1
|
Holendová B, Stokičová L, Plecitá-Hlavatá L. Lipid Dynamics in Pancreatic β-Cells: Linking Physiology to Diabetes Onset. Antioxid Redox Signal 2024; 41:865-889. [PMID: 39495600 DOI: 10.1089/ars.2024.0724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Significance: Glucose-induced lipid metabolism is essential for preserving functional β-cells, and its disruption is linked to type 2 diabetes (T2D) development. Lipids are an integral part of the cells playing an indispensable role as structural components, energy storage molecules, and signals. Recent Advances: Glucose presence significantly impacts lipid metabolism in β-cells, where fatty acids are primarily synthesized de novo and/or are transported from the bloodstream. This process is regulated by the glycerolipid/free fatty acid cycle, which includes lipogenic and lipolytic reactions producing metabolic coupling factors crucial for insulin secretion. Disrupted lipid metabolism involving oxidative stress and inflammation is a hallmark of T2D. Critical Issues: Lipid metabolism in β-cells is complex involving multiple simultaneous processes. Exact compartmentalization and quantification of lipid metabolism and its intermediates, especially in response to glucose or chronic hyperglycemia, are essential. Current research often uses non-physiological conditions, which may not accurately reflect in vivo situations. Future Directions: Identifying and quantifying individual steps and their signaling, including redox, within the complex fatty acid and lipid metabolic pathways as well as the metabolites formed during acute versus chronic glucose stimulation, will uncover the detailed mechanisms of glucose-stimulated insulin secretion. This knowledge is crucial for understanding T2D pathogenesis and identifying pharmacological targets to prevent this disease. Antioxid. Redox Signal. 41, 865-889.
Collapse
Affiliation(s)
- Blanka Holendová
- Laboratory of Pancreatic Islet Research, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Linda Stokičová
- Laboratory of Pancreatic Islet Research, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
- Charles University, Prague, Czech Republic
| | - Lydie Plecitá-Hlavatá
- Laboratory of Pancreatic Islet Research, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Xiao Q, Wang D, Li D, Huang J, Ma F, Zhang H, Sheng Y, Zhang C, Ha X. Protein kinase C: A potential therapeutic target for endothelial dysfunction in diabetes. J Diabetes Complications 2023; 37:108565. [PMID: 37540984 DOI: 10.1016/j.jdiacomp.2023.108565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
Protein kinase C (PKC) is a family of serine/threonine protein kinases that play an important role in many organs and systems and whose activation contributes significantly to endothelial dysfunction in diabetes. The increase in diacylglycerol (DAG) under high glucose conditions mediates PKC activation and synthesis, which stimulates oxidative stress and inflammation, resulting in impaired endothelial cell function. This article reviews the contribution of PKC to the development of diabetes-related endothelial dysfunction and summarizes the drugs that inhibit PKC activation, with the aim of exploring therapeutic modalities that may alleviate endothelial dysfunction in diabetic patients.
Collapse
Affiliation(s)
- Qian Xiao
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Dan Wang
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Danyang Li
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Jing Huang
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Feifei Ma
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, Gansu, China
| | - Haocheng Zhang
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; The Second School of Clinical Medicine, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Yingda Sheng
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Caimei Zhang
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Xiaoqin Ha
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China.
| |
Collapse
|
3
|
Kolczynska K, Loza-Valdes A, Hawro I, Sumara G. Diacylglycerol-evoked activation of PKC and PKD isoforms in regulation of glucose and lipid metabolism: a review. Lipids Health Dis 2020; 19:113. [PMID: 32466765 PMCID: PMC7257441 DOI: 10.1186/s12944-020-01286-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Protein kinase C (PKC) and Protein kinase D (PKD) isoforms can sense diacylglycerol (DAG) generated in the different cellular compartments in various physiological processes. DAG accumulates in multiple organs of the obese subjects, which leads to the disruption of metabolic homeostasis and the development of diabetes as well as associated diseases. Multiple studies proved that aberrant activation of PKCs and PKDs contributes to the development of metabolic diseases. DAG-sensing PKC and PKD isoforms play a crucial role in the regulation of metabolic homeostasis and therefore might serve as targets for the treatment of metabolic disorders such as obesity and diabetes.
Collapse
Affiliation(s)
- Katarzyna Kolczynska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Angel Loza-Valdes
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Izabela Hawro
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Grzegorz Sumara
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland.
| |
Collapse
|
4
|
Hashimoto T, Mogami H, Tsuriya D, Morita H, Sasaki S, Kumada T, Suzuki Y, Urano T, Oki Y, Suda T. G-protein-coupled receptor 40 agonist GW9508 potentiates glucose-stimulated insulin secretion through activation of protein kinase Cα and ε in INS-1 cells. PLoS One 2019; 14:e0222179. [PMID: 31498851 PMCID: PMC6733457 DOI: 10.1371/journal.pone.0222179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/23/2019] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE The mechanism by which G-protein-coupled receptor 40 (GPR40) signaling amplifies glucose-stimulated insulin secretion through activation of protein kinase C (PKC) is unknown. We examined whether a GPR40 agonist, GW9508, could stimulate conventional and novel isoforms of PKC at two glucose concentrations (3 mM and 20 mM) in INS-1D cells. METHODS Using epifluorescence microscopy, we monitored relative changes in the cytosolic fluorescence intensity of Fura2 as a marker of change in intracellular Ca2+ ([Ca2+]i) and relative increases in green fluorescent protein (GFP)-tagged myristoylated alanine-rich C kinase substrate (MARCKS-GFP) as a marker of PKC activation in response to GW9508 at 3 mM and 20 mM glucose. To assess the activation of the two PKC isoforms, relative increases in membrane fluorescence intensity of PKCα-GFP and PKCε-GFP were measured by total internal reflection fluorescence microscopy. Specific inhibitors of each PKC isotype were constructed and synthesized as peptide fusions with the third α-helix of the homeodomain of Antennapedia. RESULTS At 3 mM glucose, GW9508 induced sustained MARCKS-GFP translocation to the cytosol, irrespective of changes in [Ca2+]i. At 20 mM glucose, GW9508 induced sustained MARCKS-GFP translocation but also transient translocation that followed sharp increases in [Ca2+]i. Although PKCα translocation was rarely observed, PKCε translocation to the plasma membrane was sustained by GW9508 at 3 mM glucose. At 20 mM glucose, GW9508 induced transient translocation of PKCα and sustained translocation as well as transient translocation of PKCε. While the inhibitors (75 μM) of each PKC isotype reduced GW9508-potentiated, glucose-stimulated insulin secretion in INS-1D cells, the PKCε inhibitor had a more potent effect. CONCLUSION GW9508 activated PKCε but not PKCα at a substimulatory concentration of glucose. Both PKC isotypes were activated at a stimulatory concentration of glucose and contributed to glucose-stimulated insulin secretion in insulin-producing cells.
