1
|
Du YX, Li X, Ji SW, Niu N. Hypertension toxicity of VEGFR-TKIs in cancer treatment: incidence, mechanisms, and management strategies. Arch Toxicol 2025; 99:67-81. [PMID: 39347999 DOI: 10.1007/s00204-024-03874-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Vascular endothelial growth factor receptor tyrosine kinase inhibitors (VEGFR-TKIs) are a class of targeted anticancer agents that include pazopanib, sunitinib, axitinib, and others. Currently, VEGFR-TKIs are widely used in the clinical treatment of various tumors, which can prolong patients' survival and even cure tumors. However, the use of VEGFR-TKIs is frequently associated with the occurrence of cardiovascular adverse events, with hypertension being the most prevalent. Hypertension and its complications can significantly impact the prognosis of patients, potentially jeopardizing their lives and resulting in the reduction or even cessation of treatment in severe cases. This review addresses the incidence of hypertension due to VEGFR-TKIs, mechanisms of toxicity, management strategies, and future research directions. In addition, hypertension due to VEGFR-TKIs may be associated with salt sensitivity, and possible mechanisms of hypertensive side effects are vasodilator imbalance, decreased capillary density, renal injury, impaired endothelial function due to oxidative stress, decreased lymphatic vascular density, and "off-target effect". A comprehensive understanding of hypertension toxicity due to cancer treatment with VEGFR-TKIs, can enhance clinical practice, thereby improving the prognostic outcomes of VEGFR-TKIs in oncology patients.
Collapse
Affiliation(s)
- Yan-Xi Du
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Xu Li
- School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China
| | - Si-Wen Ji
- Office of Academic Affairs, North Sichuan Medical College, Nanchong, 637000, China
| | - Na Niu
- School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China.
| |
Collapse
|
2
|
Cerri DH, Albaugh DL, Walton LR, Katz B, Wang TW, Chao THH, Zhang W, Nonneman RJ, Jiang J, Lee SH, Etkin A, Hall CN, Stuber GD, Shih YYI. Distinct neurochemical influences on fMRI response polarity in the striatum. Nat Commun 2024; 15:1916. [PMID: 38429266 PMCID: PMC10907631 DOI: 10.1038/s41467-024-46088-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 02/13/2024] [Indexed: 03/03/2024] Open
Abstract
The striatum, known as the input nucleus of the basal ganglia, is extensively studied for its diverse behavioral roles. However, the relationship between its neuronal and vascular activity, vital for interpreting functional magnetic resonance imaging (fMRI) signals, has not received comprehensive examination within the striatum. Here, we demonstrate that optogenetic stimulation of dorsal striatal neurons or their afferents from various cortical and subcortical regions induces negative striatal fMRI responses in rats, manifesting as vasoconstriction. These responses occur even with heightened striatal neuronal activity, confirmed by electrophysiology and fiber-photometry. In parallel, midbrain dopaminergic neuron optogenetic modulation, coupled with electrochemical measurements, establishes a link between striatal vasodilation and dopamine release. Intriguingly, in vivo intra-striatal pharmacological manipulations during optogenetic stimulation highlight a critical role of opioidergic signaling in generating striatal vasoconstriction. This observation is substantiated by detecting striatal vasoconstriction in brain slices after synthetic opioid application. In humans, manipulations aimed at increasing striatal neuronal activity likewise elicit negative striatal fMRI responses. Our results emphasize the necessity of considering vasoactive neurotransmission alongside neuronal activity when interpreting fMRI signal.
Collapse
Affiliation(s)
- Domenic H Cerri
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel L Albaugh
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Lindsay R Walton
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brittany Katz
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tzu-Wen Wang
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tzu-Hao Harry Chao
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Weiting Zhang
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Randal J Nonneman
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jing Jiang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Sung-Ho Lee
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amit Etkin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Alto Neuroscience, Los Altos, CA, USA
| | - Catherine N Hall
- Sussex Neuroscience, University of Sussex, Falmer, United Kingdom
- School of Psychology, University of Sussex, Falmer, United Kingdom
| | - Garret D Stuber
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Yen-Yu Ian Shih
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
van Dorst DCH, Mirabito Colafella KM, van Veghel R, Garrelds IM, de Vries R, Mathijssen RHJ, Danser AHJ, Versmissen J. Cyclooxygenase-2 inhibition prevents renal toxicity but not hypertension during sunitinib treatment. Eur J Pharmacol 2024; 962:176199. [PMID: 38029870 DOI: 10.1016/j.ejphar.2023.176199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Anticancer angiogenesis inhibitors cause hypertension and renal injury. Previously we observed in rats that high-dose aspirin (capable of blocking cyclooxygenase (COX)-1 and-2) was superior to low-dose aspirin (blocking COX-1 only) to prevent these side-effects during treatment with the angiogenesis inhibitor sunitinib, suggesting a role for COX-2. High-dose aspirin additionally prevented the rise in COX-derived prostacyclin (PGI2). Therefore, we studied the preventive effects of selective COX-2 inhibition and the hypothesized contributing role of PGI2 during angiogenesis inhibition. METHODS Male WKY rats received vehicle, sunitinib ((SU), 14 mg/kg/day) alone or combined with COX-2 inhibition (celecoxib, 10 mg/kg/day) or a PGI2 analogue (iloprost, 100 μg/kg/day) for 8 days (n = 8-9 per group). Mean arterial pressure (MAP) was measured via radiotelemetry, biochemical measurements were performed via ELISA and vascular function was assessed via wire myography. RESULTS SU increased MAP (17±1mmHg versus 3±1mmHg after vehicle on day 4, P < 0.002), which could not be significantly blunted by celecoxib (+12±3mmHg on day 4, P = 0.247), but was temporarily attenuated by iloprost (treatment days 1 + 2 only). Urinary PGI2 (996 ± 112 versus 51 ± 11ng/24h after vehicle, P < 0.001), but not circulating PGI2 increased during SU, which remained unaffected by celecoxib and iloprost. Celecoxib reduced sunitinib-induced albuminuria (0.36 ± 0.05 versus 0.58 ± 0.05mg/24h after SU, P = 0.005). Wire myography demonstrated increased vasoconstriction to endothelin-1 after SU (Emax P = 0.005 versus vehicle), which remained unaffected by celecoxib or iloprost. CONCLUSION Selective COX-2 inhibition ameliorates albuminuria during angiogenesis inhibition with sunitinib, which most likely acts independently of PGI2. To combat angiogenesis inhibitor-induced hypertension, dual rather than selective COX-1/2 blockade seems preferential.
Collapse
Affiliation(s)
- Daan C H van Dorst
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| | - Katrina M Mirabito Colafella
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
| | - Richard van Veghel
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Ingrid M Garrelds
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - René de Vries
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Jorie Versmissen
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Hospital Pharmacy, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
4
|
Alarcon-Martinez L, Shiga Y, Villafranca-Baughman D, Cueva Vargas JL, Vidal Paredes IA, Quintero H, Fortune B, Danesh-Meyer H, Di Polo A. Neurovascular dysfunction in glaucoma. Prog Retin Eye Res 2023; 97:101217. [PMID: 37778617 DOI: 10.1016/j.preteyeres.2023.101217] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Retinal ganglion cells, the neurons that die in glaucoma, are endowed with a high metabolism requiring optimal provision of oxygen and nutrients to sustain their activity. The timely regulation of blood flow is, therefore, essential to supply firing neurons in active areas with the oxygen and glucose they need for energy. Many glaucoma patients suffer from vascular deficits including reduced blood flow, impaired autoregulation, neurovascular coupling dysfunction, and blood-retina/brain-barrier breakdown. These processes are tightly regulated by a community of cells known as the neurovascular unit comprising neurons, endothelial cells, pericytes, Müller cells, astrocytes, and microglia. In this review, the neurovascular unit takes center stage as we examine the ability of its members to regulate neurovascular interactions and how their function might be altered during glaucomatous stress. Pericytes receive special attention based on recent data demonstrating their key role in the regulation of neurovascular coupling in physiological and pathological conditions. Of particular interest is the discovery and characterization of tunneling nanotubes, thin actin-based conduits that connect distal pericytes, which play essential roles in the complex spatial and temporal distribution of blood within the retinal capillary network. We discuss cellular and molecular mechanisms of neurovascular interactions and their pathophysiological implications, while highlighting opportunities to develop strategies for vascular protection and regeneration to improve functional outcomes in glaucoma.
Collapse
Affiliation(s)
- Luis Alarcon-Martinez
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada; Centre for Eye Research Australia, University of Melbourne, Melbourne, Australia
| | - Yukihiro Shiga
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada
| | - Deborah Villafranca-Baughman
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada
| | - Jorge L Cueva Vargas
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada
| | - Isaac A Vidal Paredes
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada
| | - Heberto Quintero
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada
| | - Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Healthy, Portland, OR, USA
| | - Helen Danesh-Meyer
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Adriana Di Polo
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada.
| |
Collapse
|
5
|
Vorn R, Yoo HY. Food Restriction Augmented Alpha1-Adrenergic Mediated Contraction in Mesenteric Arteries. Biol Res Nurs 2023; 25:198-209. [PMID: 36203228 DOI: 10.1177/10998004221132247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Food restriction (FR) enhances sensitivity to cardiopulmonary reflexes and α1-adrenoreceptors in females in the presence of hypotension. However, the effect of FR on cardiopulmonary and vascular function in males is not well-understood. This study examines the effects of FR on cardiopulmonary, isolated arterial function, and potential underlying mechanisms. Male Sprague-Dawley (SD) rats were randomly divided into 3 groups and monitored for 5 weeks: (1) control (n = 30), (2) 20% food reduction (FR20, n = 30), and (3) 40% food reduction (FR40, n = 30). Non-invasive blood pressure was measured twice a week. Pulmonary arterial pressure (PAP) was measured using isolated/perfused lungs. The isolated vascular reactivity was assessed using double-wire myographs. FR rats exhibited a lower mean arterial pressure and heart rate; however, only the FR40 group exhibited statistically significant differences. We observed that FR enhanced sensitivity (EC50) to vasoconstriction induced by the α1-adrenoreceptor phenylephrine (PhE) but not to serotonin, U46619, or high K+ in the mesenteric arteries. PhE-mediated vasoconstriction in the mesenteric arteries was eliminated in the presence of the eNOS inhibitor (L-NAME). In addition, incubation with NOX2/4 inhibitors (apocynin, GKT137831, and VAS2870) and the reactive oxygen species (ROS) scavenger inhibitor (Tiron) eliminated the differences in PhE-mediated vasoconstriction, but the cyclooxygenase inhibitor (indomethacin) in the mesenteric arteries did not. Augmentation of α1-adrenergic-mediated contraction via the inhibition of the eNOS-NO pathway increased the activation of ROS through NOX2/4 in response to FR. Reduced eNOS-NO signaling may be a pathophysiological counterbalance to prevent hypovolemic shock in response to FR.
Collapse
Affiliation(s)
- Rany Vorn
- Department of Nursing, 26729Chung-Ang University, Seoul, Korea
- School of Nursing, 1466Johns Hopkins University, Baltimore, MD, USA
| | - Hae Young Yoo
- Department of Nursing, 26729Chung-Ang University, Seoul, Korea
| |
Collapse
|
6
|
Rabkin SW, Tang JKK. Clozapine-induced Myocarditis: Pathophysiologic Mechanisms and Implications for Therapeutic Approaches. Curr Mol Pharmacol 2023; 16:60-70. [PMID: 35152873 DOI: 10.2174/1874467215666220211094910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 11/22/2022]
Abstract
Clozapine, a superior treatment for treatment-resistant schizophrenia can cause potentially life-threatening myocarditis and dilated cardiomyopathy. While the occurrence of this condition is well known, its molecular mechanisms are unclear and may be multifactorial. Putative mechanisms warrant an in-depth review not only from the perspective of toxicity but also for understanding the molecular mechanisms of the adverse cardiac effects of clozapine and the development of novel therapeutic approaches. Clozapine-induced cardiac toxicity encompasses a diverse set of pathways, including (i) immune modulation and proinflammatory processes encompassing an IgEmediated (type I hypersensitivity) response and perhaps a cytokine release syndrome (ii) catecholaminergic activation (iii) induction of free radicals and oxidative stress (iv) activation of cardiomyocyte cell death pathways, including apoptosis, ischemia through impairment in coronary blood flow via changes in endothelial production of NO and vasoconstriction induced by norepinephrine as well as other factors released from cardiac mast cells. (v) In addition, an extensive examination of the effects of clozapine on non-cardiac cellular proteins demonstrates that clozapine can impair enzymes involved in cellular metabolism, such as pyruvate kinase, mitochondrial malate dehydrogenase, and other proteins, including α-enolase, triosephosphate isomerase and cofilin, which might explain clozapine-induced reductions in myocardial energy generation for cell viability as well as contractile function. Pharmacologic antagonism of these cellular protein effects may lead to the development of strategies to antagonize the cardiac damage induced by clozapine.
