1
|
Badawy M, Kim IT, Amir A, Herzallah MM, Gomez-Alatorre LF, Headley DB, Paré D. Major individual and regional variations in unit entrainment by oscillations of different frequencies. Sci Rep 2025; 15:1772. [PMID: 39800772 PMCID: PMC11725598 DOI: 10.1038/s41598-025-85914-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
In vitro studies have shown that a neuron's electroresponsive properties can predispose it to oscillate at specific frequencies. In contrast, network activity in vivo can entrain neurons to rhythms that their biophysical properties do not predispose them to favor. However, there is limited information on the comparative frequency profile of unit entrainment across brain regions. Therefore, this study aimed to characterize the frequency profile of unit entrainment in cortex, thalamus, striatum, and basolateral amygdala (BLA) in rats of either sex. Neurons recorded simultaneously in a given brain region and behavioral state generally had very similar frequency profiles of unit entrainment. While cortical, striatal, and thalamic neurons were more strongly entrained by low than high local field potential (LFP) frequencies, increases in the power of these oscillations were linked to decreased firing rates for low frequencies versus increased firing rates for high frequencies. Deviating from this general trend, BLA neurons were more strongly entrained by high gamma than all other frequency bands in all subjects and states. By contrast, neurons in other regions displayed marked inter-individual variability. That is, although neurons in some regions had exceptionally high entrainment values in particular frequency bands, these were not observed consistently across rats. Based on these findings, some might infer that oscillations play a minor role or that different oscillatory patterns can support the same functions. Alternatively, the oscillations critical to brain function could be those not investigated here, namely those arising transiently in response to specific task variables or contexts. Perhaps those are less susceptible to genetic variations. While our findings do not allow us to determine which explanation is correct, they do highlight the perils of averaging.
Collapse
Affiliation(s)
- Mohamed Badawy
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA
| | - Ian T Kim
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA
| | - Alon Amir
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA
| | - Mohammad M Herzallah
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA
- Palestinian Neuroscience Initiative, Al-Quds University, Jerusalem, Palestine
| | - Luisa F Gomez-Alatorre
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA
| | - Drew B Headley
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA
| | - Denis Paré
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA.
- Center for Molecular & Behavioral Neuroscience, Rutgers University-Newark, 197 University Avenue, Newark, NJ, 07102, USA.
| |
Collapse
|
2
|
Rustamov N, Souders L, Sheehan L, Carter A, Leuthardt EC. IpsiHand Brain-Computer Interface Therapy Induces Broad Upper Extremity Motor Rehabilitation in Chronic Stroke. Neurorehabil Neural Repair 2025; 39:74-86. [PMID: 39345118 PMCID: PMC11723815 DOI: 10.1177/15459683241287731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
BACKGROUND Chronic hemiparetic stroke patients have very limited benefits from current therapies. Brain-computer interface (BCI) engaging the unaffected hemisphere has emerged as a promising novel therapeutic approach for chronic stroke rehabilitation. OBJECTIVES This study investigated the effectiveness of contralesionally-controlled BCI therapy in chronic stroke patients with impaired upper extremity motor function. We further explored neurophysiological features of motor recovery driven by BCI. We hypothesized that BCI therapy would induce a broad motor recovery in the upper extremity, and there would be corresponding changes in baseline theta and gamma oscillations, which have been shown to be associated with motor recovery. METHODS Twenty-six prospectively enrolled chronic hemiparetic stroke patients performed a therapeutic BCI task for 12 weeks. Motor function assessment data and resting state electroencephalogram signals were acquired before initiating BCI therapy and across BCI therapy sessions. The Upper Extremity Fugl-Meyer assessment served as a primary motor outcome assessment tool. Theta-gamma cross-frequency coupling (CFC) was computed and correlated with motor recovery. RESULTS Chronic stroke patients achieved significant motor improvement in both proximal and distal upper extremity with BCI therapy. Motor function improvement was independent of Botox application. Theta-gamma CFC enhanced bilaterally over the C3/C4 motor electrodes and positively correlated with motor recovery across BCI therapy sessions. CONCLUSIONS BCI therapy resulted in significant motor function improvement across the proximal and distal upper extremities of patients, which significantly correlated with theta-gamma CFC increases in the motor regions. This may represent rhythm-specific cortical oscillatory mechanism for BCI-driven rehabilitation in chronic stroke patients. TRIAL REGISTRATION Advarra Study: https://classic.clinicaltrials.gov/ct2/show/NCT04338971 and Washington University Study: https://classic.clinicaltrials.gov/ct2/show/NCT03611855.
Collapse
Affiliation(s)
- Nabi Rustamov
- Division of Neurotechnology, Department of Neurological Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Center for Innovation in Neuroscience and Technology, Division of Neurotechnology, Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - Alexandre Carter
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Eric C. Leuthardt
- Division of Neurotechnology, Department of Neurological Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Center for Innovation in Neuroscience and Technology, Division of Neurotechnology, Washington University in St. Louis, St. Louis, MO, USA
- Neurolutions, Inc. St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
3
|
Gomez-Frittelli J, Devienne G, Travis L, Kyloh MA, Duan X, Hibberd TJ, Spencer NJ, Huguenard JR, Kaltschmidt JA. Synaptic cell adhesion molecule Cdh6 identifies a class of sensory neurons with novel functions in colonic motility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606748. [PMID: 39149241 PMCID: PMC11326146 DOI: 10.1101/2024.08.06.606748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Intrinsic sensory neurons are an essential part of the enteric nervous system (ENS) and play a crucial role in gastrointestinal tract motility and digestion. Neuronal subtypes in the ENS have been distinguished by their electrophysiological properties, morphology, and expression of characteristic markers, notably neurotransmitters and neuropeptides. Here we investigated synaptic cell adhesion molecules as novel cell type markers in the ENS. Our work identifies two Type II classic cadherins, Cdh6 and Cdh8, specific to sensory neurons in the mouse colon. We show that Cdh6+ neurons demonstrate all other distinguishing classifications of enteric sensory neurons including marker expression of Calcb and Nmu, Dogiel type II morphology and AH-type electrophysiology and I H current. Optogenetic activation of Cdh6+ sensory neurons in distal colon evokes retrograde colonic motor complexes (CMCs), while pharmacologic blockade of rhythmicity-associated current I H disrupts the spontaneous generation of CMCs. These findings provide the first demonstration of selective activation of a single neurochemical and functional class of enteric neurons, and demonstrate a functional and critical role for sensory neurons in the generation of CMCs.
Collapse
Affiliation(s)
- Julieta Gomez-Frittelli
- Department of Chemical Engineering, Stanford University; Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA, USA
| | - Gabrielle Devienne
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA, USA
- Department of Neurology & Neurological Sciences, Stanford University; Stanford, CA, USA
| | - Lee Travis
- College of Medicine and Public Health, Flinders University; Adelaide, Australia
| | - Melinda A. Kyloh
- College of Medicine and Public Health, Flinders University; Adelaide, Australia
| | - Xin Duan
- Department of Ophthalmology, School of Medicine, University of California San Francisco; San Francisco, CA, USA
| | - Tim J. Hibberd
- College of Medicine and Public Health, Flinders University; Adelaide, Australia
| | - Nick J. Spencer
- College of Medicine and Public Health, Flinders University; Adelaide, Australia
| | - John R. Huguenard
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA, USA
- Department of Neurology & Neurological Sciences, Stanford University; Stanford, CA, USA
| | - Julia A. Kaltschmidt
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA, USA
- Department of Neurosurgery, Stanford University School of Medicine; Stanford, CA, USA
| |
Collapse
|
4
|
Schapiro K, Rittenberg JD, Kenngott M, Marder E. I h block reveals separation of timescales in pyloric rhythm response to temperature changes in Cancer borealis. eLife 2024; 13:RP98844. [PMID: 39404608 PMCID: PMC11479588 DOI: 10.7554/elife.98844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Motor systems operate over a range of frequencies and relative timing (phase). We studied the role of the hyperpolarization-activated inward current (Ih) in regulating these features in the pyloric rhythm of the stomatogastric ganglion (STG) of the crab, Cancer borealis, as temperature was altered from 11°C to 21°C. Under control conditions, rhythm frequency increased monotonically with temperature, while the phases of the pyloric dilator (PD), lateral pyloric (LP), and pyloric (PY) neurons remained constant. Blocking Ih with cesium (Cs+) phase advanced PD offset, LP onset, and LP offset at 11°C, and the latter two further advanced as temperature increased. In Cs+ the frequency increase with temperature diminished and the Q10 of the frequency dropped from ~1.75 to ~1.35. Unexpectedly in Cs+, the frequency dynamics became non-monotonic during temperature transitions; frequency initially dropped as temperature increased, then rose once temperature stabilized, creating a characteristic 'jag'. Interestingly, these jags persisted during temperature transitions in Cs+ when the pacemaker was isolated by picrotoxin, although the temperature-induced change in frequency recovered to control levels. Overall, these data suggest that Ih plays an important role in maintaining smooth transitory responses and persistent frequency increases by different mechanisms in the pyloric circuitry during temperature fluctuations.
Collapse
Affiliation(s)
- Kyra Schapiro
- Biology Department, Brandeis UniversityWalthamUnited States
| | - JD Rittenberg
- Biology Department, Brandeis UniversityWalthamUnited States
| | - Max Kenngott
- Biology Department, Brandeis UniversityWalthamUnited States
| | - Eve Marder
- Biology Department, Brandeis UniversityWalthamUnited States
- Volen Center and Biology Department, Brandeis UniversityWalthamUnited States
| |
Collapse
|
5
|
Bean BP. Mechanisms of pacemaking in mammalian neurons. J Physiol 2024. [PMID: 39303139 DOI: 10.1113/jp284759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
Many neurons in the mammalian brain show pacemaking activity: rhythmic generation of action potentials in the absence of sensory or synaptic input. Slow pacemaking of neurons releasing modulatory transmitters is easy to rationalize. More surprisingly, many neurons in the motor system also show pacemaking activity, often rapid, including cerebellar Purkinje neurons that fire spontaneously at 20-100 Hz, as well as key neurons in the basal ganglia, including subthalamic nucleus neurons and globus pallidus neurons. Although the spontaneous rhythmic firing of pacemaking neurons is phenomenologically similar to cardiac pacemaking, the underlying ionic mechanism in most neurons is quite different than for cardiac pacemaking. Few spontaneously active neurons rely on HCN 'pacemaker' channels for their activity. Most commonly, a central element is 'persistent' sodium current, steady-state subthreshold current carried by the same voltage-dependent sodium channels that underlie fast action potentials. Persistent sodium current is a steeply voltage-dependent current with a midpoint near -60 mV, which results in regenerative spontaneous depolarization once it produces a net inward current when summed with all other background currents, often at voltages as negative as -70 mV. This 'engine' of pacemaking is present in almost all neurons and must be held in check in non-pacemaking neurons by sufficiently large competing outward currents from background potassium channels. The intrinsic propensity of neurons to fire spontaneously underlies key normal functions such as respiration and generates the complex background oscillatory circuits revealed in EEGs, but can also produce out-of-control oscillations of overall brain function in epilepsy, ataxia and tremor.
Collapse
Affiliation(s)
- Bruce P Bean
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Aguirre-Rodríguez CA, Delgado A, Alatorre A, Oviedo-Chávez A, Martínez-Escudero JR, Barrientos R, Querejeta E. Local activation of CB1 receptors by synthetic and endogenous cannabinoids dampens burst firing mode of reticular thalamic nucleus neurons in rats under ketamine anesthesia. Exp Brain Res 2024; 242:2137-2157. [PMID: 38980339 DOI: 10.1007/s00221-024-06889-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
The reticular thalamic nucleus (RTN) is a thin shell that covers the dorsal thalamus and controls the overall information flow from the thalamus to the cerebral cortex through GABAergic projections that contact thalamo-cortical neurons (TC). RTN neurons receive glutamatergic afferents fibers from neurons of the sixth layer of the cerebral cortex and from TC collaterals. The firing mode of RTN neurons facilitates the generation of sleep-wake cycles; a tonic mode or desynchronized mode occurs during wake and REM sleep and a burst-firing mode or synchronized mode is associated with deep sleep. Despite the presence of cannabinoid receptors CB1 (CB1Rs) and mRNA that encodes these receptors in RTN neurons, there are few works that have analyzed the participation of endocannabinoid-mediated transmission on the electrical activity of RTN. Here, we locally blocked or activated CB1Rs in ketamine anesthetized rats to analyze the spontaneous extracellular spiking activity of RTN neurons. Our results show the presence of a tonic endocannabinoid input, since local infusion of AM 251, an antagonist/inverse agonist, modifies RTN neurons electrical activity; furthermore, local activation of CB1Rs by anandamide or WIN 55212-2 produces heterogeneous effects in the basal spontaneous spiking activity, where the main effect is an increase in the spiking rate accompanied by a decrease in bursting activity in a dose-dependent manner; this effect is inhibited by AM 251. In addition, previous activation of GABA-A receptors suppresses the effects of CB1Rs on reticular neurons. Our results show that local activation of CB1Rs primarily diminishes the burst firing mode of RTn neurons.