Collapse
Affiliation(s)
- Takuya Hashimoto
- 2nd Department of Internal Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
- * E-mail:
| | - Hideo Mogami
- Department of Health and Nutrition, Tokoha University, Shizuoka, Japan
| | - Daisuke Tsuriya
- 2nd Department of Internal Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Hiroshi Morita
- 2nd Department of Internal Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Shigekazu Sasaki
- 2nd Department of Internal Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tatsuro Kumada
- Department of Occupational Therapy, Tokoha University, Shizuoka, Japan
| | - Yuko Suzuki
- Department of Medical Physiology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tetsumei Urano
- Department of Medical Physiology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Yutaka Oki
- 2nd Department of Internal Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
- Department of Family and Community Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Takafumi Suda
- 2nd Department of Internal Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| |
Collapse
|
5
|
Sawatani T, Kaneko YK, Ishikawa T. Dual effect of reduced type I diacylglycerol kinase activity on insulin secretion from MIN6 β-cells. J Pharmacol Sci 2019; 140:178-186. [PMID: 31279581 DOI: 10.1016/j.jphs.2019.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/03/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023] Open
Abstract
The role of type I diacylglycerol kinases (DGKs) in the regulation of insulin secretion was investigated in MIN6 β-cells. In intracellular Ca2+ concentration ([Ca2+]i) measurement experiments, 1 μM R59949, a type I DGK inhibitor, and 10 μM DiC8, a diacylglycerol (DAG) analog, amplified 22.2 mM glucose-induced [Ca2+]i oscillations in a protein kinase C (PKC)-dependent manner, whereas 10 μM R59949 and 100 μM DiC8 decreased [Ca2+]i independent of PKC. High concentrations of R59949 and DiC8 attenuated voltage-dependent Ca2+ channel currents. According to these results, 22.2 mM glucose-stimulated insulin secretion (GSIS) was potentiated by 1 μM R59949 but suppressed by 10 μM of the same. The DGKα inhibitor R59022 showed a similar dual effect. Conversely, DiC8 at 10 and 100 μM potentiated GSIS, although 100 μM DiC8 decreased [Ca2+]i. These results suggest that DAG accumulated through declined type I DGK activity shows a dual effect on insulin secretion depending on the degree of accumulation; a mild DAG accumulation induces a PKC-dependent stimulatory effect on insulin secretion, whereas an excessive DAG accumulation suppresses it in a PKC-independent manner, possibly via attenuation of VDCC activity.
Collapse
Affiliation(s)
- Toshiaki Sawatani
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Yukiko K Kaneko
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan.
| | - Tomohisa Ishikawa
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan
| |
Collapse
|
6
|
Marin L, Silva HBF, Damin G, Ignacio-Souza LM, Reis SRDL, de Oliveira CAM, Ribeiro RA, Reis MADB, Latorraca MQ, Ferreira F, Arantes VC. Nutritional recovery from a low-protein diet during pregnancy does not restore the kinetics of insulin secretion and Ca 2+ or alterations in the cAMP/PKA and PLC/PKC pathways in islets from adult rats. Appl Physiol Nutr Metab 2019; 43:1257-1267. [PMID: 29758169 DOI: 10.1139/apnm-2017-0629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the insulin release induced by glucose, the Ca2+ oscillatory pattern, and the cyclic AMP (cAMP)/protein kinase A (PKA) and phospholipase C (PLC)/protein kinase C (PKC) pathways in islets from adult rats that were reared under diets with 17% protein (C) or 6% protein (LP) during gestation, suckling, and after weaning and in rats receiving diets with 6% protein during gestation and 17% protein after birth (R). First-phase glucose-induced insulin secretion was reduced in LP and R islets, and the second phase was partially restored in the R group. Glucose stimulation did not modify intracellular Ca2+ concentration, but it reduced the Ca2+ oscillatory frequency in the R group compared with the C group. Intracellular cAMP concentration was higher and PKA-Cα expression was lower in the R and LP groups compared with the C group. The PKCα content in islets from R rats was lower than that in C and LP rats. Thus, nutritional recovery from a low-protein diet during fetal life did not repair the kinetics of insulin release, impaired Ca2+ handling, and altered the cAMP/PKA and PLC/PKC pathways.
Collapse
Affiliation(s)
- Leonardo Marin
- a Faculdade de Nutrição, Universidade Federal de Mato Grosso, Cuiabá-MT, 78060-900, Brazil
| | | | - Gabriela Damin
- a Faculdade de Nutrição, Universidade Federal de Mato Grosso, Cuiabá-MT, 78060-900, Brazil
| | | | | | | | - Rosane Aparecida Ribeiro
- d Universidade Federal do Rio de Janeiro, Núcleo em Ecologia e desenvolvimento socioambiental, Rio de Janeiro-RJ, 21941-901, Brazil
| | | | | | - Fabiano Ferreira
- e Departamento de Fisiologia e Farmacologia da Universidade Federal de Pernambuco, Recife-PE, 50670-901, Brazil
| | | |
Collapse
|
7
|
Tapadia M, Carlessi R, Johnson S, Utikar R, Newsholme P. Lupin seed hydrolysate promotes G-protein-coupled receptor, intracellular Ca 2+ and enhanced glycolytic metabolism-mediated insulin secretion from BRIN-BD11 pancreatic beta cells. Mol Cell Endocrinol 2019; 480:83-96. [PMID: 30347229 DOI: 10.1016/j.mce.2018.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/14/2022]
Abstract
Lupin seed proteins have been reported to exhibit hypoglycaemic effects in animals and humans following oral administration, however little is known about its mechanism of action. This study investigated the signalling pathway(s) responsible for the insulinotropic effect of the hydrolysate obtained from lupin (Lupinus angustifolius L.) seed extracts utilizing BRIN-BD11 β-cells. The extract was treated with digestive enzymes to give a hydrolysate rich in biomolecules ≤7 kDa. Cells exhibited hydrolysate induced dose-dependent stimulation of insulin secretion and enhanced intracellular Ca2+ and glucose metabolism. The stimulatory effect of the hydrolysate was potentiated by depolarizing concentrations of KCl and was blocked by inhibitors of the ATP sensitive K+ channel, Gαq protein, phospholipase C (PLC) and protein kinase C (PKC). These findings reveal a novel mechanism for lupin hydrolysate stimulated insulin secretion via Gαq mediated signal transduction (Gαq/PLC/PKC) in the β-cells. Thus, lupin hydrolysates may have potential for nutraceutical treatment in type 2 diabetes.
Collapse
Affiliation(s)
- Mrunmai Tapadia
- Western Australia School of Mines (WASM): Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA, 6102, Australia
| | - Rodrigo Carlessi
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute Biosciences, Curtin University, Perth, WA, 6102, Australia.
| | - Stuart Johnson
- School of Molecular and Life Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6845, Australia
| | - Ranjeet Utikar
- Western Australia School of Mines (WASM): Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA, 6102, Australia
| | - Philip Newsholme
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute Biosciences, Curtin University, Perth, WA, 6102, Australia.
| |
Collapse
|
8
|
Xie B, Nguyen PM, Idevall-Hagren O. Feedback regulation of insulin secretion by extended synaptotagmin-1. FASEB J 2018; 33:4716-4728. [PMID: 30589572 DOI: 10.1096/fj.201801878r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endoplasmic reticulum (ER)-plasma membrane (PM) contacts are dynamic structures with important roles in the regulation of calcium (Ca2+) and lipid homeostasis. The extended synaptotagmins (E-Syts) are ER-localized lipid transport proteins that interact with PM phosphatidylinositol 4,5-bisphosphate in a Ca2+-dependent manner. E-Syts bidirectionally transfer glycerolipids, including diacylglycerol (DAG), between the 2 juxtaposed membranes, but the biologic significance of this transport is still unclear. Using insulin-secreting cells and live-cell imaging, we now show that Ca2+-triggered exocytosis of insulin granules is followed, in sequence, by PM DAG formation and E-Syt1 recruitment. E-Syt1 counteracted the depolarization-induced DAG formation through a mechanism that required both voltage-dependent Ca2+ influx and Ca2+ release from the ER. E-Syt1 knockdown resulted in prolonged accumulation of DAG in the PM, resulting in increased glucose-stimulated insulin secretion. We conclude that Ca2+-triggered exocytosis is temporally coupled to Ca2+-triggered E-Syt1 PM recruitment and removal of DAG to negatively regulate the same process.-Xie, B., Nguyen, P. M., Idevall-Hagren, O. Feedback regulation of insulin secretion by extended synaptotagmin-1.