Collapse
Affiliation(s)
- Simon W Rabkin
- Division of Cardiology, University of British Columbia, Vancouver, B.C., Canada
| | - Jacky K K Tang
- Division of Cardiology, University of British Columbia, Vancouver, B.C., Canada
| |
Collapse
|
7
|
Marei I, Ahmetaj-Shala B, Triggle CR. Biofunctionalization of cardiovascular stents to induce endothelialization: Implications for in- stent thrombosis in diabetes. Front Pharmacol 2022; 13:982185. [PMID: 36299902 PMCID: PMC9589287 DOI: 10.3389/fphar.2022.982185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Stent thrombosis remains one of the main causes that lead to vascular stent failure in patients undergoing percutaneous coronary intervention (PCI). Type 2 diabetes mellitus is accompanied by endothelial dysfunction and platelet hyperactivity and is associated with suboptimal outcomes following PCI, and an increase in the incidence of late stent thrombosis. Evidence suggests that late stent thrombosis is caused by the delayed and impaired endothelialization of the lumen of the stent. The endothelium has a key role in modulating inflammation and thrombosis and maintaining homeostasis, thus restoring a functional endothelial cell layer is an important target for the prevention of stent thrombosis. Modifications using specific molecules to induce endothelial cell adhesion, proliferation and function can improve stents endothelialization and prevent thrombosis. Blood endothelial progenitor cells (EPCs) represent a potential cell source for the in situ-endothelialization of vascular conduits and stents. We aim in this review to summarize the main biofunctionalization strategies to induce the in-situ endothelialization of coronary artery stents using circulating endothelial stem cells.
Collapse
Affiliation(s)
- Isra Marei
- Department of Pharmacology, Weill Cornell Medicine- Qatar, Doha, Qatar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- *Correspondence: Isra Marei, ; Chris R. Triggle,
| | | | - Chris R. Triggle
- Department of Pharmacology, Weill Cornell Medicine- Qatar, Doha, Qatar
- *Correspondence: Isra Marei, ; Chris R. Triggle,
| |
Collapse
|
8
|
Razan MR, Akther F, Islam RA, Graham JL, Stanhope KL, Havel PJ, Rahimian R. 17β-Estradiol Treatment Improves Acetylcholine-Induced Relaxation of Mesenteric Arteries in Ovariectomized UC Davis Type 2 Diabetes Mellitus Rats in Prediabetic State. Front Physiol 2022; 13:900813. [PMID: 35784863 PMCID: PMC9248973 DOI: 10.3389/fphys.2022.900813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
We recently reported sex differences in mesenteric arterial function of the UC Davis type-2 diabetes mellitus (UCD-T2DM) rats as early as the prediabetic state. We reported that mesenteric arteries (MA) from prediabetic male rats exhibited a greater impairment compared to that in prediabetic females. However, when females became diabetic, they exhibited a greater vascular dysfunction than males. Thus, the aim of this study was to investigate whether the female sex hormone, estrogen preserves mesenteric arterial vasorelaxation in UCD-T2DM female rats at an early prediabetic state. Age-matched female Sprague Dawley and prediabetic (PD) UCD-T2DM rats were ovariectomized (OVX) and subcutaneously implanted with either placebo or 17β-estradiol (E2, 1.5 mg) pellets for 45 days. We assessed the contribution of endothelium-derived relaxing factors (EDRF) to acetylcholine (ACh)-induced vasorelaxation, using pharmacological inhibitors. Responses to sodium nitroprusside (SNP) and phenylephrine (PE) were also measured. Additionally, metabolic parameters and expression of some targets associated with vascular and insulin signaling were determined. We demonstrated that the responses to ACh and SNP were severely impaired in the prediabetic state (PD OVX) rats, while E2 treatment restored vasorelaxation in the PD OVX + E2. Moreover, the responses to PE was significantly enhanced in MA of PD OVX groups, regardless of placebo or E2 treatment. Overall, our data suggest that 1) the impairment of ACh responses in PD OVX rats may, in part, result from the elevated contractile responses to PE, loss of contribution of endothelium-dependent hyperpolarization (EDH) to vasorelaxation, and a decreased sensitivity of MA to nitric oxide (NO), and 2) the basis for the protective effects of E2 may be partly attributed to the elevation of the NO contribution to vasorelaxation and its interaction with MA as well as potential improvement of insulin signaling. Here, we provide the first evidence of the role of E2 in protecting MA from early vascular dysfunction in prediabetic female rats.
Collapse
Affiliation(s)
- Md Rahatullah Razan
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| | - Farjana Akther
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| | - Rifat A. Islam
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| | - James L. Graham
- Department of Molecular Biosciences, School of Veterinary Medicine, Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Kimber L. Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Peter J. Havel
- Department of Molecular Biosciences, School of Veterinary Medicine, Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Roshanak Rahimian
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
- *Correspondence: Roshanak Rahimian,
| |
Collapse
|
9
|
Time-Restricted Feeding Improved Vascular Endothelial Function in a High-Fat Diet-Induced Obesity Rat Model. Vet Sci 2022; 9:vetsci9050217. [PMID: 35622745 PMCID: PMC9147025 DOI: 10.3390/vetsci9050217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022] Open
Abstract
Obesity, where there is enhancement of stored body fat in adipose tissues, is associated with cardiovascular complications that are mainly related to atherosclerosis. Time-restricted feeding (TRF) is a form of restricted eating aimed at reducing weight in obese subjects. The present study aims to investigate changes in vascular endothelial function, endothelial nitric oxide synthase (eNOS), and protein kinase B (Akt) protein expressions with TRF in obese and normal rats. Male Sprague Dawley rats were divided into two normal and three obese groups; obesity was induced in the obese groups by feeding with a high-fat diet (HFD) for six weeks. After six weeks, rats were equally divided into five groups (n = 7 per group): Normal group (NR) which continued on a standard diet for six more weeks, normal group switched to TRF with a standard diet for six weeks (NR + TRFSD), obese group (OR) which continued on HFD for six more weeks, obese group switched to TRF of HFD (OR + TRFHFD), and obese group switched to TRF of a standard diet (OR + TRFSD). TRF was practiced for six weeks, after which the rats were sacrificed. Aortic endothelium-dependent and endothelium-independent relaxations and contractions were assessed using the organ bath. Aortic eNOS and Akt protein expressions were determined using immunoblotting. Fasting blood glucose, body weight, body mass index (BMI), serum lipid profile, Lee’s index, serum insulin levels, and sensitivity (HOMA-IR) were also measured. Endothelium-dependent relaxation was significantly impaired, while endothelium-dependent contraction increased in obese rats compared to that in normal rats. Both obese groups which underwent TRF with a HFD and standard diet improved their impairments in endothelium-dependent relaxation and reduced endothelium-dependent contraction; these were associated with increased expressions of aortic eNOS and Akt protein. Both obese groups with TRF reduced body weight, BMI, Lee’s index, total cholesterol, triglycerides, low-density lipoprotein cholesterol, and improved insulin sensitivity. TRF improved endothelium-dependent relaxation and reduced endothelium-dependent contraction, thus attenuating endothelial dysfunction in obese rats. These were associated with increased aortic eNOS and Akt protein expressions.
Collapse
|
10
|
Differential effects of cyclo-oxygenase 1 and 2 inhibition on angiogenesis inhibitor-induced hypertension and kidney damage. Clin Sci (Lond) 2022; 136:675-694. [PMID: 35441670 PMCID: PMC9093150 DOI: 10.1042/cs20220182] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022]
Abstract
Vascular endothelial growth factor antagonism with angiogenesis inhibitors in cancer patients induces a ‘preeclampsia-like’ syndrome including hypertension, proteinuria and elevated endothelin (ET)-1. Cyclo-oxygenase (COX) inhibition with aspirin is known to prevent the onset of preeclampsia in high-risk patients. In the present study, we hypothesised that treatment with aspirin would prevent the development of angiogenesis inhibitor-induced hypertension and kidney damage. Our aims were to compare the effects of low-dose (COX-1 inhibition) and high-dose (dual COX-1 and COX-2 inhibition) aspirin on blood pressure, vascular function, oxidative stress, ET-1 and prostanoid levels and kidney damage during angiogenesis-inhibitor therapy in rodents. To this end, Wistar Kyoto rats were treated with vehicle, angiogenesis inhibitor (sunitinib) alone or in combination with low- or high-dose aspirin for 8 days (n=5–7/group). Our results demonstrated that prostacyclin (PGI2) and ET-1 were increased during angiogenesis-inhibitor therapy, while thromboxane (TXA2) was unchanged. Both low- and high-dose aspirin blunted angiogenesis inhibitor-induced hypertension and vascular superoxide production to a similar extent, whereas only high-dose aspirin prevented albuminuria. While circulating TXA2 and prostaglandin F2α levels were reduced by both low- and high-dose aspirin, circulating and urinary levels PGI2 were only reduced by high-dose aspirin. Lastly, treatment with aspirin did not significantly affect ET-1 or vascular function. Collectively our findings suggest that prostanoids contribute to the development of angiogenesis inhibitor-induced hypertension and renal damage and that targeting the prostanoid pathway could be an effective strategy to mitigate the unwanted cardiovascular and renal toxicities associated with angiogenesis inhibitors.
Collapse
|
11
|
Craig DJ, James AW, Wang Y, Tavian M, Crisan M, Péault BM. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:35-43. [PMID: 35641167 PMCID: PMC8895497 DOI: 10.1093/stcltm/szab001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/30/2020] [Indexed: 11/17/2022] Open
Abstract
The vascular wall is comprised of distinct layers controlling angiogenesis, blood flow, vessel anchorage within organs, and cell and molecule transit between blood and tissues. Moreover, some blood vessels are home to essential stem-like cells, a classic example being the existence in the embryo of hemogenic endothelial cells at the origin of definitive hematopoiesis. In recent years, microvascular pericytes and adventitial perivascular cells were observed to include multi-lineage progenitor cells involved not only in organ turnover and regeneration but also in pathologic remodeling, including fibrosis and atherosclerosis. These perivascular mesodermal elements were identified as native forerunners of mesenchymal stem cells. We have presented in this brief review our current knowledge on vessel wall-associated tissue remodeling cells with respect to discriminating phenotypes, functional diversity in health and disease, and potential therapeutic interest.
Collapse
Affiliation(s)
- David J Craig
- Center for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Center for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Yiyun Wang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Mihaela Crisan
- Center for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Center for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Bruno M Péault
- Center for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Orthopaedic Hospital Research Center and Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA
- Corresponding author: Bruno Péault, PhD, Orthopaedic Hospital Research Center, David Geffen School of Medicine, University of California at Los Angeles, 615 Charles E. Young Drive South, Los Angeles, CA 90095-7358, USA.
| |
Collapse
|
12
|
Begum MK, Konja D, Singh S, Chlopicki S, Wang Y. Endothelial SIRT1 as a Target for the Prevention of Arterial Aging: Promises and Challenges. J Cardiovasc Pharmacol 2021; 78:S63-S77. [PMID: 34840264 DOI: 10.1097/fjc.0000000000001154] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022]
Abstract
ABSTRACT SIRT1, a member of the sirtuin family of longevity regulators, possesses potent activities preventing vascular aging. The expression and function of SIRT1 in endothelial cells are downregulated with age, in turn causing early vascular aging and predisposing various vascular abnormalities. Overexpression of SIRT1 in the vascular endothelium prevents aging-associated endothelial dysfunction and senescence, thus the development of hypertension and atherosclerosis. Numerous efforts have been directed to increase SIRT1 signaling as a potential strategy for different aging-associated diseases. However, the complex mechanisms underlying the regulation of SIRT1 have posed a significant challenge toward the design of specific and effective therapeutics. This review aimed to provide a summary on the regulation and function of SIRT1 in the vascular endothelium and to discuss the different approaches targeting this molecule for the prevention and treatment of age-related cardiovascular and cerebrovascular diseases.
Collapse
Affiliation(s)
- Musammat Kulsuma Begum
- The State Key Laboratory of Pharmaceutical Biotechnology
- The Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Daniels Konja
- The State Key Laboratory of Pharmaceutical Biotechnology
- The Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Sandeep Singh
- The State Key Laboratory of Pharmaceutical Biotechnology
- The Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland; and
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Yu Wang
- The State Key Laboratory of Pharmaceutical Biotechnology
- The Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
13
|
Mirabito Colafella KM, Neves KB, Montezano AC, Garrelds IM, van Veghel R, de Vries R, Uijl E, Baelde HJ, van den Meiracker AH, Touyz RM, Danser AHJ, Versmissen J. Selective ETA vs. dual ETA/B receptor blockade for the prevention of sunitinib-induced hypertension and albuminuria in WKY rats. Cardiovasc Res 2021; 116:1779-1790. [PMID: 31593221 DOI: 10.1093/cvr/cvz260] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/23/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022] Open
Abstract
AIMS Although effective in preventing tumour growth, angiogenesis inhibitors cause off-target effects including cardiovascular toxicity and renal injury, most likely via endothelin (ET)-1 up-regulation. ET-1 via stimulation of the ETA receptor has pro-hypertensive actions whereas stimulation of the ETB receptor can elicit both pro- or anti-hypertensive effects. In this study, our aim was to determine the efficacy of selective ETA vs. dual ETA/B receptor blockade for the prevention of angiogenesis inhibitor-induced hypertension and albuminuria. METHODS AND RESULTS Male Wistar Kyoto (WKY) rats were treated with vehicle, sunitinib (angiogenesis inhibitor; 14 mg/kg/day) alone or in combination with macitentan (ETA/B receptor antagonist; 30 mg/kg/day) or sitaxentan (selective ETA receptor antagonist; 30 or 100 mg/kg/day) for 8 days. Compared with vehicle, sunitinib treatment caused a rapid and sustained increase in mean arterial pressure of ∼25 mmHg. Co-treatment with macitentan or sitaxentan abolished the pressor response to sunitinib. Sunitinib did not induce endothelial dysfunction. However, it was associated with increased aortic, mesenteric, and renal oxidative stress, an effect that was absent in mesenteric arteries of the macitentan and sitaxentan co-treated groups. Albuminuria was greater in the sunitinib- than vehicle-treated group. Co-treatment with sitaxentan, but not macitentan, prevented this increase in albuminuria. Sunitinib treatment increased circulating and urinary prostacyclin levels and had no effect on thromboxane levels. These increases in prostacyclin were blunted by co-treatment with sitaxentan. CONCLUSIONS Our results demonstrate that both selective ETA and dual ETA/B receptor antagonism prevents sunitinib-induced hypertension, whereas sunitinib-induced albuminuria was only prevented by selective ETA receptor antagonism. In addition, our results uncover a role for prostacyclin in the development of these effects. In conclusion, selective ETA receptor antagonism is sufficient for the prevention of sunitinib-induced hypertension and renal injury.
