Furthermore, 96% of the genes down-regulated by HL were also down-regulated by 1O2 or RES, including CAO1 (chlorophyllide-a oxygnease), MDH2 (NADP-malate dehydrogenase) and PGM4 (phosphoglycerate mutase) for glycolysis. In comparison, only 0-4% of HL-affected GreenCut2 genes were similarly affected by H2O2 or β-cyclocitral. Overall, 1O2 plays a significant role in signalling during the initial acclimation of C. reinhardtii to HL by up-regulating photo-protection and carbon assimilation and down-regulating specific primary metabolic pathways. Our data support that this pathway involves RES.
Collapse
Affiliation(s)
| | | | - Thomas Roach
- Department of Botany, Faculty of Biology, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
3
|
Tsai TY, Chien YL, Zheng YY, Li YC, Chen JC, Su RC, Ben-Sheleg A, Khozin-Goldberg I, Vonshak A, Lee TM. Modification in the ascorbate-glutathione cycle leads to a better acclimation to high light in the rose Bengal resistant mutant of Nannochloropsis oceanica. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108326. [PMID: 38237421 DOI: 10.1016/j.plaphy.2023.108326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 03/16/2024]
Abstract
Understanding how to adapt outdoor cultures of Nannochloropsis oceanica to high light (HL) is vital for boosting productivity. The N. oceanica RB2 mutant, obtained via ethyl methanesulfonate mutagenesis, was chosen for its tolerance to Rose Bengal (RB), a singlet oxygen (1O2) generator. Compared to the wild type (WT), the RB2 mutant showed higher resilience to excess light conditions. Analyzing the ascorbate-glutathione cycle (AGC), involving ascorbate peroxidases (APX, EC 1.11.1.11), dehydroascorbate reductase (DHAR, EC 1.8.5.1), and glutathione reductase (GR, EC 1.8.1.7), in the RB2 mutant under HL stress provided valuable insights. At 250 μmol photon m-2 s-1 (HL), the WT strain displayed superoxide anion radicals (O2▪-) and hydrogen peroxide (H2O2) accumulation, increased lipid peroxidation, and cell death compared to normal light (NL) conditions (50 μmol photon m-2 s-1). The RB2 mutant didn't accumulate O2▪- and H2O2 after HL exposure, and exhibited increased APX, DHAR, and GR activities and transcript levels compared to WT and remained consistent after HL treatment. Although the RB2 mutant had a smaller ascorbate (AsA) pool than the WT, its ability to regenerate dehydroascorbate (DHA) increased post HL exposure, indicated by a higher AsA/DHA ratio. Additionally, under HL conditions, the RB2 mutant displayed an improved glutathione (GSH) regeneration rate (GSH/GSSG ratio) without changing the GSH pool size. Remarkably, H2O2 or menadione (a O2▪- donor) treatment induced cell death in the WT strain but not in the RB2 mutant. These findings emphasize the essential role of AGC in the RB2 mutant of Nannochloropsis in handling photo-oxidative stress.
Collapse
Affiliation(s)
- Tsung-Yu Tsai
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Yi-Lin Chien
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Yu-Yun Zheng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Yu-Chia Li
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Jen-Chih Chen
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Ruey-Chih Su
- Department of Life Science, Fu-Jen University, New Taipei City 242, Taiwan
| | - Avraham Ben-Sheleg
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| | - Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion 8499000, Israel.
| | - Avigad Vonshak
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion 8499000, Israel.
| | - Tse-Min Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan; Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
4
|
Ismaiel MMS, Piercey-Normore MD. Cooperative antioxidative defense of the blue-green alga Arthrospira (Spirulina) platensis under oxidative stress imposed by exogenous application of hydrogen peroxide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:123002. [PMID: 38000724 DOI: 10.1016/j.envpol.2023.123002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Hydrogen peroxide (H2O2) is an environmentally-safe algaecide used to control harmful algal blooms and as a disinfectant in various domestic and industrial applications. It is produced naturally in sunny-water or as a by-product during growth, and metabolism of photosynthetic organisms. To assess the impact of H2O2 on Arthrospira platensis, several biochemical components, and antioxidant enzymes were analysed. The growth and biomass of A. platensis were decreased under the effect of H2O2. Whereas, the concentration up to 40 μM H2O2 non-significantly induced (at P < 0.05) the Chl a, C-phycocyanin (C-PC), total phycobiliprotein (PBP), and the radical scavenging activity of A. platensis. The half-maximal effective concentrations (EC50) for H2O2 were 57, 65, and 74 μM H2O2 with regards to the biomass yield, Chl a, and C-PC content, respectively. While, the total soluble protein, and soluble carbohydrates contents were significantly induced. However, the higher concentrations (60 and 80 μM) were lethal to these components, in parallel to the initiation of the lipid peroxidation process. Surprisingly, the carotenoids content was non-significantly increased by H2O2. Despite the relative consistency of catalase (CAT), the activities of superoxide dismutase (SOD) and peroxidase (POD) enzymes were boosted by all of the tested concentrations of H2O2. The relative transcript abundance of selected regulatory genes was also investigated. Except for the highest dose (80 μM), the tested concentrations had almost inhibitory effect on the relative transcripts of heat shock protein (HSP90), glutamate synthase (GOGAT), delta-9 desaturase (desC), iron-superoxide dismutase (FeSOD) and the Rubisco (the large subunit, rbcL) genes. The results demonstrated the importance of the non-enzymatic and enzymatic antioxidants for the cumulative tolerance of A. platensis.
Collapse
Affiliation(s)
- Mostafa M S Ismaiel
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | | |
Collapse
|
5
|
Gu L, Hou Y, Sun Y, Chen X, Wang H, Zhu B, Du X. ZmB12D, a target of transcription factor ZmWRKY70, enhances the tolerance of Arabidopsis to submergence. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108322. [PMID: 38169225 DOI: 10.1016/j.plaphy.2023.108322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/07/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
Submergence stress represents a serious threat to the yield and quality of maize because it can lead to oxygen deficiency and the accumulation of toxic metabolites. However, the mechanisms by which maize resists the adverse effects of submergence stress have yet to be fully elucidated. Here, we cloned a gene from maize Balem (Barley aleurone and embryo), ZmB12D, which was expressed at significant levels in seed embryos during imbibition and in leaves under submergence stress. Subcellular localization analysis indicated that the ZmB12D protein was localized in the mitochondria. The overexpression of ZmB12D in increased the tolerance of Arabidopsis to submergence stress, probably due to a reduction in the levels of malonaldehyde (MDA), the increased activity of antioxidant enzymes (SOD, POD and CAT), enhanced electron transport by coordinating the expression of non-symbiotic hemoglobin-2 (AHb2) and Fe transport-related (AtNAS3) genes (mediating Fe and oxygen availability) and also modulated the anaerobic respiration rates through upregulated the AtPDC1, AtADH1, AtSUS4 genes under submergence. Yeast one-hybrid (Y1H) and transient transactivation assays demonstrated that ZmWRKY70 bound to the ZmB12D promoter and activated ZmB12D. Collectively, out findings indicate that ZmB12D plays an important role in the tolerance of maize to submergence stress. This research provides new insights into the genetic improvement of maize with regards to submergence tolerance.
Collapse
Affiliation(s)
- Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Yunyan Hou
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Yiyue Sun
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Xuanxuan Chen
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China.
| |
Collapse
|
6
|
Kreis E, König K, Misir M, Niemeyer J, Sommer F, Schroda M. TurboID reveals the proxiomes of Chlamydomonas proteins involved in thylakoid biogenesis and stress response. PLANT PHYSIOLOGY 2023; 193:1772-1796. [PMID: 37310689 PMCID: PMC10602608 DOI: 10.1093/plphys/kiad335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 06/14/2023]
Abstract
In Chlamydomonas (Chlamydomonas reinhardtii), the VESICLE-INDUCING PROTEIN IN PLASTIDS 1 and 2 (VIPP1 and VIPP2) play roles in the sensing and coping with membrane stress and in thylakoid membrane biogenesis. To gain more insight into these processes, we aimed to identify proteins interacting with VIPP1/2 in the chloroplast and chose proximity labeling (PL) for this purpose. We used the transient interaction between the nucleotide exchange factor CHLOROPLAST GRPE HOMOLOG 1 (CGE1) and the stromal HEAT SHOCK PROTEIN 70B (HSP70B) as test system. While PL with APEX2 and BioID proved to be inefficient, TurboID resulted in substantial biotinylation in vivo. TurboID-mediated PL with VIPP1/2 as baits under ambient and H2O2 stress conditions confirmed known interactions of VIPP1 with VIPP2, HSP70B, and the CHLOROPLAST DNAJ HOMOLOG 2 (CDJ2). Proteins identified in the VIPP1/2 proxiomes can be grouped into proteins involved in the biogenesis of thylakoid membrane complexes and the regulation of photosynthetic electron transport, including PROTON GRADIENT REGULATION 5-LIKE 1 (PGRL1). A third group comprises 11 proteins of unknown function whose genes are upregulated under chloroplast stress conditions. We named them VIPP PROXIMITY LABELING (VPL). In reciprocal experiments, we confirmed VIPP1 in the proxiomes of VPL2 and PGRL1. Our results demonstrate the robustness of TurboID-mediated PL for studying protein interaction networks in the chloroplast of Chlamydomonas and pave the way for analyzing functions of VIPPs in thylakoid biogenesis and stress responses.
