1
|
Bartolomei S, Francesco L, Latini D, Hoffman JR. Autoregulation Does Not Provide Additional Benefits to a Mixed Session Periodized Resistance Training Program in Trained Men. J Strength Cond Res 2024; 38:1535-1542. [PMID: 38814694 PMCID: PMC11343444 DOI: 10.1519/jsc.0000000000004836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
ABSTRACT Bartolomei, S, Francesco, L, Latini, D, and Hoffman, JR. Autoregulation does not provide additional benefits to a mixed session periodized resistance training program in trained men. J Strength Cond Res 38(9): 1535-1542, 2024-The aim of this investigation was to study how autoregulation impacted training volume, performance, and muscle size on a 10-week mixed session periodized (MSP) resistance training program, characterized by the inclusion of different training foci in each session. Twenty-four resistance trained men were assigned to an autoregulated mixed session periodized (AMSP group; n = 13; age = 26.2 ± 4.9 y; body mass = 82.0 ± 8.7 kg; height = 176.8 ± 6.0 cm) or into an MSP ( n = 11; age = 24.0 ± 2.6; body mass = 81.3 ± 10.5 kg; height = 174.0 ± 5.4 cm) group. Subjects in both groups trained 5 days per week for 10 weeks and performed the same exercises. The difference between the groups consisted in the use of a perceived recovery-based scale to adjust the individual training volume in the AMSP program. Maximal strength (bench press and squat 1 repetition maximum), power (bench press throw and countermovement jump), and muscle architecture (muscle thickness [MT] of biceps brachii, trapezius, vastus lateralis and vastus medialis) were collected before and after the 10-week training period. In addition, training volume and session load were calculated for each training session. A higher total training volume ( p < 0.001) was seen in AMSP program compared with MSP program, but no differences ( p > 0.05) were noted in the average session load. No significant differences between the groups were detected for MT of both upper-body and lower-body muscles ( p's > 0.05) and lean body mass ( p = 0.681). No significant differences between the groups were detected for any strength or power measurements. Results of this study indicate that a perceived recovery-based AMSP training program was not more effective than an MSP training program for increasing muscle size and performance in resistance trained men.
Collapse
Affiliation(s)
- Sandro Bartolomei
- Department for Life Quality Studies, University of Bologna, Bologna, Italy; and
| | - Laterza Francesco
- Department for Life Quality Studies, University of Bologna, Bologna, Italy; and
| | - Davide Latini
- Department for Life Quality Studies, University of Bologna, Bologna, Italy; and
| | - Jay R. Hoffman
- Department of Physical Therapy, Ariel University, Ariel, Israel
| |
Collapse
|
2
|
Stone MH, Hornsby G, Mizuguchi S, Sato K, Gahreman D, Duca M, Carroll K, Ramsey MW, Stone ME, Haff GG. The Use of Free Weight Squats in Sports: A Narrative Review-Squatting Movements, Adaptation, and Sports Performance: Physiological. J Strength Cond Res 2024; 38:1494-1508. [PMID: 39072660 DOI: 10.1519/jsc.0000000000004838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
ABSTRACT Stone, MH, Hornsby, G, Mizuguchi, S, Sato, K, Gahreman, D, Duca, M, Carroll, K, Ramsey, MW, Stone, ME, and Haff, GG. The use of free weight squats in sports: a narrative review-squatting movements, adaptation, and sports performance: physiological. J Strength Cond Res 38(8): 1494-1508, 2024-The squat and its variants can provide numerous benefits including positively affecting sports performance and injury prevention, injury severity reduction, and rehabilitation. The positive benefits of squat are likely the result of training-induced neural alterations and mechanical and morphological adaptations in tendons, skeletal muscles, and bones, resulting in increased tissue stiffness and cross-sectional area (CSA). Although direct evidence is lacking, structural adaptations can also be expected to occur in ligaments. These adaptations are thought to beneficially increase force transmission and mechanical resistance (e.g., resistance to mechanical strain) and reduce the likelihood and severity of injuries. Adaptations such as these, also likely play an important role in rehabilitation, particularly for injuries that require restricted use or immobilization of body parts and thus lead to a consequential reduction in the CSA and alterations in the mechanical properties of tendons, skeletal muscles, and ligaments. Both volume and particularly intensity (e.g., levels of loading used) of training seem to be important for the mechanical and morphological adaptations for at least skeletal muscles, tendons, and bones. Therefore, the training intensity and volume used for the squat and its variations should progressively become greater while adhering to the concept of periodization and recognized training principles.
Collapse
Affiliation(s)
- Michael H Stone
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation and Kinesiology, East Tennessee State University, Johnson City, Tennessee
| | - Guy Hornsby
- School of Sport Sciences, College of Applied Human Sciences, West Virginia University, Morgantown, West Virginia
| | - Satoshi Mizuguchi
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation and Kinesiology, East Tennessee State University, Johnson City, Tennessee
| | | | - Daniel Gahreman
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation and Kinesiology, East Tennessee State University, Johnson City, Tennessee
| | - Marco Duca
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation and Kinesiology, East Tennessee State University, Johnson City, Tennessee
| | - Kevin Carroll
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation and Kinesiology, East Tennessee State University, Johnson City, Tennessee
| | - Michael W Ramsey
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation and Kinesiology, East Tennessee State University, Johnson City, Tennessee
| | - Margaret E Stone
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation and Kinesiology, East Tennessee State University, Johnson City, Tennessee
| | - G Gregory Haff
- School of Medical and Health Sciences, Edith Cowan University. Joondalup, Western Australia
| |
Collapse
|
3
|
Ramming H, Theuerkauf L, Hoos O, Lichter K, Kittel-Schneider S. The association between maximal muscle strength, disease severity and psychopharmacotherapy among young to middle-aged inpatients with affective disorders - a prospective pilot study. BMC Psychiatry 2024; 24:401. [PMID: 38811916 PMCID: PMC11137909 DOI: 10.1186/s12888-024-05849-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Motor alterations and lowered physical activity are common in affective disorders. Previous research has indicated a link between depressive symptoms and declining muscle strength primarily focusing on the elderly but not younger individuals. Thus, we aimed to evaluate the relationship between mood and muscle strength in a sample of N = 73 young to middle-aged hospitalized patients (18-49 years, mean age 30.7 years) diagnosed with major depressive, bipolar and schizoaffective disorder, with a focus on moderating effects of psychopharmacotherapy. The study was carried out as a prospective observational study at a German psychiatric university hospital between September 2021 and March 2022. METHODS Employing a standardized strength circuit consisting of computerized strength training devices, we measured the maximal muscle strength (Fmax) using three repetitions maximum across four muscle regions (abdomen, arm, back, leg) at three time points (t1-t3) over four weeks accompanied by psychometric testing (MADRS, BPRS, YRMS) and blood lipid profiling in a clinical setting. For analysis of psychopharmacotherapy, medication was split into activating (AM) and inhibiting (IM) medication and dosages were normalized by the respective WHO defined daily dose. RESULTS While we observed a significant decrease of the MADRS score and increase of the relative total Fmax (rTFmax) in the first two weeks (t1-t2) but not later (both p < .001), we did not reveal a significant bivariate correlation between disease severity (MADRS) and muscle strength (rTFmax) at any of the timepoints. Individuals with longer disease history displayed reduced rTFmax (p = .048). IM was significantly associated with decreased rTFmax (p = .032). Regression models provide a more substantial effect of gender, age, and IM on muscle strength than the depressive episode itself (p < .001). CONCLUSIONS The results of the study indicate that disease severity and muscle strength are not associated in young to middle-aged inpatients with affective disorders using a strength circuit as observational measurement. Future research will be needed to differentiate the effect of medication, gender, and age on muscle strength and to develop interventions for prevention of muscle weakness, especially in younger patients with chronic affective illnesses.