Collapse
Affiliation(s)
- Beichen Xie
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Phuoc My Nguyen
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
9
|
Xie Y, Cui C, Nie A, Wang Y, Ni Q, Liu Y, Yin Q, Zhang H, Li Y, Wang Q, Gu Y, Ning G. The mTORC2/PKC pathway sustains compensatory insulin secretion of pancreatic β cells in response to metabolic stress. Biochim Biophys Acta Gen Subj 2017; 1861:2039-2047. [DOI: 10.1016/j.bbagen.2017.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/31/2017] [Accepted: 04/18/2017] [Indexed: 12/24/2022]
|
10
|
Trexler AJ, Taraska JW. Regulation of insulin exocytosis by calcium-dependent protein kinase C in beta cells. Cell Calcium 2017; 67:1-10. [PMID: 29029784 DOI: 10.1016/j.ceca.2017.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 12/27/2022]
Abstract
The control of insulin release from pancreatic beta cells helps ensure proper blood glucose level, which is critical for human health. Protein kinase C has been shown to be one key control mechanism for this process. After glucose stimulation, calcium influx into beta cells triggers exocytosis of insulin-containing dense-core granules and activates protein kinase C via calcium-dependent phospholipase C-mediated generation of diacylglycerol. Activated protein kinase C potentiates insulin release by enhancing the calcium sensitivity of exocytosis, likely by affecting two main pathways that could be linked: (1) the reorganization of the cortical actin network, and (2) the direct phosphorylation of critical exocytotic proteins such as munc18, SNAP25, and synaptotagmin. Here, we review what is currently known about the molecular mechanisms of protein kinase C action on each of these pathways and how these effects relate to the control of insulin release by exocytosis. We identify remaining challenges in the field and suggest how these challenges might be addressed to advance our understanding of the regulation of insulin release in health and disease.
Collapse
Affiliation(s)
- Adam J Trexler
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Justin W Taraska
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
11
|
Kaneko YK, Ishikawa T. [Regulation of Lipid Metabolism by Diacylglycerol Kinases in Pancreatic β-cells]. YAKUGAKU ZASSHI 2017; 136:461-5. [PMID: 26935087 DOI: 10.1248/yakushi.15-00246-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The appropriate secretion of insulin from pancreatic β-cells is essential for regulating blood glucose levels. Glucose-stimulated insulin secretion (GSIS) involves the following steps: Glucose uptake by pancreatic β-cells is metabolized to produce ATP. Increased ATP levels result in the closure of ATP-sensitive K(+) (KATP) channels, resulting in membrane depolarization that activates voltage-dependent Ca(2+) channels to subsequently trigger insulin secretion. In addition to this primary mechanism through KATP channels, insulin secretion is regulated by cyclic AMP and diacylglycerol (DAG), which mediate the effects of receptor agonists such as GLP-1 and acetylcholine. Glucose by itself can also increase the levels of these second messengers. Recently, we have shown an obligatory role of diacylglycerol kinase (DGK), an enzyme catalyzing the conversion of DAG to phosphatidic acid, in GSIS. Of the 10 known DGK isoforms, we focused on type-I DGK isoforms (i.e., DGKα, DGKβ, and DGKγ), which are activated by Ca(2+). The protein expression of DGKα and DGKγ was detected in mouse pancreatic islets and the pancreatic β-cell line MIN6. Depletion of these DGKs by a specific inhibitor or siRNA decreased both [Ca(2+)]i and insulin secretion in MIN6 cells. Similar [Ca(2+)]i responses were induced by DiC8, a membrane-permeable DAG analog. These results suggest that DGKα and DGKγ play crucial roles in insulin secretion, and that their depletion impairs insulin secretion through DAG accumulation. In this article, we review the current understanding of the roles of DAG- and DGK-signaling in pancreatic β-cells, and discuss their pathophysiological roles in the progression of type-2 diabetes.
Collapse
Affiliation(s)
- Yukiko K Kaneko
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
| | | |
Collapse
|
12
|
Wuttke A, Yu Q, Tengholm A. Autocrine Signaling Underlies Fast Repetitive Plasma Membrane Translocation of Conventional and Novel Protein Kinase C Isoforms in β Cells. J Biol Chem 2016; 291:14986-95. [PMID: 27226533 PMCID: PMC4946917 DOI: 10.1074/jbc.m115.698456] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Indexed: 01/08/2023] Open
Abstract
PKC signaling has been implicated in the regulation of many cell functions, including metabolism, cell death, proliferation, and secretion. Activation of conventional and novel PKC isoforms is associated with their Ca2+- and/or diacylglycerol (DAG)-dependent translocation to the plasma membrane. In β cells, exocytosis of insulin granules evokes brief (<10 s) local DAG elevations (“spiking”) at the plasma membrane because of autocrine activation of P2Y1 purinoceptors by ATP co-released with insulin. Using total internal reflection microscopy, fluorescent protein-tagged PKCs, and signaling biosensors, we investigated whether DAG spiking causes membrane recruitment of PKCs and whether different classes of PKCs show characteristic responses. Glucose stimulation of MIN6 cells triggered DAG spiking with concomitant repetitive translocation of the novel isoforms PKCδ, PKCϵ, and PKCη. The conventional PKCα, PKCβI, and PKCβII isoforms showed a more complex pattern with both rapid and slow translocation. K+ depolarization-induced PKCϵ translocation entirely mirrored DAG spiking, whereas PKCβI translocation showed a sustained component, reflecting the subplasma membrane Ca2+ concentration ([Ca2+]pm), with additional effect during DAG spikes. Interference with DAG spiking by purinoceptor inhibition prevented intermittent translocation of PKCs and reduced insulin secretion but did not affect [Ca2+]pm elevation or sustained PKCβI translocation. The muscarinic agonist carbachol induced pronounced transient PKCβI translocation and sustained recruitment of PKCϵ. When rise of [Ca2+]pm was prevented, the carbachol-induced DAG and PKCϵ responses were somewhat reduced, but PKCβI translocation was completely abolished. We conclude that exocytosis-induced DAG spikes efficiently recruit both conventional and novel PKCs to the β cell plasma membrane. PKC signaling is thus implicated in autocrine regulation of β cell function.