Collapse
Affiliation(s)
- Elena Kreis
- Molekulare Biotechnologie & Systembiologie, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Katharina König
- Molekulare Biotechnologie & Systembiologie, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Melissa Misir
- Molekulare Biotechnologie & Systembiologie, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Justus Niemeyer
- Molekulare Biotechnologie & Systembiologie, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Frederik Sommer
- Molekulare Biotechnologie & Systembiologie, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Michael Schroda
- Molekulare Biotechnologie & Systembiologie, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| |
Collapse
|
7
|
Findinier J, Grossman AR. Chlamydomonas: Fast tracking from genomics. JOURNAL OF PHYCOLOGY 2023; 59:644-652. [PMID: 37417760 DOI: 10.1111/jpy.13356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023]
Abstract
Elucidating biological processes has relied on the establishment of model organisms, many of which offer advantageous features such as rapid axenic growth, extensive knowledge of their physiological features and gene content, and the ease with which they can be genetically manipulated. The unicellular green alga Chlamydomonas reinhardtii has been an exemplary model that has enabled many scientific breakthroughs over the decades, especially in the fields of photosynthesis, cilia function and biogenesis, and the acclimation of photosynthetic organisms to their environment. Here, we discuss recent molecular/technological advances that have been applied to C. reinhardtii and how they have further fostered its development as a "flagship" algal system. We also explore the future promise of this alga in leveraging advances in the fields of genomics, proteomics, imaging, and synthetic biology for addressing critical future biological issues.
Collapse
Affiliation(s)
- Justin Findinier
- The Carnegie Institution for Science, Biosphere Science and Engineering, Stanford, California, USA
| | - Arthur R Grossman
- The Carnegie Institution for Science, Biosphere Science and Engineering, Stanford, California, USA
| |
Collapse
|
8
|
Youssef WA, Feil R, Saint-Sorny M, Johnson X, Lunn JE, Grimm B, Brzezowski P. Singlet oxygen-induced signalling depends on the metabolic status of the Chlamydomonas reinhardtii cell. Commun Biol 2023; 6:529. [PMID: 37193883 DOI: 10.1038/s42003-023-04872-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 04/24/2023] [Indexed: 05/18/2023] Open
Abstract
Using a mutant screen, we identified trehalose 6-phosphate phosphatase 1 (TSPP1) as a functional enzyme dephosphorylating trehalose 6-phosphate (Tre6P) to trehalose in Chlamydomonas reinhardtii. The tspp1 knock-out results in reprogramming of the cell metabolism via altered transcriptome. As a secondary effect, tspp1 also shows impairment in 1O2-induced chloroplast retrograde signalling. From transcriptomic analysis and metabolite profiling, we conclude that accumulation or deficiency of certain metabolites directly affect 1O2-signalling. 1O2-inducible GLUTATHIONE PEROXIDASE 5 (GPX5) gene expression is suppressed by increased content of fumarate and 2-oxoglutarate, intermediates in the tricarboxylic acid cycle (TCA cycle) in mitochondria and dicarboxylate metabolism in the cytosol, but also myo-inositol, involved in inositol phosphate metabolism and phosphatidylinositol signalling system. Application of another TCA cycle intermediate, aconitate, recovers 1O2-signalling and GPX5 expression in otherwise aconitate-deficient tspp1. Genes encoding known essential components of chloroplast-to-nucleus 1O2-signalling, PSBP2, MBS, and SAK1, show decreased transcript levels in tspp1, which also can be rescued by exogenous application of aconitate. We demonstrate that chloroplast retrograde signalling involving 1O2 depends on mitochondrial and cytosolic processes and that the metabolic status of the cell determines the response to 1O2.
Collapse
Affiliation(s)
- Waeil Al Youssef
- Pflanzenphysiologie, Institut für Biologie, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Maureen Saint-Sorny
- Photosynthesis and Environment Team, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS, Institut de Biosciences et Biotechnologies d'Aix-Marseille, Aix-Marseille Université, UMR 7265, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Xenie Johnson
- Photosynthesis and Environment Team, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS, Institut de Biosciences et Biotechnologies d'Aix-Marseille, Aix-Marseille Université, UMR 7265, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Bernhard Grimm
- Pflanzenphysiologie, Institut für Biologie, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Pawel Brzezowski
- Pflanzenphysiologie, Institut für Biologie, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.
| |
Collapse
|
9
|
Monteiro LDFR, Giraldi LA, Winck FV. From Feasting to Fasting: The Arginine Pathway as a Metabolic Switch in Nitrogen-Deprived Chlamydomonas reinhardtii. Cells 2023; 12:1379. [PMID: 37408213 PMCID: PMC10216424 DOI: 10.3390/cells12101379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 07/07/2023] Open
Abstract
The metabolism of the model microalgae Chlamydomonas reinhardtii under nitrogen deprivation is of special interest due to its resulting increment of triacylglycerols (TAGs), that can be applied in biotechnological applications. However, this same condition impairs cell growth, which may limit the microalgae's large applications. Several studies have identified significant physiological and molecular changes that occur during the transition from an abundant to a low or absent nitrogen supply, explaining in detail the differences in the proteome, metabolome and transcriptome of the cells that may be responsible for and responsive to this condition. However, there are still some intriguing questions that reside in the core of the regulation of these cellular responses that make this process even more interesting and complex. In this scenario, we reviewed the main metabolic pathways that are involved in the response, mining and exploring, through a reanalysis of omics data from previously published datasets, the commonalities among the responses and unraveling unexplained or non-explored mechanisms of the possible regulatory aspects of the response. Proteomics, metabolomics and transcriptomics data were reanalysed using a common strategy, and an in silico gene promoter motif analysis was performed. Together, these results identified and suggested a strong association between the metabolism of amino acids, especially arginine, glutamate and ornithine pathways to the production of TAGs, via the de novo synthesis of lipids. Furthermore, our analysis and data mining indicate that signalling cascades orchestrated with the indirect participation of phosphorylation, nitrosylation and peroxidation events may be essential to the process. The amino acid pathways and the amount of arginine and ornithine available in the cells, at least transiently during nitrogen deprivation, may be in the core of the post-transcriptional, metabolic regulation of this complex phenomenon. Their further exploration is important to the discovery of novel advances in the understanding of microalgae lipids' production.
Collapse
Affiliation(s)
- Lucca de Filipe Rebocho Monteiro
- Laboratory of Regulatory Systems Biology, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba 13416-000, Brazil
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil
| | - Laís Albuquerque Giraldi
- Laboratory of Regulatory Systems Biology, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba 13416-000, Brazil
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Flavia Vischi Winck
- Laboratory of Regulatory Systems Biology, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba 13416-000, Brazil
| |
Collapse
|
10
|
Chronological transcriptome changes induced by exposure to cyanoacrylate resin nanoparticles in Chlamydomonas reinhardtii with a focus on ROS development and cell wall lysis-related genes. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Pokora W, Tułodziecki S, Dettlaff-Pokora A, Aksmann A. Cross Talk between Hydrogen Peroxide and Nitric Oxide in the Unicellular Green Algae Cell Cycle: How Does It Work? Cells 2022; 11:cells11152425. [PMID: 35954269 PMCID: PMC9368121 DOI: 10.3390/cells11152425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 11/22/2022] Open
Abstract
The regulatory role of some reactive oxygen species (ROS) and reactive nitrogen species (RNS), such as hydrogen peroxide or nitric oxide, has been demonstrated in some higher plants and algae. Their involvement in regulation of the organism, tissue and single cell development can also be seen in many animals. In green cells, the redox potential is an important photosynthesis regulatory factor that may lead to an increase or decrease in growth rate. ROS and RNS are important signals involved in the regulation of photoautotrophic growth that, in turn, allow the cell to attain the commitment competence. Both hydrogen peroxide and nitric oxide are directly involved in algal cell development as the signals that regulate expression of proteins required for completing the cell cycle, such as cyclins and cyclin-dependent kinases, or histone proteins and E2F complex proteins. Such regulation seems to relate to the direct interaction of these signaling molecules with the redox-sensitive transcription factors, but also with regulation of signaling pathways including MAPK, G-protein and calmodulin-dependent pathways. In this paper, we aim to elucidate the involvement of hydrogen peroxide and nitric oxide in algal cell cycle regulation, considering the role of these molecules in higher plants. We also evaluate the commercial applicability of this knowledge. The creation of a simple tool, such as a precisely established modification of hydrogen peroxide and/or nitric oxide at the cellular level, leading to changes in the ROS-RNS cross-talk network, can be used for the optimization of the efficiency of algal cell growth and may be especially important in the context of increasing the role of algal biomass in science and industry. It could be a part of an important scientific challenge that biotechnology is currently focused on.