Collapse
Affiliation(s)
- Katrina M Mirabito Colafella
- Cardiovascular Disease Program, Department of Physiology, Biomedicine Discovery Institute, Monash University, 26 Innovation Walk, Melbourne, VIC 3800, Australia
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Karla B Neves
- Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Augusto C Montezano
- Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Ingrid M Garrelds
- Cardiovascular Disease Program, Department of Physiology, Biomedicine Discovery Institute, Monash University, 26 Innovation Walk, Melbourne, VIC 3800, Australia
| | - Richard van Veghel
- Cardiovascular Disease Program, Department of Physiology, Biomedicine Discovery Institute, Monash University, 26 Innovation Walk, Melbourne, VIC 3800, Australia
| | - René de Vries
- Cardiovascular Disease Program, Department of Physiology, Biomedicine Discovery Institute, Monash University, 26 Innovation Walk, Melbourne, VIC 3800, Australia
| | - Estrellita Uijl
- Cardiovascular Disease Program, Department of Physiology, Biomedicine Discovery Institute, Monash University, 26 Innovation Walk, Melbourne, VIC 3800, Australia
| | - Hans J Baelde
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Anton H van den Meiracker
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Rhian M Touyz
- Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - A H Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Jorie Versmissen
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Vitamin D Deficiency Cause Gender Specific Alterations of Renal Arterial Function in a Rodent Model. Nutrients 2021; 13:nu13020704. [PMID: 33671779 PMCID: PMC7926839 DOI: 10.3390/nu13020704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/25/2022] Open
Abstract
Vitamin D deficiency shows positive correlation to cardiovascular risk, which might be influenced by gender specific features. Our goal was to examine the effect of Vitamin D supplementation and Vitamin D deficiency in male and female rats on an important hypertension target organ, the renal artery. Female and male Wistar rats were fed with Vitamin D reduced chow for eight weeks to induce hypovitaminosis. Another group of animals received normal chow with further supplementation to reach optimal serum vitamin levels. Isolated renal arteries of Vitamin D deficient female rats showed increased phenylephrine-induced contraction. In all experimental groups, both indomethacin and selective cyclooxygenase-2 inhibition (NS398) decreased the phenylephrine-induced contraction. Angiotensin II-induced contraction was pronounced in Vitamin D supplemented males. In both Vitamin D deficient groups, acetylcholine-induced relaxation was impaired. In the female Vitamin D supplemented group NS398, in males the indomethacin caused reduced acetylcholine-induced relaxation. Increased elastic fiber density was observed in Vitamin D deficient females. The intensity of eNOS immunostaining was decreased in Vitamin D deficient females. The density of AT1R staining was the highest in the male Vitamin D deficient group. Although Vitamin D deficiency induced renal vascular dysfunction in both sexes, female rats developed more extensive impairment that was accompanied by enzymatic and structural changes.
Collapse
|
15
|
Bercea CI, Cottrell GS, Tamagnini F, McNeish AJ. Omega-3 polyunsaturated fatty acids and hypertension: a review of vasodilatory mechanisms of docosahexaenoic acid and eicosapentaenoic acid. Br J Pharmacol 2021; 178:860-877. [PMID: 33283269 DOI: 10.1111/bph.15336] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 02/06/2023] Open
Abstract
Hypertension is often characterised by impaired vasodilation involving dysfunction of multiple vasodilatory mechanisms. ω-3 polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) can reduce blood pressure and vasodilation. In the endothelium, DHA and EPA improve function including increased NO bioavailability. However, animal studies show that DHA- and EPA-mediated vasodilation persists after endothelial removal, indicating a role for vascular smooth muscle cells (VSMCs). The vasodilatory effects of ω-3 PUFAs on VSMCs are mediated via opening of large conductance calcium-activated potassium channels (BKCa ), ATP-sensitive potassium channels (KATP ) and possibly members of the Kv 7 family of voltage-activated potassium channels, resulting in hyperpolarisation and relaxation. ω-3 PUFA actions on BKCa and voltage-gated ion channels involve electrostatic interactions that are dependent on the polyunsaturated acyl tail, cis-geometry of these double bonds and negative charge of the carboxyl headgroup. This suggests structural manipulation of ω-3 PUFA could generate novel, targeted, therapeutic leads.
Collapse
Affiliation(s)
- Cristiana-Ioana Bercea
- Reading School of Pharmacy, School of Chemistry, Food and Pharmacy, The University of Reading, Reading, UK
| | - Graeme S Cottrell
- Reading School of Pharmacy, School of Chemistry, Food and Pharmacy, The University of Reading, Reading, UK
| | - Francesco Tamagnini
- Reading School of Pharmacy, School of Chemistry, Food and Pharmacy, The University of Reading, Reading, UK
| | - Alister J McNeish
- Reading School of Pharmacy, School of Chemistry, Food and Pharmacy, The University of Reading, Reading, UK
| |
Collapse
|
16
|
Ghantous CM, Kamareddine L, Farhat R, Zouein FA, Mondello S, Kobeissy F, Zeidan A. Advances in Cardiovascular Biomarker Discovery. Biomedicines 2020; 8:biomedicines8120552. [PMID: 33265898 PMCID: PMC7759775 DOI: 10.3390/biomedicines8120552] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases are the leading causes of mortality worldwide. Among them, hypertension and its pathological complications pose a major risk for the development of other cardiovascular diseases, including heart failure and stroke. Identifying novel and early stage biomarkers of hypertension and other cardiovascular diseases is of paramount importance in predicting and preventing the major morbidity and mortality associated with these diseases. Biomarkers of such diseases or predisposition to their development are identified by changes in a specific indicator’s expression between healthy individuals and patients. These include changes in protein and microRNA (miRNA) levels. Protein profiling using mass spectrometry and miRNA screening utilizing microarray and sequencing have facilitated the discovery of proteins and miRNA as biomarker candidates. In this review, we summarized some of the different, promising early stage protein and miRNA biomarker candidates as well as the currently used biomarkers for hypertension and other cardiovascular diseases. Although a number of promising markers have been identified, it is unlikely that a single biomarker will unambiguously aid in the classification of these diseases. A multi-marker panel-strategy appears useful and promising for classifying and refining risk stratification among patients with cardiovascular disease.
Collapse
Affiliation(s)
- Crystal M. Ghantous
- Department of Nursing and Health Sciences, Faculty of Nursing and Health Sciences, Notre Dame University-Louaize, Keserwan 72, Lebanon;
| | - Layla Kamareddine
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
| | - Rima Farhat
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | - Fouad A. Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | - Stefania Mondello
- Oasi Research Institute-IRCCS, 94018 Troina, Italy;
- Department of Biomedical and Dental Sciences and Morpho-functional Imaging, University of Messina, 98125 Messina, Italy
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | - Asad Zeidan
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
- Department of Basic Medical Science, Faculty of Medicine, QU Health, Qatar University, Doha 2713, Qatar
- Correspondence: ; Tel.: +97-431-309-19
| |
Collapse
|
17
|
Fouda YB, Ngo Lemba Tom E, Atsamo AD, Bonabe C, Dimo T. Effects of stem bark aqueous extract of Fagara tessmannii Engl (Rutaceae) on cardiovascular risks related to monosodium glutamate-induced obesity in rat: In vivo and in vitro assessments. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:112972. [PMID: 32446928 DOI: 10.1016/j.jep.2020.112972] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/22/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fagara tessmannii is a shrub of the African rainforests in South-West, Centre, South and East provinces in Cameroon. It is used in traditional medicine for the treatment of tumors, swellings, inflammation, gonorrhoea, schistosomiasis, antifungal, heart diseases and as anti-hypertensive. AIM OF THE STUDY We investigated the potential effects of F. tessmannii on cardiovascular risk related to monosodium glutamate-induced obesity. MATERIALS AND METHODS Monosodium glutamate (MSG, 4 mg/g/day) was injected subcutaneously to newborn Wistar rats for the four consecutive first days of their life and on the 6th, 8th and 10th day after birth. After 21 weeks, obese rats were treated orally with F. tessmannii (100 or 200 mg/kg/day), orlistat (10 mg/kg/day) or telmisartan (10 mg/kg/day) for 6 weeks. Body weight, obesity, body mass index (BMI), Lee index, insulin sensitivity and glucose tolerance, blood pressure, lipid profile as a Coronary Risk Index (CRI), and reactivity of isolated thoracic aorta were evaluated. RESULTS In addition to significantly decrease body weight (17.60% and 20.34%), BMI, Lee's index, retroperitoneal fat, total adiposity, and coronary risk indicators, F. tessmannii has significantly decreased insulin resistance and hyperglycemia and high blood pressure observed in MSG-obese rats. The high contractility to phenylephrine as well as the hypersensitivity to sodium nitroprusside (a nitric oxide-donor), observed in MSG aortic rings were significantly reduced by the F. tessmannii extract. Enhanced serum Na+ and Cl- levels and decreased K+ observed in obese rats were also significantly reversed after F. tessmannii treatment. CONCLUSIONS F. tessmannii fights against obesity and associated cardiovascular risks by modulating production and vascular responsiveness to vasoactive factors, monitoring premature aging. F. tessmannii promotes the loss of ectopic fat and other fatty tissues, the sensitivity of the peripherical tissues to insulin, the energy expenditure and the renovascular decompression and regulates ions movement which prevents hypertension.
Collapse
Affiliation(s)
- Yannick Bekono Fouda
- Department of Animal Biology and Physiology, Laboratory of Animal Physiology, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Esther Ngo Lemba Tom
- Department of Biological Sciences, Higher Teachers' Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon.
| | - Albert Donatien Atsamo
- Department of Animal Biology and Physiology, Laboratory of Animal Physiology, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Christian Bonabe
- Department of Biological Sciences, Faculty of Sciences, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon.
| | - Théophile Dimo
- Department of Animal Biology and Physiology, Laboratory of Animal Physiology, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| |
Collapse
|
18
|
Topal G, Loesch A, Dashwood MR. COVID-19 - Endothelial Axis and Coronary Artery Bypass Graft Patency: a Target for Therapeutic Intervention? Braz J Cardiovasc Surg 2020; 35:757-763. [PMID: 33118741 PMCID: PMC7598985 DOI: 10.21470/1678-9741-2020-0303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It has been reported that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection induces endothelial inflammation, therefore facilitating the progression of endothelial and vascular dysfunction in coronavirus disease 2019 (COVID-19) patients. Coronary artery bypass grafting (CABG) involves mainly the use of the saphenous vein (SV) and internal mammary artery as graft material in the stenosed coronary arteries. Unfortunately, graft patency of the SV is low due to endothelial dysfunction and inflammation. We propose that SARS-CoV-2 might cause vascular inflammation, endothelial dysfunction, and thrombosis in coronary artery bypass graft vessels by binding angiotensin-converting enzyme 2 receptor. Therefore, in this Special Article, we consider the potential influence of COVID-19 on the patency rates of coronary artery bypass graft vessels, mainly with reference to the SV. Moreover, we discuss the technique of SV graft harvesting and the therapeutic potential of focusing on endothelial dysfunction, vascular inflammation, and thrombosis for protecting coronary artery bypass grafts in COVID-19 infected CABG patients.
Collapse
Affiliation(s)
- Gokce Topal
- Istanbul University Faculty of Pharmacy Department of Pharmacology Istanbul Turkey Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Andrzej Loesch
- University College Medical School Royal Free Hospital Campus Centre for Rheumatology London United Kingdom Centre for Rheumatology, Royal Free Hospital Campus, University College Medical School, London, United Kingdom
| | - Michael R Dashwood
- University College Medical School Royal Free Hospital Campus Department of Surgical and Interventional Sciences London United Kingdom Department of Surgical and Interventional Sciences, Royal Free Hospital Campus, University College Medical School, London, United Kingdom
| |
Collapse
|
19
|
Chronic Mercury Exposure in Prehypertensive SHRs Accelerates Hypertension Development and Activates Vasoprotective Mechanisms by Increasing NO and H 2O 2 Production. Cardiovasc Toxicol 2020; 20:197-210. [PMID: 31338744 DOI: 10.1007/s12012-019-09545-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mercury is a heavy metal associated with cardiovascular diseases. Studies have reported increased vascular reactivity without changes in systolic blood pressure (SBP) after chronic mercury chloride (HgCl2) exposure, an inorganic form of the metal, in normotensive rats. However, we do not know whether individuals in the prehypertensive phase, such as young spontaneously hypertensive rats (SHRs), are susceptible to increased arterial blood pressure. We investigated whether chronic HgCl2 exposure in young SHRs accelerates hypertension development by studying the vascular function of mesenteric resistance arteries (MRAs) and SBP in young SHRs during the prehypertensive phase. Four-week-old male SHRs were divided into two groups: the SHR control group (vehicle) and the SHR HgCl2 group (4 weeks of exposure). The results showed that HgCl2 treatment accelerated the development of hypertension; reduced vascular reactivity to phenylephrine in MRAs; increased nitric oxide (NO) generation; promoted vascular dysfunction by increasing the production of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2); increased Gp91Phox protein levels and in situ levels of superoxide anion (O2·-); and reduced vasoconstrictor prostanoid production compared to vehicle treatment. Although HgCl2 accelerated the development of hypertension, the HgCl2-exposed animals also exhibited a vasoprotective mechanism to counterbalance the rapid increase in SBP by decreasing vascular reactivity through H2O2 and NO overproduction. Our results suggest that HgCl2 exposure potentiates this vasoprotective mechanism against the early establishment of hypertension. Therefore, we are concluding that chronic exposure to HgCl2 in prehypertensive animals could enhance the risk for cardiovascular diseases.
