1
|
Anjom-Shoae J, Fitzgerald PC, Horowitz M, Mohammadpour Z, Hall GV, Holst JJ, Rehfeld JF, Veedfald S, Feinle-Bisset C. Intraduodenal calcium enhances the effects of L-tryptophan to stimulate gut hormone secretion and suppress energy intake in healthy males: a randomized, crossover, clinical trial. Am J Clin Nutr 2024; 120:528-539. [PMID: 38996913 DOI: 10.1016/j.ajcnut.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/05/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND In humans, intraduodenal infusion of L-tryptophan (Trp) increases plasma concentrations of gastrointestinal hormones and stimulates pyloric pressures, both key determinants of gastric emptying and associated with potent suppression of energy intake. The stimulation of gastrointestinal hormones by Trp has been shown, in preclinical studies, to be enhanced by extracellular calcium and mediated in part by the calcium-sensing receptor. OBJECTIVES This study aim was to determine whether intraduodenal calcium can enhance the effects of Trp to stimulate gastrointestinal hormones and pyloric pressures and, if so, whether it is associated with greater suppression of energy intake, in healthy males. METHODS Fifteen males with normal weight (mean ± standard deviation; age: 26 ± 7 years; body mass index: 22 ± 2 kg/m2), received on 3 separate occasions, 150-min intraduodenal infusions of 0, 500, or 1000 mg calcium (Ca), each combined with Trp (load: 0.1 kcal/min, with submaximal energy intake-suppressant effects) from t = 75-150 min, in a randomized, double-blind, crossover study. Plasma concentrations of GI hormones [gastrin, cholecystokinin, glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide (GLP)-1, and peptide tyrosine-tyrosine (PYY)], and Trp and antropyloroduodenal pressures were measured throughout. Immediately postinfusions (t = 150-180 min), energy intake at a standardized buffet-style meal was quantified. RESULTS In response to calcium alone, both 500- and 1000-mg doses stimulated PYY, while only the 1000-mg dose stimulated GLP-1 and pyloric pressures (all P < 0.05). The 1000-mg dose also enhanced the effects of Trp to stimulate cholecystokinin and GLP-1, and both doses stimulated PYY but, surprisingly, reduced the stimulation of GIP (all P < 0.05). Both doses substantially and dose dependently enhanced the effects of Trp to suppress energy intake (Ca-0+Trp: 1108 ± 70 kcal; Ca-500+Trp: 961 ± 90 kcal; and Ca-1000+Trp: 922 ± 96 kcal; P < 0.05). CONCLUSIONS Intraduodenal administration of calcium enhances the effect of Trp to stimulate plasma cholecystokinin, GLP-1, and PYY and suppress energy intake in healthy males. These findings have potential implications for novel nutrient-based approaches to energy intake regulation in obesity. The trial was registered at the Australian New Zealand Clinical Trial Registry (www.anzctr.org.au) as ACTRN12620001294943).
Collapse
Affiliation(s)
- Javad Anjom-Shoae
- Adelaide Medical School and Center of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Penelope Ce Fitzgerald
- Adelaide Medical School and Center of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Michael Horowitz
- Adelaide Medical School and Center of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Zinat Mohammadpour
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Gerrit van Hall
- Department of Biomedical Sciences and the Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences and the Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Simon Veedfald
- Department of Biomedical Sciences and the Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Christine Feinle-Bisset
- Adelaide Medical School and Center of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
2
|
Aktar R, Rondinelli S, Peiris M. GPR84 in physiology-Many functions in many tissues. Br J Pharmacol 2024; 181:1524-1535. [PMID: 37533166 DOI: 10.1111/bph.16206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/20/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023] Open
Abstract
Members of the GPCR superfamily have a wide variety of physiological roles and are therefore valuable targets for developing effective medicines. However, within this superfamily are receptors that are less well characterized and remain orphans, including GPR84. This receptor is stimulated by ligands derived from dietary nutrients, specifically medium chain fatty acids (C9-14), and novel synthetic agonists. There are data demonstrating the role of GPR84 in inflammatory pathways, in addition to emerging data suggesting a key role for GPR84 as a nutrient-sensing GPCR involved in metabolism by sensing energy load via nutrient exposure and subsequent signalling leading to modulation of food intake. Exploring GPR84 pharmacology, its localization and what drives its expression has revealed multiple roles for this receptor. Here, we will reflect on these various roles of GRP84 demonstrated thus far, primarily by exploring data from pre-clinical and clinical studies in various physiological systems, with a specific focus on the gastrointestinal tract. LINKED ARTICLES: This article is part of a themed issue GPR84 Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.10/issuetoc.
Collapse
Affiliation(s)
- Rubina Aktar
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Silvia Rondinelli
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Madusha Peiris
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
3
|
Ramasamy I. Physiological Appetite Regulation and Bariatric Surgery. J Clin Med 2024; 13:1347. [PMID: 38546831 PMCID: PMC10932430 DOI: 10.3390/jcm13051347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 04/10/2024] Open
Abstract
Obesity remains a common metabolic disorder and a threat to health as it is associated with numerous complications. Lifestyle modifications and caloric restriction can achieve limited weight loss. Bariatric surgery is an effective way of achieving substantial weight loss as well as glycemic control secondary to weight-related type 2 diabetes mellitus. It has been suggested that an anorexigenic gut hormone response following bariatric surgery contributes to weight loss. Understanding the changes in gut hormones and their contribution to weight loss physiology can lead to new therapeutic treatments for weight loss. Two distinct types of neurons in the arcuate hypothalamic nuclei control food intake: proopiomelanocortin neurons activated by the anorexigenic (satiety) hormones and neurons activated by the orexigenic peptides that release neuropeptide Y and agouti-related peptide (hunger centre). The arcuate nucleus of the hypothalamus integrates hormonal inputs from the gut and adipose tissue (the anorexigenic hormones cholecystokinin, polypeptide YY, glucagon-like peptide-1, oxyntomodulin, leptin, and others) and orexigeneic peptides (ghrelin). Replicating the endocrine response to bariatric surgery through pharmacological mimicry holds promise for medical treatment. Obesity has genetic and environmental factors. New advances in genetic testing have identified both monogenic and polygenic obesity-related genes. Understanding the function of genes contributing to obesity will increase insights into the biology of obesity. This review includes the physiology of appetite control, the influence of genetics on obesity, and the changes that occur following bariatric surgery. This has the potential to lead to the development of more subtle, individualised, treatments for obesity.
Collapse
Affiliation(s)
- Indra Ramasamy
- Department of Blood Sciences, Conquest Hospital, Hastings TN37 7RD, UK
| |
Collapse
|
4
|
Rezaie P, Bitarafan V, Rose BD, Lange K, Rehfeld JF, Horowitz M, Feinle-Bisset C. Quinine Effects on Gut and Pancreatic Hormones and Antropyloroduodenal Pressures in Humans-Role of Delivery Site and Sex. J Clin Endocrinol Metab 2022; 107:e2870-e2881. [PMID: 35325161 PMCID: PMC9250303 DOI: 10.1210/clinem/dgac182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 02/07/2023]
Abstract
CONTEXT The bitter substance quinine modulates the release of a number of gut and gluco-regulatory hormones and upper gut motility. As the density of bitter receptors may be higher in the duodenum than the stomach, direct delivery to the duodenum may be more potent in stimulating these functions. The gastrointestinal responses to bitter compounds may also be modified by sex. BACKGROUND We have characterized the effects of intragastric (IG) versus intraduodenal (ID) administration of quinine hydrochloride (QHCl) on gut and pancreatic hormones and antropyloroduodenal pressures in healthy men and women. METHODS 14 men (26 ± 2 years, BMI: 22.2 ± 0.5 kg/m2) and 14 women (28 ± 2 years, BMI: 22.5 ± 0.5 kg/m2) received 600 mg QHCl on 2 separate occasions, IG or ID as a 10-mL bolus, in randomized, double-blind fashion. Plasma ghrelin, cholecystokinin, peptide YY, glucagon-like peptide-1 (GLP-1), insulin, glucagon, and glucose concentrations and antropyloroduodenal pressures were measured at baseline and for 120 minutes following QHCl. RESULTS Suppression of ghrelin (P = 0.006), stimulation of cholecystokinin (P = 0.030), peptide YY (P = 0.017), GLP-1 (P = 0.034), insulin (P = 0.024), glucagon (P = 0.030), and pyloric pressures (P = 0.050), and lowering of glucose (P = 0.001) were greater after ID-QHCl than IG-QHCl. Insulin stimulation (P = 0.021) and glucose reduction (P = 0.001) were greater in females than males, while no sex-associated effects were found for cholecystokinin, peptide YY, GLP-1, glucagon, or pyloric pressures. CONCLUSION ID quinine has greater effects on plasma gut and pancreatic hormones and pyloric pressures than IG quinine in healthy subjects, consistent with the concept that stimulation of small intestinal bitter receptors is critical to these responses. Both insulin stimulation and glucose lowering were sex-dependent.
Collapse
Affiliation(s)
- Peyman Rezaie
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide SA 5005, Australia
| | - Vida Bitarafan
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide SA 5005, Australia
| | - Braden D Rose
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide SA 5005, Australia
| | - Kylie Lange
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide SA 5005, Australia
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide SA 5005, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide SA 5005, Australia
| | - Christine Feinle-Bisset
- Correspondence: Prof Christine Feinle-Bisset, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Corner of North Tce and George St, Adelaide SA 5005, Australia.
| |
Collapse
|
5
|
Dietary conjugated linoleic acid and medium-chain triglycerides for obesity management. J Biosci 2021. [DOI: 10.1007/s12038-020-00133-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Liu ZH, Xie WW, Zan GX, Gao CQ, Yan HC, Zhou JY, Wang XQ. Lauric acid alleviates deoxynivalenol-induced intestinal stem cell damage by potentiating the Akt/mTORC1/S6K1 signaling axis. Chem Biol Interact 2021; 348:109640. [PMID: 34506767 DOI: 10.1016/j.cbi.2021.109640] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/04/2021] [Accepted: 09/06/2021] [Indexed: 11/25/2022]
Abstract
Intestinal stem cell (ISC)-driven intestinal homeostasis is subjected to dual regulation by dietary nutrients and toxins. Our study investigated the use of lauric acid (LA) to alleviate deoxynivalenol (DON)-induced intestinal epithelial damage. C57BL/6 mice in the control, LA, DON, and LA + DON groups were orally administered PBS, 10 mg/kg BW LA, 2 mg/kg BW DON, and 10 mg/kg BW LA + 2 mg/kg BW DON for 10 days. The results showed that LA increased the average daily gain and average daily feed intake of the mice exposed to DON. Moreover, the DON-triggered impairment of jejunal morphology and barrier function was significantly improved after LA supplementation. Moreover, LA rescued ISC proliferation, inhibited intestinal cell apoptosis, and promoted ISC differentiation into absorptive cells, goblet cells, and Paneth cells. The jejunum crypt cells from the mice in the LA group expanded into enteroids, resulting in a significantly greater enteroid area than that in the DON group. Furthermore, LA reversed the DON-mediated inhibition of the Akt/mTORC1/S6K1 signaling axis in the jejunum. Our results indicated that LA accelerates ISC regeneration to repair intestinal epithelial damage after DON insult by reactivating the Akt/mTORC1/S6K1 signaling pathway, which provides new implications for the function of LA in ISCs.