Collapse
Affiliation(s)
- Carlos A Aguirre-Rodríguez
- Sección de Investigación y Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Alfonso Delgado
- Departamento de Fisiología Experimental, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, 31127, Chihuahua, Chihuahua, México
| | - Alberto Alatorre
- Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
- Sección de Investigación y Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Aldo Oviedo-Chávez
- Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
- Sección de Investigación y Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
| | - José R Martínez-Escudero
- Sección de Investigación y Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Rafael Barrientos
- Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
- Sección de Investigación y Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Enrique Querejeta
- Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México.
- Sección de Investigación y Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México.
| |
Collapse
|
7
|
Schapiro KA, Rittenberg JD, Kenngott M, Marder E. I h Block Reveals Separation of Timescales in Pyloric Rhythm Response to Temperature Changes in Cancer borealis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592541. [PMID: 38766157 PMCID: PMC11100622 DOI: 10.1101/2024.05.04.592541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Motor systems operate over a range of frequencies and relative timing (phase). We studied the contribution of the hyperpolarization-activated inward current (Ih) to frequency and phase in the pyloric rhythm of the stomatogastric ganglion (STG) of the crab, Cancer borealis as temperature was altered from 11°C to 21°C. Under control conditions, the frequency of the rhythm increased monotonically with temperature, while the phases of the pyloric dilator (PD), lateral pyloric (LP), and pyloric (PY) neurons remained constant. When we blocked Ih with cesium (Cs+) PD offset, LP onset, and LP offset were all phase advanced in Cs+ at 11°C, and the latter two further advanced as temperature increased. In Cs+ the steady state increase in pyloric frequency with temperature diminished and the Q10 of the pyloric frequency dropped from ~1.75 to ~1.35. Unexpectedly in Cs+, the frequency displayed non-monotonic dynamics during temperature transitions; the frequency initially dropped as temperature increased, then rose once temperature stabilized, creating a characteristic "jag". Interestingly, these jags were still present during temperature transitions in Cs+ when the pacemaker was isolated by picrotoxin, although the temperature-induced change in frequency recovered to control levels. Overall, these data suggest that Ih plays an important role in the ability of this circuit to produce smooth transitory responses and persistent frequency increases by different mechanisms during temperature fluctuations.
Collapse
Affiliation(s)
- Kyra A Schapiro
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454 USA
| | - J D Rittenberg
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454 USA
| | - Max Kenngott
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454 USA
| | - Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454 USA
| |
Collapse
|
8
|
Mushtaq M, Marshall L, ul Haq R, Martinetz T. Possible mechanisms to improve sleep spindles via closed loop stimulation during slow wave sleep: A computational study. PLoS One 2024; 19:e0306218. [PMID: 38924001 PMCID: PMC11207127 DOI: 10.1371/journal.pone.0306218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Sleep spindles are one of the prominent EEG oscillatory rhythms of non-rapid eye movement sleep. In the memory consolidation, these oscillations have an important role in the processes of long-term potentiation and synaptic plasticity. Moreover, the activity (spindle density and/or sigma power) of spindles has a linear association with learning performance in different paradigms. According to the experimental observations, the sleep spindle activity can be improved by closed loop acoustic stimulations (CLAS) which eventually improve memory performance. To examine the effects of CLAS on spindles, we propose a biophysical thalamocortical model for slow oscillations (SOs) and sleep spindles. In addition, closed loop stimulation protocols are applied on a thalamic network. Our model results show that the power of spindles is increased when stimulation cues are applied at the commencing of an SO Down-to-Up-state transition, but that activity gradually decreases when cues are applied with an increased time delay from this SO phase. Conversely, stimulation is not effective when cues are applied during the transition of an Up-to-Down-state. Furthermore, our model suggests that a strong inhibitory input from the reticular (RE) layer to the thalamocortical (TC) layer in the thalamic network shifts leads to an emergence of spindle activity at the Up-to-Down-state transition (rather than at Down-to-Up-state transition), and the spindle frequency is also reduced (8-11 Hz) by thalamic inhibition.
Collapse
Affiliation(s)
| | - Lisa Marshall
- Institute of Experimental and Clinical Pharmacology, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, Lübeck, Germany
- University Clinic Hospital Schleswig Holstein, Lübeck, Germany
| | - Rizwan ul Haq
- Department of Pharmacy, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Thomas Martinetz
- Institute for Neuro- and Bioinformatics, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, Lübeck, Germany
| |
Collapse
|
9
|
Guo B, Liu T, Choi S, Mao H, Wang W, Xi K, Jones C, Hartley ND, Feng D, Chen Q, Liu Y, Wimmer RD, Xie Y, Zhao N, Ou J, Arias-Garcia MA, Malhotra D, Liu Y, Lee S, Pasqualoni S, Kast RJ, Fleishman M, Halassa MM, Wu S, Fu Z. Restoring thalamocortical circuit dysfunction by correcting HCN channelopathy in Shank3 mutant mice. Cell Rep Med 2024; 5:101534. [PMID: 38670100 PMCID: PMC11149412 DOI: 10.1016/j.xcrm.2024.101534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/11/2023] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Thalamocortical (TC) circuits are essential for sensory information processing. Clinical and preclinical studies of autism spectrum disorders (ASDs) have highlighted abnormal thalamic development and TC circuit dysfunction. However, mechanistic understanding of how TC dysfunction contributes to behavioral abnormalities in ASDs is limited. Here, our study on a Shank3 mouse model of ASD reveals TC neuron hyperexcitability with excessive burst firing and a temporal mismatch relationship with slow cortical rhythms during sleep. These TC electrophysiological alterations and the consequent sensory hypersensitivity and sleep fragmentation in Shank3 mutant mice are causally linked to HCN2 channelopathy. Restoring HCN2 function early in postnatal development via a viral approach or lamotrigine (LTG) ameliorates sensory and sleep problems. A retrospective case series also supports beneficial effects of LTG treatment on sensory behavior in ASD patients. Our study identifies a clinically relevant circuit mechanism and proposes a targeted molecular intervention for ASD-related behavioral impairments.
Collapse
Affiliation(s)
- Baolin Guo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tiaotiao Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Soonwook Choi
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Honghui Mao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Kaiwen Xi
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Carter Jones
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nolan D Hartley
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Dayun Feng
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Qian Chen
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Yingying Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ralf D Wimmer
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Yuqiao Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ningxia Zhao
- Xi'an TCM Hospital of Encephalopathy, Shaanxi University of Chinese Medicine, Xi'an 710032, China
| | - Jianjun Ou
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, National Clinical Research Center for Mental Disorders, Changsha 410011, China
| | - Mario A Arias-Garcia
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Diya Malhotra
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yang Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Sihak Lee
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sammuel Pasqualoni
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ryan J Kast
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Morgan Fleishman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael M Halassa
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Zhanyan Fu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
10
|
Südkamp N, Shchyglo O, Manahan-Vaughan D. GluN2A or GluN2B subunits of the NMDA receptor contribute to changes in neuronal excitability and impairments in LTP in the hippocampus of aging mice but do not mediate detrimental effects of oligomeric Aβ (1-42). Front Aging Neurosci 2024; 16:1377085. [PMID: 38832073 PMCID: PMC11144909 DOI: 10.3389/fnagi.2024.1377085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/26/2024] [Indexed: 06/05/2024] Open
Abstract
Studies in rodent models have revealed that oligomeric beta-amyloid protein [Aβ (1-42)] plays an important role in the pathogenesis of Alzheimer's disease. Early elevations in hippocampal neuronal excitability caused by Aβ (1-42) have been proposed to be mediated via enhanced activation of GluN2B-containing N-methyl-D-aspartate receptors (NMDAR). To what extent GluN2A or GluN2B-containing NMDAR contribute to Aβ (1-42)-mediated impairments of hippocampal function in advanced rodent age is unclear. Here, we assessed hippocampal long-term potentiation (LTP) and neuronal responses 4-5 weeks after bilateral intracerebral inoculation of 8-15 month old GluN2A+/- or GluN2B+/- transgenic mice with oligomeric Aβ (1-42), or control peptide. Whole-cell patch-clamp recordings in CA1 pyramidal neurons revealed a more positive resting membrane potential and increased total spike time in GluN2A+/-, but not GluN2B+/--hippocampi following treatment with Aβ (1-42) compared to controls. Action potential 20%-width was increased, and the descending slope was reduced, in Aβ-treated GluN2A+/-, but not GluN2B+/- hippocampi. Sag ratio was increased in Aβ-treated GluN2B+/--mice. Firing frequency was unchanged in wt, GluN2A+/-, and GluN2B+/-hippocampi after Aβ-treatment. Effects were not significantly different from responses detected under the same conditions in wt littermates, however. LTP that lasted for over 2 h in wt hippocampal slices was significantly reduced in GluN2A+/- and was impaired for 15 min in GluN2B+/--hippocampi compared to wt littermates. Furthermore, LTP (>2 h) was significantly impaired in Aβ-treated hippocampi of wt littermates compared to wt treated with control peptide. LTP induced in Aβ-treated GluN2A+/- and GluN2B+/--hippocampi was equivalent to LTP in control peptide-treated transgenic and Aβ-treated wt animals. Taken together, our data indicate that knockdown of GluN2A subunits subtly alters membrane properties of hippocampal neurons and reduces the magnitude of LTP. GluN2B knockdown reduces the early phase of LTP but leaves later phases intact. Aβ (1-42)-treatment slightly exacerbates changes in action potential properties in GluN2A+/--mice. However, the vulnerability of the aging hippocampus to Aβ-mediated impairments of LTP is not mediated by GluN2A or GluN2B-containing NMDAR.
Collapse
|
11
|
Russo S, Claar L, Marks L, Krishnan G, Furregoni G, Zauli FM, Hassan G, Solbiati M, d’Orio P, Mikulan E, Sarasso S, Rosanova M, Sartori I, Bazhenov M, Pigorini A, Massimini M, Koch C, Rembado I. Thalamic feedback shapes brain responses evoked by cortical stimulation in mice and humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578243. [PMID: 38352535 PMCID: PMC10862802 DOI: 10.1101/2024.01.31.578243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Cortical stimulation with single pulses is a common technique in clinical practice and research. However, we still do not understand the extent to which it engages subcortical circuits which contribute to the associated evoked potentials (EPs). Here we find that cortical stimulation generates remarkably similar EPs in humans and mice, with a late component similarly modulated by the subject's behavioral state. We optogenetically dissect the underlying circuit in mice, demonstrating that the late component of these EPs is caused by a thalamic hyperpolarization and rebound. The magnitude of this late component correlates with the bursting frequency and synchronicity of thalamic neurons, modulated by the subject's behavioral state. A simulation of the thalamo-cortical circuit highlights that both intrinsic thalamic currents as well as cortical and thalamic GABAergic neurons contribute to this response profile. We conclude that the cortical stimulation engages cortico-thalamo-cortical circuits highly preserved across different species and stimulation modalities.
Collapse
Affiliation(s)
- Simone Russo
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan 20157, Italy
- Department of Philosophy ‘Piero Martinetti’, University of Milan, Milan, Italy
- Brain and Consciousness, Allen Institute, Seattle, United States
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Leslie Claar
- Brain and Consciousness, Allen Institute, Seattle, United States
| | - Lydia Marks
- Brain and Consciousness, Allen Institute, Seattle, United States
| | - Giri Krishnan
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Giulia Furregoni
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan 20157, Italy
| | - Flavia Maria Zauli
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan 20157, Italy
- Department of Philosophy ‘Piero Martinetti’, University of Milan, Milan, Italy
- ASST Grande Ospedale Metropolitano Niguarda, “C. Munari” Epilepsy Surgery Centre, Department of Neuroscience, Italy
| | - Gabriel Hassan
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan 20157, Italy
- Department of Philosophy ‘Piero Martinetti’, University of Milan, Milan, Italy
| | - Michela Solbiati
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan 20157, Italy
- ASST Grande Ospedale Metropolitano Niguarda, “C. Munari” Epilepsy Surgery Centre, Department of Neuroscience, Italy
| | - Piergiorgio d’Orio
- ASST Grande Ospedale Metropolitano Niguarda, “C. Munari” Epilepsy Surgery Centre, Department of Neuroscience, Italy
- University of Parma, Parma 43121, Italy
| | - Ezequiel Mikulan
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan 20157, Italy
| | - Simone Sarasso
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan 20157, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan 20157, Italy
| | - Ivana Sartori
- ASST Grande Ospedale Metropolitano Niguarda, “C. Munari” Epilepsy Surgery Centre, Department of Neuroscience, Italy
| | - Maxim Bazhenov
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Andrea Pigorini
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan 20122, Italy
- UOC Maxillo-facial Surgery and dentistry, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan 20157, Italy
- Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan 20122, Italy
- Azrieli Program in Brain, Mind and Consciousness, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario M5G 1M1, Canada
| | - Christof Koch
- Brain and Consciousness, Allen Institute, Seattle, United States
| | - Irene Rembado
- Brain and Consciousness, Allen Institute, Seattle, United States
| |
Collapse
|
12
|
Doldur-Balli F, Smieszek SP, Keenan BT, Zimmerman AJ, Veatch OJ, Polymeropoulos CM, Birznieks G, Polymeropoulos MH. Screening effects of HCN channel blockers on sleep/wake behavior in zebrafish. Front Neurosci 2024; 18:1375484. [PMID: 38567282 PMCID: PMC10986788 DOI: 10.3389/fnins.2024.1375484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels generate electrical rhythmicity in various tissues although primarily heart, retina and brain. The HCN channel blocker compound, Ivabradine (Corlanor), is approved by the US Food and Drug Administration (FDA) as a medication to lower heart rate by blocking hyperpolarization activated inward current in the sinoatrial node. In addition, a growing body of evidence suggests a role for HCN channels in regulation of sleep/wake behavior. Zebrafish larvae are ideal model organisms for high throughput drug screening, drug repurposing and behavioral phenotyping studies. We leveraged this model system to investigate effects of three HCN channel blockers (Ivabradine, Zatebradine Hydrochloride and ZD7288) at multiple doses on sleep/wake behavior in wild type zebrafish. Results of interest included shorter latency to daytime sleep at 0.1 μM dose of Ivabradine (ANOVA, p: 0.02), moderate reduction in average activity at 30 μM dose of Zatebradine Hydrochloride (ANOVA, p: 0.024) in daytime, and increased nighttime sleep at 4.5 μM dose of ZD7288 (ANOVA, p: 0.036). Taken together, shorter latency to daytime sleep, decrease in daytime activity and increased nighttime sleep indicate that different HCN channel antagonists affected different parameters of sleep and activity.