Collapse
|
20
|
Azemi AK, Mokhtar SS, Hou LJ, Sharif SET, Rasool AHG. Model for type 2 diabetes exhibits changes in vascular function and structure due to vascular oxidative stress and inflammation. Biotech Histochem 2020; 96:498-506. [PMID: 32957845 DOI: 10.1080/10520295.2020.1823480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We used a type 2 diabetes rat model produced by a high fat diet (HFD) followed by low dose streptozotocin (STZ) to study diabetic vasculopathy. Animals were evaluated for early vascular structural changes, endothelial function, inflammation, lipid profile and oxidative stress. We used 20 male Sprague-Dawley rats divided equally into control and diabetic groups. Diabetic rats were fed an HFD for 4 weeks, injected intraperitoneally with STZ, then sacrificed at week 15. Aortic endothelial nitric oxide synthase (eNOS), aortic superoxide dismutase (SOD), endothelial-dependent and independent relaxation and contraction, intima-media thickness (IMT), malondialdehyde (MDA) and tumor necrosis factor-alpha (TNF-α) were measured. Histopathological characteristics also were assessed. Diabetic rats exhibited higher fasting blood glucose (FBG), low density lipoprotein, total cholesterol and triglycerides compared to the control group. Aortic endothelium-dependent relaxation due to acetylcholine (ACh) was lower, while aortic endothelium-dependent contraction due to calcium ionophore and endothelium-independent contraction due to phenylephrine (PE) were higher for the diabetic group. eNOS expression was lower in the diabetic group compared to controls. IMT and MDA levels were increased, while SOD activity was decreased in the diabetic group compared to controls. TNF-α was higher in the diabetic group than for controls. Our type 2 diabetes model exhibited endothelial dysfunction associated with early vascular structural changes, dyslipidemia, increased vascular oxidative stress, and inflammation. Therefore, the model is suitable for studying diabetic atherosclerosis.
Collapse
Affiliation(s)
- Ahmad Khusairi Azemi
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| | - Siti Safiah Mokhtar
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| | - Low Jen Hou
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia.,, Hospital Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| | - Sharifah Emilia Tuan Sharif
- , Hospital Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia.,Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| | - Aida Hanum Ghulam Rasool
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia.,, Hospital Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
21
|
Berenji Ardestani S, Eftedal I, Pedersen M, Jeppesen PB, Nørregaard R, Matchkov VV. Endothelial dysfunction in small arteries and early signs of atherosclerosis in ApoE knockout rats. Sci Rep 2020; 10:15296. [PMID: 32943715 PMCID: PMC7499202 DOI: 10.1038/s41598-020-72338-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022] Open
Abstract
Endothelial dysfunction is recognized as a major contributor to atherosclerosis and has been suggested to be evident far before plaque formation. Endothelial dysfunction in small resistance arteries has been suggested to initiate long before changes in conduit arteries. In this study, we address early changes in endothelial function of atherosclerosis prone rats. Male ApoE knockout (KO) rats (11- to 13-weeks-old) were subjected to either a Western or standard diet. The diet intervention continued for a period of 20–24 weeks. Endothelial function of pulmonary and mesenteric arteries was examined in vitro using an isometric myograph. We found that Western diet decreased the contribution of cyclooxygenase (COX) to control the vascular tone of both pulmonary and mesenteric arteries. These changes were associated with early stage atherosclerosis and elevated level of plasma total cholesterol, LDL and triglyceride in ApoE KO rats. Chondroid-transformed smooth muscle cells, calcifications, macrophages accumulation and foam cells were also observed in the aortic arch from ApoE KO rats fed Western diet. The ApoE KO rats are a new model to study endothelial dysfunction during the earlier stages of atherosclerosis and could help us improve preclinical drug development.
Collapse
Affiliation(s)
- Simin Berenji Ardestani
- Department of Clinical Medicine, Aarhus University, Palle Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark. .,Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway.
| | - Ingrid Eftedal
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway.,Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - Michael Pedersen
- Department of Clinical Medicine, Aarhus University, Palle Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Per Bendix Jeppesen
- Department of Clinical Medicine, Aarhus University, Palle Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Palle Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Vladimir V Matchkov
- Department of Biomedicine, MEMBRANES, Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
22
|
Clinacanthus nutans Leaves Extract Reverts Endothelial Dysfunction in Type 2 Diabetes Rats by Improving Protein Expression of eNOS. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7572892. [PMID: 32879653 PMCID: PMC7448219 DOI: 10.1155/2020/7572892] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/13/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus is associated with endothelial dysfunction; it causes progressive vascular damage resulting from an impaired endothelium-dependent vasorelaxation. In the diabetes state, presence of hyperglycemia and insulin resistance predisposes to endothelial dysfunction. Clinacanthus nutans, widely used as a traditional medicine for diabetes is reported to have hypoglycemic, hypolipidemic, antioxidant, and anti-inflammatory properties. However, the possibility of C. nutans affecting the vascular endothelial function in diabetes remains unclear. This study was aimed at evaluating the effects of C. nutans methanolic leaves extract (CNME) on endothelial function in a type 2 diabetes (T2DM) rat model. Sixty male Sprague-Dawley rats were divided into five groups (n = 12 per group): nondiabetic control, nondiabetic treated with four weeks of CNME (500 mg/kg/daily), untreated diabetic rats, diabetic treated with metformin (300 mg/kg/daily), and diabetic treated with CNME (500 mg/kg/daily). T2DM was induced by a single intraperitoneal injection of low-dose streptozotocin (STZ) to rats fed with high-fat diet (HFD). Endothelial-dependent and endothelial-independent relaxations and contractions of the thoracic aorta were determined using the organ bath. Aortic endothelial nitric oxide synthase (eNOS) expression was determined using Western blotting. Endothelial-dependent relaxation was reduced in diabetic rats. Both diabetic groups treated with CNME or metformin significantly improved the impairment in endothelium-dependent vasorelaxation; this was associated with increased expression of aortic eNOS protein. CNME- and metformin-treated groups also reduced aortic endothelium-dependent and aortic endothelium-independent contractions in diabetics. Both of these diabetic-treated groups also reduced blood glucose levels and increased body weight compared to the untreated diabetic group. In conclusion, C. nutans improves endothelial-dependent vasodilatation and reduces endothelial-dependent contraction, thus ameliorating endothelial dysfunction in diabetic rats. This may occur due to its effect on increasing eNOS protein expression.
Collapse
|
23
|
Sertedaki E, Veroutis D, Zagouri F, Galyfos G, Filis K, Papalambros A, Aggeli K, Tsioli P, Charalambous G, Zografos G, Sigala F. Carotid Disease and Ageing: A Literature Review on the Pathogenesis of Vascular Senescence in Older Subjects. Curr Gerontol Geriatr Res 2020; 2020:8601762. [PMID: 32582337 PMCID: PMC7306882 DOI: 10.1155/2020/8601762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/11/2020] [Accepted: 05/16/2020] [Indexed: 02/06/2023] Open
Abstract
Aging is a natural process that affects all systems of the human organism, leading to its inability to adapt to environmental changes. Advancing age has been correlated with various pathological conditions, especially cardiovascular and cerebrovascular diseases. Carotid artery (CA) is mainly affected by age-induced functional and morphological alterations causing atheromatous disease. The evolvement of biomedical sciences has allowed the elucidation of many aspects of this condition. Symptomatic carotid disease (CD) derives from critical luminar stenosis or eruption of an atheromatous plaque due to structural modifications of the vessels, such as carotid intima-media thickening. At a histologic level, the aforementioned changes are mediated by elastin fragmentation, collagen deposition, immune cell infiltration, and accumulation of cytokines and vasoconstrictors. Underlying mechanisms include chronic inflammation and oxidative stress, dysregulation of cellular homeostatic systems, and senescence. Thus, there is an imbalance in components of the vessel wall, which fails to counteract exterior stress stimuli. Consequently, arterial relaxation is impaired and atherosclerotic lesions progress. This is a review of current evidence regarding the relationship of aging with vascular senescence and CD. A deeper understanding of these mechanisms can contribute to the production of efficient prevention methods and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Eleni Sertedaki
- First Department of Propaedeutic Surgery, Hippocration General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Veroutis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
| | - Flora Zagouri
- Clinical Therapeutics Department, Alexandra General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
| | - George Galyfos
- First Department of Propaedeutic Surgery, Hippocration General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
| | - Konstadinos Filis
- First Department of Propaedeutic Surgery, Hippocration General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
| | - Alexandros Papalambros
- First Department of Surgery, Laikon General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Aggeli
- First Department of Cardiology, University of Athens Medical School, Hippocration Hospital, Athens, Greece
| | - Panagiota Tsioli
- First Department of Pathology, Laikon General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
| | - George Charalambous
- First Department of Propaedeutic Surgery, Hippocration General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
| | - George Zografos
- First Department of Propaedeutic Surgery, Hippocration General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
| | - Fragiska Sigala
- First Department of Propaedeutic Surgery, Hippocration General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
24
|
Chen H, Simonsen U, Aalkjaer C. A sex‐specific, COX‐derived/thromboxane receptor activator causes depolarization and vasoconstriction in male mice mesenteric resistance arteries. Basic Clin Pharmacol Toxicol 2020; 127:152-159. [DOI: 10.1111/bcpt.13413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 01/13/2023]
Affiliation(s)
- Hua Chen
- Department of Biomedicine Aarhus University Aarhus C Denmark
| | - Ulf Simonsen
- Department of Biomedicine Aarhus University Aarhus C Denmark
| | | |
Collapse
|
25
|
Triggle CR, Ding H, Marei I, Anderson TJ, Hollenberg MD. Why the endothelium? The endothelium as a target to reduce diabetes-associated vascular disease. Can J Physiol Pharmacol 2020; 98:415-430. [PMID: 32150686 DOI: 10.1139/cjpp-2019-0677] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over the past 66 years, our knowledge of the role of the endothelium in the regulation of cardiovascular function and dysfunction has advanced from the assumption that it is a single layer of cells that serves as a barrier between the blood stream and vascular smooth muscle to an understanding of its role as an essential endocrine-like organ. In terms of historical contributions, we pay particular credit to (1) the Canadian scientist Dr. Rudolf Altschul who, based on pathological changes in the appearance of the endothelium, advanced the argument in 1954 that "one is only as old as one's endothelium" and (2) the American scientist Dr. Robert Furchgott, a 1998 Nobel Prize winner in Physiology or Medicine, who identified the importance of the endothelium in the regulation of blood flow. This review provides a brief history of how our knowledge of endothelial function has advanced and now recognize that the endothelium produces a plethora of signaling molecules possessing paracrine, autocrine, and, arguably, systemic hormone functions. In addition, the endothelium is a therapeutic target for the anti-diabetic drugs metformin, glucagon-like peptide I (GLP-1) receptor agonists, and inhibitors of the sodium-glucose cotransporter 2 (SGLT2) that offset the vascular disease associated with diabetes.
Collapse
Affiliation(s)
- Chris R Triggle
- Departments of Pharmacology and Medical Education, Weill Cornell Medical College, Doha, Qatar
| | - Hong Ding
- Departments of Pharmacology and Medical Education, Weill Cornell Medical College, Doha, Qatar
| | - Isra Marei
- Departments of Pharmacology and Medical Education, Weill Cornell Medical College, Doha, Qatar
| | - Todd J Anderson
- Department of Cardiac Sciences and Libin Cardiovascular Institute, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
| | - Morley D Hollenberg
- Inflammation Research Network, Snyder Institute for Chronic Disease, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada.,Department of Physiology and Pharmacology, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada.,Department of Medicine, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
26
|
Tran V, De Silva TM, Sobey CG, Lim K, Drummond GR, Vinh A, Jelinic M. The Vascular Consequences of Metabolic Syndrome: Rodent Models, Endothelial Dysfunction, and Current Therapies. Front Pharmacol 2020; 11:148. [PMID: 32194403 PMCID: PMC7064630 DOI: 10.3389/fphar.2020.00148] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/04/2020] [Indexed: 12/30/2022] Open
Abstract
Metabolic syndrome is characterized by visceral obesity, dyslipidemia, hyperglycemia and hypertension, and affects over one billion people. Independently, the components of metabolic syndrome each have the potential to affect the endothelium to cause vascular dysfunction and disrupt vascular homeostasis. Rodent models of metabolic syndrome have significantly advanced our understanding of this multifactorial condition. In this mini-review we compare the currently available rodent models of metabolic syndrome and consider their limitations. We also discuss the numerous mechanisms by which metabolic abnormalities cause endothelial dysfunction and highlight some common pathophysiologies including reduced nitric oxide production, increased reactive oxygen species and increased production of vasoconstrictors. Additionally, we explore some of the current therapeutics for the comorbidities of metabolic syndrome and consider how these benefit the vasculature.