Collapse
Affiliation(s)
- Zhen-Hua Liu
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Wen-Wen Xie
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Geng-Xiu Zan
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Chun-Qi Gao
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Jia-Yi Zhou
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China.
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Wilbrink J, Masclee G, Klaassen T, van Avesaat M, Keszthelyi D, Masclee A. Review on the Regional Effects of Gastrointestinal Luminal Stimulation on Appetite and Energy Intake: (Pre)clinical Observations. Nutrients 2021; 13:nu13051601. [PMID: 34064724 PMCID: PMC8151500 DOI: 10.3390/nu13051601] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/22/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
Macronutrients in the gastrointestinal (GI) lumen are able to activate “intestinal brakes”, feedback mechanisms on proximal GI motility and secretion including appetite and energy intake. In this review, we provide a detailed overview of the current evidence with respect to four questions: (1) are regional differences (duodenum, jejunum, ileum) present in the intestinal luminal nutrient modulation of appetite and energy intake? (2) is this “intestinal brake” effect macronutrient specific? (3) is this “intestinal brake” effect maintained during repetitive activation? (4) can the “intestinal brake” effect be activated via non-caloric tastants? Recent evidence indicates that: (1) regional differences exist in the intestinal modulation of appetite and energy intake with a proximal to distal gradient for inhibition of energy intake: ileum and jejunum > duodenum at low but not at high caloric infusion rates. (2) the “intestinal brake” effect on appetite and energy appears not to be macronutrient specific. At equi-caloric amounts, the inhibition on energy intake and appetite is in the same range for fat, protein and carbohydrate. (3) data on repetitive ileal brake activation are scarce because of the need for prolonged intestinal intubation. During repetitive activation of the ileal brake for up to 4 days, no adaptation was observed but overall the inhibitory effect on energy intake was small. (4) the concept of influencing energy intake by intra-intestinal delivery of non-caloric tastants is intriguing. Among tastants, the bitter compounds appear to be more effective in influencing energy intake. Energy intake decreases modestly after post-oral delivery of bitter tastants or a combination of tastants (bitter, sweet and umami). Intestinal brake activation provides an interesting concept for preventive and therapeutic approaches in weight management strategies.
Collapse
Affiliation(s)
- Jennifer Wilbrink
- Division of Gastroenterology-Hepatology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (J.W.); (G.M.); (T.K.); (M.v.A.); (D.K.)
| | - Gwen Masclee
- Division of Gastroenterology-Hepatology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (J.W.); (G.M.); (T.K.); (M.v.A.); (D.K.)
| | - Tim Klaassen
- Division of Gastroenterology-Hepatology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (J.W.); (G.M.); (T.K.); (M.v.A.); (D.K.)
| | - Mark van Avesaat
- Division of Gastroenterology-Hepatology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (J.W.); (G.M.); (T.K.); (M.v.A.); (D.K.)
| | - Daniel Keszthelyi
- Division of Gastroenterology-Hepatology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (J.W.); (G.M.); (T.K.); (M.v.A.); (D.K.)
- NUTRIM School of Nutrition and Translational Research in Metabolism, 6229 ER Maastricht, The Netherlands
| | - Adrian Masclee
- Division of Gastroenterology-Hepatology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (J.W.); (G.M.); (T.K.); (M.v.A.); (D.K.)
- NUTRIM School of Nutrition and Translational Research in Metabolism, 6229 ER Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-43-3875021
| |
Collapse
|
8
|
Maher T, Deleuse M, Thondre S, Shafat A, Clegg ME. A comparison of the satiating properties of medium-chain triglycerides and conjugated linoleic acid in participants with healthy weight and overweight or obesity. Eur J Nutr 2021; 60:203-215. [PMID: 32248292 PMCID: PMC7867511 DOI: 10.1007/s00394-020-02235-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 03/25/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Inconsistent evidence exists for greater satiety after medium-chain triglycerides (MCT) or conjugated linoleic acid (CLA) compared to long-chain triglycerides (LCT). Furthermore, the mechanisms are poorly understood and effects in people with a healthy weight and those with overweight/obesity have not been compared. This study aimed to compare appetite responses in these groups and examine the mechanisms behind any differences. METHODS Fifteen participants with healthy weight (BMI: 22.7 ± 1.9 kg·m-2) and fourteen participants with overweight/obesity (BMI: 30.9 ± 3.9 kg·m-2) consumed a breakfast containing either 23.06 g vegetable oil (CON), 25.00 g MCT oil (MCT), or 6.25 g CLA and 16.80 g vegetable oil (CLA). Appetite, peptide YY (PYY), total ghrelin (TG), β-hydroxybutyrate, and gastric emptying (GE) were measured throughout. Energy intake was assessed at an ad libitum lunch and throughout the following ~ 36 h. RESULTS Neither MCT nor CLA decreased ad libitum intake; however MCT decreased day 1 energy intake (P = 0.031) and the 48-h period (P = 0.005) compared to CON. MCT delayed GE (P ≤ 0.01) compared to CON, whereas CLA did not. PYY and TG concentrations were not different (P = 0.743 and P = 0.188, respectively), but MCT increased β-hydroxybutyrate concentrations compared to CON (P = 0.005) and CLA (P < 0.001). β-hydroxybutyrate concentrations were higher in participants with overweight/obesity (P = 0.009). CONCLUSION Consumption of MCT reduces energy intake in the subsequent 48 h, whereas CLA does not. Delayed gastric emptying or increased β-hydroxybutyrate concentrations may mediate this.
Collapse
Affiliation(s)
- Tyler Maher
- Diet and Cardiometabolic Health Research Group, Department of Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, London, SE1 9NH, UK
- Faculty of Health and Life Sciences, Oxford Brookes Centre for Nutrition and Health, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Martina Deleuse
- Faculty of Health and Life Sciences, Oxford Brookes Centre for Nutrition and Health, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Sangeetha Thondre
- Faculty of Health and Life Sciences, Oxford Brookes Centre for Nutrition and Health, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Amir Shafat
- Physiology, School of Medicine, National University of Ireland, Galway, H91 W5P7, Ireland
| | - Miriam E Clegg
- Faculty of Health and Life Sciences, Oxford Brookes Centre for Nutrition and Health, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
- Department of Food and Nutritional Sciences, University of Reading, Harry Nursten Building, Whiteknights, Reading, RG6 6AP, UK.
| |
Collapse
|
9
|
Maher T, Clegg ME. A systematic review and meta-analysis of medium-chain triglycerides effects on acute satiety and food intake. Crit Rev Food Sci Nutr 2020; 61:636-648. [PMID: 32212947 DOI: 10.1080/10408398.2020.1742654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Research has indicated that consuming medium-chain triglycerides (MCT) may be more satiating than consuming long-chain triglycerides (LCT) potentially causing a reduction in energy intake. However not all studies have demonstrated this acute reduction in energy intake and it has yet to be systematically reviewed. Our main objective was to examine how ingestion of MCT influences energy intake, subjective appetite ratings and appetite-related hormones compared to LCT. Web of Science, MEDLINE, CINHAL, and Embase were searched for publications comparing the effect of MCT on appetite (commonly hunger, fullness, desire to eat, and prospective food consumption), appetite-related hormones (pancreatic polypeptide (PP), gastric inhibitory polypeptide (GIP), peptide YY (PYY), glucagon-like peptide-1 (GLP-1), neurotensin, leptin, total ghrelin and active ghrelin) and energy intake to LCT. A random-effects meta-analysis was conducted on studies which examined energy intake. Seventeen studies (291 participants) were included in the systematic review, of which 11 were included in the energy intake meta-analysis. Synthesis of combined data showed evidence of a statistically significant moderate decrease in ad libitum energy intake after both acute and chronic ingestion of MCT compared to LCT when assessed under laboratory conditions (mean effect size: -0.444, 95% CI -0.808, -0.080, p < 0.017), despite little evidence of any effect of MCT on subjective appetite ratings or circulating hormones. The current evidence supports the notion that MCT decreases subsequent energy intake, but does not appear to affect appetite. Further research is warranted to elucidate the mechanisms by which MCT reduce energy intake.
Collapse
Affiliation(s)
- Tyler Maher
- Diet and Cardiometabolic Health Research Group, Department of Nutritional Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom of Great Britain and Northern Ireland.,Oxford Brookes Centre for Nutrition and Health, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom of Great Britain and Northern Ireland
| | - Miriam E Clegg
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
10
|
McVeay C, Fitzgerald PCE, Horowitz M, Feinle-Bisset C. Effects of Duodenal Infusion of Lauric Acid and L-Tryptophan, Alone and Combined, on Fasting Glucose, Insulin and Glucagon in Healthy Men. Nutrients 2019; 11:nu11112697. [PMID: 31703434 PMCID: PMC6893799 DOI: 10.3390/nu11112697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023] Open
Abstract
The fatty acid, lauric acid ('C12'), and the amino acid, tryptophan ('Trp'), when given intraduodenally at loads that individually do not affect energy intake, have recently been shown to stimulate plasma cholecystokinin, suppress ghrelin and reduce energy intake much more markedly when combined. Both fatty acids and amino acids stimulate insulin secretion by distinct mechanisms; fatty acids enhance glucose-stimulated insulin secretion, while amino acids may have a direct effect on pancreatic β cells. Therefore, it is possible that, by combining these nutrients, their effects to lower blood glucose may be enhanced. We have investigated the potential for the combination of C12 and Trp to have additive effects to reduce blood glucose. To address this question, plasma concentrations of glucose, insulin and glucagon were measured in 16 healthy, lean males during duodenal infusions of saline (control), C12 (0.3 kcal/min), Trp (0.1 kcal/min), or C12+Trp (0.4 kcal/min), for 90 min. Both C12 and C12+Trp moderately reduced plasma glucose compared with control (p < 0.05). C12+Trp, but not C12 or Trp, stimulated insulin and increased the insulin-to-glucose ratio (p < 0.05). There was no effect on plasma glucagon. In conclusion, combined intraduodenal administration of C12 and Trp reduced fasting glucose in healthy men, and this decrease was driven primarily by C12. The effects of these nutrients on postprandial blood glucose and elevated fasting blood glucose in type 2 diabetes warrant evaluation.