Collapse
Affiliation(s)
- Anne Wuttke
- From the Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, 75123 Uppsala, Sweden
| | - Qian Yu
- From the Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, 75123 Uppsala, Sweden
| | - Anders Tengholm
- From the Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, 75123 Uppsala, Sweden
| |
Collapse
|
13
|
Seed Ahmed M, Ahmed MS, Pelletier J, Leumann H, Gu HF, Östenson CG. Expression of Protein Kinase C Isoforms in Pancreatic Islets and Liver of Male Goto-Kakizaki Rats, a Model of Type 2 Diabetes. PLoS One 2015; 10:e0135781. [PMID: 26398746 PMCID: PMC4580567 DOI: 10.1371/journal.pone.0135781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/27/2015] [Indexed: 02/03/2023] Open
Abstract
Protein kinase C (PKC) is a family of protein kinases controlling protein phosphorylation and playing important roles in the regulation of metabolism. We have investigated expression levels of PKC isoforms in pancreatic islets and liver of diabetic Goto-Kakizaki (GK) rats with and without insulin treatment to evaluate their association with glucose homeostasis. mRNA and protein expression levels of PKC isoforms were assessed in pancreatic islets and liver of Wistar rats and GK rats with or without insulin treatment. PKCα and PKCζ mRNA expressions were down-regulated in islets of GK compared with Wistar rats. PKCα and phosphorylated PKCα (p-PKCα) protein expressions were decreased in islets of GK compared with insulin-treated GK and Wistar rats. PKCζ protein expression in islets was reduced in GK and insulin-treated GK compared with Wistar rats, but p-PKCζ was decreased only in GK rats. Islet PKCε mRNA and protein expressions were lower in GK compared with insulin-treated GK and Wistar rats. In liver, PKCδ and PKCζ mRNA expressions were decreased in both GK and insulin-treated GK compared with Wistar rats. Hepatic PKCζ protein expression was diminished in both GK rats with and without insulin treatment compared with Wistar rats. Hepatic PKCε mRNA expression was down-regulated in insulin-treated GK compared with GK and Wistar rats. PKCα, PKCε, and p-PKCζ expressions were secondary to hyperglycaemia in GK rat islets. Hepatic PKCδ and PKCζ mRNA expressions were primarily linked to hyperglycaemia. Additionally, hepatic PKCε mRNA expression could be under control of insulin.
Collapse
Affiliation(s)
- Mohammed Seed Ahmed
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden; Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Julien Pelletier
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Hannes Leumann
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Harvest F Gu
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Claes-Göran Östenson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden
| |
Collapse
|
14
|
Identifying a kinase network regulating FGF14:Nav1.6 complex assembly using split-luciferase complementation. PLoS One 2015; 10:e0117246. [PMID: 25659151 PMCID: PMC4319734 DOI: 10.1371/journal.pone.0117246] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/22/2014] [Indexed: 12/31/2022] Open
Abstract
Kinases play fundamental roles in the brain. Through complex signaling pathways, kinases regulate the strength of protein:protein interactions (PPI) influencing cell cycle, signal transduction, and electrical activity of neurons. Changes induced by kinases on neuronal excitability, synaptic plasticity and brain connectivity are linked to complex brain disorders, but the molecular mechanisms underlying these cellular events remain for the most part elusive. To further our understanding of brain disease, new methods for rapidly surveying kinase pathways in the cellular context are needed. The bioluminescence-based luciferase complementation assay (LCA) is a powerful, versatile toolkit for the exploration of PPI. LCA relies on the complementation of two firefly luciferase protein fragments that are functionally reconstituted into the full luciferase enzyme by two interacting binding partners. Here, we applied LCA in live cells to assay 12 kinase pathways as regulators of the PPI complex formed by the voltage-gated sodium channel, Nav1.6, a transmembrane ion channel that elicits the action potential in neurons and mediates synaptic transmission, and its multivalent accessory protein, the fibroblast growth factor 14 (FGF14). Through extensive dose-dependent validations of structurally-diverse kinase inhibitors and hierarchical clustering, we identified the PI3K/Akt pathway, the cell-cycle regulator Wee1 kinase, and protein kinase C (PKC) as prospective regulatory nodes of neuronal excitability through modulation of the FGF14:Nav1.6 complex. Ingenuity Pathway Analysis shows convergence of these pathways on glycogen synthase kinase 3 (GSK3) and functional assays demonstrate that inhibition of GSK3 impairs excitability of hippocampal neurons. This combined approach provides a versatile toolkit for rapidly surveying PPI signaling, allowing the discovery of new modular pathways centered on GSK3 that might be the basis for functional alterations between the normal and diseased brain.
Collapse
|
15
|
Wuttke A. Lipid Signalling Dynamics at the β-cell Plasma Membrane. Basic Clin Pharmacol Toxicol 2015; 116:281-90. [DOI: 10.1111/bcpt.12369] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/15/2014] [Indexed: 12/26/2022]
Affiliation(s)
- Anne Wuttke
- Department of Medical Cell Biology; Uppsala University; Uppsala Sweden
| |
Collapse
|
16
|
Kaneko YK, Ishikawa T. Diacylglycerol Signaling Pathway in Pancreatic β-Cells: An Essential Role of Diacylglycerol Kinase in the Regulation of Insulin Secretion. Biol Pharm Bull 2015; 38:669-73. [DOI: 10.1248/bpb.b15-00060] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yukiko K. Kaneko
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, University of Shizuoka
| | - Tomohisa Ishikawa
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
17
|
Rajagopal S, Fields BL, Kamatchi GL. Contribution of protein kinase Cα in the stimulation of insulin by the down-regulation of Cavβ subunits. Endocrine 2014; 47:463-71. [PMID: 24452871 PMCID: PMC4176602 DOI: 10.1007/s12020-013-0149-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/14/2013] [Indexed: 12/23/2022]
Abstract
Voltage-gated calcium (Cav) channels and protein kinase C (PKC) isozymes are involved in insulin secretion. In addition, Cavβ, one of the auxiliary subunits of Cav channels, also regulates the secretion of insulin as knockout of Cavβ3 (β3(-/-)) subunits in mice led to efficient glucose homeostasis and increased insulin levels. We examined whether other types of Cavβ subunits also have similar properties. In this regard, we used small interfering RNA (siRNA) of these subunits (20 μg each) to down-regulate them and examined blood glucose, serum insulin and PKC translocation in isolated pancreatic β cells of mice. While the down-regulation of Cavβ2 and β3 subunits increased serum insulin levels and caused efficient glucose homeostasis, the down-regulation of Cavβ1 and β4 subunits failed to affect both these parameters. Examination of PKC isozymes in the pancreatic β-cells of Cavβ2- or β3 siRNA-injected mice showed that three PKC isozymes, viz., PKC α, βII and θ, translocated to the membrane. This suggests that when present, Cavβ2 and β3 subunits inhibited PKC activation. Among these three isozymes, only PKCα siRNA inhibited insulin and increased glucose concentrations. It is possible that the activation of PKCs βII and θ is not sufficient for the release of insulin and PKCα is the mediator of insulin secretion under the control of Cavβ subunits. Since Cavβ subunits are present intracellularly, it is possible that they (1) inhibited the translocation of PKC isozymes to the membrane and (2) decreased the interaction between Cav channels and PKC isozymes and thus the secretion of insulin.