Collapse
Affiliation(s)
- Vivian Tran
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - T Michael De Silva
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Kyungjoon Lim
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Grant R Drummond
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Antony Vinh
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Maria Jelinic
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
27
|
Moccia F, Negri S, Faris P, Berra-Romani R. Targeting the Endothelial Ca2+ Toolkit to Rescue Endothelial Dysfunction in Obesity Associated-Hypertension. Curr Med Chem 2020; 27:240-257. [PMID: 31486745 DOI: 10.2174/0929867326666190905142135] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/03/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Obesity is a major cardiovascular risk factor which dramatically impairs endothelium- dependent vasodilation and leads to hypertension and vascular damage. The impairment of the vasomotor response to extracellular autacoids, e.g., acetylcholine, mainly depends on the reduced Nitric Oxide (NO) bioavailability, which hampers vasorelaxation in large conduit arteries. In addition, obesity may affect Endothelium-Dependent Hyperpolarization (EDH), which drives vasorelaxation in small resistance arteries and arterioles. Of note, endothelial Ca2+ signals drive NO release and trigger EDH. METHODS A structured search of bibliographic databases was carried out to retrieve the most influential, recent articles on the impairment of vasorelaxation in animal models of obesity, including obese Zucker rats, and on the remodeling of the endothelial Ca2+ toolkit under conditions that mimic obesity. Furthermore, we searched for articles discussing how dietary manipulation could be exploited to rescue Ca2+-dependent vasodilation. RESULTS We found evidence that the endothelial Ca2+ could be severely affected by obese vessels. This rearrangement could contribute to endothelial damage and is likely to be involved in the disruption of vasorelaxant mechanisms. However, several Ca2+-permeable channels, including Vanilloid Transient Receptor Potential (TRPV) 1, 3 and 4 could be stimulated by several food components to stimulate vasorelaxation in obese individuals. CONCLUSION The endothelial Ca2+ toolkit could be targeted to reduce vascular damage and rescue endothelium- dependent vasodilation in obese vessels. This hypothesis remains, however, to be probed on truly obese endothelial cells.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
28
|
Berra-Romani R, Guzmán-Silva A, Vargaz-Guadarrama A, Flores-Alonso JC, Alonso-Romero J, Treviño S, Sánchez-Gómez J, Coyotl-Santiago N, García-Carrasco M, Moccia F. Type 2 Diabetes Alters Intracellular Ca 2+ Handling in Native Endothelium of Excised Rat Aorta. Int J Mol Sci 2019; 21:ijms21010250. [PMID: 31905880 PMCID: PMC6982087 DOI: 10.3390/ijms21010250] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 02/03/2023] Open
Abstract
An increase in intracellular Ca2+ concentration ([Ca2+]i) plays a key role in controlling endothelial functions; however, it is still unclear whether endothelial Ca2+ handling is altered by type 2 diabetes mellitus, which results in severe endothelial dysfunction. Herein, we analyzed for the first time the Ca2+ response to the physiological autacoid ATP in native aortic endothelium of obese Zucker diabetic fatty (OZDF) rats and their lean controls, which are termed LZDF rats. By loading the endothelial monolayer with the Ca2+-sensitive fluorophore, Fura-2/AM, we found that the endothelial Ca2+ response to 20 µM and 300 µM ATP exhibited a higher plateau, a larger area under the curve and prolonged duration in OZDF rats. The “Ca2+ add-back” protocol revealed no difference in the inositol-1,4,5-trisphosphate-releasable endoplasmic reticulum (ER) Ca2+ pool, while store-operated Ca2+ entry was surprisingly down-regulated in OZDF aortae. Pharmacological manipulation disclosed that sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) activity was down-regulated by reactive oxygen species in native aortic endothelium of OZDF rats, thereby exaggerating the Ca2+ response to high agonist concentrations. These findings shed new light on the mechanisms by which type 2 diabetes mellitus may cause endothelial dysfunction by remodeling the intracellular Ca2+ toolkit.
Collapse
Affiliation(s)
- Roberto Berra-Romani
- Laboratory of Cardiovascular Physiology, Biomedicine School, Faculty of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico; (A.G.-S.); (J.A.-R.); (N.C.-S.)
- Correspondence: (R.B.-R.); (F.M.)
| | - Alejandro Guzmán-Silva
- Laboratory of Cardiovascular Physiology, Biomedicine School, Faculty of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico; (A.G.-S.); (J.A.-R.); (N.C.-S.)
| | - Ajelet Vargaz-Guadarrama
- Faculty of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico; (A.V.-G.); (J.S.-G.); (M.G.-C.)
| | - Juan Carlos Flores-Alonso
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla 74360, Mexico;
| | - José Alonso-Romero
- Laboratory of Cardiovascular Physiology, Biomedicine School, Faculty of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico; (A.G.-S.); (J.A.-R.); (N.C.-S.)
| | - Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72540, Mexico;
| | - Josué Sánchez-Gómez
- Faculty of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico; (A.V.-G.); (J.S.-G.); (M.G.-C.)
| | - Nayeli Coyotl-Santiago
- Laboratory of Cardiovascular Physiology, Biomedicine School, Faculty of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico; (A.G.-S.); (J.A.-R.); (N.C.-S.)
| | - Mario García-Carrasco
- Faculty of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico; (A.V.-G.); (J.S.-G.); (M.G.-C.)
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
- Correspondence: (R.B.-R.); (F.M.)
| |
Collapse
|
29
|
Affiliation(s)
- Matthias Barton
- University of Zürich and Andreas Grüntzig Foundation Zürich Switzerland
| | - Carmine Cardillo
- Policlinico A. Gemelli IRCCS and Università Cattolica del Sacro Cuore Roma Italy
| |
Collapse
|
30
|
Boulanger CM, Baretella O, Blaise G, Bond RA, Cai Y, Chan CKY, Chataigneau T, Chen MJ, Chen H, Cheng Y, Clement DL, Cohen RA, Collis M, Danser AHJ, de Mey J, Detremmerie CMS, Duprez D, Feletou M, Flavahan N, Gao Y, Guo Y, Hoeffner U, Houston DS, Huang IB, Huang Y, Iliano S, Junquero D, Katusic ZS, Komori K, Lee MYK, Leung SWS, Li Z, Liang SC, Liu JTC, Luscher TF, Michel F, Miller VM, Mombouli JV, Morrison K, Muldoon SM, O'Rourke S, Perrault L, Quignard JF, Rusch NJ, Sanchez-Ferrer CF, Schini-Kerth V, Shen K, Shi Y, Song E, Sun KWY, Taddei S, Tang EHC, Tuncer M, van den Ende R, Vedernikov Y, Verbeuren TJ, Webb C, Weigert A, Wong KHK, Xu C, Yang K, Ying F, Zellers T, Zhao Y, Zou Q, Shimokawa H. Tribute to Paul M. Vanhoutte, MD, PhD (1940-2019). Arterioscler Thromb Vasc Biol 2019; 39:2445-2447. [PMID: 31770032 DOI: 10.1161/atvbaha.119.313461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | | | | | | | - Yin Cai
- University of Hong Kong, PRC (Y. Cai, H.C., Y. Cheng, Y. Guo, M.Y.K.L., S.W.S.L., S.C.L., J.T.C.L., K.W.Y.S., E.H.C.T., K.H.K.W., Q.Z.)
| | | | | | | | - Hui Chen
- University of Hong Kong, PRC (Y. Cai, H.C., Y. Cheng, Y. Guo, M.Y.K.L., S.W.S.L., S.C.L., J.T.C.L., K.W.Y.S., E.H.C.T., K.H.K.W., Q.Z.)
| | - Yanhua Cheng
- University of Hong Kong, PRC (Y. Cai, H.C., Y. Cheng, Y. Guo, M.Y.K.L., S.W.S.L., S.C.L., J.T.C.L., K.W.Y.S., E.H.C.T., K.H.K.W., Q.Z.)
| | | | | | | | | | - Jo de Mey
- University of Southern Denmark (J.D.M.)
| | | | | | | | | | | | - Yumeng Guo
- University of Hong Kong, PRC (Y. Cai, H.C., Y. Cheng, Y. Guo, M.Y.K.L., S.W.S.L., S.C.L., J.T.C.L., K.W.Y.S., E.H.C.T., K.H.K.W., Q.Z.)
| | - Ute Hoeffner
- Glenmark Pharmaceuticals, Gröbenzell, Germany (U.H.)
| | | | | | - Yu Huang
- Chinese University of Hong Kong, Hong Kong, PRC (I.B.H., Y.H., F.Y.)
| | | | | | | | | | - Mary Y K Lee
- University of Hong Kong, PRC (Y. Cai, H.C., Y. Cheng, Y. Guo, M.Y.K.L., S.W.S.L., S.C.L., J.T.C.L., K.W.Y.S., E.H.C.T., K.H.K.W., Q.Z.)
| | - Susan W S Leung
- University of Hong Kong, PRC (Y. Cai, H.C., Y. Cheng, Y. Guo, M.Y.K.L., S.W.S.L., S.C.L., J.T.C.L., K.W.Y.S., E.H.C.T., K.H.K.W., Q.Z.)
| | - Zhuoming Li
- Sun Yat-sen University, Guangzhou, China (Z.L.)
| | - Sophie Chaofan Liang
- University of Hong Kong, PRC (Y. Cai, H.C., Y. Cheng, Y. Guo, M.Y.K.L., S.W.S.L., S.C.L., J.T.C.L., K.W.Y.S., E.H.C.T., K.H.K.W., Q.Z.)
| | - Jacky Tsz Chiu Liu
- University of Hong Kong, PRC (Y. Cai, H.C., Y. Cheng, Y. Guo, M.Y.K.L., S.W.S.L., S.C.L., J.T.C.L., K.W.Y.S., E.H.C.T., K.H.K.W., Q.Z.)
| | - Thomas F Luscher
- Royal Brompton & Harefield Hospitals, London, United Kingdom (T.F.L.)
| | - Frederic Michel
- University of the Witwatersrand, Johannesburg, South Africa (F.M.)
| | | | | | - Keith Morrison
- Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland (K.M.)
| | | | | | | | | | - Nancy J Rusch
- University of Arkansas for Medical Sciences, Little Rock (N.J.R.)
| | | | | | - Kaikai Shen
- Shanghai University of Traditional Chinese Medicine, China (K.S.)
| | - Yi Shi
- Zhongshan Hospital Fudan University, China (Y.S.)
| | - Erfei Song
- Jinan University, Guangzhou, China (E.S.)
| | - Kiwi W Y Sun
- University of Hong Kong, PRC (Y. Cai, H.C., Y. Cheng, Y. Guo, M.Y.K.L., S.W.S.L., S.C.L., J.T.C.L., K.W.Y.S., E.H.C.T., K.H.K.W., Q.Z.)
| | | | - Eva Hoi Ching Tang
- University of Hong Kong, PRC (Y. Cai, H.C., Y. Cheng, Y. Guo, M.Y.K.L., S.W.S.L., S.C.L., J.T.C.L., K.W.Y.S., E.H.C.T., K.H.K.W., Q.Z.)
| | | | | | | | | | | | - André Weigert
- Hospital S. Cruz, University of Lisbon, Portugal (A.W.)
| | - Kenneth H K Wong
- University of Hong Kong, PRC (Y. Cai, H.C., Y. Cheng, Y. Guo, M.Y.K.L., S.W.S.L., S.C.L., J.T.C.L., K.W.Y.S., E.H.C.T., K.H.K.W., Q.Z.)
| | - Cheng Xu
- Shenzhen University, China (C.X.)
| | | | - Fan Ying
- Chinese University of Hong Kong, Hong Kong, PRC (I.B.H., Y.H., F.Y.)
| | - Thomas Zellers
- University of Texas Southwestern Medical Center, Dallas (T.Z.)
| | - Yingzi Zhao
- Chinese Academy of Sciences, Shenzhen, China (Y.Z.)
| | - Qian Zou
- University of Hong Kong, PRC (Y. Cai, H.C., Y. Cheng, Y. Guo, M.Y.K.L., S.W.S.L., S.C.L., J.T.C.L., K.W.Y.S., E.H.C.T., K.H.K.W., Q.Z.)
| | | | | |
Collapse
|
31
|
Chen H, Vanhoutte PM, Leung SWS. Vascular adenosine monophosphate-activated protein kinase: Enhancer, brake or both? Basic Clin Pharmacol Toxicol 2019; 127:81-91. [PMID: 31671245 DOI: 10.1111/bcpt.13357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/24/2019] [Indexed: 12/25/2022]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK), expressed/present ubiquitously in the body, contributes to metabolic regulation. In the vasculature, activation of AMPK is associated with several beneficial biological effects including enhancement of vasodilatation, reduction of oxidative stress and inhibition of inflammatory reactions. The vascular protective effects of certain anti-diabetic (metformin and sitagliptin) or lipid-lowering (simvastatin and fenofibrate) therapeutic agents, of active components of Chinese medicinal herbs (resveratrol and berberine) and of pharmacological agents (AICAR, A769662 and PT1) have been attributed to the activation of AMPK (in endothelial cells, vascular smooth muscle cells and/or perivascular adipocytes), independently of changes in the metabolic profile (eg glucose tolerance and/or plasma lipoprotein levels), leading to improved endothelium-derived nitric oxide-mediated vasodilatation and attenuated endothelium-derived cyclooxygenase-dependent vasoconstriction. By contrast, endothelial AMPK activation with pharmacological agents or by genetic modification is associated with reduced endothelium-dependent relaxations in small blood vessels and elevated systolic blood pressure. Indeed, AMPK activators inhibit endothelium-dependent hyperpolarization (EDH)-type relaxations in superior mesenteric arteries, partly by inhibiting endothelial calcium-activated potassium channel signalling. Therefore, AMPK activation is not necessarily beneficial in terms of endothelial function. The contribution of endothelial AMPK in the regulation of vascular tone, in particular in the microvasculature where EDH plays a more important role, remains to be characterized.
