1
|
Lu S, Yang J, Shi G, Zeng B, Liang G, Ma W, Li W, Ma Z, Chen B, Mao J. Gretchen Hagen 3.6-like promotes anthocyanin accumulation by negatively regulating the expression of basic helix-loop-helix transcription factor 106 in grapevine. Int J Biol Macromol 2025:142621. [PMID: 40180063 DOI: 10.1016/j.ijbiomac.2025.142621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
Anthocyanins are mainly synthesized from flavonoid precursors in plants. Although there have been numerous studies on the biosynthesis of anthocyanins, few have sought to explore how Gretchen Hagen 3 (GH3) genes regulate the production of anthocyanins. In this study, a VaGH3.6-like gene was identified, and its overexpression in grapevine callus tissues and berry skins promoted significant accumulation of anthocyanins and reduced endogenous IAA content under light conditions, whereas callus tissues transformed with a mutant VaGH3.6-like showed the opposite results. The overexpression of VaGH3.6-like was observed to directly promote the accumulation of flavonoids under dark conditions, whereas the accumulation was significantly reduced in mutants. In addition, the VabHLH106 transcription factor, a negative regulator of VaGH3.6-like, was screened via RNA-seq. Subsequent analyses using Y2H, Y1H, DLR™, and EMSA analyses revealed that VabHLH106 represses VaGH3.6-like expression by directly binding to two E-box elements in its promoter region. Interestingly, VaGH3.6-like overexpression regulates VabHLH106 expression via a negative feedback mechanism, attenuating the repressive effect of VabHLH106 on the downstream genes VvLDOX, VvCYP75B2, and VvCYP73A3, thus leading to an increasing in the synthesis of anthocyanins in grapes. These findings provide a new theoretical basis for further understanding the molecular mechanisms underlying accumulation of anthocyanins in grapes.
Collapse
Affiliation(s)
- Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Juanbo Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Guangling Shi
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Baozhen Zeng
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Guoping Liang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Weifeng Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Wenfang Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China.
| |
Collapse
|
2
|
Li D, Zhu M, Li S, Wang P, Li J, Ge H, Liu Y, Chen H. Eggplant transcription factor SmERF118 mediates light signaling regulation of anthocyanin synthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109584. [PMID: 39933426 DOI: 10.1016/j.plaphy.2025.109584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/19/2025] [Accepted: 01/29/2025] [Indexed: 02/13/2025]
Abstract
Light significantly impacts anthocyanin synthesis. The anthocyanin content serves as a vital quality indicator for purple eggplant (Solanum melongena L.). Cultivation under low-light conditions often results in inadequate coloration of the purple eggplant rind, adversely affecting fruit quality. This study, aimed to introduce SmERF118, a light-induced ethylene response factor (ERF) transcription factor, as a positive regulator of anthocyanin synthesis in eggplant pericarp under low-light conditions, yet its precise mechanism remained unclear. Further, SmHY5, a bZIP transcription factor was identified, which bound to the G-box element of the SmERF118 promoter, thereby activating its expression. The overexpression of SmERF118 significantly enhanced anthocyanin accumulation in the eggplant stalks. Transcriptome analysis corroborated that the differentially expressed genes in SmERF118-overexpressing plants are predominantly enriched in pathways associated with flavonoid biosynthesis. The analysis revealed a significant upregulation of key transcription factors and structural genes pivotal to anthocyanin biosynthesis. Through a yeast two-hybrid screening assay, SmMYB1, a pivotal MYB transcription factor that promotes anthocyanin synthesis, were screened as an interacting protein of SmERF118. Subsequent bimolecular fluorescence complementation, GST pull-down and co-immunoprecipitation assays confirmed the interaction between SmERF118 and SmMYB1 both in vivo and in vitro. Additionally, dual-Luciferase (dual-LUC) and transient overexpression experiments demonstrated that SmERF118 and SmMYB1 formed a complex that jointly activated essential genes involved in anthocyanin synthesis, specifically SmCHS and SmDFR, thereby enhancing anthocyanin accumulation. Ultimately, the study elucidated that light signaling promoted anthocyanin synthesis in eggplant via SmERF118-SmMYB1 regulatory module. These findings contributed to a refined understanding of the molecular regulatory network governing anthocyanin synthesis in eggplant and enhanced the comprehension of how light signaling regulated this process.
Collapse
Affiliation(s)
- Dalu Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mengliang Zhu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaohang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pengqing Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianyong Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiyan Ge
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Huoying Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Zhang Z, Wang X, Gao Y, Xian X, Zhang D, Zhao W, Wang X, Wang Y. Orchestrating anthocyanin biosynthesis in fruit of fruit trees: Transcriptional, post-transcriptional, and post-translational regulation. Int J Biol Macromol 2025; 307:141835. [PMID: 40064275 DOI: 10.1016/j.ijbiomac.2025.141835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/17/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
Coloration is an important appearance quality that contributes to product value. Anthocyanins, a type of flavonoid, not only impart rich plants color, but also contribute to human health because of their antioxidant properties, such as preventing cardiovascular disease and reducing obesity. This benefit mainly stems from various fruits. Accordingly, based on the consumption demand of beauty and nutrition, the creation of fruit tree products rich in anthocyanin is becoming an important breeding goal. The synthesis of anthocyanin has been investigated in various fruits, which is modulated by a variety of endogenous and exogenous factors, including transcription factors (TFs), plant hormones, and environmental factors (such as light, low temperature, drought). However, the detailed mechanisms in fruits of fruit trees have not been thoroughly elucidated. This review comprehensively examines the regulation of anthocyanin biosynthesis at the transcriptional, post-transcriptional, and post-translational levels, which is important for the application of molecular design strategies to cultivate high-quality fruits. At the transcriptional level, TFs were summarized to directly regulate anthocyanin biosynthesis genes, target non-anthocyanin biosynthesis pathway genes, interact with other proteins to mediate anthocyanin synthesis, and regulate anthocyanin synthesis by environmental factors and plant hormones. At the post-transcriptional level, non-coding RNAs (ncRNAs) were elucidated to mediate anthocyanin synthesis. At the post-translational level, a variety of post-translational modifications, including phosphorylation, ubiquitination, sumoylation, and persulfidation, have been elucidated to exhibit crucial functions in anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Zhongxing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoya Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanlong Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xulin Xian
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Donghai Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenbing Zhao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaofei Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China.
| | - Yanxiu Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
4
|
Ge X, Zhao A, Li S, Zhang X, Shang H, Chen C, Bai G. ACC treatment induced alterations in flavonoid accumulation in Toxicodendron vernicifluum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109491. [PMID: 39823759 DOI: 10.1016/j.plaphy.2025.109491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/19/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025]
Abstract
Lacquer tree (Toxicodendron vernicifluum) is an important economic crop and is rich in flavonoids. ACC (1-aminocyclopropane-1-carboxylic acid) is the precursor to ethylene. ACC treatment can induce physiological and biochemical responses in plants. In this study, flavonoids in the leaves of Toxicodendron vernicifluum, treated with ACC at different time points, were identified and analyzed. A total of 83 flavonoids were identified, including 38 flavonoids and 45 flavonoid glycosides. Among these, 48 flavonoids were first reported in T. vernicifluum. The total flavonoid content significantly increased following ACC treatment, although the accumulation patterns of individual flavonoids varied. Flavonoids with similar structure or glycosylation/acetylation modifications exhibited a positive correlation in their content changes in T. vernicifluum leaves under ACC treatment. Transcriptome sequencing was conducted on control and 3-days ACC-treated leaves, revealing an upregulation in the expression of genes related to flavonoids biosynthesis, such as PAL, CCR, CHS, MYB and ERF encoding genes. We hypothesized that ACC regulated flavonoids biosynthesis by activating ERF and MYB transcription factors in the ethylene signaling pathway. This study provided evidence for the regulation of flavonoids biosynthesis in lacquer trees through ACC treatment.
Collapse
Affiliation(s)
- Xiaomin Ge
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China
| | - Aiguo Zhao
- College of Forestry, Northwest A&F University, Yangling, 712100, China
| | - Shasha Li
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China
| | - Xiao Zhang
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China
| | - Huiying Shang
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China
| | - Chen Chen
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China
| | - Guoqing Bai
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China.
| |
Collapse
|
5
|
Xu Y, Liu Y, Yue L, Zhang S, Wei J, Zhang Y, Huang Y, Zhao R, Zou W, Feng H, Li H. MsERF17 Promotes Ethylene-Induced Anthocyanin Biosynthesis Under Drought Conditions in Malus spectabilis Leaves. PLANT, CELL & ENVIRONMENT 2025; 48:1890-1902. [PMID: 39511953 DOI: 10.1111/pce.15271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024]
Abstract
Drought is an important factor that affects plant anthocyanin biosynthesis. However, the underlying molecular mechanisms remain elusive. Ethylene response factors (ERFs) are pivotal regulators in plant growth and environmental responses, particularly in anthocyanin biosynthesis. This study investigated the leaf colour transition from green to red in Malus spectabilis under drought conditions. This transition was primarily attributed to the accumulation of anthocyanins, specifically cyanidin-3,5-diglucoside and cyanidin-3-O-galactoside. Our findings elucidate the pivotal role of MsERF17 in drought-induced anthocyanin biosynthesis. Biochemical and molecular analyses showed that MsERF17 positively regulates anthocyanin synthesis by binding to promoters of MsbHLH3 and MsF3' H, thereby activating their expression. Moreover, transient overexpression and virus-induced gene silencing of MsERF17 in fruit peel and leaves, respectively, regulated anthocyanin synthesis. The stable transformation of calli further corroborated the positive regulatory function of MsERF17 in anthocyanin biosynthesis. Our results provide novel insights into the mechanism by which MsERF17, induced by ethylene, promotes anthocyanin accumulation through the positive regulation of MsbHLH3 and MsF3'H expression under drought conditions in M. spectabilis leaves.
Collapse
Affiliation(s)
- Yaping Xu
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Yixin Liu
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Lu Yue
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Shuangyu Zhang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Jun Wei
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Yuqin Zhang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Yuanxing Huang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Ruiqing Zhao
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Wenting Zou
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Hui Feng
- Beijing Key Lab of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing, China
| | - Houhua Li
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| |
Collapse
|
6
|
Zhu H, Chen R, Xu Y, Gong W, Miao M, Sun Y, Mei J. An ERF Gene DcERF3 of Dendrobium catenatum Improves Salt Tolerance in Arabidopsis. Mol Biotechnol 2025:10.1007/s12033-025-01414-8. [PMID: 40014256 DOI: 10.1007/s12033-025-01414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
The ethylene-responsive transcription factors (ERFs) perform pivotal regulatory functions in plant growth, development, and stress responses. Nonetheless, there is limited research on the functional characterization of ERFs in the medicinal orchid, Dendrobium catenatum. Here, we identified a salt-induced ERF gene DcERF3 from a D. catenatum cultivar Tiepi. DcERF3 comprises 186 amino acids and has a confirmed molecular weight of 21 kDa. It possesses a conserved AP2/ERF domain and displays a strong affiliation with the evolutionary lineage of other characterized ERFs. Analysis of expression patterns indicated that DcERF3 exhibits predominant expression in stems and roots, with considerably higher levels than in other tissues, and it demonstrated significant upregulation in response to treatments involving salt, ETH, PEG, and SA. The DcERF3-YFP protein localizes to the nucleus, and DcERF3 displays distinct transcriptional activation characteristics. Overexpressing DcERF3 led to an increased lateral root formation and enhanced tolerance to salt stress in Arabidopsis. Furthermore, the activities of antioxidant enzymes, along with the stress-responsive genes, were significantly induced in transgenic plants when subjected to salt stress. This study aims to investigate the function and role of DcERF3 in D. catenatum to establish a foundation for examining its involvement in lateral root formation and response to salt stress.
Collapse
Affiliation(s)
- Huimin Zhu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ruoxi Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yemin Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wumeng Gong
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Meng Miao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuqiang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jun Mei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
7
|
Yang Y, Bi M, Luo K, Cao Y, Wang J, Yang P, Xu L, Ming J. Lily (Lilium spp.) LhERF061 suppresses anthocyanin biosynthesis by inhibiting LhMYBSPLATTER and LhDFR expression and interacting with LhMYBSPLATTER. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109325. [PMID: 39612825 DOI: 10.1016/j.plaphy.2024.109325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/03/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
Ethylene has an essential function in the biosynthesis of anthocyanin. However, the molecular mechanism through which ethylene impacts the color of lily flower remains little appreciated. This study identified LhERF061, a dehydration-responsive element-binding (DREB family) transcription factor that suppresses anthocyanin biosynthesis in response to ethylene in lilies. Transient LhERF061 overexpression caused a dramatic decrease in anthocyanin levels and downregulated both anthocyanin structural genes and positive regulators in lily tepals. Heterologous LhERF061 expression in Arabidopsis and tobacco also suppressed anthocyanin accumulation. Mechanistically, LhERF061 was found to bind to the promoters of LhMYBSPLATTER (a positive regulator of the biosynthesis of anthocyanin) and LhDFR (an anthocyanin structural gene), thereby inhibiting their transcriptional activity. Further investigation indicated that LhERF061 physically interacted with LhMYBSPLATTER, thereby interfering with the MYB-bHLH-WD40 (MBW) complex responsible for anthocyanin regulation, providing multiple mechanisms for inhibiting the biosynthesis of anthocyanin. These results provide insights into how ethylene mediates the biosynthesis of anthocyanin and increase understanding of the regulatory network of the biosynthesis of anthocyanin in lily.