Collapse
Affiliation(s)
- Senthilkumar Rajagopal
- Department of Zoology, Nizam College, Osmania University, Hyderabad, 500001, Andhra Pradesh, India
| | | | | |
Collapse
|
18
|
Soni MS, Rabaglia ME, Bhatnagar S, Shang J, Ilkayeva O, Mynatt R, Zhou YP, Schadt EE, Thornberry NA, Muoio DM, Keller MP, Attie AD. Downregulation of carnitine acyl-carnitine translocase by miRNAs 132 and 212 amplifies glucose-stimulated insulin secretion. Diabetes 2014; 63:3805-14. [PMID: 24969106 PMCID: PMC4207388 DOI: 10.2337/db13-1677] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We previously demonstrated that micro-RNAs (miRNAs) 132 and 212 are differentially upregulated in response to obesity in two mouse strains that differ in their susceptibility to obesity-induced diabetes. Here we show the overexpression of miRNAs 132 and 212 enhances insulin secretion (IS) in response to glucose and other secretagogues including nonfuel stimuli. We determined that carnitine acyl-carnitine translocase (CACT; Slc25a20) is a direct target of these miRNAs. CACT is responsible for transporting long-chain acyl-carnitines into the mitochondria for β-oxidation. Small interfering RNA-mediated knockdown of CACT in β-cells led to the accumulation of fatty acyl-carnitines and enhanced IS. The addition of long-chain fatty acyl-carnitines promoted IS from rat insulinoma β-cells (INS-1) as well as primary mouse islets. The effect on INS-1 cells was augmented in response to suppression of CACT. A nonhydrolyzable ether analog of palmitoyl-carnitine stimulated IS, showing that β-oxidation of palmitoyl-carnitine is not required for its stimulation of IS. These studies establish a link between miRNA-dependent regulation of CACT and fatty acyl-carnitine-mediated regulation of IS.
Collapse
Affiliation(s)
- Mufaddal S Soni
- Department of Biochemistry, University of Wisconsin, Madison, WI
| | - Mary E Rabaglia
- Department of Biochemistry, University of Wisconsin, Madison, WI
| | | | - Jin Shang
- Department of Metabolic Disorders-Diabetes, Merck Research Laboratories, Rahway, NJ
| | - Olga Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Department of Medicine, Duke University, Durham, NC
| | - Randall Mynatt
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA
| | - Yun-Ping Zhou
- Department of Metabolic Disorders-Diabetes, Merck Research Laboratories, Rahway, NJ
| | - Eric E Schadt
- Institute for Genomics and Multiscale Biology, Mount Sinai School of Medicine, New York, NY
| | - Nancy A Thornberry
- Department of Metabolic Disorders-Diabetes, Merck Research Laboratories, Rahway, NJ
| | - Deborah M Muoio
- Sarah W. Stedman Nutrition and Metabolism Center, Department of Medicine, Duke University, Durham, NC Departments of Medicine and Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin, Madison, WI
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin, Madison, WI
| |
Collapse
|
19
|
Rajagopal S, Fields B, Burton B, On C, Reeder A, Kamatchi G. Inhibition of protein kinase C (PKC) response of voltage-gated calcium (Cav)2.2 channels expressed in Xenopus oocytes by Cavβ subunits. Neuroscience 2014; 280:1-9. [DOI: 10.1016/j.neuroscience.2014.08.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 01/12/2023]
|
20
|
Donnelly DF, Kim I, Mulligan EM, Carroll JL. Non-additive interactions between mitochondrial complex IV blockers and hypoxia in rat carotid body responses. Respir Physiol Neurobiol 2013; 190:62-9. [PMID: 24096081 DOI: 10.1016/j.resp.2013.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 09/23/2013] [Accepted: 09/23/2013] [Indexed: 12/20/2022]
Abstract
The metabolic hypothesis of carotid body chemoreceptor hypoxia transduction proposes an impairment of ATP production as the signal for activation. We hypothesized that mitochondrial complex IV blockers and hypoxia would act synergistically in exciting afferent nerve activity. Following a pre-treatment with low dosage sodium cyanide (10-20μM), the hypoxia-induced nerve response was significantly reduced along with hypoxia-induced catecholamine release. However, in isolated glomus cells, the intracellular calcium response was enhanced as initially predicted. This suggests a cyanide-mediated impairment in the step between the glomus cell intracellular calcium rise and neurotransmitter release from secretory vesicles. Administration of a PKC blocker largely reversed the inhibitory actions of cyanide on the neural response. We conclude that the expected synergism between cyanide and hypoxia occurs at the level of glomus cell intracellular calcium but not at downstream steps due to a PKC-dependent inhibition of secretion. This suggests that at least one regulatory step beyond the glomus cell calcium response may modulate the magnitude of chemoreceptor responsiveness.
Collapse
Affiliation(s)
- David F Donnelly
- Department of Pediatrics, Division of Respiratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | |
Collapse
|
21
|
Mourad NI, Nenquin M, Henquin JC. Amplification of insulin secretion by acetylcholine or phorbol ester is independent of β-cell microfilaments and distinct from metabolic amplification. Mol Cell Endocrinol 2013; 367:11-20. [PMID: 23246352 DOI: 10.1016/j.mce.2012.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/23/2012] [Accepted: 12/04/2012] [Indexed: 11/30/2022]
Abstract
Insulin secretion (IS) triggered by β-cell [Ca(2+)](c) is amplified by metabolic and receptor-generated signals. Diacylglycerol largely mediates acetylcholine (ACh) effects through protein-kinase C and other effectors, which can be directly activated by phorbol-ester (PMA). Using mouse islets, we investigated the possible role of microfilaments in ACh/PMA-mediated amplification of IS. PMA had no steady-state impact on actin microfilaments. Although ACh slightly augmented and PMA diminished glucose- and tolbutamide-induced increases in β-cell [Ca(2+)](c), both amplified IS in control islets and after microfilament disruption (latrunculin) or stabilization (jasplakinolide). Both phases of IS were larger in response to glucose than tolbutamide, although [Ca(2+)](c) was lower. This difference in secretion, which reflects metabolic amplification, persisted in presence of ACh/PMA and was independent of microfilaments. Amplification of IS by ACh/PMA is thus distinct from metabolic amplification, but both pathways promote acquisition of release competence by insulin granules, which can access exocytotic sites without intervention of microfilaments.
Collapse
Affiliation(s)
- Nizar I Mourad
- Unit of Endocrinology and Metabolism, University of Louvain, Faculty of Medicine, B-1200 Brussels, Belgium
| | | | | |
Collapse
|
22
|
Wuttke A, Idevall-Hagren O, Tengholm A. P2Y₁ receptor-dependent diacylglycerol signaling microdomains in β cells promote insulin secretion. FASEB J 2013; 27:1610-20. [PMID: 23299857 DOI: 10.1096/fj.12-221499] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Diacylglycerol (DAG) controls numerous cell functions by regulating the localization of C1-domain-containing proteins, including protein kinase C (PKC), but little is known about the spatiotemporal dynamics of the lipid. Here, we explored plasma membrane DAG dynamics in pancreatic β cells and determined whether DAG signaling is involved in secretagogue-induced pulsatile release of insulin. Single MIN6 cells, primary mouse β cells, and human β cells within intact islets were transfected with translocation biosensors for DAG, PKC activity, or insulin secretion and imaged with total internal reflection fluorescence microscopy. Muscarinic receptor stimulation triggered stable, homogenous DAG elevations, whereas glucose induced short-lived (7.1 ± 0.4 s) but high-amplitude elevations (up to 109 ± 10% fluorescence increase) in spatially confined membrane regions. The spiking was mimicked by membrane depolarization and suppressed after inhibition of exocytosis or of purinergic P2Y₁, but not P2X receptors, reflecting involvement of autocrine purinoceptor activation after exocytotic release of ATP. Each DAG spike caused local PKC activation with resulting dissociation of its substrate protein MARCKS from the plasma membrane. Inhibition of spiking reduced glucose-induced pulsatile insulin secretion. Thus, stimulus-specific DAG signaling patterns appear in the plasma membrane, including distinct microdomains, which have implications for the kinetic control of exocytosis and other membrane-associated processes.