Collapse
Affiliation(s)
- Hui Chen
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Paul Michel Vanhoutte
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Susan Wai Sum Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
32
|
de Assunção Machado AC, da Silva AMV, Signori LU, da Costa Alvarez G, Mottin CC. Endothelial Function of Patients with Morbid Obesity Submitted to Roux-en-Y Gastric Bypass With and Without Obstructive Sleep Apnea-Hypopnea Syndrome. Obes Surg 2019; 28:3595-3603. [PMID: 30054874 DOI: 10.1007/s11695-018-3403-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Obesity is associated with obstructive sleep apnea-hypopnea syndrome (OSA) and both induce endothelial dysfunction. However, the effect of OSA on endothelial function after bariatric surgery has not been investigated yet. OBJECTIVES This study aims to evaluate the impact of weight loss on endothelial function in patients with and without obstructive sleep apnea (OSA) in the first 6 months after bariatric surgery. SETTING This study was conducted at a university hospital, in Brazil. METHODS The sample consisted of 56 patients homogeneously divided into groups with and without OSA. All patients underwent Roux-en-Y gastric bypass (RYGB), and the diagnosis of OSA was performed by polysomnography. The patients were evaluated preoperatively and 6 months after surgery. The evaluations included anthropometric measures, electrical bioimpedance, clinical symptoms of OSA, and endothelial function (flow-mediated dilation). RYGB improved the anthropometric, bioimpedance, and endothelial function results in both groups. RESULTS Patients presented a significant clinical improvement in OSA symptoms throughout the study. However, patients with OSA had an improvement in the endothelial function 2.5% lower (p < 0.001) than patients without APNEA syndrome. CONCLUSION This study demonstrates that the existence of OSA prior to bariatric surgery interferes in the improvement of endothelial function.
Collapse
Affiliation(s)
- Ana Cristina de Assunção Machado
- Departamento de Fisioterapia e Reabilitação, Universidade Federal de Santa Maria, Santa Maria, Brazil. .,Centro de Ciências da Saúde, Curso de Fisioterapia, Universidade Federal de Santa Maria - UFSM, Av. Roraima no. 1000, Cidade Universitária, Bairro Camobi, Santa Maria, RS, 97105-900, Brazil.
| | | | - Luis Ulisses Signori
- Departamento de Fisioterapia e Reabilitação, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | - Claudio Corá Mottin
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
33
|
Mirabito Colafella KM, Neuman RI, Visser W, Danser AHJ, Versmissen J. Aspirin for the prevention and treatment of pre-eclampsia: A matter of COX-1 and/or COX-2 inhibition? Basic Clin Pharmacol Toxicol 2019; 127:132-141. [PMID: 31420920 PMCID: PMC7496715 DOI: 10.1111/bcpt.13308] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/11/2019] [Indexed: 01/04/2023]
Abstract
Since the 1970s, we have known that aspirin can reduce the risk of pre‐eclampsia. However, the underlying mechanisms explaining this risk reduction are poorly understood. Both cyclooxygenase (COX)‐1‐ and COX‐2‐dependent effects might be involved. As a consequence of this knowledge hiatus, the optimal dose and timing of initiation of aspirin therapy are not clear. Here, we review how (COX‐1 versus COX‐2 inhibition) and when (prevention versus treatment) aspirin therapy may interfere with the mechanisms implicated in the pathogenesis of pre‐eclampsia. The available evidence suggests that both COX‐1‐ and COX‐2‐dependent effects play important roles in the early stage of aberrant placental development and in the next phase leading to the clinical syndrome of pre‐eclampsia. Collectively, these data suggest that high‐dose (dual COX inhibition) aspirin may be superior to standard low‐dose (selective COX‐1 inhibition) aspirin for the prevention and also treatment of pre‐eclampsia. Therefore, we conclude that more functional and biochemical tests are needed to unravel the contribution of prostanoids in the mechanisms implicated in the pathogenesis of pre‐eclampsia and the potential of dual COX and/or selective COX‐2 inhibition for the prevention and treatment of pre‐eclampsia. This information is vital if we are to deduce the suitability, optimal timing and dose of aspirin and/or a specific COX‐2 inhibitor (most likely using modified forms that do not cross the placenta) that can then be tested in a randomized, controlled trial instead of the current practice of empirical dosing regimens.
Collapse
Affiliation(s)
- Katrina M Mirabito Colafella
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic, Australia.,Department of Physiology, Monash University, Melbourne, Vic, Australia.,Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Rugina I Neuman
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Division of Obstetrics and Perinatal Medicine, Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Willy Visser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Division of Obstetrics and Perinatal Medicine, Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - A H Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jorie Versmissen
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
34
|
Krüger-Genge A, Blocki A, Franke RP, Jung F. Vascular Endothelial Cell Biology: An Update. Int J Mol Sci 2019; 20:ijms20184411. [PMID: 31500313 PMCID: PMC6769656 DOI: 10.3390/ijms20184411] [Citation(s) in RCA: 660] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 12/20/2022] Open
Abstract
The vascular endothelium, a monolayer of endothelial cells (EC), constitutes the inner cellular lining of arteries, veins and capillaries and therefore is in direct contact with the components and cells of blood. The endothelium is not only a mere barrier between blood and tissues but also an endocrine organ. It actively controls the degree of vascular relaxation and constriction, and the extravasation of solutes, fluid, macromolecules and hormones, as well as that of platelets and blood cells. Through control of vascular tone, EC regulate the regional blood flow. They also direct inflammatory cells to foreign materials, areas in need of repair or defense against infections. In addition, EC are important in controlling blood fluidity, platelet adhesion and aggregation, leukocyte activation, adhesion, and transmigration. They also tightly keep the balance between coagulation and fibrinolysis and play a major role in the regulation of immune responses, inflammation and angiogenesis. To fulfill these different tasks, EC are heterogeneous and perform distinctly in the various organs and along the vascular tree. Important morphological, physiological and phenotypic differences between EC in the different parts of the arterial tree as well as between arteries and veins optimally support their specified functions in these vascular areas. This review updates the current knowledge about the morphology and function of endothelial cells, particularly their differences in different localizations around the body paying attention specifically to their different responses to physical, biochemical and environmental stimuli considering the different origins of the EC.
Collapse
Affiliation(s)
- Anne Krüger-Genge
- Department of Biomaterials and Healthcare, Division of Life Science and Bioprocesses, Fraunhofer Institute for Applied Polymer Research (IAP), Potsdam-Golm 14476, Germany.
- Department of Anesthesia, Pain Management and Perioperative Medicine, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 2Y9, Canada.
| | - Anna Blocki
- Institute for Tissue Engineering and Regenerative Medicine (ITERM), School of Biomedical Sciences (SBS), Chinese University of Hong Kong (CUHK), New Territories, Hong Kong, China
| | - Ralf-Peter Franke
- Central Institute for Biomedical Technology, Dep. Biomaterials, University of Ulm, Albert-Einstein-Allee 47, 89081 Ulm, Germany
| | - Friedrich Jung
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology, 01968 Senftenberg, Germany
| |
Collapse
|
35
|
Vanhoutte PM, Leung SWS. Hypoxic augmentation: The tale of a strange contraction. Basic Clin Pharmacol Toxicol 2019; 127:59-66. [PMID: 31310708 DOI: 10.1111/bcpt.13295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023]
Abstract
Almost fifty years ago, experiments on isolated veins showed that acute hypoxia augments venoconstrictor responses in vitro and that such facilitation relied on anaerobic glycolysis. Over the years, this phenomenon was extended to a number of arterial preparations of different species and revisited, from a mechanistic point of view, with the successive demonstration that it depends on calcium handling in the vascular smooth muscle cells, is endothelium-dependent and requires the production of nitric oxide (NO) by endothelial nitric oxide synthase (eNOS) and the activation of soluble guanylyl cyclase (sGC). However, rather than the vasodilator cyclic nucleotide 3',5'-cyclic guanosine monophosphate (cGMP), its canonical product, the latter enzyme produces 3',5'-cyclic inosine monophosphate (cIMP) instead during acute hypoxia; this non-canonical cyclic nucleotide facilitates the contractile process in the vascular smooth muscle cells. This 'biased' activity of soluble guanylyl cyclase appears to involve stimulation of NAD(P)H:quinone oxidoreductase 1 (NQO-1). The exact interactions between hypoxia, anaerobic metabolism and NQO-1 leading to biased activity of soluble guanylyl cyclase remain to be established.
Collapse
Affiliation(s)
- Paul Michel Vanhoutte
- Department of Pharmacology and Pharmacy, State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Susan Wai Sum Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
36
|
Pouwels S, Van Genderen ME, Kreeftenberg HG, Ribeiro R, Parmar C, Topal B, Celik A, Ugale S. Utility of the cold pressor test to predict future cardiovascular events. Expert Rev Cardiovasc Ther 2019; 17:305-318. [PMID: 30916592 DOI: 10.1080/14779072.2019.1598262] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The cold pressor test (CPT) is a common and extensively validated test, which induces systemic stress involving immersion of an individual's hand in ice water (normally temperature between 0 and 5 degrees Celsius) for a period of time. CPT has been used in various fields, like examining effects of stress on memory, decision-making, pain and cardiovascular health. Areas covered: In terms of cardiovascular health, current research is mainly interested in predicting the occurrence of cardiovascular (CV) events. The objective of this review is to give an overview of the history and methodology of the CPT, and clinical utility in possibly predicting CV events in CAD and other atherosclerotic diseases. Secondly, we will discuss possible future applications of the CPT in clinical care. Expert opinion: An important issue to address is the fact that the physiology of the CPT is not fully understood at this moment. As pointed out multiple mechanisms might be responsible for contributing to either coronary vasodilatation or coronary vasoconstriction. Regarding the physiological mechanism of the CPT and its effect on the measurements of the carotid artery reactivity even less is known.
Collapse
Affiliation(s)
- Sjaak Pouwels
- a Department of Surgery , Franciscus Gasthuis & Vlietland , Rotterdam/Schiedam , The Netherlands
| | - Michel E Van Genderen
- b Department of Internal Medicine , Franciscus Gasthuis & Vlietland , Rotterdam/Schiedam , The Netherlands
| | - Herman G Kreeftenberg
- c Department of Internal Medicine , Catharina Hospital , Eindhoven , The Netherlands.,d Department of Intensive Care Medicine , Catharina Hospital , Eindhoven , The Netherlands
| | - Rui Ribeiro
- e Metabolic Patient Multidisciplinary Centre , Clínica de Santo António , Lisbon , Portugal
| | - Chetan Parmar
- f Department of Surgery , Whittington Hospital , London , UK
| | - Besir Topal
- g Department of Cardiothoracic Surgery , OLVG , Amsterdam , The Netherlands
| | - Alper Celik
- h Department of metabolic surgery , Metabolic Surgery Clinic , Istanbul , Turkey
| | - Surendra Ugale
- i Department of Surgery , Virinchi Hospitals , Hyderbad , India
| |
Collapse
|
37
|
Interactions between the Cyclooxygenase Metabolic Pathway and the Renin-Angiotensin-Aldosterone Systems: Their Effect on Cardiovascular Risk, from Theory to the Clinical Practice. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7902081. [PMID: 30386795 PMCID: PMC6189683 DOI: 10.1155/2018/7902081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023]
Abstract
Coronary artery disease (CAD) and stroke are the most common and serious long-term complications of hypertension. Acetylsalicylic acid (ASA) significantly reduces their incidence and cardiovascular mortality. The RAAS activation plays an important role in pathogenesis of CVD, resulting in increased vascular resistance, proliferation of vascular-smooth-muscle-cells, and cardiac hypertrophy. Drugs acting on the renin-angiotensin-aldosterone system (RAAS) are demonstrated to reduce cardiovascular events in population with cardiovascular disease (CVD). The cyclooxygenase inhibitors limit the beneficial effect of RAAS-inhibitors, which in turn may be important in subjects with hypertension, CAD, and congestive heart failure. These observations apply to most of nonsteroidal anti-inflammatory drugs and ASA at high doses. Nevertheless, there is no strong evidence confirming presence of similar effects of cardioprotective ASA doses. The benefit of combined therapy with low-doses of ASA is-in some cases-significantly higher than that of monotherapy. So far, the significance of ASA in optimizing the pharmacotherapy remains not fully established. A better understanding of its influence on the particular CVD should contribute to more precise identification of patients in whom benefits of ASA outweigh the complication risk. This brief review summarizes the data regarding usefulness and safety of the ASA combination with drugs acting directly on the RAAS.
Collapse
|
38
|
Guo Y, Xu C, Man AWC, Bai B, Luo C, Huang Y, Xu A, Vanhoutte PM, Wang Y. Endothelial SIRT1 prevents age-induced impairment of vasodilator responses by enhancing the expression and activity of soluble guanylyl cyclase in smooth muscle cells. Cardiovasc Res 2018; 115:678-690. [DOI: 10.1093/cvr/cvy212] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/02/2018] [Accepted: 08/24/2018] [Indexed: 12/13/2022] Open
Abstract
Abstract
Aims
Aged arteries are characterized by attenuated vasodilator and enhanced vasoconstrictor responses, which contribute to the development of diseases such as arterial hypertension, atherosclerosis, and heart failure. SIRT1 is a longevity regulator exerting protective functions against vascular ageing, although the underlying mechanisms remain largely unknown. This study was designed to elucidate the signalling pathways involved in endothelial SIRT1-mediated vasodilator responses in the arteries of young and old mice. In particular, the contributions of nitric oxide (NO), endothelial NO synthase (eNOS), cyclooxygenase (COX), and/or soluble guanylyl cyclase (sGC) were examined.