Collapse
Affiliation(s)
- Wojciech Pokora
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk Wita, Stwosza 59, 83-308 Gdańsk, Poland
- Correspondence:
| | - Szymon Tułodziecki
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk Wita, Stwosza 59, 83-308 Gdańsk, Poland
| | | | - Anna Aksmann
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk Wita, Stwosza 59, 83-308 Gdańsk, Poland
| |
Collapse
|
12
|
Koletti A, Dervisi I, Kalloniati C, Zografaki ME, Rennenberg H, Roussis A, Flemetakis E. Selenium-binding Protein 1 (SBD1): A stress response regulator in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2022; 189:2368-2381. [PMID: 35579367 PMCID: PMC9342975 DOI: 10.1093/plphys/kiac230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/04/2022] [Indexed: 05/20/2023]
Abstract
Selenium-binding proteins (SBPs) represent a ubiquitous protein family implicated in various environmental stress responses, although the exact molecular and physiological role of the SBP family remains elusive. In this work, we report the identification and characterization of CrSBD1, an SBP homolog from the model microalgae Chlamydomonas reinhardtii. Growth analysis of the C. reinhardtii sbd1 mutant strain revealed that the absence of a functional CrSBD1 resulted in increased growth under mild oxidative stress conditions, although cell viability rapidly declined at higher hydrogen peroxide (H2O2) concentrations. Furthermore, a combined global transcriptomic and metabolomic analysis indicated that the sbd1 mutant exhibited a dramatic quenching of the molecular and biochemical responses upon H2O2-induced oxidative stress when compared to the wild-type. Our results indicate that CrSBD1 represents a cell regulator, which is involved in the modulation of C. reinhardtii early responses to oxidative stress. We assert that CrSBD1 acts as a member of an extensive and conserved protein-protein interaction network including Fructose-bisphosphate aldolase 3, Cysteine endopeptidase 2, and Glutaredoxin 6 proteins, as indicated by yeast two-hybrid assays.
Collapse
Affiliation(s)
- Aikaterini Koletti
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens 11855, Greece
| | - Irene Dervisi
- Department of Botany, Faculty of Biology, National & Kapodistrian University of Athens, Athens 15784, Greece
| | - Chrysanthi Kalloniati
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens 11855, Greece
| | - Maria-Eleftheria Zografaki
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens 11855, Greece
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Chongqing 400715, China
| | - Andreas Roussis
- Department of Botany, Faculty of Biology, National & Kapodistrian University of Athens, Athens 15784, Greece
| | - Emmanouil Flemetakis
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens 11855, Greece
| |
Collapse
|
13
|
Dao O, Kuhnert F, Weber APM, Peltier G, Li-Beisson Y. Physiological functions of malate shuttles in plants and algae. TRENDS IN PLANT SCIENCE 2022; 27:488-501. [PMID: 34848143 DOI: 10.1016/j.tplants.2021.11.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Subcellular compartmentalization confers evolutionary advantage to eukaryotic cells but entails the need for efficient interorganelle communication. Malate functions as redox carrier and metabolic intermediate. It can be shuttled across membranes through translocators. The interconversion of malate and oxaloacetate mediated by malate dehydrogenases requires oxidation/reduction of NAD(P)H/NAD(P)+; therefore, malate trafficking serves to transport reducing equivalents and this is termed the 'malate shuttle'. Although the term 'malate shuttle' was coined more than 50 years ago, novel functions are still emerging. This review highlights recent findings on the functions of malate shuttles in photorespiration, fatty acid β-oxidation, interorganelle signaling and its putative role in CO2-concentrating mechanisms. We compare and contrast knowledge in plants and algae, thereby providing an evolutionary perspective on redox trafficking in photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Ousmane Dao
- Aix Marseille Univ, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint Paul-Lez-Durance 13108, France
| | - Franziska Kuhnert
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Gilles Peltier
- Aix Marseille Univ, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint Paul-Lez-Durance 13108, France
| | - Yonghua Li-Beisson
- Aix Marseille Univ, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint Paul-Lez-Durance 13108, France.
| |
Collapse
|
14
|
Kubo Y, Morimoto D, Shiroi M, Yoshimi T, Ohara K, Higashine T, Mori Y, Takeuchi M, Sawayama S. Transcriptional responses of
Aurantiochytrium limacinum
under light conditions. J Appl Microbiol 2022; 132:4330-4337. [DOI: 10.1111/jam.15527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Yuki Kubo
- Graduate School of Agriculture Kyoto University, Kitashirakawa Oiwake‐cho, Sakyo‐ku, Kyoto, 606‐8502 Japan
| | - Daichi Morimoto
- Graduate School of Agriculture Kyoto University, Kitashirakawa Oiwake‐cho, Sakyo‐ku, Kyoto, 606‐8502 Japan
| | - Mai Shiroi
- Graduate School of Agriculture Kyoto University, Kitashirakawa Oiwake‐cho, Sakyo‐ku, Kyoto, 606‐8502 Japan
| | - Toru Yoshimi
- Graduate School of Agriculture Kyoto University, Kitashirakawa Oiwake‐cho, Sakyo‐ku, Kyoto, 606‐8502 Japan
| | - Kanta Ohara
- Graduate School of Agriculture Kyoto University, Kitashirakawa Oiwake‐cho, Sakyo‐ku, Kyoto, 606‐8502 Japan
| | - Tokuhiro Higashine
- Graduate School of Agriculture Kyoto University, Kitashirakawa Oiwake‐cho, Sakyo‐ku, Kyoto, 606‐8502 Japan
| | - Yuki Mori
- Graduate School of Agriculture Kyoto University, Kitashirakawa Oiwake‐cho, Sakyo‐ku, Kyoto, 606‐8502 Japan
| | - Masato Takeuchi
- Graduate School of Agriculture Kyoto University, Kitashirakawa Oiwake‐cho, Sakyo‐ku, Kyoto, 606‐8502 Japan
| | - Shigeki Sawayama
- Graduate School of Agriculture Kyoto University, Kitashirakawa Oiwake‐cho, Sakyo‐ku, Kyoto, 606‐8502 Japan
| |
Collapse
|
15
|
Zhang N, Pazouki L, Nguyen H, Jacobshagen S, Bigge BM, Xia M, Mattoon EM, Klebanovych A, Sorkin M, Nusinow DA, Avasthi P, Czymmek KJ, Zhang R. Comparative Phenotyping of Two Commonly Used Chlamydomonas reinhardtii Background Strains: CC-1690 (21gr) and CC-5325 (The CLiP Mutant Library Background). PLANTS (BASEL, SWITZERLAND) 2022; 11:585. [PMID: 35270055 PMCID: PMC8912731 DOI: 10.3390/plants11050585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 05/02/2023]
Abstract
The unicellular green alga Chlamydomonas reinhardtii is an excellent model organism to investigate many essential cellular processes in photosynthetic eukaryotes. Two commonly used background strains of Chlamydomonas are CC-1690 and CC-5325. CC-1690, also called 21gr, has been used for the Chlamydomonas genome project and several transcriptome analyses. CC-5325 is the background strain for the Chlamydomonas Library Project (CLiP). Photosynthetic performance in CC-5325 has not been evaluated in comparison with CC-1690. Additionally, CC-5325 is often considered to be cell-wall deficient, although detailed analysis is missing. The circadian rhythms in CC-5325 are also unclear. To fill these knowledge gaps and facilitate the use of the CLiP mutant library for various screens, we performed phenotypic comparisons between CC-1690 and CC-5325. Our results showed that CC-5325 grew faster heterotrophically in dark and equally well in mixotrophic liquid medium as compared to CC-1690. CC-5325 had lower photosynthetic efficiency and was more heat-sensitive than CC-1690. Furthermore, CC-5325 had an intact cell wall which had comparable integrity to that in CC-1690 but appeared to have reduced thickness. Additionally, CC-5325 could perform phototaxis, but could not maintain a sustained circadian rhythm of phototaxis as CC1690 did. Finally, in comparison to CC-1690, CC-5325 had longer cilia in the medium with acetate but slower swimming speed in the medium without nitrogen and acetate. Our results will be useful for researchers in the Chlamydomonas community to choose suitable background strains for mutant analysis and employ the CLiP mutant library for genome-wide mutant screens under appropriate conditions, especially in the areas of photosynthesis, thermotolerance, cell wall, and circadian rhythms.