Collapse
Affiliation(s)
- Anne Wuttke
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | | | | |
Collapse
|
23
|
Chen J, Meng Y, Zhou J, Zhuo M, Ling F, Zhang Y, Du H, Wang X. Identifying candidate genes for Type 2 Diabetes Mellitus and obesity through gene expression profiling in multiple tissues or cells. J Diabetes Res 2013; 2013:970435. [PMID: 24455749 PMCID: PMC3888709 DOI: 10.1155/2013/970435] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/30/2013] [Accepted: 10/25/2013] [Indexed: 12/18/2022] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) and obesity have become increasingly prevalent in recent years. Recent studies have focused on identifying causal variations or candidate genes for obesity and T2DM via analysis of expression quantitative trait loci (eQTL) within a single tissue. T2DM and obesity are affected by comprehensive sets of genes in multiple tissues. In the current study, gene expression levels in multiple human tissues from GEO datasets were analyzed, and 21 candidate genes displaying high percentages of differential expression were filtered out. Specifically, DENND1B, LYN, MRPL30, POC1B, PRKCB, RP4-655J12.3, HIBADH, and TMBIM4 were identified from the T2DM-control study, and BCAT1, BMP2K, CSRNP2, MYNN, NCKAP5L, SAP30BP, SLC35B4, SP1, BAP1, GRB14, HSP90AB1, ITGA5, and TOMM5 were identified from the obesity-control study. The majority of these genes are known to be involved in T2DM and obesity. Therefore, analysis of gene expression in various tissues using GEO datasets may be an effective and feasible method to determine novel or causal genes associated with T2DM and obesity.
Collapse
Affiliation(s)
- Junhui Chen
- School of Bioscience and Bioengineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yuhuan Meng
- School of Bioscience and Bioengineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
- Chinese PLA General Hospital, Beijing 100853, China
| | - Jinghui Zhou
- School of Bioscience and Bioengineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Min Zhuo
- School of Bioscience and Bioengineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Fei Ling
- School of Bioscience and Bioengineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yu Zhang
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510555, China
| | - Hongli Du
- School of Bioscience and Bioengineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
- *Hongli Du:
| | - Xiaoning Wang
- School of Bioscience and Bioengineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
- Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
24
|
Béraud-Dufour S, Abderrahmani A, Noel J, Brau F, Waeber G, Mazella J, Coppola T. Neurotensin is a regulator of insulin secretion in pancreatic beta-cells. Int J Biochem Cell Biol 2010; 42:1681-8. [DOI: 10.1016/j.biocel.2010.06.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 06/18/2010] [Accepted: 06/23/2010] [Indexed: 11/29/2022]
|
25
|
Manna PT, Smith AJ, Taneja TK, Howell GJ, Lippiat JD, Sivaprasadarao A. Constitutive endocytic recycling and protein kinase C-mediated lysosomal degradation control K(ATP) channel surface density. J Biol Chem 2010; 285:5963-73. [PMID: 20026601 PMCID: PMC2820821 DOI: 10.1074/jbc.m109.066902] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 12/07/2009] [Indexed: 11/06/2022] Open
Abstract
Pancreatic ATP-sensitive potassium (K(ATP)) channels control insulin secretion by coupling the excitability of the pancreatic beta-cell to glucose metabolism. Little is currently known about how the plasma membrane density of these channels is regulated. We therefore set out to examine in detail the endocytosis and recycling of these channels and how these processes are regulated. To achieve this goal, we expressed K(ATP) channels bearing an extracellular hemagglutinin epitope in human embryonic kidney cells and followed their fate along the endocytic pathway. Our results show that K(ATP) channels undergo multiple rounds of endocytosis and recycling. Further, activation of protein kinase C (PKC) with phorbol 12-myristate 13-acetate significantly decreases K(ATP) channel surface density by reducing channel recycling and diverting the channel to lysosomal degradation. These findings were recapitulated in the model pancreatic beta-cell line INS1e, where activation of PKC leads to a decrease in the surface density of native K(ATP) channels. Because sorting of internalized channels between lysosomal and recycling pathways could have opposite effects on the excitability of pancreatic beta-cells, we propose that PKC-regulated K(ATP) channel trafficking may play a role in the regulation of insulin secretion.
Collapse
Affiliation(s)
- Paul T. Manna
- From the Multidisciplinary Cardiovascular Research Centre, Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Andrew J. Smith
- From the Multidisciplinary Cardiovascular Research Centre, Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Tarvinder K. Taneja
- From the Multidisciplinary Cardiovascular Research Centre, Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Gareth J. Howell
- From the Multidisciplinary Cardiovascular Research Centre, Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Jonathan D. Lippiat
- From the Multidisciplinary Cardiovascular Research Centre, Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Asipu Sivaprasadarao
- From the Multidisciplinary Cardiovascular Research Centre, Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| |
Collapse
|
26
|
Nakagawa Y, Nagasawa M, Yamada S, Hara A, Mogami H, Nikolaev VO, Lohse MJ, Shigemura N, Ninomiya Y, Kojima I. Sweet taste receptor expressed in pancreatic beta-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion. PLoS One 2009; 4:e5106. [PMID: 19352508 PMCID: PMC2663034 DOI: 10.1371/journal.pone.0005106] [Citation(s) in RCA: 231] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 03/10/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Sweet taste receptor is expressed in the taste buds and enteroendocrine cells acting as a sugar sensor. We investigated the expression and function of the sweet taste receptor in MIN6 cells and mouse islets. METHODOLOGY/PRINCIPAL FINDINGS The expression of the sweet taste receptor was determined by RT-PCR and immunohistochemistry. Changes in cytoplasmic Ca(2+) ([Ca(2+)](c)) and cAMP ([cAMP](c)) were monitored in MIN6 cells using fura-2 and Epac1-camps. Activation of protein kinase C was monitored by measuring translocation of MARCKS-GFP. Insulin was measured by radioimmunoassay. mRNA for T1R2, T1R3, and gustducin was expressed in MIN6 cells. In these cells, artificial sweeteners such as sucralose, succharin, and acesulfame-K increased insulin secretion and augmented secretion induced by glucose. Sucralose increased biphasic increase in [Ca(2+)](c). The second sustained phase was blocked by removal of extracellular calcium and addition of nifedipine. An inhibitor of inositol(1, 4, 5)-trisphophate receptor, 2-aminoethoxydiphenyl borate, blocked both phases of [Ca(2+)](c) response. The effect of sucralose on [Ca(2+)](c) was inhibited by gurmarin, an inhibitor of the sweet taste receptor, but not affected by a G(q) inhibitor. Sucralose also induced sustained elevation of [cAMP](c), which was only partially inhibited by removal of extracellular calcium and nifedipine. Finally, mouse islets expressed T1R2 and T1R3, and artificial sweeteners stimulated insulin secretion. CONCLUSIONS Sweet taste receptor is expressed in beta-cells, and activation of this receptor induces insulin secretion by Ca(2+) and cAMP-dependent mechanisms.