Collapse
Affiliation(s)
- Hannah Ramming
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Linda Theuerkauf
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Olaf Hoos
- Center for Sports and Physical Education, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Katharina Lichter
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, 3400, Austria
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany.
- Department of Psychiatry and Neurobehavioural Science, Acute Mental Health Unit, University College Cork, Cork University Hospital, Wilton, Cork, T12DC4A, Ireland.
| |
Collapse
|
4
|
Wadden KP, Hollohan N, Furneaux T, Maher R, Barrett CM, Fuller D, Basset F, Murphy D, Murphy S, Healey S, McGowan E, Twells LK. PRO-FIT-CARE study: the feasibility assessment of a pilot online exercise intervention for persons living with obesity and female infertility. Front Sports Act Living 2024; 6:1332376. [PMID: 38774277 PMCID: PMC11107087 DOI: 10.3389/fspor.2024.1332376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/10/2024] [Indexed: 05/24/2024] Open
Abstract
Introduction Moderate-to-high physical activity participation is associated with a reduced risk of infertility. Yet, exercise interventions that target cardiorespiratory fitness, independent of weight loss, are lacking in obesity and female fertility research. Purpose The primary objective of the PRO-FIT-CARE (PROmoting FITness for CArdiometabolic & REproductive Health) study was to assess the feasibility of a moderate-to-high-intensity online exercise program for persons with obesity and female infertility. Methods Feasibility, safety, acceptability, and efficacy were assessed by examining: (1) recruitment and consent rate, (2) study retention, (3) adverse events, (4) participant satisfaction, (5) adherence, and (6) cardiorespiratory fitness. Results Eleven of thirty-two women contacted agreed to participate in the program (34.4% consent rate). Eight participants (72.7%) completed the study. One musculoskeletal injury was reported. There was a 30% adherence rate based on prescribed exercise intensity (60%-80% of heart rate maximum). One of eleven participants attended 80% of the exercise intervention. Based on a weekly satisfaction survey, the program had an overall high level of satisfaction. Compared to sex and age normative data, post-intervention, two of eight participants improved their cardiorespiratory fitness percentile rank. Conclusion The study highlights challenges with adherence to an online exercise program. While the program was safe and participants reported high levels of program satisfaction, approaches to improve adherence must be incorporated.
Collapse
Affiliation(s)
- K. P. Wadden
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - N. Hollohan
- Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - T. Furneaux
- Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - R. Maher
- Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - C. M. Barrett
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - D. Fuller
- College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - F. Basset
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - D. Murphy
- Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
- Discipline of Obstetrics and Gynecology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - S. Murphy
- Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
- Discipline of Obstetrics and Gynecology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - S. Healey
- Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
- Discipline of Obstetrics and Gynecology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - E. McGowan
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - L. K. Twells
- Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
5
|
James LP, Weakley J, Comfort P, Huynh M. The Relationship Between Isometric and Dynamic Strength Following Resistance Training: A Systematic Review, Meta-Analysis, and Level of Agreement. Int J Sports Physiol Perform 2024; 19:2-12. [PMID: 37741636 DOI: 10.1123/ijspp.2023-0066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/30/2023] [Accepted: 08/14/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Maximal lower-body strength can be assessed both dynamically and isometrically; however, the relationship between the changes in these 2 forms of strength following resistance training is not well understood. PURPOSE To systematically review and analyze the effects of resistance training on changes in maximal dynamic (1-repetition-maximum back squat, deadlift, and power clean) and position-matched isometric strength (isometric midthigh pull and the isometric squat). In addition, individual-level data were used to quantify the agreement and relationship between changes in dynamic and isometric strength. METHODS Databases were systematically searched to identify eligible articles, and meta-analysis procedures were performed on the extracted data. The raw results from 4 studies were acquired, enabling bias and absolute reliability measures to be calculated using Bland-Altman test of agreement. RESULTS Eleven studies met the inclusion criteria, which resulted in 29 isometric-dynamic change comparisons. The overall pooled effect was 0.13 in favor of dynamic testing; however, the prediction interval ranged from g = -0.49 to 0.75. There was no evidence of bias (P = .825) between isometric and dynamic tests; however, the reliability coefficient was estimated to be 16%, and the coefficient of variation (%) was 109.27. CONCLUSIONS As a range of future effects can be expected when comparing isometric to dynamic strength changes following resistance training, and limited proportionality exists between changes in these 2 strength qualities, there is strong evidence that isometric and dynamic strength represent separate neuromuscular domains. These findings can be used to inform strength-assessment models in athlete populations.
