1
|
Undrakhbayar E, Zhang XY, Wang CZ, Wang DH. The function of brown adipose tissue at different sites of the body in Brandt's voles during cold acclimation. Comp Biochem Physiol A Mol Integr Physiol 2024; 295:111655. [PMID: 38723743 DOI: 10.1016/j.cbpa.2024.111655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Ambient temperatures have great impacts on thermoregulation of small mammals. Brown adipose tissue (BAT), an obligative thermogenic tissue for small mammals, is localized not only in the interscapular depot (iBAT), but also in supraclavicular, infra/subscapular, cervical, paravertebral, and periaortic depots. The iBAT is known for its cold-induced thermogenesis, however, less has been paid attention to the function of BAT at other sites. Here, we investigated the function of BAT at different sites of the body during cold acclimation in a small rodent species. As expected, Brandt's voles (Lasiopodomys brandtii) consumed more food and reduced the body mass gain when they were exposed to cold. The voles increased resting metabolic rate and maintained a relatively lower body temperature in the cold (36.5 ± 0.27 °C) compared to those in the warm condition (37.1 ± 0.36 °C). During cold acclimation, the uncoupling protein 1 (UCP1) increased in aBAT (axillary), cBAT (anterior cervical), iBAT (interscapular), nBAT (supraclavicular), and sBAT (suprascapular). The levels of proliferating cell nuclear antigen (PCNA), a marker for cell proliferation, were higher in cBAT and iBAT in the cold than in the warm group. The pAMPK/AMPK and pCREB/CREB were increased in cBAT and iBAT during cold acclimation, respectively. These data indicate that these different sites of BAT play the cold-induced thermogenic function for small mammals.
Collapse
Affiliation(s)
- Enkhbat Undrakhbayar
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Ying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Sciences, Shandong University, Qingdao 266237, China.
| |
Collapse
|
2
|
Kunutsor SK, Lehoczki A, Laukkanen JA. The untapped potential of cold water therapy as part of a lifestyle intervention for promoting healthy aging. GeroScience 2024:10.1007/s11357-024-01295-w. [PMID: 39078461 DOI: 10.1007/s11357-024-01295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/19/2024] [Indexed: 07/31/2024] Open
Abstract
Healthy aging is a crucial goal in aging societies of the western world, with various lifestyle strategies being employed to achieve it. Among these strategies, hydrotherapy stands out for its potential to promote cardiovascular and mental health. Cold water therapy, a hydrotherapy technique, has emerged as a lifestyle strategy with the potential capacity to evoke a wide array of health benefits. This review aims to synthesize the extensive body of research surrounding cold water therapy and its beneficial effects on various health systems as well as the underlying biological mechanisms driving these benefits. We conducted a search for interventional and observational cohort studies from MEDLINE and EMBASE up to July 2024. Deliberate exposure of the body to cold water results in distinct physiological responses that may be linked to several health benefits. Evidence, primarily from small interventional studies, suggests that cold water therapy positively impacts cardiometabolic risk factors, stimulates brown adipose tissue and promotes energy expenditure-potentially reducing the risk of cardiometabolic diseases. It also triggers the release of stress hormones, catecholamines and endorphins, enhancing alertness and elevating mood, which may alleviate mental health conditions. Cold water therapy also reduces inflammation, boosts the immune system, promotes sleep and enhances recovery following exercise. The optimal duration and temperature needed to derive maximal benefits is uncertain but current evidence suggests that short-term exposure and lower temperatures may be more beneficial. Overall, cold water therapy presents a potential lifestyle strategy to enhancing physical and mental well-being, promoting healthy aging and extending the healthspan, but definitive interventional evidence is warranted.
Collapse
Affiliation(s)
- Setor K Kunutsor
- Section of Cardiology, Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R2H 2A6, Canada.
- Leicester Real World Evidence Unit, Diabetes Research Centre, University of Leicester, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4WP, UK.
| | - Andrea Lehoczki
- Department of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Jari A Laukkanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Department of Medicine, University of Eastern Finland, Kuopio, Finland
- Wellbeing Services County of Central Finland, Department of Medicine, Finland District, Jyväskylä, Finland
| |
Collapse
|
3
|
Rahman AA, Butcko AJ, Songyekutu E, Granneman JG, Mottillo EP. Direct effects of adipocyte lipolysis on AMPK through intracellular long-chain acyl-CoA signaling. Sci Rep 2024; 14:19. [PMID: 38167670 PMCID: PMC10761689 DOI: 10.1038/s41598-023-50903-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024] Open
Abstract
Long-chain acyl-CoAs (LC-acyl-CoAs) are important intermediary metabolites and are also thought to function as intracellular signaling molecules; however, the direct effects of LC-acyl-CoAs have been difficult to determine in real-time and dissociate from Protein Kinase A (PKA) signaling. Here, we examined the direct role of lipolysis in generating intracellular LC-acyl-CoAs and activating AMPK in white adipocytes by pharmacological activation of ABHD5 (also known as CGI-58), a lipase co-activator. Activation of lipolysis in 3T3-L1 adipocytes independent of PKA with synthetic ABHD5 ligands, resulted in greater activation of AMPK compared to receptor-mediated activation with isoproterenol, a β-adrenergic receptor agonist. Importantly, the effect of pharmacological activation of ABHD5 on AMPK activation was blocked by inhibiting ATGL, the rate-limiting enzyme for triacylglycerol hydrolysis. Utilizing a novel FRET sensor to detect intracellular LC-acyl-CoAs, we demonstrate that stimulation of lipolysis in 3T3-L1 adipocytes increased the production of LC-acyl-CoAs, an effect which was blocked by inhibition of ATGL. Moreover, ATGL inhibition blocked AMPKβ1 S108 phosphorylation, a site required for allosteric regulation. Increasing intracellular LC-acyl-CoAs by removal of BSA in the media and pharmacological inhibition of DGAT1 and 2 resulted in greater activation of AMPK. Finally, inhibiting LC-acyl-CoA generation reduced activation of AMPK; however, did not lower energy charge. Overall, results demonstrate that lipolysis in white adipocytes directly results in allosteric activation of AMPK through the generation of LC-acyl-CoAs.
Collapse
Affiliation(s)
- Abir A Rahman
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, 6135 Woodward Ave., Detroit, MI, 48202, USA
| | - Andrew J Butcko
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, 6135 Woodward Ave., Detroit, MI, 48202, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48202, USA
| | - Emmanuel Songyekutu
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48202, USA
| | - James G Granneman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48202, USA
| | - Emilio P Mottillo
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, 6135 Woodward Ave., Detroit, MI, 48202, USA.
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48202, USA.
| |
Collapse
|
4
|
Cheng L, Shi L, He C, Wang C, Lv Y, Li H, An Y, Duan Y, Dai H, Zhang H, Huang Y, Fu W, Sun W, Zhao B. Mulberry leaf flavonoids activate BAT and induce browning of WAT to improve type 2 diabetes via regulating the AMPK/SIRT1/PGC-1α signaling pathway. Chin J Nat Med 2023; 21:812-829. [PMID: 38035937 DOI: 10.1016/s1875-5364(23)60481-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Indexed: 12/02/2023]
Abstract
Mulberry (Morus alba L.) leaf is a well-established traditional Chinese botanical and culinary resource. It has found widespread application in the management of diabetes. The bioactive constituents of mulberry leaf, specifically mulberry leaf flavonoids (MLFs), exhibit pronounced potential in the amelioration of type 2 diabetes (T2D). This potential is attributed to their ability to safeguard pancreatic β cells, enhance insulin resistance, and inhibit α-glucosidase activity. Our antecedent research findings underscore the substantial therapeutic efficacy of MLFs in treating T2D. However, the precise mechanistic underpinnings of MLF's anti-T2D effects remain the subject of inquiry. Activation of brown/beige adipocytes is a novel and promising strategy for T2D treatment. In the present study, our primary objective was to elucidate the impact of MLFs on adipose tissue browning in db/db mice and 3T3-L1 cells and elucidate its underlying mechanism. The results manifested that MLFs reduced body weight and food intake, alleviated hepatic steatosis, improved insulin sensitivity, and increased lipolysis and thermogenesis in db/db mice. Moreover, MLFs activated brown adipose tissue (BAT) and induced the browning of inguinal white adipose tissue (IWAT) and 3T3-L1 adipocytes by increasing the expressions of brown adipocyte marker genes and proteins such as uncoupling protein 1 (UCP1) and beige adipocyte marker genes such as transmembrane protein 26 (Tmem26), thereby promoting mitochondrial biogenesis. Mechanistically, MLFs facilitated the activation of BAT and the induction of WAT browning to ameliorate T2D primarily through the activation of AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) signaling pathway. These findings highlight the unique capacity of MLF to counteract T2D by enhancing BAT activation and inducing browning of IWAT, thereby ameliorating glucose and lipid metabolism disorders. As such, MLFs emerge as a prospective and innovative browning agent for the treatment of T2D.
Collapse
Affiliation(s)
- Long Cheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Lu Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Changhao He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Chen Wang
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yinglan Lv
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huimin Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yongcheng An
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuhui Duan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hongyu Dai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huilin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yan Huang
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wanxin Fu
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Weiguang Sun
- GuangZhou Baiyunshan Xingqun Pharmaceutical Co., Ltd., Guangzhou 510288, China.
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
5
|
Mohan MS, Aswani SS, Aparna NS, Boban PT, Sudhakaran PR, Saja K. Effect of acute cold exposure on cardiac mitochondrial function: role of sirtuins. Mol Cell Biochem 2023; 478:2257-2270. [PMID: 36781815 DOI: 10.1007/s11010-022-04656-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/30/2022] [Indexed: 02/15/2023]
Abstract
Cardiac function depends mainly on mitochondrial metabolism. Cold conditions increase the risk of cardiovascular diseases by increasing blood pressure. Adaptive thermogenesis leads to increased mitochondrial biogenesis and function in skeletal muscles and adipocytes. Here, we studied the effect of acute cold exposure on cardiac mitochondrial function and its regulation by sirtuins. Significant increase in mitochondrial DNA copy number as measured by the ratio between mitochondrial-coded COX-II and nuclear-coded cyclophilin A gene expression by qRT-PCR and increase in the expression of PGC-1α, a mitochondriogenic factor and its downstream target NRF-1 were observed on cold exposure. This was associated with an increase in the activity of SIRT-1, which is known to activate PGC-1α. Mitochondrial SIRT-3 was also upregulated. Increase in sirtuin activity was reflected in total protein acetylome, which decreased in cold-exposed cardiac tissue. An increase in mitochondrial MnSOD further indicated enhanced mitochondrial function. Further evidence for this was obtained from ex vivo studies of cardiac tissue treated with norepinephrine, which caused a significant increase in mitochondrial MnSOD and SIRT-3. SIRT-3 appears to mediate the regulation of MnSOD, as treatment with AGK-7, a SIRT-3 inhibitor reversed the norepinephrine-induced upregulation of MnSOD. It, therefore, appears that SIRT-3 activation in response to SIRT-1-PGC-1α activation contributes to the regulation of cardiac mitochondrial activity during acute cold exposure.
Collapse
Affiliation(s)
- Mithra S Mohan
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | - S S Aswani
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | - N S Aparna
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | - P T Boban
- Department of Biochemistry, Government College, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | - P R Sudhakaran
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | - K Saja
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India.
| |
Collapse
|
6
|
Bennett CF, Latorre-Muro P, Puigserver P. Mechanisms of mitochondrial respiratory adaptation. Nat Rev Mol Cell Biol 2022; 23:817-835. [PMID: 35804199 PMCID: PMC9926497 DOI: 10.1038/s41580-022-00506-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 02/07/2023]
Abstract
Mitochondrial energetic adaptations encompass a plethora of conserved processes that maintain cell and organismal fitness and survival in the changing environment by adjusting the respiratory capacity of mitochondria. These mitochondrial responses are governed by general principles of regulatory biology exemplified by changes in gene expression, protein translation, protein complex formation, transmembrane transport, enzymatic activities and metabolite levels. These changes can promote mitochondrial biogenesis and membrane dynamics that in turn support mitochondrial respiration. The main regulatory components of mitochondrial energetic adaptation include: the transcription coactivator peroxisome proliferator-activated receptor-γ (PPARγ) coactivator 1α (PGC1α) and associated transcription factors; mTOR and endoplasmic reticulum stress signalling; TOM70-dependent mitochondrial protein import; the cristae remodelling factors, including mitochondrial contact site and cristae organizing system (MICOS) and OPA1; lipid remodelling; and the assembly and metabolite-dependent regulation of respiratory complexes. These adaptive molecular and structural mechanisms increase respiration to maintain basic processes specific to cell types and tissues. Failure to execute these regulatory responses causes cell damage and inflammation or senescence, compromising cell survival and the ability to adapt to energetically demanding conditions. Thus, mitochondrial adaptive cellular processes are important for physiological responses, including to nutrient availability, temperature and physical activity, and their failure leads to diseases associated with mitochondrial dysfunction such as metabolic and age-associated diseases and cancer.