Collapse
Affiliation(s)
- Fusun Doldur-Balli
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Brendan T. Keenan
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Amber J. Zimmerman
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Olivia J. Veatch
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS, United States
| | | | - Gunther Birznieks
- Vanda Pharmaceuticals Inc., Pennsylvania, Washington, DC, United States
| | | |
Collapse
|
13
|
McDonald AJ. Functional neuroanatomy of basal forebrain projections to the basolateral amygdala: Transmitters, receptors, and neuronal subpopulations. J Neurosci Res 2024; 102:e25318. [PMID: 38491847 PMCID: PMC10948038 DOI: 10.1002/jnr.25318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/20/2024] [Accepted: 02/23/2024] [Indexed: 03/18/2024]
Abstract
The projections of the basal forebrain (BF) to the hippocampus and neocortex have been extensively studied and shown to be important for higher cognitive functions, including attention, learning, and memory. Much less is known about the BF projections to the basolateral nuclear complex of the amygdala (BNC), although the cholinergic innervation of this region by the BF is actually far more robust than that of cortical areas. This review will focus on light and electron microscopic tract-tracing and immunohistochemical (IHC) studies, many of which were published in the last decade, that have analyzed the relationship of BF inputs and their receptors to specific neuronal subtypes in the BNC in order to better understand the anatomical substrates of BF-BNC circuitry. The results indicate that BF inputs to the BNC mainly target the basolateral nucleus of the BNC (BL) and arise from cholinergic, GABAergic, and perhaps glutamatergic BF neurons. Cholinergic inputs mainly target dendrites and spines of pyramidal neurons (PNs) that express muscarinic receptors (MRs). MRs are also expressed by cholinergic axons, as well as cortical and thalamic axons that synapse with PN dendrites and spines. BF GABAergic axons to the BL also express MRs and mainly target BL interneurons that contain parvalbumin. It is suggested that BF-BL circuitry could be very important for generating rhythmic oscillations known to be critical for emotional learning. BF cholinergic inputs to the BNC might also contribute to memory formation by activating M1 receptors located on PN dendritic shafts and spines that also express NMDA receptors.
Collapse
Affiliation(s)
- Alexander Joseph McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| |
Collapse
|
14
|
Hong 洪卉 H, Moore LA, Apostolides PF, Trussell LO. Calcium-Sensitive Subthreshold Oscillations and Electrical Coupling in Principal Cells of Mouse Dorsal Cochlear Nucleus. J Neurosci 2024; 44:e0106202023. [PMID: 37968120 PMCID: PMC10860609 DOI: 10.1523/jneurosci.0106-20.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023] Open
Abstract
In higher sensory brain regions, slow oscillations (0.5-5 Hz) associated with quiet wakefulness and attention modulate multisensory integration, predictive coding, and perception. Although often assumed to originate via thalamocortical mechanisms, the extent to which subcortical sensory pathways are independently capable of slow oscillatory activity is unclear. We find that in the first station for auditory processing, the cochlear nucleus, fusiform cells from juvenile mice (of either sex) generate robust 1-2 Hz oscillations in membrane potential and exhibit electrical resonance. Such oscillations were absent prior to the onset of hearing, intrinsically generated by hyperpolarization-activated cyclic nucleotide-gated (HCN) and persistent Na+ conductances (NaP) interacting with passive membrane properties, and reflected the intrinsic resonance properties of fusiform cells. Cx36-containing gap junctions facilitated oscillation strength and promoted pairwise synchrony of oscillations between neighboring neurons. The strength of oscillations were strikingly sensitive to external Ca2+, disappearing at concentrations >1.7 mM, due in part to the shunting effect of small-conductance calcium-activated potassium (SK) channels. This effect explains their apparent absence in previous in vitro studies of cochlear nucleus which routinely employed high-Ca2+ extracellular solution. In contrast, oscillations were amplified in reduced Ca2+ solutions, due to relief of suppression by Ca2+ of Na+ channel gating. Our results thus reveal mechanisms for synchronous oscillatory activity in auditory brainstem, suggesting that slow oscillations, and by extension their perceptual effects, may originate at the earliest stages of sensory processing.
Collapse
Affiliation(s)
- Hui Hong 洪卉
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland 97239, Oregon
| | - Lucille A Moore
- Neuroscience Graduate Program, Oregon Health & Science University, Portland 97239, Oregon
| | - Pierre F Apostolides
- Neuroscience Graduate Program, Oregon Health & Science University, Portland 97239, Oregon
| | - Laurence O Trussell
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland 97239, Oregon
| |
Collapse
|
15
|
Kazmierska-Grebowska P, Jankowski MM, MacIver MB. Missing Puzzle Pieces in Dementia Research: HCN Channels and Theta Oscillations. Aging Dis 2024; 15:22-42. [PMID: 37450922 PMCID: PMC10796085 DOI: 10.14336/ad.2023.0607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
Increasing evidence indicates a role of hyperpolarization activated cation (HCN) channels in controlling the resting membrane potential, pacemaker activity, memory formation, sleep, and arousal. Their disfunction may be associated with the development of epilepsy and age-related memory decline. Neuronal hyperexcitability involved in epileptogenesis and EEG desynchronization occur in the course of dementia in human Alzheimer's Disease (AD) and animal models, nevertheless the underlying ionic and cellular mechanisms of these effects are not well understood. Some suggest that theta rhythms involved in memory formation could be used as a marker of memory disturbances in the course of neurogenerative diseases, including AD. This review focusses on the interplay between hyperpolarization HCN channels, theta oscillations, memory formation and their role(s) in dementias, including AD. While individually, each of these factors have been linked to each other with strong supportive evidence, we hope here to expand this linkage to a more inclusive picture. Thus, HCN channels could provide a molecular target for developing new therapeutic agents for preventing and/or treating dementia.
Collapse
Affiliation(s)
| | - Maciej M. Jankowski
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
- BioTechMed Center, Multimedia Systems Department, Faculty of Electronics, Telecommunications, and Informatics, Gdansk University of Technology, Gdansk, Poland.Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland.
| | - M. Bruce MacIver
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of of Medicine, Stanford University, CA, USA.
| |
Collapse
|
16
|
Zheng Y, Kang S, O'Neill J, Bojak I. Spontaneous slow wave oscillations in extracellular field potential recordings reflect the alternating dominance of excitation and inhibition. J Physiol 2024; 602:713-736. [PMID: 38294945 DOI: 10.1113/jp284587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 01/15/2024] [Indexed: 02/02/2024] Open
Abstract
In the resting state, cortical neurons can fire action potentials spontaneously but synchronously (Up state), followed by a quiescent period (Down state) before the cycle repeats. Extracellular recordings in the infragranular layer of cortex with a micro-electrode display a negative deflection (depth-negative) during Up states and a positive deflection (depth-positive) during Down states. The resulting slow wave oscillation (SWO) has been studied extensively during sleep and under anaesthesia. However, recent research on the balanced nature of synaptic excitation and inhibition has highlighted our limited understanding of its genesis. Specifically, are excitation and inhibition balanced during SWOs? We analyse spontaneous local field potentials (LFPs) during SWOs recorded from anaesthetised rats via a multi-channel laminar micro-electrode and show that the Down state consists of two distinct synaptic states: a Dynamic Down state associated with depth-positive LFPs and a prominent dipole in the extracellular field, and a Static Down state with negligible (≈ 0 mV $ \approx 0{\mathrm{\;mV}}$ ) LFPs and a lack of dipoles extracellularly. We demonstrate that depth-negative and -positive LFPs are generated by a shift in the balance of synaptic excitation and inhibition from excitation dominance (depth-negative) to inhibition dominance (depth-positive) in the infragranular layer neurons. Thus, although excitation and inhibition co-tune overall, differences in their timing lead to an alternation of dominance, manifesting as SWOs. We further show that Up state initiation is significantly faster if the preceding Down state is dynamic rather than static. Our findings provide a coherent picture of the dependence of SWOs on synaptic activity. KEY POINTS: Cortical neurons can exhibit repeated cycles of spontaneous activity interleaved with periods of relative silence, a phenomenon known as 'slow wave oscillation' (SWO). During SWOs, recordings of local field potentials (LFPs) in the neocortex show depth-negative deflection during the active period (Up state) and depth-positive deflection during the silent period (Down state). Here we further classified the Down state into a dynamic phase and a static phase based on a novel method of classification and revealed non-random, stereotypical sequences of the three states occurring with significantly different transitional kinetics. Our results suggest that the positive and negative deflections in the LFP reflect the shift of the instantaneous balance between excitatory and inhibitory synaptic activity of the local cortical neurons. The differences in transitional kinetics may imply distinct synaptic mechanisms for Up state initiation. The study may provide a new approach for investigating spontaneous brain rhythms.
Collapse
Affiliation(s)
- Ying Zheng
- School of Biological Sciences, Whiteknights, University of Reading, Reading, UK
- Centre for Integrative Neuroscience and Neurodynamics (CINN), University of Reading, Reading, UK
| | - Sungmin Kang
- School of Psychology, Cardiff University, Cardiff, UK
| | | | - Ingo Bojak
- Centre for Integrative Neuroscience and Neurodynamics (CINN), University of Reading, Reading, UK
- School of Psychology and Clinical Language Science, Whiteknights, University of Reading, Reading, UK
| |
Collapse
|
17
|
Roemschied FA, Pacheco DA, Aragon MJ, Ireland EC, Li X, Thieringer K, Pang R, Murthy M. Flexible circuit mechanisms for context-dependent song sequencing. Nature 2023; 622:794-801. [PMID: 37821705 PMCID: PMC10600009 DOI: 10.1038/s41586-023-06632-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 09/11/2023] [Indexed: 10/13/2023]
Abstract
Sequenced behaviours, including locomotion, reaching and vocalization, are patterned differently in different contexts, enabling animals to adjust to their environments. How contextual information shapes neural activity to flexibly alter the patterning of actions is not fully understood. Previous work has indicated that this could be achieved via parallel motor circuits, with differing sensitivities to context1,2. Here we demonstrate that a single pathway operates in two regimes dependent on recent sensory history. We leverage the Drosophila song production system3 to investigate the role of several neuron types4-7 in song patterning near versus far from the female fly. Male flies sing 'simple' trains of only one mode far from the female fly but complex song sequences comprising alternations between modes when near her. We find that ventral nerve cord (VNC) circuits are shaped by mutual inhibition and rebound excitability8 between nodes driving the two song modes. Brief sensory input to a direct brain-to-VNC excitatory pathway drives simple song far from the female, whereas prolonged input enables complex song production via simultaneous recruitment of functional disinhibition of VNC circuitry. Thus, female proximity unlocks motor circuit dynamics in the correct context. We construct a compact circuit model to demonstrate that the identified mechanisms suffice to replicate natural song dynamics. These results highlight how canonical circuit motifs8,9 can be combined to enable circuit flexibility required for dynamic communication.