Collapse
|
11
|
Mosińska P, Tarasiuk A, Fabisiak A, Krajewska J, Niewinna K, Bartoszek A, Binienda A, Sałaga M, Fichna J. Dietary fatty acid content influences the expression of genes involved in the lipid turnover and inflammation in mouse colon and spleen. Pharmacol Rep 2019; 71:899-908. [PMID: 31421543 DOI: 10.1016/j.pharep.2019.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/06/2019] [Accepted: 07/11/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Dietary interventions can improve gastrointestinal (GI) symptoms. We determined the effects of fatty acids (FAs) supplementation with medium- and long-chain saturated FAs on mouse GI motility and correlated them with the expression of genes for free FA receptors (FFAR)1-4, FA binding protein 4 (FABP4) and inflammation. METHODS Forty-eight BalbC were assigned to: standard diet (STD), diet rich in medium-chain saturated FAs (COCO) and long-chain saturated FAs (HF) (7% by weight). Body weight (BW) and food intake (FI) were monitored for 8-weeks. GI motility was determined by fecal pellet output (FPO) and colon bead expulsion tests. FABP4 inhibitor, BMS309403 (1mg/kg, ip) was injected to half of each group 2 days/week. mRNA expression of FABP4, (FFAR)1-4, and pro-inflammatory cytokines were measured in colonic and splenic tissues using real-time PCR. RESULTS COCO and HF decreased FI. COCO accelerated overall GI transit (p<0.05). COCO increased the mRNA expression of FFAR2 (p<0.001) and TNFα (p<0.01); HF increased the expression of FABP4 and FFAR4 (p<0.05), and FFAR2 (p<0.001) in the colon, and decreased FFAR1 and FFAR4 (p<0.001), TNFα (p<0.01) and IL-1β (p<0.05) in splenic tissues. BMS309403 decreased the FI and delayed colonic transit in STD+BMS and COCO+BMS vs. STD (p<0.05). HF+BMS increased colonic expression of FFAR3 (p<0.01), TNFα (p<0.01), IL-6 (p<0.01), and reduced FFAR4 (p<0.05); COCO+BMS decreased TNFα (p<0.01). CONCLUSION Diversification in the dietary lipid content affected GI motility in mice and the expression of FFARs and pro-inflammatory cytokines in vivo.
Collapse
Affiliation(s)
- Paula Mosińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Aleksandra Tarasiuk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Adam Fabisiak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland; Department of Digestive Tract Diseases, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Julia Krajewska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Karolina Niewinna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Adrian Bartoszek
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Agata Binienda
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Maciej Sałaga
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland.
| |
Collapse
|
12
|
Mosińska P, Martín-Ruiz M, González A, López-Miranda V, Herradón E, Uranga JA, Vera G, Sánchez-Yáñez A, Martín-Fontelles MI, Fichna J, Abalo R. Changes in the diet composition of fatty acids and fiber affect the lower gastrointestinal motility but have no impact on cardiovascular parameters: In vivo and in vitro studies. Neurogastroenterol Motil 2019; 31:e13651. [PMID: 31145538 DOI: 10.1111/nmo.13651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/30/2019] [Accepted: 05/17/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Food and diet are central issues for proper functioning of the cardiovascular (CV) system and gastrointestinal (GI) tract. We hypothesize that different types of dietary FAs affect CV parameters as well as GI motor function and visceral sensitivity. METHODS Male Wistar rats were fed with control diet (CTRL), diet supplemented with 7% soybean oil (SOY), SOY + 3.5% virgin coconut oil (COCO), and SOY + 3.5% evening primrose oil (EP) for 4 weeks. The content of insoluble fiber in CTRL was higher than in SOY, COCO, or EP. Body weight gain and food/water intake were measured. At day 28, biometric, biochemical, CV parameters, GI motor function (X-ray and colon bead expulsion test), and visceral sensitivity were evaluated. Changes in propulsive colonic activity were determined in vitro. The colon and adipose tissue were histologically studied; the number of mast cells (MCs) in the colon was calculated. RESULTS SOY, COCO, and EP had increased body weight gain but decreased food intake vs CTRL. Water consumption, biometric, biochemical, and CV parameters were comparable between groups. SOY increased the sensitivity to colonic distention. All groups maintained regular propulsive neurogenic contractions; EP delayed colonic motility (P < 0.01). SOY, COCO, and EP displayed decreased size of the cecum, lower number and size of fecal pellets, and higher infiltration of MCs to the colon (P < 0.001). CONCLUSIONS AND INFERENCES Dietary FAs supplementation and lower intake of insoluble fiber can induce changes in the motility of the lower GI tract, in vivo and in vitro, but CV function and visceral sensitivity are not generally affected.
Collapse
Affiliation(s)
- Paula Mosińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Marta Martín-Ruiz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio González
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Visitación López-Miranda
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada al Instituto de Química Medica (IQM) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Esperanza Herradón
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada al Instituto de Química Medica (IQM) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Spain
| | - José A Uranga
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Gema Vera
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada al Instituto de Química Medica (IQM) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Adrián Sánchez-Yáñez
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Mª Isabel Martín-Fontelles
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada al Instituto de Química Medica (IQM) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Raquel Abalo
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada al Instituto de Química Medica (IQM) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Spain
| |
Collapse
|
13
|
Ungerfeld E, Urrutia N, Vásconez-Montúfar C, Morales R. Factors associated with the content of mammary-synthesized fatty acids in milk fat: A meta-analysis. J Dairy Sci 2019; 102:4105-4117. [DOI: 10.3168/jds.2018-15157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 01/07/2019] [Indexed: 01/08/2023]
|
14
|
McVeay C, Fitzgerald PCE, Ullrich SS, Steinert RE, Horowitz M, Feinle-Bisset C. Effects of intraduodenal administration of lauric acid and L-tryptophan, alone and combined, on gut hormones, pyloric pressures, and energy intake in healthy men. Am J Clin Nutr 2019; 109:1335-1343. [PMID: 31051504 DOI: 10.1093/ajcn/nqz020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/25/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The fatty acid, lauric acid ('C12'), and the amino acid, L-tryptophan ('Trp'), modulate gastrointestinal functions including gut hormones and pyloric pressures, which are important for the regulation of energy intake, and both potently suppress energy intake. OBJECTIVE We hypothesized that the intraduodenal administration of C12 and Trp, at loads that do not affect energy intake individually, when combined will reduce energy intake, which is associated with greater modulation of gut hormones and pyloric pressures. DESIGN Sixteen healthy, lean males (age: 24 ± 1.5 y) received 90-min intraduodenal infusions of saline (control), C12 (0.3 kcal/min), Trp (0.1 kcal/min), or C12 + Trp (0.4 kcal/min), in a randomized, double-blind, cross-over study. Antropyloroduodenal pressures were measured continuously, and plasma cholecystokinin (CCK), ghrelin, and glucagon-like peptide-1 (GLP-1) concentrations, appetite perceptions, and gastrointestinal symptoms at 15-min intervals. Immediately after the infusions, energy intake from a standardized buffet meal was quantified. RESULTS C12 + Trp markedly reduced energy intake (kcal; control: 1,232 ± 72, C12: 1,180 ± 82, Trp: 1,269 ± 73, C12 + Trp: 1,056 ± 106), stimulated plasma CCK (AUC(area under the curve)0-90 min, pmol/L*min; control: 21 ± 8; C12: 129 ± 15; Trp: 97 ± 16; C12 + Trp: 229 ± 22) and GLP-1 (AUC0-90 min, pmol/L*min; control: 102 ± 41; C12: 522 ± 102; Trp: 198 ± 63; C12 + Trp: 545 ± 138), and suppressed ghrelin (AUC0-90 min, pg/mL*min; control: -3,433 ± 2,647; C12: -11,825 ± 3,521; Trp: -8,417 ± 3,734; C12 + Trp: -18,188 ± 4,165) concentrations, but did not stimulate tonic, or phasic, pyloric pressures, compared with the control (all P < 0.05), or have adverse effects. C12 and Trp each stimulated CCK (P < 0.05), but to a lesser degree than C12 + Trp, and did not suppress energy intake or ghrelin. C12, but not Trp, stimulated GLP-1 (P < 0.05) and phasic pyloric pressures (P < 0.05), compared with the control. CONCLUSION The combined intraduodenal administration of C12 and Trp, at loads that individually do not affect energy intake, substantially reduces energy intake, which is associated with a marked stimulation of CCK and suppression of ghrelin. The study was registered as a clinical trial at the Australian and New Zealand Clinical Trial Registry (www.anzctr.org.au,) as 12613000899741.