Collapse
Affiliation(s)
- Lachlan P James
- Department of Dietetics, Nutrition and Sport, Sport, Performance, and Nutrition Research Group, School of Allied Health, Human Services, & Sport, La Trobe University, Melbourne, VIC, Australia
| | - Jonathon Weakley
- School of Behavioral and Health Sciences, Australian Catholic University, Brisbane, QLD, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Center, Australian Catholic University, Brisbane, QLD, Australia
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
| | - Paul Comfort
- Directorate of Psychology and Sport, University of Salford, Salford, United Kingdom
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Minh Huynh
- Department of Dietetics, Nutrition and Sport, Sport, Performance, and Nutrition Research Group, School of Allied Health, Human Services, & Sport, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Comfort P, Haff GG, Suchomel TJ, Soriano MA, Pierce KC, Hornsby WG, Haff EE, Sommerfield LM, Chavda S, Morris SJ, Fry AC, Stone MH. National Strength and Conditioning Association Position Statement on Weightlifting for Sports Performance. J Strength Cond Res 2023; 37:1163-1190. [PMID: 36952649 DOI: 10.1519/jsc.0000000000004476] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
ABSTRACT Comfort, P, Haff, GG, Suchomel, TJ, Soriano, MA, Pierce, KC, Hornsby, WG, Haff, EE, Sommerfield, LM, Chavda, S, Morris, SJ, Fry, AC, and Stone, MH. National Strength and Conditioning Association position statement on weightlifting for sports performance. J Strength Cond Res XX(X): 000-000, 2022-The origins of weightlifting and feats of strength span back to ancient Egypt, China, and Greece, with the introduction of weightlifting into the Olympic Games in 1896. However, it was not until the 1950s that training based on weightlifting was adopted by strength coaches working with team sports and athletics, with weightlifting research in peer-reviewed journals becoming prominent since the 1970s. Over the past few decades, researchers have focused on the use of weightlifting-based training to enhance performance in nonweightlifters because of the biomechanical similarities (e.g., rapid forceful extension of the hips, knees, and ankles) associated with the second pull phase of the clean and snatch, the drive/thrust phase of the jerk and athletic tasks such as jumping and sprinting. The highest force, rate of force development, and power outputs have been reported during such movements, highlighting the potential for such tasks to enhance these key physical qualities in athletes. In addition, the ability to manipulate barbell load across the extensive range of weightlifting exercises and their derivatives permits the strength and conditioning coach the opportunity to emphasize the development of strength-speed and speed-strength, as required for the individual athlete. As such, the results of numerous longitudinal studies and subsequent meta-analyses demonstrate the inclusion of weightlifting exercises into strength and conditioning programs results in greater improvements in force-production characteristics and performance in athletic tasks than general resistance training or plyometric training alone. However, it is essential that such exercises are appropriately programmed adopting a sequential approach across training blocks (including exercise variation, loads, and volumes) to ensure the desired adaptations, whereas strength and conditioning coaches emphasize appropriate technique and skill development of athletes performing such exercises.
Collapse
Affiliation(s)
- Paul Comfort
- University of Salford, Greater Manchester, United Kingdom
- Edith Cowan University, Perth, Australia
| | - G Gregory Haff
- University of Salford, Greater Manchester, United Kingdom
- Edith Cowan University, Perth, Australia
| | - Timothy J Suchomel
- University of Salford, Greater Manchester, United Kingdom
- Carroll University, Waukesha, Wisconsin
| | | | | | | | - Erin E Haff
- University of Salford, Greater Manchester, United Kingdom
- Australian Weightlifting Federation, Chandler, Australia
| | | | - Shyam Chavda
- London Sports Institute, Middlesex University, London, United Kingdom
- British Weightlifting, Leeds, United Kingdom
| | | | | | | |
Collapse
|
7
|
Huang R, Zhang M, Huang L, Chen Z, Mo Y, Gao Y. Effects of lower-extremity explosive strength on youth judo athletes adopting different types of power-based resistance training. Front Physiol 2023; 14:1065036. [PMID: 37008020 PMCID: PMC10050693 DOI: 10.3389/fphys.2023.1065036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
Objective: The present study compared the effects of two different resistance types (pneumatic resistance and free weight) of 6-week squat training on the performance for young female judo athletes in linear speed and vertical jump by utilizing the maximum power of each set of squats in each training session as the monitoring vehicle. Monitoring data were used to assess the effects and trends of the two resistance types on 70% 1RM weight-bearing during the 6-week intervention training.Methods: In a 6 weeks squat training (2 reps/week with a constant load), 23 adolescent female judo athletes (Age span: 13–16 years, 14.58 ± 0.96) were randomly selected and then divided into the traditional barbell (FW) group (n = 12) and the pneumatic resistance (PN) (n = 11) group according to different resistance types (free weight and pneumatic resistance), with 10 in FW group and 9 in PN group actually completed the study. Before and after training, the 30-m Sprint time (T-30M), vertical jump height and relative power (countermovement jump, static-squat jump, and drop jump), reactive strength index (DJ-RSI), and maximal strength were assessed. One-Way ANOVA was used to examine the pre-test differences of groups (FW and PN). A 2-factor mixed-model analysis of variance was used to examine the independent effects of group (FW and PN) and time (pre and post) on each dependent measure. Scheffe post hoc comparisons were used to examine the differences. Pre- and post-experimental differences between the two groups were analyzed using independent samples t-tests and magnitude-based inferences (MBI) derived from their p values, and effect statistics were applied to compare the pre- and post-changes exhibited by each group to identify the potential beneficiary groups.Results: The PN group outperformed the FW group in terms of maximal power output per training session (822.5 ± 55.22 vs. 927.42 ± 48.15, conventional vs. pneumatic, p < 0.001, effect size = −2.02). After 6 weeks of training, the FW group showed significant increases in vertical jump height and relative strength (CMJ, SJ, DJ), with no significant gains observed in T-30 and maximal strength. The PN group showed significant improvements in maximal strength; however, no significant improvements were observed in the other tests. In addition, there was no significant difference in DJ-RSI between the two groups before and after training.Discussion: At 70% weight bearing, free weight resistance appears to be more conducive to vertical jump growth, while pneumatic resistance appears to be more conducive to maximal strength gains; however, the maximal strength gains from pneumatic resistance may not be well applied to athletic performance. In addition, the body adapts more quickly to pneumatic resistance than to free weight resistance.