Collapse
Affiliation(s)
- Frederic A Roemschied
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- European Neuroscience Institute, Göttingen, Germany
| | - Diego A Pacheco
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Harvard Medical School, Boston, MA, USA
| | - Max J Aragon
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Elise C Ireland
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Xinping Li
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Kyle Thieringer
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Rich Pang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
18
|
Rustamov N, Souders L, Sheehan L, Carter A, Leuthardt EC. IpsiHand Brain-Computer Interface Therapy Induces Broad Upper Extremity Motor Recovery in Chronic Stroke. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.26.23294320. [PMID: 37693482 PMCID: PMC10491278 DOI: 10.1101/2023.08.26.23294320] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Background and Purpose Chronic hemiparetic stroke patients have very limited benefits from current therapies. Brain-computer interface (BCI) engaging the unaffected hemisphere has emerged as a promising novel therapeutic approach for chronic stroke rehabilitation. This study investigated the effectiveness of the IpsiHand System, a contralesionally-controlled BCI therapy in chronic stroke patients with impaired upper extremity motor function. We further explored neurophysiological features of motor recovery affected by BCI. We hypothesized that BCI therapy would induce a broad motor recovery in the upper extremity (proximal and distal), and there would be corresponding changes in baseline theta and gamma oscillations, which have been shown to be associated with motor recovery. Methods Thirty chronic hemiparetic stroke patients performed a therapeutic BCI task for 12 weeks. Motor function assessment data and resting state electroencephalogram (EEG) signals were acquired before initiating BCI therapy and across BCI therapy sessions. The Upper Extremity Fugl-Meyer assessment (UEFM) served as a primary motor outcome assessment tool. Theta-gamma cross-frequency coupling (CFC) was computed and correlated with motor recovery. Results Chronic stroke patients achieved significant motor improvement with BCI therapy. We found significant improvement in both proximal and distal upper extremity motor function. Importantly, motor function improvement was independent of Botox application. Theta-gamma CFC enhanced bilaterally over the C3 and C4 motor electrodes following BCI therapy. We observed significant positive correlations between motor recovery and theta gamma CFC increase across BCI therapy sessions. Conclusions BCI therapy resulted in significant motor function improvement across the proximal and distal upper extremities of patients. This therapy was significantly correlated with changes in baseline cortical dynamics, specifically theta-gamma CFC increases in both the right and left motor regions. This may represent rhythm-specific cortical oscillatory mechanism for BCI-driven motor rehabilitation in chronic stroke patients.
Collapse
|
19
|
Catacuzzeno L, Conti F, Franciolini F. Fifty years of gating currents and channel gating. J Gen Physiol 2023; 155:e202313380. [PMID: 37410612 PMCID: PMC10324510 DOI: 10.1085/jgp.202313380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/12/2023] [Accepted: 06/02/2023] [Indexed: 07/08/2023] Open
Abstract
We celebrate this year the 50th anniversary of the first electrophysiological recordings of the gating currents from voltage-dependent ion channels done in 1973. This retrospective tries to illustrate the context knowledge on channel gating and the impact gating-current recording had then, and how it continued to clarify concepts, elaborate new ideas, and steer the scientific debate in these 50 years. The notion of gating particles and gating currents was first put forward by Hodgkin and Huxley in 1952 as a necessary assumption for interpreting the voltage dependence of the Na and K conductances of the action potential. 20 years later, gating currents were actually recorded, and over the following decades have represented the most direct means of tracing the movement of the gating charges and gaining insights into the mechanisms of channel gating. Most work in the early years was focused on the gating currents from the Na and K channels as found in the squid giant axon. With channel cloning and expression on heterologous systems, other channels as well as voltage-dependent enzymes were investigated. Other approaches were also introduced (cysteine mutagenesis and labeling, site-directed fluorometry, cryo-EM crystallography, and molecular dynamics [MD] modeling) to provide an integrated and coherent view of voltage-dependent gating in biological macromolecules. The layout of this retrospective reflects the past 50 years of investigations on gating currents, first addressing studies done on Na and K channels and then on other voltage-gated channels and non-channel structures. The review closes with a brief overview of how the gating-charge/voltage-sensor movements are translated into pore opening and the pathologies associated with mutations targeting the structures involved with the gating currents.
Collapse
Affiliation(s)
- Luigi Catacuzzeno
- Department of Chemistry Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Franco Conti
- Department of Physics, University of Genova, Genova, Italy
| | - Fabio Franciolini
- Department of Chemistry Biology and Biotechnology, University of Perugia, Perugia, Italy
| |
Collapse
|
20
|
Traub RD, Whittington MA, Cunningham MO. Simulation of oscillatory dynamics induced by an approximation of grid cell output. Rev Neurosci 2023; 34:517-532. [PMID: 36326795 PMCID: PMC10329426 DOI: 10.1515/revneuro-2022-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/06/2022] [Indexed: 07/20/2023]
Abstract
Grid cells, in entorhinal cortex (EC) and related structures, signal animal location relative to hexagonal tilings of 2D space. A number of modeling papers have addressed the question of how grid firing behaviors emerge using (for example) ideas borrowed from dynamical systems (attractors) or from coupled oscillator theory. Here we use a different approach: instead of asking how grid behavior emerges, we take as a given the experimentally observed intracellular potentials of superficial medial EC neurons during grid firing. Employing a detailed neural circuit model modified from a lateral EC model, we then ask how the circuit responds when group of medial EC principal neurons exhibit such potentials, simultaneously with a simulated theta frequency input from the septal nuclei. The model predicts the emergence of robust theta-modulated gamma/beta oscillations, suggestive of oscillations observed in an in vitro medial EC experimental model (Cunningham, M.O., Pervouchine, D.D., Racca, C., Kopell, N.J., Davies, C.H., Jones, R.S.G., Traub, R.D., and Whittington, M.A. (2006). Neuronal metabolism governs cortical network response state. Proc. Natl. Acad. Sci. U S A 103: 5597-5601). Such oscillations result because feedback interneurons tightly synchronize with each other - despite the varying phases of the grid cells - and generate a robust inhibition-based rhythm. The lack of spatial specificity of the model interneurons is consistent with the lack of spatial periodicity in parvalbumin interneurons observed by Buetfering, C., Allen, K., and Monyer, H. (2014). Parvalbumin interneurons provide grid cell-driven recurrent inhibition in the medial entorhinal cortex. Nat. Neurosci. 17: 710-718. If in vivo EC gamma rhythms arise during exploration as our model predicts, there could be implications for interpreting disrupted spatial behavior and gamma oscillations in animal models of Alzheimer's disease and schizophrenia. Noting that experimental intracellular grid cell potentials closely resemble cortical Up states and Down states, during which fast oscillations also occur during Up states, we propose that the co-occurrence of slow principal cell depolarizations and fast network oscillations is a general property of the telencephalon, in both waking and sleep states.
Collapse
Affiliation(s)
- Roger D. Traub
- AI Foundations, IBM T.J. Watson Research Center, Yorktown Heights, NY10598, USA
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104, USA
| | | | - Mark O. Cunningham
- Discipline of Physiology, School of Medicine, Trinity College Dublin, University of Dublin, 152-160 Pearse St., Dublin 2, Ireland
| |
Collapse
|
21
|
Yazdanbakhsh A, Barbas H, Zikopoulos B. Sleep spindles in primates: Modeling the effects of distinct laminar thalamocortical connectivity in core, matrix, and reticular thalamic circuits. Netw Neurosci 2023; 7:743-768. [PMID: 37397882 PMCID: PMC10312265 DOI: 10.1162/netn_a_00311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 03/01/2023] [Indexed: 10/16/2023] Open
Abstract
Sleep spindles are associated with the beginning of deep sleep and memory consolidation and are disrupted in schizophrenia and autism. In primates, distinct core and matrix thalamocortical (TC) circuits regulate sleep spindle activity through communications that are filtered by the inhibitory thalamic reticular nucleus (TRN); however, little is known about typical TC network interactions and the mechanisms that are disrupted in brain disorders. We developed a primate-specific, circuit-based TC computational model with distinct core and matrix loops that can simulate sleep spindles. We implemented novel multilevel cortical and thalamic mixing, and included local thalamic inhibitory interneurons, and direct layer 5 projections of variable density to TRN and thalamus to investigate the functional consequences of different ratios of core and matrix node connectivity contribution to spindle dynamics. Our simulations showed that spindle power in primates can be modulated based on the level of cortical feedback, thalamic inhibition, and engagement of model core versus matrix, with the latter having a greater role in spindle dynamics. The study of the distinct spatial and temporal dynamics of core-, matrix-, and mix-generated sleep spindles establishes a framework to study disruption of TC circuit balance underlying deficits in sleep and attentional gating seen in autism and schizophrenia.
Collapse
Affiliation(s)
- Arash Yazdanbakhsh
- Computational Neuroscience and Vision Lab, Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston, MA, USA
| | - Helen Barbas
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston, MA, USA
- Neural Systems Laboratory, Program in Human Physiology, Department of Health Sciences, College of Health and Rehabilitation Sciences (Sargent College), Boston University, Boston, MA, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston University, Boston, MA, USA
| | - Basilis Zikopoulos
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston, MA, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston University, Boston, MA, USA
- Human Systems Neuroscience Laboratory, Program in Human Physiology, Department of Health Sciences, College of Health and Rehabilitation Sciences (Sargent College), Boston University, Boston, MA, USA
| |
Collapse
|
22
|
Crunelli V, David F, Morais TP, Lorincz ML. HCN channels and absence seizures. Neurobiol Dis 2023; 181:106107. [PMID: 37001612 DOI: 10.1016/j.nbd.2023.106107] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Hyperpolarization-activation cyclic nucleotide-gated (HCN) channels were for the first time implicated in absence seizures (ASs) when an abnormal Ih (the current generated by these channels) was reported in neocortical layer 5 neurons of a mouse model. Genetic studies of large cohorts of children with Childhood Absence Epilepsy (where ASs are the only clinical symptom) have identified only 3 variants in HCN1 (one of the genes that code for the 4 HCN channel isoforms, HCN1-4), with one (R590Q) mutation leading to loss-of-function. Due to the multi-faceted effects that HCN channels exert on cellular excitability and neuronal network dynamics as well as their modulation by environmental factors, it has been difficult to identify the detailed mechanism by which different HCN isoforms modulate ASs. In this review, we systematically and critically analyze evidence from established AS models and normal non-epileptic animals with area- and time-selective ablation of HCN1, HCN2 and HCN4. Notably, whereas knockout of rat HCN1 and mouse HCN2 leads to the expression of ASs, the pharmacological block of all HCN channel isoforms abolishes genetically determined ASs. These seemingly contradictory results could be reconciled by taking into account the well-known opposite effects of Ih on cellular excitability and network function. Whereas existing evidence from mouse and rat AS models indicates that pan-HCN blockers may provide a novel approach for the treatment of human ASs, the development of HCN isoform-selective drugs would greatly contribute to current research on the role for these channels in ASs generation and maintenance as well as offer new potential clinical applications.
Collapse
Affiliation(s)
- Vincenzo Crunelli
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, UK.
| | - Francois David
- Integrative Neuroscience and Cognition Center, Paris University, Paris, France
| | - Tatiana P Morais
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, Malta University, Msida, Malta
| | - Magor L Lorincz
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, UK; Department of Physiology, Szeged University, Szeged, Hungary.
| |
Collapse
|
23
|
Kassab NED, Mehlfeld V, Kass J, Biel M, Schneider G, Rammes G. Xenon's Sedative Effect Is Mediated by Interaction with the Cyclic Nucleotide-Binding Domain (CNBD) of HCN2 Channels Expressed by Thalamocortical Neurons of the Ventrobasal Nucleus in Mice. Int J Mol Sci 2023; 24:ijms24108613. [PMID: 37239964 DOI: 10.3390/ijms24108613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Previous studies have shown that xenon reduces hyperpolarization-activated cyclic nucleotide-gated channels type-2 (HCN2) channel-mediated current (Ih) amplitude and shifts the half-maximal activation voltage (V1/2) in thalamocortical circuits of acute brain slices to more hyperpolarized potentials. HCN2 channels are dually gated by the membrane voltage and via cyclic nucleotides binding to the cyclic nucleotide-binding domain (CNBD) on the channel. In this study, we hypothesize that xenon interferes with the HCN2 CNBD to mediate its effect. Using the transgenic mice model HCN2EA, in which the binding of cAMP to HCN2 was abolished by two amino acid mutations (R591E, T592A), we performed ex-vivo patch-clamp recordings and in-vivo open-field test to prove this hypothesis. Our data showed that xenon (1.9 mM) application to brain slices shifts the V1/2 of Ih to more hyperpolarized potentials in wild-type thalamocortical neurons (TC) (V1/2: -97.09 [-99.56--95.04] mV compared to control -85.67 [-94.47--82.10] mV; p = 0.0005). These effects were abolished in HCN2EA neurons (TC), whereby the V1/2 reached only -92.56 [-93.16- -89.68] mV with xenon compared to -90.03 [-98.99--84.59] mV in the control (p = 0.84). After application of a xenon mixture (70% xenon, 30% O2), wild-type mice activity in the open-field test decreased to 5 [2-10] while in HCN2EA mice it remained at 30 [15-42]%, (p = 0.0006). In conclusion, we show that xenon impairs HCN2 channel function by interfering with the HCN2 CNBD site and provide in-vivo evidence that this mechanism contributes to xenon-mediated hypnotic properties.