Collapse
Affiliation(s)
- Ningning Zhang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| | - Leila Pazouki
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| | - Huong Nguyen
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| | - Sigrid Jacobshagen
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA;
| | - Brae M. Bigge
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (B.M.B.); (P.A.)
| | - Ming Xia
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| | - Erin M. Mattoon
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
- Plant and Microbial Biosciences Program, Division of Biology and Biomedical Sciences, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Anastasiya Klebanovych
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| | - Maria Sorkin
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
- Plant and Microbial Biosciences Program, Division of Biology and Biomedical Sciences, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Dmitri A. Nusinow
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| | - Prachee Avasthi
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (B.M.B.); (P.A.)
| | - Kirk J. Czymmek
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| | - Ru Zhang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| |
Collapse
|
16
|
Choi BY, Kim H, Shim D, Jang S, Yamaoka Y, Shin S, Yamano T, Kajikawa M, Jin E, Fukuzawa H, Lee Y. The Chlamydomonas bZIP transcription factor BLZ8 confers oxidative stress tolerance by inducing the carbon-concentrating mechanism. THE PLANT CELL 2022; 34:910-926. [PMID: 34893905 PMCID: PMC8824676 DOI: 10.1093/plcell/koab293] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/28/2021] [Indexed: 05/19/2023]
Abstract
Photosynthetic organisms are exposed to various environmental sources of oxidative stress. Land plants have diverse mechanisms to withstand oxidative stress, but how microalgae do so remains unclear. Here, we characterized the Chlamydomonas reinhardtii basic leucine zipper (bZIP) transcription factor BLZ8, which is highly induced by oxidative stress. Oxidative stress tolerance increased with increasing BLZ8 expression levels. BLZ8 regulated the expression of genes likely involved in the carbon-concentrating mechanism (CCM): HIGH-LIGHT ACTIVATED 3 (HLA3), CARBONIC ANHYDRASE 7 (CAH7), and CARBONIC ANHYDRASE 8 (CAH8). BLZ8 expression increased the photosynthetic affinity for inorganic carbon under alkaline stress conditions, suggesting that BLZ8 induces the CCM. BLZ8 expression also increased the photosynthetic linear electron transfer rate, reducing the excitation pressure of the photosynthetic electron transport chain and in turn suppressing reactive oxygen species (ROS) production under oxidative stress conditions. A carbonic anhydrase inhibitor, ethoxzolamide, abolished the enhanced tolerance to alkaline stress conferred by BLZ8 overexpression. BLZ8 directly regulated the expression of the three target genes and required bZIP2 as a dimerization partner in activating CAH8 and HLA3. Our results suggest that a CCM-mediated increase in the CO2 supply for photosynthesis is critical to minimize oxidative damage in microalgae, since slow gas diffusion in aqueous environments limits CO2 availability for photosynthesis, which can trigger ROS formation.
Collapse
Affiliation(s)
| | | | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134 Korea
| | - Sunghoon Jang
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | | | - Seungjun Shin
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | | | - EonSeon Jin
- Department of Life Science, Hanyang University, Seoul 133-791, South Korea
| | | | | |
Collapse
|
17
|
Neofotis P, Temple J, Tessmer OL, Bibik J, Norris N, Pollner E, Lucker B, Weraduwage SM, Withrow A, Sears B, Mogos G, Frame M, Hall D, Weissman J, Kramer DM. The induction of pyrenoid synthesis by hyperoxia and its implications for the natural diversity of photosynthetic responses in Chlamydomonas. eLife 2021; 10:67565. [PMID: 34936552 PMCID: PMC8694700 DOI: 10.7554/elife.67565] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 11/13/2021] [Indexed: 12/31/2022] Open
Abstract
In algae, it is well established that the pyrenoid, a component of the carbon-concentrating mechanism (CCM), is essential for efficient photosynthesis at low CO2. However, the signal that triggers the formation of the pyrenoid has remained elusive. Here, we show that, in Chlamydomonas reinhardtii, the pyrenoid is strongly induced by hyperoxia, even at high CO2 or bicarbonate levels. These results suggest that the pyrenoid can be induced by a common product of photosynthesis specific to low CO2 or hyperoxia. Consistent with this view, the photorespiratory by-product, H2O2, induced the pyrenoid, suggesting that it acts as a signal. Finally, we show evidence for linkages between genetic variations in hyperoxia tolerance, H2O2 signaling, and pyrenoid morphologies.
Collapse
Affiliation(s)
- Peter Neofotis
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Joshua Temple
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States.,Department of Plant Biology, Michigan State University, East Lansing, United States
| | - Oliver L Tessmer
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Jacob Bibik
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Nicole Norris
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Eric Pollner
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Ben Lucker
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Sarathi M Weraduwage
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States.,Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, United States
| | - Alecia Withrow
- Center for Advanced Microscopy, Michigan State University, East Lansing, United States
| | - Barbara Sears
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Greg Mogos
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Melinda Frame
- Center for Advanced Microscopy, Michigan State University, East Lansing, United States
| | - David Hall
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Joseph Weissman
- Corporate Strategic Research, ExxonMobil, Annandale, United States
| | - David M Kramer
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| |
Collapse
|
18
|
Resolving the microalgal gene landscape at the strain level: A novel hybrid transcriptome of Emiliania huxleyi CCMP3266. Appl Environ Microbiol 2021; 88:e0141821. [PMID: 34757817 DOI: 10.1128/aem.01418-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microalgae are key ecological players with a complex evolutionary history. Genomic diversity, in addition to limited availability of high-quality genomes, challenge studies that aim to elucidate molecular mechanisms underlying microalgal ecophysiology. Here, we present a novel and comprehensive transcriptomic hybrid approach to generate a reference for genetic analyses, and resolve the microalgal gene landscape at the strain level. The approach is demonstrated for a strain of the coccolithophore microalga Emiliania huxleyi, which is a species complex with considerable genome variability. The investigated strain is commonly studied as a model for algal-bacterial interactions, and was therefore sequenced in the presence of bacteria to elicit the expression of interaction-relevant genes. We applied complementary PacBio Iso-Seq full-length cDNA, and poly(A)-independent Illumina total RNA sequencing, which resulted in a de novo assembled, near complete hybrid transcriptome. In particular, hybrid sequencing improved the reconstruction of long transcripts and increased the recovery of full-length transcript isoforms. To use the resulting hybrid transcriptome as a reference for genetic analyses, we demonstrate a method that collapses the transcriptome into a genome-like dataset, termed "synthetic genome" (sGenome). We used the sGenome as a reference to visually confirm the robustness of the CCMP3266 gene assembly, to conduct differential gene expression analysis, and to characterize novel E. huxleyi genes. The newly-identified genes contribute to our understanding of E. huxleyi genome diversification, and are predicted to play a role in microbial interactions. Our transcriptomic toolkit can be implemented in various microalgae to facilitate mechanistic studies on microalgal diversity and ecology. Importance Microalgae are key players in the ecology and biogeochemistry of our oceans. Efforts to implement genomic and transcriptomic tools in laboratory studies involving microalgae suffer from the lack of published genomes. In the case of coccolithophore microalgae, the problem has long been recognized; the model species Emiliania huxleyi is a species complex with genomes composed of a core, and a large variable portion. To study the role of the variable portion in niche adaptation, and specifically in microbial interactions, strain-specific genetic information is required. Here we present a novel transcriptomic hybrid approach, and generated strain-specific genome-like information. We demonstrate our approach on an E. huxleyi strain that is co-cultivated with bacteria. By constructing a "synthetic genome", we generated comprehensive gene annotations that enabled accurate analyses of gene expression patterns. Importantly, we unveiled novel genes in the variable portion of E. huxleyi that play putative roles in microbial interactions.
Collapse
|
19
|
Wakao S, Niyogi KK. Chlamydomonas as a model for reactive oxygen species signaling and thiol redox regulation in the green lineage. PLANT PHYSIOLOGY 2021; 187:687-698. [PMID: 35237823 PMCID: PMC8491031 DOI: 10.1093/plphys/kiab355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/13/2021] [Indexed: 05/15/2023]
Abstract
One-sentence summary: Advances in proteomic and transcriptomic studies have made Chlamydomonas a powerful research model in redox and reactive oxygen species regulation with unique and overlapping mechanisms with plants.
Collapse
Affiliation(s)
- Setsuko Wakao
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Author for communication: Senior author
| | - Krishna K. Niyogi
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
| |
Collapse
|
20
|
Lu X, Cui Y, Chen Y, Xiao Y, Song X, Gao F, Xiang Y, Hou C, Wang J, Gan Q, Zheng X, Lu Y. Sustainable development of microalgal biotechnology in coastal zone for aquaculture and food. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146369. [PMID: 33773342 DOI: 10.1016/j.scitotenv.2021.146369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Region-specific Research and Development (R&D) of microalga-derived product systems are crucial if "biotech's green gold" is to be explored in a rational and economically viable way. Coastal zones, particularly the locations around the equator, are typically considered to be optimum cultivation sites due to stable annual temperature, light, and ready availability of seawater. However, a 'cradle-to-grave' assessment of the development of microalgal biotechnology in these areas, not only under the laboratory conditions, but also in the fields has not yet been demonstrated. In this study, to evaluate the viability of microalga-derived multi-product technology, we showed the development of microalgal biotechnology in coastal zones for aquaculture and food. By creating and screening a (sub)tropical microalgal collection, a Chlorella strain MEM25 with a robust growth in a wide range of salinities, temperatures, and light intensities was identified. Evaluation of the economic viability and performance of different scale cultivation system designs (500 L and 5000 L closed photobioreactors and 60,000 L open race ponds, ORPs) at coastal zones under geographically specific conditions showed the stable and robust characteristics of MEM25 across different production system designs and various spatial and temporal scales. It produces high amounts of proteins and polyunsaturated fatty acids (PUFAs) in various conditions. Feeding experiments reveal the nutritional merits of MEM25 as food additives where PUFAs and essential amino acids are enriched and the algal diet improves consumers' growth. Economic evaluation highlights an appreciable profitability of MEM25 production as human or animal food using ORP systems. Therefore, despite the pros and cons, sound opportunities exist for the development of market-ready multiple-product systems by employing region-specific R&D strategies for microalgal biotechnology.