Collapse
Affiliation(s)
- Christopher F Bennett
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Pedro Latorre-Muro
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Pere Puigserver
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
7
|
Xu J, Strasburg GM, Reed KM, Velleman SG. Thermal stress and selection for growth affect myogenic satellite cell lipid accumulation and adipogenic gene expression through mechanistic target of rapamycin pathway. J Anim Sci 2022; 100:6652327. [PMID: 35908789 PMCID: PMC9339274 DOI: 10.1093/jas/skac001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022] Open
Abstract
Satellite cells (SCs) are multipotential stem cells having the plasticity to convert to an adipogenic lineage in response to thermal stress during the period of peak mitotic activity (the first week after hatch in poultry). The mechanistic target of rapamycin (mTOR) pathway, which regulates cellular function and fate of SCs, is greatly altered by thermal stress in turkey pectoralis major muscle SCs. The objective of the present study was to determine the effects of thermal stress, selection for growth, and the role of the mTOR pathway on SC intracellular lipid accumulation and expression of adipogenic regulatory genes. These effects were analyzed using SCs isolated from the pectoralis major muscle of 1-wk-old modern faster-growing commercial turkey line (NC) selected for increased growth and breast muscle yield as compared with SCs of a historic slower-growing Randombred Control Line 2 (RBC2) turkey. Heat stress (43 °C) of SCs during proliferation increased intracellular lipid accumulation (P < 0.001), whereas cold stress (33 °C) showed an inhibitory effect (P < 0.001) in both lines. Knockdown of mTOR reduced the intracellular lipid accumulation (P < 0.001) and suppressed the expression of several adipogenic regulatory genes: peroxisome proliferator-activated receptor-γ (PPARγ; P < 0.001), CCAAT/enhancer-binding protein-β (C/EBPβ; P < 0.001), and neuropeptide-Y (NPY; P < 0.001) during both proliferation and differentiation. The NC line SCs showed fewer reductions in lipid accumulation compared with the RBC2 line independent of temperature. Both intracellular lipid accumulation (P < 0.001) and PPARγ expression (P < 0.001) were greater at 72 h of proliferation than at 48 h of differentiation in both the RBC2 and NC lines independent of temperature. Thus, hot and cold thermal stress affected intracellular lipid accumulation in the pectoralis major muscle SCs, in part, through the mTOR pathway in wea growth-dependent manner. Altered intracellular lipid accumulation could eventually affect intramuscular fat deposition, resulting in a long-lasting effect on the structure and protein to fat ratio of the poultry pectoralis major muscle.
Collapse
Affiliation(s)
- Jiahui Xu
- Department of Animal Sciences, The Ohio State University, Wooster, OH, USA
| | - Gale M Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Kent M Reed
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Sandra G Velleman
- Department of Animal Sciences, The Ohio State University, Wooster, OH, USA
| |
Collapse
|
8
|
Tian JJ, Levy M, Zhang X, Sinnott R, Maddela R. Counteracting Health Risks by Modulating Homeostatic Signaling. Pharmacol Res 2022; 182:106281. [PMID: 35661711 DOI: 10.1016/j.phrs.2022.106281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/14/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
Homeostasis was initially conceptualized by Bernard and Cannon around a century ago as a steady state of physiological parameters that vary within a certain range, such as blood pH, body temperature, and heart rate1,2. The underlying mechanisms that maintain homeostasis are explained by negative feedbacks that are executed by the neuronal, endocrine, and immune systems. At the cellular level, homeostasis, such as that of redox and energy steady state, also exists and is regulated by various cell signaling pathways. The induction of homeostatic mechanism is critical for human to adapt to various disruptive insults (stressors); while on the other hand, adaptation occurs at the expense of other physiological processes and thus runs the risk of collateral damages, particularly under conditions of chronic stress. Conceivably, anti-stress protection can be achieved by stressor-mimicking medicinals that elicit adaptive responses prior to an insult and thereby serve as health risk countermeasures; and in situations where maladaptation may occur, downregulating medicinals could be used to suppress the responses and prevent subsequent pathogenesis. Both strategies are preemptive interventions particularly suited for individuals who carry certain lifestyle, environmental, or genetic risk factors. In this article, we will define and characterize a new modality of prophylactic intervention that forestalls diseases via modulating homeostatic signaling. Moreover, we will provide evidence from the literature that support this concept and distinguish it from other homeostasis-related interventions such as adaptogen, hormesis, and xenohormesis.
Collapse
Affiliation(s)
- Junqiang J Tian
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA.
| | - Mark Levy
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| | - Xuekai Zhang
- Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing100029, China; US Center for Chinese Medicine, 14801 Physicians lane, 171 A 2nd Floor, #281, Rockville MD 20850, USA
| | - Robert Sinnott
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| | - Rolando Maddela
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| |
Collapse
|
9
|
Extract of Ephedra sinica Stapf Induces Browning of Mouse and Human White Adipocytes. Foods 2022; 11:foods11071028. [PMID: 35407115 PMCID: PMC8998140 DOI: 10.3390/foods11071028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 11/23/2022] Open
Abstract
Browning of adipocytes using herbal extracts is an attractive and realistic strategy for obesity treatment. Ephedra sinica Stapf (E. sinica) is an Asian traditional medicine known to activate brown adipocytes. To evaluate the effect of E. sinica (EEs) on the browning of white adipocytes, expression levels of browning markers, including uncoupling protein 1 (UCP1), were determined using qPCR, Western blot, and immunocytochemistry after mature mouse inguinal preadipocyte (mIPA) and human adipose-derived stem cells (hADSCs) were treated with EEs. In addition, mitochondrial activity was determined by analyzing MitoTracker staining, mtDNA copy number, and oxygen consumption rate (OCR). Treatment with EEs suppressed lipid accumulation and expression levels of adipogenic markers, including Pparg, during mIPA differentiation. In mature mIPA and hADSCs browning markers, including Ucp1, were up-regulated by EEs. In addition, EEs increased expression of mitochondrial genes, mtDNA copy number, and OCR. EEs showed a dual function: inhibiting adipogenesis in immature preadipocytes, and promoting thermogenesis via browning in mature white adipocytes. Therefore, E. sinica is a potential herb for regulating energy metabolism by inducing the browning process.
Collapse
|
10
|
Dumić J, Cvetko A, Abramović I, Šupraha Goreta S, Perović A, Njire Bratičević M, Kifer D, Sinčić N, Gornik O, Žarak M. Changes in Specific Biomarkers Indicate Cardiac Adaptive and Anti-inflammatory Response of Repeated Recreational SCUBA Diving. Front Cardiovasc Med 2022; 9:855682. [PMID: 35360010 PMCID: PMC8964121 DOI: 10.3389/fcvm.2022.855682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveRecreational SCUBA (rSCUBA) diving has become a highly popular and widespread sport. Yet, information on molecular events underlying (patho)physiological events that follow exposure to the specific environmental conditions (hyperbaric conditions, coldness, immersion, and elevated breathing pressure), in which rSCUBA diving is performed, remain largely unknown. Our previous study suggested that repeated rSCUBA diving triggers an adaptive response of cardiovascular and immune system. To elucidate further molecular events underlying cardiac and immune system adaptation and to exclude possible adverse effects we measured blood levels of specific cardiac and inflammation markers.MethodsThis longitudinal intervention study included fourteen recreational divers who performed five dives, one per week, on the depth 20–30 m that lasted 30 min, after the non-dive period of 5 months. Blood samples were taken immediately before and after the first, third, and fifth dives. Copeptin, immunoglobulins A, G and M, complement components C3 and C4, and differential blood count parameters, including neutrophil-to-lymphocyte ratio (NLR) were determined using standard laboratory methods. Cell-free DNA was measured by qPCR analysis and N-glycans released from IgG and total plasma proteins (TPP), were analyzed by hydrophilic interaction ultra-performance liquid chromatography.ResultsCopeptin level increased after the first dive but decreased after the third and fifth dive. Increases in immunoglobulins level after every dive and during whole studied period were observed, but no changes in C3, C4, and cfDNA level were detected. NLR increased only after the first dive. IgG and TPP N-glycosylation alterations toward anti-inflammatory status over whole studied period were manifested as an increase in monogalyctosylated and core-fucosylated IgG N-glycans and decrease in agalactosylated TPP N-glycans.ConclusionrSCUBA diving practiced on a regular basis promotes anti-inflammatory status thus contributing cardioprotection and conferring multiple health benefits.
Collapse
Affiliation(s)
- Jerka Dumić
- Department of Biochemistry and Molecular Biology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Ana Cvetko
- Department of Biochemistry and Molecular Biology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Irena Abramović
- Department of Medical Biology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Sandra Šupraha Goreta
- Department of Biochemistry and Molecular Biology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Antonija Perović
- Department of Laboratory Diagnostics, Dubrovnik General Hospital, Dubrovnik, Croatia
| | | | - Domagoj Kifer
- Department of Biophysics, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Nino Sinčić
- Department of Medical Biology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Olga Gornik
- Department of Biochemistry and Molecular Biology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Marko Žarak
- Clinical Department of Laboratory Diagnostics, Dubrava University Hospital, Zagreb, Croatia
- *Correspondence: Marko Žarak,
| |
Collapse
|
11
|
Boone-Villa D, Ventura-Sobrevilla J, Aguilera-Méndez A, Jiménez-Villarreal J. The effect of adenosine monophosphate-activated protein kinase on lipolysis in adipose tissue: an historical and comprehensive review. Arch Physiol Biochem 2022; 128:7-23. [PMID: 35143739 DOI: 10.1080/13813455.2019.1661495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
CONTEXT Lipolysis is one of the most important pathways for energy management, its control in the adipose tissue (AT) is a potential therapeutic target for metabolic diseases. Adenosine Mono Phosphate-activated Protein Kinase (AMPK) is a key regulatory enzyme in lipids metabolism and a potential target for diabetes and obesity treatment. OBJECTIVE The aim of this work is to analyse the existing information on the relationship of AMPK and lipolysis in the AT. METHODS A thorough search of bibliography was performed in the databases Scopus and Web of Knowledge using the terms lipolysis, adipose tissue, and AMPK, the unrelated publications were excluded, and the documents were analysed. RESULTS Sixty-three works were found and classified in 3 categories: inhibitory effects, stimulatory effect, and diverse relationships; remarkably, the newest researches support an upregulating relationship of AMPK over lipolysis. CONCLUSION The most probable reality is that the relationship AMPK-lipolysis depends on the experimental conditions.
Collapse
Affiliation(s)
- Daniel Boone-Villa
- School of Medicine Northern Unit, Universidad Autonoma de Coahuila, Piedras Negras, México
| | | | - Asdrúbal Aguilera-Méndez
- Institute of Biological Chemistry Research, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México
| | | |
Collapse
|
12
|
Wang Z, Gao X, Li Q, Zhu H, Zhao X, Garcia-Barrio M, Zhang J, Guo Y, Chen YE, Zeng R, Wu JR, Chang L. Inhibition of a Novel CLK1-THRAP3-PPARγ Axis Improves Insulin Sensitivity. Front Physiol 2021; 12:699578. [PMID: 34526909 PMCID: PMC8435799 DOI: 10.3389/fphys.2021.699578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Increasing energy expenditure by promoting "browning" in adipose tissues is a promising strategy to prevent obesity and associated diabetes. To uncover potential targets of cold exposure, which induces energy expenditure, we performed phosphoproteomics profiling in brown adipose tissue of mice housed in mild cold environment at 16°C. We identified CDC2-like kinase 1 (CLK1) as one of the kinases that were significantly downregulated by mild cold exposure. In addition, genetic knockout of CLK1 or chemical inhibition in mice ameliorated diet-induced obesity and insulin resistance at 22°C. Through proteomics, we uncovered thyroid hormone receptor-associated protein 3 (THRAP3) as an interacting partner of CLK1, further confirmed by co-immunoprecipitation assays. We further demonstrated that CLK1 phosphorylates THRAP3 at Ser243, which is required for its regulatory interaction with phosphorylated peroxisome proliferator-activated receptor gamma (PPARγ), resulting in impaired adipose tissue browning and insulin sensitivity. These data suggest that CLK1 plays a critical role in controlling energy expenditure through the CLK1-THRAP3-PPARγ axis.