Collapse
Affiliation(s)
- Nour El Dine Kassab
- Department of Anesthesiology and Intensive Care Medicine, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Verena Mehlfeld
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universitñt Mnchen, 81377 Munich, Germany
| | - Jennifer Kass
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universitñt Mnchen, 81377 Munich, Germany
| | - Martin Biel
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universitñt Mnchen, 81377 Munich, Germany
| | - Gerhard Schneider
- Department of Anesthesiology and Intensive Care Medicine, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Gerhard Rammes
- Department of Anesthesiology and Intensive Care Medicine, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
24
|
Reinhold K, Resulaj A, Scanziani M. Brain State-Dependent Modulation of Thalamic Visual Processing by Cortico-Thalamic Feedback. J Neurosci 2023; 43:1540-1554. [PMID: 36653192 PMCID: PMC10008059 DOI: 10.1523/jneurosci.2124-21.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 01/20/2023] Open
Abstract
The behavioral state of a mammal impacts how the brain responds to visual stimuli as early as in the dorsolateral geniculate nucleus of the thalamus (dLGN), the primary relay of visual information to the cortex. A clear example of this is the markedly stronger response of dLGN neurons to higher temporal frequencies of the visual stimulus in alert as compared with quiescent animals. The dLGN receives strong feedback from the visual cortex, yet whether this feedback contributes to these state-dependent responses to visual stimuli is poorly understood. Here, we show that in male and female mice, silencing cortico-thalamic feedback profoundly reduces state-dependent differences in the response of dLGN neurons to visual stimuli. This holds true for dLGN responses to both temporal and spatial features of the visual stimulus. These results reveal that the state-dependent shift of the response to visual stimuli in an early stage of visual processing depends on cortico-thalamic feedback.SIGNIFICANCE STATEMENT Brain state affects even the earliest stages of sensory processing. A clear example of this phenomenon is the change in thalamic responses to visual stimuli depending on whether the animal's brain is in an alert or quiescent state. Despite the radical impact that brain state has on sensory processing, the underlying circuits are still poorly understood. Here, we show that both the temporal and spatial response properties of thalamic neurons to visual stimuli depend on the state of the animal and, crucially, that this state-dependent shift relies on the feedback projection from visual cortex to thalamus.
Collapse
Affiliation(s)
- Kimberly Reinhold
- Neurosciences Graduate Program, University of California San Diego, La Jolla, 92093, California
- Center for Neural Circuits and Behavior, Neurobiology Section and Department of Neuroscience, University of California San Diego, La Jolla, 92093, California
- Department of Physiology, University of California San Francisco, San Francisco, 94143, California
| | - Arbora Resulaj
- Center for Neural Circuits and Behavior, Neurobiology Section and Department of Neuroscience, University of California San Diego, La Jolla, 92093, California
- Department of Physiology, University of California San Francisco, San Francisco, 94143, California
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, 94143, California
| | - Massimo Scanziani
- Center for Neural Circuits and Behavior, Neurobiology Section and Department of Neuroscience, University of California San Diego, La Jolla, 92093, California
- Department of Physiology, University of California San Francisco, San Francisco, 94143, California
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, 94143, California
| |
Collapse
|
25
|
Thalamic control of sensory processing and spindles in a biophysical somatosensory thalamoreticular circuit model of wakefulness and sleep. Cell Rep 2023; 42:112200. [PMID: 36867532 PMCID: PMC10066598 DOI: 10.1016/j.celrep.2023.112200] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 01/04/2023] [Accepted: 02/15/2023] [Indexed: 03/04/2023] Open
Abstract
Thalamoreticular circuitry plays a key role in arousal, attention, cognition, and sleep spindles, and is linked to several brain disorders. A detailed computational model of mouse somatosensory thalamus and thalamic reticular nucleus has been developed to capture the properties of over 14,000 neurons connected by 6 million synapses. The model recreates the biological connectivity of these neurons, and simulations of the model reproduce multiple experimental findings in different brain states. The model shows that inhibitory rebound produces frequency-selective enhancement of thalamic responses during wakefulness. We find that thalamic interactions are responsible for the characteristic waxing and waning of spindle oscillations. In addition, we find that changes in thalamic excitability control spindle frequency and their incidence. The model is made openly available to provide a new tool for studying the function and dysfunction of the thalamoreticular circuitry in various brain states.
Collapse
|
26
|
Levenstein D, Alvarez VA, Amarasingham A, Azab H, Chen ZS, Gerkin RC, Hasenstaub A, Iyer R, Jolivet RB, Marzen S, Monaco JD, Prinz AA, Quraishi S, Santamaria F, Shivkumar S, Singh MF, Traub R, Nadim F, Rotstein HG, Redish AD. On the Role of Theory and Modeling in Neuroscience. J Neurosci 2023; 43:1074-1088. [PMID: 36796842 PMCID: PMC9962842 DOI: 10.1523/jneurosci.1179-22.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 02/18/2023] Open
Abstract
In recent years, the field of neuroscience has gone through rapid experimental advances and a significant increase in the use of quantitative and computational methods. This growth has created a need for clearer analyses of the theory and modeling approaches used in the field. This issue is particularly complex in neuroscience because the field studies phenomena that cross a wide range of scales and often require consideration at varying degrees of abstraction, from precise biophysical interactions to the computations they implement. We argue that a pragmatic perspective of science, in which descriptive, mechanistic, and normative models and theories each play a distinct role in defining and bridging levels of abstraction, will facilitate neuroscientific practice. This analysis leads to methodological suggestions, including selecting a level of abstraction that is appropriate for a given problem, identifying transfer functions to connect models and data, and the use of models themselves as a form of experiment.
Collapse
Affiliation(s)
- Daniel Levenstein
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Veronica A Alvarez
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892
| | - Asohan Amarasingham
- Departments of Mathematics and Biology, City College and the Graduate Center, City University of New York, New York, New York 10032
| | - Habiba Azab
- Department of Neuroscience, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota 55455
| | - Zhe S Chen
- Department of Psychiatry, Neuroscience & Physiology, New York University School of Medicine, New York, New York, 10016
| | - Richard C Gerkin
- School of Life Sciences, Arizona State University, Tempe, Arizona 85281
| | - Andrea Hasenstaub
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California 94115
| | | | - Renaud B Jolivet
- Maastricht Centre for Systems Biology, Maastricht University, Maastricht, The Netherlands
| | - Sarah Marzen
- W. M. Keck Science Department, Pitzer, Scripps, and Claremont McKenna Colleges, Claremont, California 91711
| | - Joseph D Monaco
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218
| | - Astrid A Prinz
- Department of Biology, Emory University, Atlanta, Georgia 30322
| | - Salma Quraishi
- Neuroscience, Developmental and Regnerative Biology Department, University of Texas at San Antonio, San Antonio, Texas 78249
| | - Fidel Santamaria
- Neuroscience, Developmental and Regnerative Biology Department, University of Texas at San Antonio, San Antonio, Texas 78249
| | - Sabyasachi Shivkumar
- Brain and Cognitive Sciences, University of Rochester, Rochester, New York 14627
| | - Matthew F Singh
- Department of Psychological & Brain Sciences, Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63112
| | - Roger Traub
- IBM T.J. Watson Research Center, AI Foundations, Yorktown Heights, New York 10598
| | - Farzan Nadim
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California 94115
| | - Horacio G Rotstein
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California 94115
| | - A David Redish
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
27
|
Matthews LG, Puryear CB, Correia SS, Srinivasan S, Belfort GM, Pan MK, Kuo SH. T-type calcium channels as therapeutic targets in essential tremor and Parkinson's disease. Ann Clin Transl Neurol 2023; 10:462-483. [PMID: 36738196 PMCID: PMC10109288 DOI: 10.1002/acn3.51735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 02/05/2023] Open
Abstract
Neuronal action potential firing patterns are key components of healthy brain function. Importantly, restoring dysregulated neuronal firing patterns has the potential to be a promising strategy in the development of novel therapeutics for disorders of the central nervous system. Here, we review the pathophysiology of essential tremor and Parkinson's disease, the two most common movement disorders, with a focus on mechanisms underlying the genesis of abnormal firing patterns in the implicated neural circuits. Aberrant burst firing of neurons in the cerebello-thalamo-cortical and basal ganglia-thalamo-cortical circuits contribute to the clinical symptoms of essential tremor and Parkinson's disease, respectively, and T-type calcium channels play a key role in regulating this activity in both the disorders. Accordingly, modulating T-type calcium channel activity has received attention as a potentially promising therapeutic approach to normalize abnormal burst firing in these diseases. In this review, we explore the evidence supporting the theory that T-type calcium channel blockers can ameliorate the pathophysiologic mechanisms underlying essential tremor and Parkinson's disease, furthering the case for clinical investigation of these compounds. We conclude with key considerations for future investigational efforts, providing a critical framework for the development of much needed agents capable of targeting the dysfunctional circuitry underlying movement disorders such as essential tremor, Parkinson's disease, and beyond.
Collapse
Affiliation(s)
| | - Corey B Puryear
- Praxis Precision Medicines, Boston, Massachusetts, 02110, USA
| | | | - Sharan Srinivasan
- Praxis Precision Medicines, Boston, Massachusetts, 02110, USA.,Department of Neurology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | | | - Ming-Kai Pan
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, 10051, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, 10617, Taiwan.,Department of Medical Research, National Taiwan University Hospital, Taipei, 10002, Taiwan.,Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, 64041, Taiwan
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, New York, 10032, USA.,Initiative for Columbia Ataxia and Tremor, Columbia University, New York, New York, 10032, USA
| |
Collapse
|
28
|
Zheng B, Liu DD, Theyel BB, Abdulrazeq H, Kimata AR, Lauro PM, Asaad WF. Thalamic neuromodulation in epilepsy: A primer for emerging circuit-based therapies. Expert Rev Neurother 2023; 23:123-140. [PMID: 36731858 DOI: 10.1080/14737175.2023.2176752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Epilepsy is a common, often debilitating disease of hyperexcitable neural networks. While medically intractable cases may benefit from surgery, there may be no single, well-localized focus for resection or ablation. In such cases, approaching the disease from a network-based perspective may be beneficial. AREAS COVERED Herein, the authors provide a narrative review of normal thalamic anatomy and physiology and propose general strategies for preventing and/or aborting seizures by modulating this structure. Additionally, they make specific recommendations for targeting the thalamus within different contexts, motivated by a more detailed discussion of its distinct nuclei and their respective connectivity. By describing important principles governing thalamic function and its involvement in seizure networks, the authors aim to provide a primer for those now entering this fast-growing field of thalamic neuromodulation for epilepsy. EXPERT OPINION The thalamus is critically involved with the function of many cortical and subcortical areas, suggesting it may serve as a compelling node for preventing or aborting seizures, and so it has increasingly been targeted for the surgical treatment of epilepsy. As various thalamic neuromodulation strategies for seizure control are developed, there is a need to ground such interventions in a mechanistic, circuit-based framework.
Collapse
Affiliation(s)
- Bryan Zheng
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
| | - David D Liu
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Brian B Theyel
- Department of Psychiatry, Rhode Island Hospital, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Hael Abdulrazeq
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
| | - Anna R Kimata
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
| | - Peter M Lauro
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Wael F Asaad
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA.,The Carney Institute for Brain Science, Brown University, Providence, RI, USA.,The Norman Prince Neurosciences Institute, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
29
|
Guy J, Möck M, Staiger JF. Direction selectivity of inhibitory interneurons in mouse barrel cortex differs between interneuron subtypes. Cell Rep 2023; 42:111936. [PMID: 36640357 DOI: 10.1016/j.celrep.2022.111936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/08/2022] [Accepted: 12/14/2022] [Indexed: 01/01/2023] Open
Abstract
GABAergic interneurons represent ∼15% to 20% of all cortical neurons, but their diversity grants them unique roles in cortical circuits. In the barrel cortex, responses of excitatory neurons to stimulation of facial whiskers are direction selective, whereby excitation is maximized over a narrow range of angular deflections. Whether GABAergic interneurons are also direction selective is unclear. Here, we use two-photon-guided whole-cell recordings in the barrel cortex of anesthetized mice and control whisker stimulation to measure direction selectivity in defined interneuron subtypes. Selectivity is ubiquitous in interneurons, but tuning sharpness varies across populations. Vasoactive intestinal polypeptide (VIP) interneurons are as selective as pyramidal neurons, but parvalbumin (PV) interneurons are more broadly tuned. Furthermore, a majority (2/3) of somatostatin (SST) interneurons receive direction-selective inhibition, with the rest receiving direction-selective excitation. Sensory evoked activity in the barrel cortex is thus cell-type specific, suggesting that interneuron subtypes make distinct contributions to cortical representations of stimuli.