Collapse
Affiliation(s)
- Ruiyin Huang
- Graduate School, Guangzhou Sport University, Guangzhou, China
| | - Mingyang Zhang
- Graduate School, Guangzhou Sport University, Guangzhou, China
| | - Linjie Huang
- Graduate School, Guangzhou Sport University, Guangzhou, China
| | - Zilong Chen
- Graduate School, Guangzhou Sport University, Guangzhou, China
| | - Yong Mo
- School of Athletic Training, Guangzhou Sport University, Guangzhou, China
- *Correspondence: Yuhua Gao, ; Yong Mo,
| | - Yuhua Gao
- School of Athletic Training, Guangzhou Sport University, Guangzhou, China
- *Correspondence: Yuhua Gao, ; Yong Mo,
| |
Collapse
|
8
|
Hernández-Davó JL, Sabido R. The Effect of Three Different Resistance Training Programming Approaches on Strength Gains and Jumping Performance. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2023; 94:180-185. [PMID: 35302931 DOI: 10.1080/02701367.2021.1950903] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/24/2021] [Indexed: 06/14/2023]
Abstract
Background: A main goal of programming is to structure the optimal variations in training factors to optimize athletes' adaptations. Nevertheless, it remains unknown the optimal programming model leading to greater neuromuscular adaptations. Purpose: The aim of the present study was to assess the influence of three different magnitudes of variability within resistance training programs on performance adaptations. Methods: Forty participants were assigned to three different groups differing in the frequency of change in training contents: a weekly model (WM; n = 12), a daily model (DM; n= 14), and a session model (SM; n = 14). The training intervention lasted for six weeks, performing two sessions per week of back-squat exercise. Total training load (volume and intensity) of the six-week intervention was equated for all groups. Maximum dynamic strength (1RM) in the back-squat, countermovement (CMJ) and squat jump (SJ) were measured pre- and post-training intervention. Results: All groups showed significant increases (p< .05) in 1RM, with the SM showing greater increases than the WM (20.5 vs 13.6%; p= .022). Although not reaching statistical significance, the magnitude of the increases in CMJ tended to be greater for DM and SM group (9.5% and 8.1%, respectively,) than in the WM (4.4%). All groups showed similar increases in the SJ (7.7-9.9%). Conclusions: The results of the present study suggest that the use of more frequent stimuli variations within resistance training programming is a key factor to achieve concomitant increases in strength and jumping performance.
Collapse
|
9
|
Bartolomei S, Zaniboni F, Verzieri N, Hoffman JR. New Perspectives in Resistance Training Periodization: Mixed Session vs. Block Periodized Programs in Trained Men. J Strength Cond Res 2023; 37:537-545. [PMID: 36727999 DOI: 10.1519/jsc.0000000000004465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/16/2022] [Indexed: 02/03/2023]
Abstract
ABSTRACT Bartolomei, S, Zaniboni, F, Verzieri, N, and Hoffman, JR. New perspectives in resistance training periodization: mixed session vs. block periodized programs in trained men. J Strength Cond Res 37(3): 537-545, 2023-The purpose of this investigation was to compare the effects of 2 different periodized resistance training programs on maximal strength, power, and muscle architecture, in trained individuals. Twenty-two resistance-trained men were randomly assigned to either a mixed session training group (MSP; n = 11; age = 23.7 ± 2.6 years; body mass = 80.5 ± 9.8 kg; height = 175.5 ± 6.1 cm) or a block periodization group (BP; n = 11; age = 25.7 ± 4.6 years; body mass = 81.1 ± 10.7 kg; height = 176.8 ± 8.4 cm). Both training programs were 10 weeks in duration and were equated in volume. Each training session of the MSP focused on power, maximal strength, and hypertrophy, whereas each mesocycle within the BP focused on one of these components. Subjects were assessed for body composition, muscle architecture, maximal strength, and power. In addition, perceived training load, and training volume were calculated. Subjects in MSP experienced greater improvements in fat free mass ( p = 0.021), muscle thickness of the pectoralis and vastus lateralis ( p < 0.05), and a greater improvement in 1RM bench press ( p < 0.001; +8.6% in MSP and +2% in BP) than in BP. By contrast, BP resulted in greater improvements in vertical jump ( p = 0.022; +7.2%) compared with MSP (+1.2%). No significant differences were noted between the groups for perceived training load ( p = 0.362) nor training volume ( p = 0.169). Results of this study indicated that in a 10-week training study, MSP may enhance muscle hypertrophy and maximal strength to a greater extent than BP, with the same training volume and perceived training load. However, BP may be more effective for vertical jump improvement.
Collapse
Affiliation(s)
- Sandro Bartolomei
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Federico Zaniboni
- Department for Life Quality Studies, University of Bologna, Rimini, Italy; and
| | - Nicolò Verzieri
- Department for Life Quality Studies, University of Bologna, Rimini, Italy; and
| | - Jay R Hoffman
- Department of Physical Therapy, Ariel University, Ariel, Israel
| |
Collapse
|
10
|
Bell L, Nolan D, Immonen V, Helms E, Dallamore J, Wolf M, Androulakis Korakakis P. "You can't shoot another bullet until you've reloaded the gun": Coaches' perceptions, practices and experiences of deloading in strength and physique sports. Front Sports Act Living 2022; 4:1073223. [PMID: 36619355 PMCID: PMC9811819 DOI: 10.3389/fspor.2022.1073223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Deloading refers to a purposeful reduction in training demand with the intention of enhancing preparedness for successive training cycles. Whilst deloading is a common training practice in strength and physique sports, little is known about how the necessary reduction in training demand should be accomplished. Therefore, the purpose of this research was to determine current deloading practices in competitive strength and physique sports. Eighteen strength and physique coaches from a range of sports (weightlifting, powerlifting, and bodybuilding) participated in semi-structured interviews to discuss their experiences of deloading. The mean duration of coaching experience at ≥ national standard was 10.9 (SD = 3.9) years. Qualitative content analysis identified Three categories: definitions, rationale, and application. Participants conceptualised deloading as a periodic, intentional cycle of reduced training demand designed to facilitate fatigue management, improve recovery, and assist in overall training progression and readiness. There was no single method of deloading; instead, a reduction in training volume (achieved through a reduction in repetitions per set and number of sets per training session) and intensity of effort (increased proximity to failure and/or reduction in relative load) were the most adapted training variables, along with alterations in exercise selection and configuration. Deloading was typically prescribed for a duration of 5 to 7 days and programmed every 4 to 6 weeks, although periodicity was highly variable. Additional findings highlight the underrepresentation of deloading in the published literature, including a lack of a clear operational definition.