Collapse
Affiliation(s)
- Zhenguo Wang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, United States
- CAS Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - Xiaojing Gao
- CAS Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qingrun Li
- CAS Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - Hongwen Zhu
- CAS Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - Xiangjie Zhao
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Minerva Garcia-Barrio
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Jifeng Zhang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Yanhong Guo
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Y. Eugene Chen
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Rong Zeng
- CAS Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
- School of Life Sciences and Technology, Shanghai Tech University, Shanghai, China
| | - Jia-Rui Wu
- CAS Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
- School of Life Sciences and Technology, Shanghai Tech University, Shanghai, China
| | - Lin Chang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, United States
| |
Collapse
|
13
|
Gao XY, Deng BH, Li XR, Wang Y, Zhang JX, Hao XY, Zhao JX. Melatonin Regulates Differentiation of Sheep Brown Adipocyte Precursor Cells Via AMP-Activated Protein Kinase. Front Vet Sci 2021; 8:661773. [PMID: 34235199 PMCID: PMC8255384 DOI: 10.3389/fvets.2021.661773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/10/2021] [Indexed: 01/10/2023] Open
Abstract
In sheep industry, hypothermia caused by insufficient brown adipose tissue (BAT) deposits is one of the major causes of lamb deaths. Enhancing the formation and function of BAT in neonatal lamb increases thermogenesis and hence reduces economic losses. The aim of the present study was to explore the effect and mechanism of melatonin on sheep brown adipocyte formation and function. Sheep brown adipocyte precursor cells (SBACs) isolated from perirenal BAT were treated with melatonin (1 and 10 nM). The SBACs subjected to melatonin exhibited a decreased proliferation ability, accompanied by down-regulated proliferating cell nuclear antigen, cyclin D1, and CDK4 protein contents in a melatonin dose-dependent manner. Melatonin promoted brown adipocyte formation and induced the expression of brown adipogenic markers, including uncoupling protein 1 and PR domain-containing 16 during differentiation of SBAC. Moreover, the AMP-activated protein kinase α1 (AMPKα1) activity was positively correlated with brown adipocyte formation potential. Importantly, melatonin effectively activated AMPKα1. Furthermore, promotional effects of melatonin were abolished by AMPKα1 knockout, suggesting the involvement of AMPKα1 in this process. Collectively, these results suggested that melatonin enhanced brown adipocyte formation in SBACs in vitro through activation of AMPKα1.
Collapse
Affiliation(s)
- Xu-Yang Gao
- College of Animal Science, Shanxi Agricultural University, Shanxi, China
| | - Bu-Hao Deng
- College of Animal Science, Shanxi Agricultural University, Shanxi, China
| | - Xin-Rui Li
- College of Animal Science, Shanxi Agricultural University, Shanxi, China
| | - Yu Wang
- College of Animal Science, Shanxi Agricultural University, Shanxi, China
| | - Jian-Xin Zhang
- College of Animal Science, Shanxi Agricultural University, Shanxi, China
| | - Xiao-Yan Hao
- College of Animal Science, Shanxi Agricultural University, Shanxi, China
| | - Jun-Xing Zhao
- College of Animal Science, Shanxi Agricultural University, Shanxi, China
| |
Collapse
|
14
|
van der Vaart JI, Boon MR, Houtkooper RH. The Role of AMPK Signaling in Brown Adipose Tissue Activation. Cells 2021; 10:cells10051122. [PMID: 34066631 PMCID: PMC8148517 DOI: 10.3390/cells10051122] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity is becoming a pandemic, and its prevalence is still increasing. Considering that obesity increases the risk of developing cardiometabolic diseases, research efforts are focusing on new ways to combat obesity. Brown adipose tissue (BAT) has emerged as a possible target to achieve this for its functional role in energy expenditure by means of increasing thermogenesis. An important metabolic sensor and regulator of whole-body energy balance is AMP-activated protein kinase (AMPK), and its role in energy metabolism is evident. This review highlights the mechanisms of BAT activation and investigates how AMPK can be used as a target for BAT activation. We review compounds and other factors that are able to activate AMPK and further discuss the therapeutic use of AMPK in BAT activation. Extensive research shows that AMPK can be activated by a number of different kinases, such as LKB1, CaMKK, but also small molecules, hormones, and metabolic stresses. AMPK is able to activate BAT by inducing adipogenesis, maintaining mitochondrial homeostasis and inducing browning in white adipose tissue. We conclude that, despite encouraging results, many uncertainties should be clarified before AMPK can be posed as a target for anti-obesity treatment via BAT activation.
Collapse
Affiliation(s)
- Jamie I. van der Vaart
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Mariëtte R. Boon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Leiden University Medical Center, Einthoven Laboratory for Experimental Vascular Medicine, 2333 ZA Leiden, The Netherlands
- Correspondence: (M.R.B.); (R.H.H.)
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
- Correspondence: (M.R.B.); (R.H.H.)
| |
Collapse
|
15
|
Song TJ, Park CH, In KR, Kim JB, Kim JH, Kim M, Chang HJ. Antidiabetic effects of betulinic acid mediated by the activation of the AMP-activated protein kinase pathway. PLoS One 2021; 16:e0249109. [PMID: 33819291 PMCID: PMC8021171 DOI: 10.1371/journal.pone.0249109] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/12/2021] [Indexed: 12/21/2022] Open
Abstract
Betulinic acid (BA) is a naturally arising pentacyclic triterpenoid that has anti-malarial, anti-retroviral, anti-inflammatory, and anti-cancer biological effects. More recently, it has been reported to possess anti-obesity activity mediated by the activation of AMP-activated protein kinase (AMPK). We further investigated antidiabetic activity of BA in mouse tissues at the cellular and systemic levels. We found that BA stimulated AMPK in a similar fashion to the known AMPK activators, such as 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside and metformin. Notably, the level of glucose uptake by BA was not altered by wortmannin, suggesting that this activation did not depend on phosphoinositide 3-kinase. Furthermore, BA diminished blood glucose levels in alloxane-treated ICR mice and in untreated mice during the glucose tolerance test. BA also stimulated mRNA expression of glucose transporter 4, which could partly explain increased glucose uptake. BA also increased AS160 phosphorylation by insulin-independent mechanisms in the extensor digitorum longus muscle. These results indicate that BA may serve as a promising therapeutic agent for diabetes by activating AMPK, like metformin. Notably, BA also enhanced mouse endurance capacity, indicating that it also affects metabolic regulation in addition to its antidiabetic activity.
Collapse
Affiliation(s)
- Tae-Jun Song
- Graduate School of Life Science, Handong Global University, Pohang, South Korea
| | - Choon-Ho Park
- Graduate School of Clinical Pharmacy and Pharmaceutics, Ajou University, Suwon, South Korea
| | - Kyu-Ree In
- Department of Life Sciences, College of Natural Sciences, Ajou University, Suwon, South Korea
| | - Jong-Bae Kim
- Graduate School of Life Science, Handong Global University, Pohang, South Korea
| | - Joo Hee Kim
- College of Pharmacy, Ajou University, Suwon, South Korea
| | - Miran Kim
- Department of Obstetrics and Gynecology, Ajou University Hospital, Ajou University School of Medicine, Suwon, South Korea
| | - Hye Jin Chang
- Department of Obstetrics and Gynecology, Ajou University Hospital, Ajou University School of Medicine, Suwon, South Korea
- * E-mail:
| |
Collapse
|
16
|
Natural Bioactive Compounds as Potential Browning Agents in White Adipose Tissue. Pharm Res 2021; 38:549-567. [PMID: 33783666 PMCID: PMC8082541 DOI: 10.1007/s11095-021-03027-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/02/2021] [Indexed: 02/08/2023]
Abstract
The epidemic of overweight and obesity underlies many common metabolic diseases. Approaches aimed to reduce energy intake and/or stimulate energy expenditure represent potential strategies to control weight gain. Adipose tissue is a major energy balancing organ. It can be classified as white adipose tissue (WAT) and brown adipose tissue (BAT). While WAT stores excess metabolic energy, BAT dissipates it as heat via adaptive thermogenesis. WAT also participates in thermogenesis by providing thermogenic fuels and by directly generating heat after browning. Browned WAT resembles BAT morphologically and metabolically and is classified as beige fat. Like BAT, beige fat can produce heat. Human adults have BAT-like or beige fat. Recruitment and activation of this fat type have the potential to increase energy expenditure, thereby countering against obesity and its metabolic complications. Given this, agents capable of inducing WAT browning have recently attracted broad attention from biomedical, nutritional and pharmaceutical societies. In this review, we summarize natural bioactive compounds that have been shown to promote beige adipocyte recruitment and activation in animals and cultured cells. We also discuss potential molecular mechanisms for each compound to induce adipose browning and metabolic benefits.
Collapse
|
17
|
Salazar J, Cano C, Pérez JL, Castro A, Díaz MP, Garrido B, Carrasquero R, Chacín M, Velasco M, D Marco L, Rojas-Quintero J, Bermúdez V. Role of Dietary Polyphenols in Adipose Tissue Browning: A Narrative Review. Curr Pharm Des 2021; 26:4444-4460. [PMID: 32611294 DOI: 10.2174/1381612826666200701211422] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023]
Abstract
Lifestyle modifications such as energy restriction and increased physical activity are highly effective in the management of obesity. However, adherence to these therapeutic approaches is poor. On the other hand, synthetic drugs used for obesity control are plagued by adverse effects. Despite these failures, adipose tissue is still an attractive therapeutic target for novel molecules, and thus, the characterisation of new and safer anti-obesity drugs is of significant interest. For this reason, in recent years, phenolic constituents of diverse plants have drawn much attention due to their health-promoting properties, opening new research lines related to brown adipose tissue activation and white adipose tissue (WAT) browning. The goal is to increase energy expenditure levels through thermogenic activity activation by multiple factors, like polyphenols. The suggested mechanisms by which polyphenols can modulate thermogenesis include Nor-epinephrine/Catechol-O-Methyl-Transferase (NE/COMT) inhibition, PPARγ co-activator alpha (PGC-1α)-dependent pathways activation, and mitochondrial biogenesis, among others. Although polyphenols such as quercetin, catechins, chrysin, luteolin, curcumin, resveratrol, gallic acid, and lignans have shown a positive effect on Non-Shivering Thermogenesis and WAT browning, most of them have only been active in murine models or in vitro systems, and their reproducibility in humans has to be proved. Probably in the future, an approach that includes these compounds as part of the nutritional regimen in conjunction with physical exercise, pharmacological and surgical therapy, would allow modulating a pathophysiological mechanism that is still elusive.
Collapse
Affiliation(s)
- Juan Salazar
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - José L Pérez
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Ana Castro
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - María P Díaz
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Bermary Garrido
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Rubén Carrasquero
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Maricarmen Chacín
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Manuel Velasco
- Universidad Central de Venezuela, Escuela de Medicina José María Vargas, Caracas, Venezuela
| | - Luis D Marco
- Hospital Clínico Universitario, INCLIVA, Nephrology department, Valencia, Espana
| | - Joselyn Rojas-Quintero
- Pulmonary and Critical Care Medicine Department, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Valmore Bermúdez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| |
Collapse
|
18
|
Lee DH, Park SH, Lee E, Seo HD, Ahn J, Jang YJ, Ha TY, Im SS, Jung CH. Withaferin A exerts an anti-obesity effect by increasing energy expenditure through thermogenic gene expression in high-fat diet-fed obese mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 82:153457. [PMID: 33444942 DOI: 10.1016/j.phymed.2020.153457] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND The enhancement of energy expenditure has attracted attention as a therapeutic target for the management of body weight. Withaferin A (WFA), a major constituent of Withania somnifera extract, has been reported to possess anti-obesity properties, however the underlying mechanism remains unknown. PURPOSE To investigate whether WFA exerts anti-obesity effects via increased energy expenditure, and if so, to characterize the underlying pathway. METHODS C57BL/6 J mice were fed a high-fat diet (HFD) for 10 weeks, and WFA was orally administered for 7 days. The oxygen consumption rate of mice was measured at 9 weeks using an OxyletPro™ system. Hematoxylin and eosin (H&E), immunohistochemistry, immunoblotting, and real-time PCR methods were used. RESULTS Treatment with WFA ameliorated HFD-induced obesity by increasing energy expenditure by improving of mitochondrial activity in brown adipose tissue (BAT) and promotion of subcutaneous white adipose tissue (scWAT) browning via increasing uncoupling protein 1 levels. WFA administration also significantly increased AMP-activated protein kinase (AMPK) phosphorylation in the BAT of obese mice. Additionally, WFA activated mitogen-activated protein kinase (MAPK) signaling, including p38/extracellular signal-regulated kinase MAPK, in both BAT and scWAT. CONCLUSION WFA enhances energy expenditure and ameliorates obesity via the induction of AMPK and activating p38/extracellular signal-regulated kinase MAPK, which triggers mitochondrial biogenesis and browning-related gene expression.