Collapse
Affiliation(s)
- Julien Guy
- Institute for Neuroanatomy, University Medical Center, 37075 Göttingen, Lower Saxony, Germany
| | - Martin Möck
- Institute for Neuroanatomy, University Medical Center, 37075 Göttingen, Lower Saxony, Germany
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center, 37075 Göttingen, Lower Saxony, Germany.
| |
Collapse
|
30
|
Renner J, Rasia-Filho AA. Morphological Features of Human Dendritic Spines. ADVANCES IN NEUROBIOLOGY 2023; 34:367-496. [PMID: 37962801 DOI: 10.1007/978-3-031-36159-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spine features in human neurons follow the up-to-date knowledge presented in the previous chapters of this book. Human dendrites are notable for their heterogeneity in branching patterns and spatial distribution. These data relate to circuits and specialized functions. Spines enhance neuronal connectivity, modulate and integrate synaptic inputs, and provide additional plastic functions to microcircuits and large-scale networks. Spines present a continuum of shapes and sizes, whose number and distribution along the dendritic length are diverse in neurons and different areas. Indeed, human neurons vary from aspiny or "relatively aspiny" cells to neurons covered with a high density of intermingled pleomorphic spines on very long dendrites. In this chapter, we discuss the phylogenetic and ontogenetic development of human spines and describe the heterogeneous features of human spiny neurons along the spinal cord, brainstem, cerebellum, thalamus, basal ganglia, amygdala, hippocampal regions, and neocortical areas. Three-dimensional reconstructions of Golgi-impregnated dendritic spines and data from fluorescence microscopy are reviewed with ultrastructural findings to address the complex possibilities for synaptic processing and integration in humans. Pathological changes are also presented, for example, in Alzheimer's disease and schizophrenia. Basic morphological data can be linked to current techniques, and perspectives in this research field include the characterization of spines in human neurons with specific transcriptome features, molecular classification of cellular diversity, and electrophysiological identification of coexisting subpopulations of cells. These data would enlighten how cellular attributes determine neuron type-specific connectivity and brain wiring for our diverse aptitudes and behavior.
Collapse
Affiliation(s)
- Josué Renner
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
31
|
Averin AS, Konakov MV, Pimenov OY, Galimova MH, Berezhnov AV, Nenov MN, Dynnik VV. Regulation of Papillary Muscle Contractility by NAD and Ammonia Interplay: Contribution of Ion Channels and Exchangers. MEMBRANES 2022; 12:1239. [PMID: 36557146 PMCID: PMC9785361 DOI: 10.3390/membranes12121239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/04/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Various models, including stem cells derived and isolated cardiomyocytes with overexpressed channels, are utilized to analyze the functional interplay of diverse ion currents involved in cardiac automaticity and excitation-contraction coupling control. Here, we used β-NAD and ammonia, known hyperpolarizing and depolarizing agents, respectively, and applied inhibitory analysis to reveal the interplay of several ion channels implicated in rat papillary muscle contractility control. We demonstrated that: 4 mM β-NAD, having no strong impact on resting membrane potential (RMP) and action potential duration (APD90) of ventricular cardiomyocytes, evoked significant suppression of isometric force (F) of paced papillary muscle. Reactive blue 2 restored F to control values, suggesting the involvement of P2Y-receptor-dependent signaling in β-NAD effects. Meantime, 5 mM NH4Cl did not show any effect on F of papillary muscle but resulted in significant RMP depolarization, APD90 shortening, and a rightward shift of I-V relationship for total steady state currents in cardiomyocytes. Paradoxically, NH4Cl, being added after β-NAD and having no effect on RMP, APD, and I-V curve, recovered F to the control values, indicating β-NAD/ammonia antagonism. Blocking of HCN, Kir2.x, and L-type calcium channels, Ca2+-activated K+ channels (SK, IK, and BK), or NCX exchanger reverse mode prevented this effect, indicating consistent cooperation of all currents mediated by these channels and NCX. We suggest that the activation of Kir2.x and HCN channels by extracellular K+, that creates positive and negative feedback, and known ammonia and K+ resemblance, may provide conditions required for the activation of all the chain of channels involved in the interplay. Here, we present a mechanistic model describing an interplay of channels and second messengers, which may explain discovered antagonism of β-NAD and ammonia on rat papillary muscle contractile activity.
Collapse
Affiliation(s)
- Alexey S. Averin
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Maxim V. Konakov
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Oleg Y. Pimenov
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Miliausha H. Galimova
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Alexey V. Berezhnov
- Institute of Cell Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Miroslav N. Nenov
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Vladimir V. Dynnik
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| |
Collapse
|
32
|
Neuroplasticity of peripheral axonal properties after ischemic stroke. PLoS One 2022; 17:e0275450. [PMID: 36194586 PMCID: PMC9531785 DOI: 10.1371/journal.pone.0275450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/15/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE This study investigated how peripheral axonal excitability changes in ischemic stroke patients with hemiparesis or hemiplegia, reflecting the plasticity of motor axons due to corticospinal tract alterations along the poststroke stage. METHODS Each subject received a clinical evaluation, nerve conduction study, and nerve excitability test. Nerve excitability tests were performed on motor median nerves in paretic and non-paretic limbs in the acute stage of stroke. Control nerve excitability test data were obtained from age-matched control subjects. Some patients underwent excitability examinations several times in subacute or chronic stages. RESULTS A total of thirty patients with acute ischemic stroke were enrolled. Eight patients were excluded due to severe entrapment neuropathy in the median nerve. The threshold current for 50% compound muscle action potential (CMAP) was higher in paretic limbs than in control subjects. Furthermore, in the cohort with severe patients (muscle power ≤ 3/5 in affected hands), increased threshold current for 50% CMAP and reduced subexcitability were noted in affected limbs than in unaffected limbs. In addition, in the subsequent study of those severe patients, threshold electrotonus increased in the hyperpolarization direction: TEh (100-109 ms), and the minimum I/V slope decreased. The above findings suggest the less excitable and less accommodation in lower motor axons in the paretic limb caused by ischemic stroke. CONCLUSION Upper motor neuron injury after stroke can alter nerve excitability in lower motor neurons, and the changes are more obvious in severely paretic limbs. The accommodative changes of axons progress from the subacute to the chronic stage after stroke. Further investigation is necessary to explore the downstream effects of an upper motor neuron insult in the peripheral nerve system.
Collapse
|
33
|
Mäki-Marttunen T, Mäki-Marttunen V. Excitatory and inhibitory effects of HCN channel modulation on excitability of layer V pyramidal cells. PLoS Comput Biol 2022; 18:e1010506. [PMID: 36099307 PMCID: PMC9506642 DOI: 10.1371/journal.pcbi.1010506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/23/2022] [Accepted: 08/19/2022] [Indexed: 11/19/2022] Open
Abstract
Dendrites of cortical pyramidal cells are densely populated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, a.k.a. Ih channels. Ih channels are targeted by multiple neuromodulatory pathways, and thus are one of the key ion-channel populations regulating the pyramidal cell activity. Previous observations and theories attribute opposing effects of the Ih channels on neuronal excitability due to their mildly hyperpolarized reversal potential. These effects are difficult to measure experimentally due to the fine spatiotemporal landscape of the Ih activity in the dendrites, but computational models provide an efficient tool for studying this question in a reduced but generalizable setting. In this work, we build upon existing biophysically detailed models of thick-tufted layer V pyramidal cells and model the effects of over- and under-expression of Ih channels as well as their neuromodulation. We show that Ih channels facilitate the action potentials of layer V pyramidal cells in response to proximal dendritic stimulus while they hinder the action potentials in response to distal dendritic stimulus at the apical dendrite. We also show that the inhibitory action of the Ih channels in layer V pyramidal cells is due to the interactions between Ih channels and a hot zone of low voltage-activated Ca2+ channels at the apical dendrite. Our simulations suggest that a combination of Ih-enhancing neuromodulation at the proximal part of the apical dendrite and Ih-inhibiting modulation at the distal part of the apical dendrite can increase the layer V pyramidal excitability more than either of the two alone. Our analyses uncover the effects of Ih-channel neuromodulation of layer V pyramidal cells at a single-cell level and shed light on how these neurons integrate information and enable higher-order functions of the brain.
Collapse
Affiliation(s)
- Tuomo Mäki-Marttunen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Biosciences, University of Oslo, Oslo, Norway
- Simula Research Laboratory, Oslo, Norway
- * E-mail:
| | - Verónica Mäki-Marttunen
- Cognitive Psychology Unit, Faculty of Social Sciences, University of Leiden, Leiden, Netherlands
| |
Collapse
|
34
|
Avitan L, Stringer C. Not so spontaneous: Multi-dimensional representations of behaviors and context in sensory areas. Neuron 2022; 110:3064-3075. [PMID: 35863344 DOI: 10.1016/j.neuron.2022.06.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022]
Abstract
Sensory areas are spontaneously active in the absence of sensory stimuli. This spontaneous activity has long been studied; however, its functional role remains largely unknown. Recent advances in technology, allowing large-scale neural recordings in the awake and behaving animal, have transformed our understanding of spontaneous activity. Studies using these recordings have discovered high-dimensional spontaneous activity patterns, correlation between spontaneous activity and behavior, and dissimilarity between spontaneous and sensory-driven activity patterns. These findings are supported by evidence from developing animals, where a transition toward these characteristics is observed as the circuit matures, as well as by evidence from mature animals across species. These newly revealed characteristics call for the formulation of a new role for spontaneous activity in neural sensory computation.
Collapse
Affiliation(s)
- Lilach Avitan
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | | |
Collapse
|
35
|
Cho FS, Vainchtein ID, Voskobiynyk Y, Morningstar AR, Aparicio F, Higashikubo B, Ciesielska A, Broekaart DWM, Anink JJ, van Vliet EA, Yu X, Khakh BS, Aronica E, Molofsky AV, Paz JT. Enhancing GAT-3 in thalamic astrocytes promotes resilience to brain injury in rodents. Sci Transl Med 2022; 14:eabj4310. [PMID: 35857628 DOI: 10.1126/scitranslmed.abj4310] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inflammatory processes induced by brain injury are important for recovery; however, when uncontrolled, inflammation can be deleterious, likely explaining why most anti-inflammatory treatments have failed to improve neurological outcomes after brain injury in clinical trials. In the thalamus, chronic activation of glial cells, a proxy of inflammation, has been suggested as an indicator of increased seizure risk and cognitive deficits that develop after cortical injury. Furthermore, lesions in the thalamus, more than other brain regions, have been reported in patients with viral infections associated with neurological deficits, such as SARS-CoV-2. However, the extent to which thalamic inflammation is a driver or by-product of neurological deficits remains unknown. Here, we found that thalamic inflammation in mice was sufficient to phenocopy the cellular and circuit hyperexcitability, enhanced seizure risk, and disruptions in cortical rhythms that develop after cortical injury. In our model, down-regulation of the GABA transporter GAT-3 in thalamic astrocytes mediated this neurological dysfunction. In addition, GAT-3 was decreased in regions of thalamic reactive astrocytes in mouse models of cortical injury. Enhancing GAT-3 in thalamic astrocytes prevented seizure risk, restored cortical states, and was protective against severe chemoconvulsant-induced seizures and mortality in a mouse model of traumatic brain injury, emphasizing the potential of therapeutically targeting this pathway. Together, our results identified a potential therapeutic target for reducing negative outcomes after brain injury.
Collapse
Affiliation(s)
- Frances S Cho
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA.,Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ilia D Vainchtein
- Department of Psychiatry/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuliya Voskobiynyk
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | | | - Francisco Aparicio
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bryan Higashikubo
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | | | - Diede W M Broekaart
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam 1105 AZ, Netherlands
| | - Jasper J Anink
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam 1105 AZ, Netherlands
| | - Erwin A van Vliet
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam 1105 AZ, Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam 1098 XH, Netherlands
| | - Xinzhu Yu
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Eleonora Aronica
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam 1105 AZ, Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede 2103 SW, Netherlands
| | - Anna V Molofsky
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.,Department of Psychiatry/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA.,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeanne T Paz
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA.,Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
36
|
Burgraff NJ, Phillips RS, Severs LJ, Bush NE, Baertsch NA, Ramirez JM. Inspiratory rhythm generation is stabilized by Ih. J Neurophysiol 2022; 128:181-196. [PMID: 35675444 PMCID: PMC9291429 DOI: 10.1152/jn.00150.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cellular and network properties must be capable of generating rhythmic activity that is both flexible and stable. This is particularly important for breathing, a rhythmic behavior that dynamically adapts to environmental, behavioral, and metabolic changes from the first to the last breath. The pre-Bötzinger complex (preBötC), located within the ventral medulla, is responsible for producing rhythmic inspiration. Its cellular properties must be tunable, flexible as well as stabilizing. Here, we explore the role of the hyperpolarization-activated, nonselective cation current (Ih) for stabilizing PreBötC activity during opioid exposure and reduced excitatory synaptic transmission. Introducing Ih into an in silico preBötC network predicts that loss of this depolarizing current should significantly slow the inspiratory rhythm. By contrast, in vitro and in vivo experiments revealed that the loss of Ih minimally affected breathing frequency, but destabilized rhythmogenesis through the generation of incompletely synchronized bursts (burstlets). Associated with the loss of Ih was an increased susceptibility of breathing to opioid-induced respiratory depression or weakened excitatory synaptic interactions, a paradoxical depolarization at the cellular level, and the suppression of tonic spiking. Tonic spiking activity is generated by nonrhythmic excitatory and inhibitory preBötC neurons, of which a large percentage express Ih. Together, our results suggest that Ih is important for maintaining tonic spiking, stabilizing inspiratory rhythmogenesis, and protecting breathing against perturbations or changes in network state.NEW & NOTEWORTHY The Ih current plays multiple roles within the preBötC. This current is important for promoting intrinsic tonic spiking activity in excitatory and inhibitory neurons and for preserving rhythmic function during conditions that dampen network excitability, such as in the context of opioid-induced respiratory depression. We therefore propose that the Ih current expands the dynamic range of rhythmogenesis, buffers the preBötC against network perturbations, and stabilizes rhythmogenesis by preventing the generation of unsynchronized bursts.