Collapse
Affiliation(s)
- Yuko Nakagawa
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Masahiro Nagasawa
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Satoko Yamada
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Akemi Hara
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Hideo Mogami
- Department of Physiology, Hamamatsu Medical School, Hamamatsu, Japan
| | | | - Martin J. Lohse
- Institute of Pharmacology and Toxicology, University of Wurzburg, Wurzburg, Germany
| | - Noriatsu Shigemura
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yuzo Ninomiya
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Itaru Kojima
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| |
Collapse
|
27
|
Tengholm A, Gylfe E. Oscillatory control of insulin secretion. Mol Cell Endocrinol 2009; 297:58-72. [PMID: 18706473 DOI: 10.1016/j.mce.2008.07.009] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 05/30/2008] [Accepted: 07/10/2008] [Indexed: 11/17/2022]
Abstract
Pancreatic beta-cells possess an inherent ability to generate oscillatory signals that trigger insulin release. Coordination of the secretory activity among beta-cells results in pulsatile insulin secretion from the pancreas, which is considered important for the action of the hormone in the target tissues. This review focuses on the mechanisms underlying oscillatory control of insulin secretion at the level of the individual beta-cell. Recent studies have demonstrated that oscillations of the cytoplasmic Ca(2+) concentration are synchronized with oscillations in beta-cell metabolism, intracellular cAMP concentration, phospholipase C activity and plasma membrane phosphoinositide lipid concentrations. There are complex interdependencies between the different messengers and signalling pathways that contribute to amplitude regulation and shaping of the insulin secretory response to nutrient stimuli and neurohormonal modulators. Several of these pathways may be important pharmacological targets for improving pulsatile insulin secretion in type 2 diabetes.
Collapse
Affiliation(s)
- Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, SE-75123 Uppsala, Sweden.
| | | |
Collapse
|
28
|
Abstract
Members of the serine/threonine PKC (protein kinase C) family perform diverse functions in multiple cell types. All members of the family are activated in signalling cascades triggered by occupation of cell surface receptors, but the cPKC (conventional PKC) and nPKC (novel PKC) isoforms are also responsive to fatty acid metabolites. PKC isoforms are involved in various aspects of pancreatic beta-cell function, including cell proliferation, differentiation and death, as well as regulation of secretion in response to glucose and muscarinic receptor agonists. Recently, the nPKC isoform, PKCepsilon, has also been implicated in the loss of insulin secretory responsiveness that underpins the development of Type 2 diabetes.
Collapse
|
29
|
Zhang YQ, Sterling L, Stotland A, Hua H, Kritzik M, Sarvetnick N. Nodal and lefty signaling regulates the growth of pancreatic cells. Dev Dyn 2008; 237:1255-67. [PMID: 18393305 DOI: 10.1002/dvdy.21527] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Nodal and its antagonist, Lefty, are important mediators specifying the laterality of the organs during embryogenesis. Nodal signals through activin receptors in the presence of its co-receptor, Cripto. In the present study, we investigated the possible roles of Nodal and Lefty signaling during islet development and regeneration. We found that both Nodal and Lefty are expressed in the pancreas during embryogenesis and islet regeneration. In vitro studies demonstrated that Nodal inhibits, whereas Lefty enhances, the proliferation of a pancreatic cell line. In addition, we showed that Lefty-1 activates MAPK and Akt phosphorylation in these cells. In vivo blockade of endogenous Lefty using neutralizing Lefty-1 monoclonal antibody results in a significantly decreased proliferation of duct epithelial cells during islet regeneration. This is the first study to decipher the expression and function of Nodal and Lefty in pancreatic growth. Importantly, our results highlight a novel function of Nodal-Lefty signaling in the regulation of expansion of pancreatic cells.
Collapse
Affiliation(s)
- You-Qing Zhang
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
30
|
Schmitz-Peiffer C, Biden TJ. Protein kinase C function in muscle, liver, and beta-cells and its therapeutic implications for type 2 diabetes. Diabetes 2008; 57:1774-83. [PMID: 18586909 PMCID: PMC2453608 DOI: 10.2337/db07-1769] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 04/15/2008] [Indexed: 01/27/2023]
Affiliation(s)
| | - Trevor J. Biden
- From the Garvan Institute of Medical Research, Darlinghurst, Australia
| |
Collapse
|
31
|
Park S, Hong SM, Lee JE, Sung SR, Kim SH. Chlorpromazine attenuates pancreatic beta-cell function and mass through IRS2 degradation, while exercise partially reverses the attenuation. J Psychopharmacol 2008; 22:522-31. [PMID: 18308779 DOI: 10.1177/0269881106081529] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We investigated the effect and mechanism of exercise and chlorpromazine (CPZ), a conventional anti-psychotic drug, on beta-cell function and mass in 90% pancreatectomized (Px) male rats. The diabetic Px rats were divided into two groups, one of which was provided with exercise whereas the other was not. Both groups were subdivided into the three groups and administered with 0, 5 or 50 mg CPZ per kg body weight (control, low dosage of chlorpromazine (LCPZ), high dosage chlorpromazine (HCPZ)) for 8 weeks. LCPZ did not modulate glucose homeostasis. HCPZ impaired acute phase and second phase insulin secretion during hyperglycemic clamp. Apoptosis of pancreatic beta-cells increased in the HCPZ group, and proliferation decreased, contributing to reduced beta-cell mass. Exercise partially improved glucose-stimulated insulin secretion and beta-cell mass in HCPZ-treated rats. Interestingly, insulin receptor substrate-2 (IRS2) protein levels in islets decreased by increased degradation in the HCPZ group, whereas exercise partially reversed this trend by induction of IRS2 expression. In isolated islets, 50 microM CPZ decreased IRS2 expression by promoting ubiquitin-proteasome degradation, which had been prevented by proteasome inhibitors. Furthermore, similar to the effect of HCPZ treatment, a high dosage of rottlerin, a protein kinase C-delta inhibitor, reduced IRS2 levels in the islets. In conclusion, exercise partially recovered the diabetic symptoms exacerbated by HCPZ through enhancement of beta-cell function and mass in diabetic rats. This modulation by HCPZ and exercise was associated with increasing intracellular IRS2 protein levels in independent pathways.
Collapse
Affiliation(s)
- S Park
- Department of Food and Nutrition, College of Natural Science, Hoseo University, Asan-Si, Korea.
| | | | | | | | | |
Collapse
|
32
|
Abstract
The Goto Kakizaki (GK) rat is a widely used animal model to study defective glucose-stimulated insulin release in type-2 diabetes (T2D). As in T2D patients, the expression of several proteins involved in Ca(2+)-dependent exocytosis of insulin-containing large dense-core vesicles is dysregulated in this model. So far, a defect in late steps of insulin secretion could not be demonstrated. To resolve this apparent contradiction, we studied Ca(2+)-secretion coupling of healthy and GK rat beta cells in acute pancreatic tissue slices by assessing exocytosis with high time-resolution membrane capacitance measurements. We found that beta cells of GK rats respond to glucose stimulation with a normal increase in the cytosolic Ca(2+) concentration. During trains of depolarizing pulses, the secretory activity from GK rat beta cells was defective in spite of upregulated cell size and doubled voltage-activated Ca(2+) currents. In GK rat beta cells, evoked Ca(2+) entry was significantly less efficient in triggering release than in nondiabetic controls. This impairment was neither due to a decrease of functional vesicle pool sizes nor due to different kinetics of pool refilling. Strong stimulation with two successive trains of depolarizing pulses led to a prominent activity-dependent facilitation of release in GK rat beta cells, whereas secretion in controls was unaffected. Broad-spectrum inhibition of PKC sensitized Ca(2+)-dependent exocytosis, whereas it prevented the activity-dependent facilitation in GK rat beta cells. We conclude that a decrease in the sensitivity of the GK rat beta-cell to depolarization-evoked Ca(2+) influx is involved in defective glucose-stimulated insulin secretion. Furthermore, we discuss a role for constitutively increased activity of one or more PKC isoenzymes in diabetic rat beta cells.