Collapse
Affiliation(s)
- Da-Hye Lee
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeonbuk 55365, Republic of Korea; Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - So-Hyun Park
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeonbuk 55365, Republic of Korea; Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Eunyoung Lee
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeonbuk 55365, Republic of Korea
| | - Hyo-Deok Seo
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeonbuk 55365, Republic of Korea
| | - Jiyun Ahn
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeonbuk 55365, Republic of Korea; Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Young-Jin Jang
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeonbuk 55365, Republic of Korea
| | - Tae-Youl Ha
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeonbuk 55365, Republic of Korea; Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Seung Soon Im
- Department of Physiology, Keimyung University School of Medicine, Daegu, 42601, Republic of Korea
| | - Chang Hwa Jung
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeonbuk 55365, Republic of Korea; Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
19
|
Alghamdi F, Alshuweishi Y, Salt IP. Regulation of nutrient uptake by AMP-activated protein kinase. Cell Signal 2020; 76:109807. [DOI: 10.1016/j.cellsig.2020.109807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023]
|
20
|
Ahmad B, Serpell CJ, Fong IL, Wong EH. Molecular Mechanisms of Adipogenesis: The Anti-adipogenic Role of AMP-Activated Protein Kinase. Front Mol Biosci 2020; 7:76. [PMID: 32457917 PMCID: PMC7226927 DOI: 10.3389/fmolb.2020.00076] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/03/2020] [Indexed: 12/24/2022] Open
Abstract
Obesity is now a widespread disorder, and its prevalence has become a critical concern worldwide, due to its association with common co-morbidities like cancer, cardiovascular diseases and diabetes. Adipose tissue is an endocrine organ and therefore plays a critical role in the survival of an individual, but its dysfunction or excess is directly linked to obesity. The journey from multipotent mesenchymal stem cells to the formation of mature adipocytes is a well-orchestrated program which requires the expression of several genes, their transcriptional factors, and signaling intermediates from numerous pathways. Understanding all the intricacies of adipogenesis is vital if we are to counter the current epidemic of obesity because the limited understanding of these intricacies is the main barrier to the development of potent therapeutic strategies against obesity. In particular, AMP-Activated Protein Kinase (AMPK) plays a crucial role in regulating adipogenesis – it is arguably the central cellular energy regulation protein of the body. Since AMPK promotes the development of brown adipose tissue over that of white adipose tissue, special attention has been given to its role in adipose tissue development in recent years. In this review, we describe the molecular mechanisms involved in adipogenesis, the role of signaling pathways and the substantial role of activated AMPK in the inhibition of adiposity, concluding with observations which will support the development of novel chemotherapies against obesity epidemics.
Collapse
Affiliation(s)
- Bilal Ahmad
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | | | - Isabel Lim Fong
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| |
Collapse
|
21
|
Hu J, Wang Z, Tan BK, Christian M. Dietary polyphenols turn fat “brown”: A narrative review of the possible mechanisms. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Xia T, Shen Z, Cai J, Pan M, Sun C. ColXV Aggravates Adipocyte Apoptosis by Facilitating Abnormal Extracellular Matrix Remodeling in Mice. Int J Mol Sci 2020; 21:ijms21030959. [PMID: 32024006 PMCID: PMC7037489 DOI: 10.3390/ijms21030959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/25/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix (ECM) is a highly dynamic structural network and plays an essential role in cell behavior and regulation during metabolic homeostasis and obesity progression. Abnormal ECM remodeling impairs adipocyte plasticity required for diverse cellular functions. Collagen XV (ColXV) is a proteoglycan localized to the outermost layer of basement membranes (BMs) and forms a bridge between the BMs and the fibrillar collagen matrix. Nevertheless, how ColXV affects ECM composition and the reason for subsequent adipocyte apoptosis is still unclear. This report found, through RNA-seq data, that ColXV is linked to cell growth and ECM remodeling. Findings show that, in response to excessive expression of extracellular ColXV, the AMPK/mTORC1 pathway is strongly activated and triggers a cascade of mitochondrial apoptosis. This is the first study to make use of ECM three-dimensional reconstruction, based on decellularization in the adipose tissues and the study reveals that ColXV is an activation factor that alters ECM remodeling in adipose tissues. It was also demonstrated that the fibroblast growth factor 2 (FGF2)/fibroblast growth factor receptor 1 (FGFR1) axis involved in ECM remodeling is suppressed by ColXV due to reduction of FGF2 translocation to FGFR1. Furthermore, ColXV induced remodeling of ECM preceding apoptosis and continued to induce apoptosis in adipocytes. Collectively, our findings establish ColXV as a basement membrane collagen with homology to ColXVIII, indicating that it is one of the positive regulators for inducing ECM remodeling and further promoting adipocyte apoptosis.
Collapse
|
23
|
Steinberg GR, Carling D. AMP-activated protein kinase: the current landscape for drug development. Nat Rev Drug Discov 2020; 18:527-551. [PMID: 30867601 DOI: 10.1038/s41573-019-0019-2] [Citation(s) in RCA: 409] [Impact Index Per Article: 102.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the discovery of AMP-activated protein kinase (AMPK) as a central regulator of energy homeostasis, many exciting insights into its structure, regulation and physiological roles have been revealed. While exercise, caloric restriction, metformin and many natural products increase AMPK activity and exert a multitude of health benefits, developing direct activators of AMPK to elicit beneficial effects has been challenging. However, in recent years, direct AMPK activators have been identified and tested in preclinical models, and a small number have entered clinical trials. Despite these advances, which disease(s) represent the best indications for therapeutic AMPK activation and the long-term safety of such approaches remain to be established.
Collapse
Affiliation(s)
- Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| | - David Carling
- Cellular Stress Group, Medical Research Council London Institute of Medical Sciences, Hammersmith Hospital, Imperial College, London, UK
| |
Collapse
|
24
|
Pomar CA, Castro H, Picó C, Palou A, Sánchez J. Maternal Overfeeding during Lactation Impairs the Metabolic Response to Fed/Fasting Changing Conditions in the Postweaning Offspring. Mol Nutr Food Res 2019; 63:e1900504. [PMID: 31419033 DOI: 10.1002/mnfr.201900504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/05/2019] [Indexed: 01/01/2023]
Abstract
SCOPE The metabolic response to fed/fasting changing conditions at early age in rats with different predisposition to obesity-related alterations due to maternal conditions during the perinatal period is studied. METHODS AND RESULTS Offspring of dams made obese by a cafeteria diet and moved to a normal-fat diet 1 month before gestation (O-PCaf, with an apparently normal phenotype in adulthood), and offspring of cafeteria diet-fed dams during lactation (O-CAF, with a thin-outside-fat inside phenotype), together with the offspring of control dams (O-C), are studied at early age. Fasting is associated with downregulation of lipogenesis-related genes in liver and rpWAT, and upregulation of genes related to lipolysis and fatty acid uptake in rpWAT in O-C animals. The response to fed/fasting conditions is impaired in O-CAF, but not in O-PCaf animals. The fasting-induced increase in the expression of Prkaa1 in liver and rpWAT, and the corresponding increase of hepatic AMPKα1 protein levels of O-C animals are attenuated in O-CAF rats, while no alterations are found in O-PCaf animals versus controls. CONCLUSION Maternal intake of a cafeteria diet during lactation causes early alterations in the offspring, impairing their metabolic flexibility in response to fed/fasting changing conditions, which may contribute to hindering energy homeostasis maintenance.
Collapse
Affiliation(s)
- Catalina Amadora Pomar
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands, 07122, Palma, Spain.,Instituto de Investigación Sanitaria Illes Balears, 07020, Palma, Spain.,CIBER Fisiopatología de la Obesidady Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Heriberto Castro
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands, 07122, Palma, Spain.,Facultad de Salud Pública y Nutrición, Universidad Autónoma de Nuevo León, 64460, Nuevo León, México
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands, 07122, Palma, Spain.,Instituto de Investigación Sanitaria Illes Balears, 07020, Palma, Spain.,CIBER Fisiopatología de la Obesidady Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands, 07122, Palma, Spain.,Instituto de Investigación Sanitaria Illes Balears, 07020, Palma, Spain.,CIBER Fisiopatología de la Obesidady Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Juana Sánchez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands, 07122, Palma, Spain.,Instituto de Investigación Sanitaria Illes Balears, 07020, Palma, Spain.,CIBER Fisiopatología de la Obesidady Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| |
Collapse
|
25
|
Tan J, Huang C, Luo Q, Liu W, Cheng D, Li Y, Xia Y, Li C, Tang L, Fang J, Pan K, Ou Y, Cheng A, Chen Z. Soy Isoflavones Ameliorate Fatty Acid Metabolism of Visceral Adipose Tissue by Increasing the AMPK Activity in Male Rats with Diet-Induced Obesity (DIO). Molecules 2019; 24:E2809. [PMID: 31374939 PMCID: PMC6696083 DOI: 10.3390/molecules24152809] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022] Open
Abstract
Soy isoflavones are natural active ingredients of soy plants that are beneficial to many metabolic diseases, especially obesity. Many studies have reported that obesity is closely related to visceral fatty acid metabolism, but the effect has not been well defined. In this study, we show that soy isoflavones improve visceral fatty acid metabolism in diet-induced obese male rats, which was indicated by reduced body weight and visceral fat cell area, as well as suppressed visceral fat synthesis and accelerated fat hydrolysis. We also found that common components of soy isoflavones, daidzein and genistein, were able to inhibit the lipid accumulation process in 3T3-L1 cells. Moreover, we showed that soy isoflavones can promote on AMP-activated protein kinase (AMPK) activity both in vivo and in vitro, which may be implicated in lipid metabolism regulation of soy isoflavones. Our study demonstrates the potential of soy isoflavones as a mechanism for regulating lipid homeostasis in visceral adipose tissue, proven to be beneficial for obesity treatment.
Collapse
Affiliation(s)
- Jinlong Tan
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Chao Huang
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Qihui Luo
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Wentao Liu
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Dongjing Cheng
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yifan Li
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yu Xia
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Chao Li
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Li Tang
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Kangcheng Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yangping Ou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Anchun Cheng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Zhengli Chen
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
26
|
Zhang X, Li X, Fang H, Guo F, Li F, Chen A, Huang S. Flavonoids as inducers of white adipose tissue browning and thermogenesis: signalling pathways and molecular triggers. Nutr Metab (Lond) 2019; 16:47. [PMID: 31346342 PMCID: PMC6637576 DOI: 10.1186/s12986-019-0370-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 06/18/2019] [Indexed: 12/27/2022] Open
Abstract
Background Flavonoids are a class of plant and fungus secondary metabolites and are the most common group of polyphenolic compounds in the human diet. In recent studies, flavonoids have been shown to induce browning of white adipocytes, increase energy consumption, inhibit high-fat diet (HFD)-induced obesity and improve metabolic status. Promoting the activity of brown adipose tissue (BAT) and inducing white adipose tissue (WAT) browning are promising means to increase energy expenditure and improve glucose and lipid metabolism. This review summarizes recent advances in the knowledge of flavonoid compounds and their metabolites. Methods We searched the following databases for all research related to flavonoids and WAT browning published through March 2019: PubMed, MEDLINE, EMBASE, and the Web of Science. All included studies are summarized and listed in Table 1. Result We summarized the effects of flavonoids on fat metabolism and the specific underlying mechanisms in sub-categories. Flavonoids activated the sympathetic nervous system (SNS), promoted the release of adrenaline and thyroid hormones to increase thermogenesis and induced WAT browning through the AMPK-PGC-1α/Sirt1 and PPAR signalling pathways. Flavonoids may also promote brown preadipocyte differentiation, inhibit apoptosis and produce inflammatory factors in BAT. Conclusion Flavonoids induced WAT browning and activated BAT to increase energy consumption and non-shivering thermogenesis, thus inhibiting weight gain and preventing metabolic diseases.
Collapse
Affiliation(s)
- Xuejun Zhang
- Department of Orthopedics, First People's Hospital of Yichang, No.4 Hudi Street, Yichang, 443000 Hubei Province China
| | - Xin Li
- 2Department of Pediatrics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jie Fang Avenue, Wuhan, 430022 Hubei Province China
| | - Huang Fang
- 3Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Wuhan, 430030 Hubei Province China
| | - Fengjin Guo
- 3Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Wuhan, 430030 Hubei Province China
| | - Feng Li
- 3Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Wuhan, 430030 Hubei Province China
| | - Anmin Chen
- 3Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Wuhan, 430030 Hubei Province China
| | - Shilong Huang
- 3Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Wuhan, 430030 Hubei Province China
| |
Collapse
|
27
|
Flavonoids, Potential Bioactive Compounds, and Non-Shivering Thermogenesis. Nutrients 2018; 10:nu10091168. [PMID: 30149637 PMCID: PMC6164844 DOI: 10.3390/nu10091168] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 12/17/2022] Open
Abstract
Obesity results from the body having either high energy intake or low energy expenditure. Based on this energy equation, scientists have focused on increasing energy expenditure to prevent abnormal fat accumulation. Activating the human thermogenic system that regulates body temperature, particularly non-shivering thermogenesis in either brown or white adipose tissue, has been suggested as a promising solution to increase energy expenditure. Together with the increasing interest in understanding the mechanism by which plant-derived dietary compounds prevent obesity, flavonoids were recently shown to have the potential to regulate non-shivering thermogenesis. In this article, we review the latest research on flavonoid derivatives that increase energy expenditure through non-shivering thermogenesis.