Collapse
Affiliation(s)
- Christina McVeay
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Penelope C E Fitzgerald
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Sina S Ullrich
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Robert E Steinert
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Michael Horowitz
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Christine Feinle-Bisset
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| |
Collapse
|
15
|
Maher T, Clegg ME. Dietary lipids with potential to affect satiety: Mechanisms and evidence. Crit Rev Food Sci Nutr 2018; 59:1619-1644. [DOI: 10.1080/10408398.2017.1423277] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tyler Maher
- Oxford Brookes Centre for Nutrition and Health, Department of Sport, Health Sciences and Social Work, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford, UK
| | - Miriam E. Clegg
- Oxford Brookes Centre for Nutrition and Health, Department of Sport, Health Sciences and Social Work, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford, UK
| |
Collapse
|
16
|
Dunshea FR, Bittner EP, Pluske JR, Black JL. Role of the gut, melanocortin system and malonyl-CoA in control of feed intake in non-ruminant animals. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an17273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Regulation of feed intake is under complex control, involving physical, chemical, hormonal and neuronal responses. Understanding the regulation of feed intake in farm animals is key to optimisation of intake to meet production and profitability goals. Fundamental mechanisms regulating feed intake include constraints imposed by the gut, systems monitoring current and long-term energy status to increase or decrease intake, and hedonic, reward-related drives. Feed intake is closely related to the rate of passage of digesta and the capacity of the gastrointestinal tract. Indigestible fibre increases the rate of digesta passage and feed intake until excess distension sends signals of satiety to the brain. The presence of partially digested nutrients and products of microbial fermentation in the distal intestines releases peptides (PYY, OXM, GPL-1, Apo A-IV, amylin) from gut and pancreas to activate the intestinal brake, which slows the rate of passage and reduces feed intake. These peptides also act on orexigenic (NPY, AgRP) and anorexigenic (POMC, CART) peptides of the melanocortin system of the hypothalamus to reduce intake over the long term. Immediate energy status of the animal is monitored through the ratio of AMP : ATP via adenosine monophosphate-activated kinase and mammalian target of rapamycin, whereas the overall animal energy status is monitored by insulin, leptin and ghrelin. These energy-monitoring systems control short- and long-term intakes through the melanocortin system of the hypothalamus, primarily via malonyl-CoA, to alter the relative expression of orexigenic and anorexigenic peptides. Gut and hypothalamic control of feed intake can be over-ridden by hedonic, reward-related centres of the brain, predominantly through the release of dopamine. These hedonic responses can lead to over-consumption and obesity under some circumstances or reduced feed intake under stressful or other negative environmental situations. Knowledge of these mechanisms can be used to identify practical strategies for either increasing or decreasing voluntary intake in pigs.
Collapse
|
17
|
Hopkins M, Beaulieu K, Myers A, Gibbons C, Blundell JE. Mechanisms responsible for homeostatic appetite control: theoretical advances and practical implications. Expert Rev Endocrinol Metab 2017; 12:401-415. [PMID: 30063436 DOI: 10.1080/17446651.2017.1395693] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Homeostatic appetite control is part of a psychobiological system that has evolved to maintain an adequate supply of nutrients for growth and maintenance. The system links the physiological needs for energy with the behaviour that satisfies these needs (feeding), and is shaped by excitatory and inhibitory signals. Owing to rapid shifts in the food environment, homeostatic appetite control is not well adapted for modern-day human functioning. Areas covered: Homeostatic appetite control has two divisions. Tonic processes exert stable and enduring influences, with signals arising from bodily tissues and metabolism. Episodic processes fluctuate rapidly and are related to nutrient ingestion and the composition of foods consumed. Research in these areas incorporates potent endocrine signals that can influence behaviour. Expert commentary: The regulation of adipose tissue, and its impact on appetite (energy) homeostasis, has been heavily researched. More recently however, it has been demonstrated that fat-free mass has the potential to act as a tonic driver of food intake. A challenging issue is to determine how the post-prandial action of episodic satiety hormones and gastrointestinal mechanisms can effectively brake the metabolic drive to eat, in order to keep food intake under control and prevent a positive energy balance and fat accumulation.
Collapse
Affiliation(s)
- Mark Hopkins
- a School of Food Science and Nutrition, Faculty of Mathematics and Physical Sciences , University of Leeds , Leeds , UK
| | - Kristine Beaulieu
- b School of Psychology, Faculty of Medicine and Health , University of Leeds , Leeds , UK
| | - Anna Myers
- b School of Psychology, Faculty of Medicine and Health , University of Leeds , Leeds , UK
| | - Catherine Gibbons
- b School of Psychology, Faculty of Medicine and Health , University of Leeds , Leeds , UK
| | - John E Blundell
- b School of Psychology, Faculty of Medicine and Health , University of Leeds , Leeds , UK
| |
Collapse
|
18
|
Narverud I, Myhrstad MCW, Herzig KH, Karhu T, Dahl TB, Halvorsen B, Ulven SM, Holven KB. Lack of Effects of a Single High-Fat Meal Enriched with Vegetable n-3 or a Combination of Vegetable and Marine n-3 Fatty Acids on Intestinal Peptide Release and Adipokines in Healthy Female Subjects. Front Nutr 2016; 3:38. [PMID: 27630989 PMCID: PMC5005423 DOI: 10.3389/fnut.2016.00038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/22/2016] [Indexed: 11/13/2022] Open
Abstract
Peptides released from the small intestine and colon regulate short-term food intake by suppressing appetite and inducing satiety. Intake of marine omega-3 (n-3) fatty acids (FAs) from fish and fish oils is associated with beneficial health effects, whereas the relation between intake of the vegetable n-3 fatty acid α-linolenic acid and diseases is less clear. The aim of the present study was to investigate the postprandial effects of a single high-fat meal enriched with vegetable n-3 or a combination of vegetable and marine n-3 FAs with their different unsaturated fatty acid composition on intestinal peptide release and the adipose tissue. Fourteen healthy lean females consumed three test meals with different fat quality in a fixed order. The test meal consisted of three cakes enriched with coconut fat, linseed oil, and a combination of linseed and cod liver oil. The test days were separated by 2 weeks. Fasting and postprandial blood samples at 3 and 6 h after intake were analyzed. A significant postprandial effect was observed for cholecystokinin, peptide YY, glucose-dependent insulinotropic polypeptide, amylin and insulin, which increased, while leptin decreased postprandially independent of the fat composition in the high-fat meal. In conclusion, in healthy, young, lean females, an intake of a high-fat meal enriched with n-3 FAs from different origin stimulates intestinal peptide release without any difference between the different fat compositions.
Collapse
Affiliation(s)
- Ingunn Narverud
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo , Oslo , Norway
| | - Mari C W Myhrstad
- Department of Health, Nutrition and Management, Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences , Oslo , Norway
| | - Karl-Heinz Herzig
- Institute of Biomedicine and Biocenter of Oulu, Oulu University Medical School, University of Oulu, Oulu, Finland; Medical Center Oulu, Oulu University Hospital, Oulu, Finland
| | - Toni Karhu
- Institute of Biomedicine and Biocenter of Oulu, Oulu University Medical School, University of Oulu , Oulu , Finland
| | - Tuva B Dahl
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Stine M Ulven
- Department of Health, Nutrition and Management, Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences , Oslo , Norway
| | - Kirsten B Holven
- Department of Health, Nutrition and Management, Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, Oslo, Norway; National Advisory Unit for Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
19
|
Schober G, Lange K, Steinert RE, Hutchison AT, Luscombe-Marsh ND, Landrock MF, Horowitz M, Seimon RV, Feinle-Bisset C. Contributions of upper gut hormones and motility to the energy intake-suppressant effects of intraduodenal nutrients in healthy, lean men - a pooled-data analysis. Physiol Rep 2016; 4:e12943. [PMID: 27613824 PMCID: PMC5027351 DOI: 10.14814/phy2.12943] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/08/2016] [Indexed: 02/07/2023] Open
Abstract
We have previously identified pyloric pressures and plasma cholecystokinin (CCK) concentrations as independent determinants of energy intake following administration of intraduodenal lipid and intravenous CCK. We evaluated in healthy men whether these parameters also determine energy intake in response to intraduodenal protein, and whether, across the nutrients, any predominant gastrointestinal (GI) factors exist, or many factors make small contributions. Data from nine published studies, in which antropyloroduodenal pressures, GI hormones, and GI /appetite perceptions were measured during intraduodenal lipid or protein infusions, were pooled. In all studies energy intake was quantified immediately after the infusions. Specific variables for inclusion in a mixed-effects multivariable model for determination of independent predictors of energy intake were chosen following assessment for collinearity, and within-subject correlations between energy intake and these variables were determined using bivariate analyses adjusted for repeated measures. In models based on all studies, or lipid studies, there were significant effects for amplitude of antral pressure waves, premeal glucagon-like peptide-1 (GLP-1) and time-to-peak GLP-1 concentrations, GLP-1 AUC and bloating scores (P < 0.05), and trends for basal pyloric pressure (BPP), amplitude of duodenal pressure waves, peak CCK concentrations, and hunger and nausea scores (0.05 < P ≤ 0.094), to be independent determinants of subsequent energy intake. In the model including the protein studies, only BPP was identified as an independent determinant of energy intake (P < 0.05). No single parameter was identified across all models, and effects of the variables identified were relatively small. Taken together, while GI mechanisms contribute to the regulation of acute energy intake by lipid and protein, their contribution to the latter is much less. Moreover, the effects are likely to reflect small, cumulative contributions from a range of interrelated factors.
Collapse
Affiliation(s)
- Gudrun Schober
- University of Adelaide Discipline of Medicine, Adelaide, Australia
| | - Kylie Lange
- University of Adelaide Discipline of Medicine, Adelaide, Australia NHMRC Centre of Excellence in Translating Nutritional Science to Good Health University of Adelaide, Adelaide, Australia
| | - Robert E Steinert
- University of Adelaide Discipline of Medicine, Adelaide, Australia NHMRC Centre of Excellence in Translating Nutritional Science to Good Health University of Adelaide, Adelaide, Australia
| | - Amy T Hutchison
- University of Adelaide Discipline of Medicine, Adelaide, Australia NHMRC Centre of Excellence in Translating Nutritional Science to Good Health University of Adelaide, Adelaide, Australia South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Natalie D Luscombe-Marsh
- NHMRC Centre of Excellence in Translating Nutritional Science to Good Health University of Adelaide, Adelaide, Australia CSIRO Animal, Food and Health Sciences, Adelaide, Australia
| | - Maria F Landrock
- University of Adelaide Discipline of Medicine, Adelaide, Australia
| | - Michael Horowitz
- University of Adelaide Discipline of Medicine, Adelaide, Australia NHMRC Centre of Excellence in Translating Nutritional Science to Good Health University of Adelaide, Adelaide, Australia
| | - Radhika V Seimon
- Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, University of Sydney, Sydney, Australia
| | - Christine Feinle-Bisset
- University of Adelaide Discipline of Medicine, Adelaide, Australia NHMRC Centre of Excellence in Translating Nutritional Science to Good Health University of Adelaide, Adelaide, Australia
| |
Collapse
|
20
|
Gibbons C, Finlayson G, Caudwell P, Webb DL, Hellström PM, Näslund E, Blundell JE. Postprandial profiles of CCK after high fat and high carbohydrate meals and the relationship to satiety in humans. Peptides 2016; 77:3-8. [PMID: 26429068 DOI: 10.1016/j.peptides.2015.09.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 10/23/2022]
Abstract
CONTEXT CCK is understood to play a major role in appetite regulation. Difficulties in measuring CCK have limited the potential to assess its profile in relation to food-induced satiety. Improvements in methodology and progress in theoretical understanding of satiety/satiation make it timely for this to be revisited. OBJECTIVE First, examine how physiologically relevant postprandial CCK8/33(s) profiles are influenced by fat (HF) or carbohydrate (HCHO) meals. Second, to examine relationships between postprandial CCK and profiles of satiety (hunger/fullness) and satiation (meal size). PARTICIPANTS AND DESIGN Sixteen overweight/obese adults (11 females/5 males) participated in a randomised-crossover study (46 years, 29.8 kg/m(2)) in a university research centre. Plasma was collected preprandially and for 180 min postprandially. Simultaneously, ratings of hunger/fullness were tracked for 180 min before an ad libitum lunch was provided. RESULTS CCK8/33(s) levels increased more rapidly and reached a higher peak following HF compared to HCHO breakfast (F(1,15)=14.737, p<0.01). Profiles of hunger/fullness did not differ between conditions (F(1,15)=0.505, p=0.488; F(1,15)=2.277, p=0.152). There was no difference in energy intake from the ad libitum meal (HF-3958 versus HCHO-3925 kJ; t(14)=0.201, p=0.844). CCK8/33(s) profiles were not associated with subjective appetite during early and late phases of satiety; nor was there an association between CCK8/33(s) and meal size. CONCLUSIONS These results demonstrate CCK levels were higher after HF meal compared to HCHO isocaloric meal. There was no association between CCK levels and intensity of satiety, or with meal size. Under these circumstances, CCK does not appear to play a unique independent role in satiety/satiation. CCK probably acts in conjunction with other peptides and the action of the stomach.