Collapse
Affiliation(s)
- Yue Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; College of Construction Engineering, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Mengmeng Bi
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kang Luo
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Yuwei Cao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Panpan Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Leifeng Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jun Ming
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
8
|
Sun Q, He Z, Wei R, Ye J, Chai L, Cheng Y, Xu Q, Deng X. Red peel regulator 1 links ethylene response factor 25 and β-citraurin biosynthetic genes to regulate ethylene-induced peel reddening in citrus. THE PLANT CELL 2024; 37:koaf010. [PMID: 39792899 PMCID: PMC11760939 DOI: 10.1093/plcell/koaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/30/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
The reddish apocarotenoid β-citraurin, produced by CAROTENOID CLEAVAGE DIOXYGENASE 4b (CsCCD4b), is responsible for peel reddening in citrus (Citrus spp.). Ethylene induces the characteristic red color of citrus peel, but the underlying molecular mechanism remains largely unclear. Here, we identified red peel regulator 1 (CsRP1), a trihelix transcriptional activator that regulates ethylene-induced peel reddening by directly binding to a key V-myb avian myeloblastosis viral oncogene homolog (MYB)-binding site in the CsCCD4b promoter, thus activating its transcription. Furthermore, 2 drought-responsive cis-elements in the CsRP1 promoter are bound by the ethylene response factor ethylene response factor 25 (CsERF25). We reconstructed the CsERF25-CsRP1-CsCCD4b transcriptional regulatory cascade through transient expression of CsERF25 and CsRP1 in citrus peel and via stable transformation of citrus calli. In this cascade, CsERF25 expression was induced by ethylene to activate CsRP1 expression, and then, CsRP1 directly induced CsCCD4b transcription to catalyze β-citraurin biosynthesis. CsRP1 and CsERF25 also bound to the promoters of other carotenogenic genes and induced their transcription, thereby promoting β-citraurin accumulation. Collectively, our findings reveal a complex regulatory network modulating ethylene-induced citrus peel reddening and provide innovative strategies for improving the nutritional and esthetic values of citrus and other fruit crops.
Collapse
Affiliation(s)
- Quan Sun
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhengchen He
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Ranran Wei
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Junli Ye
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun Chai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunjiang Cheng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| |
Collapse
|
9
|
Li Y, Yao T, Fu C, Wang N, Xu Z, Yang N, Zhang X, Wen T, Lin Z. TRANSPARENT TESTA 16 collaborates with the MYB-bHLH-WD40 transcriptional complex to produce brown fiber cotton. PLANT PHYSIOLOGY 2024; 196:2669-2684. [PMID: 39422520 PMCID: PMC11638559 DOI: 10.1093/plphys/kiae530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024]
Abstract
Naturally colored cotton (NCC; Gossypium spp.) does not require additional chemical dyeing and is an environmentally friendly textile material with great research potential and applications. Our previous study using linkage and association mapping identified TRANSPARENT TESTA 2 (Gh_TT2) as acting on the proanthocyanin synthesis pathway. However, limited information is available about the genetic regulatory network of NCC. Here, we verified the effectiveness of Gh_TT2 and the roles of Gh_TT2 and red foliated mutant gene (Re) in pigment formation and deposition of brown fiber cotton (BFC). Variations in Gh_TT2 derived from interspecific hybridization between Gossypium barbadense acc. Pima 90-53 and Gossypium hirsutum acc. Handan208 resulted in gene expression differences, thereby causing phenotypic variation. Additionally, the MYB-bHLH-WD complex was found to be negatively modulated by TRANSPARENT TESTA 16/ARABIDOPSIS BSISTER (TT16/ABS). RNA-seq suggested that differential expression of homologous genes of key enzymes in the proanthocyanin synthesis pathway strongly contributes to the color rendering of natural dark brown and light brown cotton. Our study proposes a regulatory model in BFC, which will provide theoretical guidance for the genetic improvement of NCC.
Collapse
Affiliation(s)
- Yuanxue Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Tian Yao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Chao Fu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Nian Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhiyong Xu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Ningyu Yang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Tianwang Wen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
10
|
Cheng Y, Tian Y, Guo P, Luo J, Xu C, Zhang Y, Chen G, Xie Q, Hu Z. Novel Insights into Pigment Composition and Molecular Mechanisms Governing Flower Coloration in Rose Cultivars Exhibiting Diverse Petal Hues. PLANTS (BASEL, SWITZERLAND) 2024; 13:3353. [PMID: 39683146 DOI: 10.3390/plants13233353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024]
Abstract
The pigmentation of various components leads to different colors of roses. However, the intricate molecular machinery and metabolic pathways underlying rose pigmentation remain largely unexplored. In this study, we determined that pink and black-red petals contain abundant anthocyanins, reaching concentrations of 800 μg/g and 1400 μg/g, respectively, significantly surpassing those in white and yellow petals. We identified 22 key anthocyanin components, predominantly cyanidin, pelargonidin, delphinidin, peonidin, and petunidin, which were preferentially enriched in pink and black-red petals. Additionally, we confirmed the presence of five carotenoid species-lutein, zeaxanthin, ζ-carotene, α-carotene, and β-carotene-with zeaxanthin and carotenoids notably accumulating in yellow petals at significantly higher levels compared with other colors. Furthermore, RNA-seq and qRT-PCR analyses revealed the association between pigment accumulation and the expression patterns of genes involved in anthocyanin and carotenoid biosynthesis pathways. Through promoter core element prediction and transcriptional metabolic co-expression analyses, we found that the MYB transcription factor likely positively modulates the expressions of key biosynthetic genes such as CHS, F3'H, and DFR, while the NAC transcription factor enhances the transcriptional activities of PSY, ZISO, and LYCB. Overall, this study explores the components of flower color, unravels the synthesis of anthocyanins and carotenoids, identifies regulatory factors, and highlights the prospects of rose breeding.
Collapse
Affiliation(s)
- Yingxia Cheng
- Bioengineering College, Chongqing University, Chongqing 400044, China
- Key Laboratory of Biorheological Science and Technology, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Yanling Tian
- Bioengineering College, Chongqing University, Chongqing 400044, China
- Key Laboratory of Biorheological Science and Technology, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Pengyu Guo
- Bioengineering College, Chongqing University, Chongqing 400044, China
- Key Laboratory of Biorheological Science and Technology, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Junjie Luo
- Bioengineering College, Chongqing University, Chongqing 400044, China
- Key Laboratory of Biorheological Science and Technology, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Chan Xu
- Chongqing Academy of Agricultural Sciences, Agricultural Science Avenue, Chongqing 400039, China
| | - Yang Zhang
- College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Guoping Chen
- Bioengineering College, Chongqing University, Chongqing 400044, China
- Key Laboratory of Biorheological Science and Technology, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Qiaoli Xie
- Bioengineering College, Chongqing University, Chongqing 400044, China
- Key Laboratory of Biorheological Science and Technology, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Zongli Hu
- Bioengineering College, Chongqing University, Chongqing 400044, China
- Key Laboratory of Biorheological Science and Technology, Chongqing University, Ministry of Education, Chongqing 400044, China
| |
Collapse
|
11
|
Chai S, Yang J, Zhang X, Shang X, Lang L. Unraveling the Anthocyanin Regulatory Mechanisms of White Mutation in Verbena stricta by Integrative Transcriptome and Metabolome Analysis. Genes (Basel) 2024; 15:1496. [PMID: 39766764 PMCID: PMC11675223 DOI: 10.3390/genes15121496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Verbena stricta is a perennial herb of the Verbenaceae family, known for its medicinal properties, wide adaptability, and high resistance. Methods: This research investigated the metabolic pathways of flower color change by combining transcriptome and metabolomics analyses. Results: In purple flowers and white variants, a total of 118 differentially accumulated metabolites (DAMs), including 20 anthocyanins, and 7627 differentially expressed genes (DEGs) were found. The downregulation of delphinidin-3-O-galactoside, delphinidin-3-O-glucoside, and delphinidin-3-O-(6″-O-p-coumaroyl) glucoside, along with the absence of petunidin and malvidin derivatives, may explain the loss of pigmentation in the white-flower mutant. Fourteen candidate genes involved in anthocyanin biosynthesis were identified, among which the expression of Flavonoid 3', 5'-hydroxylase (F3'5'H) was significantly downregulated, notably limiting flux through the delphinidin pathway and reducing delphinidin accumulation. This limitation in upstream reactions, coupled with the multi-shunt process in downstream reactions, completely blocked the production of petunidin and malvidin. Conclusions: These findings offer new opinions on the anthocyanin metabolites and key genes responsible for the floral pigmentation in V. stricta. Additionally, the white variant provides a valuable platform for future research into the ornamental flower color of the Verbenaceae family.
Collapse
Affiliation(s)
| | | | | | | | - Lixin Lang
- Institute of Flowers, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (S.C.); (J.Y.); (X.Z.); (X.S.)
| |
Collapse
|
12
|
Huang F, Sun M, Yao Z, Zhou J, Bai Q, Chen X, Huang Y, Shen Y. Protein kinase SnRK2.6 phosphorylates transcription factor bHLH3 to regulate anthocyanin homeostasis during strawberry fruit ripening. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5627-5640. [PMID: 38808519 DOI: 10.1093/jxb/erae250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/28/2024] [Indexed: 05/30/2024]
Abstract
Strawberry (Fragaria × ananassa) is a model plant for studying non-climacteric fruit ripening regulated by abscisic acid (ABA); however, the signaling of ABA in the regulation of fruit coloration is not fully understood. In this study, we identified the transcription factor BASIC HELIX-LOOP-HELIX 3 (bHLH3) as being key to fruit coloration via yeast two-hybrid library screening using the bait SUCROSE NONFERMENTING 1 (SNF1)-RELATED PROTEIN KINASE 2 (SnRK2.6), which is a core ABA signaling component that negatively regulates ripening. The interaction was also confirmed by firefly luciferase complementation assays and pull-down assays. RT-qPCR and western blot analysis confirmed that bHLH3 is expressed ubiquitously in strawberry tissues, and it is expressed stably during fruit development. Overexpression and RNAi of both bHLH3 and SnRK2.6 demonstrated that bHLH3 and SnRK2.6 promote and inhibit strawberry fruit coloration, respectively. Using EMSAs, we showed that bHLH3 promotes the expression of UDP-GLUCOSE: FLAVONOL-O-GLUCOSYLTRANSFERASE (UFGT), a key gene for anthocyanin biosynthesis, by directly binding to its promoter. We determined that SnRK2.6 can phosphorylate bHLH3 and that this inhibits its binding to the UFGT promoter, consequently suppressing expression. Altogether, we propose that increased ABA content during strawberry fruit ripening leads to decreased expression of SnRK2.6, which in turn releases the phosphorylation of bHLH3 and thereby enhances UFGT expression, ultimately promoting the coloration of the fruit.
Collapse
Affiliation(s)
- Fuli Huang
- College of Plant Science and Technology, Beijing University of Agriculture, No.7 Beinong Road, Changping District, Beijing 102206, P. R. China
| | - Mimi Sun
- College of Plant Science and Technology, Beijing University of Agriculture, No.7 Beinong Road, Changping District, Beijing 102206, P. R. China
| | - Zhijin Yao
- College of Plant Science and Technology, Beijing University of Agriculture, No.7 Beinong Road, Changping District, Beijing 102206, P. R. China
| | - Jing Zhou
- College of Plant Science and Technology, Beijing University of Agriculture, No.7 Beinong Road, Changping District, Beijing 102206, P. R. China
| | - Qian Bai
- College of Plant Science and Technology, Beijing University of Agriculture, No.7 Beinong Road, Changping District, Beijing 102206, P. R. China
- Ministry of Education Key Laboratory of Silviculture and Conservation, College of Forestry, Beijing Forestry University, 35 East Qinghua Road, Beijing 100083, P. R. China
| | - Xuexue Chen
- College of Plant Science and Technology, Beijing University of Agriculture, No.7 Beinong Road, Changping District, Beijing 102206, P. R. China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Yun Huang
- College of Plant Science and Technology, Beijing University of Agriculture, No.7 Beinong Road, Changping District, Beijing 102206, P. R. China
| | - Yuanyue Shen
- College of Plant Science and Technology, Beijing University of Agriculture, No.7 Beinong Road, Changping District, Beijing 102206, P. R. China
| |
Collapse
|
13
|
Zhang L, Wang L, Fang Y, Gao Y, Yang S, Su J, Ni J, Teng Y, Bai S. Phosphorylated transcription factor PuHB40 mediates ROS-dependent anthocyanin biosynthesis in pear exposed to high light. THE PLANT CELL 2024; 36:3562-3583. [PMID: 38842382 PMCID: PMC11371158 DOI: 10.1093/plcell/koae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/15/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
Plants are increasingly vulnerable to environmental stresses because of global warming and climate change. Stress-induced reactive oxygen species (ROS) accumulation results in plant cell damage, even cell death. Anthocyanins are important antioxidants that scavenge ROS to maintain ROS homeostasis. However, the mechanism underlying ROS-induced anthocyanin accumulation is unclear. In this study, we determined that the HD-Zip I family member transcription factor PuHB40 mediates ROS-dependent anthocyanin biosynthesis under high-light stress in pear (Pyrus ussuriensis). Specifically, PuHB40 induces the PuMYB123-like-PubHLH3 transcription factor complex for anthocyanin biosynthesis. The PuHB40-mediated transcriptional activation depends on its phosphorylation level, which is regulated by protein phosphatase PP2A. Elevated ROS content maintains high PuHB40 phosphorylation levels while also enhancing the PuHB40-induced PuMYB123-like transcription by decreasing the PuPP2AA2 expression, ultimately leading to increased anthocyanin biosynthesis. Our study reveals a pathway regulating the ROS-induced anthocyanin biosynthesis in pears, further clarifying the mechanism underlying the abiotic stress-induced anthocyanin biosynthesis, which may have implications for improving plant stress tolerance.
Collapse
Affiliation(s)
- Lu Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Lu Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yongchen Fang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yuhao Gao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Shulin Yang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jun Su
- Institute of Horticulture, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Junbei Ni
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yuanwen Teng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan 572000, China
| | - Songling Bai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
14
|
Liu Y, Jin H, Zhang Y, Feng X, Dai Y, Zhu P. A novel three-layer module BoMYB1R1-BoMYB4b/BoMIEL1-BoDFR1 regulates anthocyanin accumulation in kale. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1737-1750. [PMID: 38865101 DOI: 10.1111/tpj.16881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024]
Abstract
Anthocyanin is an important pigment responsible for plant coloration and beneficial to human health. Kale (Brassica oleracea var. acephala), a primary cool-season flowers and vegetables, is an ideal material to study anthocyanin biosynthesis and regulation mechanisms due to its anthocyanin-rich leaves. However, the underlying molecular mechanism of anthocyanin accumulation in kale remains poorly understood. Previously, we demonstrated that BoDFR1 is a key gene controlling anthocyanin biosynthesis in kale. Here, we discovered a 369-bp InDel variation in the BoDFR1 promoter between the two kale inbred lines with different pink coloration, which resulted in reduced transcriptional activity of the BoDFR1 gene in the light-pink line. With the 369-bp insertion as a bait, an R2R3-MYB repressor BoMYB4b was identified using the yeast one-hybrid screening. Knockdown of the BoMYB4b gene led to increased BoDFR1 expression and anthocyanin accumulation. An E3 ubiquitin ligase, BoMIEL1, was found to mediate the degradation of BoMYB4b, thereby promoting anthocyanin biosynthesis. Furthermore, the expression level of BoMYB4b was significantly reduced by light signals, which was attributed to the direct repression of the light-signaling factor BoMYB1R1 on the BoMYB4b promoter. Our study revealed that a novel regulatory module comprising BoMYB1R1, BoMIEL1, BoMYB4b, and BoDFR1 finely regulates anthocyanin accumulation in kale. The findings aim to establish a scientific foundation for genetic improvement of leaf color traits in kale, meanwhile, providing a reference for plant coloration studies.