Collapse
Affiliation(s)
- Nicholas J. Burgraff
- 1Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington
| | - Ryan S. Phillips
- 1Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington
| | - Liza J. Severs
- 1Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington
| | - Nicholas E. Bush
- 1Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington
| | - Nathan A. Baertsch
- 1Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington,2Department of Pediatrics, University of Washington, Seattle, Washington
| | - Jan-Marino Ramirez
- 1Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington,2Department of Pediatrics, University of Washington, Seattle, Washington,3Department of Neurological Surgery, University of Washington, Seattle, Washington
| |
Collapse
|
37
|
Ichiyama A, Mestern S, Benigno GB, Scott KE, Allman BL, Muller L, Inoue W. State-dependent activity dynamics of hypothalamic stress effector neurons. eLife 2022; 11:76832. [PMID: 35770968 PMCID: PMC9278954 DOI: 10.7554/elife.76832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022] Open
Abstract
The stress response necessitates an immediate boost in vital physiological functions from their homeostatic operation to an elevated emergency response. However, the neural mechanisms underlying this state-dependent change remain largely unknown. Using a combination of in vivo and ex vivo electrophysiology with computational modeling, we report that corticotropin releasing hormone (CRH) neurons in the paraventricular nucleus of the hypothalamus (PVN), the effector neurons of hormonal stress response, rapidly transition between distinct activity states through recurrent inhibition. Specifically, in vivo optrode recording shows that under non-stress conditions, CRHPVN neurons often fire with rhythmic brief bursts (RB), which, somewhat counterintuitively, constrains firing rate due to long (~2 s) interburst intervals. Stressful stimuli rapidly switch RB to continuous single spiking (SS), permitting a large increase in firing rate. A spiking network model shows that recurrent inhibition can control this activity-state switch, and more broadly the gain of spiking responses to excitatory inputs. In biological CRHPVN neurons ex vivo, the injection of whole-cell currents derived from our computational model recreates the in vivo-like switch between RB and SS, providing direct evidence that physiologically relevant network inputs enable state-dependent computation in single neurons. Together, we present a novel mechanism for state-dependent activity dynamics in CRHPVN neurons.
Collapse
|
38
|
Uygun DS, Basheer R. Circuits and components of delta wave regulation. Brain Res Bull 2022; 188:223-232. [PMID: 35738502 DOI: 10.1016/j.brainresbull.2022.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 11/02/2022]
Abstract
Sleep is vital and the deepest stages of sleep occur within Non-rapid-eye-movement sleep (NREM), defined by high electroencephalographic power in the delta (~0.5-4Hz) wave frequency range. Delta waves are thought to facilitate a myriad of physical and mental health functions. This review aims to comprehensively cover the historical and recent advances in the understanding of the mechanisms orchestrating NREM delta waves. We discuss a complete neurocircuit - focusing on one leg of the circuit at a time - and delve deeply into the molecular mechanistic components that contribute to NREM delta wave regulation. We also discuss the relatively localized nature in which these mechanisms have been defined, and how likely they might generalize across distinct sensory and higher order modalities in the brain.
Collapse
Affiliation(s)
- David S Uygun
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA; 02132.
| | - Radhika Basheer
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA; 02132.
| |
Collapse
|
39
|
Bosque-Cordero KY, Vazquez-Torres R, Calo-Guadalupe C, Consuegra-Garcia D, Fois GR, Georges F, Jimenez-Rivera CA. I h blockade reduces cocaine-induced firing patterns of putative dopaminergic neurons of the ventral tegmental area in the anesthetized rat. Prog Neuropsychopharmacol Biol Psychiatry 2022; 112:110431. [PMID: 34454991 PMCID: PMC8489561 DOI: 10.1016/j.pnpbp.2021.110431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 01/12/2023]
Abstract
The hyperpolarization-activated cation current (Ih) is a determinant of intrinsic excitability in various cells, including dopaminergic neurons (DA) of the ventral tegmental area (VTA). In contrast to other cellular conductances, Ih is activated by hyperpolarization negative to -55 mV and activating Ih produces a time-dependent depolarizing current. Our laboratory demonstrated that cocaine sensitization, a chronic cocaine behavioral model, significantly reduces Ih amplitude in VTA DA neurons. Despite this reduction in Ih, the spontaneous firing of VTA DA cells after cocaine sensitization remained similar to control groups. Although the role of Ih in controlling VTA DA excitability is still poorly understood, our hypothesis is that Ih reduction could play a role of a homeostatic controller compensating for cocaine-induced change in excitability. Using in vivo single-unit extracellular electrophysiology in isoflurane anesthetized rats, we explored the contribution of Ih on spontaneous firing patterns of VTA DA neurons. A key feature of spontaneous excitability is bursting activity; bursting is defined as trains of two or more spikes occurring within a short interval and followed by a prolonged period of inactivity. Burst activity increases the reliability of information transfer. To elucidate the contribution of Ih to spontaneous firing patterns of VTA DA neurons, we locally infused an Ih blocker (ZD 7288, 8.3 μM) and evaluated its effect. Ih blockade significantly reduced firing rate, bursting frequency, and percent of spikes within a burst. In addition, Ih blockade significantly reduced acute cocaine-induced spontaneous firing rate, bursting frequency, and percent of spikes within a burst. Using whole-cell patch-clamp, we determine the progressive reduction of Ih after acute and chronic cocaine administration (15 mg/k.g intraperitoneally). Our data show a significant reduction (~25%) in Ih amplitude after 24 but not 2 h of acute cocaine administration. These results suggest that a progressive reduction of Ih could serve as a homeostatic regulator of cocaine-induced spontaneous firing patterns related to VTA DA excitability.
Collapse
Affiliation(s)
| | | | | | | | - Giulia R Fois
- University of Bordeaux, Neurodegeneratives Diseases Institute, IMN-UMR-CNRS 5293, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS, Neurodegeneratives Diseases Institute, IMN-UMR-CNRS 5293, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - François Georges
- University of Bordeaux, Neurodegeneratives Diseases Institute, IMN-UMR-CNRS 5293, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS, Neurodegeneratives Diseases Institute, IMN-UMR-CNRS 5293, 146 rue Léo Saignat, 33076 Bordeaux, France
| | | |
Collapse
|
40
|
Parra-Munevar J, Morse CE, Plummer MR, Davis RL. Dynamic Heterogeneity Shapes Patterns of Spiral Ganglion Activity. J Neurosci 2021; 41:8859-8875. [PMID: 34551939 PMCID: PMC8549539 DOI: 10.1523/jneurosci.0924-20.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 11/21/2022] Open
Abstract
Neural response properties that typify primary sensory afferents are critical to fully appreciate because they establish and, ultimately represent, the fundamental coding design used for higher-level processing. Studies illuminating the center-surround receptive fields of retinal ganglion cells, for example, were ground-breaking because they determined the foundation of visual form detection. For the auditory system, a basic organizing principle of the spiral ganglion afferents is their extensive electrophysiological heterogeneity establishing diverse intrinsic firing properties in neurons throughout the spiral ganglion. Moreover, these neurons display an impressively large array of neurotransmitter receptor types that are responsive to efferent feedback. Thus, electrophysiological diversity and its neuromodulation are a fundamental encoding mechanism contributed by the primary afferents in the auditory system. To place these features into context, we evaluated the effects of hyperpolarization and cAMP on threshold level as indicators of overall afferent responsiveness in CBA/CaJ mice of either sex. Hyperpolarization modified threshold gradients such that distinct voltage protocols could shift the relationship between sensitivity and stimulus input to reshape resolution. This resulted in an "accordion effect" that appeared to stretch, compress, or maintain responsivity across the gradient of afferent thresholds. cAMP targeted threshold and kinetic shifts to rapidly adapting neurons, thus revealing multiple cochleotopic properties that could potentially be independently regulated. These examples of dynamic heterogeneity in primary auditory afferents not only have the capacity to shift the range, sensitivity, and resolution, but to do so in a coordinated manner that appears to orchestrate changes with a seemingly unlimited repertoire.SIGNIFICANCE STATEMENT How do we discriminate the more nuanced qualities of the sound around us? Beyond the basics of pitch and loudness, aspects, such as pattern, distance, velocity, and location, are all attributes that must be used to encode acoustic sensations effectively. While higher-level processing is required for perception, it would not be unexpected if the primary auditory afferents optimized receptor input to expedite neural encoding. The findings reported herein are consistent with this design. Neuromodulation compressed, expanded, shifted, or realigned intrinsic electrophysiological heterogeneity to alter neuronal responses selectively and dynamically. This suggests that diverse spiral ganglion phenotypes provide a rich substrate to support an almost limitless array of coding strategies within the first neural element of the auditory pathway.
Collapse
Affiliation(s)
- Jeffrey Parra-Munevar
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
| | - Charles E Morse
- Department of Neurosurgery, Jefferson Hospital for Neuroscience, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania 19107
| | - Mark R Plummer
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
| | - Robin L Davis
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
| |
Collapse
|
41
|
Sinha M, Narayanan R. Active Dendrites and Local Field Potentials: Biophysical Mechanisms and Computational Explorations. Neuroscience 2021; 489:111-142. [PMID: 34506834 PMCID: PMC7612676 DOI: 10.1016/j.neuroscience.2021.08.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 10/27/2022]
Abstract
Neurons and glial cells are endowed with membranes that express a rich repertoire of ion channels, transporters, and receptors. The constant flux of ions across the neuronal and glial membranes results in voltage fluctuations that can be recorded from the extracellular matrix. The high frequency components of this voltage signal contain information about the spiking activity, reflecting the output from the neurons surrounding the recording location. The low frequency components of the signal, referred to as the local field potential (LFP), have been traditionally thought to provide information about the synaptic inputs that impinge on the large dendritic trees of various neurons. In this review, we discuss recent computational and experimental studies pointing to a critical role of several active dendritic mechanisms that can influence the genesis and the location-dependent spectro-temporal dynamics of LFPs, spanning different brain regions. We strongly emphasize the need to account for the several fast and slow dendritic events and associated active mechanisms - including gradients in their expression profiles, inter- and intra-cellular spatio-temporal interactions spanning neurons and glia, heterogeneities and degeneracy across scales, neuromodulatory influences, and activitydependent plasticity - towards gaining important insights about the origins of LFP under different behavioral states in health and disease. We provide simple but essential guidelines on how to model LFPs taking into account these dendritic mechanisms, with detailed methodology on how to account for various heterogeneities and electrophysiological properties of neurons and synapses while studying LFPs.
Collapse
Affiliation(s)
- Manisha Sinha
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| |
Collapse
|
42
|
Wahlbom A, Mogensen H, Jörntell H. Widely Different Correlation Patterns Between Pairs of Adjacent Thalamic Neurons In vivo. Front Neural Circuits 2021; 15:692923. [PMID: 34276316 PMCID: PMC8278214 DOI: 10.3389/fncir.2021.692923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
We have previously reported different spike firing correlation patterns among pairs of adjacent pyramidal neurons within the same layer of S1 cortex in vivo, which was argued to suggest that acquired synaptic weight modifications would tend to differentiate adjacent cortical neurons despite them having access to near-identical afferent inputs. Here we made simultaneous single-electrode loose patch-clamp recordings from 14 pairs of adjacent neurons in the lateral thalamus of the ketamine-xylazine anesthetized rat in vivo to study the correlation patterns in their spike firing. As the synapses on thalamic neurons are dominated by a high number of low weight cortical inputs, which would be expected to be shared for two adjacent neurons, and as far as thalamic neurons have homogenous membrane physiology and spike generation, they would be expected to have overall similar spike firing and therefore also correlation patterns. However, we find that across a variety of thalamic nuclei the correlation patterns between pairs of adjacent thalamic neurons vary widely. The findings suggest that the connectivity and cellular physiology of the thalamocortical circuitry, in contrast to what would be expected from a straightforward interpretation of corticothalamic maps and uniform intrinsic cellular neurophysiology, has been shaped by learning to the extent that each pair of thalamic neuron has a unique relationship in their spike firing activity.