Collapse
Affiliation(s)
- Catherine Gibbons
- Biopsychology Group, School of Psychology, University of Leeds, Leeds, UK.
| | - Graham Finlayson
- Biopsychology Group, School of Psychology, University of Leeds, Leeds, UK
| | - Phillipa Caudwell
- Biopsychology Group, School of Psychology, University of Leeds, Leeds, UK
| | - Dominic-Luc Webb
- Department of Medical Sciences, Gastroenterology and Hepatology, Uppsala University, Uppsala, Sweden
| | - Per M Hellström
- Department of Medical Sciences, Gastroenterology and Hepatology, Uppsala University, Uppsala, Sweden
| | - Erik Näslund
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institute, Stockholm, Sweden
| | - John E Blundell
- Biopsychology Group, School of Psychology, University of Leeds, Leeds, UK
| |
Collapse
|
21
|
Alleleyn AME, van Avesaat M, Troost FJ, Masclee AAM. Gastrointestinal Nutrient Infusion Site and Eating Behavior: Evidence for A Proximal to Distal Gradient within the Small Intestine? Nutrients 2016; 8:117. [PMID: 26927170 PMCID: PMC4808847 DOI: 10.3390/nu8030117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/16/2016] [Accepted: 02/19/2016] [Indexed: 12/23/2022] Open
Abstract
The rapidly increasing prevalence of overweight and obesity demands new strategies focusing on prevention and treatment of this significant health care problem. In the search for new and effective therapeutic modalities for overweight subjects, the gastrointestinal (GI) tract is increasingly considered as an attractive target for medical and food-based strategies. The entry of nutrients into the small intestine activates so-called intestinal "brakes", negative feedback mechanisms that influence not only functions of more proximal parts of the GI tract but also satiety and food intake. Recent evidence suggests that all three macronutrients (protein, fat, and carbohydrates) are able to activate the intestinal brake, although to a different extent and by different mechanisms of action. This review provides a detailed overview of the current evidence for intestinal brake activation of the three macronutrients and their effects on GI function, satiety, and food intake. In addition, these effects appear to depend on region and length of infusion in the small intestine. A recommendation for a therapeutic approach is provided, based on the observed differences between intestinal brake activation.
Collapse
Affiliation(s)
- Annick M E Alleleyn
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
| | - Mark van Avesaat
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
- Top Institute of Food and Nutrition, 6700 AN Wageningen, The Netherlands.
| | - Freddy J Troost
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
- Top Institute of Food and Nutrition, 6700 AN Wageningen, The Netherlands.
| | - Adrian A M Masclee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
- Top Institute of Food and Nutrition, 6700 AN Wageningen, The Netherlands.
| |
Collapse
|
22
|
Ryan AT, Luscombe-Marsh ND, Saies AA, Little TJ, Standfield S, Horowitz M, Feinle-Bisset C. Effects of intraduodenal lipid and protein on gut motility and hormone release, glycemia, appetite, and energy intake in lean men. Am J Clin Nutr 2013; 98:300-11. [PMID: 23803895 DOI: 10.3945/ajcn.113.061333] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Intraduodenal lipid modulates gastrointestinal motility and hormone release and suppresses energy intake (EI) more than does intraduodenal glucose. Oral protein is the most satiating macronutrient and modulates postprandial glycemia; the comparative effects of intraduodenal protein and lipid and their combined effects are unclear. OBJECTIVE We investigated the effects of intraduodenal protein and lipid, alone or in combination, on antropyloroduodenal motility, gastrointestinal hormone release, glycemia, and EI. DESIGN Twenty lean men were studied on 5 randomized, double-blind occasions. Antropyloroduodenal motility, cholecystokinin, glucagon-like peptide-1 (GLP-1), insulin, glucagon, blood glucose, appetite, and nausea were measured during 90-min isocaloric (3 kcal/min) intraduodenal infusions of lipid [pure lipid condition (L3)], protein [pure protein condition (P3)], a 2:1 combination of lipid and protein [2:1 lipid:protein condition (L2P1)], a 1:2 combination of lipid and protein [1:2 lipid:protein condition (L1P2)], or a control. Immediately after the infusion, EI from a buffet lunch was quantified. RESULTS In comparison with the control, all nutrient infusions suppressed antral and duodenal and stimulated pyloric pressures (P < 0.05). Cholecystokinin and GLP-1 release and pyloric stimulation were lipid-load dependent (r ≥ 0.39, P < 0.01), insulin and glucagon releases were protein-load dependent (r = 0.83, P < 0.001), and normoglycemia was maintained. L3 but not P3 increased nausea (P < 0.05). Compared with the control, L3 and P3 but not L2P1 or L1P2 suppressed EI (P < 0.05) without major effects on appetite. CONCLUSIONS In lean men, despite differing effects on gut function, intraduodenal lipid and protein produce comparable reductions in energy intake. The effects of lipid may be a result of nausea. Protein also regulates blood glucose by stimulating insulin and glucagon. In contrast, at the loads selected, lipid:protein combinations did not suppress energy intake, suggesting that a threshold load is required to elicit effects. This trial was registered at Australia and New Zealand Clinical Trial Registry (http://www.anzctr.org.au) as 12609000949280.
Collapse
Affiliation(s)
- Amy T Ryan
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | | | | | | | | | | | | |
Collapse
|
23
|
Shin HS, Ingram JR, McGill AT, Poppitt SD. Lipids, CHOs, proteins: can all macronutrients put a 'brake' on eating? Physiol Behav 2013; 120:114-23. [PMID: 23911804 DOI: 10.1016/j.physbeh.2013.07.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/09/2013] [Accepted: 07/23/2013] [Indexed: 01/18/2023]
Abstract
The gastrointestinal (GI) tract and specifically the most distal part of the small intestine, the ileum, has become a renewed focus of interest for mechanisms targeting appetite suppression. The 'ileal brake' is stimulated when energy-containing nutrients are delivered beyond the duodenum and jejunum and into the ileum, and is named for the feedback loop which slows or 'brakes' gastric emptying and duodeno-jejunal motility. More recently it has been hypothesized that the ileal brake also promotes secretion of satiety-enhancing GI peptides and suppresses hunger, placing a 'brake' on food intake. Postprandial delivery of macronutrients to the ileum, other than unavailable carbohydrates (CHO) which bypass absorption in the small intestine en route to fermentation in the large bowel, is an uncommon event and hence this brake mechanism is rarely activated following a meal. However the ability to place a 'brake' on food intake through delivery of protected nutrients to the ileum is both intriguing and challenging. This review summarizes the current clinical and experimental evidence for activation of the ileal brake by the three food macronutrients, with emphasis on eating behavior and satiety as well as GI function. While clinical studies have shown that exposure of the ileum to lipids, CHOs and proteins may activate GI components of the ileal brake, such as decreased gut motility, gastric emptying and secretion of GI peptides, there is less evidence as yet to support a causal relationship between activation of the GI brake by these macronutrients and the suppression of food intake. The predominance of evidence for an ileal brake on eating comes from lipid studies, where direct lipid infusion into the ileum suppresses both hunger and food intake. Outcomes from oral feeding studies are less conclusive with no evidence that 'protected' lipids have been successfully delivered into the ileum in order to trigger the brake. Whether CHO or protein may induce the ileal brake and suppress food intake has to date been little investigated, although both clearly have GI mediated effects. This review provides an overview of the mechanisms and mediators of activation of the ileal brake and assesses whether it may play an important role in appetite suppression.
Collapse
Affiliation(s)
- H S Shin
- Human Nutrition Unit, University of Auckland, Auckland, New Zealand; School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
24
|
Effects of oleic acid and olive oil on gastric emptying, gut hormone secretion and appetite in lean and overweight or obese males. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.clnme.2012.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
25
|
Ryan AT, Feinle-Bisset C, Kallas A, Wishart JM, Clifton PM, Horowitz M, Luscombe-Marsh ND. Intraduodenal protein modulates antropyloroduodenal motility, hormone release, glycemia, appetite, and energy intake in lean men. Am J Clin Nutr 2012; 96:474-82. [PMID: 22854403 DOI: 10.3945/ajcn.112.038133] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Intraduodenal fat and carbohydrate modulate antropyloroduodenal motility and hormone release and suppress appetite and energy intake in a load-dependent manner. Protein also suppresses energy intake, but its effects on these gastrointestinal factors and their role in the appetite-suppressive effects of protein remain unclear. OBJECTIVE We aimed to characterize the effects of different intraduodenal protein loads on antropyloroduodenal pressures, gastrointestinal hormone release, glucose and insulin concentrations, appetite perceptions, and energy intake. DESIGN Sixteen lean, healthy men were studied on 4 occasions in a randomized, double-blind fashion. Antropyloroduodenal pressures, plasma glucagon-like peptide 1 (GLP-1), cholecystokinin, peptide YY, ghrelin, blood glucose, serum insulin, and appetite were measured during 60-min, 4-mL/min intraduodenal infusions of protein at 0.5, 1.5, or 3 kcal/min or saline (control). Energy intakes at a buffet lunch consumed immediately after the infusion were quantified. RESULTS Increases in the load of protein resulted in greater suppression of antral motility, greater stimulation of basal and isolated pyloric pressures and plasma cholecystokinin and GLP-1 concentrations, and greater suppression of energy intake. However, energy intake was reduced only after a protein load of 3 kcal/min compared with after all other treatments (P < 0.05). The suppression of energy intake after adjustment for cholecystokinin, GLP-1, and insulin was related inversely with basal pyloric pressure (r = -0.51, P < 0.001). CONCLUSION The acute effects of intraduodenal protein on antropyloroduodenal motility, gastrointestinal hormone release, glucose, and insulin are load dependent and contribute to the suppression of energy intake. This trial was registered at www.anzctr.org.au as 12610000376044.