Collapse
Affiliation(s)
- Xiangning Lu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, Hainan 570228, China
| | - Yulin Cui
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong Province, China
| | - Yuting Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, Hainan 570228, China
| | - Yupeng Xiao
- Hainan GreenEnergy Microalgal Biotechnology Co., Ltd, Danzhou 571700, Hainan Province, China
| | - Xiaojin Song
- Shandong Provincial Key Laboratory of Energy Genetics, CAS Key Laboratory of Biofuels, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| | - Fengzheng Gao
- Bioprocess Engineering, Wageningen University and Research, 6708PB Wageningen, Netherlands
| | - Yun Xiang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, Hainan 570228, China
| | - Congcong Hou
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, Hainan 570228, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, Fujian Province, China
| | - Jun Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, Hainan 570228, China
| | - Qinhua Gan
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, Hainan 570228, China
| | - Xing Zheng
- Hainan GreenEnergy Microalgal Biotechnology Co., Ltd, Danzhou 571700, Hainan Province, China
| | - Yandu Lu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
21
|
Ma F, Salomé PA, Merchant SS, Pellegrini M. Single-cell RNA sequencing of batch Chlamydomonas cultures reveals heterogeneity in their diurnal cycle phase. THE PLANT CELL 2021; 33:1042-1057. [PMID: 33585940 PMCID: PMC8226295 DOI: 10.1093/plcell/koab025] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/13/2021] [Indexed: 05/02/2023]
Abstract
The photosynthetic unicellular alga Chlamydomonas (Chlamydomonas reinhardtii) is a versatile reference for algal biology because of its ease of culture in the laboratory. Genomic and systems biology approaches have previously described transcriptome responses to environmental changes using bulk data, thus representing the average behavior from pools of cells. Here, we apply single-cell RNA sequencing (scRNA-seq) to probe the heterogeneity of Chlamydomonas cell populations under three environments and in two genotypes differing by the presence of a cell wall. First, we determined that RNA can be extracted from single algal cells with or without a cell wall, offering the possibility to sample natural algal communities. Second, scRNA-seq successfully separated single cells into nonoverlapping cell clusters according to their growth conditions. Cells exposed to iron or nitrogen deficiency were easily distinguished despite a shared tendency to arrest photosynthesis and cell division to economize resources. Notably, these groups of cells not only recapitulated known patterns observed with bulk RNA-seq but also revealed their inherent heterogeneity. A substantial source of variation between cells originated from their endogenous diurnal phase, although cultures were grown in constant light. We exploited this result to show that circadian iron responses may be conserved from algae to land plants. We document experimentally that bulk RNA-seq data represent an average of typically hidden heterogeneity in the population.
Collapse
Affiliation(s)
- Feiyang Ma
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California 90095, USA
| | - Patrice A Salomé
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
- Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095, USA
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
- Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095, USA
- Departments of Molecular and Cell Biology and Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California 90095, USA
- Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
22
|
Salomé PA, Merchant SS. Co-expression networks in Chlamydomonas reveal significant rhythmicity in batch cultures and empower gene function discovery. THE PLANT CELL 2021; 33:1058-1082. [PMID: 33793846 PMCID: PMC8226298 DOI: 10.1093/plcell/koab042] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/25/2021] [Indexed: 05/18/2023]
Abstract
The unicellular green alga Chlamydomonas reinhardtii is a choice reference system for the study of photosynthesis and chloroplast metabolism, cilium assembly and function, lipid and starch metabolism, and metal homeostasis. Despite decades of research, the functions of thousands of genes remain largely unknown, and new approaches are needed to categorically assign genes to cellular pathways. Growing collections of transcriptome and proteome data now allow a systematic approach based on integrative co-expression analysis. We used a dataset comprising 518 deep transcriptome samples derived from 58 independent experiments to identify potential co-expression relationships between genes. We visualized co-expression potential with the R package corrplot, to easily assess co-expression and anti-correlation between genes. We extracted several hundred high-confidence genes at the intersection of multiple curated lists involved in cilia, cell division, and photosynthesis, illustrating the power of our method. Surprisingly, Chlamydomonas experiments retained a significant rhythmic component across the transcriptome, suggesting an underappreciated variable during sample collection, even in samples collected in constant light. Our results therefore document substantial residual synchronization in batch cultures, contrary to assumptions of asynchrony. We provide step-by-step protocols for the analysis of co-expression across transcriptome data sets from Chlamydomonas and other species to help foster gene function discovery.
Collapse
Affiliation(s)
- Patrice A Salomé
- Department of Chemistry and Biochemistry, University of California—Los Angeles, Los Angeles California 90095
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry, University of California—Los Angeles, Los Angeles California 90095
- Departments of Molecular and Cell Biology and Plant and Microbial Biology, University of California-Berkeley, Berkeley, California 94720 and Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
23
|
Grossman A. moving toward more model algae. JOURNAL OF PHYCOLOGY 2021; 57:51-53. [PMID: 33570196 DOI: 10.1111/jpy.13094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Arthur Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, 94305, USA
| |
Collapse
|
24
|
Ma X, Zhang B, Miao R, Deng X, Duan Y, Cheng Y, Zhang W, Shi M, Huang K, Xia XQ. Transcriptomic and Physiological Responses to Oxidative Stress in a Chlamydomonas reinhardtii Glutathione Peroxidase Mutant. Genes (Basel) 2020; 11:genes11040463. [PMID: 32344528 PMCID: PMC7230881 DOI: 10.3390/genes11040463] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 11/17/2022] Open
Abstract
Aerobic photosynthetic organisms such as algae produce reactive oxygen species (ROS) as by-products of metabolism. ROS damage biomolecules such as proteins and lipids in cells, but also act as signaling molecules. The mechanisms that maintain the metabolic balance in aerobic photosynthetic organisms and how the cells specifically respond to different levels of ROS are unclear. Glutathione peroxidase (GPX) enzymes detoxify hydrogen peroxide or organic hydroperoxides, and thus are important components of the antioxidant system. In this study, we employed a Chlamydomonas reinhardtii glutathione peroxidase knockout (gpx5) mutant to identify the genetic response to singlet oxygen (1O2) generated by the photosensitizer rose bengal (RB). To this end, we compared the transcriptomes of the parental strain CC4348 and the gpx5 mutant sampled before, and 1 h after, the addition of RB. Functional annotation of differentially expressed genes showed that genes encoding proteins related to ROS detoxification, stress-response-related molecular chaperones, and ubiquitin–proteasome pathway genes were upregulated in CC4338. When GPX5 was mutated, higher oxidative stress specifically induced the TCA cycle and enhanced mitochondrial electron transport. Transcription of selenoproteins and flagellar-associated proteins was depressed in CC4348 and the gpx5 mutant. In addition, we found iron homeostasis played an important role in maintaining redox homeostasis, and we uncovered the relationship between 1O2 stress and iron assimilation, as well as selenoproteins. Based on the observed expression profiles in response to different levels of oxidative stress, we propose a model for dose-dependent responses to different ROS levels in Chlamydomonas.
Collapse
Affiliation(s)
- Xiaocui Ma
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China; (X.M.); (B.Z.); (R.M.); (X.D.); (Y.D.); (Y.C.); (W.Z.); (M.S.)
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Baolong Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China; (X.M.); (B.Z.); (R.M.); (X.D.); (Y.D.); (Y.C.); (W.Z.); (M.S.)
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Rongli Miao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China; (X.M.); (B.Z.); (R.M.); (X.D.); (Y.D.); (Y.C.); (W.Z.); (M.S.)
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xuan Deng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China; (X.M.); (B.Z.); (R.M.); (X.D.); (Y.D.); (Y.C.); (W.Z.); (M.S.)
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - You Duan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China; (X.M.); (B.Z.); (R.M.); (X.D.); (Y.D.); (Y.C.); (W.Z.); (M.S.)
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yingyin Cheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China; (X.M.); (B.Z.); (R.M.); (X.D.); (Y.D.); (Y.C.); (W.Z.); (M.S.)
| | - Wanting Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China; (X.M.); (B.Z.); (R.M.); (X.D.); (Y.D.); (Y.C.); (W.Z.); (M.S.)
| | - Mijuan Shi
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China; (X.M.); (B.Z.); (R.M.); (X.D.); (Y.D.); (Y.C.); (W.Z.); (M.S.)
| | - Kaiyao Huang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China; (X.M.); (B.Z.); (R.M.); (X.D.); (Y.D.); (Y.C.); (W.Z.); (M.S.)