Collapse
|
28
|
Desjardins EM, Steinberg GR. Emerging Role of AMPK in Brown and Beige Adipose Tissue (BAT): Implications for Obesity, Insulin Resistance, and Type 2 Diabetes. Curr Diab Rep 2018; 18:80. [PMID: 30120579 DOI: 10.1007/s11892-018-1049-6] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The global prevalence of type 2 diabetes (T2D) is escalating at alarming rates, demanding the development of additional classes of therapeutics to further reduce the burden of disease. Recent studies have indicated that increasing the metabolic activity of brown and beige adipose tissue may represent a novel means to reduce circulating glucose and lipids in people with T2D. The AMP-activated protein kinase (AMPK) is a cellular energy sensor that has recently been demonstrated to be important in potentially regulating the metabolic activity of brown and beige adipose tissue. The goal of this review is to summarize recent work describing the role of AMPK in brown and beige adipose tissue, focusing on its role in adipogenesis and non-shivering thermogenesis. RECENT FINDINGS Ablation of AMPK in mouse adipocytes results in cold intolerance, a reduction in non-shivering thermogenesis in brown adipose tissue (BAT), and the development of non-alcoholic fatty liver disease (NAFLD) and insulin resistance; effects associated with a defect in mitochondrial specific autophagy (mitophagy) within BAT. The effects of a β3-adrenergic agonist on the induction of BAT thermogenesis and the browning of white adipose tissue (WAT) are also blunted in mice lacking adipose tissue AMPK. A specific AMPK activator, A-769662, also results in the activation of BAT and the browning of WAT, effects which may involve demethylation of the PR domain containing 16 (Prdm16) promoter region, which is important for BAT development. AMPK plays an important role in the development and maintenance of brown and beige adipose tissue. Adipose tissue AMPK is reduced in people with insulin resistance, consistent with findings that mice lacking adipocyte AMPK develop greater NAFLD and insulin resistance. These data suggest that pharmacologically targeting adipose tissue AMPK may represent a promising strategy to enhance energy expenditure and reduce circulating glucose and lipids, which may be effective for the treatment of NAFLD and T2D.
Collapse
Affiliation(s)
- Eric M Desjardins
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8N 3Z5, Canada
| | - Gregory R Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8N 3Z5, Canada.
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8N 3Z5, Canada.
| |
Collapse
|
29
|
Paulo E, Wu D, Wang Y, Zhang Y, Wu Y, Swaney DL, Soucheray M, Jimenez-Morales D, Chawla A, Krogan NJ, Wang B. Sympathetic inputs regulate adaptive thermogenesis in brown adipose tissue through cAMP-Salt inducible kinase axis. Sci Rep 2018; 8:11001. [PMID: 30030465 PMCID: PMC6054673 DOI: 10.1038/s41598-018-29333-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 07/10/2018] [Indexed: 12/11/2022] Open
Abstract
Various physiological stimuli, such as cold environment, diet, and hormones, trigger brown adipose tissue (BAT) to produce heat through sympathetic nervous system (SNS)- and β-adrenergic receptors (βARs). The βAR stimulation increases intracellular cAMP levels through heterotrimeric G proteins and adenylate cyclases, but the processes by which cAMP modulates brown adipocyte function are not fully understood. Here we described that specific ablation of cAMP production in brown adipocytes led to reduced lipolysis, mitochondrial biogenesis, uncoupling protein 1 (Ucp1) expression, and consequently defective adaptive thermogenesis. Elevated cAMP signaling by sympathetic activation inhibited Salt-inducible kinase 2 (Sik2) through protein kinase A (PKA)-mediated phosphorylation in brown adipose tissue. Inhibition of SIKs enhanced Ucp1 expression in differentiated brown adipocytes and Sik2 knockout mice exhibited enhanced adaptive thermogenesis at thermoneutrality in an Ucp1-dependent manner. Taken together, our data indicate that suppressing Sik2 by PKA-mediated phosphorylation is a requisite for SNS-induced Ucp1 expression and adaptive thermogenesis in BAT, and targeting Sik2 may present a novel therapeutic strategy to ramp up BAT thermogenic activity in humans.
Collapse
Affiliation(s)
- Esther Paulo
- Cardiovascular Research Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Dongmei Wu
- Cardiovascular Research Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA.,Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, 52 Haidian Road, Beijing, 100871, China
| | - Yangmeng Wang
- Cardiovascular Research Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA.,Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Yun Zhang
- Cardiovascular Research Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Yixuan Wu
- Cardiovascular Research Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Danielle L Swaney
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA.,California Institute for Quantitative Biosciences, QBI, University of California, San Francisco, San Francisco, CA, 94158, USA.,J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Margaret Soucheray
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA.,California Institute for Quantitative Biosciences, QBI, University of California, San Francisco, San Francisco, CA, 94158, USA.,J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - David Jimenez-Morales
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA.,California Institute for Quantitative Biosciences, QBI, University of California, San Francisco, San Francisco, CA, 94158, USA.,J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Ajay Chawla
- Cardiovascular Research Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA.,California Institute for Quantitative Biosciences, QBI, University of California, San Francisco, San Francisco, CA, 94158, USA.,J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Biao Wang
- Cardiovascular Research Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
30
|
Hafen PS, Preece CN, Sorensen JR, Hancock CR, Hyldahl RD. Repeated exposure to heat stress induces mitochondrial adaptation in human skeletal muscle. J Appl Physiol (1985) 2018; 125:1447-1455. [PMID: 30024339 DOI: 10.1152/japplphysiol.00383.2018] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The heat stress response is associated with several beneficial adaptations that promote cell health and survival. Specifically, in vitro and animal investigations suggest that repeated exposures to a mild heat stress (~40°C) elicit positive mitochondrial adaptations in skeletal muscle comparable to those observed with exercise. To assess whether such adaptations translate to human skeletal muscle, we produced local, deep tissue heating of the vastus lateralis via pulsed shortwave diathermy in 20 men and women ( n = 10 men; n = 10 women). Diathermy increased muscle temperature by 3.9°C within 30 min of application. Immediately following a single 2-h heating session, we observed increased phosphorylation of AMP-activated protein kinase and ERK1/2 but not of p38 MAPK or JNK. Following repeated heat exposures (2 h daily for 6 consecutive days), we observed a significant cellular heat stress response, as heat shock protein 70 and 90 increased 45% and 38%, respectively. In addition, peroxisome proliferator-activated receptor gamma, coactivator-1 alpha and mitochondrial electron transport protein complexes I and V expression were increased after heating. These increases were accompanied by augmentation of maximal coupled and uncoupled respiratory capacity, measured via high-resolution respirometry. Our data provide the first evidence that mitochondrial adaptation can be elicited in human skeletal muscle in response to repeated exposures to mild heat stress. NEW & NOTEWORTHY Heat stress has been shown to elicit mitochondrial adaptations in cell culture and animal research. We used pulsed shortwave diathermy to produce deep tissue heating and explore whether beneficial mitochondrial adaptations would translate to human skeletal muscle in vivo. We report, for the first time, positive mitochondrial adaptations in human skeletal muscle following recurrent heat stress. The results of this study have clinical implications for many conditions characterized by diminished skeletal muscle mitochondrial function.
Collapse
Affiliation(s)
- Paul S Hafen
- Department of Exercise Sciences, Brigham Young University , Provo, Utah
| | - Coray N Preece
- Department of Exercise Sciences, Brigham Young University , Provo, Utah
| | - Jacob R Sorensen
- Department of Exercise Sciences, Brigham Young University , Provo, Utah
| | - Chad R Hancock
- Department of Nutrition, Dietetics & Food Science, Brigham Young University , Provo, Utah
| | - Robert D Hyldahl
- Department of Exercise Sciences, Brigham Young University , Provo, Utah
| |
Collapse
|
31
|
Samuels JS, Shashidharamurthy R, Rayalam S. Novel anti-obesity effects of beer hops compound xanthohumol: role of AMPK signaling pathway. Nutr Metab (Lond) 2018; 15:42. [PMID: 29946343 PMCID: PMC6003190 DOI: 10.1186/s12986-018-0277-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/09/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Obesity alters adipose tissue metabolic and endocrine functioning, leading to an increased adiposity and release of pro-inflammatory cytokines. Various phytochemicals have been reported to contribute to the beiging of white adipose tissue in order to ameliorate obesity by increasing thermogenesis. Here, we show that the prenylated chalcone, xanthohumol (XN), induces beiging of white adipocytes, stimulates lipolysis, and inhibits adipogenesis of murine 3T3-L1 adipocytes and primary human subcutaneous preadipocytes and these effects are partly mediated by the activation of the AMP-activated protein kinase (AMPK) signaling pathway. METHODS 3T3-L1 adipocytes and primary human subcutaneous preadipocytes were differentiated using a standard protocol and were treated with various concentrations of XN, dorsomorphin, an AMPK inhibitor, or AICAR, an AMPK activator, to investigate the effects on adipogenesis, beiging and lipolysis. RESULTS XN induced beiging of white adipocytes as witnessed by the increased expression of beige markers CIDE-A and TBX-1. XN increased mitochondrial biogenesis, as evidenced by increased mitochondrial content, enhanced expression of PGC-1α, and the thermogenic protein UCP1. Following 24 h of treatment, XN also increased oxygen consumption rate. XN stimulated lipolysis of mature 3T3-L1 and primary human subcutaneous adipocytes and inhibited adipogenesis of maturing adipocytes. XN activated AMPK and in turn, XN-induced upregulation of UCP1, p-ACC, HSL, and ATGL was downregulated in the presence of dorsomorphin. Likewise, an XN-induced decrease in adipogenesis was reversed in the presence of dorsomorphin. CONCLUSIONS Taken together, XN demonstrates anti-obesity effects by not only inducing beiging but also decreasing adipogenesis and inducing lipolysis. The anti-obesity effects of XN are partly mediated by AMPK signaling pathway suggesting that XN may have potential therapeutic implications for obesity.
Collapse
Affiliation(s)
- Janaiya S. Samuels
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine, 625 Old Peachtree Rd NW, Suwannee, GA 30024 USA
| | - Rangaiah Shashidharamurthy
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine, 625 Old Peachtree Rd NW, Suwannee, GA 30024 USA
| | - Srujana Rayalam
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine, 625 Old Peachtree Rd NW, Suwannee, GA 30024 USA
| |
Collapse
|
32
|
Christiansen D, Bishop DJ, Broatch JR, Bangsbo J, McKenna MJ, Murphy RM. Cold-water immersion after training sessions: effects on fiber type-specific adaptations in muscle K + transport proteins to sprint-interval training in men. J Appl Physiol (1985) 2018; 125:429-444. [PMID: 29745801 DOI: 10.1152/japplphysiol.00259.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Effects of regular use of cold-water immersion (CWI) on fiber type-specific adaptations in muscle K+ transport proteins to intense training, along with their relationship to changes in mRNA levels after the first training session, were investigated in humans. Nineteen recreationally active men (24 ± 6 yr, 79.5 ± 10.8 kg, 44.6 ± 5.8 ml·kg-1·min-1) completed six weeks of sprint-interval cycling, either without (passive rest; CON) or with training sessions followed by CWI (15 min at 10°C; COLD). Muscle biopsies were obtained before and after training to determine abundance of Na+, K+-ATPase isoforms (α1-3, β1-3) and phospholemman (FXYD1) and after recovery treatments (+0 h and +3 h) on the first day of training to measure mRNA content. Training increased ( P < 0.05) the abundance of α1 and β3 in both fiber types and β1 in type-II fibers and decreased FXYD1 in type-I fibers, whereas α2 and α3 abundance was not altered by training ( P > 0.05). CWI after each session did not influence responses to training ( P > 0.05). However, α2 mRNA increased after the first session in COLD (+0 h, P < 0.05) but not in CON ( P > 0.05). In both conditions, α1 and β3 mRNA increased (+3 h; P < 0.05) and β2 mRNA decreased (+3 h; P < 0.05), whereas α3, β1, and FXYD1 mRNA remained unchanged ( P > 0.05) after the first session. In summary, Na+,K+-ATPase isoforms are differently regulated in type I and II muscle fibers by sprint-interval training in humans, which, for most isoforms, do not associate with changes in mRNA levels after the first training session. CWI neither impairs nor improves protein adaptations to intense training of importance for muscle K+ regulation. NEW & NOTEWORTHY Although cold-water immersion (CWI) after training and competition has become a routine for many athletes, limited published evidence exists regarding its impact on training adaptation. Here, we show that CWI can be performed regularly without impairing training-induced adaptations at the fiber-type level important for muscle K+ handling. Furthermore, sprint-interval training invoked fiber type-specific adaptations in K+ transport proteins, which may explain the dissociated responses of whole-muscle protein levels and K+ transport function to training previously reported.
