1
|
Neumann S, Hamilton MCK, Hart EC, Brooks JCW. Pain perception during baroreceptor unloading by lower body negative pressure. Eur J Pain 2024; 28:1497-1508. [PMID: 38623884 DOI: 10.1002/ejp.2273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND People with high blood pressure have reduced sensitivity to pain, known as blood pressure hypoalgesia. One proposed mechanism for this is altered baroreceptor sensitivity. In healthy volunteers, stimulating the carotid baroreceptors causes reduced sensitivity to acute pain; however, this effect may be confounded by a rise in blood pressure due to baroreflex stimulation. The present study tests whether baroreceptor unloading contributes to the physiological mechanism of blood pressure-related hypoalgesia. METHODS In the present study, pain perception to thermal stimulation of the forearm was studied in 20 healthy volunteers during baroreceptor unloading by lower body negative pressure (LBNP) at -5 and -20 mmHg. Blood pressure and heart rate were measured continuously throughout. To address issues relating to stimulation order, the sequence of LBNP stimulation was counterbalanced across participants. RESULTS Increased heart rate was observed at a LBNP of -20 mmHg, but not -5 mmHg, but neither stimulus had an effect on blood pressure. There was no change in warm or cold sensory detection thresholds, heat or cold pain thresholds nor perceived pain from a 30s long thermal heat stimulus during LBNP. CONCLUSION Therefore, baroreceptor unloading with maintained systemic blood pressure did not alter pain perception. The current study does not support the hypothesis that an altered baroreflex may underlie the physiological mechanism of blood pressure-related hypoalgesia. SIGNIFICANCE This work provides evidence that, when measured in normotensive healthy young adults, the baroreflex response to simulated hypovolaemia did not lead to reduced pain sensitivity (known as blood pressure hypoalgesia).
Collapse
Affiliation(s)
- S Neumann
- Clinical Trials Unit, University of Bristol, Bristol, UK
| | - M C K Hamilton
- University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - E C Hart
- School of Physiology Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - J C W Brooks
- School of Psychology, University of East Anglia, Norwich, UK
| |
Collapse
|
2
|
Klassen SA, Limberg JK, Harvey RE, Wiggins CC, Iannarelli NJ, Senefeld JW, Nicholson WT, Curry TB, Joyner MJ, Shoemaker JK, Baker SE. Central α 2-adrenergic mechanisms regulate human sympathetic neuronal discharge strategies. J Physiol 2024; 602:4053-4071. [PMID: 39058701 PMCID: PMC11326960 DOI: 10.1113/jp286450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The present study investigated the impact of central α2-adrenergic mechanisms on sympathetic action potential (AP) discharge, recruitment and latency strategies. We used the microneurographic technique to record muscle sympathetic nerve activity and a continuous wavelet transform to investigate postganglionic sympathetic AP firing during a baseline condition and an infusion of a α2-adrenergic receptor agonist, dexmedetomidine (10 min loading infusion of 0.225 µg kg-1; maintenance infusion of 0.1-0.5 µg kg h-1) in eight healthy individuals (28 ± 7 years, five females). Dexmedetomidine reduced mean pressure (92 ± 7 to 80 ± 8 mmHg, P < 0.001) but did not alter heart rate (61 ± 13 to 60 ± 14 bpm; P = 0.748). Dexmedetomidine reduced sympathetic AP discharge (126 ± 73 to 27 ± 24 AP 100 beats-1, P = 0.003) most strongly for medium-sized APs (normalized cluster 2: 21 ± 10 to 5 ± 5 AP 100 beats-1; P < 0.001). Dexmedetomidine progressively de-recruited sympathetic APs beginning with the largest AP clusters (12 ± 3 to 7 ± 2 clusters, P = 0.002). Despite de-recruiting large AP clusters with shorter latencies, dexmedetomidine reduced AP latency across remaining clusters (1.18 ± 0.12 to 1.13 ± 0.13 s, P = 0.002). A subset of six participants performed a Valsalva manoeuvre (20 s, 40 mmHg) during baseline and the dexmedetomidine infusion. Compared to baseline, AP discharge (Δ 361 ± 292 to Δ 113 ± 155 AP 100 beats-1, P = 0.011) and AP cluster recruitment elicited by the Valsalva manoeuvre were lower during dexmedetomidine (Δ 2 ± 1 to Δ 0 ± 2 AP clusters, P = 0.041). The reduction in sympathetic AP latency elicited by the Valsalva manoeuvre was not affected by dexmedetomidine (Δ -0.09 ± 0.07 to Δ -0.07 ± 0.14 s, P = 0.606). Dexmedetomidine reduced baroreflex gain, most strongly for medium-sized APs (normalized cluster 2: -6.0 ± 5 to -1.6 ± 2 % mmHg-1; P = 0.008). These data suggest that α2-adrenergic mechanisms within the central nervous system modulate sympathetic postganglionic neuronal discharge, recruitment and latency strategies in humans. KEY POINTS: Sympathetic postganglionic neuronal subpopulations innervating the human circulation exhibit complex patterns of discharge, recruitment and latency. However, the central neural mechanisms governing sympathetic postganglionic discharge remain unclear. This microneurographic study investigated the impact of a dexmedetomidine infusion (α2-adrenergic receptor agonist) on muscle sympathetic postganglionic action potential (AP) discharge, recruitment and latency patterns. Dexmedetomidine infusion inhibited the recruitment of large and fast conducting sympathetic APs and attenuated the discharge of medium sized sympathetic APs that fired during resting conditions and the Valsalva manoeuvre. Dexmedetomidine infusion elicited shorter sympathetic AP latencies during resting conditions but did not affect the reductions in latency that occurred during the Valsalva manoeuvre. These data suggest that α2-adrenergic mechanisms within the central nervous system modulate sympathetic postganglionic neuronal discharge, recruitment and latency strategies in humans.
Collapse
Affiliation(s)
- Stephen A. Klassen
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Jacqueline K. Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA
| | - Ronée E. Harvey
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Chad C. Wiggins
- Department of Kinesiology, Michigan State University, East Lansing, Michigan, USA
| | | | - Jonathon W. Senefeld
- Department of Health and Kinesiology, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Wayne T. Nicholson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Timothy B. Curry
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - J. Kevin Shoemaker
- School of Kinesiology, Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Sarah E. Baker
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Liu YT, Yang YT, Tang CX, Ma JQ, Kong X, Li JH, Li YM, Liu SY, Zhou CS, Wang YF, Zhang LJ. Aberrant cortical morphology patterns are associated with cognitive impairment in patients with chronic heart failure. Eur J Neurosci 2024; 60:3973-3983. [PMID: 38711292 DOI: 10.1111/ejn.16382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024]
Abstract
A mounting body of evidences suggests that patients with chronic heart failure (HF) frequently experience cognitive impairments, but the neuroanatomical mechanism underlying these impairments remains elusive. In this retrospective study, 49 chronic HF patients and 49 healthy controls (HCs) underwent brain structural MRI scans and cognitive assessments. Cortical morphology index (cortical thickness, complexity, sulcal depth and gyrification) were evaluated. Correlations between cortical morphology and cognitive scores and clinical variables were explored. Logistic regression analysis was employed to identify risk factors for predicting 3-year major adverse cardiovascular events. Compared with HCs, patients with chronic HF exhibited decreased cognitive scores (p < .001) and decreased cortical thickness, sulcal depth and gyrification in brain regions involved cognition, sensorimotor, autonomic nervous system (family-wise error correction, all p values <.05). Notably, HF duration and New York Heart Association (NYHA) demonstrated negative correlations with abnormal cortex morphology, particularly HF duration and thickness in left precentral gyrus (r = -.387, p = .006). Cortical morphology characteristics exhibited positive associations with global cognition, particularly cortical thickness in left pars opercularis (r = .476, p < .001). NYHA class is an independent risk factor for adverse outcome (p = .001). The observed correlation between abnormal cortical morphology and global cognition suggested that cortical morphology may serve as a promising imaging biomarker and provide insights into neuroanatomical underpinnings of cognitive impairment in patients with chronic HF.
Collapse
Affiliation(s)
- Yu Ting Liu
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yu Ting Yang
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chun Xiang Tang
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jun Qing Ma
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiang Kong
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jian Hua Li
- Department of Cardiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yan Ming Li
- Department of Cardiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shu Yu Liu
- Department of Cardiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chang Sheng Zhou
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yun Fei Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Long Jiang Zhang
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Mather M. The emotion paradox in the aging body and brain. Ann N Y Acad Sci 2024; 1536:13-41. [PMID: 38676452 DOI: 10.1111/nyas.15138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
With age, parasympathetic activity decreases, while sympathetic activity increases. Thus, the typical older adult has low heart rate variability (HRV) and high noradrenaline levels. Younger adults with this physiological profile tend to be unhappy and stressed. Yet, with age, emotional experience tends to improve. Why does older adults' emotional well-being not suffer as their HRV decreases? To address this apparent paradox, I present the autonomic compensation model. In this model, failing organs, the initial phases of Alzheimer's pathology, and other age-related diseases trigger noradrenergic hyperactivity. To compensate, older brains increase autonomic regulatory activity in the pregenual prefrontal cortex (PFC). Age-related declines in nerve conduction reduce the ability of the pregenual PFC to reduce hyperactive noradrenergic activity and increase peripheral HRV. But these pregenual PFC autonomic compensation efforts have a significant impact in the brain, where they bias processing in favor of stimuli that tend to increase parasympathetic activity (e.g., stimuli that increase feelings of safety) and against stimuli that tend to increase sympathetic activity (e.g., threatening stimuli). In summary, the autonomic compensation model posits that age-related chronic sympathetic/noradrenergic hyperactivity stimulates regulatory attempts that have the side effect of enhancing emotional well-being.
Collapse
Affiliation(s)
- Mara Mather
- Leonard Davis School of Gerontology, Department of Psychology, and Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
5
|
Adamic EM, Teed AR, Avery JA, de la Cruz F, Khalsa SS. Hemispheric divergence of interoceptive processing across psychiatric disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.08.570759. [PMID: 38105986 PMCID: PMC10723463 DOI: 10.1101/2023.12.08.570759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Interactions between top-down attention and bottom-up visceral inputs are assumed to produce conscious perceptions of interoceptive states, and while each process has been independently associated with aberrant interoceptive symptomatology in psychiatric disorders, the neural substrates of this interface are unknown. We conducted a preregistered functional neuroimaging study of 46 individuals with anxiety, depression, and/or eating disorders (ADE) and 46 propensity-matched healthy comparisons (HC), comparing their neural activity across two interoceptive tasks differentially recruiting top-down or bottom-up processing within the same scan session. During an interoceptive attention task, top-down attention was voluntarily directed towards cardiorespiratory or visual signals, whereas during an interoceptive perturbation task, intravenous infusions of isoproterenol (a peripherally-acting beta-adrenergic receptor agonist) were administered in a double-blinded and placebo-controlled fashion to drive bottom-up cardiorespiratory sensations. Across both tasks, neural activation converged upon the insular cortex, localizing within the granular and ventral dysgranular subregions bilaterally. However, contrasting hemispheric differences emerged, with the ADE group exhibiting (relative to HCs) an asymmetric pattern of overlap in the left insula, with increased or decreased proportions of co-activated voxels within the left or right dysgranular insula, respectively. The ADE group also showed less agranular anterior insula activation during periods of bodily uncertainty (i.e., when anticipating possible isoproterenol-induced changes that never arrived). Finally, post-task changes in insula functional connectivity were associated with anxiety and depression severity. These findings confirm the dysgranular mid-insula as a key cortical interface where attention and prediction meet real-time bodily inputs, especially during heightened awareness of interoceptive states. Further, the dysgranular mid-insula may indeed be a "locus of disruption" for psychiatric disorders.
Collapse
Affiliation(s)
- Emily M Adamic
- Laureate Institute for Brain Research, Tulsa, OK, USA, 74136
- Department of Biological Sciences, University of Tulsa, Tulsa, OK, USA, 74104
| | - Adam R Teed
- Laureate Institute for Brain Research, Tulsa, OK, USA, 74136
| | - Jason A Avery
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA, 20814
| | - Feliberto de la Cruz
- Laboratory for Autonomic Neuroscience, Imaging, and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Thuringia, Germany, 07743
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, Tulsa, OK, USA, 74136
- Oxley College of Health Sciences, University of Tulsa, Tulsa, OK, USA, 74119
| |
Collapse
|
6
|
Braun J, Patel M, Kameneva T, Keatch C, Lambert G, Lambert E. Central stress pathways in the development of cardiovascular disease. Clin Auton Res 2024; 34:99-116. [PMID: 38104300 DOI: 10.1007/s10286-023-01008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023]
Abstract
PURPOSE Mental stress is of essential consideration when assessing cardiovascular pathophysiology in all patient populations. Substantial evidence indicates associations among stress, cardiovascular disease and aberrant brain-body communication. However, our understanding of the flow of stress information in humans, is limited, despite the crucial insights this area may offer into future therapeutic targets for clinical intervention. METHODS Key terms including mental stress, cardiovascular disease and central control, were searched in PubMed, ScienceDirect and Scopus databases. Articles indicative of heart rate and blood pressure regulation, or central control of cardiovascular disease through direct neural innervation of the cardiac, splanchnic and vascular regions were included. Focus on human neuroimaging research and the flow of stress information is described, before brain-body connectivity, via pre-motor brainstem intermediates is discussed. Lastly, we review current understandings of pathophysiological stress and cardiovascular disease aetiology. RESULTS Structural and functional changes to corticolimbic circuitry encode stress information, integrated by the hypothalamus and amygdala. Pre-autonomic brain-body relays to brainstem and spinal cord nuclei establish dysautonomia and lead to alterations in baroreflex functioning, firing of the sympathetic fibres, cellular reuptake of norepinephrine and withdrawal of the parasympathetic reflex. The combined result is profoundly adrenergic and increases the likelihood of cardiac myopathy, arrhythmogenesis, coronary ischaemia, hypertension and the overall risk of future sudden stress-induced heart failure. CONCLUSIONS There is undeniable support that mental stress contributes to the development of cardiovascular disease. The emerging accumulation of large-scale multimodal neuroimaging data analytics to assess this relationship promises exciting novel therapeutic targets for future cardiovascular disease detection and prevention.