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
- Correspondence: (K.H.); (X.-Q.X.)
| | - Xiao-Qin Xia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China; (X.M.); (B.Z.); (R.M.); (X.D.); (Y.D.); (Y.C.); (W.Z.); (M.S.)
- University of Chinese Academy of Sciences, Beijing 100039, China
- Correspondence: (K.H.); (X.-Q.X.)
| |
Collapse
|
25
|
Perlaza K, Toutkoushian H, Boone M, Lam M, Iwai M, Jonikas MC, Walter P, Ramundo S. The Mars1 kinase confers photoprotection through signaling in the chloroplast unfolded protein response. eLife 2019; 8:e49577. [PMID: 31612858 PMCID: PMC6794094 DOI: 10.7554/elife.49577] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022] Open
Abstract
In response to proteotoxic stress, chloroplasts communicate with the nuclear gene expression system through a chloroplast unfolded protein response (cpUPR). We isolated Chlamydomonas reinhardtii mutants that disrupt cpUPR signaling and identified a gene encoding a previously uncharacterized cytoplasmic protein kinase, termed Mars1-for mutant affected in chloroplast-to-nucleus retrograde signaling-as the first known component in cpUPR signal transmission. Lack of cpUPR induction in MARS1 mutant cells impaired their ability to cope with chloroplast stress, including exposure to excessive light. Conversely, transgenic activation of cpUPR signaling conferred an advantage to cells undergoing photooxidative stress. Our results indicate that the cpUPR mitigates chloroplast photodamage and that manipulation of this pathway is a potential avenue for engineering photosynthetic organisms with increased tolerance to chloroplast stress.
Collapse
Affiliation(s)
- Karina Perlaza
- Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
- Department of Biochemistry and BiophysicsUniversity of California, San FranciscoSan FranciscoUnited States
| | - Hannah Toutkoushian
- Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
- Department of Biochemistry and BiophysicsUniversity of California, San FranciscoSan FranciscoUnited States
| | - Morgane Boone
- Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
- Department of Biochemistry and BiophysicsUniversity of California, San FranciscoSan FranciscoUnited States
| | - Mable Lam
- Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
- Department of Biochemistry and BiophysicsUniversity of California, San FranciscoSan FranciscoUnited States
| | - Masakazu Iwai
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Martin C Jonikas
- Department of Molecular BiologyPrinceton UniversityPrincetonUnited States
| | - Peter Walter
- Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
- Department of Biochemistry and BiophysicsUniversity of California, San FranciscoSan FranciscoUnited States
| | - Silvia Ramundo
- Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
- Department of Biochemistry and BiophysicsUniversity of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
26
|
Shinkawa H, Kajikawa M, Nomura Y, Ogura M, Sawaragi Y, Yamano T, Nakagami H, Sugiyama N, Ishihama Y, Kanesaki Y, Yoshikawa H, Fukuzawa H. Algal Protein Kinase, Triacylglycerol Accumulation Regulator 1, Modulates Cell Viability and Gametogenesis in Carbon/Nitrogen-Imbalanced Conditions. PLANT & CELL PHYSIOLOGY 2019; 60:916-930. [PMID: 30668822 DOI: 10.1093/pcp/pcz010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/08/2019] [Indexed: 05/20/2023]
Abstract
Nutrient-deprived microalgae accumulate triacylglycerol (TAG) in lipid droplets. A dual-specificity tyrosine phosphorylation-regulated kinase, TAG accumulation regulator 1 (TAR1) has been shown to be required for acetate-dependent TAG accumulation and the degradation of chlorophyll and photosynthesis-related proteins in photomixotrophic nitrogen (N)-deficient conditions (Kajikawa et�al. 2015). However, this previous report only examined particular condition. Here, we report that in photoautotrophic N-deficient conditions, tar1-1 cells, with a mutation in the TAR1 gene, maintained higher levels of cell viability and lower levels of hydrogen peroxide generation and accumulated higher levels of TAG and starch compared with those of wild type (WT) cells with bubbling of air containing 5% carbon dioxide. Transcriptomic analyses suggested that genes involved in the scavenging of reactive oxygen species are not repressed in tar1-1 cells. In contrast, the mating efficiency and mRNA levels of key regulatory genes for gametogenesis, MID, MTD and FUS, were suppressed in tar1-1 cells. Among the TAR1-dependent phosphopeptides deduced by phosphoproteomic analysis, protein kinases and enzymes related to N assimilation and carbon (C) metabolism are of particular interest. Characterization of these putative downstream factors may elucidate the molecular pathway whereby TAR1 mediates cellular propagation and C and N metabolism in C/N-imbalanced stress conditions.
Collapse
Affiliation(s)
- Haruka Shinkawa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | - Yuko Nomura
- RIKEN Center for Sustainable Resource Science, Kanagawa, 230-0045 Japan
| | - Mayu Ogura
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto, 606-8501 Japan
| | - Yuri Sawaragi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hirofumi Nakagami
- RIKEN Center for Sustainable Resource Science, Kanagawa, 230-0045 Japan
| | - Naoyuki Sugiyama
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto, 606-8501 Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto, 606-8501 Japan
| | - Yu Kanesaki
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, 156-8502 Japan
| | - Hirofumi Yoshikawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502 Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
27
|
High level of reactive oxygen species inhibits triacylglycerols accumulation in Chlamydomonas reinhardtii. ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.101400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
28
|
Proteome evolution under non-substitutable resource limitation. Nat Commun 2018; 9:4650. [PMID: 30405128 PMCID: PMC6220234 DOI: 10.1038/s41467-018-07106-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 10/10/2018] [Indexed: 12/12/2022] Open
Abstract
Resource limitation is a major driver of the ecological and evolutionary dynamics of organisms. Short-term responses to resource limitation include plastic changes in molecular phenotypes including protein expression. Yet little is known about the evolution of the molecular phenotype under longer-term resource limitation. Here, we combine experimental evolution of the green alga Chlamydomonas reinhardtii under multiple different non-substitutable resource limitation regimes with proteomic measurements to investigate evolutionary adaptation of the molecular phenotype. We demonstrate convergent proteomic evolution of core metabolic functions, including the Calvin-Benson cycle and gluconeogenesis, across different resource limitation environments. We do not observe proteomic changes consistent with optimized uptake of particular limiting resources. Instead, we report that adaptation proceeds in similar directions under different types of non-substitutable resource limitation. This largely convergent evolution of the expression of core metabolic proteins is associated with an improvement in the resource assimilation efficiency of nitrogen and phosphorus into biomass. Organisms could respond to essential resource limitation by increasing metabolic efficiency or resource acquisition ability. Here, the authors experimentally evolve green algae under different resource limitations and show convergent evolution of core metabolism rather than resource specialization.
Collapse
|
29
|
Kong F, Burlacot A, Liang Y, Légeret B, Alseekh S, Brotman Y, Fernie AR, Krieger-Liszkay A, Beisson F, Peltier G, Li-Beisson Y. Interorganelle Communication: Peroxisomal MALATE DEHYDROGENASE2 Connects Lipid Catabolism to Photosynthesis through Redox Coupling in Chlamydomonas. THE PLANT CELL 2018; 30:1824-1847. [PMID: 29997239 PMCID: PMC6139685 DOI: 10.1105/tpc.18.00361] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/12/2018] [Accepted: 07/10/2018] [Indexed: 05/17/2023]
Abstract
Plants and algae must tightly coordinate photosynthetic electron transport and metabolic activities given that they often face fluctuating light and nutrient conditions. The exchange of metabolites and signaling molecules between organelles is thought to be central to this regulation but evidence for this is still fragmentary. Here, we show that knocking out the peroxisome-located MALATE DEHYDROGENASE2 (MDH2) of Chlamydomonas reinhardtii results in dramatic alterations not only in peroxisomal fatty acid breakdown but also in chloroplast starch metabolism and photosynthesis. mdh2 mutants accumulated 50% more storage lipid and 2-fold more starch than the wild type during nitrogen deprivation. In parallel, mdh2 showed increased photosystem II yield and photosynthetic CO2 fixation. Metabolite analyses revealed a >60% reduction in malate, together with increased levels of NADPH and H2O2 in mdh2 Similar phenotypes were found upon high light exposure. Furthermore, based on the lack of starch accumulation in a knockout mutant of the H2O2-producing peroxisomal ACYL-COA OXIDASE2 and on the effects of H2O2 supplementation, we propose that peroxisome-derived H2O2 acts as a regulator of chloroplast metabolism. We conclude that peroxisomal MDH2 helps photoautotrophs cope with nitrogen scarcity and high light by transmitting the redox state of the peroxisome to the chloroplast by means of malate shuttle- and H2O2-based redox signaling.