Collapse
Affiliation(s)
- Yang Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hangbiao Jin
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yuting Zhang
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xin Feng
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Yujia Dai
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Pengfang Zhu
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| |
Collapse
|
15
|
Wu H, Cui H, Tian Y, Wu J, Bai Z, Zhang X. Exogenous ethephon treatment on the biosynthesis and accumulation of astragaloside IV in Astragalus membranaceus Bge. Var. Mongholicus (Bge.) Hsiao. BOTANICAL STUDIES 2024; 65:16. [PMID: 38967679 PMCID: PMC11226570 DOI: 10.1186/s40529-024-00426-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Astragaloside IV is a main medicinal active ingredient in Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao, which is also the key biomarker of A. membranaceus quality. Ethylene has been well-documented to involve in secondary metabolites biosynthesis in plants. Nevertheless, how ethylene regulates astragaloside IV biosynthesis in A. membranaceus is still unclear. Therefore, in the present study different dosages and time-dependent exogenous application of ethephon (Eth) were employed to analyze astragaloside IV accumulation and its biosynthesis genes expression level in hydroponically A. membranaceus. RESULTS Exogenous 200 µmol·L- 1Eth supply is most significantly increased astragaloside IV contents in A. membranaceus when compared with non-Eth supply. After 12 h 200 µmol·L- 1 Eth treatment, the astragaloside IV contents reaching the highest content at 3 d Eth treatment(P ≤ 0.05). Moreover, After Eth treatment, all detected key genes involved in astragaloside IV synthesis were significant decrease at 3rd day(P ≤ 0.05). However, SE displayed a significant increase at the 3rd day under Eth treatment(P ≤ 0.05). Under Eth treatment, the expression level of FPS, HMGR, IDI, SS, and CYP93E3 exhibited significant negative correlations with astragaloside IV content, while expression level of SE displayed a significant positive correlation. CONCLUSIONS These findings suggest that exogenous Eth treatment can influence the synthesis of astragaloside IV by regulating the expression of FPS, HMGR, IDI, SS, CYP93E3 and SE. This study provides a theoretical basis for utilizing molecular strategies to enhance the quality of A. membranaceus.
Collapse
Affiliation(s)
- Haonan Wu
- College of Life Sciences, Yan'an University, Yan'an, 716000, China
| | - Hang Cui
- College of Life Sciences, Yan'an University, Yan'an, 716000, China
| | - Yu Tian
- College of Life Sciences, Yan'an University, Yan'an, 716000, China
| | - Jiawen Wu
- College of Life Sciences, Yan'an University, Yan'an, 716000, China
| | - Zhenqing Bai
- College of Life Sciences, Yan'an University, Yan'an, 716000, China.
- Inner Mongolia Academy of Science and Technology, Hohhot, 010018, China.
| | - Xiujuan Zhang
- Inner Mongolia Academy of Science and Technology, Hohhot, 010018, China.
| |
Collapse
|
16
|
Wei L, Hou X, Feng L, Liu Y, Kong Y, Cui A, Qiao Y, Hu D, Wang C, Liu H, Li C, Wei S, Liao W. SERK3A and SERK3B could be S-nitrosylated and enhance the salt resistance in tomato seedlings. Int J Biol Macromol 2024; 273:133084. [PMID: 38871104 DOI: 10.1016/j.ijbiomac.2024.133084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
Salinity hinders plant growth and development, resulting in reduced crop yields and diminished crop quality. Nitric oxide (NO) and brassinolides (BR) are plant growth regulators that coordinate a plethora of plant physiological responses. Nonetheless, the way in which these factors interact to affect salt tolerance is not well understood. BR is perceived by the BR receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1) and its co-receptor BRI1-associated kinase 1 (BAK1) to form the receptor complex, eventually inducing BR-regulated responses. To response stress, a wide range of NO-mediated protein modifications is undergone in eukaryotic cells. Here, we showed that BR participated in NO-enhanced salt tolerance of tomato seedlings (Solanum lycopersicum cv. Micro-Tom) and NO may activate BR signaling under salt stress, which was related to NO-mediated S-nitrosylation. Further, in vitro and in vivo results suggested that BAK1 (SERK3A and SERK3B) was S-nitrosylated, which was inhibited under salt condition and enhanced by NO. Accordingly, knockdown of SERK3A and SERK3B reduced the S-nitrosylation of BAK1 and resulted in a compromised BR response, thereby abolishing NO-induced salt tolerance. Besides, we provided evidence for the interaction between BRI1 and SERK3A/SERK3B. Meanwhile, NO enhanced BRI1-SERK3A/SERK3B interaction. These results imply that NO-mediated S-nitrosylation of BAK1 enhances the interaction BRI1-BAK1, facilitating BR response and subsequently improving salt tolerance in tomato. Our findings illustrate a mechanism by which redox signaling and BR signaling coordinate plant growth in response to abiotic stress.
Collapse
Affiliation(s)
- Lijuan Wei
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China; Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xuemei Hou
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Li Feng
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Yayu Liu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Yuanyuan Kong
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Aiyin Cui
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Yali Qiao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Dongliang Hu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Huwei Liu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Changxia Li
- College of Agriculture, Guangxi University, 100 East University Road, Xixiangtang District, Nanning 530004, China
| | - Shouhui Wei
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China.
| |
Collapse
|
17
|
Yang G, Xue Z, Lin-Wang K, Chen G, Zhao Y, Chang Y, Xu S, Sun M, Xue C, Li J, Allan AC, Espley RV, Wu J. An 'activator-repressor' loop controls the anthocyanin biosynthesis in red-skinned pear. MOLECULAR HORTICULTURE 2024; 4:26. [PMID: 38945997 PMCID: PMC11215833 DOI: 10.1186/s43897-024-00102-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/07/2024] [Indexed: 07/02/2024]
Abstract
The color of red-skinned pear (Pyrus spp.) is primarily attributed to accumulation of anthocyanins, which provide nutritional benefits for human health and are closely associated with the commercial value of fruits. Here, we reported the functional characterization of a R2R3-MYB repressor PyMYB107, which forms an 'activator-repressor' loop to control anthocyanin accumulation in the red-skinned pear. PyMYB107 overexpression inhibited anthocyanin biosynthesis in both pear calli and fruits, while virus-induced gene silencing of PyMYB107 increased anthocyanin accumulation in pear fruits. Furthermore, ectopic expression of PyMYB107 decreased anthocyanin accumulation in tomato, strawberry and tobacco. PyMYB107 can competitively bind to PybHLH3 with PyMYB10/MYB114, thereby suppressing the transcriptional activation of key anthocyanin biosynthesis genes, PyANS and PyUFGT. Site-directed mutagenesis showed that mutations within the R3 domain and EAR motif of PyMYB107 eliminated its repressive activity. Additionally, PyMYB107 exhibited a comparable expression pattern to PyMYB10/MYB114 and was transcriptionally activated by them. Our finding advanced comprehension of the repression mechanism underlying anthocyanin accumulation, providing valuable molecular insights into improving quality of pear fruits.
Collapse
Affiliation(s)
- Guangyan Yang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Zhaolong Xue
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Kui Lin-Wang
- The New Zealand Institute for Plant & Food Research Limited, Auckland, 1025, New Zealand
| | - Guosong Chen
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Yongqi Zhao
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Yaojun Chang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaozhuo Xu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Manyi Sun
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Cheng Xue
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Jiaming Li
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Limited, Auckland, 1025, New Zealand
| | - Richard V Espley
- The New Zealand Institute for Plant & Food Research Limited, Auckland, 1025, New Zealand
| | - Jun Wu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
18
|
Wang Y, Li S, Shi Y, Lv S, Zhu C, Xu C, Zhang B, Allan AC, Grierson D, Chen K. The R2R3 MYB Ruby1 is activated by two cold responsive ethylene response factors, via the retrotransposon in its promoter, to positively regulate anthocyanin biosynthesis in citrus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38922743 DOI: 10.1111/tpj.16866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/07/2024] [Accepted: 04/08/2024] [Indexed: 06/28/2024]
Abstract
Anthocyanins are natural pigments and dietary antioxidants that play multiple biological roles in plants and are important in animal and human nutrition. Low temperature (LT) promotes anthocyanin biosynthesis in many species including blood orange. A retrotransposon in the promoter of Ruby1, which encodes an R2R3 MYB transcription factor, controls cold-induced anthocyanin accumulation in blood orange flesh. However, the specific mechanism remains unclear. In this study, we characterized two LT-induced ETHYLENE RESPONSE FACTORS (CsERF054 and CsERF061). Both CsERF054 and CsERF061 can activate the expression of CsRuby1 by directly binding to a DRE/CRT cis-element within the retrotransposon in the promoter of CsRuby1, thereby positively regulating anthocyanin biosynthesis. Further investigation indicated that CsERF061 also forms a protein complex with CsRuby1 to co-activate the expression of anthocyanin biosynthetic genes, providing a dual mechanism for the upregulation of the anthocyanin pathway. These results provide insights into how LT mediates anthocyanin biosynthesis and increase the understanding of the regulatory network of anthocyanin biosynthesis in blood orange.
Collapse
Affiliation(s)
- Yuxin Wang
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Shaojia Li
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Yanna Shi
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Shouzheng Lv
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Changqing Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Changjie Xu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Bo Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Andrew C Allan
- New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Donald Grierson
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Kunsong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| |
Collapse
|
19
|
Liu Q, Gao G, Shang C, Li T, Wang Y, Li L, Feng X. Screening and verification of proteins that interact with the anthocyanin-related transcription factor PbrMYB114 in 'Yuluxiang' pear. PeerJ 2024; 12:e17540. [PMID: 38887620 PMCID: PMC11182023 DOI: 10.7717/peerj.17540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/19/2024] [Indexed: 06/20/2024] Open
Abstract
Despite extensive research highlighting the pivotal role of MYB transcription factors in regulating anthocyanin biosynthesis, the interactive regulatory network involving these MYB factors in pear fruits remains inadequately characterized. In this study, the anthocyanin-regulatory gene PbrMYB114 was successfully cloned from 'Yuluxiang' pear (Pyrus bretschneideri) fruits, and its influence on anthocyanin accumulation was confirmed through transient expression assays. Specifically, the co-transformation of PbrMYB114 with its partner PbrbHLH3 in pears served to validate the functional role of PbrMYB114. Subsequently, PbrMYB114 was employed as bait in a yeast two-hybrid screening assay, using a 'Yuluxiang' pear protein library, which led to the identification of 25 interacting proteins. Further validation of the interactions between PbrMYB114 and PbrMT2/PbrMT3 was conducted. Investigations into the role of PbrMT2 and PbrMT3 in 'Duli' seedlings (Pyrus betulaefolia) revealed their potential to enhance anthocyanin accumulation. The outcomes of these studies provide novel insights into the protein network that regulates pear anthocyanin biosynthesis, particularly the functional interactions among PbrMYB114 and associated proteins.
Collapse
Affiliation(s)
- Qingwei Liu
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Ge Gao
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Chen Shang
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Tong Li
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Yadong Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Liulin Li
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Xinxin Feng
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi Province, China
| |
Collapse
|
20
|
Xia Z, Fan W, Liu D, Chen Y, Lv J, Xu M, Zhang M, Ren Z, Chen X, Wang X, Li L, Zhu P, Liu C, Song Z, Huang C, Wang X, Wang S, Zhao A. Haplotype-resolved chromosomal-level genome assembly reveals regulatory variations in mulberry fruit anthocyanin content. HORTICULTURE RESEARCH 2024; 11:uhae120. [PMID: 38919559 PMCID: PMC11197311 DOI: 10.1093/hr/uhae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/14/2024] [Indexed: 06/27/2024]
Abstract
Understanding the intricate regulatory mechanisms underlying the anthocyanin content (AC) in fruits and vegetables is crucial for advanced biotechnological customization. In this study, we generated high-quality haplotype-resolved genome assemblies for two mulberry cultivars: the high-AC 'Zhongsang5801' (ZS5801) and the low-AC 'Zhenzhubai' (ZZB). Additionally, we conducted a comprehensive analysis of genes associated with AC production. Through genome-wide association studies (GWAS) on 112 mulberry fruits, we identified MaVHAG3, which encodes a vacuolar-type H+-ATPase G3 subunit, as a key gene linked to purple pigmentation. To gain deeper insights into the genetic and molecular processes underlying high AC, we compared the genomes of ZS5801 and ZZB, along with fruit transcriptome data across five developmental stages, and quantified the accumulation of metabolic substances. Compared to ZZB, ZS5801 exhibited significantly more differentially expressed genes (DEGs) related to anthocyanin metabolism and higher levels of anthocyanins and flavonoids. Comparative analyses revealed expansions and contractions in the flavonol synthase (FLS) and dihydroflavonol 4-reductase (DFR) genes, resulting in altered carbon flow. Co-expression analysis demonstrated that ZS5801 displayed more significant alterations in genes involved in late-stage AC regulation compared to ZZB, particularly during the phase stage. In summary, our findings provide valuable insights into the regulation of mulberry fruit AC, offering genetic resources to enhance cultivars with higher AC traits.