Collapse
Affiliation(s)
- Joe Braun
- School of Health Sciences, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, VIC, 3122, Australia.
| | - Mariya Patel
- School of Health Sciences, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, VIC, 3122, Australia
| | - Tatiana Kameneva
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Australia
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia
| | - Charlotte Keatch
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia
| | - Gavin Lambert
- School of Health Sciences, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, VIC, 3122, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Australia
| | - Elisabeth Lambert
- School of Health Sciences, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, VIC, 3122, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Australia
| |
Collapse
|
7
|
Xue C, Dou X, Yu C, Zhong Y, Wang J, Zhang X, Xue L, Hu D, Wu S, Zhang H, Tian M. In vivo cerebral metabolic and dopaminergic characteristics in multiple system atrophy with orthostatic hypotension. Eur J Nucl Med Mol Imaging 2024; 51:468-480. [PMID: 37807003 DOI: 10.1007/s00259-023-06443-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE Multiple system atrophy (MSA) is a rare neurodegenerative disease, often presented with orthostatic hypotension (OH), which is a disabling symptom but has not been very explored. Here, we investigated MSA patients with OH by using positron emission tomography (PET) with 18F-fluorodeoxyglucose (18F-FDG) and 11C-N-2-carbomethoxy-3-(4-fluorophenyl)-tropane (11C-CFT) for in vivo evaluation of the glucose metabolism and dopaminergic function of the brain. METHODS Totally, 51 patients with MSA and 20 healthy controls (HC) who underwent 18F-FDG PET/CT were retrospectively enrolled, among which 24 patients also underwent 11C-CFT PET/CT. All patients were divided into MSA-OH(+) and MSA-OH(-) groups. Then, statistical parametric mapping (SPM) method was used to reveal the regional metabolic and dopaminergic characteristics of MSA-OH(+) compared with MSA-OH(-). Moreover, the metabolic networks of MSA-OH(+), MSA-OH(-) and HC groups were also constructed and analyzed based on graph theory to find possible network-level changes in MSA patients with OH. RESULTS The SPM results showed significant hypometabolism in the pons and right cerebellar tonsil, as well as hypermetabolism in the left parahippocampal gyrus and left superior temporal gyrus in MSA-OH(+) compared with MSA-OH(-). A reduced 11C-CFT uptake in the left caudate was also shown in MSA-OH(+) compared with MSA-OH(-). In the network analysis, significantly reduced local efficiency and clustering coefficient were shown in MSA-OH(+) compared with HC, and decreased nodal centrality in the frontal gyrus was found in MSA-OH(+) compared with MSA-OH(-). CONCLUSION In this study, the changes in glucose metabolism in the pons, right cerebellar tonsil, left parahippocampal gyrus and left superior temporal gyrus were found closely related to OH in MSA patients. And the decreased presynaptic dopaminergic function in the left caudate may contribute to OH in MSA. Taken together, this study provided in vivo pathophysiologic information on MSA with OH from neuroimaging approach, which is essential for a better understanding of MSA with OH.
Collapse
Affiliation(s)
- Chenxi Xue
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Xiaofeng Dou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Congcong Yu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Xiang Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Le Xue
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Daoyan Hu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
- College of Biomedical Engineering and Instrument Science of Zhejiang University, Hangzhou, China
| | - Shuang Wu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China.
- College of Biomedical Engineering and Instrument Science of Zhejiang University, Hangzhou, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education Zhejiang University, Hangzhou, China.
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China.
- Human Phenome Institute, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Dono F, Evangelista G, Consoli S, Venditti R, Russo M, De Angelis MV, Faustino M, Di Iorio A, Vollono C, Anzellotti F, Onofrj M, Sensi SL. Heart rate variability modifications in adult patients with early versus late-onset temporal lobe epilepsy: A comparative observational study. Neurophysiol Clin 2023; 53:102852. [PMID: 36966709 DOI: 10.1016/j.neucli.2023.102852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/25/2023] [Accepted: 02/25/2023] [Indexed: 03/28/2023] Open
Abstract
OBJECTIVES Temporal lobe epilepsy (TLE) is the most frequent form of focal epilepsy. TLE is associated with cardio-autonomic dysfunction and increased cardiovascular (CV) risk in patients over the fifth decade of age. In these subjects, TLE can be classified as early-onset (EOTLE; i.e., patients who had developed epilepsy in their youth) and late-onset (LOTLE; i.e., patients who developed epilepsy in adulthood). Heart rate variability (HRV) analysis is useful for assessing cardio-autonomic function and identifying patients with increased CV risk. This study compared changes in HRV occurring in patients over the age of 50, with EOTLE or LOTLE. METHODS We enrolled twenty-seven adults with LOTLE and 23 with EOTLE. Each patient underwent a EEG and EKG recording during 20-minutes of resting state and a 5-minutes hyperventilation (HV). Short-term HRV analysis was performed both in time and frequency domains. Linear Mixed Models (LMM) were used to analyze HRV parameters according to the condition (baseline and HV) and group (LOTLE and EOTLE groups). RESULTS Compared to the LOTLE group, the EOTLE group showed significantly decreased LnRMSSD (natural logarithm of the root mean square of the difference between contiguous RR intervals) (p-value=0.05), LnHF ms2 (natural logarithm of high frequency absolute power) (p-value=0.05), HF n.u. (high frequency power expressed in normalized units) (p-value=0.008) and HF% (high frequency power expressed in percentage) (p-value=0.01). In addition, EOTLE patients exhibited increased LF n.u. (low frequency power expressed in normalized units) (p-value=0.008) and LF/HF (low frequency/high frequency) ratio (p-value=0.007). During HV, the LOTLE group exhibited a multiplicative effect for the interaction between group and condition with increased LF n.u. (p = 0.003) and LF% (low frequency expressed in percentage) (p = 0.05) values. CONCLUSIONS EOTLE is associated with reduced vagal tone compared to LOTLE. Patients with EOTLE may have a higher risk of developing cardiac dysfunction or cardiac arrhythmia than LOTLE patients.
Collapse
Affiliation(s)
- Fedele Dono
- Department of Neuroscience, Imaging and Clinical Science, "G. D'Annunzio" University of Chieti-Pescara, Italy; Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies, and Technology - CAST-, University G. d'Annunzio of Chieti-Pescara, Italy.
| | - Giacomo Evangelista
- Department of Neuroscience, Imaging and Clinical Science, "G. D'Annunzio" University of Chieti-Pescara, Italy
| | - Stefano Consoli
- Department of Neuroscience, Imaging and Clinical Science, "G. D'Annunzio" University of Chieti-Pescara, Italy
| | - Romina Venditti
- Department of Neuroscience, Imaging and Clinical Science, "G. D'Annunzio" University of Chieti-Pescara, Italy
| | - Mirella Russo
- Department of Neuroscience, Imaging and Clinical Science, "G. D'Annunzio" University of Chieti-Pescara, Italy; Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies, and Technology - CAST-, University G. d'Annunzio of Chieti-Pescara, Italy
| | | | | | - Angelo Di Iorio
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Italy
| | - Catello Vollono
- Unit of Neurophysiopathology and Sleep Medicine, Department of Geriatrics, Neurosciences and Orthopedics, IRCCS Policlinico Universitario Agostino Gemelli, Catholic University, Rome, Italy
| | - Francesca Anzellotti
- Department of Neuroscience, Imaging and Clinical Science, "G. D'Annunzio" University of Chieti-Pescara, Italy
| | - Marco Onofrj
- Department of Neuroscience, Imaging and Clinical Science, "G. D'Annunzio" University of Chieti-Pescara, Italy; Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies, and Technology - CAST-, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Stefano L Sensi
- Department of Neuroscience, Imaging and Clinical Science, "G. D'Annunzio" University of Chieti-Pescara, Italy; Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies, and Technology - CAST-, University G. d'Annunzio of Chieti-Pescara, Italy; Institute for Advanced Biomedical Technology, ITAB, University G. d'Annunzio of Chieti-Pescara, Italy
| |
Collapse
|
9
|
Suzuki T, Hifumi T, Goto M, Isokawa S, Otani N. A Case of Sudden Cardiac Arrest After Brainstem Infarction. Ther Hypothermia Temp Manag 2023. [PMID: 36735574 DOI: 10.1089/ther.2022.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Research on the causes of sudden cardiac arrest (CA) after ischemic stroke, especially disruption of the autonomic nervous system's central control, has recently focused more on the widespread cortical and subcortical network than on autonomic circuits at the spinal and brainstem level. However, no clinical case of sudden CA requiring cardiopulmonary resuscitation (CPR) after brainstem infarction has been reported. We report a case of a 78-year-old woman who died suddenly from a brainstem infarction. Her husband heard a falling sound and found her unresponsive and lying with agonal breathing. The initial cardiac rhythm was pulseless electrical activity confirmed by emergency medical technicians. Recovery of spontaneous circulation was achieved after CPR. Basilar artery occlusion was shown on computed tomography, but no other findings that could have caused CA were found. Targeted temperature management was initiated, but she died on hospital day 22. Brainstem infarction may cause sudden CA; therefore, definitive treatment may achieve better outcomes.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Department of Emergency and Critical Care Medicine, St. Luke's International Hospital, Tokyo, Japan
| | - Toru Hifumi
- Department of Emergency and Critical Care Medicine, St. Luke's International Hospital, Tokyo, Japan
| | - Masahiro Goto
- Department of Emergency and Critical Care Medicine, St. Luke's International Hospital, Tokyo, Japan
| | - Shutaro Isokawa
- Department of Emergency and Critical Care Medicine, St. Luke's International Hospital, Tokyo, Japan
| | - Norio Otani
- Department of Emergency and Critical Care Medicine, St. Luke's International Hospital, Tokyo, Japan
| |
Collapse
|
10
|
Won J, Nielson KA, Smith JC. Subjective Well-Being and Bilateral Anterior Insula Functional Connectivity After Exercise Intervention in Older Adults With Mild Cognitive Impairment. Front Neurosci 2022; 16:834816. [PMID: 35620672 PMCID: PMC9128803 DOI: 10.3389/fnins.2022.834816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/19/2022] [Indexed: 11/29/2022] Open
Abstract
While it is well known that exercise training is associated with improvement in subjective well-being among older adults, it is unclear if individuals with cognitive impairment experience the same effects elicited by exercise on subjective well-being. We further explored whether the bilateral anterior insula network may be an underlying neural mechanism for the exercise training-related improvements in subjective well-being. We investigated the effects of exercise training on subjective well-being in older adults (78.4 ± 7.1 years) with mild cognitive impairment (MCI; n = 14) and a cognitively normal (CN; n = 14) control group. We specifically assessed the relationship between changes in subjective well-being and changes in functional connectivity (FC) with the bilateral anterior insula from before to after exercise training. Cardiorespiratory fitness, subjective well-being, and resting-state fMRI were measured before and after a 12-week moderate-intensity walking intervention. A seed-based correlation analysis was conducted using the bilateral anterior insula as a priori seed regions of interest. The associations between bilateral anterior insula FC with other brain regions and subjective well-being were computed before and after exercise training, respectively, and the statistical difference between the correlations (before vs after exercise training) was evaluated. There was a significant Group (MCI vs CN) × Time (before vs after exercise training) interaction for subjective well-being, such that while those with MCI demonstrated significantly increased subjective well-being after exercise training, no changes in subjective well-being were observed in CN. Participants with MCI also showed an exercise training-related increase in the bilateral anterior insula FC. While there was no significant correlation between subjective well-being and bilateral anterior insula FC before exercise training, a positive association between subjective well-being and bilateral anterior insula FC was found in the MCI group after exercise training. Our findings indicate that 12 weeks of exercise training may enhance subjective well-being in older adults diagnosed with MCI and, further, suggest that increased bilateral anterior insula FC with other cortical regions may reflect neural network plasticity associated with exercise training-related improvements in subjective well-being.