Collapse
Affiliation(s)
- Anders Wahlbom
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Hannes Mogensen
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Henrik Jörntell
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
43
|
Combe CL, Gasparini S. I h from synapses to networks: HCN channel functions and modulation in neurons. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:119-132. [PMID: 34181891 DOI: 10.1016/j.pbiomolbio.2021.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 01/16/2023]
Abstract
Hyperpolarization-activated cyclic nucleotide gated (HCN) channels and the current they carry, Ih, are widely and diversely distributed in the central nervous system (CNS). The distribution of the four subunits of HCN channels is variable within the CNS, within brain regions, and often within subcellular compartments. The precise function of Ih can depend heavily on what other channels are co-expressed. In this review, we give an overview of HCN channel structure, distribution, and modulation by cyclic adenosine monophosphate (cAMP). We then discuss HCN channel and Ih functions, where we have parsed the roles into two main effects: a steady effect on maintaining the resting membrane potential at relatively depolarized values, and slow channel dynamics. Within this framework, we discuss Ih involvement in resonance, synaptic integration, transmitter release, plasticity, and point out a special case, where the effects of Ih on the membrane potential and its slow channel dynamics have dual roles in thalamic neurons.
Collapse
Affiliation(s)
- Crescent L Combe
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Sonia Gasparini
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
44
|
Loss of HCN2 in Dorsal Hippocampus of Young Adult Mice Induces Specific Apoptosis of the CA1 Pyramidal Neuron Layer. Int J Mol Sci 2021; 22:ijms22136699. [PMID: 34206649 PMCID: PMC8269412 DOI: 10.3390/ijms22136699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 11/20/2022] Open
Abstract
Neurons inevitably rely on a proper repertoire and distribution of membrane-bound ion-conducting channels. Among these proteins, the family of hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels possesses unique properties giving rise to the corresponding Ih-current that contributes to various aspects of neural signaling. In mammals, four genes (hcn1-4) encode subunits of HCN channels. These subunits can assemble as hetero- or homotetrameric ion-conducting channels. In order to elaborate on the specific role of the HCN2 subunit in shaping electrical properties of neurons, we applied an Adeno-associated virus (AAV)-mediated, RNAi-based knock-down strategy of hcn2 gene expression both in vitro and in vivo. Electrophysiological measurements showed that HCN2 subunit knock-down resulted in specific yet anticipated changes in Ih-current properties in primary hippocampal neurons and, in addition, corroborated that the HCN2 subunit participates in postsynaptic signal integration. To further address the role of the HCN2 subunit in vivo, we injected recombinant (r)AAVs into the dorsal hippocampus of young adult male mice. Behavioral and biochemical analyses were conducted to assess the contribution of HCN2-containing channels in shaping hippocampal network properties. Surprisingly, knock-down of hcn2 expression resulted in a severe degeneration of the CA1 pyramidal cell layer, which did not occur in mice injected with control rAAV constructs. This finding might pinpoint to a vital and yet unknown contribution of HCN2 channels in establishing or maintaining the proper function of CA1 pyramidal neurons of the dorsal hippocampus.
Collapse
|
45
|
Prönneke A, Witte M, Möck M, Staiger JF. Neuromodulation Leads to a Burst-Tonic Switch in a Subset of VIP Neurons in Mouse Primary Somatosensory (Barrel) Cortex. Cereb Cortex 2021; 30:488-504. [PMID: 31210267 DOI: 10.1093/cercor/bhz102] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 12/14/2022] Open
Abstract
Neocortical GABAergic interneurons expressing vasoactive intestinal polypeptide (VIP) contribute to sensory processing, sensorimotor integration, and behavioral control. In contrast to other major subpopulations of GABAergic interneurons, VIP neurons show a remarkable diversity. Studying morphological and electrophysiological properties of VIP cells, we found a peculiar group of neurons in layer II/III of mouse primary somatosensory (barrel) cortex, which showed a highly dynamic burst firing behavior at resting membrane potential that switched to tonic mode at depolarized membrane potentials. Furthermore, we demonstrate that burst firing depends on T-type calcium channels. The burst-tonic switch could be induced by acetylcholine (ACh) and serotonin. ACh mediated a depolarization via nicotinic receptors whereas serotonin evoked a biphasic depolarization via ionotropic and metabotropic receptors in 48% of the population and a purely monophasic depolarization via metabotropic receptors in the remaining cells. These data disclose an electrophysiologically defined subpopulation of VIP neurons that via neuromodulator-induced changes in firing behavior is likely to regulate the state of cortical circuits in a profound manner.
Collapse
Affiliation(s)
- Alvar Prönneke
- Institute for Neuroanatomy, Universitätsmedizin Göttingen, Georg-August-Universität, D-37075 Göttingen, Germany
| | - Mirko Witte
- Institute for Neuroanatomy, Universitätsmedizin Göttingen, Georg-August-Universität, D-37075 Göttingen, Germany
| | - Martin Möck
- Institute for Neuroanatomy, Universitätsmedizin Göttingen, Georg-August-Universität, D-37075 Göttingen, Germany
| | - Jochen F Staiger
- Institute for Neuroanatomy, Universitätsmedizin Göttingen, Georg-August-Universität, D-37075 Göttingen, Germany
| |
Collapse
|
46
|
Arousing Effects of Electroacupuncture on the "Shuigou Point" in Rats with Disorder of Consciousness after Traumatic Brain Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6611461. [PMID: 33959185 PMCID: PMC8075666 DOI: 10.1155/2021/6611461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 11/22/2022]
Abstract
Orexin is an important neuropeptide that stimulates cortical activation and arousal and is involved in the regulation of wakefulness and arousal. Our previous meta-analysis showed that acupuncture fared well in the treatment of TBI-induced DOC in which “shuigou (DU 26)” was the most important and frequent point targeted. In the present study, we investigated whether electroacupuncture (EA) promotes TBI-induced unconsciousness wakefulness via orexin pathway. A TBI rat model was established using a control cortical impact (CCI) model. In the stimulated group, TBI rats received EA (15 Hz, 1.0 mA, 15 min). In the antagonist group, TBI rats were intraperitoneally injected with the orexin receptor 1 (OX1R) antagonist SB334867 and received EA. Unconsciousness time was observed in each group after TBI, and electrocorticography (ECoG) was applied to detect rats' EEG activity. Immunohistochemistry, enzyme-linked immunosorbent assay, and western blot were used to assess the levels of orexin-1(OX1) and OX1R expression in the mPFC. We show that duration of unconsciousness and the ratio of delta power in ECoG in the EA group were significantly reduced compared with those in the TBI group. EA could increase OX1 and OX1R expression in the mPFC and reduced the loss of orexin-producing neurons in LHA. However, all the efficacy of EA was blocked by the OX1R antagonist SB334867. Our findings suggest that EA promotes the recovery of consciousness of TBI-induced unconscious rats via upregulation of OX1and OX1R expression in mPFC.
Collapse
|
47
|
Ding Q, Jia Y. Effects of temperature and ion channel blocks on propagation of action potential in myelinated axons. CHAOS (WOODBURY, N.Y.) 2021; 31:053102. [PMID: 34240929 DOI: 10.1063/5.0044874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/14/2021] [Indexed: 06/13/2023]
Abstract
Potassium ion and sodium ion channels play important roles in the propagation of action potentials along a myelinated axon. The random opening and closing of ion channels can cause the fluctuation of action potentials. In this paper, an improved Hodgkin-Huxley chain network model is proposed to study the effects of ion channel blocks, temperature, and ion channel noise on the propagation of action potentials along the myelinated axon. It is found that the chain network has minimum coupling intensity threshold and maximum tolerance temperature threshold that allow the action potentials to pass along the whole axon, and the blockage of ion channels can change these two thresholds. A striking result is that the simulated value of the optimum membrane size (inversely proportional to noise intensity) coincides with the area range of feline thalamocortical relay cells in biological experiments.
Collapse
Affiliation(s)
- Qianming Ding
- Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Ya Jia
- Department of Physics, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
48
|
O'Reilly C, Iavarone E, Yi J, Hill SL. Rodent somatosensory thalamocortical circuitry: Neurons, synapses, and connectivity. Neurosci Biobehav Rev 2021; 126:213-235. [PMID: 33766672 DOI: 10.1016/j.neubiorev.2021.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/15/2021] [Accepted: 03/14/2021] [Indexed: 01/21/2023]
Abstract
As our understanding of the thalamocortical system deepens, the questions we face become more complex. Their investigation requires the adoption of novel experimental approaches complemented with increasingly sophisticated computational modeling. In this review, we take stock of current data and knowledge about the circuitry of the somatosensory thalamocortical loop in rodents, discussing common principles across modalities and species whenever appropriate. We review the different levels of organization, including the cells, synapses, neuroanatomy, and network connectivity. We provide a complete overview of this system that should be accessible for newcomers to this field while nevertheless being comprehensive enough to serve as a reference for seasoned neuroscientists and computational modelers studying the thalamocortical system. We further highlight key gaps in data and knowledge that constitute pressing targets for future experimental work. Filling these gaps would provide invaluable information for systematically unveiling how this system supports behavioral and cognitive processes.
Collapse
Affiliation(s)
- Christian O'Reilly
- Azrieli Centre for Autism Research, Montreal Neurological Institute, McGill University, Montreal, Canada; Ronin Institute, Montclair, NJ, USA; Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.
| | - Elisabetta Iavarone
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Jane Yi
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sean L Hill
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland; Department of Psychiatry, University of Toronto, Toronto, Canada; Centre for Addiction and Mental Health, Toronto, Canada.
| |
Collapse
|
49
|
Desai NV, Varela C. Distinct burst properties contribute to the functional diversity of thalamic nuclei. J Comp Neurol 2021; 529:3726-3750. [PMID: 33723858 PMCID: PMC8440663 DOI: 10.1002/cne.25141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022]
Abstract
Thalamic neurons fire spikes in two modes, burst and tonic. The function of burst firing is unclear, but the evidence suggests that bursts are more effective at activating cortical cells, and that postinhibition rebound bursting contributes to thalamocortical oscillations during sleep. Bursts are considered stereotyped signals; however, there is limited evidence regarding how burst properties compare across thalamic nuclei of different functional or anatomical organization. Here, we used whole-cell patch clamp recordings and compartmental modeling to investigate the properties of bursts in six sensory thalamic nuclei, to study the mechanisms that can lead to different burst properties, and to assess the implications of different burst properties for thalamocortical transmission and oscillatory functions. We found that bursts in higher-order cells on average had higher number of spikes and longer latency to the first spike. Additionally, burst features in first-order neurons were determined by sensory modality. Shifting the voltage-dependence and density of the T-channel conductance in a compartmental model replicates the burst properties from the intracellular recordings, pointing to molecular mechanisms that can generate burst diversity. Furthermore, the model predicts that bursts with higher number of spikes will drastically reduce the effectiveness of thalamocortical transmission. In addition, the latency to burst limited the rebound oscillatory frequency in modeled cells. These results demonstrate that burst properties vary according to the thalamocortical hierarchy and with sensory modality. The findings imply that, while in burst mode, thalamocortical transmission and firing frequency will be determined by the number of spikes and latency to burst.
Collapse
Affiliation(s)
- Nidhi Vasant Desai
- Psychology Department, Jupiter Life Sciences Initiative, Florida Atlantic University, Boca Raton, Florida, USA
| | - Carmen Varela
- Psychology Department, Jupiter Life Sciences Initiative, Florida Atlantic University, Boca Raton, Florida, USA
| |
Collapse
|
50
|
Daou A, Margoliash D. Intrinsic plasticity and birdsong learning. Neurobiol Learn Mem 2021; 180:107407. [PMID: 33631346 DOI: 10.1016/j.nlm.2021.107407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/28/2020] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
Although information processing and storage in the brain is thought to be primarily orchestrated by synaptic plasticity, other neural mechanisms such as intrinsic plasticity are available. While a number of recent studies have described the plasticity of intrinsic excitability in several types of neurons, the significance of non-synaptic mechanisms in memory and learning remains elusive. After reviewing plasticity of intrinsic excitation in relation to learning and homeostatic mechanisms, we focus on the intrinsic properties of a class of basal-ganglia projecting song system neurons in zebra finch, how these related to each bird's unique learned song, how these properties change over development, and how they are maintained dynamically to rapidly change in response to auditory feedback perturbations. We place these results in the broader theme of learning and changes in intrinsic properties, emphasizing the computational implications of this form of plasticity, which are distinct from synaptic plasticity. The results suggest that exploring reciprocal interactions between intrinsic and network properties will be a fruitful avenue for understanding mechanisms of birdsong learning.
Collapse
Affiliation(s)
- Arij Daou
- University of Chicago, United States
| | | |
Collapse
|