Collapse
Affiliation(s)
- Zhongqiang Xia
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Wei Fan
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Duanyang Liu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Yuane Chen
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Jing Lv
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Mengxia Xu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Meirong Zhang
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Zuzhao Ren
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Xuefei Chen
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Xiujuan Wang
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Liang Li
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Panpan Zhu
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Zhiguang Song
- Chongqing Sericulture Science and Technology Research Institute, Chongqing.400715, China
| | - Chuanshu Huang
- Chongqing Sericulture Science and Technology Research Institute, Chongqing.400715, China
| | - Xiling Wang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Shuchang Wang
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 570100, China
| | - Aichun Zhao
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| |
Collapse
|
21
|
Wang Y, An H, Yang Y, Yi C, Duan Y, Wang Q, Guo Y, Yao L, Chen M, Meng J, Wei J, Hu C, Li H. The MpNAC72/MpERF105-MpMYB10b module regulates anthocyanin biosynthesis in Malus 'Profusion' leaves infected with Gymnosporangium yamadae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1569-1588. [PMID: 38412288 DOI: 10.1111/tpj.16697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/28/2023] [Accepted: 02/07/2024] [Indexed: 02/29/2024]
Abstract
Apple rust is a serious fungal disease affecting Malus plants worldwide. Infection with the rust pathogen Gymnosporangium yamadae induces the accumulation of anthocyanins in Malus to resist rust disease. However, the mechanism of anthocyanin biosynthesis regulation in Malus against apple rust is still unclear. Here, we show that MpERF105 and MpNAC72 are key regulators of anthocyanin biosynthesis via the ethylene-dependent pathway in M. 'Profusion' leaves under rust disease stress. Exogenous ethephon treatment promoted high expression of MpERF105 and MpNAC72 and anthocyanin accumulation in G. yamadae-infected M. 'Profusion' leaves. Overexpression of MpERF105 increased the total anthocyanin content of Malus plant material and acted by positively regulating its target gene, MpMYB10b. MpNAC72 physically interacted with MpERF105 in vitro and in planta, and the two form a protein complex. Coexpression of the two leads to higher transcript levels of MpMYB10b and higher anthocyanin accumulation. In addition, overexpression of MpERF105 or MpNAC72 enhanced the resistance of M. 'Profusion' leaves to apple rust. In conclusion, our results elucidate the mechanism by which MpERF105 and MpNAC72 are induced by ethylene in G. yamadae-infected M. 'Profusion' leaves and promote anthocyanin accumulation by mediating the positive regulation of MpMYB10b expression.
Collapse
Affiliation(s)
- Yu Wang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hong An
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yue Yang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Cheng Yi
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ying Duan
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qian Wang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yannan Guo
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lina Yao
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingkun Chen
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiaxin Meng
- Institute of Pomology & Forestry, Beijing Academy of Agriculture & Forestry Sciences, 10093, Beijing, Haidian, China
| | - Jun Wei
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chenyang Hu
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Houhua Li
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
22
|
Wang YW, Nambeesan SU. Ethylene promotes fruit ripening initiation by downregulating photosynthesis, enhancing abscisic acid and suppressing jasmonic acid in blueberry (Vaccinium ashei). BMC PLANT BIOLOGY 2024; 24:418. [PMID: 38760720 PMCID: PMC11102277 DOI: 10.1186/s12870-024-05106-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Blueberry fruit exhibit atypical climacteric ripening with a non-auto-catalytic increase in ethylene coincident with initiation of ripening. Further, application of ethephon, an ethylene-releasing plant growth regulator, accelerates ripening by increasing the proportion of ripe (blue) fruit as compared to the control treatment. To investigate the mechanistic role of ethylene in regulating blueberry ripening, we performed transcriptome analysis on fruit treated with ethephon, an ethylene-releasing plant growth regulator. RESULTS RNA-Sequencing was performed on two sets of rabbiteye blueberry ('Powderblue') fruit: (1) fruit from divergent developmental stages; and (2) fruit treated with ethephon, an ethylene-releasing compound. Differentially expressed genes (DEGs) from divergent developmental stages clustered into nine groups, among which cluster 1 displayed reduction in expression during ripening initiation and was enriched with photosynthesis related genes, while cluster 7 displayed increased expression during ripening and was enriched with aromatic-amino acid family catabolism genes, suggesting stimulation of anthocyanin biosynthesis. More DEGs were apparent at 1 day after ethephon treatment suggesting its early influence during ripening initiation. Overall, a higher number of genes were downregulated in response to ethylene. Many of these overlapped with cluster 1 genes, indicating that ethylene-mediated downregulation of photosynthesis is an important developmental event during the ripening transition. Analyses of DEGs in response to ethylene also indicated interplay among phytohormones. Ethylene positively regulated abscisic acid (ABA), negatively regulated jasmonates (JAs), and influenced auxin (IAA) metabolism and signaling genes. Phytohormone quantification supported these effects of ethylene, indicating coordination of blueberry fruit ripening by ethylene. CONCLUSION This study provides insights into the role of ethylene in blueberry fruit ripening. Ethylene initiates blueberry ripening by downregulating photosynthesis-related genes. Also, ethylene regulates phytohormone-metabolism and signaling related genes, increases ABA, and decreases JA concentrations. Together, these results indicate that interplay among multiple phytohormones regulates the progression of ripening, and that ethylene is an important coordinator of such interactions during blueberry fruit ripening.
Collapse
Affiliation(s)
- Yi-Wen Wang
- Department of Horticulture, University of Georgia, 1111 Miller Plant Sciences Building, Athens, GA, 30602, USA
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA
- Institute of Plant Breeding, Genetics & Genomics, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA
| | - Savithri U Nambeesan
- Department of Horticulture, University of Georgia, 1111 Miller Plant Sciences Building, Athens, GA, 30602, USA.
| |
Collapse
|
23
|
Pei Z, Huang Y, Ni J, Liu Y, Yang Q. For a Colorful Life: Recent Advances in Anthocyanin Biosynthesis during Leaf Senescence. BIOLOGY 2024; 13:329. [PMID: 38785811 PMCID: PMC11117936 DOI: 10.3390/biology13050329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Leaf senescence is the last stage of leaf development, and it is accompanied by a leaf color change. In some species, anthocyanins are accumulated during leaf senescence, which are vital indicators for both ornamental and commercial value. Therefore, it is essential to understand the molecular mechanism of anthocyanin accumulation during leaf senescence, which would provide new insight into autumn coloration and molecular breeding for more colorful plants. Anthocyanin accumulation is a surprisingly complex process, and significant advances have been made in the past decades. In this review, we focused on leaf coloration during senescence. We emphatically discussed several networks linked to genetic, hormonal, environmental, and nutritional factors in regulating anthocyanin accumulation during leaf senescence. This paper aims to provide a regulatory model for leaf coloration and to put forward some prospects for future development.
Collapse
Affiliation(s)
- Ziqi Pei
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Z.P.); (Y.H.); (Y.L.)
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Yifei Huang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Z.P.); (Y.H.); (Y.L.)
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Junbei Ni
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Yong Liu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Z.P.); (Y.H.); (Y.L.)
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Qinsong Yang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Z.P.); (Y.H.); (Y.L.)
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
24
|
Cao YW, Song M, Bi MM, Yang PP, He GR, Wang J, Yang Y, Xu LF, Ming J. Lily (Lilium spp.) LhERF4 negatively affects anthocyanin biosynthesis by suppressing LhMYBSPLATTER transcription. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112026. [PMID: 38342186 DOI: 10.1016/j.plantsci.2024.112026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Anthocyanins are among the main pigments involved in the colouration of Asiatic hybrid lily (Lilium spp.). Ethylene, a plant ripening hormone, plays an important role in promoting plant maturation and anthocyanin biosynthesis. However, whether and how ethylene regulates anthocyanin biosynthesis in lily tepals have not been characterized. Using yeast one-hybrid screening, we previously identified an APETALA2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) named LhERF4 as a potential inhibitor of LhMYBSPLATTER-mediated negative regulation of anthocyanin biosynthesis in lily. Here, transcript and protein analysis of LhERF4, a transcriptional repressor, revealed that LhERF4 directly binds to the promoter of LhMYBSPLATTER. In addition, overexpression of LhERF4 in lily tepals negatively regulates the expression of key structural genes and the total anthocyanin content by suppressing the LhMYBSPLATTER gene. Moreover, the LhERF4 gene inhibits anthocyanin biosynthesis in response to ethylene, affecting anthocyanin accumulation and pigmentation in lily tepals. Collectively, our findings will advance and elucidate a novel regulatory network of anthocyanin biosynthesis in lily, and this research provides new insight into colouration regulation.
Collapse
Affiliation(s)
- Yu-Wei Cao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Life Sciences, Key Laboratory of Nanling Plant Resource Protection and Utilization, GanNan Normal University, Ganzhou 341000, China
| | - Meng Song
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Meng-Meng Bi
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pan-Pan Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guo-Ren He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yue Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Landscape Architecture and Horticulture, Southwest Forestry University, Kunming 650224, China
| | - Lei-Feng Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jun Ming
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
25
|
Fang T, Wang M, He R, Chen Q, He D, Chen X, Li Y, Ren R, Yu W, Zeng L. A 224-bp Indel in the Promoter of PeMYB114 Accounts for Anthocyanin Accumulation of Skin in Passion Fruit ( Passiflora spp.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10138-10148. [PMID: 38637271 DOI: 10.1021/acs.jafc.4c00839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Passion fruit (Passiflora spp.) is an important fruit tree in the family Passifloraceae. The color of the fruit skin, a significant agricultural trait, is determined by the content of anthocyanin in passion fruit. However, the regulatory mechanisms behind the accumulation of anthocyanin in different passion fruit skin colors remain unclear. In the study, we identified and characterized a R2R3-MYB transcription factor, PeMYB114, which functions as a transcriptional activator in anthocyanin biosynthesis. Yeast one-hybrid system and dual-luciferase analysis showed that PeMYB114 could directly activate the expression of anthocyanin structural genes (PeCHS and PeDFR). Furthermore, a natural variation in the promoter region of PeMYB114 alters its expression. PeMYB114purple accessions with the 224-bp insertion have a higher anthocyanin level than PeMYB114yellow accessions with the 224-bp deletion. The findings enhance our understanding of anthocyanin accumulation in fruits and provide genetic resources for genome design for improving passion fruit quality.
Collapse
Affiliation(s)
- Ting Fang
- College of Horticulture, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengzhen Wang
- College of Horticulture, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruijie He
- College of Horticulture, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiaowen Chen
- College of Horticulture, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dayi He
- College of Horticulture, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuerong Chen
- College of Horticulture, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongkang Li
- College of Horticulture, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui Ren
- College of Horticulture, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weijun Yu
- College of Horticulture, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lihui Zeng
- College of Horticulture, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
26
|
Aslam MM, Kou M, Dou Y, Zou S, Li R, Li W, Shao Y. The Transcription Factor MiMYB8 Suppresses Peel Coloration in Postharvest 'Guifei' Mango in Response to High Concentration of Exogenous Ethylene by Negatively Modulating MiPAL1. Int J Mol Sci 2024; 25:4841. [PMID: 38732059 PMCID: PMC11084497 DOI: 10.3390/ijms25094841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/05/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Anthocyanin accumulation is regulated by specific genes during fruit ripening. Currently, peel coloration of mango fruit in response to exogenous ethylene and the underlying molecular mechanism remain largely unknown. The role of MiMYB8 on suppressing peel coloration in postharvest 'Guifei' mango was investigated by physiology detection, RNA-seq, qRT-PCR, bioinformatics analysis, yeast one-hybrid, dual-luciferase reporter assay, and transient overexpression. Results showed that compared with the control, low concentration of exogenous ethylene (ETH, 500 mg·L-1) significantly promoted peel coloration of mango fruit (cv. Guifei). However, a higher concentration of ETH (1000 mg·L-1) suppressed color transformation, which is associated with higher chlorophyll content, lower a* value, anthocyanin content, and phenylalanine ammonia-lyase (PAL) activity of mango fruit. M. indica myeloblastosis8 MiMYB8 and MiPAL1 were differentially expressed during storage. MiMYB8 was highly similar to those found in other plant species related to anthocyanin biosynthesis and was located in the nucleus. MiMYB8 suppressed the transcription of MiPAL1 by binding directly to its promoter. Transient overexpression of MiMYB8 in tobacco leaves and mango fruit inhibited anthocyanin accumulation by decreasing PAL activity and down-regulating the gene expression. Our observations suggest that MiMYB8 may act as repressor of anthocyanin synthesis by negatively modulating the MiPAL gene during ripening of mango fruit, which provides us with a theoretical basis for the scientific use of exogenous ethylene in practice.
Collapse
Affiliation(s)
- Muhammad Muzammal Aslam
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China; (M.M.A.); (M.K.); (Y.D.); (S.Z.); (R.L.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Mingrui Kou
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China; (M.M.A.); (M.K.); (Y.D.); (S.Z.); (R.L.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yaqi Dou
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China; (M.M.A.); (M.K.); (Y.D.); (S.Z.); (R.L.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Shicheng Zou
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China; (M.M.A.); (M.K.); (Y.D.); (S.Z.); (R.L.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Rui Li
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China; (M.M.A.); (M.K.); (Y.D.); (S.Z.); (R.L.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Wen Li
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China; (M.M.A.); (M.K.); (Y.D.); (S.Z.); (R.L.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yuanzhi Shao
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China; (M.M.A.); (M.K.); (Y.D.); (S.Z.); (R.L.)
| |
Collapse
|
27
|
Tang K, Karamat U, Li G, Guo J, Jiang S, Fu M, Yang X. Integrated metabolome and transcriptome analyses reveal the role of BoGSTF12 in anthocyanin accumulation in Chinese kale (Brassica oleracea var. alboglabra). BMC PLANT BIOLOGY 2024; 24:335. [PMID: 38664614 PMCID: PMC11044404 DOI: 10.1186/s12870-024-05016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND The vivid red, purple, and blue hues that are observed in a variety of plant fruits, flowers, and leaves are produced by anthocyanins, which are naturally occurring pigments produced by a series of biochemical processes occurring inside the plant cells. The purple-stalked Chinese kale, a popular vegetable that contains anthocyanins, has many health benefits but needs to be investigated further to identify the genes involved in the anthocyanin biosynthesis and translocation in this vegetable. RESULTS In this study, the purple- and green-stalked Chinese kale were examined using integrative transcriptome and metabolome analyses. The content of anthocyanins such as cyanidin-3-O-(6″-O-feruloyl) sophoroside-5-O-glucoside, cyanidin-3,5-O-diglucoside (cyanin), and cyanidin-3-O-(6″-O-p-hydroxybenzoyl) sophoroside-5-O-glucoside were considerably higher in purple-stalked Chinese kale than in its green-stalked relative. RNA-seq analysis indicated that 23 important anthocyanin biosynthesis genes, including 3 PAL, 2 C4H, 3 4CL, 3 CHS, 1 CHI, 1 F3H, 2 FLS, 2 F3'H, 1 DFR, 3 ANS, and 2 UFGT, along with the transcription factor BoMYB114, were significantly differentially expressed between the purple- and green-stalked varieties. Results of analyzing the expression levels of 11 genes involved in anthocyanin production using qRT-PCR further supported our findings. Association analysis between genes and metabolites revealed a strong correlation between BoGSTF12 and anthocyanin. We overexpressed BoGSTF12 in Arabidopsis thaliana tt19, an anthocyanin transport mutant, and this rescued the anthocyanin-loss phenotype in the stem and rosette leaves, indicating BoGSTF12 encodes an anthocyanin transporter that affects the accumulation of anthocyanins. CONCLUSION This work represents a key step forward in our understanding of the molecular processes underlying anthocyanin production in Chinese kale. Our comprehensive metabolomic and transcriptome analyses provide important insights into the regulatory system that controls anthocyanin production and transport, while providing a foundation for further research to elucidate the physiological importance of the metabolites found in this nutritionally significant vegetable.