Collapse
Affiliation(s)
- Junyeon Won
- Department of Kinesiology, University of Maryland, College Park, MD, United States
| | - Kristy A. Nielson
- Department of Psychology, Marquette University, Milwaukee, WI, United States
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - J. Carson Smith
- Department of Kinesiology, University of Maryland, College Park, MD, United States
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, United States
| |
Collapse
|
11
|
Ng ACT, Delgado V, Bax JJ. Autonomic dysfunction in Huntington's disease: A 123I-MIBG study. J Nucl Cardiol 2022; 29:649-651. [PMID: 32875522 DOI: 10.1007/s12350-020-02304-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Arnold C T Ng
- Department of Cardiology, Princess Alexandra Hospital, Harlow, UK
- The Faculty of Medicine, South Western Sydney Clinical School, The University of New South Wales, Sydney, Australia
| | - Victoria Delgado
- Department of Cardiology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
12
|
Wong V, Bell ZW, Sptiz RW, Song JS, Yamada Y, Abe T, Loenneke JP. Blood flow restriction maintains blood pressure upon head-up tilt. Physiol Int 2022; 109:106-118. [PMID: 35238796 DOI: 10.1556/2060.2022.00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/15/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Orthostatic intolerance occurs in some astronauts following space flight. Although orthostatic blood pressure responses should normalize in the weeks following the return to Earth, there may be situations where an immediate short-term solution is necessary (e.g., emergency evacuation). PURPOSE The purpose of this study was to examine different levels of blood flow restriction on changes in blood pressure and heart rate when transitioning from supine to a head-up tilt and determine whether this change differs based on sex. METHODS Eighty-nine participants (45 men, 44 women) completed the three visits with different pressures (Sham, Moderate, and High) in a randomized order. Cuffs were placed on the most proximal area of the thighs. Brachial blood pressure was measured at baseline, upon inflation of the cuffs in a supine position, immediately after tilt (70°), and eight more times separated by 45 seconds. RESULTS Data are presented as mean (SD). The change in systolic (High > Moderate > Sham) [High vs Sham: 5.5 (7.4) mmHg, High vs Moderate: 3 (7.4) mmHg, and Moderate vs Sham: 2.4 (8.4) mmHg] and diastolic pressure (High > Moderate = Sham) [High vs Sham: 2.4 (5.3) mmHg, High vs Moderate: 1.9 (6.3) mmHg] differed across applied pressures. The change in heart rate was initially greatest in the sham-pressure but increased the greatest in the high-pressure condition by the end of the head-up tilt period. Additionally, there was no influence of sex. CONCLUSION Blood flow restriction applied in this study increased blood pressure in a pressure-dependent manner upon head-up tilt.
Collapse
Affiliation(s)
- Vickie Wong
- 1 Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Zachary W Bell
- 1 Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Robert W Sptiz
- 1 Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Jun Seob Song
- 1 Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Yujiro Yamada
- 1 Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Takashi Abe
- 2 Institute of Health and Sports Science and Medicine, Juntendo University, Inzai, Chiba 270-1695, Japan
| | - Jeremy P Loenneke
- 1 Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| |
Collapse
|
13
|
Palomero-Gallagher N, Amunts K. A short review on emotion processing: a lateralized network of neuronal networks. Brain Struct Funct 2022; 227:673-684. [PMID: 34216271 PMCID: PMC8844151 DOI: 10.1007/s00429-021-02331-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/21/2021] [Indexed: 01/22/2023]
Abstract
Emotions are valenced mental responses and associated physiological reactions that occur spontaneously and automatically in response to internal or external stimuli, and can influence our behavior, and can themselves be modulated to a certain degree voluntarily or by external stimuli. They are subserved by large-scale integrated neuronal networks with epicenters in the amygdala and the hippocampus, and which overlap in the anterior cingulate cortex. Although emotion processing is accepted as being lateralized, the specific role of each hemisphere remains an issue of controversy, and two major hypotheses have been proposed. In the right-hemispheric dominance hypothesis, all emotions are thought to be processed in the right hemisphere, independent of their valence or of the emotional feeling being processed. In the valence lateralization hypothesis, the left is thought to be dominant for the processing of positively valenced stimuli, or of stimuli inducing approach behaviors, whereas negatively valenced stimuli, or stimuli inducing withdrawal behaviors, would be processed in the right hemisphere. More recent research points at the existence of multiple interrelated networks, each associated with the processing of a specific component of emotion generation, i.e., its generation, perception, and regulation. It has thus been proposed to move from hypotheses supporting an overall hemispheric specialization for emotion processing toward dynamic models incorporating multiple interrelated networks which do not necessarily share the same lateralization patterns.
Collapse
Affiliation(s)
- Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany.
- C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225, Düsseldorf, Germany.
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH, Aachen, Germany.
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany
- C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| |
Collapse
|
14
|
Bigalke JA, Carter JR. Sympathetic Neural Control in Humans with Anxiety-Related Disorders. Compr Physiol 2021; 12:3085-3117. [PMID: 34964121 DOI: 10.1002/cphy.c210027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Numerous conceptual models are used to describe the dynamic responsiveness of physiological systems to environmental pressures, originating with Claude Bernard's milieu intérieur and extending to more recent models such as allostasis. The impact of stress and anxiety upon these regulatory processes has both basic science and clinical relevance, extending from the pioneering work of Hans Selye who advanced the concept that stress can significantly impact physiological health and function. Of particular interest within the current article, anxiety is independently associated with cardiovascular risk, yet mechanisms underlying these associations remain equivocal. This link between anxiety and cardiovascular risk is relevant given the high prevalence of anxiety in the general population, as well as its early age of onset. Chronically anxious populations, such as those with anxiety disorders (i.e., generalized anxiety disorder, panic disorder, specific phobias, etc.) offer a human model that interrogates the deleterious effects that chronic stress and allostatic load can have on the nervous system and cardiovascular function. Further, while many of these disorders do not appear to exhibit baseline alterations in sympathetic neural activity, reactivity to mental stress offers insights into applicable, real-world scenarios in which heightened sympathetic reactivity may predispose those individuals to elevated cardiovascular risk. This article also assesses behavioral and lifestyle modifications that have been shown to concurrently improve anxiety symptoms, as well as sympathetic control. Lastly, future directions of research will be discussed, with a focus on better integration of psychological factors within physiological studies examining anxiety and neural cardiovascular health. © 2022 American Physiological Society. Compr Physiol 12:1-33, 2022.
Collapse
Affiliation(s)
- Jeremy A Bigalke
- Department of Psychology, Montana State University, Bozeman, Montana, USA
| | - Jason R Carter
- Department of Psychology, Montana State University, Bozeman, Montana, USA.,Department of Health and Human Development, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
15
|
McIntosh RC, Lobo JD, Yang A, Schneiderman N. Brainstem network connectivity with mid-anterior insula predicts lower systolic blood pressure at rest in older adults with hypertension. J Hum Hypertens 2021; 35:1098-1108. [PMID: 33462388 PMCID: PMC8919345 DOI: 10.1038/s41371-020-00476-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/13/2020] [Accepted: 12/10/2020] [Indexed: 11/09/2022]
Abstract
Central regulation of heart rate and blood pressure provides the bases for a neurogenic mechanism of hypertension (HTN). Post menopause (PM) age coincides with changes in resting state functional brain connectivity (rsFC) as well as increased risk for HTN. Whether the neural networks underpinning cardioautonomic control differ between PM women with and without HTN is unclear. Phenotypic and functional neuroimaging data from the Nathan Kline Institute was first evaluated for group differences in intrinsic network connectivity between 22 HTN post menopausal women and 22 normotensive controls. Intrinsic rsFC of the midbrain-brainstem-cerebellar network with bilateral mid-anterior insula was lower in women with HTN (FWE-corrected, p < 0.05). Z-scores indicating rsFC of these regions were extracted from the 44 PM women and a cohort of 111 adults, not presenting with metabolic or neurodegenerative disease, and compared to in-office systolic and diastolic blood pressure. Lower rsFC of the left (r = -0.17, p = 0.019) and right (r = -0.14, p = 0.048) mid-anterior insula with brainstem nuclei was associated with higher systolic blood pressure in the combined sample. The magnitude of this effect in men and women of post menopausal age supports a neurogenic mechanism for blood pressure regulation in older adults with HTN.
Collapse
Affiliation(s)
- Roger C McIntosh
- Department of Psychology, University of Miami, Coral Gables, FL, USA.
| | - Judith D Lobo
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Anting Yang
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Neil Schneiderman
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| |
Collapse
|
16
|
Kurth F, Zsadanyi SE, Luders E. Reduced age-related gray matter loss in the subgenual cingulate cortex in long-term meditators. Brain Imaging Behav 2021; 15:2824-2832. [PMID: 34686969 DOI: 10.1007/s11682-021-00578-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Accumulating evidence suggests that meditation practices have positive effects on brain ageing overall. The cingulate is known to be recruited during meditation, but research into possible effects of meditation on the ageing of the cingulate is currently missing. Thus, the present study was designed to help close this knowledge gap, with particular focus on the subgenual cingulate, a region involved in emotional regulation and autonomic and endocrine functions, making it potentially relevant for meditation. Here, we investigated differences in age-related gray matter loss between 50 long-term meditation practitioners (28 male, 22 female), aged between 24 and 77, and 50 age- and sex-matched controls. Areas of interest were four subregions of the subgenual cingulate gyrus (areas 25, 33, s24, and s32) defined as per the Julich-Brain atlas. Our study revealed a significant age-related decline in all subregions in both meditators and controls, but with significantly lower rates of annual tissue loss in meditators, specifically in left and right area s32 and right area 25. These regions have been shown to play a role in mood regulation, autonomic processing, and the integration of emotion and cognitive processes, which are all involved in and impacted by meditation. Overall, the results add further evidence to the emerging notion that meditation may slow the effects of ageing on the brain.
Collapse
Affiliation(s)
- Florian Kurth
- School of Psychology, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Sára E Zsadanyi
- School of Psychology, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Eileen Luders
- School of Psychology, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.,Laboratory of Neuro Imaging, School of Medicine, University of Southern California, Los Angeles, USA
| |
Collapse
|
17
|
Abstract
OBJECTIVE Spontaneous or experimentally induced high blood pressure (BP) is associated with reduced pain perception, known as BP-related hypoalgesia. Despite its clinical implications, such as the interference with early detection of myocardial infarction in 'at risk' groups, the size of the association between high BP and pain has not yet been quantified. Moreover, the distinct association between high BP and physiological or psychological components of pain has not yet been considered so far. The aim of this study was to overcome this gap by performing separate meta-analyses on nociceptive response versus quantifiable perceptual measures of pain in relation to high BP. METHODS PubMed and Web of Knowledge databases were searched for English language studies conducted in humans. Fifty-nine studies were eligible for the analyses. Pooled effect sizes (Hedges' g) were compared. Random effect models were used. Results show that higher BP is significantly associated with lower nociceptive response (g = 0.38; k = 6) and reduced pain perception, assessed by quantifiable measures (g = 0.48; k = 59). RESULTS The association between BP and pain perception, derived from highly heterogeneous studies, was characterized by significant publication bias. BP assessment, pain assessment, site of pain stimulation, percentage of female participants in the sample, and control for potential confounders were significant moderators. CONCLUSION Current meta-analytic results confirm the presence of BP-related hypoalgesia and point towards the need for a better understanding of its underlying mechanisms.
Collapse
|
18
|
Pal A, Ogren JA, Aguila AP, Aysola R, Kumar R, Henderson LA, Harper RM, Macey PM. Functional organization of the insula in men and women with obstructive sleep apnea during Valsalva. Sleep 2021; 44:5864015. [PMID: 32592491 DOI: 10.1093/sleep/zsaa124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/11/2020] [Indexed: 12/26/2022] Open
Abstract
STUDY OBJECTIVES Obstructive sleep apnea (OSA) patients show impaired autonomic regulation, perhaps related to functional reorganization of the insula, which in healthy individuals shows sex-specific anterior and right dominance during sympathetic activation. We examined insular organization of responses to a Valsalva maneuver in OSA with functional magnetic resonance imaging (fMRI). METHODS We studied 43 newly diagnosed OSA (age mean ± SD: 46.8 ± 8.7 years; apnea-hypopnea index (AHI) ± SD: 32.1 ± 20.1 events/hour; 34 males) and 63 healthy (47.2 ± 8.8 years; 40 males) participants. Participants performed four 18-second Valsalva maneuvers (1-minute intervals, pressure ≥ 30 mmHg) during scanning. fMRI time trends from five insular gyri-anterior short (ASG); mid short (MSG); posterior short (PSG); anterior long (ALG); and posterior long (PLG)-were assessed for within-group responses and between-group differences with repeated measures ANOVA (p < 0.05); age and resting heart rate (HR) influences were also assessed. RESULTS Right and anterior fMRI signal dominance appeared in OSA and controls, with no between-group differences. Separation by sex revealed group differences. Left ASG anterior signal dominance was lower in OSA versus control males. Left ASG and ALG anterior dominance was higher in OSA versus control females. In all right gyri, only OSA females showed greater anterior dominance than controls. Right dominance was apparent in PSG and ALG in all groups; females showed right dominance in MSG and PLG. OSA males did not show PLG right dominance. Responses were influenced substantially by HR but modestly by age. CONCLUSIONS Anterior and right insular fMRI dominance appears similar in OSA versus control participants during the sympathetic phase of the Valsalva maneuver. OSA and control similarities were present in just males, but not necessarily females, which may reflect sex-specific neural injury.