Collapse
Affiliation(s)
- Tobias Rose
- European Neuroscience Institute-Göttingen, 37073 Göttingen, Germany
| | | | | |
Collapse
|
33
|
Suzuki Y, Zhang H, Saito N, Kojima I, Urano T, Mogami H. Glucagon-like Peptide 1 Activates Protein Kinase C through Ca2+-dependent Activation of Phospholipase C in Insulin-secreting Cells. J Biol Chem 2006; 281:28499-507. [PMID: 16870611 DOI: 10.1074/jbc.m604291200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the stimulatory effect of glucagon-like peptide 1 (GLP-1), a cAMP-generating agonist, on Ca(2+) signal and insulin secretion is well established, the underlying mechanisms remain to be fully elucidated. We recently discovered that Ca(2+) influx alone can activate conventional protein kinase C (PKC) as well as novel PKC in insulin-secreting (INS-1) cells. Building on this earlier finding, here we examined whether GLP-1-evoked Ca(2+) signaling can activate PKCalpha and PKCepsilon at a substimulatory concentration of glucose (3 mm) in INS-1 cells. We first showed that GLP-1 translocated endogenous PKCalpha and PKCepsilon from the cytosol to the plasma membrane. Next, we assessed the phosphorylation state of the PKC substrate, myristoylated alanine-rich C kinase substrate (MARCKS), by using MARCKS-GFP. GLP-1 translocated MARCKS-GFP to the cytosol in a Ca(2+)-dependent manner, and the GLP-1-evoked translocation of MARCKS-GFP was blocked by PKC inhibitors, either a broad PKC inhibitor, bisindolylmaleimide I, or a PKCepsilon inhibitor peptide, antennapedia peptide-fused pseudosubstrate PKCepsilon-(149-164) (antp-PKCepsilon) and a conventional PKC inhibitor, Gö-6976. Furthermore, forskolin-induced translocation of MARCKS-GFP was almost completely inhibited by U73122, a putative inhibitor of phospholipase C. These observations were verified in two different ways by demonstrating 1) forskolin-induced translocation of the GFP-tagged C1 domain of PKCgamma and 2) translocation of PKCalpha-DsRed and PKCepsilon-GFP. In addition, PKC inhibitors reduced forskolin-induced insulin secretion in both INS-1 cells and rat islets. Thus, GLP-1 can activate PKCalpha and PKCepsilon, and these GLP-1-activated PKCs may contribute considerably to insulin secretion at a substimulatory concentration of glucose.
Collapse
Affiliation(s)
- Yuko Suzuki
- Department of Physiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Warwar N, Efendic S, Ostenson CG, Haber EP, Cerasi E, Nesher R. Dynamics of glucose-induced localization of PKC isoenzymes in pancreatic beta-cells: diabetes-related changes in the GK rat. Diabetes 2006; 55:590-9. [PMID: 16505220 DOI: 10.2337/diabetes.55.03.06.db05-0001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glucose metabolism affects most major signal pathways in pancreatic beta-cells. Multiple protein kinases, including protein kinase C (PKC) isoenzymes, are involved in these effects; however, their role is poorly defined. Moreover, the dynamics of kinase isoenzyme activation in reference to the biphasic insulin secretion is unknown. In perfused pancreas of Wistar rats, PKCalpha staining was strongly associated with insulin staining, jointly accumulating in the vicinity of the plasma membrane during early first-phase insulin response. The signal declined before the onset of second phase and reappeared during second-phase insulin release as foci, only weekly associated with insulin staining; this signal persisted for at least 15 min after glucose stimulation. In the GK rat, glucose had minimal effect on beta-cell PKCalpha. In control beta-cells, PKCdelta stained as granulated foci with partial association with insulin staining; however, no glucose-dependent translocation was observed. In the GK rat, only minimal staining for PKCdelta was observed, increasing exclusively during early first-phase secretion. In Wistar beta-cells, PKCepsilon concentrated near the nucleus, strongly associated with insulin staining, with dynamics resembling that of biphasic insulin response, but persisting for 15 min after cessation of stimulation. In GK rats, PKCepsilon staining lacked glucose-dependent changes or association with insulin. PKCzeta exhibited bimodal dynamics in control beta-cells: during early first phase, accumulation near the cell membrane was observed, dispersing thereafter. This was followed by a gradual accumulation near the nucleus; 15 min after glucose stimulus, clear PKCzeta staining was observed within the nucleus. In the GK rat, a similar response was only occasionally observed. In control beta-cells, glucose stimulation led to a transient recruitment of PKCtheta, associated with first-phase insulin release, not seen in GK beta-cell. Data from this and related studies support a role for PKCalpha in glucose-induced insulin granule recruitment for exocytosis; a role for PKCepsilon in activation of insulin granules for exocytosis and/or in the glucose-generated time-dependent potentiation signal for insulin release; and a dual function for PKCzeta in initiating insulin release and in a regulatory role in the transcriptional machinery. Furthermore, diminished levels and/or activation of PKCalpha, PKCepsilon, PKCtheta, and PKCzeta could be part of the defective signals downstream to glucose metabolism responsible for the deranged insulin secretion in the GK rat.
Collapse
Affiliation(s)
- Nasim Warwar
- Endocrinology and Metabolism Service, Hebrew University, Hadassah Medical Center, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
35
|
Prasad S, Quijano J. Development of nanostructured biomedical micro-drug testing device based on in situ cellular activity monitoring. Biosens Bioelectron 2006; 21:1219-29. [PMID: 15990287 DOI: 10.1016/j.bios.2005.05.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 05/12/2005] [Accepted: 05/13/2005] [Indexed: 11/17/2022]
Abstract
Integration of micro and nanofabrication techniques with biotechnology has resulted in the development of in vitro analytical and diagnostic tools for biomedical applications. The focus of such technology has primarily been on therapeutic and sensing applications. The long-term integration of cells with inorganic materials provides the basis for novel sensing platforms. This paper describes the creation of, nanoporous, biocompatible, alumina membranes as a platform for incorporation into a cell based device targeted for in situ recording of cellular electrical activity variations due to the changes associated with the surrounding microenvironments more specifically due to the effect of therapeutic drugs. Studies described herein focus on the interaction of nanoporous alumina substrates embedded in silicon, patterned with cells of interest. The cells that have been used to develop the in vitro test platform are primary hippocampal neurons. Demonstrated here, is the fidelity of such a system in terms of determination of cell viability, proliferation, and functionality. The response of the cells to the "drug" molecules is electro-optically characterized in an in situ manner. The capability of such, micro fabricated nanoporous membranes as in vitro drug testing platforms, is first theoretically estimated using two dimensional finite element modeling of the diffusion of the molecules of interest through the nanoporous substrate using CFDRC. It is then experimentally established, using glucose and immunoglobulin G (IgG).
Collapse
Affiliation(s)
- Shalini Prasad
- Biomedical Microdevices and Nanotechnology Laboratory, Department of Electrical and Computer Engineering, Portland State University, 160-11 FAB, 1900 SW 4th Avenue, Portland, OR 97201, USA.
| | | |
Collapse
|