Collapse
Affiliation(s)
- Kang Tang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
| | - Umer Karamat
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
| | - Guihua Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
| | - Juxian Guo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
| | - Shizheng Jiang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
| | - Mei Fu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China.
| | - Xian Yang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
28
|
Wang H, Han T, Bai A, Xu H, Wang J, Hou X, Li Y. Potential Regulatory Networks and Heterosis for Flavonoid and Terpenoid Contents in Pak Choi: Metabolomic and Transcriptome Analyses. Int J Mol Sci 2024; 25:3587. [PMID: 38612398 PMCID: PMC11011442 DOI: 10.3390/ijms25073587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Pak choi exhibits a diverse color range and serves as a rich source of flavonoids and terpenoids. However, the mechanisms underlying the heterosis and coordinated regulation of these compounds-particularly isorhamnetin-remain unclear. This study involved three hybrid combinations and the detection of 528 metabolites from all combinations, including 26 flavonoids and 88 terpenoids, through untargeted metabolomics. Analysis of differential metabolites indicated that the heterosis for the flavonoid and terpenoid contents was parent-dependent, and positive heterosis was observed for isorhamnetin in the two hybrid combinations (SZQ, 002 and HMG, ZMG). Moreover, there was a high transcription level of flavone 3'-O-methyltransferase, which is involved in isorhamnetin biosynthesis. The third group was considered the ideal hybrid combination for investigating the heterosis of flavonoid and terpenoid contents. Transcriptome analysis identified a total of 12,652 DEGs (TPM > 1) in various groups that were used for comparison, and DEGs encoding enzymes involved in various categories, including "carotenoid bio-synthesis" and "anthocyanin biosynthesis", were enriched in the hybrid combination (SZQ, 002). Moreover, the category of anthocyanin biosynthesis also was enriched in the hybrid combination (HMG, ZMG). The flavonoid pathway demonstrated more differential metabolites than the terpenoid pathway did. The WGCNA demonstrated notable positive correlations between the dark-green modules and many flavonoids and terpenoids. Moreover, there were 23 ERF genes in the co-expression network (r ≥ 0.90 and p < 0.05). Thus, ERF genes may play a significant role in regulating flavonoid and terpenoid biosynthesis. These findings enhance our understanding of the heterosis and coordinated regulation of flavonoid and terpenoid biosynthesis in pak choi, offering insights for genomics-based breeding improvements.
Collapse
Affiliation(s)
- Haibin Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (T.H.); (A.B.); (H.X.); (J.W.); (X.H.)
| | - Tiantian Han
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (T.H.); (A.B.); (H.X.); (J.W.); (X.H.)
| | - Aimei Bai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (T.H.); (A.B.); (H.X.); (J.W.); (X.H.)
| | - Huanhuan Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (T.H.); (A.B.); (H.X.); (J.W.); (X.H.)
| | - Jianjun Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (T.H.); (A.B.); (H.X.); (J.W.); (X.H.)
| | - Xilin Hou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (T.H.); (A.B.); (H.X.); (J.W.); (X.H.)
- Nanjing Suman Plasma Engineering Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (T.H.); (A.B.); (H.X.); (J.W.); (X.H.)
| |
Collapse
|
29
|
Liu H, Jin Y, Huang L, Miao C, Tang J, Zhang H, Yin H, Lu X, Li N, Dai S, Gentile A, Zhang L, Sheng L. Transcriptomics and metabolomics reveal the underlying mechanism of drought treatment on anthocyanin accumulation in postharvest blood orange fruit. BMC PLANT BIOLOGY 2024; 24:160. [PMID: 38429733 PMCID: PMC10908157 DOI: 10.1186/s12870-024-04868-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Anthocyanins are the most important compounds for nutritional quality and economic values of blood orange. However, there are few reports on the pre-harvest treatment accelerating the accumulation of anthocyanins in postharvest blood orange fruit. Here, we performed a comparative transcriptome and metabolomics analysis to elucidate the underlying mechanism involved in seasonal drought (SD) treatment during the fruit expansion stage on anthocyanin accumulation in postharvest 'Tarocco' blood orange fruit. RESULTS Our results showed that SD treatment slowed down the fruit enlargement and increased the sugar accumulation during the fruit development and maturation period. Obviously, under SD treatment, the accumulation of anthocyanin in blood orange fruit during postharvest storage was significantly accelerated and markedly higher than that in CK. Meanwhile, the total flavonoids and phenols content and antioxidant activity in SD treatment fruits were also sensibly increased during postharvest storage. Based on metabolome analysis, we found that substrates required for anthocyanin biosynthesis, such as amino acids and their derivatives, and phenolic acids, had significantly accumulated and were higher in SD treated mature fruits compared with that of CK. Furthermore, according to the results of the transcriptome data and weighted gene coexpression correlation network analysis (WGCNA) analysis, phenylalanine ammonia-lyase (PAL3) was considered a key structural gene. The qRT-PCR analysis verified that the PAL3 was highly expressed in SD treated postharvest stored fruits, and was significantly positively correlated with the anthocyanin content. Moreover, we found that other structural genes in the anthocyanin biosynthesis pathway were also upregulated under SD treatment, as evidenced by transcriptome data and qRT-PCR analysis. CONCLUSIONS The findings suggest that SD treatment promotes the accumulation of substrates necessary for anthocyanin biosynthesis during the fruit ripening process, and activates the expression of anthocyanin biosynthesis pathway genes during the postharvest storage period. This is especially true for PAL3, which co-contributed to the rapid accumulation of anthocyanin. The present study provides a theoretical basis for the postharvest quality control and water-saving utilization of blood orange fruit.
Collapse
Affiliation(s)
- Hongbin Liu
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Yan Jin
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Le Huang
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Chouyu Miao
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Jiayi Tang
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Huimin Zhang
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Haojie Yin
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Xiaopeng Lu
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Na Li
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Suming Dai
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Alessandra Gentile
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
- Department of Agriculture and Food Science, University of Catania, Catania, 95123, Italy
| | - Ling Zhang
- Agriculture and Rural Bureau of Mayang Miao Autonomous County, Huaihua, China
| | - Ling Sheng
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
30
|
Zhang X, Zhu L, Qian M, Jiang L, Gu P, Jia L, Qian C, Luo W, Ma M, Wu Z, Qiao X, Wang L, Zhang S. PbrWRKY62-PbrADC1 module involves in superficial scald development of Pyrus bretschneideri Rehd.fruit via regulating putrescine biosynthesis. MOLECULAR HORTICULTURE 2024; 4:6. [PMID: 38373989 PMCID: PMC10877817 DOI: 10.1186/s43897-024-00081-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/14/2024] [Indexed: 02/21/2024]
Abstract
Putrescine plays a role in superficial scald development during the cold storage of pear fruit. However, the molecular mechanism behind this phenomenon has not been un-fully clarified until recently. In this study, a conjoint analysis of metabolites and gene expression profiles in the putrescine-metabolic pathway of P. bretschneideri Rehd. fruit followed by experimental validation revealed that PbrADC1, forming a homodimer in the chloroplast, was involved in putrescine biosynthesis and thus fruit chilling resistance. Additionally, the substrate-binding residue Cys546 in PbrADC1, whose activity was modified by H2O2, played a crucial role in arginine decarboxylation into agmatine. Through a combined analysis of the distribution of cis-acting elements in the PbrADC1 promoter as well as the expression profiles of related transcription factors (TFs), several TFs were identified as upstream regulators of PbrADC1 gene. Further investigation revealed that the nuclear PbrWRKY62 could directly bind to the W-box elements in the PbrADC1 promoter, activate its expression, enhance putrescine accumulation, and thus increase fruit chilling tolerance. In conclusion, our results suggest that the PbrWRKY62-PbrADC1 module is involved in the development of superficial scald in P. bretschneideri Rehd. fruit via regulating putrescine biosynthesis. Consequently, these findings could serve as valuable genetic resources for breeding scald-resistant pear fruit.
Collapse
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Lijuan Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ming Qian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Li Jiang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Peng Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Luting Jia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Chunlu Qian
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Weiqi Luo
- Center for Integrated Pest Management, North Carolina State University, Raleigh, NC, 27606, USA
| | - Min Ma
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhangfei Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xin Qiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Libin Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
31
|
Song RF, Hu XY, Liu WC, Yuan HM. ABA functions in low phosphate-induced anthocyanin accumulation through the transcription factor ABI5 in Arabidopsis. PLANT CELL REPORTS 2024; 43:55. [PMID: 38315238 DOI: 10.1007/s00299-024-03146-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/31/2023] [Indexed: 02/07/2024]
Abstract
KEY MESSAGE ABI5 functions in ABA-mediated anthocyanin accumulation in plant response to low phosphate. Low phosphate (LP)-induced anthocyanin biosynthesis and accumulation play an important role in plant adaptive response to phosphate starvation conditions. However, whether and how the stress phytohormone abscisic acid (ABA) participates in LP-induced anthocyanin accumulation remain elusive. Here, we report that ABA is required for LP-induced anthocyanin accumulation in Arabidopsis thaliana. Disrupting ABA DEFICIENT2 (ABA2), a key ABA-biosynthetic gene, or BETA-GLUCOSIDASE1 (BG1), a major gene implicated in converting conjugated ABA to active ABA, significantly impairs LP-induced anthocyanin accumulation, as LP-induced expression of the anthocyanin-biosynthetic genes Chalcone Synthase (CHS) is dampened in the aba2 and bg1 mutant. In addition, LP-induced anthocyanin accumulation is defective in the mutants of ABA signaling pathway, including ABA receptors, ABA Insensitive2, and the transcription factors ABA Insensitive5 (ABI5), suggesting a role of ABI5 in ABA-mediated upregulation of anthocyanin-biosynthetic genes in plant response to LP. Indeed, LP-induced expression of CHS is repressed in the abi5-7 mutant but further promoted in the ABI5-overexpressing plants compared to the wild-type. Moreover, ABI5 can bind to and transcriptionally activate CHS, and the defectiveness of LP-induced anthocyanin accumulation in abi5-7 can be restored by overexpressing CHS. Collectively, our findings illustrates that ABI5 functions in ABA-mediated LP-induced anthocyanin accumulation in Arabidopsis.
Collapse
Affiliation(s)
- Ru-Feng Song
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Xiao-Yu Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
- Sanya Institute, Henan University, Sanya, 572025, China.
| | - Hong-Mei Yuan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China.
| |
Collapse
|
32
|
Wang Y, Zhang W, Hong C, Zhai L, Wang X, Zhou L, Song A, Jiang J, Wang L, Chen F, Chen S. Chrysanthemum (Chrysanthemum morifolium) CmHRE2-like negatively regulates the resistance of chrysanthemum to the aphid (Macrosiphoniella sanborni). BMC PLANT BIOLOGY 2024; 24:76. [PMID: 38281936 PMCID: PMC10823704 DOI: 10.1186/s12870-024-04758-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND The growth and ornamental value of chrysanthemums are frequently hindered by aphid attacks. The ethylene-responsive factor (ERF) gene family is pivotal in responding to biotic stress, including insect stress. However, to date, little is known regarding the involvement of ERF transcription factors (TFs) in the response of chrysanthemum to aphids. RESULTS In the present study, CmHRE2-like from chrysanthemum (Chrysanthemum morifolium), a transcription activator that localizes mainly to the nucleus, was cloned. Expression is induced by aphid infestation. Overexpression of CmHRE2-like in chrysanthemum mediated its susceptibility to aphids, whereas CmHRE2-like-SRDX dominant repressor transgenic plants enhanced the resistance of chrysanthemum to aphids, suggesting that CmHRE2-like contributes to the susceptibility of chrysanthemum to aphids. The flavonoids in CmHRE2-like-overexpression plants were decreased by 29% and 28% in two different lines, whereas they were increased by 42% and 29% in CmHRE2-like-SRDX dominant repressor transgenic plants. The expression of Chrysanthemum-chalcone-synthase gene(CmCHS), chalcone isomerase gene (CmCHI), and flavonoid 3'-hydroxylase gene(CmF3'H) was downregulated in CmHRE2-like overexpression plants and upregulated in CmHRE2-like-SRDX dominant repressor transgenic plants, suggesting that CmHRE2-like regulates the resistance of chrysanthemum to aphids partially through the regulation of flavonoid biosynthesis. CONCLUSION CmHRE2-like was a key gene regulating the vulnerability of chrysanthemum to aphids. This study offers fresh perspectives on the molecular mechanisms of chrysanthemum-aphid interactions and may bear practical significance for developing new strategies to manage aphid infestation in chrysanthemums.
Collapse
Affiliation(s)
- You Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanwan Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chaojun Hong
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lisheng Zhai
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinhui Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lijie Zhou
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Aiping Song
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiafu Jiang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Likai Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sumei Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China.
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China.