Collapse
Affiliation(s)
- Amrita Pal
- UCLA School of Nursing, University of California, Los Angeles, CA
| | - Jennifer A Ogren
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA
| | - Andrea P Aguila
- UCLA School of Nursing, University of California, Los Angeles, CA
| | - Ravi Aysola
- Division of Pulmonary and Critical Care, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA
| | - Rajesh Kumar
- Department of Anesthesiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA.,Department of Radiological Sciences, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA
| | - Luke A Henderson
- Department of Anatomy and Histology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Ronald M Harper
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA
| | - Paul M Macey
- UCLA School of Nursing, University of California, Los Angeles, CA
| |
Collapse
|
19
|
Floras JS. From Brain to Blood Vessel: Insights From Muscle Sympathetic Nerve Recordings: Arthur C. Corcoran Memorial Lecture 2020. Hypertension 2021; 77:1456-1468. [PMID: 33775112 DOI: 10.1161/hypertensionaha.121.16490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Multiunit recordings of postganglionic sympathetic outflow to muscle yield otherwise imperceptible insights into sympathetic neural modulation of human vascular resistance and blood pressure. This Corcoran Lecture will illustrate the utility of microneurography to investigate neurogenic cardiovascular regulation; review data concerning muscle sympathetic nerve activity of women and men with normal and high blood pressure; explore 2 concepts, central upregulation of muscle sympathetic outflow and cortical autonomic neuroplasticity; present sleep apnea as an imperfect model of neurogenic hypertension; and expose the paradox of sympathetic excitation without hypertension. In awake healthy normotensive individuals, resting muscle sympathetic nerve activity increases with age, sleep fragmentation, and obstructive apnea. Its magnitude is not signaled by heart rate. Age-related changes are nonlinear and differ by sex. In men, sympathetic nerve activity increases with age but without relation to their blood pressure, whereas in women, both rise concordantly after age 40. Mean values for muscle sympathetic nerve activity burst incidence are consistently higher in cohorts with hypertension than in matched normotensives, yet women's sympathetic nerve traffic can increase 3-fold between ages 30 and 70 without causing hypertension. Thus, increased sympathetic nerve activity may be necessary but is insufficient for primary hypertension. Moreover, its inhibition does not consistently decrease blood pressure. Despite a half-century of microneurographic research, large gaps remain in our understanding of the content of the sympathetic broadcast from brain to blood vessel and its specific individual consequences for circulatory regulation and cardiovascular, renal, and metabolic risk.
Collapse
Affiliation(s)
- John S Floras
- Sinai Health and University Health Network Division of Cardiology, Toronto General Hospital Research Institute, and the Department of Medicine, University of Toronto
| |
Collapse
|
20
|
Hamilton MCK, Neumann S, Szantho G, Rydon L, Lawton CB, Hart E, Manghat NE, Turner MS. The design and use of a simple device for the MRI assessment of changes in cardiovascular function by lower-body negative-pressure-simulated reduction of central blood volume. Clin Radiol 2021; 76:471.e9-471.e16. [PMID: 33637308 DOI: 10.1016/j.crad.2021.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 01/18/2021] [Indexed: 11/19/2022]
Abstract
AIM To use a locally designed and simple lower-body negative-pressure (LBNP) device and 1.5 T magnetic resonance imaging (MRI) to demonstrate the ability to assess changes in cardiovascular function during preload reduction. These effects were evaluated on ventricular volumes and great vessel flow in healthy volunteers, for which there are limited published data. MATERIAL AND METHODS After ethical review, 14 volunteers (mean age 33.9 ± 7 years, mean body mass index [BMI] 23.1 ± 2.5) underwent LBNP prospectively at 0, -5, -10, and -20 mmHg pressure, using a locally designed LBNP box. Expiratory breath-hold biventricular volumes, and free-breathing flow imaging of the ascending aorta and main pulmonary artery were acquired at each level of LBNP. RESULTS At -5 mmHg, there was no change in aortic flow or left ventricular volumes versus baseline. Right ventricular output (p=0.013) and pulmonary net flow (p=0.026) decreased. At -20 mmHg, aortic and pulmonary net flow (p<0.001) decreased, as were left and right ventricular end diastolic volume (p<0.001) and left and right end systolic volumes (p=0.038 and p=0.003 respectively). CONCLUSIONS Use of a MRI-compatible LBNP device is feasible to measure changes in ventricular volume and great arterial flow in the same experiment. This may enhance further research into the effects of preload reduction by MRI in a wide range of important cardiovascular pathologies.
Collapse
Affiliation(s)
- M C K Hamilton
- Department of Clinical Radiology, Bristol Royal Infirmary, Bristol BS28HW, UK.
| | - S Neumann
- School of Physiology, Pharmacology and Neurosciences, University of Bristol, Bristol BS8 1TD, UK
| | - G Szantho
- Department of Cardiology, Bristol Heart Institute, Bristol BS28HW, UK
| | - L Rydon
- MEMO Clinical Engineering, Bristol Royal Infirmary, Bristol BS28HW, UK
| | - C B Lawton
- Department of Clinical Radiology, Bristol Royal Infirmary, Bristol BS28HW, UK
| | - E Hart
- School of Physiology, Pharmacology and Neurosciences, University of Bristol, Bristol BS8 1TD, UK
| | - N E Manghat
- Department of Clinical Radiology, Bristol Royal Infirmary, Bristol BS28HW, UK
| | - M S Turner
- Department of Cardiology, Bristol Heart Institute, Bristol BS28HW, UK
| |
Collapse
|
21
|
Suarez-Roca H, Mamoun N, Sigurdson MI, Maixner W. Baroreceptor Modulation of the Cardiovascular System, Pain, Consciousness, and Cognition. Compr Physiol 2021; 11:1373-1423. [PMID: 33577130 DOI: 10.1002/cphy.c190038] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Baroreceptors are mechanosensitive elements of the peripheral nervous system that maintain cardiovascular homeostasis by coordinating the responses to external and internal environmental stressors. While it is well known that carotid and cardiopulmonary baroreceptors modulate sympathetic vasomotor and parasympathetic cardiac neural autonomic drive, to avoid excessive fluctuations in vascular tone and maintain intravascular volume, there is increasing recognition that baroreceptors also modulate a wide range of non-cardiovascular physiological responses via projections from the nucleus of the solitary tract to regions of the central nervous system, including the spinal cord. These projections regulate pain perception, sleep, consciousness, and cognition. In this article, we summarize the physiology of baroreceptor pathways and responses to baroreceptor activation with an emphasis on the mechanisms influencing cardiovascular function, pain perception, consciousness, and cognition. Understanding baroreceptor-mediated effects on cardiac and extra-cardiac autonomic activities will further our understanding of the pathophysiology of multiple common clinical conditions, such as chronic pain, disorders of consciousness (e.g., abnormalities in sleep-wake), and cognitive impairment, which may result in the identification and implementation of novel treatment modalities. © 2021 American Physiological Society. Compr Physiol 11:1373-1423, 2021.
Collapse
Affiliation(s)
- Heberto Suarez-Roca
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University, Durham, North Carolina, USA
| | - Negmeldeen Mamoun
- Department of Anesthesiology, Division of Cardiothoracic Anesthesia and Critical Care Medicine, Duke University, Durham, North Carolina, USA
| | - Martin I Sigurdson
- Department of Anesthesiology and Critical Care Medicine, Landspitali, University Hospital, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - William Maixner
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University, Durham, North Carolina, USA
| |
Collapse
|
22
|
Shuai XX, Kong XC, Zou Y, Wang SQ, Wang YH. Global Functional Network Connectivity Disturbances in Parkinson's Disease with Mild Cognitive Impairment by Resting-State Functional MRI. Curr Med Sci 2021; 40:1057-1066. [PMID: 33428133 DOI: 10.1007/s11596-020-2287-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/21/2020] [Indexed: 10/22/2022]
Abstract
Examining the spontaneous BOLD activity to understand the neural mechanism of Parkinson's disease (PD) with mild cognitive impairment (MCI) is a focus in resting-state functional MRI (rs-fMRI) studies. This study aimed to investigate the alteration of brain functional connectivity in PD with MCI in a systematical way at two levels: functional connectivity analysis within resting state networks (RSNs) and functional network connectivity (FNC) analysis. Using group independent component analysis (ICA) on rs-fMRI data acquired from 30 participants (14 healthy controls and 16 PD patients with MCI), 16 RSNs were identified, and functional connectivity analysis within the RSNs and FNC analysis were carried out between groups. Compared to controls, patients with PD showed decreased functional connectivity within putamen network, thalamus network, cerebellar network, attention network, and self-referential network, and increased functional connectivity within execution network. Globally disturbed, mostly increased functional connectivity of FNC was observed in PD group, and insular network and execution network were the dominant network with extensively increased functional connectivity with other RSNs. Cerebellar network showed decreased functional connectivity with caudate network, insular network, and self-referential network. In general, decreased functional connectivity within RSNs and globally disturbed, mostly increased functional connectivity of FNC may be characteristics of PD. Increased functional connectivity within execution network may be an early marker of PD. The multi-perspective study based on RSNs may be a valuable means to assess functional changes corresponding to specific RSN, contributing to the understanding of the neural mechanism of PD.
Collapse
Affiliation(s)
- Xin-Xin Shuai
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiang-Chuang Kong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yan Zou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Si-Qi Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yu-Hui Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| |
Collapse
|
23
|
do Nascimento Vinholes L, Sousa da Silva A, Marinho Tassi E, Corrêa Borges de Lacerda G. Heart rate variability in frontal lobe epilepsy: Association with SUDEP risk. Acta Neurol Scand 2021; 143:62-70. [PMID: 32749695 DOI: 10.1111/ane.13330] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 01/18/2023]
Abstract
OBJECTIVES Frontal lobe epilepsy (FLE) may impair autonomic heart rate modulation. Decreased heart rate variability (HRV) may enhance risk of sudden death. Our objective was to describe whole day and wakefulness/sleep HRV parameters from FLE patients in comparison with those of healthy controls and correlate HRV parameters to SUDEP-7 scores. METHODS Ten patients with FLE and 15 healthy controls underwent a 24-hour electrocardiogram holter. The SUDEP-7 score was calculated for patients. Subgroups were identified according to active epilepsy, number of generalized seizures, cognitive deficit, medication load, and time-length of epilepsy. Time-domain SDNN, SDNNi, SDANN, rMSDD, and pNN50 and frequency-domain LF, HF, and LF/HF parameters were analyzed. Wilcoxon and Spearman correlation tests were used. A P < .05 was considered significant. RESULTS Patients SDNN, SDNNi, rMSSD, and pNN50 were decreased in 24-hour recordings. Although a tendency for a protective effect of sleep was seen for both patients and controls, intragroup comparisons of sleeping/waking states revealed a significant increase in sleep rMSSD (P = .046) and pNN50 (P = .041) only for controls. All 24-hour time-domain parameters and LF were inversely and significantly correlated to SUDEP-7, particularly SDANN (ρ = -0.896, P = .00019), known to deteriorate with diminished physical activity and decreased in patients with more generalized seizures. Wakefulness parameters did not correlate to SUDEP-7, whereas correlations to sleep parameters were very strong, particularly with rMSSD (ρ = -0.945, P = .00012). Cognitive deficit was associated with decreased pNN50, sleep pNN50, and LH. CONCLUSION HRV is impaired in patients with FLE. Low HRV scores are associated with increased risk for SUDEP as measured by the SUDEP-7 score.
Collapse
Affiliation(s)
| | - Alexandre Sousa da Silva
- Mathematics and Statistical Department Universidade Federal do Estado do Rio de Janeiro (UniRio) Rio de Janeiro Brazil
| | - Eduardo Marinho Tassi
- Cardiology Department Universidade Federal do Estado do Rio de Janeiro (UniRio) Rio de Janeiro Brazil
| | - Glenda Corrêa Borges de Lacerda
- Neurology Post‐Graduation Program Neurology Department Universidade Federal do Estado do Rio de Janeiro (UniRio) Rio de Janeiro Brazil
| |
Collapse
|
24
|
Rostampour M, Noori K, Heidari M, Fadaei R, Tahmasian M, Khazaie H, Zarei M. White matter alterations in patients with obstructive sleep apnea: a systematic review of diffusion MRI studies. Sleep Med 2020; 75:236-245. [DOI: 10.1016/j.sleep.2020.06.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/25/2022]
|
25
|
Baker J, Kimpinski K. Evidence of Impaired Cerebellar Connectivity at Rest and During Autonomic Maneuvers in Patients with Autonomic Failure. THE CEREBELLUM 2020; 19:30-39. [PMID: 31529276 DOI: 10.1007/s12311-019-01076-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The objective of the current study was to investigate whether patients with neurogenic orthostatic hypotension (NOH) secondary to autonomic failure have impaired functional connectivity between the cerebellum and central autonomic structures during autonomic challenges. Fifteen healthy controls (61 ± 14 years) and 15 NOH patients (67 ± 6 years; p = 0.12) completed the following tasks during a functional brain MRI: (1) 5 min of rest, (2) 5 min of lower-body negative pressure (LBNP) performed at - 35 mmHg, and (3) Three, 15-s Valsalva maneuvers (VM) at 40 mmHg. Functional connectivity (Conn Toolbox V18) between central autonomic structures and discrete cerebellar regions involved in cardiovascular autonomic control, including the vermis and posterior cerebellum, was assessed using a regions-of-interest approach during rest, LBNP and VM. Functional connectivity was contrasted between controls and patients with autonomic failure. At rest, controls had significantly more intra-cerebellar connectivity and more connectivity between cerebellar lobule 9 and key central autonomic structures, including: bilateral anterior insula (TR-value: 4.84; TL-value: 4.51), anterior cingulate cortex (T-value: 3.41) and bilateral thalamus (TR-value: 3.95; TL-value: 4.51). During autonomic maneuvers, controls showed significantly more connectivity between cardiovascular cerebellar regions (lobule 9 and anterior vermis) and important autonomic regulatory sites, including the brainstem, hippocampus and cingulate: vermis-brainstem (T-value: 4.31), lobule 9-brainstem (TR-value, 5.29; TL-value, 4.53), vermis-hippocampus (T-value, 4.63), and vermis-cingulate (T-value, 4.18). Anatomical and functional studies in animals and humans substantiate a significant role for the cerebellum in cardiovascular autonomic control during postural adjustments. In the current study, patients with NOH related to autonomic failure showed evidence of reduced connectivity between cardiovascular cerebellar regions and several important central autonomic structures, including the brainstem. The cerebellum is an established structure in cardiovascular autonomic control; therefore, evidence of impaired cerebellar connectivity to other autonomic structures may further contribute to the inability to properly regulate blood pressure during postural changes in NOH patients.