Collapse
Affiliation(s)
- Lee Bell
- Department of Sport and Physical Activity, Sheffield Hallam University, Sheffield, United Kingdom,Correspondence: Lee Bell
| | - David Nolan
- School of Health & Human Performance, Dublin City University, Dublin, Ireland,Department of Sport and Health Sciences, Technological University of the Shannon, Athlone, Westmeath, Ireland
| | - Velu Immonen
- Department of Sports and Exercise, Haaga-Helia University of Applied Sciences, Vierumäki, Finland, United Kingdom
| | - Eric Helms
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Jake Dallamore
- Department of Sport and Physical Activity, Sheffield Hallam University, Sheffield, United Kingdom
| | - Milo Wolf
- Centre for Health, Exercise and Sport Science, Solent University, Southampton, United Kingdom
| | | |
Collapse
|
11
|
The Effect of Different Periodization and Modes of Concurrent Strength and Endurance Training on Double Poling Performance and Body Composition in Adolescent Cross-Country Skiers. Sports (Basel) 2022; 10:sports10020015. [PMID: 35202055 PMCID: PMC8879975 DOI: 10.3390/sports10020015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/05/2022] [Accepted: 01/18/2022] [Indexed: 12/04/2022] Open
Abstract
The aim of the study was to compare the effects of different types and periodization of strength training on body composition and maximal aerobic performance in 10-week training period in adolescent XC skiers. Twenty-eight adolescent competitive cross-country skiers, including 10 females (age 17.9 ± 1.8 years; body mass 69.6 ± 9.7 kg; height 1.77 ± 0.1 m; training experience 8.6 ± 3.2 years) took part in this study. Pre-and post-intervention performance was measured with the incremental exercise test (Pmax) on a double poling ski ergometer. Changes in body composition were measured with DXA. In addition to regular endurance training, experimental group one (EXP1) performed maximal and explosive strength training two times per week, experimental group two (EXP2) performed maximal and explosive strength training 1–3 times per week, and the traditional (TRAD) group performed low intensity–high volume strength training 2 times per week. Increases in arm, trunk, and overall lean mass were found in TRAD (p < 0.05). Increases in arm lean-mass was found in EXP1 (p < 0.05), while no changes in body composition occurred in EXP2 (p ≥ 0.05). Pmax improved significantly in all groups (p < 0.05). Changes in body mass, overall and arm lean mass was related to changes in absolute performance (W; p < 0.05), while no relationships were found between changes in body composition parameters and relative performance (W/kg; p ≥ 0.05). In conclusion, different periodization of strength training led to similar improvements in double poling ergometer performance, but resulted in different changes in body composition (lean mass) in adolescent cross-country skiers.
Collapse
|
12
|
Anousaki E, Zaras N, Stasinaki AN, Panidi I, Terzis G, Karampatsos G. Effects of a 25-Week Periodized Training Macrocycle on Muscle Strength, Power, Muscle Architecture, and Performance in Well-Trained Track and Field Throwers. J Strength Cond Res 2021; 35:2728-2736. [PMID: 34319943 DOI: 10.1519/jsc.0000000000004098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Anousaki, E, Zaras, N, Stasinaki A-N, Panidi, I, Terzis, T, and Karampatsos, G. Effects of a 25-week periodized training macrocycle on muscle strength, power, muscle architecture, and performance in well-trained track and field throwers. J Strength Cond Res 35(10): 2728-2736, 2021-The purpose of the study was to investigate the effect of a 25-week macrocycle on strength, power, vastus lateralis (VL) muscle architecture, and competitive track and field throwing performance, in well-trained track and field throwers. Twelve well-trained throwers (age: 24.3 ± 5.5 years, mass: 96.6 ± 9.9 kg, and height: 1.82 ± 0.02 m), participated in the study. All athletes followed a 25-week periodized training program divided into 3 training phases: the hypertrophy/maximum strength phase, the maximum strength/power phase, and the power/speed phase. Measurements were performed at the beginning of the training period (T1), after the first training phase (T2), and after the end of the training period (T3). Measurements included the following: competitive track and field throwing performance; shot put throws; maximum strength (1-RM) in snatch, clean, and squat; countermovement jump (CMJ); and VL muscle architecture. Competitive track and field throwing performance and shot put throws increased from T1 to T3 by 10.9 ± 3.2% (p = 0.001) and 5.1 ± 6.4% (P = 0.049), respectively. 1 RM strength in snatch and squat increased significantly from T1 to T3 by 9.7 ± 8.9% (p = 0.001) and 9.9 ± 7.1% (p = 0.002), respectively. Countermovement jump height increased only from T1 to T2 by 10.9 ± 11.8% (p = 0.026). A significant increase was found for VL fascicle length between T1 and T3 (9.6 ± 11.1%, p = 0.049). Strong correlations were found between the percentage increase of competitive track and field throwing performance with 1 RM snatch (r = 0.571, p = 0.046) and with shot put throws (r = 0.715, p = 0.001). Twenty five weeks of training may increase performance and VL fascicle length, whereas increases in 1 RM snatch and in shot put throws are associated with competitive track and field throwing performance in well-trained throwers.
Collapse
Affiliation(s)
- Eleni Anousaki
- Sports Performance Laboratory, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece; and
| | - Nikolaos Zaras
- Human Performance Laboratory, Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | - Angeliki-Nikoletta Stasinaki
- Sports Performance Laboratory, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece; and
| | - Ioli Panidi
- Sports Performance Laboratory, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece; and
| | - Gerasimos Terzis
- Sports Performance Laboratory, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece; and
| | - Giorgos Karampatsos
- Sports Performance Laboratory, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece; and
| |
Collapse
|
13
|
Stone MH, Hornsby WG, Haff GG, Fry AC, Suarez DG, Liu J, Gonzalez-Rave JM, Pierce KC. Periodization and Block Periodization in Sports: Emphasis on Strength-Power Training-A Provocative and Challenging Narrative. J Strength Cond Res 2021; 35:2351-2371. [PMID: 34132223 DOI: 10.1519/jsc.0000000000004050] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
ABSTRACT Stone, MH, Hornsby, WG, Haff, GG, Fry, AC, Suarez, DG, Liu, J, Gonzalez-Rave, JM, and Pierce, KC. Periodization and block periodization in sports: emphasis on strength-power training-a provocative and challenging narrative. J Strength Cond Res 35(8): 2351-2371, 2021-Periodization can be defined as a logical sequential, phasic method of manipulating fitness and recovery phases to increase the potential for achieving specific performance goals while minimizing the potential for nonfunctional over-reaching, overtraining, and injury. Periodization deals with the micromanagement of timelines and fitness phases and is cyclic in nature. On the other hand, programming deals with the micromanagement of the training process and deals with exercise selection, volume, intensity, etc. Evidence indicates that a periodized training process coupled with appropriate programming can produce superior athletic enhancement compared with nonperiodized process. There are 2 models of periodization, traditional and block. Traditional can take different forms (i.e., reverse). Block periodization has 2 subtypes, single goal or factor (individual sports) and multiple goals or factors (team sports). Both models have strengths and weaknesses but can be "tailored" through creative programming to produce excellent results for specific sports.