Collapse
Affiliation(s)
- Fantao Kong
- Aix Marseille University, CEA, CNRS, BIAM, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, F-13108 Saint Paul-Lez-Durance, France
| | - Adrien Burlacot
- Aix Marseille University, CEA, CNRS, BIAM, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, F-13108 Saint Paul-Lez-Durance, France
| | - Yuanxue Liang
- Aix Marseille University, CEA, CNRS, BIAM, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, F-13108 Saint Paul-Lez-Durance, France
| | - Bertrand Légeret
- Aix Marseille University, CEA, CNRS, BIAM, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, F-13108 Saint Paul-Lez-Durance, France
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Yariv Brotman
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Anja Krieger-Liszkay
- Institute for Integrative Biology of the Cell, CEA Saclay, CNRS, University Paris-Sud, University Paris-Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Fred Beisson
- Aix Marseille University, CEA, CNRS, BIAM, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, F-13108 Saint Paul-Lez-Durance, France
| | - Gilles Peltier
- Aix Marseille University, CEA, CNRS, BIAM, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, F-13108 Saint Paul-Lez-Durance, France
| | - Yonghua Li-Beisson
- Aix Marseille University, CEA, CNRS, BIAM, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, F-13108 Saint Paul-Lez-Durance, France
| |
Collapse
|
30
|
Wagner S, Van Aken O, Elsässer M, Schwarzländer M. Mitochondrial Energy Signaling and Its Role in the Low-Oxygen Stress Response of Plants. PLANT PHYSIOLOGY 2018; 176:1156-1170. [PMID: 29298823 PMCID: PMC5813528 DOI: 10.1104/pp.17.01387] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/29/2017] [Indexed: 05/07/2023]
Abstract
Cellular responses to low-oxygen stress and to respiratory inhibitors share common mitochondrial energy signaling pathways.
Collapse
Affiliation(s)
- Stephan Wagner
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, 48143 Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, 53113 Bonn, Germany
| | | | - Marlene Elsässer
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, 48143 Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, 53113 Bonn, Germany
- Institute for Cellular and Molecular Botany (IZMB), Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, 48143 Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, 53113 Bonn, Germany
| |
Collapse
|
31
|
Lin TH, Rao MY, Lu HW, Chiou CW, Lin ST, Chao HW, Zheng ZL, Cheng HC, Lee TM. A role for glutathione reductase and glutathione in the tolerance of Chlamydomonas reinhardtii to photo-oxidative stress. PHYSIOLOGIA PLANTARUM 2018; 162:35-48. [PMID: 28950038 DOI: 10.1111/ppl.12622] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 05/22/2023]
Abstract
The role of glutathione reductase (GR; EC 1.6.4.2) in the tolerance of Chlamydomonas reinhardtii P.A. Dangeard to high-intensity light stress (HL, 1400 μmol m-2 s-1 ) was examined. Cells survived under high light (HL) stress, although their growth was inhibited after long-term treatment (9-24 h). GR activity increased 1 h after HL treatment. The contents of total glutathione, reduced glutathione (GSH) and glutathione disulfide (GSSG) increased 1-3 h after HL treatment and then decreased after 24 h, while the GSH:GSSG ratio (glutathione redox potential) decreased after 3-9 h and recovered after 24 h. The transcript abundance of GR, CrGR1 (Cre06.g262100) and CrGR2 (Cre09.g396252) as well as glutathione synthesis-related genes, CrGSH1 (Cre02g077100.t1.1) and CrGSH2 (Cre17.g70800.t1.1), increased with a peak near 1 h after HL treatment. Except for enhanced glutathione synthesis, the GR-mediated glutathione redox machinery is also critical for the tolerance of C. reinhardtii cells to HL stress. Therefore, GR was downregulated or upregulated to investigate the importance of GR in HL tolerance. The CrGR1 knockdown amiRNA line exhibited low GR transcript abundance, GR activity and GSH:GSSG ratio and could not survive under HL conditions. Over-expression of CrGR1 or CrGR2 driven by a HSP70A:RBCS2 fusion promoter resulted in a higher GR transcript abundance, GR activity and GSH:GSSG ratio and led to cell survival when exposed to high-intensity illumination, i.e. 1800 μmol m-2 s-1 . In conclusion, GR-mediated modulation of the glutathione redox potential plays a role in the tolerance of Chlamydomonas cells to photo-oxidative stress.
Collapse
Affiliation(s)
- Tsen-Hung Lin
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Meng-Yuan Rao
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hao-Wen Lu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chih-Wen Chiou
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Shu-Tseng Lin
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hung-Wei Chao
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Zhao-Liang Zheng
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hao-Chien Cheng
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Tse-Min Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
32
|
Xing J, Liu P, Zhao L, Huang F. Deletion of CGLD1 Impairs PSII and Increases Singlet Oxygen Tolerance of Green Alga Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2017; 8:2154. [PMID: 29326747 PMCID: PMC5736878 DOI: 10.3389/fpls.2017.02154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/05/2017] [Indexed: 05/24/2023]
Abstract
The green alga Chlamydomonas reinhardtii is a key model organism for studying photosynthesis and oxidative stress in unicellular eukaryotes. Using a forward genetics approach, we have identified and characterized a mutant x32, which lacks a predicted protein named CGLD1 (Conserved in Green Lineage and Diatom 1) in GreenCut2, under normal and stress conditions. We show that loss of CGLD1 resulted in minimal photoautotrophic growth and PSII activity in the organism. We observed reduced amount of PSII complex and core subunits in the x32 mutant based on blue-native (BN)/PAGE and immunoblot analysis. Moreover, x32 exhibited increased sensitivity to high-light stress and altered tolerance to different reactive oxygenic species (ROS) stress treatments, i.e., decreased resistance to H2O2/or tert-Butyl hydroperoxide (t-BOOH) and increased tolerance to neutral red (NR) and rose bengal (RB) that induce the formation of singlet oxygen, respectively. Further analysis via quantitative real-time PCR (qRT-PCR) indicated that the increased singlet-oxygen tolerance of x32 was largely correlated with up-regulated gene expression of glutathione-S-transferases (GST). The phenotypical and physiological implications revealed from our experiments highlight the important roles of CGLD1 in maintaining structure and function of PSII as well as in protection of Chlamydomonas under photo-oxidative stress conditions.
Collapse
Affiliation(s)
- Jiale Xing
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Zhao
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Fang Huang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
Giraudo M, Cottin G, Esperanza M, Gagnon P, Silva AOD, Houde M. Transcriptional and cellular effects of benzotriazole UV stabilizers UV-234 and UV-328 in the freshwater invertebrates Chlamydomonas reinhardtii and Daphnia magna. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:3333-3342. [PMID: 28708270 DOI: 10.1002/etc.3908] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/16/2017] [Accepted: 07/09/2017] [Indexed: 06/07/2023]
Abstract
Benzotriazole ultra violet stabilizers (BZT-UVs) are compounds used in many applications and products to prevent photochemical degradation. Despite their widespread presence in aquatic ecosystems and persistence in the environment, there are very limited data on their effects and toxicity, and their modes of action remain largely unknown. The objectives of the present study were to evaluate the chronic effects of 2 BZT-UVs, 2-(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol (UV-234) and 2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol (UV-328), on the freshwater green algae Chlamydomonas reinhardtii and the freshwater crustacean Daphnia magna. Organisms were exposed to 0.01 and 10 μg/L of UV-234, UV-328, as well as a mixture of the 2 compounds. Life-history endpoints (viability, reproduction, and growth) and oxidative stress-related biomarkers (gene transcription, reactive oxygen species [ROS] production, and lipid peroxidation) were measured. Daphnia magna growth, reproduction, and gene transcription were not impacted by 21-d individual or mixed exposure. After 96-h of exposure, no differences were observed on the cellular viability of C. reinhardtii for either of the 2 BZT-UVs. In the algae, results showed increased ROS production in response to UV-328 and lipid peroxidation following exposure to UV-234. Synergistic effects of the 2 BZT-UVs were evident at the transcriptional level with 2 to 6 times up-regulation of glutathione peroxidase (gpx ) in response to the mixture for all treatment conditions. The transcription of superoxide dismutase (sod), catalase (cat), and ascorbic peroxidase (apx) was also regulated by UV-234 and UV-328 in the green algae, most likely as a result of ROS production and lipid peroxidation. Results from the present study suggest potential impacts of UV-234 and UV-328 exposure on the antioxidant defense system in C. reinhardtii. Environ Toxicol Chem 2017;36:3333-3342. © 2017 Crown in the Right of Canada. Published by Wiley Periodicals Inc., on behalf of SETAC.