Collapse
Affiliation(s)
- Jacquie Baker
- School of Kinesiology, Western University, London, Ontario, Canada. .,Department of Clinical Neurological Sciences, University Hospital, London Health Sciences Centre, Rm. B7-140, 339 Windermere Road, London, Ontario, N6A 5A5, Canada.
| | - Kurt Kimpinski
- School of Kinesiology, Western University, London, Ontario, Canada.,Department of Clinical Neurological Sciences, University Hospital, London Health Sciences Centre, Rm. B7-140, 339 Windermere Road, London, Ontario, N6A 5A5, Canada.,Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
26
|
Manuel J, Färber N, Gerlach DA, Heusser K, Jordan J, Tank J, Beissner F. Deciphering the neural signature of human cardiovascular regulation. eLife 2020; 9:55316. [PMID: 32720895 PMCID: PMC7386911 DOI: 10.7554/elife.55316] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/01/2020] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular regulation is integral to life. Animal studies have identified both neural and endocrine pathways, by which the central nervous system adjusts cardiac output and peripheral vascular resistance to changing physiological demands. The outflow of these pathways is coordinated by various central nervous regions based on afferent information from baroreceptors, chemoreceptors, nociceptors, and circulating hormones, and is modulated by physiologic and behavioural state. In humans, however, knowledge on central cardiovascular regulation below the cortical level is scarce. Here, we show using functional MRI (fMRI) that at least three hypothalamic subsystems are involved in cardiovascular regulation in humans. The rhythmic behaviour of these systems corresponds to high and low frequency oscillations typically seen in blood pressure and heart rate variability. Stand up too fast and you know what happens next. You will feel faint as the blood rushes away from your head. Gravity pulls the blood into your legs, and your blood pressure drops. To correct this imbalance, the brain sends nerve impulses telling the heart to beat faster and the outer blood vessels to tighten. This is the autonomic nervous system at work. It is how the brain adjusts cardiac output, and quietly controls other internal organs in the body. It involves two key regions of the brain, the hypothalamus and the brainstem, and stimulates smooth muscles and glands around the body. The cardiovascular system also responds to the demands of exercise, with the heart supplying fresh blood laden with oxygen and the blood clearing out waste materials as it flows around the body. Perhaps surprisingly, blood pressure and heart rate fluctuate even at rest. The heart beats faster when breathing in and slower when breathing out. People’s blood pressure, the force that keeps blood moving through arteries, also oscillates in so-called Mayer waves that last about 10 seconds. Much of the current understanding of the inner workings of the cardiovascular system – and how it is regulated by the brain – stems from animal experiments. This is because few attempts have been made to simultaneously measure how a person’s brain and cardiovascular system work with enough detail to see how brain waves and cardiac oscillations might interact. To achieve this, Manuel et al. have now measured the brain activity, pulse and blood pressure of twenty-two healthy people while they were lying down in an MRI machine. This revealed that three distinct parts of the hypothalamus regulate cardiovascular output in humans. These ‘subsystems’ communicate with each other and with the lower brainstem, which sits beneath the hypothalamus. Manuel et al. also observed that the rhythmic activity of these subsystems runs in sync with oscillations typically seen in heart rate and blood pressure. With this work, Manuel et al. have shown that it is feasible to measure different systems of cardiovascular control in humans. In time, with further experiments using this new approach, the understanding of chronic high blood pressure and heart failure may improve.
Collapse
Affiliation(s)
- Jorge Manuel
- Somatosensory and Autonomic Therapy Research, Institute for Neuroradiology, Hannover Medical School, Hanover, Germany
| | - Natalia Färber
- Somatosensory and Autonomic Therapy Research, Institute for Neuroradiology, Hannover Medical School, Hanover, Germany
| | - Darius A Gerlach
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Karsten Heusser
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany.,Chair of Aerospace Medicine, University of Cologne, Cologne, Germany
| | - Jens Tank
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Florian Beissner
- Somatosensory and Autonomic Therapy Research, Institute for Neuroradiology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
27
|
Oketa‐Onyut Julu P. Normal autonomic neurophysiology of postural orthostatic tachycardia and recommended physiological assessments in postural orthostatic tachycardia syndrome. Physiol Rep 2020; 8:e14465. [PMID: 32588974 PMCID: PMC7318787 DOI: 10.14814/phy2.14465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 11/24/2022] Open
Abstract
The current surge of interest in postural orthostatic tachycardia syndrome commonly known as POTS requires good knowledge of the very complex physiology involved, but this is currently lacking. The often overlooked normal physiology of orthostasis is reviewed including the definition of normal postural orthostatic tachycardia. An illustrated functional anatomy that embeds orthostatic tachycardia within the learned and skilful motor functions in the human population is presented. The four physiological phases of orthostasis and the role of tachycardia are described in a laboratory-controlled and progressive orthostatic stress in normal human volunteers. Standardized surrogate measures of autonomic control were used to quantify the trigger level for excessive tachycardia and the minimum autonomic control required to sustain viable arterial blood pressure during severe orthostatic stress in normal human volunteers. Tachycardia during orthostasis is part of a "democratic" contribution by four cardiovascular parameters of which the chronotropic function of the heart is just one of the parameters contributing toward cardiovascular compensation. It is adjusted during orthostasis in proportion to contributions from the other three parameters, namely inotropic function of the heart, windkessel vascular resistance and venous vascular capacitance. The physiological effects of the two stressors during orthostasis, gravity and isometric contraction of skeletal muscles are reviewed. A model of how the four cardiovascular parameters are regulated during orthostasis to achieve proportionate contributions is proposed emphasizing the necessity to quantify individual contributions from all these four parameters. Any one or more of these parameters may be compromised due to disease requiring disproportionate contribution of the prevailing magnitude of orthostatic tachycardia in an individual. It therefore requires neurophysiological assessment of the autonomic regulation of all the four cardiovascular parameters to assess the condition fully. We recommend here some current and novel neurophysiological methods that use modern medical technology to quantify laboratory standardized surrogate measures of some of these cardiovascular parameters including central parasympathetic regulation in postural orthostatic tachycardia syndrome.
Collapse
Affiliation(s)
- Peter Oketa‐Onyut Julu
- Clinical Research CentreWilliam Harvey Heart CentreBarts and the London School of Medicine and DentistryCharterhouse SquareLondonUK
| |
Collapse
|
28
|
Ding K, Tarumi T, Wang C, Vernino S, Zhang R, Zhu DC. Central autonomic network functional connectivity: correlation with baroreflex function and cardiovascular variability in older adults. Brain Struct Funct 2020; 225:1575-1585. [PMID: 32350644 DOI: 10.1007/s00429-020-02075-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 04/18/2020] [Indexed: 12/30/2022]
Abstract
Baroreflex regulates short-term cardiovascular variability via the autonomic neural system. The contributions of the central autonomic system to the baroreflex regulations of arterial blood pressure (BP) and heart rate have been reported in young healthy adults, but not in older adults. Therefore, we investigated the association between the high-level central autonomic network (CAN) connectivity and baroreflex sensitivity (BRS) under a resting condition in a healthy older population. Twenty-two older adults (68 ± 8 years old) underwent BRS assessment using the modified Oxford and transfer function methods. Resting-state brain functional MRI was performed to assess the CAN functional connectivity at rest. We found that the functional connectivity (FC) between the left amygdala and left medial frontal gyrus (MeFG), bilateral postcentral gyri and bilateral paracentral lobules (PCL) is associated with BRS and R-R interval (RRI) variability in the low-frequency (LF) range. Compared to the left amygdala, the FC map of the right amygdala only showed significant associations with BRS in the anterior cingulate cortex (ACC) and with RRI variability in the left occipital region. In addition, post hoc analysis of the functionally defined left insula sub-region confirmed the association between CAN and BRS. Overall, our study demonstrates that CAN and its related brain regions may be involved, likely in a left-lateral manner, in peripheral cardiac autonomic regulation at rest. The results highlight the potential importance of brain neural network function in maintaining cardiovascular homeostasis in older adults.
Collapse
Affiliation(s)
- Kan Ding
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Takashi Tarumi
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA.,Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 8200 Walnut Hill Ln, Dallas, TX, 75231, USA.,Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Ciwen Wang
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Steven Vernino
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Rong Zhang
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA.,Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 8200 Walnut Hill Ln, Dallas, TX, 75231, USA
| | - David C Zhu
- Departments of Radiology and Psychology and Cognitive Imaging Research Center, Michigan State University, Radiology Building, 846 Service Road, East Lansing, MI, 48824, USA.
| |
Collapse
|
29
|
Pensel MC, Nass RD, Taubøll E, Aurlien D, Surges R. Prevention of sudden unexpected death in epilepsy: current status and future perspectives. Expert Rev Neurother 2020; 20:497-508. [PMID: 32270723 DOI: 10.1080/14737175.2020.1754195] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Introduction: Sudden unexpected death in epilepsy (SUDEP) affects about 1 in 1000 people with epilepsy, and even more in medically refractory epilepsy. As most people are between 20 and 40 years when dying suddenly, SUDEP leads to a considerable loss of potential life years. The most important risk factors are nocturnal and tonic-clonic seizures, underscoring that supervision and effective seizure control are key elements for SUDEP prevention. The question of whether specific antiepileptic drugs are linked to SUDEP is still controversially discussed. Knowledge and education about SUDEP among health-care professionals, patients, and relatives are of outstanding importance for preventive measures to be taken, but still poor and widely neglected.Areas covered: This article reviews epidemiology, pathophysiology, risk factors, assessment of individual SUDEP risk and available measures for SUDEP prevention. Literature search was done using Medline and Pubmed in October 2019.Expert opinion: Significant advances in the understanding of SUDEP were made in the last decade which allow testing of novel strategies to prevent SUDEP. Promising current strategies target neuronal mechanisms of brain stem dysfunction, cardiac susceptibility for fatal arrhythmias, and reliable detection of tonic-clonic seizures using mobile health technologies.Abbreviations: AED, antiepileptic drug; CBZ, carbamazepine; cLQTS, congenital long QT syndrome; EMU, epilepsy monitoring unit; FBTCS, focal to bilateral tonic-clonic seizures; GTCS, generalized tonic-clonic seizures; ICA, ictal central apnea; LTG, lamotrigine; PCCA, postconvulsive central apnea; PGES, postictal generalized EEG suppression; SRI, serotonin reuptake inhibitor; SUDEP, sudden unexpected death in epilepsy; TCS, tonic-clonic seizures.
Collapse
Affiliation(s)
| | | | - Erik Taubøll
- Department of Neurology, Oslo University Hospital, Nydalen, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Dag Aurlien
- Neuroscience Research Group and Department of Neurology, Stavanger University Hospital, Stavanger, Norway
| | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
30
|
Valenza G, Passamonti L, Duggento A, Toschi N, Barbieri R. Uncovering complex central autonomic networks at rest: a functional magnetic resonance imaging study on complex cardiovascular oscillations. J R Soc Interface 2020; 17:20190878. [PMID: 32183642 DOI: 10.1098/rsif.2019.0878] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
This study aims to uncover brain areas that are functionally linked to complex cardiovascular oscillations in resting-state conditions. Multi-session functional magnetic resonance imaging (fMRI) and cardiovascular data were gathered from 34 healthy volunteers recruited within the human connectome project (the '100-unrelated subjects' release). Group-wise multi-level fMRI analyses in conjunction with complex instantaneous heartbeat correlates (entropy and Lyapunov exponent) revealed the existence of a specialized brain network, i.e. a complex central autonomic network (CCAN), reflecting what we refer to as complex autonomic control of the heart. Our results reveal CCAN areas comprised the paracingulate and cingulate gyri, temporal gyrus, frontal orbital cortex, planum temporale, temporal fusiform, superior and middle frontal gyri, lateral occipital cortex, angular gyrus, precuneous cortex, frontal pole, intracalcarine and supracalcarine cortices, parahippocampal gyrus and left hippocampus. The CCAN visible at rest does not include the insular cortex, thalamus, putamen, amygdala and right caudate, which are classical CAN regions peculiar to sympatho-vagal control. Our results also suggest that the CCAN is mainly involved in complex vagal control mechanisms, with possible links with emotional processing networks.