Collapse
Affiliation(s)
- Amy T Ryan
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, Adelaide, Australia
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
The site of intestinal fat delivery affects satiety and may affect food intake in humans. Animal data suggest that the length of the small intestine exposed to fat is also relevant. The aim of the present study was to investigate whether increasing the areas of intestinal fat exposure and the way it is exposed would affect satiety parameters and food intake. In the present single-blind, randomised, cross-over study, fifteen volunteers, each intubated with a naso-ileal tube, received four treatments on consecutive days. The oral control (control treatment) was a liquid meal (LM) containing 6 g fat ingested at t = 0 min, with saline infusion at t = 30-120 min. Experimental treatments were a fat-free LM at t = 0 min, with either 6 g oil delivered sequentially (2 g duodenal, t = 30-60 min; 2 g jejunal, t = 60-90 min; 2 g ileal, t = 90-120 min), simultaneously (2 g each to all sites, t = 30-120 min) or ileal only (6 g ileal, t = 30-120 min). Satiety parameters (hunger and fullness) and cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), peptide YY (PYY) secretion were measured until t = 180 min, when ad libitum food intake was assessed. Only the ileum treatment reduced food intake significantly over the control treatment. The ileum and simultaneous treatments significantly reduced hunger compared with the control treatment. Compared with control, no differences were observed for PYY, CCK and GLP-1 with regard to 180 min integrated secretion. Ileal fat infusion had the most pronounced effect on food intake and satiety. Increasing the areas of intestinal fat exposure only affected hunger when fat was delivered simultaneously, not sequentially, to the exposed areas. These results demonstrate that ileal brake activation offers an interesting target for the regulation of ingestive behaviour.
Collapse
|
27
|
Stewart JE, Seimon RV, Otto B, Keast RSJ, Clifton PM, Feinle-Bisset C. Marked differences in gustatory and gastrointestinal sensitivity to oleic acid between lean and obese men. Am J Clin Nutr 2011; 93:703-11. [PMID: 21310831 DOI: 10.3945/ajcn.110.007583] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Both orosensory stimulation and feedback from the gastrointestinal tract contribute to energy intake regulation. OBJECTIVE We evaluated the hypothesis that overweight or obese subjects would be less sensitive to both oral and intraduodenal oleic acid exposure than would lean subjects. DESIGN Eleven overweight or obese and 8 lean men were studied on 2 occasions, during which antropyloroduodenal pressures, plasma cholecystokinin and peptide YY, and appetite were measured during 90-min intraduodenal infusions of saline or oleic acid (18:1 load: 0.78 kcal/min); energy intake (buffet lunch) was determined immediately afterward. Oral detection thresholds for 18:1 and recent dietary intake (2-d recall) were also quantified. RESULTS In lean subjects, the number of isolated pyloric pressure waves (IPPWs) was greater during 18:1 infusion than during saline infusion (P < 0.05); no significant differences were observed between the 18:1 and saline infusions in the overweight or obese subjects. In both groups, 18:1 stimulated plasma cholecystokinin and peptide YY and suppressed energy intake compared with saline (P < 0.05), with trends for reduced cholecystokinin and energy intake responses in the overweight or obese subjects. Detection thresholds for 18:1 were greater in overweight or obese (7.9 ± 0.1 mmol/L) than in lean (4.1 ± 0.4 mmol/L) subjects (P < 0.05). Overweight or obese subjects had greater recent energy (P < 0.05) and fat (P = 0.07) intakes than did lean subjects. There was a direct relation (r = 0.669) of body mass index with 18:1 detection thresholds and inverse relations (r < -0.51) of IPPWs with body mass index and 18:1 detection thresholds (P < 0.05). CONCLUSIONS The ability to detect oleic acid both orally and within the gastrointestinal tract is compromised in obese men, and oral and gastrointestinal responses to oleic acid are related. This trial was registered at www.actr.org.au (Australian New Zealand Clinical Trials Registry) as 12609000557235.
Collapse
Affiliation(s)
- Jessica E Stewart
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, Adelaide, Australia
| | | | | | | | | | | |
Collapse
|
28
|
Brennan IM, Seimon RV, Luscombe-Marsh ND, Otto B, Horowitz M, Feinle-Bisset C. Effects of acute dietary restriction on gut motor, hormone and energy intake responses to duodenal fat in obese men. Int J Obes (Lond) 2011; 35:448-56. [PMID: 20680017 DOI: 10.1038/ijo.2010.153] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Previous patterns of energy intake influence gastrointestinal function and appetite, probably reflecting changes in small-intestinal nutrient-mediated feedback. Obese individuals consume more fat and may be less sensitive to its gastrointestinal and appetite-suppressant effects than lean individuals. OBJECTIVE To evaluate the hypothesis that, in obese individuals, the effects of duodenal fat on gastrointestinal motor and hormone function, and appetite would be enhanced by a short period on a very-low-calorie diet (VLCD). METHODS Eight obese men (body mass index 34±0.6 kg m(-2)) were studied on two occasions, before (V1), and immediately after (V2), a 4-day VLCD. On both occasions, antropyloroduodenal motility, plasma cholecystokinin (CCK), peptide-YY (PYY) and ghrelin concentrations, and appetite perceptions were measured during a 120-min intraduodenal fat infusion (2.86 kcal min(-1)). Immediately afterwards, energy intake was quantified. RESULTS During V2, basal pyloric pressure and the number and amplitude of isolated pyloric pressure waves (PWs) were greater, whereas the number of antral and duodenal PWs was less, compared with V1 (all P<0.05). Moreover, during V2, baseline ghrelin concentration was higher; the stimulation of PYY and suppression of ghrelin by lipid were greater, with no difference in CCK concentration; and hunger and energy intake (kJ; V1: 4378±691, V2: 3634±700) were less (all P<0.05), compared with V1. CONCLUSIONS In obese males, the effects of small-intestinal lipid on gastrointestinal motility and some hormone responses and appetite are enhanced after a 4-day VLCD.
Collapse
Affiliation(s)
- I M Brennan
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
The gut plays a unique role in the metabolic defence against energy excess and glucose imbalance. Nutrients, such as lipids, enter the small intestine and activate sensing mechanisms to maintain energy and glucose homeostasis. It is clear that a lipid-induced gut-brain axis exists and that cholecystokinin and a neuronal network are involved, yet the underlying mechanisms in gut lipid sensing that regulate homeostasis remain largely unknown. In parallel, studies underscore the importance of enzymes involved in lipid metabolism within the brain, such as adenosine monophosphate -activated protein kinase, to maintain homeostasis. In this review, we will first examine what is known regarding the mechanisms involved in this lipid-induced gut-brain neuronal axis that regulate food intake and hepatic glucose production. We will also discuss how enzymes that govern brain lipid metabolism could potentially reveal how lipids trigger the gut, and that both the gut and brain may share common biochemical pathways to sense lipids.
Collapse
Affiliation(s)
- Danna M Breen
- Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | | | | |
Collapse
|
30
|
Hand KV, Bruen CM, O'Halloran F, Giblin L, Green BD. Acute and chronic effects of dietary fatty acids on cholecystokinin expression, storage and secretion in enteroendocrine STC-1 cells. Mol Nutr Food Res 2010; 54 Suppl 1:S93-S103. [PMID: 20352619 DOI: 10.1002/mnfr.200900343] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cholecystokinin (CCK) is a peptide hormone secreted from the I-cells of the intestine and it has important physiological actions related to appetite regulation and satiety. In this study we used STC-1 cells to investigate the effects of common dietary-derived fatty acids (FAs) on I-cell secretory function and metabolism. We extend earlier studies by measuring the acute and chronic effects of 11 FAs on CCK secretion, cellular CCK content, CCK mRNA levels, cellular DNA synthesis, cellular viability and cytotoxicity. FAs were selected in order to assess the importance of chain length, degree of saturation, and double bond position and conformation. The results demonstrate that secretory responses elicited by dietary FAs are highly selective. For example, altering the conformation of a double bond from cis to trans (i.e. oleic acid versus elaidic acid) completely abolishes CCK secretion. Lauric acid appears to adversely affect I-cell metabolism and arachidonic acid suppresses DNA synthesis. Our studies reveal for the first time that conjugated linoleic acid isoforms are particularly potent CCK secretagogues, which also boost intracellular stores of CCK. These actions of conjugated linoleic acid may explain satiating actions observed in dietary intervention studies.
Collapse
Affiliation(s)
- Katharine V Hand
- Institute of Agri-Food and Land Use, School of Biological Sciences, Queen's University Belfast, Belfast, UK.
| | | | | | | | | |
Collapse
|
31
|
van Aken GA. Relating Food Emulsion Structure and Composition to the Way It Is Processed in the Gastrointestinal Tract and Physiological Responses: What Are the Opportunities? FOOD BIOPHYS 2010. [DOI: 10.1007/s11483-010-9160-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Smilowitz J, German J, Zivkovic A. Food Intake and Obesity. Front Neurosci 2009. [DOI: 10.1201/9781420067767-c22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
33
|
Cheung GWC, Kokorovic A, Lam TKT. Upper intestinal lipids regulate energy and glucose homeostasis. Cell Mol Life Sci 2009; 66:3023-7. [PMID: 19513587 PMCID: PMC11115480 DOI: 10.1007/s00018-009-0062-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 05/25/2009] [Accepted: 05/27/2009] [Indexed: 10/20/2022]
Abstract
Upon the entry of nutrients into the small intestine, nutrient sensing mechanisms are activated to allow the body to adapt appropriately to the incoming nutrients. To date, mounting evidence points to the existence of an upper intestinal lipid-induced gut-brain neuronal axis to regulate energy homeostasis. Moreover, a recent discovery has also revealed an upper intestinal lipid-induced gut-brain-liver neuronal axis involved in the regulation of glucose homeostasis. In this mini-review, we will focus on the mechanisms underlying the activation of these respective neuronal axes by upper intestinal lipids.