Methods and results
Wild type (WT) or eNOS knockout (eKO) mice were cross-bred with those overexpressing human SIRT1 selectively in the vascular endothelium (EC-SIRT1). Arteries were collected from the four groups of mice (WT, EC-SIRT1, eKO, and eKO-SIRT1) to measure isometric relaxations/contractions in response to various pharmacological agents. Reduction of NO bioavailability, hyper-activation of COX signalling, and down-regulation of sGC collectively contributed to the decreased vasodilator and increased vasoconstrictor responses in arteries of old WT mice. Overexpression of endothelial SIRT1 did not block the reduction in NO bioavailability but attenuated the hyper-activation of COX-2, thus protecting mice from age-induced vasoconstrictor responses in arteries of EC-SIRT1 mice. Deficiency of eNOS did not affect endothelial SIRT1-mediated anti-contractile activities in arteries of eKO-SIRT1 mice. Mechanistic studies revealed that overexpression of endothelial SIRT1 enhanced Notch signalling to up-regulate sGCβ1 in smooth muscle cells. Increased expression and activity of sGC prevented age-induced hyper-activation of COX-2 as well as the conversion of endothelium-dependent relaxations to contractions in arteries of EC-SIRT1 mice.
Conclusion
Age-induced down-regulation of sGC and up-regulation of COX-2 in arteries are at least partly attributable to the loss-of-endothelial SIRT1 function. Enhancing the endothelial expression and function of SIRT1 prevents early vascular ageing and maintains vasodilator responses, thus representing promising drug targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Yumeng Guo
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Cheng Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Andy W C Man
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Bo Bai
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Cuiting Luo
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Yu Huang
- Institute of Vascular Medicine, Shenzhen Research Institute, Li Ka Shing Institute of Health Sciences, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Paul M Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China
| |
Collapse
|
39
|
Detremmerie CMS, Leung SWS, Vanhoutte PM. Activation of NQO-1 mediates the augmented contractions of isolated arteries due to biased activity of soluble guanylyl cyclase in their smooth muscle. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:1221-1235. [DOI: 10.1007/s00210-018-1548-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 07/24/2018] [Indexed: 01/24/2023]
|
40
|
Guerra G, Lucariello A, Perna A, Botta L, De Luca A, Moccia F. The Role of Endothelial Ca 2+ Signaling in Neurovascular Coupling: A View from the Lumen. Int J Mol Sci 2018; 19:E938. [PMID: 29561829 PMCID: PMC5979341 DOI: 10.3390/ijms19040938] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Neurovascular coupling (NVC) is the mechanism whereby an increase in neuronal activity (NA) leads to local elevation in cerebral blood flow (CBF) to match the metabolic requirements of firing neurons. Following synaptic activity, an increase in neuronal and/or astrocyte Ca2+ concentration leads to the synthesis of multiple vasoactive messengers. Curiously, the role of endothelial Ca2+ signaling in NVC has been rather neglected, although endothelial cells are known to control the vascular tone in a Ca2+-dependent manner throughout peripheral vasculature. METHODS We analyzed the literature in search of the most recent updates on the potential role of endothelial Ca2+ signaling in NVC. RESULTS We found that several neurotransmitters (i.e., glutamate and acetylcholine) and neuromodulators (e.g., ATP) can induce dilation of cerebral vessels by inducing an increase in endothelial Ca2+ concentration. This, in turn, results in nitric oxide or prostaglandin E2 release or activate intermediate and small-conductance Ca2+-activated K⁺ channels, which are responsible for endothelial-dependent hyperpolarization (EDH). In addition, brain endothelial cells express multiple transient receptor potential (TRP) channels (i.e., TRPC3, TRPV3, TRPV4, TRPA1), which induce vasodilation by activating EDH. CONCLUSIONS It is possible to conclude that endothelial Ca2+ signaling is an emerging pathway in the control of NVC.
Collapse
Affiliation(s)
- Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, via F. De Santis, 86100 Campobasso, Italy.
| | - Angela Lucariello
- Department of Mental Health and Preventive Medicine, Section of Human Anatomy, University of Campania "L. Vanvitelli", 81100 Naples, Italy.
| | - Angelica Perna
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, via F. De Santis, 86100 Campobasso, Italy.
| | - Laura Botta
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Forlanini 6, 27100 Pavia, Italy.
| | - Antonio De Luca
- Department of Mental Health and Preventive Medicine, Section of Human Anatomy, University of Campania "L. Vanvitelli", 81100 Naples, Italy.
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Forlanini 6, 27100 Pavia, Italy.
| |
Collapse
|
41
|
Mo J, Yang R, Li F, Zhang X, He B, Zhang Y, Chen P, Shen Z. Scutellarin protects against vascular endothelial dysfunction and prevents atherosclerosis via antioxidation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 42:66-74. [PMID: 29655699 DOI: 10.1016/j.phymed.2018.03.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/25/2017] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Scutellarin is the major constituent responsible for the clinical benefits of Erigeron breviscapus (Vant.) Hand.-Mazz which finds a long history of ethnopharmacological use in Traditional Chinese Medicine. Scutellarin as a pure compound is now under investigation for its protections against various tissue injuries. PURPOSE This study aims to examine the effects of scutellarin on oxidative stress-induced vascular endothelial dysfunction and endothelial cell damage, and then to evaluate the therapeutic efficacy of scutellarin in preventing atherosclerosis in rats. METHODS Radical scavenging ability of scutellarin was determined in vitro. Impact of scutellarin on endothelium-dependent relaxation (EDR) of rabbit thoracic aortic rings upon 1, 1-diphenyl-2-picrylhydrazyl (DPPH) challenge was measured. Influences of scutellarin pre-treatment on the levels of reactive oxygen species (ROS), activities of antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase and catalase, and the expression of SOD1 and NADPH oxidase 4 (Nox4) in human umbilical vein endothelial cells (HUVECs) injured by H2O2 were examined. Anti-atherosclerotic effect of scutellarin was evaluated in rats fed with high fat diet (HFD). RESULTS Scutellarin showed potent antioxidant activity in vitro. Pretreatment of scutellarin retained the EDR of rabbit thoracic aortic rings damaged by DPPH. In H2O2 injured-HUVECs the deleterious alterations in ROS levels and antioxidant enzymes activity were reversed by scutellarin and the mRNA and protein expression of SOD1 and Nox4 were restored also. Oral administration of scutellarin dose-dependently ameliorated hyperlipidemia in HFD-fed rats and alleviated oxidative stress in rat serum, mimicking the effects of reference drug atorvastatin. CONCLUSION Scutellarin protects against oxidative stress-induced vascular endothelial dysfunction and endothelial cell damage in vitro and prevents atherosclerosis in vivo through antioxidation. The results rationalize further investigation into the clinical use of scutellarin in cardiovascular diseases.
Collapse
Affiliation(s)
- Jiao Mo
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Chun Rong West Street No. 1168, Chenggong, Kunming 650500, PR China
| | - Renhua Yang
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Chun Rong West Street No. 1168, Chenggong, Kunming 650500, PR China
| | - Fan Li
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Chun Rong West Street No. 1168, Chenggong, Kunming 650500, PR China
| | - Xiaochao Zhang
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Chun Rong West Street No. 1168, Chenggong, Kunming 650500, PR China
| | - Bo He
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Chun Rong West Street No. 1168, Chenggong, Kunming 650500, PR China
| | - Yue Zhang
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Chun Rong West Street No. 1168, Chenggong, Kunming 650500, PR China
| | - Peng Chen
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Chun Rong West Street No. 1168, Chenggong, Kunming 650500, PR China.
| | - Zhiqiang Shen
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Chun Rong West Street No. 1168, Chenggong, Kunming 650500, PR China.
| |
Collapse
|
42
|
Wynne BM, Labazi H, Lima VV, Carneiro FS, Webb RC, Tostes RC, Giachini FR. Mesenteric arteries from stroke-prone spontaneously hypertensive rats exhibit an increase in nitric-oxide-dependent vasorelaxation. Can J Physiol Pharmacol 2018; 96:719-727. [PMID: 29430946 DOI: 10.1139/cjpp-2017-0477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The endothelium is crucial for the maintenance of vascular tone by releasing several vasoactive substances, including nitric oxide (NO). Systemic mean arterial pressure is primarily regulated by the resistance vasculature, which has been shown to exhibit increased vascular reactivity, and decreased vasorelaxation during hypertension. Here, we aimed to determine the mechanism for mesenteric artery vasorelaxation of the stroke-prone spontaneously hypertensive rat (SHRSP). We hypothesized that endothelial NO synthase (eNOS) is upregulated in SHRSP vessels, increasing NO production to compensate for the endothelial dysfunction. Concentration-response curves to acetylcholine (ACh) were performed in second-order mesenteric arteries; we observed decreased relaxation responses to ACh (maximum effect elicited by the agonist) as compared with Wistar-Kyoto (WKY) controls. Vessels from SHRSP incubated with Nω-nitro-l-arginine methyl ester and (or) indomethacin exhibited decreased ACh-mediated relaxation, suggesting a primary role for NO-dependent relaxation. Vessels from SHRSP exhibited a significantly decreased relaxation response with inducible NO synthase (iNOS) inhibition, as compared with WKY vessels. Western blot analysis showed increased total phosphorylated NF-κB, and phosphorylated and total eNOS in SHRSP vessels. Overall, these data suggest a compensatory role for NO by increased eNOS activation. Moreover, we believe that iNOS, although increasing NO bioavailability to compensate for decreased relaxation, leads to a cycle of further endothelial dysfunction in SHRSP mesenteric arteries.
Collapse
Affiliation(s)
- Brandi M Wynne
- a Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.,b Department of Medicine, Nephrology, Emory University, Atlanta, GA 30322, USA
| | - Hicham Labazi
- a Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.,c Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Victor V Lima
- a Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.,d Institute of Biological Sciences and Health, Federal University of Mato Grosso - Barra do Garças - MT - Brazil; 78600-000
| | - Fernando S Carneiro
- a Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.,e Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; 14049-900
| | - R Clinton Webb
- a Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Rita C Tostes
- a Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.,e Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; 14049-900
| | - Fernanda R Giachini
- a Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.,d Institute of Biological Sciences and Health, Federal University of Mato Grosso - Barra do Garças - MT - Brazil; 78600-000
| |
Collapse
|
43
|
Endothelium-derived contraction in a model of rheumatoid arthritis is mediated via angiotensin II type 1 receptors. Vascul Pharmacol 2018; 100:51-57. [DOI: 10.1016/j.vph.2017.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/02/2017] [Accepted: 11/04/2017] [Indexed: 01/16/2023]
|
44
|
Hauck M, Noronha Martins C, Borges Moraes M, Aikawa P, da Silva Paulitsch F, Méa Plentz RD, Teixeira da Costa S, Vargas da Silva AM, Signori LU. Comparison of the effects of 1MHz and 3MHz therapeutic ultrasound on endothelium-dependent vasodilation of humans: a randomised clinical trial. Physiotherapy 2017; 105:120-125. [PMID: 29373113 DOI: 10.1016/j.physio.2017.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/17/2017] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To compare the effects of different waveforms of 1MHz and 3MHz therapeutic ultrasound on endothelial function in healthy subjects. DESIGN Randomised placebo-controlled, crossover study with concealed allocation and assessor blinding. SETTING Imaging Centre of the University Hospital. PARTICIPANTS Thirty volunteers aged between 18 and 35 years were divided into two homogeneous groups (1MHz and 3MHz). INTERVENTIONS Continuous (CUT; 0.4W/cm2SATA), pulsed (PUT; 20% duty cycle, 0.08W/cm2SATA) and placebo waveforms (equipment off) of ultrasound (1MHz and 3MHz) were randomized and applied over the brachial artery for 5minutes. MAIN OUTCOME MEASURES Endothelial function was evaluated using the flow-mediated dilation (FMD) technique. RESULTS Both 1MHz [CUT: mean difference 4%, 95% confidence interval (CI) 2 to 6%, P<0.001; PUT: mean difference 4%, 95% CI 2 to 6%, P<0.001] and 3MHz (CUT: mean difference 4%, 95% CI 2 to 6%, P<0.001; PUT: mean difference 4%, 95% CI 2 to 6%, P<0.001) of therapeutic ultrasound increased %FMD by approximately 4% compared with the placebo waveforms. The endothelium-dependent vasodilator responses were the same for both types of waves and frequencies. No differences in baseline diameter, hyperaemic flow, and nitroglycerin-mediated diameter and vasodilation were observed between groups. CONCLUSION Both CUT and PUT ultrasound waveforms improved endothelial function. The 1MHz and 3MHz frequencies of therapeutic ultrasound led to similar improvement in endothelial function in healthy volunteers. Clinical trial registration number RBR-4z5z3t.