Collapse
Affiliation(s)
- Gaetano Valenza
- Bioengineering and Robotics Research Centre 'E. Piaggio', University of Pisa, Pisa, Italy.,Deparment of Information Engineering, University of Pisa, Pisa, Italy
| | - Luca Passamonti
- Institute of Bioimaging and Molecular Physiology, National Research Council, Milano, Italy.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Andrea Duggento
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Riccardo Barbieri
- Department of Electronics, Informatics and Bioengineering, Politecnico di Milano, Milano, Italy
| |
Collapse
|
31
|
Klassen SA, Moir ME, Usselman CW, Shoemaker JK. Heterogeneous baroreflex control of sympathetic action potential subpopulations in humans. J Physiol 2020; 598:1881-1895. [PMID: 32091132 DOI: 10.1113/jp279326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Emission patterns in muscle sympathetic nerve activity stem from differently sized action potential (AP) subpopulations that express varying discharge probabilities. The mechanisms governing these firing behaviours are unclear. This study investigated the hypothesis that the arterial baroreflex exerts varying control over the different AP subpopulations. During baseline, medium APs expressed the greatest baroreflex slopes, while small and large APs exhibited weaker slopes. On going from baseline to lower body negative pressure (LBNP; simulated orthostatic stress), baroreflex slopes for some clusters of medium APs expressed the greatest increase, while slopes for large APs also increased but to a lesser degree. A subpopulation of previously silent larger APs was recruited with LBNP but these APs expressed weak baroreflex slopes. The arterial baroreflex heterogeneously regulates sympathetic AP subpopulations, exerting its strongest effect over medium APs. Weak baroreflex mechanisms govern the recruitment of latent larger AP subpopulations during orthostatic stress. ABSTRACT Muscle sympathetic nerve activity (MSNA) occurs primarily in bursts of action potentials (AP) with subpopulations that differ in size and discharge probabilities. The mechanisms determining these discharge patterns remain unclear. This study investigated the hypothesis that variations in AP discharge are due to subpopulation-specific baroreflex control. We employed multi-unit microneurography and a continuous wavelet analysis approach to extract sympathetic APs in 12 healthy individuals during baseline (BSL) and lower body negative pressure (LBNP; -40, -60, -80 mmHg). For each AP cluster, the baroreflex threshold slope was measured from the linear regression between AP probability (%) and diastolic blood pressure (mmHg). During BSL, the baroreflex exerted non-uniform regulation over AP subpopulations: medium-sized AP clusters expressed the greatest slopes while clusters of small and large APs expressed weaker slopes. On going from BSL to LBNP, the baroreflex slopes for each AP subpopulation were modified differently. Baroreflex slopes (%/mmHg) for some medium APs (cluster 5: -4.4 ± 4 to -9.1 ± 5) expressed the greatest increase with LBNP, while slopes for large APs (cluster 9: -1.3 ± 1 to -2.6 ± 2) also increased, but to a lesser degree. Slopes for small APs present at BSL exhibited reductions with LBNP (cluster 2: -3.9 ± 3 to -2.2 ± 3). Larger previously silent AP clusters recruited with LBNP expressed weak baroreflex regulation (cluster 14: -0.9 ± 1%/mmHg). The baroreflex exerts the strongest control over medium-sized APs. Augmenting baroreflex gain and upward resetting of discrete AP subpopulations active at BSL, as well as recruiting larger previously silent APs with weak baroreflex control, facilitates elevated MSNA during orthostatic stress.
Collapse
Affiliation(s)
- Stephen A Klassen
- Neurovascular Research Laboratory, School of Kinesiology, University of Western Ontario, Canada
| | - M Erin Moir
- Neurovascular Research Laboratory, School of Kinesiology, University of Western Ontario, Canada
| | - Charlotte W Usselman
- Neurovascular Research Laboratory, School of Kinesiology, University of Western Ontario, Canada.,Department of Kinesiology and Physical Education, McGill University, Canada
| | - J Kevin Shoemaker
- Neurovascular Research Laboratory, School of Kinesiology, University of Western Ontario, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, Canada
| |
Collapse
|
32
|
Sie JH, Chen YH, Shiau YH, Chu WC. Gender- and Age-Specific Differences in Resting-State Functional Connectivity of the Central Autonomic Network in Adulthood. Front Hum Neurosci 2019; 13:369. [PMID: 31680919 PMCID: PMC6811649 DOI: 10.3389/fnhum.2019.00369] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/30/2019] [Indexed: 12/30/2022] Open
Abstract
Previous functional imaging studies have identified the role of central autonomic network (CAN) in autonomic regulation during various tasks. However, its variability with respect to gender and age, particularly in the resting state, remains poorly understood. Therefore, in this study we systematically investigated gender- and age-related differences in the resting-state functional connectivity (rsFC) seeded from core regions of this network, namely posterior mid-cingulate gyrus (pMCC), left amygdala, right anterior and left posterior insula, and ventromedial prefrontal cortex (vmPFC), using a large cross-sectional adulthood sample. Results revealed that each of the seeded connectivity maps engaged in at least one of the large-scale brain networks including sensorimotor, attentional, basal ganglia, limbic, and default mode networks (DMN). In the early-adulthood stage, females had stronger negative rsFC in pMCC and right anterior INS (aINS) with the medial DMN than males, possibly reflecting their greater suppression of the sympathoexcitation associated with sex hormonal estrogen. Whereas in the late-adulthood stage, they showed stronger positive rsFC in pMCC with postcentral gyrus and weaker negative rsFC with the most DMN, possibly relating to their higher risk of depression, anxiety, and dementia than males after menopause. Moreover, females demonstrated reduced negative rsFC in pMCC with dorsal PCUN/PCC and left AG with advancing age, whereas males showed the opposite pattern, namely increased positive rsFC, in pMCC with right SMG, and in vmPFC with ventral PCUN. We interpret these results as their differences of altered autonomic regulation associated with pain experience and reflective movement, respectively, due to aging. In sum, our findings add in literature that autonomic responses can be also represented intrinsically in the resting brain, and gender- and age-related differences might be associated with sex hormones and sensorimotor abilities, respectively.
Collapse
Affiliation(s)
- Jia-Hong Sie
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Yin-Hua Chen
- Research Center for Mind, Brain and Learning, National Chengchi University, Taipei, Taiwan
| | - Yuo-Hsien Shiau
- Research Center for Mind, Brain and Learning, National Chengchi University, Taipei, Taiwan.,Graduate Institute of Applied Physics, National Chengchi University, Taipei, Taiwan
| | - Woei-Chyn Chu
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
33
|
Abstract
OBJECTIVE High blood pressure (BP) is associated with reduced pain sensitivity, known as BP-related hypoalgesia. The underlying neural mechanisms remain uncertain, yet arterial baroreceptor signaling, occurring at cardiac systole, is implicated. We examined normotensives using functional neuroimaging and pain stimulation during distinct phases of the cardiac cycle to test the hypothesized neural mediation of baroreceptor-induced attenuation of pain. METHODS Eighteen participants (10 women; 32.7 (6.5) years) underwent BP monitoring for 1 week at home, and individual pain thresholds were determined in the laboratory. Subsequently, participants were administered unpredictable painful and nonpainful electrocutaneous shocks (stimulus type), timed to occur either at systole or at diastole (cardiac phase) in an event-related design. After each trial, participants evaluated their subjective experience. RESULTS Subjective pain was lower for painful stimuli administered at systole compared with diastole, F(1, 2283) = 4.82, p = 0.03. Individuals with higher baseline BP demonstrated overall lower pain perception, F(1, 2164) = 10.47, p < .0001. Within the brain, painful stimulation activated somatosensory areas, prefrontal cortex, cingulate cortex, posterior insula, amygdala, and the thalamus. Stimuli delivered during systole (concurrent with baroreceptor discharge) activated areas associated with heightened parasympathetic drive. No stimulus type by cardiac phase interaction emerged except for a small cluster located in the right parietal cortex. CONCLUSIONS We confirm the negative associations between BP and pain, highlighting the antinociceptive impact of baroreceptor discharge. Neural substrates associated with baroreceptor/BP-related hypoalgesia include superior parietal lobule, precentral, and lingual gyrus, regions typically involved in the cognitive aspects of pain experience.
Collapse
|
34
|
Lansdown AJ, Warnert EAH, Sverrisdóttir Y, Wise RG, Rees DA. Regional Cerebral Activation Accompanies Sympathoexcitation in Women With Polycystic Ovary Syndrome. J Clin Endocrinol Metab 2019; 104:3614-3623. [PMID: 31127833 DOI: 10.1210/jc.2019-00065] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023]
Abstract
CONTEXT Polycystic ovary syndrome (PCOS) is associated with increased sympathetic nervous system activation, but the cerebral pathways involved are unclear. OBJECTIVE To compare cerebral [blood oxygen level-dependent (BOLD) functional MRI], pressor [blood pressure (BP), heart rate (HR], and muscle sympathetic nerve activity (MSNA) responses to isometric forearm contraction (IFC) in women with PCOS and matched control subjects. DESIGN Case-control study. SETTING Referral center. PARTICIPANTS Patients with PCOS (n = 20; mean ± SD data: age, 29.8 ± 4.8 years; body mass index (BMI), 26.1 ± 4.9 kg/ m2) and 20 age- and BMI-matched control subjects (age, 29.7 ± 5.0 years; BMI, 26.1 ± 4.8 kg/ m2). MAIN OUTCOME MEASURES BP, HR, catecholamine, and MSNA responses to 30% IFC. BOLD signal change was modeled for BP response to 30% IFC. RESULTS Although HR and BP increased to a similar extent in both groups after IFC, MSNA burst frequency increased by 68% in the PCOS group compared with 11.9% in control subjects (n = 7 in both groups; P = 0.002). Brain activation indexed by the BOLD signal in response to IFC was significantly greater in the PCOS group (n = 15) compared with controls (n = 15) in the right orbitofrontal cortex (P < 0.0001). Adjustment for insulin sensitivity, but not hyperandrogenism, abolished these between-group differences. CONCLUSION Our study confirms enhanced sympathoexcitation in women with PCOS and demonstrates increased regional brain activation in response to IFC. The right orbitofrontal cortex BOLD signal change in women with PCOS is associated with insulin sensitivity. Additional studies are warranted to clarify whether this may offer a novel target for cardiovascular risk reduction.
Collapse
Affiliation(s)
- Andrew J Lansdown
- Department of Endocrinology, University Hospital of Wales, Cardiff, United Kingdom
| | - Esther A H Warnert
- Department of Radiology, Erasmus Medical Center, CA Rotterdam, Netherlands
| | - Yrsa Sverrisdóttir
- Nuffield Department of Surgical Sciences, Medical Sciences Division, University of Oxford, Oxford United Kingdom
| | - Richard G Wise
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - D Aled Rees
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
35
|
Macefield VG, Henderson LA. Identification of the human sympathetic connectome involved in blood pressure regulation. Neuroimage 2019; 202:116119. [PMID: 31446130 DOI: 10.1016/j.neuroimage.2019.116119] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/12/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023] Open
Abstract
We review our recent data obtained on the cortical and subcortical components of the human sympathetic connectome - the network of regions involved in the sympathetic control of blood pressure. Specifically, we functionally identified the human homologue of the rostral ventrolateral medulla (RVLM), the primary premotor sympathetic nucleus in the medulla responsible for generating sympathetic vasoconstrictor drive. By performing functional magnetic resonance imaging (fMRI) of the brain at the same time as recording muscle sympathetic nerve activity (MSNA), via a microlectrode inserted into the common peroneal nerve, we are able to identify areas of the brain involved in the generation of sympathetic outflow to the muscle vascular bed, a major contributor to blood pressure regulation. Together with functional connectivity analysis of areas identified through MSNA-coupled fMRI, we have established key components of the human sympathetic connectome and their roles in the control of blood pressure. Whilst our studies confirm the role of lower brainstem regions such as the NTS, CVLM and RVLM in baroreflex control of MSNA, our findings indicate that the insula - hypothalamus - PAG - RVLM circuitry is tightly coupled to MSNA at rest. This fits with data obtained from experimental animals, but also emphasizes the role of areas above the brainstem in the regulation of blood pressure.
Collapse
Affiliation(s)
| | - Luke A Henderson
- Department of Anatomy & Histology, University of Sydney, Sydney, Australia
| |
Collapse
|
36
|
Winder K, Linker RA, Seifert F, Wang R, Lee DH, Engelhorn T, Dörfler A, Fröhlich K, Hilz M. Cerebral lesion correlates of sympathetic cardiovascular activation in multiple sclerosis. Hum Brain Mapp 2019; 40:5083-5093. [PMID: 31403742 PMCID: PMC6865522 DOI: 10.1002/hbm.24759] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular autonomic dysfunction is common in multiple sclerosis (MS) and contributes significantly to disability. We hypothesized that cerebral MS‐lesions in specific areas of the central autonomic network might account for imbalance of the sympathetic and parasympathetic cardiovascular modulation. Therefore, we used voxel‐based lesion symptom mapping (VLSM) to determine associations between cardiovascular autonomic dysfunction and cerebral MS‐related lesion sites. In 74 MS‐patients (mean age 37.0 ± 10.5 years), we recorded electrocardiographic RR‐intervals and systolic and diastolic blood pressure. Using trigonometric regressive spectral analysis, we assessed low (0.04–0.15 Hz) and high (0.15–0.5 Hz) frequency RR‐interval‐and blood pressure‐oscillations and determined parasympathetically mediated RR‐interval–high‐frequency modulation, mainly sympathetically mediated RR‐interval–low‐frequency modulation, sympathetically mediated blood pressure‐low‐frequency modulation, and the ratios of sympathetic and parasympathetic RR‐interval‐modulation as an index of sympathetic‐parasympathetic balance. Cerebral MS‐lesions were analyzed on imaging scans. We performed a VLSM‐analysis correlating parameters of autonomic dysfunction with cerebral MS‐lesion sites. The VLSM‐analysis showed associations between increased RR‐interval low‐frequency/high‐frequency ratios and lesions most prominently in the left insular, hippocampal, and right frontal inferior opercular region, and a smaller lesion cluster in the right middle cerebellar peduncle. Increased blood pressure‐low‐frequency powers were associated with lesions primarily in the right posterior parietal white matter and again left insular region. Our data indicate associations between a shift of cardiovascular sympathetic‐parasympathetic balance toward increased sympathetic modulation and left insular and hippocampal lesions, areas of the central autonomic network. The VLSM‐analysis further distinguished between right inferior fronto‐opercular lesions disinhibiting cardiac sympathetic activation and right posterior parietal lesions increasing sympathetic blood pressure modulation.