Collapse
Affiliation(s)
- Michael H Stone
- Center of Excellence for Sport Science and Coach Education, SERK, East Tennessee State University, Johnson City, Tennessee
| | - William G Hornsby
- College of Physical Activity and Sport Sciences, West Virginia University, Morgantown, West Virginia
| | - G Gregory Haff
- Center for Exercise and Sport Sciences Research, Edith Cowan University, Joondalup, Washington, Australia
| | - Andrew C Fry
- Jayhawk Athletic Performance Laboratory, University of Kansas, Lawrence, Kansas
| | - Dylan G Suarez
- Center of Excellence for Sport Science and Coach Education, SERK, East Tennessee State University, Johnson City, Tennessee
| | - Junshi Liu
- Institute of Human Factors and Ergonomics, Shenzhen University, Shenzhen, China
| | - Jose M Gonzalez-Rave
- Sports Training Laboratory, Faculty of Sport Sciences, University of Castilla la Mancha, Spain; and
| | - Kyle C Pierce
- Department of Kinesiology and Health Science, Louisiana State University Shreveport, Shreveport, Louisiana
| |
Collapse
|
14
|
Suchomel TJ, Nimphius S, Bellon CR, Hornsby WG, Stone MH. Training for Muscular Strength: Methods for Monitoring and Adjusting Training Intensity. Sports Med 2021; 51:2051-2066. [PMID: 34101157 DOI: 10.1007/s40279-021-01488-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 01/21/2023]
Abstract
Linear loading, the two-for-two rule, percent of one repetition maximum (1RM), RM zones, rate of perceived exertion (RPE), repetitions in reserve, set-repetition best, autoregulatory progressive resistance exercise (APRE), and velocity-based training (VBT) are all methods of adjusting resistance training intensity. Each method has advantages and disadvantages that strength and conditioning practitioners should be aware of when measuring and monitoring strength characteristics. The linear loading and 2-for-2 methods may be beneficial for novice athletes; however, they may be limited in their capacity to provide athletes with variation and detrimental if used exclusively for long periods of time. The percent of 1RM and RM zone methods may provide athletes with more variation and greater potential for strength-power adaptations; however, they fail to account for daily changes in athlete's performance capabilities. An athlete's daily readiness can be addressed to various extents by both subjective (e.g., RPE, repetitions in reserve, set-repetition best, and APRE) and objective (e.g., VBT) load adjustment methods. Future resistance training monitoring may aim to include a combination of measures that quantify outcome (e.g., velocity, load, time, etc.) with process (e.g., variability, coordination, efficiency, etc.) relevant to the stage of learning or the task being performed. Load adjustment and monitoring methods should be used to supplement and guide the practitioner, quantify what the practitioner 'sees', and provide longitudinal data to assist in reviewing athlete development and providing baselines for the rate of expected development in resistance training when an athlete returns to sport from injury or large training load reductions.
Collapse
Affiliation(s)
- Timothy J Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha, WI, 53186, USA.
| | - Sophia Nimphius
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Christopher R Bellon
- Department of Health and Human Performance, The Citadel-The Military College of South Carolina, Charleston, SC, 29409, USA
| | - W Guy Hornsby
- Department of Coaching and Teaching Studies, West Virginia University, Morgantown, WV, 26505, USA
| | - Michael H Stone
- Center of Excellence for Sport Science and Coach Education, Department of Exercise and Sport Sciences, East Tennessee State University, Johnson City, TN, 37614, USA
| |
Collapse
|
15
|
Wong H, Gentles J, Bazyler C, Ramsey M. Exploring the Utility of Performing a Down Set as a Postactivation Potentiation Strategy. J Strength Cond Res 2021; 35:1217-1222. [PMID: 33900256 DOI: 10.1519/jsc.0000000000003957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Wong, H, Gentles, J, Bazyler, C, and Ramsey, M. Exploring the utility of performing a down set as a postactivation potentiation strategy. J Strength Cond Res 35(5): 1217-1222, 2021-The purpose of this study was to determine if successive heavy sets of back squats can augment the concentric velocity of a lighter down set performed by strength-trained men. Twelve trained men with experience in the back squat volunteered to perform a 5 repetition maximum (5RM) along with 2 separate squat sessions consisting of 3 sets of 5 repetitions with 85% of their 5RM. One condition involved performing a "down set" (DS) after the 3 working sets at 85% of 5RM equivalent to 60% of the working-set load that was also performed during the warm-up. A "No down set" condition involved performing an additional warm-up set before the working sets with 60% of the working-set load instead of the down set to determine if velocity was augmented because of postactivation potentiation in the DS condition. In both conditions, 3 minutes of rest was applied between all sets. A paired sample t-test was used to compare the mean concentric velocities (MCVs) of the working sets of both conditions, and a repeated measures analysis of variance was used to assess differences in MCVs between sets performed at 60% of the working-set load. Cohen's d effect sizes were reported for all comparisons, and the critical alpha was set at p ≤ 0.05. No significant differences were observed in the working-set MCVs in both conditions (p = 0.412, d = 0.246) or between MCVs in the down set and equivalent warm-up set load in the DS condition (p = 0.270, d = 0.002).Although performing a down set may still be efficacious for developing power across a broad spectrum of loads, the results of this study suggest successive heavy sets of back squats do not acutely augment down set concentric velocity in strength-trained men.
Collapse
Affiliation(s)
- Hanson Wong
- Department of Exercise and Sport Sciences, Center of Excellence for Sport Science and Coach Education, East Tennessee State University, Johnson City, Tennessee
| | | | | | | |
Collapse
|
16
|
Lean Body Mass and Muscle Cross-Sectional Area Adaptations Among College Age Males with Different Strength Levels across 11 Weeks of Block Periodized Programmed Resistance Training. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094735. [PMID: 33946754 PMCID: PMC8124523 DOI: 10.3390/ijerph18094735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022]
Abstract
The block periodization training paradigm has been shown to produce enhanced gains in strength and power. The purpose of this study is to assess resistance training induced alterations in lean body mass and cross-sectional area using a block periodization training model among individuals (n = 15) of three differing strength levels (high, moderate and low) based on one repetition maximum back squat relative to body weight. A 3 × 5 mixed-design ANOVA was used to examine within-and between-subject changes in cross-sectional area (CSA), lean body mass (LBM), lean body mass adjusted (LBMadjusted) and total body water (TBW) over an 11-week resistance training program. LBMadjusted is total body water subtracted from lean body mass. The ANOVA revealed no statistically significant between-group differences in any independent variable (p > 0.05). Within-group effects showed statistically significant increases in cross-sectional area (p < 0.001), lean body mass (p < 0.001), lean body mass adjusted (p ˂ 0.001) and total body water (p < 0.001) from baseline to post intervention: CSA: 32.7 cm2 ± 8.6; 36.3 cm2 ± 7.2, LBM: 68.0 kg ± 9.5; 70.6 kg ± 9.4, LBMadjusted: 20.4 kg ± 3.1; 21.0 kg ± 3.3 and TBW: 49.8 kg ± 6.9; 51.7 kg ± 6.9. In conclusion, the results of this study suggest subjects experienced an increase in both lean body mass and total body water, regardless of strength level, over the course of the 11-week block periodized program. Gains in lean body mass and cross-sectional area may be due to edema at the early onset of training.