Collapse
Affiliation(s)
- M Hauck
- Institute of Biological Sciences, Federal University of Rio Grande, RS, Brazil
| | - C Noronha Martins
- Institute of Biological Sciences, Federal University of Rio Grande, RS, Brazil
| | - M Borges Moraes
- Institute of Biological Sciences, Federal University of Rio Grande, RS, Brazil
| | - P Aikawa
- Institute of Biological Sciences, Federal University of Rio Grande, RS, Brazil
| | | | - R Della Méa Plentz
- Graduate Programme in Healthy Sciences, Federal University of Health Sciences of Porto Alegre, RS, Brazil
| | - S Teixeira da Costa
- Graduate Programme in Physiotherapy and Rehabilitation, Federal University of Santa Maria, RS, Brazil
| | - A M Vargas da Silva
- Graduate Programme in Physiotherapy and Rehabilitation, Federal University of Santa Maria, RS, Brazil
| | - L U Signori
- Institute of Biological Sciences, Federal University of Rio Grande, RS, Brazil; Graduate Programme in Physiotherapy and Rehabilitation, Federal University of Santa Maria, RS, Brazil.
| |
Collapse
|
45
|
Bihzad SM, Yousif MHM. 11,12-Epoxyeicosatrienoic acid induces vasodilator response in the rat perfused mesenteric vasculature. ACTA ACUST UNITED AC 2017; 37:3-12. [PMID: 28332266 PMCID: PMC5396318 DOI: 10.1111/aap.12052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 12/23/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) are endogenous ligands that undergo hydrolysis by soluble epoxide hydrolase (sEH). The responses of 11, 12‐EET in comparison with other vasodilator agonists including carbachol and sodium nitroprusside (SNP) were investigated. The effect of 1‐cyclohexyl‐3‐dodecyl urea (CDU), a sEH, was tested on the vasodilator effect induced by 11, 12‐EET in the perfused mesenteric beds isolated from normo‐glycaemic and type‐1 STZ‐diabetic rats. In the perfused mesenteric beds of control and diabetic animals, 11, 12‐EET produced vasodilation in a dose‐dependent manner. The vasodilator response induced by 11, 12‐EET was significantly decreased in tissues obtained from diabetic animals, but this was significantly corrected through inhibition of sEH. The effects of nitric oxide synthase inhibitor, cyclo‐oxygenase inhibitor, specific potassium channel inhibitors, soluble guanylyl cyclase inhibitor and transient receptor potential channel V4 inhibitor, on vasodilator response to 11, 12‐EET were investigated. In tissues isolated from control animals, vasodilator responses to 11, 12‐EET were not inhibited by acute incubation with l‐NAME, l‐NAME with indomethacin, glibenclamide, iberiotoxin, charybdotoxin, apamin or ODQ. Incubation with the transient receptor potential channel V4 inhibitor ruthenium red caused significantly reduced vasodilator responses induced by 11, 12‐EET. In conclusion, results from this study indicate that 11, 12‐EET has a vasodilator effect in the perfused mesenteric bed, partly through activation of vanilloid receptor. A strategy to elevate the levels of EETs may have a significant impact in correcting microvascular abnormality associated with diabetes.
Collapse
Affiliation(s)
- S M Bihzad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - M H M Yousif
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
46
|
Leurgans TM, Bloksgaard M, Irmukhamedov A, Riber LP, De Mey JGR. Relaxing Responses to Hydrogen Peroxide and Nitric Oxide in Human Pericardial Resistance Arteries Stimulated with Endothelin-1. Basic Clin Pharmacol Toxicol 2017; 122:74-81. [PMID: 28686356 DOI: 10.1111/bcpt.12843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/04/2017] [Indexed: 12/13/2022]
Abstract
In human pericardial resistance arteries, effects of the endothelium-dependent vasodilator bradykinin are mediated by NO during contraction induced by K+ or the TxA2 analogue U46619 and by H2 O2 during contraction by endothelin-1 (ET-1), respectively. We tested the hypotheses that ET-1 reduces relaxing effects of NO and increases those of H2 O2 in resistance artery smooth muscle of patients with cardiovascular disease. Arterial segments, dissected from the parietal pericardium of 39 cardiothoracic surgery patients, were studied by myography during amplitude-matched contractions induced by K+ , the TXA2 analogue U46619 or ET-1. Effects of the NO donor Na-nitroprusside (SNP) and of exogenous H2 O2 were recorded in the absence and presence of inhibitors of cyclooxygenases, NO synthases and small and intermediate conductance calcium-activated K+ channels. During contractions induced by either of the three stimuli, the potency of SNP did not differ and was not modified by the inhibitors. In vessels contracted with ET-1, the potency of H2 O2 was on average and in terms of interindividual variability considerably larger than in K+ -contracted vessels. Both differences were not statistically significant in the presence of inhibitors of mechanisms of endothelium-dependent vasodilatation. In resistance arteries from patients with cardiovascular disease, ET-1 does not selectively modify smooth muscle relaxing responses to NO or H2 O2 . Furthermore, the candidate endothelium-derived relaxing factor H2 O2 also acts as an endothelium-dependent vasodilator.
Collapse
Affiliation(s)
- Thomas M Leurgans
- Department of Cardiovascular and Renal Research, Centre for Individualized Medicine in Arterial Diseases (CIMA), Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Maria Bloksgaard
- Department of Cardiovascular and Renal Research, Centre for Individualized Medicine in Arterial Diseases (CIMA), Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Akhmadjon Irmukhamedov
- Department of Cardiac, Thoracic and Vascular Surgery, Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark
| | - Lars P Riber
- Department of Cardiac, Thoracic and Vascular Surgery, Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark
| | - Jo G R De Mey
- Department of Cardiovascular and Renal Research, Centre for Individualized Medicine in Arterial Diseases (CIMA), Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Cardiac, Thoracic and Vascular Surgery, Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
47
|
Detremmerie C, Vanhoutte PM, Leung S. Biased activity of soluble guanylyl cyclase: the Janus face of thymoquinone. Acta Pharm Sin B 2017; 7:401-408. [PMID: 28752025 PMCID: PMC5518662 DOI: 10.1016/j.apsb.2017.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 06/13/2017] [Indexed: 11/28/2022] Open
Abstract
The natural compound thymoquinone, extracted from Nigella sativa (black cumin), is widely used in humans for its anti-oxidative properties. Thymoquinone is known for its acute endothelium-independent vasodilator effects in isolated rat aortae and pulmonary arteries, depending in part on activation of adenosine triphosphate-sensitive potassium channels and inhibition of voltage-dependent calcium channels. The compound also improves endothelial dysfunction in mesenteric arteries of ageing rodents and in aortae of rabbits treated with pyrogallol, by inhibiting oxidative stress. Serendipitously, thymoquinone was found to augment contractions in isolated arteries with endothelium of both rats and pigs. The endothelium-dependent augmentation it causes counterintuitively depends on biased activation of soluble guanylyl cyclase (sGC) producing inosine 3',5'-cyclic monophosphate (cyclic IMP) rather than guanosine 3',5'-cyclic monophosphate. This phenomenon shows a striking mechanistic similarity to the hypoxic augmentation previously observed in porcine coronary arteries. The cyclic IMP preferentially produced under thymoquinone exposure causes an increased contractility of arterial smooth muscle by interfering with calcium homeostasis. This brief review summarizes the vascular pharmacology of thymoquinone, focussing in particular on how the compound causes endothelium-dependent contractions by biasing the activity of sGC.
Collapse
|
48
|
Shi Y, Vanhoutte PM. Macro- and microvascular endothelial dysfunction in diabetes. J Diabetes 2017; 9:434-449. [PMID: 28044409 DOI: 10.1111/1753-0407.12521] [Citation(s) in RCA: 345] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/06/2016] [Accepted: 12/29/2016] [Indexed: 12/12/2022] Open
Abstract
Endothelial cells, as well as their major products nitric oxide (NO) and prostacyclin, play a key role in the regulation of vascular homeostasis. Diabetes mellitus is an important risk factor for cardiovascular disease. Diabetes-induced endothelial dysfunction is a critical and initiating factor in the genesis of diabetic vascular complications. The present review focuses on both large blood vessels and the microvasculature. The endothelial dysfunction in diabetic macrovascular complications is characterized by reduced NO bioavailability, poorly compensated for by increased production of prostacyclin and/or endothelium-dependent hyperpolarizations, and increased production or action of endothelium-derived vasoconstrictors. The endothelial dysfunction of microvascular complications is primarily characterized by decreased release of NO, enhanced oxidative stress, increased production of inflammatory factors, abnormal angiogenesis, and impaired endothelial repair. In addition, non-coding RNAs (microRNAs) have emerged as participating in numerous cellular processes. Thus, this reviews pays special attention to microRNAs and their modulatory role in diabetes-induced vascular dysfunction. Some therapeutic strategies for preventing and restoring diabetic endothelial dysfunction are also highlighted.
Collapse
Affiliation(s)
- Yi Shi
- Biomedical Research Centre, Shanghai Key Laboratory of organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Paul M Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| |
Collapse
|
49
|
Vanhoutte PM, Shimokawa H, Feletou M, Tang EHC. Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol (Oxf) 2017; 219:22-96. [PMID: 26706498 DOI: 10.1111/apha.12646] [Citation(s) in RCA: 602] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/27/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023]
Abstract
The endothelium can evoke relaxations of the underlying vascular smooth muscle, by releasing vasodilator substances. The best-characterized endothelium-derived relaxing factor (EDRF) is nitric oxide (NO) which activates soluble guanylyl cyclase in the vascular smooth muscle cells, with the production of cyclic guanosine monophosphate (cGMP) initiating relaxation. The endothelial cells also evoke hyperpolarization of the cell membrane of vascular smooth muscle (endothelium-dependent hyperpolarizations, EDH-mediated responses). As regards the latter, hydrogen peroxide (H2 O2 ) now appears to play a dominant role. Endothelium-dependent relaxations involve both pertussis toxin-sensitive Gi (e.g. responses to α2 -adrenergic agonists, serotonin, and thrombin) and pertussis toxin-insensitive Gq (e.g. adenosine diphosphate and bradykinin) coupling proteins. New stimulators (e.g. insulin, adiponectin) of the release of EDRFs have emerged. In recent years, evidence has also accumulated, confirming that the release of NO by the endothelial cell can chronically be upregulated (e.g. by oestrogens, exercise and dietary factors) and downregulated (e.g. oxidative stress, smoking, pollution and oxidized low-density lipoproteins) and that it is reduced with ageing and in the course of vascular disease (e.g. diabetes and hypertension). Arteries covered with regenerated endothelium (e.g. following angioplasty) selectively lose the pertussis toxin-sensitive pathway for NO release which favours vasospasm, thrombosis, penetration of macrophages, cellular growth and the inflammatory reaction leading to atherosclerosis. In addition to the release of NO (and EDH, in particular those due to H2 O2 ), endothelial cells also can evoke contraction of the underlying vascular smooth muscle cells by releasing endothelium-derived contracting factors. Recent evidence confirms that most endothelium-dependent acute increases in contractile force are due to the formation of vasoconstrictor prostanoids (endoperoxides and prostacyclin) which activate TP receptors of the vascular smooth muscle cells and that prostacyclin plays a key role in such responses. Endothelium-dependent contractions are exacerbated when the production of nitric oxide is impaired (e.g. by oxidative stress, ageing, spontaneous hypertension and diabetes). They contribute to the blunting of endothelium-dependent vasodilatations in aged subjects and essential hypertensive and diabetic patients. In addition, recent data confirm that the release of endothelin-1 can contribute to endothelial dysfunction and that the peptide appears to be an important contributor to vascular dysfunction. Finally, it has become clear that nitric oxide itself, under certain conditions (e.g. hypoxia), can cause biased activation of soluble guanylyl cyclase leading to the production of cyclic inosine monophosphate (cIMP) rather than cGMP and hence causes contraction rather than relaxation of the underlying vascular smooth muscle.
Collapse
Affiliation(s)
- P. M. Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| | - H. Shimokawa
- Department of Cardiovascular Medicine; Tohoku University; Sendai Japan
| | - M. Feletou
- Department of Cardiovascular Research; Institut de Recherches Servier; Suresnes France
| | - E. H. C. Tang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
- School of Biomedical Sciences; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| |
Collapse
|
50
|
Effects of age and caloric restriction in the vascular response of renal arteries to endothelin-1 in rats. Exp Gerontol 2016; 88:32-41. [PMID: 28039024 DOI: 10.1016/j.exger.2016.12.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 12/12/2016] [Accepted: 12/22/2016] [Indexed: 11/20/2022]
Abstract
Cardiovascular alterations are the most prevalent cause of impaired physiological function in aged individuals with kidney being one the most affected organs. Aging-induced alterations in renal circulation are associated with a decrease in endothelium-derived relaxing factors such as nitric oxide (NO) and with an increase in contracting factors such as endothelin-1(ET-1). As caloric restriction (CR) exerts beneficial effects preventing some of the aging-induced alterations in cardiovascular system, the aim of this study was to analyze the effects of age and caloric restriction in the vascular response of renal arteries to ET-1 in aged rats. Vascular function was studied in renal arteries from 3-month-old Wistar rats fed ad libitum (3m) and in renal arteries from 8-and 24-month-old Wistar rats fed ad libitum (8m and 24m), or subjected to 20% caloric restriction during their three last months of life (8m-CR and 24m-CR). The contractile response to ET-1 was increased in renal arteries from 8m and 24m compared to 3m rats. ET-1-induced contraction was mediated by ET-A receptors in all experimental groups and also by ET-B receptors in 24m rats. Caloric restriction attenuated the increased contraction to ET-1 in renal arteries from 8m but not from 24m rats possibly through NO release proceeding from ET-B endothelial receptors. In 24m rats, CR did not attenuate the aging-increased response of renal arteries to ET-1, but it prevented the aging-induced increase in iNOS mRNA levels and the aging-induced decrease in eNOS mRNA levels in arterial tissue. In conclusion, aging is associated with an increased response to ET-1 in renal arteries that is prevented by CR in 8m but not in 24m rats.
Collapse
|