Collapse
Affiliation(s)
- Klemens Winder
- Department of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ralf A Linker
- Department of Neurology, University Regensburg, Regensburg, Germany
| | - Frank Seifert
- Department of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ruihao Wang
- Department of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - De-Hyung Lee
- Department of Neurology, University Regensburg, Regensburg, Germany
| | - Tobias Engelhorn
- Department of Neuroradiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Arnd Dörfler
- Department of Neuroradiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kilian Fröhlich
- Department of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Max Hilz
- Department of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
37
|
Wakeham DJ, Lord RN, Talbot JS, Lodge FM, Curry BA, Dawkins TG, Simpson LL, Shave RE, Pugh CJA, Moore JP. Upward resetting of the vascular sympathetic baroreflex in middle-aged male runners. Am J Physiol Heart Circ Physiol 2019; 317:H181-H189. [PMID: 31050557 DOI: 10.1152/ajpheart.00106.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This study focused on the influence of habitual endurance exercise training (i.e., committed runner or nonrunner) on the regulation of muscle sympathetic nerve activity (MSNA) and arterial pressure in middle-aged (50 to 63 yr, n = 23) and younger (19 to 30 yr; n = 23) normotensive men. Hemodynamic and neurophysiological assessments were performed at rest. Indices of vascular sympathetic baroreflex function were determined from the relationship between spontaneous changes in diastolic blood pressure (DBP) and MSNA. Large vessel arterial stiffness and left ventricular stroke volume also were measured. Paired comparisons were performed within each age category. Mean arterial pressure and basal MSNA bursts/min were not different between age-matched runners and nonrunners. However, MSNA bursts/100 heartbeats, an index of baroreflex regulation of MSNA (vascular sympathetic baroreflex operating point), was higher for middle-aged runners (P = 0.006), whereas this was not different between young runners and nonrunners. The slope of the DBP-MSNA relationship (vascular sympathetic baroreflex gain) was not different between groups in either age category. Aortic pulse wave velocity was lower for runners of both age categories (P < 0.03), although carotid β-stiffness was lower only for middle-aged runners (P = 0.04). For runners of both age categories, stroke volume was larger, whereas heart rate was lower (both P < 0.01). In conclusion, we suggest that neural remodeling and upward setting of the vascular sympathetic baroreflex compensates for cardiovascular adaptations after many years committed to endurance exercise training, presumably to maintain arterial blood pressure stability. NEW & NOTEWORTHY Exercise training reduces muscle sympathetic burst activity in disease; this is often extrapolated to infer a similar effect in health. We demonstrate that burst frequency of middle-aged and younger men committed to endurance training is not different compared with age-matched casual exercisers. Notably, well-trained, middle-aged runners display similar arterial pressure but higher sympathetic burst occurrence than untrained peers. We suggest that homeostatic plasticity and upward setting of the vascular sympathetic baroreflex maintains arterial pressure stability following years of training.
Collapse
Affiliation(s)
- Denis J Wakeham
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University , Cardiff , United Kingdom
| | - Rachel N Lord
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University , Cardiff , United Kingdom
| | - Jack S Talbot
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University , Cardiff , United Kingdom
| | - Freya M Lodge
- Cardiff and Vale University Health Board, University Hospital of Wales , Cardiff , United Kingdom
| | - Bryony A Curry
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University , Cardiff , United Kingdom
| | - Tony G Dawkins
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University , Cardiff , United Kingdom
| | - Lydia L Simpson
- Physical Activity for Health and Well-Being Centre, School of Sport, Health and Exercise Sciences, Bangor University , Bangor , United Kingdom
| | - Rob E Shave
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University , Cardiff , United Kingdom.,Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan , Kelowna, BC , Canada
| | - Christopher J A Pugh
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University , Cardiff , United Kingdom
| | - Jonathan P Moore
- Physical Activity for Health and Well-Being Centre, School of Sport, Health and Exercise Sciences, Bangor University , Bangor , United Kingdom
| |
Collapse
|
38
|
Roy HA, Green AL. The Central Autonomic Network and Regulation of Bladder Function. Front Neurosci 2019; 13:535. [PMID: 31263396 PMCID: PMC6585191 DOI: 10.3389/fnins.2019.00535] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/08/2019] [Indexed: 12/30/2022] Open
Abstract
The autonomic nervous system (ANS) is involved in the regulation of physiologic and homeostatic parameters relating particularly to the visceral organs and the co-ordination of physiological responses to threat. Blood pressure and heart rate, respiration, pupillomotor reactivity, sexual function, gastrointestinal secretions and motility, and urine storage and micturition are all under a degree of ANS control. Furthermore, there is close integration between the ANS and other neural functions such as emotion and cognition, and thus brain regions that are known to be important for autonomic control are also implicated in emotional functions. In this review we explore the role of the central ANS in the control of the bladder, and the implications of this for bladder dysfunction in diseases of the ANS.
Collapse
Affiliation(s)
- Holly Ann Roy
- Department of Neurosurgery, Plymouth Hospitals NHS Trust, Plymouth, United Kingdom
| | - Alexander L Green
- Nuffield Department of Surgical Sciences, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
39
|
Nass RD, Hampel KG, Elger CE, Surges R. Blood Pressure in Seizures and Epilepsy. Front Neurol 2019; 10:501. [PMID: 31139142 PMCID: PMC6527757 DOI: 10.3389/fneur.2019.00501] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/25/2019] [Indexed: 12/18/2022] Open
Abstract
In this narrative review, we summarize the current knowledge of neurally mediated blood pressure (BP) control and discuss how recently described epilepsy- and seizure-related BP alterations may contribute to premature mortality and sudden unexpected death in epilepsy (SUDEP). Although people with epilepsy display disturbed interictal autonomic function with a shift toward predominant sympathetic activity, prevalence of arterial hypertension is similar in people with and without epilepsy. BP is transiently increased in association with most types of epileptic seizures but may also decrease in some, illustrating that seizure activity can cause both a decrease and increase of BP, probably because of stimulation or inhibition of distinct central autonomic function by epileptic activity that propagates into different neuronal networks of the central autonomic nervous system. The principal regulatory neural loop for short-term BP control is termed baroreflex, mainly involving peripheral sensors and brain stem nuclei. The baroreflex sensitivity (BRS, expressed as change of interbeat interval per change in BP) is intact after focal seizures, whereas BRS is markedly impaired in the early postictal period following generalized convulsive seizures (GCS), possibly due to metabolically mediated muscular hyperemia in skeletal muscles, a massive release of catecholamines and compromised brain stem function. Whilst most SUDEP cases are probably caused by a cardiorespiratory failure during the early postictal period following GCS, a profoundly disturbed BRS may allow a life-threatening drop of systemic BP in the aftermath of GCS, as recently reported in a patient as a plausible cause of SUDEP in a few patients.
Collapse
Affiliation(s)
- Robert D Nass
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Kevin G Hampel
- Department of Neurology, University Hospital La Fe, Valencia, Spain
| | | | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
40
|
Gerlach DA, Manuel J, Hoff A, Kronsbein H, Hoffmann F, Heusser K, Ehmke H, Diedrich A, Jordan J, Tank J, Beissner F. Novel Approach to Elucidate Human Baroreflex Regulation at the Brainstem Level: Pharmacological Testing During fMRI. Front Neurosci 2019; 13:193. [PMID: 30890917 PMCID: PMC6411827 DOI: 10.3389/fnins.2019.00193] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/19/2019] [Indexed: 11/13/2022] Open
Abstract
Introduction: Brainstem nuclei govern the arterial baroreflex, which is crucial for heart rate and blood pressure control. Yet, brainstem function is difficult to explore in living humans and is therefore mostly studied using animal models or postmortem human anatomy studies. We developed a methodology to identify brainstem nuclei involved in baroreflex cardiovascular control in humans by combining pharmacological baroreflex testing with functional magnetic resonance imaging. Materials and Methods: In 11 healthy men, we applied eight repeated intravenous phenylephrine bolus doses of 25 and 75 μg followed by a saline flush using a remote-controlled injector during multiband functional magnetic resonance imaging (fMRI) acquisition of the whole brain including the brainstem. Continuous finger arterial blood pressure, respiration, and electrocardiogram (ECG) were monitored. fMRI data were preprocessed with a brainstem-specific pipeline and analyzed with a general linear model (GLM) to identify brainstem nuclei involved in central integration of the baroreceptor input. Results: Phenylephrine elicited a pressor response followed by a baroreflex-mediated lengthening of the RR interval (25 μg: 197 ± 15 ms; 75 μg: 221 ± 33 ms). By combining fMRI responses during both phenylephrine doses, we identified significant signal changes in the nucleus tractus solitarii (t = 5.97), caudal ventrolateral medulla (t = 4.59), rostral ventrolateral medulla (t = 7.11), nucleus ambiguus (t = 5.6), nucleus raphe obscurus (t = 6.45), and several other brainstem nuclei [p < 0.0005 family-wise error (few)-corr.]. Conclusion: Pharmacological baroreflex testing during fMRI allows characterizing central baroreflex regulation at the level of the brainstem in humans. Baroreflex-mediated activation and deactivation patterns are consistent with previous investigations in animal models. The methodology has the potential to elucidate human physiology and mechanisms of autonomic cardiovascular disease.
Collapse
Affiliation(s)
- Darius A Gerlach
- Department of Cardiovascular Aerospace Medicine, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jorge Manuel
- Somatosensory and Autonomic Therapy Research, Institute for Neuroradiology, Hannover Medical School, Hanover, Germany
| | - Alex Hoff
- Department of Cardiovascular Aerospace Medicine, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Hendrik Kronsbein
- Department of Cardiovascular Aerospace Medicine, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany.,Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Hoffmann
- Department of Cardiovascular Aerospace Medicine, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany.,Division of Cardiology, Angiology and Pneumology, Cologne Heart Center, University Hospital Cologne, Cologne, Germany
| | - Karsten Heusser
- Department of Cardiovascular Aerospace Medicine, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Heimo Ehmke
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - André Diedrich
- Division of Clinical Pharmacology, Department of Medicine, Autonomic Dysfunction Service, Vanderbilt University, Nashville, TN, United States
| | - Jens Jordan
- Chair of Aerospace Medicine, Institute of Aerospace Medicine, German Aerospace Center (DLR), Helmholtz Association of German Research Centers, Cologne, Germany
| | - Jens Tank
- Department of Cardiovascular Aerospace Medicine, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Florian Beissner
- Somatosensory and Autonomic Therapy Research, Institute for Neuroradiology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
41
|
Allen LA, Harper RM, Lhatoo S, Lemieux L, Diehl B. Neuroimaging of Sudden Unexpected Death in Epilepsy (SUDEP): Insights From Structural and Resting-State Functional MRI Studies. Front Neurol 2019; 10:185. [PMID: 30891003 PMCID: PMC6413533 DOI: 10.3389/fneur.2019.00185] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/13/2019] [Indexed: 01/31/2023] Open
Abstract
The elusive nature of sudden unexpected death in epilepsy (SUDEP) has led to investigations of mechanisms and identification of biomarkers of this fatal scenario that constitutes the leading cause of premature death in epilepsy. In this short review, we compile evidence from structural and functional neuroimaging that demonstrates alterations to brain structures and networks involved in central autonomic and respiratory control in SUDEP and those at elevated risk. These findings suggest that compromised central control of vital regulatory processes may contribute to SUDEP. Both structural changes and dysfunctional interactions indicate potential mechanisms underlying the fatal event; contributions to individual risk prediction will require further study. The nature and sites of functional disruptions suggest potential non-invasive interventions to overcome failing processes.
Collapse
Affiliation(s)
- Luke A. Allen
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Epilepsy Society MRI Unit, Chalfont St Peter, London, United Kingdom
- The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Ronald M. Harper
- The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, United States
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Samden Lhatoo
- The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
- Department of Neurology, University of Texas Health Sciences Center at Houston, Houston, TX, United States
| | - Louis Lemieux
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Epilepsy Society MRI Unit, Chalfont St Peter, London, United Kingdom
| | - Beate Diehl
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Epilepsy Society MRI Unit, Chalfont St Peter, London, United Kingdom
- The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| |
Collapse
|
42
|
Holgado D, Zandonai T, Ciria LF, Zabala M, Hopker J, Sanabria D. Transcranial direct current stimulation (tDCS) over the left prefrontal cortex does not affect time-trial self-paced cycling performance: Evidence from oscillatory brain activity and power output. PLoS One 2019; 14:e0210873. [PMID: 30726234 PMCID: PMC6364890 DOI: 10.1371/journal.pone.0210873] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/03/2019] [Indexed: 01/30/2023] Open
Abstract
Objectives To test the hypothesis that transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) influences performance in a 20-min time-trial self-paced exercise and electroencephalographic (EEG) oscillatory brain activity in a group of trained male cyclists. Design The study consisted of a pre-registered (https://osf.io/rf95j/), randomised, sham-controlled, single-blind, within-subject design experiment. Methods 36 trained male cyclists, age 27 (6.8) years, weight 70.1 (9.5) Kg; VO2max: 54 (6.13) ml.min-1.kg-1, Maximal Power output: 4.77 (0.6) W/kg completed a 20-min time-trial self-paced exercise in three separate sessions, corresponding to three stimulation conditions: anodal, cathodal and sham. tDCS was administered before each test during 20-min at a current intensity of 2.0 mA. The anode electrode was placed over the DLPFC and the cathode in the contralateral shoulder. In each session, power output, heart rate, sRPE and EEG (at baseline and during exercise) was measured. Results There were no differences (F = 0.31, p > 0.05) in power output between the stimulation conditions: anodal (235 W [95%CI 222–249 W]; cathodal (235 W [95%CI 222–248 W] and sham (234 W [95%CI 220–248 W]. Neither heart rate, sRPE nor EEG activity were affected by tDCS (all Ps > 0.05). Conclusion tDCS over the left DLFC did not affect self-paced exercise performance in trained cyclists. Moreover, tDCS did not elicit any change on oscillatory brain activity either at baseline or during exercise. Our data suggest that the effects of tDCS on endurance performance should be taken with caution.