Collapse
Affiliation(s)
- Danny Christiansen
- Institute for Health and Sport, Victoria University , Melbourne, Victoria , Australia.,Department of Nutrition, Exercise, and Sports, University of Copenhagen , Copenhagen , Denmark
| | - David J Bishop
- Institute for Health and Sport, Victoria University , Melbourne, Victoria , Australia.,School of Medical and Health Sciences, Edith Cowan University , Perth, Western Australia , Australia
| | - James R Broatch
- Institute for Health and Sport, Victoria University , Melbourne, Victoria , Australia
| | - Jens Bangsbo
- Department of Nutrition, Exercise, and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Michael J McKenna
- Institute for Health and Sport, Victoria University , Melbourne, Victoria , Australia
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Victoria , Australia
| |
Collapse
|
33
|
Choi M, Mukherjee S, Kang NH, Barkat JL, Parray HA, Yun JW. L-rhamnose induces browning in 3T3-L1 white adipocytes and activates HIB1B brown adipocytes. IUBMB Life 2018; 70:563-573. [PMID: 29638041 DOI: 10.1002/iub.1750] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/16/2018] [Indexed: 01/01/2023]
Abstract
Induction of the brown adipocyte-like phenotype in white adipocytes (browning) is considered as a novel strategy to fight obesity due to the ability of brown adipocytes to increase energy expenditure. Here, we report that L-rhamnose induced browning by elevating expression levels of beige-specific marker genes, including Cd137, Cited1, Tbx1, Prdm16, Tmem26, and Ucp1, in 3T3-L1 adipocytes. Moreover, L-rhamnose markedly elevated expression levels of proteins involved in thermogenesis both in 3T3-L1 white and HIB1B brown adipocytes. L-rhamnose treatment in 3T3-L1 adipocytes also significantly elevated protein levels of p-HSL, p-AMPK, ACOX, and CPT1 as well as reduced levels of ACC, FAS, C/EBPα, and PPARγ, suggesting its possible role in enhancement of lipolysis and lipid catabolism as well as reduced adipogenesis and lipogenesis, respectively. The quick technique of efficient molecular docking provided insight into the strong binding of L-rhamnose to the fat-digesting glycine residue of β3 -adrenergic receptor (AR), indicating strong involvement of L-rhamnose in fat metabolism. Further examination of the molecular mechanism of L-rhamnose revealed that it induced browning of 3T3-L1 adipocytes via coordination of multiple signaling pathways through β3 -AR, SIRT1, PKA, and p-38. To the best of our knowledge, this is the first study to demonstrate that L-rhamnose plays multiple modulatory roles in the induction of white fat browning, activation of brown adipocytes, as well as promotion of lipid metabolism, thereby demonstrating its therapeutic potential for treatment of obesity. © 2018 IUBMB Life, 70(6):563-573, 2018.
Collapse
Affiliation(s)
- Minji Choi
- Department of Biotechnology, Daegu University, Kyungsan, Kyungbuk, Republic of Korea
| | - Sulagna Mukherjee
- Department of Biotechnology, Daegu University, Kyungsan, Kyungbuk, Republic of Korea
| | - Nam Hyeon Kang
- Department of Biotechnology, Daegu University, Kyungsan, Kyungbuk, Republic of Korea
| | - Jameel Lone Barkat
- Department of Biotechnology, Daegu University, Kyungsan, Kyungbuk, Republic of Korea
| | - Hilal Ahmad Parray
- Department of Biotechnology, Daegu University, Kyungsan, Kyungbuk, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Kyungsan, Kyungbuk, Republic of Korea
| |
Collapse
|
34
|
Beta estradiol and norepinephrine treatment of differentiated SH-SY5Y cells enhances tau phosphorylation at (Ser 396) and (Ser 262) via AMPK but not mTOR signaling pathway. Mol Cell Neurosci 2018; 88:201-211. [PMID: 29427776 DOI: 10.1016/j.mcn.2018.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/23/2017] [Accepted: 02/06/2018] [Indexed: 01/14/2023] Open
Abstract
Hyperphosphorylation of tau is one of the main hallmarks for Alzheimer's disease (AD) and many other tauopathies. Norepinephrine (NE), a stress-related hormone and 17-β-estradiol (E2) thought to influence tau phosphorylation (p-tau) and AD pathology. The controversy around the impact of NE and E2 requires further clarification. Moreover, the combination effect of physiological and psychological stress and estrogen alteration during menopause, which affect p-tau, has not been addressed. Exposure to E2 is believed to reduce NE release, however, the link between these two hormones and AD at cellular level was also remained unknown. Here, we examined whether NE and E2 treatment of differentiated SH-SY5Y cells affected tau phosphorylation. The involvement of adenosine monophosphate kinase protein kinase (AMPK) and target of Rapamycin (mTOR) as the possible mechanisms, underlying this effect was also investigated. Subsequent to SH-SY5Y differentiation to mature neurons, we treated the cells with NE, E2 and NE plus E2 in presence and absence of Compound C and Rapamycin. Cell viability was not affected by our treatment while our Western blot and immunofluorescent findings showed that exposure to NE and E2 separately, and in combination enhanced p-tau (Ser396) and (Ser262)/tau but not (Ser202/Thr205)/tau. Blocking AMPK by Compound C reduced p-tau (Ser396) and (Ser262), while GSK-3β and PP2A activities were remained unchanged. We also found that blocking mTOR by Rapamycin did not change increased p-tau (Ser396) and (Ser262) due to NE + E2 treatment. Collectively, our results suggested that tau hyperphosphorylation due to exposure to NE/E2 was mediated by AMPK, the main energy regulator of cells during stress with no significant involvement of mTOR, GSK-3β and PP2A.
Collapse
|
35
|
Steinberg GR. Cellular Energy Sensing and Metabolism-Implications for Treating Diabetes: The 2017 Outstanding Scientific Achievement Award Lecture. Diabetes 2018; 67:169-179. [PMID: 29358486 DOI: 10.2337/dbi17-0039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/08/2017] [Indexed: 11/13/2022]
Abstract
The Outstanding Scientific Achievement Award recognizes distinguished scientific achievement in the field of diabetes, taking into consideration independence of thought and originality. Gregory R. Steinberg, PhD, professor of medicine, Canada Research Chair, J. Bruce Duncan Endowed Chair in Metabolic Diseases, and codirector of the Metabolism and Childhood Obesity Research Program at McMaster University, Hamilton, Ontario, Canada, received the prestigious award at the American Diabetes Association's 77th Scientific Sessions, 9-13 June 2017, in San Diego, CA. He presented the Outstanding Scientific Achievement Award Lecture, "Cellular Energy Sensing and Metabolism-Implications for Treating Diabetes," on Monday, 12 June 2017.The survival of all cells is dependent on the constant challenge to match energetic demands with nutrient availability, a task that is mediated through a highly conserved network of metabolic fuel sensors that orchestrate both cellular and whole-organism energy balance. A mismatch between cellular energy demand and nutrient availability is a key factor contributing to the development of type 2 diabetes; thus, understanding the fundamental mechanisms by which cells sense nutrient availability and demand may lead to the development of new treatments. Glucose-lowering therapies, such as caloric restriction, exercise, and metformin, all induce an energetic challenge that results in the activation of the cellular energy sensor AMP-activated protein kinase (AMPK). Activation of AMPK in turn suppresses lipid synthesis and inflammation while increasing glucose uptake, fatty acid oxidation, and mitochondrial function. In contrast, high levels of nutrient availability suppress AMPK activity while also increasing the production of peripheral serotonin, a gut-derived endocrine factor that suppresses β-adrenergic-induced activation of brown adipose tissue. Identifying new ways to manipulate these two ancient fuel gauges by activating AMPK and inhibiting peripheral serotonin may lead to the development of new therapies for treating type 2 diabetes.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Adipose Tissue, Beige/drug effects
- Adipose Tissue, Beige/metabolism
- Adipose Tissue, Beige/pathology
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, Brown/pathology
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/pathology
- Animals
- Awards and Prizes
- Caloric Restriction
- Cell Survival/drug effects
- Combined Modality Therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/prevention & control
- Diabetes Mellitus, Type 2/therapy
- Endocrinology
- Energy Intake/drug effects
- Energy Metabolism/drug effects
- Enzyme Activation/drug effects
- Exercise
- Feedback, Physiological/drug effects
- Humans
- Hypoglycemic Agents/therapeutic use
- Insulin Resistance
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Models, Biological
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Serotonin/blood
- Serotonin/metabolism
Collapse
Affiliation(s)
- Gregory R Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine, and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
36
|
Lone J, Parray HA, Yun JW. Nobiletin induces brown adipocyte-like phenotype and ameliorates stress in 3T3-L1 adipocytes. Biochimie 2017; 146:97-104. [PMID: 29217172 DOI: 10.1016/j.biochi.2017.11.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/30/2017] [Indexed: 12/27/2022]
Abstract
Browning of white adipocytes (beiging) is an attractive therapeutic strategy against obesity and its associated metabolic complications. Nobiletin (NOB) is a polymethoxylated flavone present in citrus fruits and has been reported to have anti-obesity effects. Here, we report that nobiletin exerts dual modulatory effects on adipocytes via induction of browning in 3T3-L1 white adipocytes and amelioration of stress in adipocytes. Nobiletin-induced beiging was investigated by determining expression levels of beige-specific genes and proteins by RT-PCR and immunoblot analysis, respectively. Nobiletin treatment rapidly elevated the expression levels of beige-specific genes such as Cd137, Cidea, Tbx1, and Tmem26. Further, nobiletin enhanced expression of the key transcription factors C/EBPβ, PPARδ, and PPARα, which are responsible for remodeling of white adipocytes. Nobiletin also strikingly activated HIB1B brown adipocytes and induced mitochondrial biogenesis in 3T3-L1 white adipocytes. In addition, nobiletin altered the expression of several lipid metabolism-related proteins such as ACOX1, CPT1, FAS, p-PLIN, SREBP and SIRT1. Moreover, nobiletin ameliorated stress in adipocytes by inhibiting expression levels of key stress molecules such as JNK and c-JUN. Nobiletin-induced browning could be mediated by tight regulation of kinases, as nobiletin induced PKA and p-AMPK at the protein expression level, and inhibition of PKA and p-AMPK by H-89 and dorsomorphin, respectively, abolished expression of the thermogenic markers PGC-1α and UCP1. Taken together, our findings suggest that nobiletin plays a modulatory role in adipocytes via induction of browning in 3T3-L1 white adipocytes and activation of HIB1B brown adipocytes combined with amelioration of stress in adipocytes, thereby exhibiting therapeutic potential against obesity.
Collapse
Affiliation(s)
- Jameel Lone
- Department of Biotechnology, Daegu University, Kyungsan, Kyungbuk, 38543, Republic of Korea
| | - Hilal Ahmad Parray
- Department of Biotechnology, Daegu University, Kyungsan, Kyungbuk, 38543, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Kyungsan, Kyungbuk, 38543, Republic of Korea.
| |
Collapse
|
37
|
Kinnunen SME, Mänttäri SK, Saarela SYO. Expression of AMPK, SIRT1, and ACC Differs between Winter- and Summer-Acclimatized Djungarian Hamsters. Physiol Biochem Zool 2017; 90:605-612. [DOI: 10.1086/694295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
38
|
Wei Q, Lee JH, Wang H, Bongmba OYN, Wu CS, Pradhan G, Sun Z, Chew L, Bajaj M, Chan L, Chapkin RS, Chen MH, Sun Y. Adiponectin is required for maintaining normal body temperature in a cold environment. BMC PHYSIOLOGY 2017; 17:8. [PMID: 29058611 PMCID: PMC5651620 DOI: 10.1186/s12899-017-0034-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 10/12/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Thermogenic impairment promotes obesity and insulin resistance. Adiponectin is an important regulator of energy homeostasis. While many beneficial metabolic effects of adiponectin resemble that of activated thermogenesis, the role of adiponectin in thermogenesis is not clear. In this study, we investigated the role of adiponectin in thermogenesis using adiponectin-null mice (Adipoq -/-). METHODS Body composition was measured using EchoMRI. Metabolic parameters were determined by indirect calorimetry. Insulin sensitivity was evaluated by glucose- and insulin- tolerance tests. Core body temperature was measured by a TH-8 temperature monitoring system. Gene expression was assessed by real-time PCR and protein levels were analyzed by Western blotting and immunohistochemistry. The mitochondrial density of brown adipose tissue was quantified by calculating the ratio of mtDNA:total nuclear DNA. RESULTS Under normal housing temperature of 24 °C and ad libitum feeding condition, the body weight, body composition, and metabolic profile of Adipoq -/- mice were unchanged. Under fasting condition, Adipoq -/- mice exhibited reduced energy expenditure. Conversely, under cold exposure, Adipoq -/- mice exhibited reduced body temperature, and the expression of thermogenic regulatory genes was significantly reduced in brown adipose tissue (BAT) and subcutaneous white adipose tissue (WAT). Moreover, we observed that mitochondrial content was reduced in BAT and subcutaneous WAT, and the expression of mitochondrial fusion genes was decreased in BAT of Adipoq -/- mice, suggesting that adiponectin ablation diminishes mitochondrial biogenesis and altered mitochondrial dynamics. Our study further revealed that adiponectin deletion suppresses adrenergic activation, and down-regulates β3-adrenergic receptor, insulin signaling, and the AMPK-SIRT1 pathway in BAT. CONCLUSIONS Our findings demonstrate that adiponectin is an essential regulator of thermogenesis, and adiponectin is required for maintaining body temperature under cold exposure.