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
33
|
Jiang S, Guo J, Khan I, Jahan MS, Tang K, Li G, Yang X, Fu M. Comparative Metabolome and Transcriptome Analyses Reveal the Regulatory Mechanism of Purple Leafstalk Production in Taro ( Colocasia esculenta L. Schott). Genes (Basel) 2024; 15:138. [PMID: 38275619 PMCID: PMC10815928 DOI: 10.3390/genes15010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Taro is a plant in the Araceae family, and its leafstalk possesses significant botanical and culinary value owing to its noteworthy medicinal and nutritional attributes. Leafstalk colour is an essential attribute that significantly influences its desirability and appeal to both breeders and consumers. However, limited information is available about the underlying mechanism responsible for the taro plant's colouration. Thus, the purpose of the current study was to elucidate the information on purple leafstalks in taro through comprehensive metabolome and transcriptome analysis. In total, 187 flavonoids, including 10 anthocyanins, were identified. Among the various compounds analysed, it was observed that the concentrations of five anthocyanins (keracyanin chloride (cyanidin 3-O-rutinoside chloride), cyanidin 3-O-glucoside, tulipanin (delphinidin 3-rutinoside chloride), idaein chloride (cyanidin 3-O-galactoside), and cyanidin chloride) were found to be higher in purple taro leafstalk compared to green taro leafstalk. Furthermore, a total of 3330 differentially expressed genes (DEGs) were identified by transcriptome analysis. Subsequently, the correlation network analysis was performed to investigate the relationship between the expression levels of these differentially expressed genes and the content of anthocyanin. There were 18 DEGs encoding nine enzymes detected as the fundamental structural genes contributing to anthocyanin biosynthesis, along with seven transcription factors (3 MYB and 4 bHLH) that may be promising candidate modulators of the anthocyanin biosynthesis process in purple taro leafstalk. The findings of the current investigation not only provide a comprehensive transcriptional code, but also give information on anthocyanin metabolites as well as beneficial insights into the colour mechanism of purple taro leafstalk.
Collapse
Affiliation(s)
- Shizheng Jiang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (S.J.); (J.G.); (I.K.); (K.T.); (G.L.)
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China;
| | - Juxian Guo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (S.J.); (J.G.); (I.K.); (K.T.); (G.L.)
| | - Imran Khan
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (S.J.); (J.G.); (I.K.); (K.T.); (G.L.)
| | - Mohammad Shah Jahan
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Kang Tang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (S.J.); (J.G.); (I.K.); (K.T.); (G.L.)
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China;
| | - Guihua Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (S.J.); (J.G.); (I.K.); (K.T.); (G.L.)
| | - Xian Yang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China;
| | - Mei Fu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (S.J.); (J.G.); (I.K.); (K.T.); (G.L.)
| |
Collapse
|
34
|
Mao J, Gao Z, Wang X, Lin M, Chen L, Ning X. Combined Widely Targeted Metabolomic, Transcriptomic, and Spatial Metabolomic Analysis Reveals the Potential Mechanism of Coloration and Fruit Quality Formation in Actinidia chinensis cv. Hongyang. Foods 2024; 13:233. [PMID: 38254533 PMCID: PMC10814455 DOI: 10.3390/foods13020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Postharvest kiwifruit (Actinidia chinensis cv. Hongyang) pulp is mainly composed of outer yellow-flesh (LR) and inner red-flesh (HR). However, information about the differences in coloration and fruit quality between these two parts are limited. In this study, widely targeted metabolomic, transcriptomic, and spatial metabolomic analyses were used to reveal the potential mechanism of coloration and fruit quality formation. The results show that a total of 1001 metabolites were identified in Hongyang kiwifruit, and the accumulation of 211 metabolites were significantly higher in the HR than LR, including 69 flavonoids, 53 phenolic acids, and 38 terpenoids. There were no significant differences in the content of citric acid, quinic acid, glucose, fructose, or sucrose between the LR and HR. These results were consistent with the results from the RNA-seq profile and spatial metabolomic analysis. In addition, a total of 23 key candidate genes related to flesh color and fruit quality formation were identified and validated by qRT-PCR analysis. This study provides a theoretical basis for elucidating the underlying mechanism of the formation of kiwifruit flesh color and fruit quality.
Collapse
Affiliation(s)
- Jipeng Mao
- Jiangxi Kiwifruit Engineering Research Center, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China; (J.M.)
| | - Zhu Gao
- Jiangxi Kiwifruit Engineering Research Center, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China; (J.M.)
| | - Xiaoling Wang
- Jiangxi Kiwifruit Engineering Research Center, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China; (J.M.)
| | - Mengfei Lin
- Jiangxi Kiwifruit Engineering Research Center, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China; (J.M.)
| | - Lu Chen
- Jinggangshan Institute of Biotechnology, Jiangxi Academy of Sciences, Ji’an 343009, China;
| | - Xinyi Ning
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| |
Collapse
|
35
|
Niu M, Chen X, Guo Y, Song J, Cui J, Wang L, Su N. Sugar Signals and R2R3-MYBs Participate in Potassium-Repressed Anthocyanin Accumulation in Radish. PLANT & CELL PHYSIOLOGY 2023; 64:1601-1616. [PMID: 37862259 DOI: 10.1093/pcp/pcad111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/30/2023] [Accepted: 09/19/2023] [Indexed: 10/22/2023]
Abstract
Anthocyanin biosynthesis in plants is influenced by a wide range of environmental factors, such as light, temperature and nutrient availability. In this study, we revealed that the potassium-repressed anthocyanin accumulation in radish hypocotyls was associated with altered sugar distribution and sugar signaling pathways rather than changes in oxidative stress status. Sugar-feeding experiments suggested a hexokinase-independent glucose signal acted as a major contributor in regulating anthocyanin biosynthesis, transport and regulatory genes at the transcriptional level. Several R2R3-MYBs were identified as anthocyanin-related MYBs. Phylogenetic and protein sequence analyses suggested that RsMYB75 met the criteria of subgroup 6 MYB activator, while RsMYB39 and RsMYB82 seemed to be a non-canonical MYB anthocyanin activator and repressor, respectively. Through yeast-one-hybrid, dual-luciferase and transient expression assays, we confirmed that RsMYB39 strongly induced the promoter activity of anthocyanin transport-related gene RsGSTF12, while RsMYB82 significantly reduced anthocyanin biosynthesis gene RsANS1 expression. Molecular models are proposed in the discussion, allowing speculation on how these novel RsMYBs may regulate the expression levels of anthocyanin-related structural genes. Together, our data evidenced the strong impacts of potassium on sugar metabolism and signaling and its regulation of anthocyanin accumulation through different sugar signals and R2R3-MYBs in a hierarchical regulatory system.
Collapse
Affiliation(s)
- Mengyang Niu
- College of Life Sciences, Nanjing Agricultural University, No. 1, Weigang, Xiaoling Wei Street, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Xuan Chen
- College of Life Sciences, Nanjing Agricultural University, No. 1, Weigang, Xiaoling Wei Street, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Youyou Guo
- College of Life Sciences, Nanjing Agricultural University, No. 1, Weigang, Xiaoling Wei Street, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Jinxue Song
- College of Life Sciences, Nanjing Agricultural University, No. 1, Weigang, Xiaoling Wei Street, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Jin Cui
- College of Life Sciences, Zhejiang University, No. 866, Yuhangtang Road, Xihu District, Hangzhou, Zhejiang 310027, China
| | - Lu Wang
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Nana Su
- College of Life Sciences, Nanjing Agricultural University, No. 1, Weigang, Xiaoling Wei Street, Xuanwu District, Nanjing, Jiangsu 210095, China
| |
Collapse
|
36
|
Zhang L, Duan Z, Ma S, Sun S, Sun M, Xiao Y, Ni N, Irfan M, Chen L, Sun Y. SlMYB7, an AtMYB4-Like R2R3-MYB Transcription Factor, Inhibits Anthocyanin Accumulation in Solanum lycopersicum Fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18758-18768. [PMID: 38012529 DOI: 10.1021/acs.jafc.3c05185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Tomato is a horticultural crop with an incomplete flavonoid metabolic pathway that does not typically accumulate anthocyanins in the fruit. In recent years, intensive studies of the loci Anthocyanin fruit (Aft) and atroviolacium (atv) have clarified the functions of positive regulators (R2R3-MYBs) and a negative regulator (CPC-MYB) in anthocyanin biosynthesis in the fruits. However, little is known about the R2R3-MYB repressors. Here, we used transient overexpression analysis to show that SlMYB7, a subgroup 4 AtMYB4-like R2R3-MYB, inhibited anthocyanin accumulation and reduced expression of anthocyanin synthase genes in the 'black pearl' tomato fruits, which usually accumulate high concentrations of anthocyanins. These findings revealed that SlMYB7 served as a repressor of anthocyanin production. Furthermore, SlMYB7 actively repressed SlANS expression by binding its promoter and passively inhibited anthocyanin synthesis by interacting with the basic helix-loop-helix (bHLH) proteins SlJAF13 and SlAN1, which are involved in the formation of MBW complexes. Thus, SlMYB7 and the MBW complex may coregulate the anthocyanin content of 'black pearl' tomato fruits via a negative feedback loop. These findings provide a theoretical basis for the future enhancement of tomato anthocyanin contents through genetic manipulation of the biosynthetic regulatory network.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Liaoning 110161, China
| | - Zedi Duan
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Liaoning 110161, China
| | - Shuang Ma
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Liaoning 110161, China
- College of Life Engineering, Shenyang Institute of Technology, Liaoning 110866, China
| | - Shaokun Sun
- Institute of Vegetable Research, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, China
| | - Minghui Sun
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Liaoning 110161, China
| | - Yunhong Xiao
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Liaoning 110161, China
| | - Na Ni
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Liaoning 110161, China
| | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha 40100, Pakistan
| | - Lijing Chen
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Liaoning 110161, China
| | - Yibo Sun
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Liaoning 110161, China
| |
Collapse
|
37
|
Yan Y, Zhao J, Lin S, Li M, Liu J, Raymond O, Vergne P, Kong W, Wu Q, Zhang X, Bao M, Bendahmane M, Fu X. Light-mediated anthocyanin biosynthesis in rose petals involves a balanced regulatory module comprising transcription factors RhHY5, RhMYB114a, and RhMYB3b. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5783-5804. [PMID: 37392434 DOI: 10.1093/jxb/erad253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Roses are significant botanical species with both ornamental and economic value, displaying diverse floral traits, particularly an extensive array of petal colors. The red pigmentation of rose petals is predominantly attributed to anthocyanin accumulation. However, the underlying regulatory mechanism of anthocyanin biosynthesis in roses remains elusive. This study presents a novel light-responsive regulatory module governing anthocyanin biosynthesis in rose petals, which involves the transcription factors RhHY5, RhMYB114a, and RhMYB3b. Under light conditions (1000-1500 μmol m-2 s-1), RhHY5 represses RhMYB3b expression and induces RhMYB114a expression, positively regulating anthocyanin biosynthesis in rose petals. Notably, activation of anthocyanin structural genes probably involves an interaction and synergy between RhHY5 and the MYB114a-bHLH3-WD40 complex. Additionally, RhMYB3b is activated by RhMYB114a to prevent excessive accumulation of anthocyanin. Conversely, under low light conditions (<10 μmol m-2 s-1), the degradation of RhHY5 leads to down-regulation of RhMYB114a and up-regulation of RhMYB3b, which in turn inhibits the expression of both RhMYB114a and anthocyanin structural genes. Additionally, RhMYB3b competes with RhMYB114a for binding to RhbHLH3 and the promoters of anthocyanin-related structural genes. Overall, our study uncovers a complex light-mediated regulatory network that governs anthocyanin biosynthesis in rose petals, providing new insights into the molecular mechanisms underlying petal color formation in rose.
Collapse
Affiliation(s)
- Yuhang Yan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Jiaxing Zhao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Shengnan Lin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Mouliang Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Jiayi Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Olivier Raymond
- Laboratoire Reproduction et Development des Plantes, INRA-CNRS-Lyon1-ENS, Ecole Normale Superieure de Lyon, Lyon, France
| | - Philippe Vergne
- Laboratoire Reproduction et Development des Plantes, INRA-CNRS-Lyon1-ENS, Ecole Normale Superieure de Lyon, Lyon, France
| | - Weilong Kong
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Quanshu Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Xiaoni Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Manzhu Bao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Mohammed Bendahmane
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- Laboratoire Reproduction et Development des Plantes, INRA-CNRS-Lyon1-ENS, Ecole Normale Superieure de Lyon, Lyon, France
| | - Xiaopeng Fu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
38
|
Wang Z, Song G, Zhang F, Shu X, Wang N. Functional Characterization of AP2/ERF Transcription Factors during Flower Development and Anthocyanin Biosynthesis Related Candidate Genes in Lycoris. Int J Mol Sci 2023; 24:14464. [PMID: 37833913 PMCID: PMC10572147 DOI: 10.3390/ijms241914464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
The APETALA2/ethylene-responsive transcription factor (AP2/ERF) family has been extensively investigated because of its significant involvement in plant development, growth, fruit ripening, metabolism, and plant stress responses. To date, there has been little investigation into how the AP2/ERF genes influence flower formation and anthocyanin biosynthesis in Lycoris. Herein, 80 putative LrAP2/ERF transcription factors (TFs) with complete open reading frames (ORFs) were retrieved from the Lycoris transcriptome sequence data, which could be divided into five subfamilies dependent on their complete protein sequences. Furthermore, our findings demonstrated that genes belonging to the same subfamily had structural similarities and conserved motifs. LrAP2/ERF genes were analyzed for playing an important role in plant growth, water deprivation, and flower formation by means of gene ontology (GO) enrichment analysis. The expression pattern of the LrAP2/ERF genes differed across tissues and might be important for Lycoris growth and flower development. In response to methyl jasmonate (MeJA) exposure and drought stress, the expression of each LrAP2/ERF gene varied across tissues and time. Moreover, a total of 20 anthocyanin components were characterized using ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) analysis, and pelargonidin-3-O-glucoside-5-O-arabinoside was identified as the major anthocyanin aglycone responsible for the coloration of the red petals in Lycoris. In addition, we mapped the relationships between genes and metabolites and found that LrAP2/ERF16 is strongly linked to pelargonidin accumulation in Lycoris petals. These findings provide the basic conceptual groundwork for future research into the molecular underpinnings and regulation mechanisms of AP2/ERF TFs in anthocyanin accumulation and Lycoris floral development.