Collapse
Affiliation(s)
- Grace W. C. Cheung
- Department of Physiology, University of Toronto, Toronto, M5S 1A8 Canada
- Toronto General Research Institute, University Health Network, Toronto, M5G 1L7 Canada
| | - Andrea Kokorovic
- Department of Physiology, University of Toronto, Toronto, M5S 1A8 Canada
- Toronto General Research Institute, University Health Network, Toronto, M5G 1L7 Canada
| | - Tony K. T. Lam
- Department of Physiology, University of Toronto, Toronto, M5S 1A8 Canada
- Department of Medicine, University of Toronto, Toronto, M5S 1A8 Canada
- Toronto General Research Institute, University Health Network, Toronto, M5G 1L7 Canada
- MaRS Centre, Toronto Medical Discovery Tower, Room 10-706, 101 College Street, Toronto, ON M5G 1L7 Canada
| |
Collapse
|
34
|
Abstract
Dietary modulation of the response of gut satiety hormones, which partly regulate food intake, provides a promising treatment for overweight and obesity. Gut-derived cell lines such as STC-1 are widely used to investigate these hormonal responses to nutrients. To date, no peptide-YY (PYY) secreting cell line has been identified. The aim of this study was to investigate whether STC-1 cells are able to secrete PYY and if so, whether dietary compounds can modulate PYY secretion. The effects of fatty acid types C4:0, C12:0, C14:0, C16:0, and C18:0 on PYY release were investigated by measuring PYY in the supernatant after 30, 60, 90, and 120 min of incubation, respectively, using RIA assays. The STC-1 cells were able to secrete PYY in a time-dependent manner. It was shown that after 30 min, C4:0, C12:0, C16:0, and C18:0 caused increased PYY levels compared to the control. At time points 60 and 90 min, C4:0 and C18:0 induced elevated PYY levels compared to the control. After 120 min, C4:0, C14:0, and C18:0 caused elevated levels compared to the control. We are the first to show that the STC-1 cells are also able to secrete PYY next to cholecystokinin (CCK) and glucagon-like peptide 1 (GLP-1). Addition of fatty acids resulted in increased levels of PYY, which is consistent with the literature describing human studies. We conclude that the STC-1 cell line provides an appropriate cell line for screening the effects of ingredients on the release of the satiety-related gut hormones CCK, GLP-1, and PYY.
Collapse
Affiliation(s)
- M C P Geraedts
- Dept of Human Biology, Div of Gastroenterology and Hepatology, All Nutrition and Toxicology Research Inst Maastricht, Maastricht Univ, Maastricht, The Netherlands.
| | | | | |
Collapse
|
35
|
Foltz M, Maljaars J, Schuring EAH, van der Wal RJP, Boer T, Duchateau GSM, Peters HPF, Stellaard F, Masclee AA. Intragastric layering of lipids delays lipid absorption and increases plasma CCK but has minor effects on gastric emptying and appetite. Am J Physiol Gastrointest Liver Physiol 2009; 296:G982-91. [PMID: 19325050 DOI: 10.1152/ajpgi.90579.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal intubation studies have demonstrated that lipids induce satiety, but the contribution of lipid processing by the stomach on satiety remains poorly understood. In this explorative, randomized, placebo-controlled, crossover study we tested whether delayed lipid absorption, increased cholecystokinin (CCK), decelerated gastric emptying (GE), and increased satiety can be achieved by controlling lipid distribution in the stomach. Six healthy men were intubated nasogastrically. Two treatments were performed and repeated in duplicate. In the oil-on-top treatment (OT), subjects received a fat-free liquid meal (LM, 325 ml, 145 kcal) followed by intragastric infusion of 4 g of high-oleic-acid rapeseed oil (4.6 ml, 36 kcal) labeled with 77 mg glyceryl-[(13)C]trioleate. In the emulsion treatment (EM, control), 4 g of labeled rapeseed oil was incorporated into the LM (325 ml, 181 kcal); 4.6 ml of saline was infused as a control. In OT and EM a second LM was consumed at time t = 270 min. Plasma (13)C-C18:1, CCK and satiety were measured over 480 min. GE was determined by the paracetamol absorption test. OT delayed oleic acid absorption shown by an increased lag time of absorption (EM: 37 +/- 7 min; OT: 75 +/- 10 min; P < 0.01) and time at maximum concentration (EM: 162 +/- 18 min; OT: 280 +/- 33 min; P = 0.01). OT released more CCK than EM (P = 0.03), including increased CCK after the second meal. OT accelerated initial GE until 30 min postprandial. OT showed a tendency (P = 0.06) to suppress hunger and increase satiety and fullness 120-270 min postprandially. The results demonstrate that low amounts of lipids, when separated from the aqueous phase of a meal, delay lipid absorption and increase CCK. An escalating-dose study should determine whether this could have implications for the development of weight-control foods.
Collapse
Affiliation(s)
- Martin Foltz
- Unilever R&D, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Seimon RV, Feltrin KL, Meyer JH, Brennan IM, Wishart JM, Horowitz M, Feinle-Bisset C. Effects of varying combinations of intraduodenal lipid and carbohydrate on antropyloroduodenal motility, hormone release, and appetite in healthy males. Am J Physiol Regul Integr Comp Physiol 2009; 296:R912-20. [PMID: 19211720 DOI: 10.1152/ajpregu.90934.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intraduodenal infusions of both lipid and glucose modulate antropyloroduodenal motility and stimulate plasma CCK, with lipid being more potent than glucose. Both stimulate glucagon-like peptide-1, but only lipid stimulates peptide YY (PYY), while only glucose raises blood glucose and stimulates insulin. When administered in combination, lipid and carbohydrate may, thus, have additive effects on energy intake. However, elevated blood glucose levels do not suppress energy intake, and the effect of insulin is controversial. We hypothesized that increasing the ratio of maltodextrin, a complex carbohydrate, relative to lipid would be associated with a reduction in effects on antropyloroduodenal pressures, gut hormones, appetite, and energy intake, when compared with lipid alone. Ten healthy males were studied on three occasions in double-blind, randomized order. Antropyloroduodenal pressures, plasma CCK, PYY and insulin, blood glucose, and appetite were measured during 90-min intraduodenal infusions of 1) 3 kcal/min lipid (L3), 2) 2 kcal/min lipid and 1 kcal/min maltodextrin (L2/CHO1), or 3) 1 kcal/min lipid and 2 kcal/min maltodextrin (L1/CHO2). Energy intake at a buffet lunch consumed immediately after the infusion was quantified. Reducing the lipid (thus, increasing the carbohydrate) content of the infusion was associated with reduced stimulation of basal pyloric pressures (r = 0.76, P < 0.01), plasma CCK (r = 0.66, P < 0.01), and PYY (r = 0.98, P < 0.001), and reduced suppression of antral (r = -0.64, P < 0.05) and duodenal (r = -0.69, P < 0.05) pressure waves, desire-to-eat (r = -0.8, P < 0.001), and energy intake (r = 0.74, P < 0.01), with no differences in phasic (isolated) pyloric pressures. In conclusion, in healthy males, intraduodenal lipid is a more potent modulator of gut function, associated with greater suppression of energy intake, when compared with isocaloric combinations of lipid and maltodextrin.
Collapse
Affiliation(s)
- Radhika V Seimon
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, Adelaide SA 5000, Australia
| | | | | | | | | | | | | |
Collapse
|
37
|
Meguid MM, Glade MJ, Middleton FA. Weight regain after Roux-en-Y: a significant 20% complication related to PYY. Nutrition 2009; 24:832-42. [PMID: 18725080 DOI: 10.1016/j.nut.2008.06.027] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2008] [Accepted: 06/26/2008] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Roux-en-Y gastric bypass (RYGB) produces rapid and dramatic weight loss in very heavy obese patients. Up to 20% cannot sustain their weight loss beyond 2 to 3 y after surgery. METHODS To identify putative etiologic factors producing post-RYGB weight regain, a literature survey of metabolic changes in very obese and a review of our diet-induced obese RYGB rat model data was done. RESULTS Weight regain suggests an imbalance in physiologic mechanisms regulating appetite and metabolic rate. Weight regain occurred in 25% of our rats, produced by return to presurgical energy intake levels. The 75% of rats that sustained weight loss secreted a significantly larger amount of peptide YY (PYY) while suppressing leptin secretion; those that failed were unable to develop or sustain a sufficiently large plasma PYY:leptin ratio. Metabolic consequences of this failure included reversal of initial postsurgical increases in peripheral fatty acid oxidation, anorexigenic activity in the hypothalamic arcuate nucleus and paraventricular nucleus, and the expression of uncoupling protein-2 in adipose tissues, and decreases in hepatic lipogenesis, free tri-iodothyronine secretion, expression of orexigenic activity in the arcuate nucleus and paraventricular nucleus, expression of adenosine monophosphate kinase in adipose tissues, skeletal muscle mitochondrial mass, and endocannabinoid content and appetite. CONCLUSION Weight regain after RYGB occurs in approximately 20% of patients and constitutes a serious complication. Weight regain-promoting consequences are attributed to a failure to sustain elevated plasma PYY concentrations, indicating that combining RYGB with pharmacologic stimulation of PYY secretion in patients after RYGB who exhibit inadequate PYY concentration may increase long-term success of surgical weight reduction in morbidly obese adults.