Collapse
Affiliation(s)
- Qiong Wei
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.,Division of Endocrinology, Zhongda hospital, Southeast University, Nanjing, Jiangsu Province, People's Republic of China, 210002
| | - Jong Han Lee
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.,College of Pharmacy, Gachon University, Incheon, 21936, South Korea
| | - Hongying Wang
- Department of Nutrition and Food Science, Texas A&M University, 214D Cater-Mattil; 2253 TAMU, College Station, TX, 77843, USA.,Laboratory of Lipid & Glucose Metabolism, The First Affiliated Hospital of Chongqing Medical University, Chongqing, Sichuan province, People's Republic of China, 400016
| | - Odelia Y N Bongmba
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chia-Shan Wu
- Department of Nutrition and Food Science, Texas A&M University, 214D Cater-Mattil; 2253 TAMU, College Station, TX, 77843, USA
| | - Geetali Pradhan
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zilin Sun
- Division of Endocrinology, Zhongda hospital, Southeast University, Nanjing, Jiangsu Province, People's Republic of China, 210002
| | - Lindsey Chew
- Institute of Biosciences and Technology, Houston, TX, 77030, USA
| | - Mandeep Bajaj
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lawrence Chan
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Robert S Chapkin
- Department of Nutrition and Food Science, Texas A&M University, 214D Cater-Mattil; 2253 TAMU, College Station, TX, 77843, USA
| | - Miao-Hsueh Chen
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yuxiang Sun
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Nutrition and Food Science, Texas A&M University, 214D Cater-Mattil; 2253 TAMU, College Station, TX, 77843, USA. .,Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
39
|
Abstract
Brown and beige adipocytes arise from distinct developmental origins. Brown adipose tissue (BAT) develops embryonically from precursors that also give to skeletal muscle. Beige fat develops postnatally and is highly inducible. Beige fat recruitment is mediated by multiple mechanisms, including de novo beige adipogenesis and white-to-brown adipocyte transdifferentiaiton. Beige precursors reside around vasculatures, and proliferate and differentiate into beige adipocytes. PDGFRα+Ebf2+ precursors are restricted to beige lineage cells, while another PDGFRα+ subset gives rise to beige adipocytes, white adipocytes, or fibrogenic cells. White adipocytes can be reprogramed and transdifferentiated into beige adipocytes. Brown and beige adipocytes display many similar properties, including multilocular lipid droplets, dense mitochondria, and expression of UCP1. UCP1-mediated thermogenesis is a hallmark of brown/beige adipocytes, albeit UCP1-independent thermogenesis also occurs. Development, maintenance, and activation of BAT/beige fat are guided by genetic and epigenetic programs. Numerous transcriptional factors and coactivators act coordinately to promote BAT/beige fat thermogenesis. Epigenetic reprograming influences expression of brown/beige adipocyte-selective genes. BAT/beige fat is regulated by neuronal, hormonal, and immune mechanisms. Hypothalamic thermal circuits define the temperature setpoint that guides BAT/beige fat activity. Metabolic hormones, paracrine/autocrine factors, and various immune cells also play a critical role in regulating BAT/beige fat functions. BAT and beige fat defend temperature homeostasis, and regulate body weight and glucose and lipid metabolism. Obesity is associated with brown/beige fat deficiency, and reactivation of brown/beige fat provides metabolic health benefits in some patients. Pharmacological activation of BAT/beige fat may hold promise for combating metabolic diseases. © 2017 American Physiological Society. Compr Physiol 7:1281-1306, 2017.
Collapse
Affiliation(s)
- Liangyou Rui
- Department of Molecular and Integrative Physiology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
40
|
Mele L, Bidault G, Mena P, Crozier A, Brighenti F, Vidal-Puig A, Del Rio D. Dietary (Poly)phenols, Brown Adipose Tissue Activation, and Energy Expenditure: A Narrative Review. Adv Nutr 2017; 8:694-704. [PMID: 28916570 PMCID: PMC5593103 DOI: 10.3945/an.117.015792] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The incidence of overweight and obesity has reached epidemic proportions, making the control of body weight and its complications a primary health problem. Diet has long played a first-line role in preventing and managing obesity. However, beyond the obvious strategy of restricting caloric intake, growing evidence supports the specific antiobesity effects of some food-derived components, particularly (poly)phenolic compounds. The relatively new rediscovery of active brown adipose tissue in adult humans has generated interest in this tissue as a novel and viable target for stimulating energy expenditure and controlling body weight by promoting energy dissipation. This review critically discusses the evidence supporting the concept that the antiobesity effects ascribed to (poly)phenols might be dependent on their capacity to promote energy dissipation by activating brown adipose tissue. Although discrepancies exist in the literature, most in vivo studies with rodents strongly support the role of some (poly)phenol classes, particularly flavan-3-ols and resveratrol, in promoting energy expenditure. Some human data currently are available and most are consistent with studies in rodents. Further investigation of effects in humans is warranted.
Collapse
Affiliation(s)
- Laura Mele
- Laboratory of Phytochemicals in Physiology, Department of Food and Drugs, University of Parma, Parma, Italy
| | - Guillaume Bidault
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust–Medical Research Council Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Pedro Mena
- Laboratory of Phytochemicals in Physiology, Department of Food and Drugs, University of Parma, Parma, Italy
| | - Alan Crozier
- Department of Nutrition, University of California, Davis, Davis, CA
| | - Furio Brighenti
- Laboratory of Phytochemicals in Physiology, Department of Food and Drugs, University of Parma, Parma, Italy
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust–Medical Research Council Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom;,Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom; and
| | - Daniele Del Rio
- Laboratory of Phytochemicals in Physiology, Department of Food and Drugs, University of Parma, Parma, Italy;,Need for Nutrition Education/Innovation Programme Global Centre for Nutrition and Health, St John’s Innovation Centre, Cambridge, United Kingdom
| |
Collapse
|
41
|
Lee MS, Shin Y, Jung S, Kim Y. Effects of epigallocatechin-3-gallate on thermogenesis and mitochondrial biogenesis in brown adipose tissues of diet-induced obese mice. Food Nutr Res 2017; 61:1325307. [PMID: 28659734 PMCID: PMC5475335 DOI: 10.1080/16546628.2017.1325307] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/27/2017] [Indexed: 11/15/2022] Open
Abstract
Background: Epigallocatechin-3-gallate (EGCG) is the major polyphenol in green tea and has been considered a natural agent that can help to reduce the risk of obesity. Objective: The aim of this study was to investigate the effects of EGCG on thermogenesis and mitochondrial biogenesis in brown adipose tissue (BAT) of diet-induced obese mice. Methods: Male C57BL/6J mice were provided a high-fat diet for 8 weeks to induce obesity, following which they were divided into two groups: one on a high-fat control diet and the other on a 0.2% EGCG (w/w)-supplemented high-fat diet for another 8 weeks. Results: The EGCG-supplemented group showed decreased body weight gain, and plasma and liver lipids. EGCG-fed mice exhibited higher body temperature and mitochondrial DNA (mtDNA) content in BAT. The messenger RNA levels of genes related to thermogenesis and mitochondrial biogenesis in BAT were increased by EGCG. Moreover, adenosine monophosphate-activated protein kinase (AMPK) activity in BAT was stimulated by EGCG. Conclusions: The results suggest that EGCG may have anti-obesity properties through BAT thermogenesis and mitochondria biogenesis, which are partially associated with the regulation of genes related to thermogenesis and mitochondria biogenesis, and the increase in mtDNA replication and AMPK activation in BAT of diet-induced obese mice.
Collapse
Affiliation(s)
- Mak-Soon Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Republic of Korea
| | - Yoonjin Shin
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Republic of Korea
| | - Sunyoon Jung
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Republic of Korea
| | - Yangha Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
42
|
Mottillo EP, Desjardins EM, Fritzen AM, Zou VZ, Crane JD, Yabut JM, Kiens B, Erion DM, Lanba A, Granneman JG, Talukdar S, Steinberg GR. FGF21 does not require adipocyte AMP-activated protein kinase (AMPK) or the phosphorylation of acetyl-CoA carboxylase (ACC) to mediate improvements in whole-body glucose homeostasis. Mol Metab 2017; 6:471-481. [PMID: 28580278 PMCID: PMC5444097 DOI: 10.1016/j.molmet.2017.04.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/28/2017] [Accepted: 04/02/2017] [Indexed: 01/07/2023] Open
Abstract
Objective Fibroblast growth factor 21 (FGF21) shows great potential for the treatment of obesity and type 2 diabetes, as its long-acting analogue reduces body weight and improves lipid profiles of participants in clinical studies; however, the intracellular mechanisms mediating these effects are poorly understood. AMP-activated protein kinase (AMPK) is an important energy sensor of the cell and a molecular target for anti-diabetic medications. This work examined the role of AMPK in mediating the glucose and lipid-lowering effects of FGF21. Methods Inducible adipocyte AMPK β1β2 knockout mice (iβ1β2AKO) and littermate controls were fed a high fat diet (HFD) and treated with native FGF21 or saline for two weeks. Additionally, HFD-fed mice with knock-in mutations on the AMPK phosphorylation sites of acetyl-CoA carboxylase (ACC)1 and ACC2 (DKI mice) along with wild-type (WT) controls received long-acting FGF21 for two weeks. Results Consistent with previous studies, FGF21 treatment significantly reduced body weight, adiposity, and liver lipids in HFD fed mice. To add, FGF21 improved circulating lipids, glycemic control, and insulin sensitivity. These effects were independent of adipocyte AMPK and were not associated with changes in browning of white (WAT) and brown adipose tissue (BAT). Lastly, we assessed whether FGF21 exerted its effects through the AMPK/ACC axis, which is critical in the therapeutic benefits of the anti-diabetic medication metformin. ACC DKI mice had improved glucose and insulin tolerance and a reduction in body weight, body fat and hepatic steatosis similar to WT mice in response to FGF21 administration. Conclusions These data illustrate that the metabolic improvements upon FGF21 administration are independent of adipocyte AMPK, and do not require the inhibitory action of AMPK on ACC. This is in contrast to the anti-diabetic medication metformin and suggests that the treatment of obesity and diabetes with the combination of FGF21 and AMPK activators merits consideration. FGF21 reduces adiposity and improves insulin resistance in mice fed a high-fat diet. FGF21 improves insulin sensitivity and hepatic steatosis independent of adipocyte AMPK. FGF21 treatment does not elicit an increase in browning of BAT or WAT. In contrast to metformin, FGF21's intracellular mechanism is not through AMPK/ACC. Findings suggest that combination of FGF21 and AMPK activators could be of benefit.