Collapse
Affiliation(s)
- Zhong Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (Z.W.); (G.S.); (F.Z.); (X.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Guowei Song
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (Z.W.); (G.S.); (F.Z.); (X.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Fengjiao Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (Z.W.); (G.S.); (F.Z.); (X.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Xiaochun Shu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (Z.W.); (G.S.); (F.Z.); (X.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Ning Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (Z.W.); (G.S.); (F.Z.); (X.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybeans (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
39
|
Bi M, Liang R, Wang J, Qu Y, Liu X, Cao Y, He G, Yang Y, Yang P, Xu L, Ming J. Multifaceted roles of LhWRKY44 in promoting anthocyanin accumulation in Asiatic hybrid lilies ( Lilium spp.). HORTICULTURE RESEARCH 2023; 10:uhad167. [PMID: 37779886 PMCID: PMC10535013 DOI: 10.1093/hr/uhad167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023]
Abstract
The Asiatic hybrid lily (Lilium spp.) is a horticultural crop with high commercial value and diverse anthocyanin pigmentation patterns. However, the regulatory mechanism underlying lily flower color has been largely unexplored. Here, we identified a WRKY transcription factor from lily tepals, LhWRKY44, whose expression was closely associated with anthocyanin accumulation. Functional verification indicated that LhWRKY44 positively regulated anthocyanin accumulation. LhWRKY44 physically interacted with LhMYBSPLATTER and directly bound to the LhMYBSPLATTER promoter, which enhanced the effect of the LhMYBSPLATTER-LhbHLH2 MBW complex activator on anthocyanin accumulation. Moreover, EMSA and dual-luciferase assays revealed that LhWRKY44 activated and bound to the promoters of gene LhF3H and the intracellular anthocyanin-related glutathione S-transferase gene LhGST. Interestingly, our further results showed that LhWRKY44 participated in light and drought-induced anthocyanin accumulation, and improved the drought tolerance in lily via activating stress-related genes. These results generated a multifaceted regulatory mechanism for the LhWRKY44-meditaed enhancement by the environmental signal pathway of anthocyanin accumulation and expanded our understanding of the WRKY-mediated transcriptional regulatory hierarchy modulating anthocyanin accumulation in Asiatic hybrid lilies.
Collapse
Affiliation(s)
- Mengmeng Bi
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rui Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Horticulture, Shanxi Agricultural University, Taigu, 030031, China
| | - Jiawen Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuxiao Qu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xin Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Landscape architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuwei Cao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Chemistry and Life Science, Gannan Normal University, Ganzhou, 341000, China
| | - Guoren He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Shanghai Key Laboratory of Plant Molecular Science, College of Life Sciences, Shanghai Normal University, Shanghai, 200233, China
| | - Yue Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Panpan Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Leifeng Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jun Ming
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
40
|
Li Z, Ahammed GJ. Hormonal regulation of anthocyanin biosynthesis for improved stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107835. [PMID: 37348389 DOI: 10.1016/j.plaphy.2023.107835] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Due to unprecedented climate change, rapid industrialization and increasing use of agrochemicals, abiotic stress, such as drought, low temperature, high salinity and heavy metal pollution, has become an increasingly serious problem in global agriculture. Anthocyanins, an important plant pigment, are synthesized through the phenylpropanoid pathway and have a variety of physiological and ecological functions, providing multifunctional and effective protection for plants under stress. Foliar anthocyanin accumulation often occurs under abiotic stress including high light, cold, drought, salinity, nutrient deficiency and heavy metal stress, causing leaf reddening or purpling in many plant species. Anthocyanins are used as sunscreens and antioxidants to scavenge reactive oxygen species (ROS), as metal(loid) chelators to mitigate heavy metal stress, and as crucial molecules with a role in delaying leaf senescence. In addition to environmental factors, anthocyanin synthesis is affected by various endogenous factors. Plant hormones such as abscisic acid, jasmonic acid, ethylene and gibberellin have been shown to be involved in regulating anthocyanin synthesis either positively or negatively. Particularly when plants are under abiotic stress, several plant hormones can induce foliar anthocyanin synthesis to enhance plant stress resistance. In this review, we revisit the role of plant hormones in anthocyanin biosynthesis and the mechanism of plant hormone-mediated anthocyanin accumulation and abiotic stress tolerance. We conclude that enhancing anthocyanin content with plant hormones could be a prospective management strategy for improving plant stress resistance, but extensive further research is essentially needed to provide future guidance for practical crop production.
Collapse
Affiliation(s)
- Zhe Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China; Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang, 471023, PR China; Henan Engineering Technology Research Center for Horticultural Crop Safety and Disease Control, Luoyang, 471023, PR China.
| |
Collapse
|
41
|
Lu R, Song M, Wang Z, Zhai Y, Hu C, Perl A, Ma H. Independent flavonoid and anthocyanin biosynthesis in the flesh of a red-fleshed table grape revealed by metabolome and transcriptome co-analysis. BMC PLANT BIOLOGY 2023; 23:361. [PMID: 37454071 DOI: 10.1186/s12870-023-04368-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Red flesh is a desired fruit trait, but the regulation of red flesh formation in grape is not well understood. 'Mio Red' is a seedless table grape variety with light-red flesh and blue-purple skin. The skin color develops at veraison whereas the flesh color develops at a later stage of berry development. The flesh and skin flavonoid metabolomes and transcriptomes were analyzed. RESULTS A total of 161 flavonoids were identified, including 16 anthocyanins. A total of 66 flavonoids were found at significantly different levels in the flesh and skin (fold change ≥ 2 or ≤ 0.5, variable importance in projection (VIP) ≥ 1). The main anthocyanins in the flesh were pelargonidin and peonidin, and in the skin were peonidin, delphinidin, and petunidin. Transcriptome comparison revealed 57 differentially expressed structural genes of the flavonoid-metabolism pathway (log2fold change ≥ 1, FDR < 0.05, FPKM ≥ 1). Two differentially expressed anthocyanin synthase (ANS) genes were annotated, ANS2 (Vitvi02g00435) with high expression in flesh and ANS1 (Vitvi11g00565) in skin, respectively. One dihydro flavonol 4-reductase (DFR, Vitvi18g00988) gene was differentially expressed although high in both skin and flesh. Screened and correlation analysis of 12 ERF, 9 MYB and 3 bHLH genes. The Y1H and dual luciferase assays showed that MYBA1 highly activates the ANS2 promoter in flesh and that ERFCBF6 was an inhibitory, EFR23 and bHLH93 may activate the DFR gene. These genes may be involved in the regulation of berry flesh color. CONCLUSIONS Our study revealed that anthocyanin biosynthesis in grape flesh is independent of that in the skin. Differentially expressed ANS, MYB and ERF transcription factors provide new clues for the future breeding of table grapes that will provide the health benefits as red wine.
Collapse
Affiliation(s)
- Renxiang Lu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Miaoyu Song
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhe Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yanlei Zhai
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Chaoyang Hu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Avihai Perl
- Department of Fruit Tree Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Huiqin Ma
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
42
|
Fu D, Yang S, Liu R, Gao F. Yeast One-Hybrid Screening to Identify Transcription Factors for IbMYB1-4 in the Purple-Fleshed Sweet Potato ( Ipomoea batatas [L.] Lam.). Curr Issues Mol Biol 2023; 45:5765-5775. [PMID: 37504280 PMCID: PMC10378178 DOI: 10.3390/cimb45070364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023] Open
Abstract
IbMYB1 is a transcription factor involved in the biosynthesis of anthocyanin in the purple-fleshed sweet potato. So far, few studies have investigated transcription factors that are upstream of the promoter IbMYB1-4. In this study, a yeast one-hybrid screening aimed at identifying transcription factors upstream of the promoter IbMYB1-4 was performed in the storage roots of the purple-fleshed sweet potato, and IbPDC, IbERF1, and IbPGP19 were identified as upstream binding proteins for the promoter IbMYB1-4. A dual luciferase reporter assay, and yeast one-hybrid assays, were employed to confirm the interaction of these binding proteins with promoters. IbERF1 was found to be an upstream transcription factor for the promoter IbMYB1, and is implicated in the biosynthesis of anthocyanin in the purple-fleshed sweet potato. IbERF1 plays a major role in the biosynthesis of anthocyanin in the purple-fleshed sweet potato.
Collapse
Affiliation(s)
- Danwen Fu
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Shaohua Yang
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Rui Liu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Feng Gao
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
43
|
Sun H, Hu K, Wei S, Yao G, Zhang H. ETHYLENE RESPONSE FACTORS 4.1/4.2 with an EAR motif repress anthocyanin biosynthesis in red-skinned pears. PLANT PHYSIOLOGY 2023; 192:1892-1912. [PMID: 36732887 PMCID: PMC10315276 DOI: 10.1093/plphys/kiad068] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/06/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Red-skinned pears (Pyrus L.) are preferred to consumers for their attractive color and abundant anthocyanins. Pyrus ETHYLENE RESPONSE FACTOR 3 (PyERF3) positively regulates anthocyanin biosynthesis through interacting with Pyrus myeloblastosis family 114 (PyMYB114) and Pyrus basic helix-loop-helix 3 (PybHLH3) in red-skinned pears. However, the role of APETALA2/ethylene response factors (AP2/ERFs), which negatively regulate anthocyanin biosynthesis, remains unclear in red-skinned pears. Here, we validated that 2 AP2/ERFs, PyERF4.1 and PyERF4.2, screened from the transcriptome data of 'Starkrimson' pear (Pyrus communis L.) and its green mutant, inhibit anthocyanin biosynthesis in transgenic pear calli, as well as in overexpression and gene-edited tomato (Solanum lycopersicum) fruits. Meanwhile, the co-transformation of PyERF4.1/PyERF4.2 with PyERF3-PyMYB114-PybHLH3 inhibited anthocyanin biosynthesis in pear fruits and strawberry (Fragaria vesca) receptacles. Further assays showed that PyMYB114 activated the transcription of PyERF4.1/PyERF4.2; PyERF4.1/PyERF4.2 then interacted with PyERF3 to affect the stability of the PyERF3-PyMYB114-PybHLH3 complex, thereby inhibiting the transcription of the anthocyanin biosynthesis gene Pyrus anthocyanidin synthase (PyANS). Furthermore, deletion of the ERF-associated-amphiphilic repression (EAR) motif eliminated the inhibitory effect of PyERF4.1/PyERF4.2 on anthocyanin biosynthesis, and a mutation of the PyERF4.2-EAR motif (LxLxM to LxLxL) strengthened the inhibitory effect, demonstrating that the EAR motif is indispensable for the inhibitory effect of PyERF4.1/PyERF4.2 on anthocyanin biosynthesis in pears. Our study has shed light on a feedback regulatory loop mechanism that balances the excessive accumulation of anthocyanins in red-skinned pears, providing insights into the regulatory mechanism of anthocyanin biosynthesis and the regulatory network of coloration in red-skinned pears.
Collapse
Affiliation(s)
- Hongye Sun
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kangdi Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shuwei Wei
- Shandong Institute of Pomology, Tai’an 271000, China
| | - Gaifang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
44
|
Yao G, Gou S, Zhong T, Wei S, An X, Sun H, Sun C, Hu K, Zhang H. Persulfidation of transcription factor MYB10 inhibits anthocyanin synthesis in red-skinned pear. PLANT PHYSIOLOGY 2023; 192:2185-2202. [PMID: 36797801 PMCID: PMC10315305 DOI: 10.1093/plphys/kiad100] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/04/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule that delays color change during fruit ripening. Whether H2S affects anthocyanin biosynthesis in red-skinned pears (Pyrus L.) remains unclear. Here, we found that H2S substantially inhibits anthocyanin accumulation in red-skinned pears and the expression of several genes encoding transcription factors is affected in response to H2S signaling. For example, PyMYB10 and PyMYB73 were down-regulated, whereas PyMYB114 and PyMYB6 were up-regulated. Bioinformatics analysis showed that PyMYB73 and PyMYB6, each containing an EAR motif, may negatively regulate anthocyanin accumulation. Transient expression analysis showed that PyMYB73 substantially promotes anthocyanin biosynthesis by co-transforming with PyMYB10/PyMYB114 + PybHLH3; however, PyMYB6 inhibited anthocyanin biosynthesis in strawberry (Fragaria vesca) receptacles and pear fruits, and PyMYB73 interacted with PyMYB10 and PyMYB6 but not PyMYB114 or PybHLH3. Further investigation showed that Cys194 and Cys218 of PyMYB10 were modified by persulfidation and that PyMYB10Cys218Ala substantially increased anthocyanin accumulation by a transient transformation system. Co-transformation of PyMYB10Cys218Ala + PyMYB73/PyMYB6 also promoted anthocyanin accumulation in pear fruits. Yeast two-hybrid assays showed that the mutation of PyMYB10 did not affect the interaction between PyMYB10 and PyMYB73, but it inhibited interaction with PyMYB6. Moreover, H2S weakened the interaction between PyMYB10 and PyMYB73 but enhanced the interaction with PyMYB6. Thus, we provided a model in which PyMYB10 undergoes persulfidation at Cys218, enhancing the interaction with PyMYB6 and reducing the interaction with PyMYB73. These subsequently results in lower expression of the anthocyanin biosynthesis-related genes Pyrus dihydroflavonol 4-reductase (PyDFR), Pyrus anthocyanidin synthase (PyANS), Pyrus UDP-glucose: flavonoid 3-glucosyl transferase (PyUFGT) and Pyrus glutathione S-transferase (PyGST), thereby inhibiting anthocyanin accumulation in red-skinned pears. Our findings provided a molecular mechanism for H2S-mediated anthocyanin biosynthesis in red-skinned pears.