Collapse
|
17
|
Thompson SW, Rogerson D, Ruddock A, Barnes A. The Effectiveness of Two Methods of Prescribing Load on Maximal Strength Development: A Systematic Review. Sports Med 2021; 50:919-938. [PMID: 31828736 PMCID: PMC7142036 DOI: 10.1007/s40279-019-01241-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Background Optimal prescription of resistance exercise load (kg) is essential for the development of maximal strength. Two methods are commonly used in practice with no clear consensus on the most effective approach for the improvement of maximal strength. Objective The primary aim of this review was to compare the effectiveness of percentage 1RM (% 1RM) and repetition maximum targets (RM) as load prescription methods for the development of maximal strength. Methods Electronic database searches of MEDLINE, SPORTDiscus, Scopus, and CINAHL Complete were conducted in accordance with PRISMA guidelines. Studies were eligible for inclusion if a direct measure of maximal strength was used, a non-training control group was a comparator, the training intervention was > 4 weeks in duration and was replicable, and participants were defined as healthy and between the ages of 18–40. Methodological quality of the studies was evaluated using a modified Downs and Black checklist. Percentage change (%) and 95% confidence intervals (CI) for all strength-based training groups were calculated. Statistical significance (p < 0.05) was reported from each study. Results Twenty-two studies comprising a total of 761 participants (585 males and 176 females) were found to meet the inclusion criteria. 12 studies were returned for % 1RM, with 10 for RM. All studies showed statistically significant improvements in maximal strength in the training groups (31.3 ± 21.9%; 95% CI 33.1–29.5%). The mean quality rating for all studies was 17.7 ± 2.3. Four studies achieved a good methodological rating, with the remainder classified as moderate. Conclusions Both % 1RM and RM are effective tools for improving maximal strength. % 1RM appears to be a better prescriptive method than RM potentially due to a more sophisticated management of residual fatigue. However, large heterogeneity was present within this data. Lower body and multi-joint exercises appear to be more appropriate for developing maximal strength. Greater consensus is required in defining optimal training prescriptions, physiological adaptations, and training status. Electronic supplementary material The online version of this article (10.1007/s40279-019-01241-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Steve W Thompson
- Academy for Sport and Physical Activity, Sheffield Hallam University, Sheffield, UK.
| | - David Rogerson
- Academy for Sport and Physical Activity, Sheffield Hallam University, Sheffield, UK
| | - Alan Ruddock
- Academy for Sport and Physical Activity, Sheffield Hallam University, Sheffield, UK
| | - Andrew Barnes
- Academy for Sport and Physical Activity, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
18
|
Vieira AF, Umpierre D, Teodoro JL, Lisboa SC, Baroni BM, Izquierdo M, Cadore EL. Effects of Resistance Training Performed to Failure or Not to Failure on Muscle Strength, Hypertrophy, and Power Output: A Systematic Review With Meta-Analysis. J Strength Cond Res 2021; 35:1165-1175. [PMID: 33555822 DOI: 10.1519/jsc.0000000000003936] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT Vieira, AF, Umpierre, D, Teodoro, JL, Lisboa, SC, Baroni, BM, Izquierdo, M, and Cadore, EL. Effects of resistance training performed to failure or not to failure on muscle strength, hypertrophy, and power output: A systematic review with meta-analysis. J Strength Cond Res 35(4): 1165-1175, 2021-The aim of this review was to summarize the evidence from longitudinal studies assessing the effects induced by resistance training (RT) performed to failure (RTF) vs. not to failure (RTNF) on muscle strength, hypertrophy, and power output in adults. Three electronic databases were searched using terms related to RTF and RTNF. Studies were eligible if they met the following criteria: randomized and nonrandomized studies comparing the effects of RTF vs. RTNF on muscle hypertrophy, maximal strength, and muscle power in adults, and RT intervention ≥6 weeks. Results were presented as standardized mean differences (SMDs) between treatments with 95% confidence intervals, and calculations were performed using random effects models. Significance was accepted when p < 0.05. Thirteen studies were included in this review. No difference was found between RTF and RTNF on maximal strength in overall analysis (SMD: -0.08; p = 0.642), but greater strength increase was observed in RTNF considering nonequalized volumes (SMD: -0.34; p = 0.048). Resistance training performed to failure showed a greater increase in muscle hypertrophy than RTNF (SMD: 0.75; p = 0.005), whereas no difference was observed considering equalized RT volumes. No difference was found between RTF and RTNF on muscle power considering overall analysis (SMD: -0.20; p = 0.239), whereas greater improvement was observed in RTNF considering nonequalized RT volumes (SMD: -0.61; p = 0.025). Resistance training not to failure may induce comparable or even greater improvements in maximal dynamic strength and power output, whereas no difference between RTF vs. RTNF is observed on muscle hypertrophy, considering equalized RT volumes.