Collapse
Affiliation(s)
- Maeva Giraudo
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Montreal, Quebec, Canada
| | - Guillaume Cottin
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Montreal, Quebec, Canada
- Université Paris Descartes, Paris, France
| | - Marta Esperanza
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Montreal, Quebec, Canada
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad da Coruña and Campus de A Zapateira, A Coruña, Spain
| | - Pierre Gagnon
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Montreal, Quebec, Canada
| | - Amila O De Silva
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Magali Houde
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Montreal, Quebec, Canada
| |
Collapse
|
34
|
Jüppner J, Mubeen U, Leisse A, Caldana C, Brust H, Steup M, Herrmann M, Steinhauser D, Giavalisco P. Dynamics of lipids and metabolites during the cell cycle of Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:331-343. [PMID: 28742931 DOI: 10.1111/tpj.13642] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 05/12/2023]
Abstract
Metabolites and lipids are the final products of enzymatic processes, distinguishing the different cellular functions and activities of single cells or whole tissues. Understanding these cellular functions within a well-established model system requires a systemic collection of molecular and physiological information. In the current report, the green alga Chlamydomonas reinhardtii was selected to establish a comprehensive workflow for the detailed multi-omics analysis of a synchronously growing cell culture system. After implementation and benchmarking of the synchronous cell culture, a two-phase extraction method was adopted for the analysis of proteins, lipids, metabolites and starch from a single sample aliquot of as little as 10-15 million Chlamydomonas cells. In a proof of concept study, primary metabolites and lipids were sampled throughout the diurnal cell cycle. The results of these time-resolved measurements showed that single compounds were not only coordinated with each other in different pathways, but that these complex metabolic signatures have the potential to be used as biomarkers of various cellular processes. Taken together, the developed workflow, including the synchronized growth of the photoautotrophic cell culture, in combination with comprehensive extraction methods and detailed metabolic phenotyping has the potential for use in in-depth analysis of complex cellular processes, providing essential information for the understanding of complex biological systems.
Collapse
Affiliation(s)
- Jessica Jüppner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Umarah Mubeen
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Andrea Leisse
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Camila Caldana
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Brazilian Bioethanol Science and Technology Laboratory/CNPEM, Rua Giuseppe Máximo Scolfano 10000, 13083-970, Campinas, Brazil
| | - Henrike Brust
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam-Golm, Germany
| | - Martin Steup
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam-Golm, Germany
- University of Toronto c/o Hospital for Sick Children, PGCRL 14.9420, 72 Elm St, Toronto, ON M561H3, Canada
| | - Marion Herrmann
- Institute for Human Genetics, Humboldt University Berlin, Charité, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Dirk Steinhauser
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Patrick Giavalisco
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
35
|
Venkanna D, Südfeld C, Baier T, Homburg SV, Patel AV, Wobbe L, Kruse O. Knock-Down of the IFR1 Protein Perturbs the Homeostasis of Reactive Electrophile Species and Boosts Photosynthetic Hydrogen Production in Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2017; 8:1347. [PMID: 28824682 PMCID: PMC5540887 DOI: 10.3389/fpls.2017.01347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/19/2017] [Indexed: 05/26/2023]
Abstract
The protein superfamily of short-chain dehydrogenases/reductases (SDR), including members of the atypical type (aSDR), covers a huge range of catalyzed reactions and in vivo substrates. This superfamily also comprises isoflavone reductase-like (IRL) proteins, which are aSDRs highly homologous to isoflavone reductases from leguminous plants. The molecular function of IRLs in non-leguminous plants and green microalgae has not been identified as yet, but several lines of evidence point at their implication in reactive oxygen species homeostasis. The Chlamydomonas reinhardtii IRL protein IFR1 was identified in a previous study, analyzing the transcriptomic changes occurring during the acclimation to sulfur deprivation and anaerobiosis, a condition that triggers photobiological hydrogen production in this microalgae. Accumulation of the cytosolic IFR1 protein is induced by sulfur limitation as well as by the exposure of C. reinhardtii cells to reactive electrophile species (RES) such as reactive carbonyls. The latter has not been described for IRL proteins before. Over-accumulation of IFR1 in the singlet oxygen response 1 (sor1) mutant together with the presence of an electrophile response element, known to be required for SOR1-dependent gene activation as a response to RES, in the promoter of IFR1, indicate that IFR1 expression is controlled by the SOR1-dependent pathway. An implication of IFR1 into RES homeostasis, is further implied by a knock-down of IFR1, which results in a diminished tolerance toward RES. Intriguingly, IFR1 knock-down has a positive effect on photosystem II (PSII) stability under sulfur-deprived conditions used to trigger photobiological hydrogen production, by reducing PSII-dependent oxygen evolution, in C. reinhardtii. Reduced PSII photoinhibition in IFR1 knock-down strains prolongs the hydrogen production phase resulting in an almost doubled final hydrogen yield compared to the parental strain. Finally, IFR1 knock-down could be successfully used to further increase hydrogen yields of the high hydrogen-producing mutant stm6, demonstrating that IFR1 is a promising target for genetic engineering approaches aiming at an increased hydrogen production capacity of C. reinhardtii cells.
Collapse
Affiliation(s)
- Deepak Venkanna
- Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld UniversityBielefeld, Germany
| | - Christian Südfeld
- Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld UniversityBielefeld, Germany
| | - Thomas Baier
- Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld UniversityBielefeld, Germany
| | - Sarah V. Homburg
- Faculty of Engineering and Mathematics, Fermentation and Formulation of Biologicals and Chemicals, Bielefeld University of Applied SciencesBielefeld, Germany
| | - Anant V. Patel
- Faculty of Engineering and Mathematics, Fermentation and Formulation of Biologicals and Chemicals, Bielefeld University of Applied SciencesBielefeld, Germany
| | - Lutz Wobbe
- Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld UniversityBielefeld, Germany
| | - Olaf Kruse
- Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld UniversityBielefeld, Germany
| |
Collapse
|
36
|
Vidal-Meireles A, Neupert J, Zsigmond L, Rosado-Souza L, Kovács L, Nagy V, Galambos A, Fernie AR, Bock R, Tóth SZ. Regulation of ascorbate biosynthesis in green algae has evolved to enable rapid stress-induced response via the VTC2 gene encoding GDP-l-galactose phosphorylase. THE NEW PHYTOLOGIST 2017; 214:668-681. [PMID: 28112386 DOI: 10.1111/nph.14425] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 12/04/2016] [Indexed: 05/22/2023]
Abstract
Ascorbate (vitamin C) plays essential roles in stress resistance, development, signaling, hormone biosynthesis and regulation of gene expression; however, little is known about its biosynthesis in algae. In order to provide experimental proof for the operation of the Smirnoff-Wheeler pathway described for higher plants and to gain more information on the regulation of ascorbate biosynthesis in Chlamydomonas reinhardtii, we targeted the VTC2 gene encoding GDP-l-galactose phosphorylase using artificial microRNAs. Ascorbate concentrations in VTC2 amiRNA lines were reduced to 10% showing that GDP-l-galactose phosphorylase plays a pivotal role in ascorbate biosynthesis. The VTC2 amiRNA lines also grow more slowly, have lower chlorophyll content, and are more susceptible to stress than the control strains. We also demonstrate that: expression of the VTC2 gene is rapidly induced by H2 O2 and 1 O2 resulting in a manifold increase in ascorbate content; in contrast to plants, there is no circadian regulation of ascorbate biosynthesis; photosynthesis is not required per se for ascorbate biosynthesis; and Chlamydomonas VTC2 lacks negative feedback regulation by ascorbate in the physiological concentration range. Our work demonstrates that ascorbate biosynthesis is also highly regulated in Chlamydomonas albeit via mechanisms distinct from those previously described in land plants.
Collapse
Affiliation(s)
- André Vidal-Meireles
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Juliane Neupert
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Laura Zsigmond
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Laise Rosado-Souza
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - László Kovács
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Valéria Nagy
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Anikó Galambos
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Szilvia Z Tóth
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| |
Collapse
|
37
|
Fristedt R. Chloroplast function revealed through analysis of GreenCut2 genes. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2111-2120. [PMID: 28369575 DOI: 10.1093/jxb/erx082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chloroplasts are the green plastids responsible for light-powered photosynthetic reactions and carbon assimilation in the plant cell. Our knowledge of chloroplast functions is constantly increasing and we now know this plastid is predicted to house around 3000 proteins. However, even with generous estimates, we do not know the function of more than 10-15% of these proteins. The next frontier in chloroplast research is to identify and characterize the function of the whole chloroplast proteome, a challenging task due to the inherent complexity a proteome possesses. A logical starting point is to identify and study proteins that have been determined experimentally to be localized in the chloroplast, conserved only among the photosynthetic lineage. These are the proteins with the most probable and important roles in chloroplast function. This review gives an introduction to the GreenCut2, a collection of proteins present only in photosynthetic organisms. By using recent large scale proteomics data, this cut was narrowed to include only those proteins experimentally verified to be localized in the chloroplast, and more specifically to the photosynthetic thylakoid membrane. By using highly informative bioinformatic approaches, the theoretical functional prediction for several of these uncharacterized GreenCut2 proteins is discussed.
Collapse
Affiliation(s)
- Rikard Fristedt
- Biophysics of Photosynthesis, Faculty of Sciences, VU University Amsterdam,Amsterdam,the Netherlands
| |
Collapse
|