Collapse
Affiliation(s)
- Darías Holgado
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Mind, Brain and Behaviour Research Centre, Department of Experimental Psychology, University of Granada, Granada, Spain
- * E-mail:
| | - Thomas Zandonai
- Mind, Brain and Behaviour Research Centre, Department of Experimental Psychology, University of Granada, Granada, Spain
| | - Luis F. Ciria
- Mind, Brain and Behaviour Research Centre, Department of Experimental Psychology, University of Granada, Granada, Spain
| | - Mikel Zabala
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - James Hopker
- School of Sport and Exercise Sciences, Endurance Research group, University of Kent, Chatham, United Kingdom
| | - Daniel Sanabria
- Mind, Brain and Behaviour Research Centre, Department of Experimental Psychology, University of Granada, Granada, Spain
| |
Collapse
|
43
|
Goswami N, Blaber AP, Hinghofer-Szalkay H, Convertino VA. Lower Body Negative Pressure: Physiological Effects, Applications, and Implementation. Physiol Rev 2019; 99:807-851. [PMID: 30540225 DOI: 10.1152/physrev.00006.2018] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This review presents lower body negative pressure (LBNP) as a unique tool to investigate the physiology of integrated systemic compensatory responses to altered hemodynamic patterns during conditions of central hypovolemia in humans. An early review published in Physiological Reviews over 40 yr ago (Wolthuis et al. Physiol Rev 54: 566-595, 1974) focused on the use of LBNP as a tool to study effects of central hypovolemia, while more than a decade ago a review appeared that focused on LBNP as a model of hemorrhagic shock (Cooke et al. J Appl Physiol (1985) 96: 1249-1261, 2004). Since then there has been a great deal of new research that has applied LBNP to investigate complex physiological responses to a variety of challenges including orthostasis, hemorrhage, and other important stressors seen in humans such as microgravity encountered during spaceflight. The LBNP stimulus has provided novel insights into the physiology underlying areas such as intolerance to reduced central blood volume, sex differences concerning blood pressure regulation, autonomic dysfunctions, adaptations to exercise training, and effects of space flight. Furthermore, approaching cardiovascular assessment using prediction models for orthostatic capacity in healthy populations, derived from LBNP tolerance protocols, has provided important insights into the mechanisms of orthostatic hypotension and central hypovolemia, especially in some patient populations as well as in healthy subjects. This review also presents a concise discussion of mathematical modeling regarding compensatory responses induced by LBNP. Given the diverse applications of LBNP, it is to be expected that new and innovative applications of LBNP will be developed to explore the complex physiological mechanisms that underline health and disease.
Collapse
Affiliation(s)
- Nandu Goswami
- Physiology Section, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz , Graz , Austria ; Department of Biomedical Physiology and Kinesiology, Simon Fraser University , Burnaby, British Columbia , Canada ; Battlefield Health & Trauma Center for Human Integrative Physiology, Combat Casualty Care Research Program, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Andrew Philip Blaber
- Physiology Section, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz , Graz , Austria ; Department of Biomedical Physiology and Kinesiology, Simon Fraser University , Burnaby, British Columbia , Canada ; Battlefield Health & Trauma Center for Human Integrative Physiology, Combat Casualty Care Research Program, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Helmut Hinghofer-Szalkay
- Physiology Section, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz , Graz , Austria ; Department of Biomedical Physiology and Kinesiology, Simon Fraser University , Burnaby, British Columbia , Canada ; Battlefield Health & Trauma Center for Human Integrative Physiology, Combat Casualty Care Research Program, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Victor A Convertino
- Physiology Section, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz , Graz , Austria ; Department of Biomedical Physiology and Kinesiology, Simon Fraser University , Burnaby, British Columbia , Canada ; Battlefield Health & Trauma Center for Human Integrative Physiology, Combat Casualty Care Research Program, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| |
Collapse
|
44
|
Carter JR. Microneurography and sympathetic nerve activity: a decade-by-decade journey across 50 years. J Neurophysiol 2019; 121:1183-1194. [PMID: 30673363 DOI: 10.1152/jn.00570.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The technique of microneurography has advanced the field of neuroscience for the past 50 years. While there have been a number of reviews on microneurography, this paper takes an objective approach to exploring the impact of microneurography studies. Briefly, Web of Science (Thomson Reuters) was used to identify the highest citation articles over the past 50 years, and key findings are presented in a decade-by-decade highlight. This includes the establishment of microneurography in the 1960s, the acceleration of the technique by Gunnar Wallin in the 1970s, the international collaborations of the 1980s and 1990s, and finally the highest impact studies from 2000 to present. This journey through 50 years of microneurographic research related to peripheral sympathetic nerve activity includes a historical context for several of the laboratory interventions commonly used today (e.g., cold pressor test, mental stress, lower body negative pressure, isometric handgrip, etc.) and how these interventions and experimental approaches have advanced our knowledge of cardiovascular, cardiometabolic, and other human diseases and conditions.
Collapse
Affiliation(s)
- Jason R Carter
- Department of Kinesiology and Integrative Physiology, Michigan Technological University , Houghton, Michigan
| |
Collapse
|
45
|
Abstract
The midcingulate cortex (MCC) is viewed as a central node within a large-scale system devoted to adjusting behavior in the face of changing environments. Whereas the role of the MCC in interfacing action and cognition is well established, its role in regulating the autonomic nervous system is poorly understood. Yet, adaptive reactions to novel or threatening situations induce coordinated changes in the sympathetic and the parasympathetic systems. The somatomotor maps in the MCC are organized dorsoventrally. A meta-analysis of the literature reveals that the dorsoventral organization might also concern connections with the autonomic nervous system. Activation of the dorsal and ventral parts of the MCC correlate with recruitments of the sympathetic and the parasympathetic systems, respectively. Data also suggest that, in the MCC, projections toward the sympathetic system are mapped along the sensory-motor system following the same cervico-sacral organization as projections on the spinal cord for skeletal motor control.
Collapse
Affiliation(s)
- Céline Amiez
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France.
| | - Emmanuel Procyk
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France.
| |
Collapse
|
46
|
Manolis TA, Manolis AA, Melita H, Manolis AS. Sudden unexpected death in epilepsy: The neuro-cardio-respiratory connection. Seizure 2019; 64:65-73. [DOI: 10.1016/j.seizure.2018.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/09/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022] Open
|
47
|
Holgado D, Vadillo MA, Sanabria D. The effects of transcranial direct current stimulation on objective and subjective indexes of exercise performance: A systematic review and meta-analysis. Brain Stimul 2018; 12:242-250. [PMID: 30559000 DOI: 10.1016/j.brs.2018.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE To examine the effects of transcranial direct current stimulation (tDCS) on objective and subjective indexes of exercise performance. DESIGN Systematic review and meta-analysis. DATA SOURCES A systematic literature search of electronic databases (PubMed, Web of Science, Scopus, Google Scholar) and reference lists of included articles up to June 2018. ELIGIBILITY CRITERIA Published articles in journals or in repositories with raw data available, randomized sham-controlled trial comparing anodal stimulation with a sham condition providing data on objective (e.g. time to exhaustion or time-trial performance) or subjective (e.g. rate of perceived exertion) indexes of exercise performance. RESULTS The initial search provided 420 articles of which 31 were assessed for eligibility. Finally, the analysis of effect sizes comprised 24 studies with 386 participants. The analysis indicated that anodal tDCS had a small but positive effect on performance g = 0.34, 95% CI [0.12, 0.52], z = 3.24, p = .0012. Effects were not significantly moderated by type of outcome, electrode placement, muscles involved, number of sessions, or intensity and duration of the stimulation. Importantly, the funnel plot showed that, overall, effect sizes tended to be larger in studies with lower sample size and high standard error. SUMMARY The results suggest that tDCS may have a positive impact on exercise performance. However, the effect is probably small and most likely biased by low quality studies and the selective publication of significant results. Therefore, the current evidence does not provide strong support to the conclusion that tDCS is an effective means to improve exercise performance.
Collapse
Affiliation(s)
- Darías Holgado
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Spain; Mind, Brain and Behavior Research Centre, Department of Experimental Psychology, University of Granada, Spain.
| | - Miguel A Vadillo
- Department of Basic Psychology, Autonomous University of Madrid, Spain
| | - Daniel Sanabria
- Mind, Brain and Behavior Research Centre, Department of Experimental Psychology, University of Granada, Spain
| |
Collapse
|
48
|
Sklerov M, Dayan E, Browner N. Functional neuroimaging of the central autonomic network: recent developments and clinical implications. Clin Auton Res 2018; 29:555-566. [PMID: 30470943 PMCID: PMC6858471 DOI: 10.1007/s10286-018-0577-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/07/2018] [Indexed: 12/08/2023]
Abstract
Purpose The central autonomic network (CAN) is an intricate system of brainstem, subcortical, and cortical structures that play key roles in the function of the autonomic nervous system. Prior to the advent of functional neuroimaging, in vivo studies of the human CAN were limited. The purpose of this review is to highlight the contribution of functional neuroimaging, specifically functional magnetic resonance imaging (fMRI), to the study of the CAN, and to discuss recent advances in this area. Additionally, we aim to emphasize exciting areas for future research. Methods We reviewed the existing literature in functional neuroimaging of the CAN. Here, we focus on fMRI research conducted in healthy human subjects, as well as research that has been done in disease states, to understand CAN function. To minimize confounding, papers examining CAN function in the context of cognition, emotion, pain, and affective disorders were excluded. Results fMRI has led to significant advances in the understanding of human CAN function. The CAN is composed of widespread brainstem and forebrain structures that are intricately connected and play key roles in reflexive and modulatory control of autonomic function. Conclusions fMRI technology has contributed extensively to current knowledge of CAN function. It holds promise to serve as a biomarker in disease states. With ongoing advancements in fMRI technology, there is great opportunity and need for future research involving the CAN.
Collapse
Affiliation(s)
- Miriam Sklerov
- Department of Neurology, University of North Carolina, 170 Manning Drive, CB# 7025, Chapel Hill, NC, 27599, USA.
| | - Eran Dayan
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina, 130 Mason Farm Road, CB# 7513, Chapel Hill, NC, 27599, USA
| | - Nina Browner
- Department of Neurology, University of North Carolina, 170 Manning Drive, CB# 7025, Chapel Hill, NC, 27599, USA
| |
Collapse
|
49
|
Parr T, Friston KJ. The Anatomy of Inference: Generative Models and Brain Structure. Front Comput Neurosci 2018; 12:90. [PMID: 30483088 PMCID: PMC6243103 DOI: 10.3389/fncom.2018.00090] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/25/2018] [Indexed: 01/02/2023] Open
Abstract
To infer the causes of its sensations, the brain must call on a generative (predictive) model. This necessitates passing local messages between populations of neurons to update beliefs about hidden variables in the world beyond its sensory samples. It also entails inferences about how we will act. Active inference is a principled framework that frames perception and action as approximate Bayesian inference. This has been successful in accounting for a wide range of physiological and behavioral phenomena. Recently, a process theory has emerged that attempts to relate inferences to their neurobiological substrates. In this paper, we review and develop the anatomical aspects of this process theory. We argue that the form of the generative models required for inference constrains the way in which brain regions connect to one another. Specifically, neuronal populations representing beliefs about a variable must receive input from populations representing the Markov blanket of that variable. We illustrate this idea in four different domains: perception, planning, attention, and movement. In doing so, we attempt to show how appealing to generative models enables us to account for anatomical brain architectures. Ultimately, committing to an anatomical theory of inference ensures we can form empirical hypotheses that can be tested using neuroimaging, neuropsychological, and electrophysiological experiments.
Collapse
Affiliation(s)
- Thomas Parr
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
| | | |
Collapse
|
50
|
Baker J, Paturel JR, Kimpinski K. Cerebellar impairment during an orthostatic challenge in patients with neurogenic orthostatic hypotension. Clin Neurophysiol 2018; 130:189-195. [PMID: 30527385 DOI: 10.1016/j.clinph.2018.07.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/13/2018] [Accepted: 07/25/2018] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Compare activation patterns within the cortical autonomic network in patients with neurogenic orthostatic hypotension (NOH) versus healthy age-matched controls during an orthostatic challenge. METHODS Fifteen health controls and 15 NOH patients performed 3 Valsalva maneuvers, and 5-min of lower-body negative pressure (LBNP) during a functional brain MRI. RESULTS Compared to controls, NOH patients had significantly less activation within the cerebellum during both LBNP and VM. Both groups had significant activation of the bilateral insula and left thalamus during LBNP. No significant differences were found during the recovery phase of LBNP. CONCLUSIONS The cerebellum, which plays an important role in vestibulo-sympathetic reflexes, important for blood pressure adjustments during postural changes, appear to be affected in patients with NOH. The cerebellum also appears to be affected during other baroreflex mediated stressors such as the VM. SIGNIFICANCE Orthostatic reflexes mediated by the cerebellum may be impaired in patients with NOH. The results suggest an additional pathological pathway in patients with autonomic failure.
Collapse
Affiliation(s)
- Jacquie Baker
- School of Kinesiology, Western University, London, Ontario, Canada; Department of Clinical Neurological Sciences, University Hospital, London Health Sciences Centre, London, Ontario, Canada
| | - Justin R Paturel
- School of Kinesiology, Western University, London, Ontario, Canada; Department of Clinical Neurological Sciences, University Hospital, London Health Sciences Centre, London, Ontario, Canada
| | - Kurt Kimpinski
- School of Kinesiology, Western University, London, Ontario, Canada; Department of Clinical Neurological Sciences, University Hospital, London Health Sciences Centre, London, Ontario, Canada; Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.
| |
Collapse
|