Collapse
Affiliation(s)
- Gaifang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shasha Gou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Tingying Zhong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shuwei Wei
- Shandong Institute of Pomology, Tai’an 271000, China
| | - Xin An
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hongye Sun
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chen Sun
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kangdi Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
45
|
Ozyigit II, Dogan I, Hocaoglu-Ozyigit A, Yalcin B, Erdogan A, Yalcin IE, Cabi E, Kaya Y. Production of secondary metabolites using tissue culture-based biotechnological applications. FRONTIERS IN PLANT SCIENCE 2023; 14:1132555. [PMID: 37457343 PMCID: PMC10339834 DOI: 10.3389/fpls.2023.1132555] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/22/2023] [Indexed: 07/18/2023]
Abstract
Plants are the sources of many bioactive secondary metabolites which are present in plant organs including leaves, stems, roots, and flowers. Although they provide advantages to the plants in many cases, they are not necessary for metabolisms related to growth, development, and reproduction. They are specific to plant species and are precursor substances, which can be modified for generations of various compounds in different plant species. Secondary metabolites are used in many industries, including dye, food processing and cosmetic industries, and in agricultural control as well as being used as pharmaceutical raw materials by humans. For this reason, the demand is high; therefore, they are needed to be obtained in large volumes and the large productions can be achieved using biotechnological methods in addition to production, being done with classical methods. For this, plant biotechnology can be put in action through using different methods. The most important of these methods include tissue culture and gene transfer. The genetically modified plants are agriculturally more productive and are commercially more effective and are valuable tools for industrial and medical purposes as well as being the sources of many secondary metabolites of therapeutic importance. With plant tissue culture applications, which are also the first step in obtaining transgenic plants with having desirable characteristics, it is possible to produce specific secondary metabolites in large-scale through using whole plants or using specific tissues of these plants in laboratory conditions. Currently, many studies are going on this subject, and some of them receiving attention are found to be taken place in plant biotechnology and having promising applications. In this work, particularly benefits of secondary metabolites, and their productions through tissue culture-based biotechnological applications are discussed using literature with presence of current studies.
Collapse
Affiliation(s)
| | - Ilhan Dogan
- Department of Medical Services and Techniques, Akyazi Vocational School of Health Services, Sakarya University of Applied Science, Sakarya, Türkiye
| | - Asli Hocaoglu-Ozyigit
- Department of Biology, Faculty of Science, Marmara University, Istanbul, Türkiye
- Biology Program, Institute of Pure and Applied Sciences, Tekirdag Namık Kemal University, Tekirdag, Türkiye
| | - Bestenur Yalcin
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Bahcesehir University, Istanbul, Türkiye
| | - Aysegul Erdogan
- Application and Research Centre for Testing and Analysis, EGE MATAL, Chromatography and Spectroscopy Laboratory, Ege University, Izmir, Türkiye
| | - Ibrahim Ertugrul Yalcin
- Department of Civil Engineering, Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Türkiye
| | - Evren Cabi
- Department of Biology, Faculty of Arts and Sciences, Tekirdag Namık Kemal University, Tekirdag, Türkiye
| | - Yilmaz Kaya
- Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Türkiye
| |
Collapse
|
46
|
Sun P, Yang C, Zhu W, Wu J, Lin X, Wang Y, Zhu J, Chen C, Zhou K, Qian M, Shen J. Metabolome, Plant Hormone, and Transcriptome Analyses Reveal the Mechanism of Spatial Accumulation Pattern of Anthocyanins in Peach Flesh. Foods 2023; 12:2297. [PMID: 37372513 DOI: 10.3390/foods12122297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Anthocyanins are important secondary metabolites in fruits, and anthocyanin accumulation in the flesh of peach exhibits a spatial pattern, but the relevant mechanism is still unknown. In this study, the yellow-fleshed peach, cv. 'Jinxiu', with anthocyanin accumulation in the mesocarp around the stone was used as the experimental material. Red flesh (RF) and yellow flesh (YF) were sampled separately for flavonoid metabolite (mainly anthocyanins), plant hormone, and transcriptome analyses. The results showed that the red coloration in the mesocarp was due to the accumulation of cyanidin-3-O-glucoside, with an up-regulation of anthocyanin biosynthetic genes (F3H, F3'H, DFR, and ANS), transportation gene GST, and regulatory genes (MYB10.1 and bHLH3). Eleven ERFs, nine WRKYs, and eight NACs were also defined as the candidate regulators of anthocyanin biosynthesis in peach via RNA-seq. Auxin, cytokinin, abscisic acid (ABA), salicylic acid (SA), and 1-aminocyclopropane-1-carboxylic acid (ACC, ethylene precursor) were enriched in the peach flesh, with auxin, cytokinin, ACC, and SA being highly accumulated in the RF, but ABA was mainly distributed in the YF. The activators and repressors in the auxin and cytokinin signaling transduction pathways were mostly up-regulated and down-regulated, respectively. Our results provide new insights into the regulation of spatial accumulation pattern of anthocyanins in peach flesh.
Collapse
Affiliation(s)
- Ping Sun
- Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua 321000, China
| | - Chengkun Yang
- Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, Department of Horticulture, School of Horticulture, Haidian Campus, Hainan University, Haikou 570228, China
| | - Wencan Zhu
- Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, Department of Horticulture, School of Horticulture, Haidian Campus, Hainan University, Haikou 570228, China
| | - Jiaqi Wu
- Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua 321000, China
| | - Xianrui Lin
- Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua 321000, China
| | - Yi Wang
- Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua 321000, China
| | - Jianxi Zhu
- Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua 321000, China
| | - Chenfei Chen
- Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua 321000, China
| | - Kaibing Zhou
- Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, Department of Horticulture, School of Horticulture, Haidian Campus, Hainan University, Haikou 570228, China
| | - Minjie Qian
- Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, Department of Horticulture, School of Horticulture, Haidian Campus, Hainan University, Haikou 570228, China
| | - Jiansheng Shen
- Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua 321000, China
| |
Collapse
|
47
|
Jin Y, Liao M, Li N, Ma X, Zhang H, Han J, Li D, Yang J, Lu X, Long G, Deng Z, Sheng L. Weighted gene coexpression correlation network analysis reveals the potential molecular regulatory mechanism of citrate and anthocyanin accumulation between postharvest 'Bingtangcheng' and 'Tarocco' blood orange fruit. BMC PLANT BIOLOGY 2023; 23:296. [PMID: 37268922 DOI: 10.1186/s12870-023-04309-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Organic acids and anthocyanins are the most important compounds for the flavor and nutritional quality of citrus fruit. However, there are few reports on the involvement of co-regulation of citrate and anthocyanin metabolism. Here, we performed a comparative transcriptome analysis to elucidate the genes and pathways involved in both citrate and anthocyanin accumulation in postharvest citrus fruit with 'Tarocco' blood orange (TBO; high accumulation) and 'Bingtangcheng' sweet orange (BTSO; low accumulation). RESULTS A robust core set of 825 DEGs were found to be temporally associated with citrate and anthocyanin accumulation throughout the storage period through transcriptome analysis. Further according to the results of weighted gene coexpression correlation network analysis (WGCNA), the turquoise and brown module was highly positively correlated with both of the content of citrate and anthocyanin, and p-type ATPase (PH8), phosphoenolpyruvate carboxylase kinase (PEPCK), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonoid 3'-hydroxylase (F3'H) and glutathione S transferase (GST) were considered key structural genes. Moreover, MYB family transcription factor (PH4), Zinc finger PHD-type transcription factor (CHR4, HAC12), Zinc finger SWIM-type transcription factor (FAR1) and Zinc finger C3H1-type transcription factor (ATC3H64) were considered hub genes related to these structural genes. Further qRT-PCR analysis verified that these transcription factors were highly expressed in TBO fruit and their expression profiles were significantly positively correlated with the structural genes of citrate and anthocyanin metabolism as well as the content of citrate and anthocyanin content. CONCLUSIONS The findings suggest that the CHR4, FAR1, ATC3H64 and HAC12 may be the new transcription regulators participate in controlling the level of citrate and anthocyanin in postharvest TBO fruit in addition to PH4. These results may providing new insight into the regulation mechanism of citrate and anthocyanin accumulation in citrus fruit.
Collapse
Affiliation(s)
- Yan Jin
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Manyu Liao
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Na Li
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Xiaoqian Ma
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Huimin Zhang
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Jian Han
- Hunan Horticultural Research Institute, Changsha, CS, China
| | - Dazhi Li
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Junfeng Yang
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Xiaopeng Lu
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Guiyou Long
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Ziniu Deng
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Ling Sheng
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China.
| |
Collapse
|
48
|
He G, Zhang R, Jiang S, Wang H, Ming F. The MYB transcription factor RcMYB1 plays a central role in rose anthocyanin biosynthesis. HORTICULTURE RESEARCH 2023; 10:uhad080. [PMID: 37323234 PMCID: PMC10261888 DOI: 10.1093/hr/uhad080] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/13/2023] [Indexed: 06/17/2023]
Abstract
Rose (Rosa hybrida) is one of most famous ornamental plants in the world, and its commodity value largely depends on its flower color. However, the regulatory mechanism underlying rose flower color is still unclear. In this study, we found that a key R2R3-MYB transcription factor, RcMYB1, plays a central role in rose anthocyanin biosynthesis. Overexpression of RcMYB1 significantly promoted anthocyanin accumulation in both white rose petals and tobacco leaves. In 35S:RcMYB1 transgenic lines, a significant accumulation of anthocyanins occurred in leaves and petioles. We further identified two MBW complexes (RcMYB1-RcBHLH42-RcTTG1; RcMYB1-RcEGL1-RcTTG1) associated with anthocyanin accumulation. Yeast one-hybrid and luciferase assays showed that RcMYB1 could active its own gene promoter and those of other EBGs (early anthocyanin biosynthesis genes) and LBGs (late anthocyanin biosynthesis genes). In addition, both of the MBW complexes enhanced the transcriptional activity of RcMYB1 and LBGs. Interestingly, our results also indicate that RcMYB1 is involved in the metabolic regulation of carotenoids and volatile aroma. In summary, we found that RcMYB1 widely participates in the transcriptional regulation of ABGs (anthocyanin biosynthesis genes), indicative of its central role in the regulation of anthocyanin accumulation in rose. Our results provide a theoretical basis for the further improvement of the flower color trait in rose by breeding or genetic modification.
Collapse
Affiliation(s)
| | | | - Shenghang Jiang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Huanhuan Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | | |
Collapse
|
49
|
Ni J, Wang S, Yu W, Liao Y, Pan C, Zhang M, Tao R, Wei J, Gao Y, Wang D, Bai S, Teng Y. The ethylene-responsive transcription factor PpERF9 represses PpRAP2.4 and PpMYB114 via histone deacetylation to inhibit anthocyanin biosynthesis in pear. THE PLANT CELL 2023; 35:2271-2292. [PMID: 36916511 DOI: 10.1093/plcell/koad077] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 05/30/2023]
Abstract
Ethylene induces anthocyanin biosynthesis in most fruits, including apple (Malus domestica) and plum (Prunus spp.). By contrast, ethylene inhibits anthocyanin biosynthesis in pear (Pyrus spp.), but the underlying molecular mechanism remains unclear. In this study, we identified and characterized an ethylene-induced ETHYLENE RESPONSE FACTOR (ERF) transcription factor, PpETHYLENE RESPONSE FACTOR9 (PpERF9), which functions as a transcriptional repressor. Our analyses indicated PpERF9 can directly inhibit expression of the MYB transcription factor gene PpMYB114 by binding to its promoter. Additionally, PpERF9 inhibits the expression of the transcription factor gene PpRELATED TO APETALA2.4 (PpRAP2.4), which activates PpMYB114 expression, by binding to its promoter, thus forming a PpERF9-PpRAP2.4-PpMYB114 regulatory circuit. Furthermore, PpERF9 interacts with the co-repressor PpTOPLESS1 (PpTPL1) via EAR motifs to form a complex that removes the acetyl group on histone H3 and maintains low levels of acetylated H3 in the PpMYB114 and PpRAP2.4 promoter regions. The resulting suppressed expression of these 2 genes leads to decreased anthocyanin biosynthesis in pear. Collectively, these results indicate that ethylene inhibits anthocyanin biosynthesis by a mechanism that involves PpERF9-PpTPL1 complex-mediated histone deacetylation of PpMYB114 and PpRAP2.4. The data presented herein will be useful for clarifying the relationship between chromatin status and hormone signaling, with implications for plant biology research.
Collapse
Affiliation(s)
- Junbei Ni
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, People's Republic of China
| | - Simai Wang
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, People's Republic of China
| | - Wenjie Yu
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, People's Republic of China
| | - Yifei Liao
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya 572000, People's Republic of China
| | - Chen Pan
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya 572000, People's Republic of China
| | - Manman Zhang
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya 572000, People's Republic of China
| | - Ruiyan Tao
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, People's Republic of China
| | - Jia Wei
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, People's Republic of China
| | - Yuhao Gao
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, People's Republic of China
| | - Dongsheng Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China
| | - Songling Bai
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, People's Republic of China
| | - Yuanwen Teng
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya 572000, People's Republic of China
| |
Collapse
|
50
|
Shin SY, Lee CM, Kim HS, Kim C, Jeon JH, Lee HJ. Ethylene signals modulate the survival of Arabidopsis leaf explants. BMC PLANT BIOLOGY 2023; 23:281. [PMID: 37237253 DOI: 10.1186/s12870-023-04299-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Leaf explants are major materials in plant tissue cultures. Incubation of detached leaves on phytohormone-containing media, which is an important process for producing calli and regenerating plants, change their cell fate. Although hormone signaling pathways related to cell fate transition have been widely studied, other molecular and physiological events occurring in leaf explants during this process remain largely unexplored. RESULTS Here, we identified that ethylene signals modulate expression of pathogen resistance genes and anthocyanin accumulation in leaf explants, affecting their survival during culture. Anthocyanins accumulated in leaf explants, but were not observed near the wound site. Ethylene signaling mutant analysis revealed that ethylene signals are active and block anthocyanin accumulation in the wound site. Moreover, expression of defense-related genes increased, particularly near the wound site, implying that ethylene induces defense responses possibly by blocking pathogenesis via wounding. We also found that anthocyanin accumulation in non-wounded regions is required for drought resistance in leaf explants. CONCLUSIONS Our study revealed the key roles of ethylene in the regulation of defense gene expression and anthocyanin biosynthesis in leaf explants. Our results suggest a survival strategy of detached leaves, which can be applied to improve the longevity of explants during tissue culture.
Collapse
Affiliation(s)
- Seung Yong Shin
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Korea
| | - Chae-Min Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
- Department of Crop Science, Chungnam National University, Daejeon, 34134, Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Korea
| | - Changsoo Kim
- Department of Crop Science, Chungnam National University, Daejeon, 34134, Korea
| | - Jae-Heung Jeon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Korea.
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|