Collapse
Affiliation(s)
- Michael M Meguid
- Surgical Metabolism and Nutrition Laboratory, Department Surgery, Neuroscience and Physiology Program, SUNY Upstate Medical University, Syracuse, New York, USA.
| | | | | |
Collapse
|
38
|
Effect of protein, fat, carbohydrate and fibre on gastrointestinal peptide release in humans. ACTA ACUST UNITED AC 2008; 149:70-8. [DOI: 10.1016/j.regpep.2007.10.008] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2007] [Accepted: 10/22/2007] [Indexed: 02/07/2023]
|
39
|
Maljaars PWJ, Peters HPF, Mela DJ, Masclee AAM. Ileal brake: a sensible food target for appetite control. A review. Physiol Behav 2008; 95:271-81. [PMID: 18692080 DOI: 10.1016/j.physbeh.2008.07.018] [Citation(s) in RCA: 288] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 07/10/2008] [Accepted: 07/14/2008] [Indexed: 12/14/2022]
Abstract
With the rising prevalence of obesity and related health problems increases, there is increased interest in the gastrointestinal system as a possible target for pharmacological or food-based approaches to weight management. Recent studies have shown that under normal physiological situations undigested nutrients can reach the ileum, and induce activation of the so-called "ileal brake", a combination of effects influencing digestive process and ingestive behaviour. The relevance of the ileal brake as a potential target for weight management is based on several findings: First, activation of the ileal brake has been shown to reduce food intake and increase satiety levels. Second, surgical procedures that increase exposure of the ileum to nutrients produce weight loss and improved glycaemic control. Third, the appetite-reducing effect of chronic ileal brake activation appears to be maintained over time. Together, this evidence suggests that activation of the ileal brake is an excellent long-term target to achieve sustainable reductions in food intake. This review addresses the role of the ileal brake in gut function, and considers the possible involvement of several peptide hormone mediators. Attention is given to the ability of macronutrients to activate the ileal brake, and particularly variation attributable to the physicochemical properties of fats. The emphasis is on implications of ileal brake stimulation on food intake and satiety, accompanied by evidence of effects on glycaemic control and weight loss.
Collapse
Affiliation(s)
- P W J Maljaars
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, University Hospital Maastricht, PO box 5800 6202 AZ Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
40
|
Feltrin KL, Little TJ, Meyer JH, Horowitz M, Rades T, Wishart J, Feinle-Bisset C. Comparative effects of intraduodenal infusions of lauric and oleic acids on antropyloroduodenal motility, plasma cholecystokinin and peptide YY, appetite, and energy intake in healthy men. Am J Clin Nutr 2008; 87:1181-7. [PMID: 18469237 DOI: 10.1093/ajcn/87.5.1181] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The regulation of gastrointestinal function and energy intake by fatty acids depends on their chain length. Animal studies suggest that lauric acid (C12) may have more potent suppressive effects on energy intake than does oleic acid (C18). OBJECTIVE We compared the effects of equicaloric loads of C12 and C18 on antropyloroduodenal (APD) motility, plasma concentrations of cholecystokinin (CCK) and peptide YY (PYY), appetite, and energy intake. DESIGN Thirteen healthy men (aged 20-46 y) were studied on 3 occasions in double-blind, randomized fashion. APD pressure waves, plasma hormones, and appetite perceptions were measured during 60-min intraduodenal infusions of 1) C12, 2) C18, or 3) 0.9% saline as control (rate: 4 mL/min; energy load for C12 and C18: 0.4 kcal/min); between 60 and 90 min, the subjects consumed a meal. Energy intake at a buffet meal was quantified. RESULTS C12 and C18 both reduced antral (P < 0.001) and duodenal (P < 0.01) pressure waves and stimulated isolated pyloric pressure waves (P < 0.01) and plasma CCK (P < 0.001), with no differences between them. Although C12 and C18 both increased basal pyloric pressure (P < 0.05), C12 had a greater effect than did C18 (P < 0.01). In contrast, although both C12 and C18 increased plasma PYY (P < 0.001), C18 had a greater effect than C12. C12, but not C18, suppressed energy intake (P < 0.05). CONCLUSIONS At the load administered, C12, but not C18, suppressed energy intake, and C12 was a more potent stimulant of basal pyloric pressure. These discrepant effects are not apparently accounted for by changes in CCK or PYY secretion.
Collapse
Affiliation(s)
- Kate L Feltrin
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | | | | | | | | | | | | |
Collapse
|
41
|
Drewe J, Mihailovic S, D'Amato M, Beglinger C. Regulation of fat-stimulated neurotensin secretion in healthy subjects. J Clin Endocrinol Metab 2008; 93:1964-70. [PMID: 18303078 DOI: 10.1210/jc.2007-2238] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CONTEXT Cholecystokinin (CCK) and neurotensin are stimulated during meal intake by the presence of fat in the small intestine. The sequence of events suggests that fat hydrolysis is crucial for triggering the release. OBJECTIVE The aim of this study was to investigate whether CCK mediated the effect of intraduodenal (ID) fat on neurotensin secretion via CCK-1 receptors. SETTING This was a single center study; 34 male volunteers were studied in consecutive, randomized, double-blind, cross-over studies. SUBJECTS AND METHODS CCK and neurotensin release were quantified in: 1) 12 subjects receiving an ID fat infusion with or without 60 mg orlistat, an irreversible inhibitor of gastrointestinal lipases, in comparison to vehicle; 2) 12 subjects receiving ID long chain fatty acids (C18s), ID medium chain fatty acids, or ID vehicle; and 3) 10 subjects receiving ID C18 with and without the CCK-1 receptor antagonist dexloxiglumide or ID vehicle plus iv saline (placebo). Hormone concentrations were measured by specific RIA systems. RESULTS ID fat induced a significant increase in CCK and neurotensin concentrations (P < 0.001-0.002). Inhibition of fat hydrolysis by orlistat abolished both effects. C18 stimulated CCK and neurotensin release (P < 0.001, respectively), whereas medium chain fatty acid was ineffective. Dexloxiglumide administration partially blocked the effect of C18 on neurotensin; the effect was only present in the first phase of neurotensin secretion. CONCLUSIONS Generation of C18 through hydrolysis of fat is a critical step for fat-induced stimulation of neurotensin in humans; the signal is in part mediated via CCK release and CCK-1 receptors.
Collapse
Affiliation(s)
- Juergen Drewe
- Clinical Research Centre, Department of Research, Division of Gastroenterology, University Hospital Basel, Basel, Switzerland
| | | | | | | |
Collapse
|
42
|
Abstract
The gastrointestinal tract actively responds to the presence of nutrients in the lumen, and there is a high level of specificity to these responses. This specificity exists for different nutrient types and anatomical regions, with physiologically appropriate target end-organ responses. This review will journey from outlining the effects of dietary fat on digestive function and feeding behaviour to the evidence for lipid sensory cells, particularly the enteroendocrine system, in the epithelium. It will also outline potential molecular bases for these mechanisms. This will deal exclusively with issues specific to fatty acid sensing and not the emergent acid pH-sensing mechanisms that may also be activated in the presence of free fatty acids.
Collapse
|
43
|
Pilichiewicz AN, Papadopoulos P, Brennan IM, Little TJ, Meyer JH, Wishart JM, Horowitz M, Feinle-Bisset C. Load-dependent effects of duodenal lipid on antropyloroduodenal motility, plasma CCK and PYY, and energy intake in healthy men. Am J Physiol Regul Integr Comp Physiol 2007; 293:R2170-8. [PMID: 17942490 DOI: 10.1152/ajpregu.00511.2007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Both load and duration of small intestinal lipid infusion affect antropyloroduodenal motility and CCK and peptide YY (PYY) release at loads comparable to and higher than the normal gastric emptying rate. We determined 1) the effects of intraduodenal lipid loads well below the mean rate of gastric emptying on, and 2) the relationships between antropyloroduodenal motility, CCK, PYY, appetite, and energy intake. Sixteen healthy males were studied on four occasions in double-blind, randomized fashion. Antropyloroduodenal motility, plasma CCK and PYY, and appetite perceptions were measured during 50-min IL (Intralipid) infusions at: 0.25 (IL0.25), 1.5 (IL1.5), and 4 (IL4) kcal/min or saline (control), after which energy intake at a buffet meal was quantified. IL0.25 stimulated isolated pyloric pressure waves (PWs) and CCK release, albeit transiently, and suppressed antral PWs, PW sequences, and hunger (P < 0.05) but had no effect on basal pyloric pressure or PYY when compared with control. Loads >/= 1.5 kcal/min were required for the stimulation of basal pyloric pressures and PYY and suppression of duodenal PWs (P < 0.05). All of these effects were related to the lipid load (R > 0.5 or < -0.5, P < 0.05). Only IL4 reduced energy intake (in kcal: control, 1,289 +/- 62; IL0.25, 1,282 +/- 44; IL1.5, 1,235 +/- 71; and IL4, 1,139 +/- 65 compared with control and IL0.25, P < 0.05). In conclusion, in healthy males the effects of intraduodenal lipid on antropyloroduodenal motility, plasma CCK and PYY, appetite, and energy intake are load dependent, and the threshold loads required to elicit responses vary for these parameters.
Collapse
|
44
|
Little TJ, Russo A, Meyer JH, Horowitz M, Smyth DR, Bellon M, Wishart JM, Jones KL, Feinle-Bisset C. Free fatty acids have more potent effects on gastric emptying, gut hormones, and appetite than triacylglycerides. Gastroenterology 2007; 133:1124-31. [PMID: 17919488 DOI: 10.1053/j.gastro.2007.06.060] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 06/21/2007] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The effects of fat on gastric emptying (GE), gut hormones, and energy intake are dependent on digestion to free fatty acids (FFAs). In animals, small intestinal oleic acid inhibits energy intake more potently than the triacylglyceride (TG) triolein, but there is limited information about the comparative effects of FFA and TG in human beings. We compared the effects of FFA and TG on GE, gut hormone secretion, appetite, and energy intake in healthy males. METHODS Nine men (age, 23 +/- 2 y; body mass index, 22 +/- 1 kg/m(2)) were studied on 3 occasions to evaluate the effects of (1) 40 g oleic acid (FFA, 1830 kJ), (2) 40 g macadamia oil (TG, 1856 kJ; both 600-mL oil-in-water emulsions stabilized with 4% milk protein and labeled with 15 MBq (123)I), or (3) 600 mL 4% milk protein (control, 352 kJ), administered intragastrically, on GE, plasma cholecystokinin (CCK) and peptide-YY (PYY) levels, appetite perceptions, and subsequent energy intake. RESULTS GE of FFA was much slower than that of TG (P < .05), with greater retention of FFA, than TG, in the proximal stomach (P < .001). Hunger was less (P < .05), and fullness was greater (P < .05), after FFA when compared with control and TG. Increases in plasma CCK and PYY levels were greater after FFA than TG or control (P < .05). Energy intake tended to be less after FFA compared with TG (control, 4754 +/- 610 kJ; TG, 5463 +/- 662 kJ; FFA, 4199 +/- 410 kJ). CONCLUSIONS FFAs empty from the stomach more slowly, but stimulate CCK and PYY and suppress appetite more potently than TG in healthy human beings.
Collapse
Affiliation(s)
- Tanya J Little
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|