Collapse
Key Words
- ACC
- ACC DKI, ACC1-S79A and ACC2-S212A double knock-in
- ACC, acetyl-CoA carboxylase
- AKT, protein kinase B
- AMPK
- AMPK, AMP-activated protein kinase
- Adipocyte
- BAT, brown adipose tissue
- Brown fat
- CNS, central nervous system
- COX, cytochrome c oxidase
- CreERT2, Cre recombinase – estrogen receptor T2
- DAG, diacylglycerol
- Diabetes
- FFA, free fatty acid
- FGF21
- FGF21, fibroblast growth factor 21
- FGFR1c, fibroblast growth factor receptor 1c
- GTT, glucose tolerance test
- H&E, hematoxylin and eosin
- HFD, high fat diet
- ITT, insulin tolerance test
- KLB, beta klotho
- NAFLD, non-alcoholic fatty liver disease
- Obesity
- RER, respiratory exchange ratio
- TAG, triacylglycerol
- UCP1, uncoupling protein 1
- WAT, white adipose tissue
- WT, wildtype
- gWAT, gonadal white adipose tissue
- iWAT, inguinal white adipose tissue
- iβ1β2AKO, inducible AMPK β1β2 adipocyte knockout
- mTORC1, mammalian target of rapamycin
Collapse
Affiliation(s)
- Emilio P Mottillo
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main St. W., Hamilton, Ontario, L8N 3Z5, Canada
| | - Eric M Desjardins
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main St. W., Hamilton, Ontario, L8N 3Z5, Canada
| | - Andreas M Fritzen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Denmark
| | - Vito Z Zou
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main St. W., Hamilton, Ontario, L8N 3Z5, Canada
| | - Justin D Crane
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main St. W., Hamilton, Ontario, L8N 3Z5, Canada
| | - Julian M Yabut
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main St. W., Hamilton, Ontario, L8N 3Z5, Canada
| | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Denmark
| | - Derek M Erion
- Liver Disease Research, Takeda Pharmaceuticals, 35 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Adhiraj Lanba
- Cardiovascular & Metabolic Diseases, Novartis Institute of Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | | | - Saswata Talukdar
- Cardiometabolic Diseases, Merck Research Laboratories South San Francisco LLC, 630 Gateway Boulevard, South San Francisco, CA, 94080, USA
| | - Gregory R Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main St. W., Hamilton, Ontario, L8N 3Z5, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St. W., Hamilton, Ontario, L8N 3Z5, Canada
| |
Collapse
|
43
|
Lee SG, Parks JS, Kang HW. Quercetin, a functional compound of onion peel, remodels white adipocytes to brown-like adipocytes. J Nutr Biochem 2017; 42:62-71. [DOI: 10.1016/j.jnutbio.2016.12.018] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/26/2016] [Accepted: 12/28/2016] [Indexed: 01/12/2023]
|
44
|
Perdikari A, Kulenkampff E, Rudigier C, Neubauer H, Luippold G, Redemann N, Wolfrum C. A high-throughput, image-based screen to identify kinases involved in brown adipocyte development. Sci Signal 2017; 10:10/466/eaaf5357. [DOI: 10.1126/scisignal.aaf5357] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Choung JS, Lee YS, Jun HS. Exendin-4 increases oxygen consumption and thermogenic gene expression in muscle cells. J Mol Endocrinol 2017; 58:79-90. [PMID: 27872157 DOI: 10.1530/jme-16-0078] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 11/21/2016] [Indexed: 02/02/2023]
Abstract
Glucagon-like peptide-1 (GLP1) has many anti-diabetic actions and also increases energy expenditure in vivo As skeletal muscle is a major organ controlling energy metabolism, we investigated whether GLP1 can affect energy metabolism in muscle. We found that treatment of differentiated C2C12 cells with exendin-4 (Ex-4), a GLP1 receptor agonist, reduced oleate:palmitate-induced lipid accumulation and triglyceride content compared with cells without Ex-4 treatment. When we examined the oxygen consumption rate (OCR), not only the basal OCR but also the OCR induced by oleate:palmitate addition was significantly increased in Ex-4-treated differentiated C2C12 cells, and this was inhibited by exendin-9, a GLP1 receptor antagonist. The expression of uncoupling protein 1 (UCP1), β3-adrenergic receptor, peroxisome proliferator-activator receptor a (PPARa) and farnesoid X receptor mRNA was significantly upregulated in Ex-4-treated differentiated C2C12 cells, and the upregulation of these mRNA was abolished by treatment with adenylate cyclase inhibitor (2'5'-dideoxyadenosine) or PKA inhibitor (H-89). As well, intramuscular injection of Ex-4 into diet-induced obese mice significantly increased the expression of UCP1, PPARa and p-AMPK in muscle. We suggest that exposure to GLP1 increases energy expenditure in muscle through the upregulation of fat oxidation and thermogenic gene expression, which may contribute to reducing obesity and insulin resistance.
Collapse
Affiliation(s)
- Jin-Seung Choung
- College of Pharmacy and Gachon Institute of Pharmaceutical ScienceGachon University, Incheon, Republic of Korea
- Lee Gil Ya Cancer and Diabetes InstituteGachon University, Incheon, Republic of Korea
| | - Young-Sun Lee
- Lee Gil Ya Cancer and Diabetes InstituteGachon University, Incheon, Republic of Korea
| | - Hee-Sook Jun
- College of Pharmacy and Gachon Institute of Pharmaceutical ScienceGachon University, Incheon, Republic of Korea
- Lee Gil Ya Cancer and Diabetes InstituteGachon University, Incheon, Republic of Korea
- Gachon Medical Research InstituteGil Hospital, Incheon, Republic of Korea
| |
Collapse
|
46
|
Liu M, Liu H, Xie J, Xu Q, Pan C, Wang J, Wu X, Sanabil S, Zheng M, Liu J. Anti-obesity effects of zeaxanthin on 3T3-L1 preadipocyte and high fat induced obese mice. Food Funct 2017; 8:3327-3338. [DOI: 10.1039/c7fo00486a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Zeaxanthin inhibited lipogenesis in adipocytes and attenuated progression of obesity in mice by inducing AMPK activation and suppressing adipocyte-specific factors.
Collapse
|
47
|
Lim H, Park J, Kim HL, Kang J, Jeong MY, Youn DH, Jung Y, Kim YI, Kim HJ, Ahn KS, Kim SJ, Choe SK, Hong SH, Um JY. Chrysophanic Acid Suppresses Adipogenesis and Induces Thermogenesis by Activating AMP-Activated Protein Kinase Alpha In vivo and In vitro. Front Pharmacol 2016; 7:476. [PMID: 28008317 PMCID: PMC5143616 DOI: 10.3389/fphar.2016.00476] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/22/2016] [Indexed: 12/12/2022] Open
Abstract
Chrysophanic acid (CA) is a member of the anthraquinone family abundant in rhubarb, a widely used herb for obesity treatment in Traditional Korean Medicine. Though several studies have indicated numerous features of CA, no study has yet reported the effect of CA on obesity. In this study, we tried to identify the anti-obesity effects of CA. By using 3T3-L1 adipocytes and primary cultured brown adipocytes as in vitro models, high-fat diet (HFD)-induced obese mice, and zebrafish as in vivo models, we determined the anti-obesity effects of CA. CA reduced weight gain in HFD-induced obese mice. They also decreased lipid accumulation and the expressions of adipogenesis factors including peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα) in 3T3-L1 adipocytes. In addition, uncoupling protein 1 (UCP1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), the brown fat specific thermogenic genes, were up-regulated in brown adipocytes by CA treatment. Furthermore, when co-treated with Compound C, the AMP-activated protein kinase (AMPK) inhibitor, the action of CA on AMPKα was nullified in both types of adipocytes, indicating the multi-controlling effect of CA was partially via the AMPKα pathway. Given all together, these results indicate that CA can ameliorate obesity by controlling the adipogenic and thermogenic pathway at the same time. On these bases, we suggest the new potential of CA as an anti-obese pharmacotherapy.
Collapse
Affiliation(s)
- Hara Lim
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation Kyung Hee University, Seoul, South Korea
| | - Jinbong Park
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation Kyung Hee University, Seoul, South Korea
| | - Hye-Lin Kim
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation Kyung Hee University, Seoul, South Korea
| | - JongWook Kang
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation Kyung Hee University, Seoul, South Korea
| | - Mi-Young Jeong
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation Kyung Hee University, Seoul, South Korea
| | - Dong-Hyun Youn
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation Kyung Hee University, Seoul, South Korea
| | - Yunu Jung
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation Kyung Hee University, Seoul, South Korea
| | - Yong-Il Kim
- Department of Microbiology and Center for Metabolic Function Regulation, School of Medicine, Wonkwang University Iksan, South Korea
| | - Hyun-Ju Kim
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation Kyung Hee University, Seoul, South Korea
| | - Kwang Seok Ahn
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation Kyung Hee University, Seoul, South Korea
| | - Su-Jin Kim
- Department of Cosmeceutical Science, Daegu Haany University Kyungsan, South Korea
| | - Seong-Kyu Choe
- Department of Microbiology and Center for Metabolic Function Regulation, School of Medicine, Wonkwang University Iksan, South Korea
| | - Seung-Heon Hong
- Department of Pharmacology, College of Pharmacy, Wonkwang University Iksan, South Korea
| | - Jae-Young Um
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation Kyung Hee University, Seoul, South Korea
| |
Collapse
|
48
|
HUANG CHENCUI, YU KUN, HUANG HUIYANG, YE HAIHUI. Adenosine monophosphate-activated protein kinase from the mud crab, Scylla paramamosain: cDNA cloning and profiles under cold stress. J Genet 2016; 95:923-932. [DOI: 10.1007/s12041-016-0717-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Zhu Q, Ghoshal S, Rodrigues A, Gao S, Asterian A, Kamenecka TM, Barrow JC, Chakraborty A. Adipocyte-specific deletion of Ip6k1 reduces diet-induced obesity by enhancing AMPK-mediated thermogenesis. J Clin Invest 2016; 126:4273-4288. [PMID: 27701146 DOI: 10.1172/jci85510] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 08/29/2016] [Indexed: 12/15/2022] Open
Abstract
Enhancing energy expenditure (EE) is an attractive strategy to combat obesity and diabetes. Global deletion of Ip6k1 protects mice from diet-induced obesity (DIO) and insulin resistance, but the tissue-specific mechanism by which IP6K1 regulates body weight is unknown. Here, we have demonstrated that IP6K1 regulates fat accumulation by modulating AMPK-mediated adipocyte energy metabolism. Cold exposure led to downregulation of Ip6k1 in murine inguinal and retroperitoneal white adipose tissue (IWAT and RWAT) depots. Adipocyte-specific deletion of Ip6k1 (AdKO) enhanced thermogenic EE, which protected mice from high-fat diet-induced weight gain at ambient temperature (23°C), but not at thermoneutral temperature (30°C). AdKO-induced increases in thermogenesis also protected mice from cold-induced decreases in body temperature. UCP1, PGC1α, and other markers of browning and thermogenesis were elevated in IWAT and RWAT of AdKO mice. Cold-induced activation of sympathetic signaling was unaltered, whereas AMPK was enhanced, in AdKO IWAT. Moreover, beige adipocytes from AdKO IWAT displayed enhanced browning, which was diminished by AMPK depletion. Furthermore, we determined that IP6 and IP6K1 differentially regulate upstream kinase-mediated AMPK stimulatory phosphorylation in vitro. Finally, treating mildly obese mice with the IP6K inhibitor TNP enhanced thermogenesis and inhibited progression of DIO. Thus, IP6K1 regulates energy metabolism via a mechanism that could potentially be targeted in obesity.
Collapse
|
50
|
Regulation of Brown and White Adipocyte Transcriptome by the Transcriptional Coactivator NT-PGC-1α. PLoS One 2016; 11:e0159990. [PMID: 27454177 PMCID: PMC4959749 DOI: 10.1371/journal.pone.0159990] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/28/2016] [Indexed: 02/07/2023] Open
Abstract
The β3-adrenergic receptor (AR) signaling pathway is a major component of adaptive thermogenesis in brown and white adipose tissue during cold acclimation. The β3-AR signaling highly induces the expression of transcriptional coactivator PGC-1α and its splice variant N-terminal (NT)-PGC-1α, which in turn activate the transcription program of adaptive thermogenesis by co-activating a number of transcription factors. We previously reported that NT-PGC-1α is able to increase mitochondrial number and activity in cultured brown adipocytes by promoting the expression of mitochondrial and thermogenic genes. In the present study, we performed genome-wide profiling of NT-PGC-1α-responsive genes in brown adipocytes to identify genes potentially regulated by NT-PGC-1α. Canonical pathway analysis revealed that a number of genes upregulated by NT-PGC-1α are highly enriched in mitochondrial pathways including fatty acid transport and β-oxidation, TCA cycle and electron transport system, thus reinforcing the crucial role of NT-PGC-1α in the enhancement of mitochondrial function. Moreover, canonical pathway analysis of NT-PGC-1α-responsive genes identified several metabolic pathways including glycolysis and fatty acid synthesis. In order to validate the identified genes in vivo, we utilized the FL-PGC-1α-/- mouse that is deficient in full-length PGC-1α (FL-PGC-1α) but expresses a slightly shorter and functionally equivalent form of NT-PGC-1α (NT-PGC-1α254). The β3-AR-induced increase of NT-PGC-1α254 in FL-PGC-1α-/- brown and white adipose tissue was closely associated with elevated expression of genes involved in thermogenesis, mitochondrial oxidative metabolism, glycolysis and fatty acid synthesis. Increased adipose tissue thermogenesis by β3-AR activation resulted in attenuation of adipose tissue expansion in FL-PGC-1α-/- adipose tissue under the high-fat diet condition. Together, the data strengthen our previous findings that NT-PGC-1α regulates mitochondrial genes involved in thermogenesis and oxidative metabolism in brown and white adipocytes and further suggest that NT-PGC-1α regulates a broad spectrum of genes to meet cellular needs for adaptive thermogenesis.
Collapse
|