Collapse
Affiliation(s)
- Alexandra F Vieira
- Exercise Research Laboratory, School of Physical Education, Physiotherapy and Dance, Federal University of Rio Grande do Sul
| | - Daniel Umpierre
- Department of Public Health, University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Institute of Science and Technology for Health Technology Assessment (IATS/HCPA), Clinical Research Center, Clinicas Hospital of Porto Alegre, RS, Brazil
- Exercise Pathophysiology Laboratory, Graduate Program in Cardiology and Cardiovascular Sciences, University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Juliana L Teodoro
- Exercise Research Laboratory, School of Physical Education, Physiotherapy and Dance, Federal University of Rio Grande do Sul
| | - Salime C Lisboa
- Exercise Research Laboratory, School of Physical Education, Physiotherapy and Dance, Federal University of Rio Grande do Sul
| | - Bruno M Baroni
- Graduate Program in Rehabilitation Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil; and
| | - Mikel Izquierdo
- Navarrabiomed, Hospital Complex of Navarra (CHN)-Public University of Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Eduardo L Cadore
- Exercise Research Laboratory, School of Physical Education, Physiotherapy and Dance, Federal University of Rio Grande do Sul
| |
Collapse
|
19
|
Batra A, Wetmore AB, Hornsby WG, Lipinska P, Staniak Z, Surala O, Stone MH. Strength, Endocrine, and Body Composition Alterations across Four Blocks of Training in an Elite 400 m Sprinter. J Funct Morphol Kinesiol 2021; 6:jfmk6010025. [PMID: 33803237 PMCID: PMC8006296 DOI: 10.3390/jfmk6010025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 11/25/2022] Open
Abstract
The ability to produce force rapidly has the potential to directly influence sprinting performance through changes in stride length and stride frequency. This ability is commonly referred to as the rate of force development (RFD). For this reason, many elite sprinters follow a combined program consisting of resistance training and sprint training. The purpose of this study was to investigate the strength, endocrine and body composition adaptations that occur during distinct phases of a block periodized training cycle in a 400 m Olympic level sprinter. The athlete is an elite level 400 m male sprinter (age 31 years, body mass: 74 kg, years of training: 15 and Personal Best (PB): 45.65 s). This athlete completed four distinct training phases of a block periodized training program (16 weeks) with five testing sessions consisting of testosterone:cortisol (T/C) profiles, body composition, vertical jump, and maximum strength testing. Large fluctuations in T/C were found following high volume training and the taper. Minor changes in body mass were observed with an abrupt decrease following the taper which coincided with a small increase in fat mass percentage. Jump height (5.7%), concentric impulse (9.4%), eccentric impulse (3.4%) and power ratio (18.7%) all increased substantially from T1 to T5. Relative strength increased 6.04% from T1 to T5. Lastly, our results demonstrate the effectiveness of a competitive taper in increasing physiological markers for performance as well as dynamic performance variables. Block periodization training was effective in raising the physical capabilities of an Olympic level 400 m runner which have been shown to directly transfer to sprinting performance.
Collapse
Affiliation(s)
- Amit Batra
- Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee University, Johnson City, TN 36714, USA;
- Correspondence:
| | - Alex B. Wetmore
- Department of Athletics, Westminster College, Salt Lake City, UT 16172, USA;
| | - W. Guy. Hornsby
- College of Physical Activity and Sport Sciences, West Virginia University, Morgantown, WV 26505, USA;
| | - Patrycja Lipinska
- Institute of Physical Education, University of Bydgoszcz, 85-064 Bydgoszcz, Poland;
| | - Zbigniew Staniak
- Department of Biomechanics, Institute of Sport, National Research Institute, 01-982 Warsaw, Poland;
| | - Olga Surala
- Department of Nutrition Physiology and Dietetics, Institute of Sport-National Research Institute, 02-776 Warsaw, Poland;
| | - Michael H. Stone
- Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee University, Johnson City, TN 36714, USA;
| |
Collapse
|
20
|
Riscart-López J, Rendeiro-Pinho G, Mil-Homens P, Soares-daCosta R, Loturco I, Pareja-Blanco F, León-Prados JA. Effects of Four Different Velocity-Based Training Programming Models on Strength Gains and Physical Performance. J Strength Cond Res 2021; 35:596-603. [PMID: 33394894 DOI: 10.1519/jsc.0000000000003934] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Riscart-López, J, Rendeiro-Pinho, G, Mil-Homens, P, Costa, RS-d, Loturco, I, Pareja-Blanco, F, and León-Prados, JA. Effects of Four different velocity-based training programming models on strength gains and physical performance. J Strength Cond Res 35(3): 596-603, 2021-The aim of this study was to compare the effects of 4 velocity-based training (VBT) programming models (linear programming [LP], undulating programming [UP], reverse programming [RP], and constant programming [CP]) on the physical performance of moderately strength-trained men. Forty-three young (age: 22.9 ± 4.8 years; body mass [BM]: 71.7 ± 7.6; full squat [SQ] relative strength 1.32 ± 0.29) subjects were randomly assigned to LP (gradually increase training intensity and decrease volume), UP (volume and intensity increase or decrease repeatedly), RP (gradually increases volume and decrease intensity), and CP (maintains constant volume and intensity) groups and followed an 8-week VBT intervention using the SQ exercise and monitoring movement velocity for every repetition. All groups trained with similar relative average intensity (67.5% 1 repetition maximum [1RM]), magnitude of velocity loss within the set (20%), number of sets (3), and interset recoveries (4 minutes) throughout the training program. Pre-training and post-training measurements included predicted SQ (1RM), average velocity attained for all loads common to pre-tests and post-tests (AV), average velocity for those loads that were moved faster (AV > 1) and slower (AV < 1) than 1 m·s-1 at pre-tests, countermovement jump height (CMJ), and 20-m sprint time (T20). No significant group × time interactions were observed for any of the variables analyzed. All groups obtained similar increases (shown in effect size values) in 1RM strength (LP: 0.88; UP: 0.54; RP: 0.62; CP: 0.51), velocity-load-related variables (LP: 0.74-4.15; UP: 0.46-5.04; RP: 0.36-3.71; CP: 0.74-3.23), CMJ height (LP: 0.35; UP: 0.53; RP: 0.49; CP: 0.34), and sprint performance (LP: 0.34; UP: 0.35; RP: 0.32; CP: 0.30). These results suggest that different VBT programming models induced similar physical performance gains in moderately strength-trained subjects.
Collapse
Affiliation(s)
- Javier Riscart-López
- Faculty of Sport Sciences, Pablo de Olavid University, Seville, Spain.,Department of Physical Education and Sports, University of Seville, Seville, Spain
| | | | - Pedro Mil-Homens
- Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal
| | | | - Irineu Loturco
- Nucleus of High Performance in Sport, São Paulo, Brazil.,University of South Wales, Pontypridd, Wales, United Kingdom.,Department of Human Movement Sciences, Federal University of São Paulo, São Paulo, Brazil; and
| | - Fernando Pareja-Blanco
- Faculty of Sport Sciences, Pablo de Olavid University, Seville, Spain.,Physical Performance and Sports Research Center, Pablo de Olavid University, Seville, Spain
| | - Juan A León-Prados
- Faculty of Sport Sciences, Pablo de Olavid University, Seville, Spain.,Physical Performance and Sports Research Center, Pablo de Olavid University, Seville, Spain
| |
Collapse
|
21
|
Kataoka R, Vasenina E, Loenneke J, Buckner SL. Periodization: Variation in the Definition and Discrepancies in Study Design. Sports Med 2021; 51:625-651. [PMID: 33405190 DOI: 10.1007/s40279-020-01414-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 02/07/2023]
Abstract
Over the past several decades, periodization has been widely accepted as the gold standard of training theory. Within the literature, there are numerous definitions for periodization, which makes it difficult to study. When examining the proposed definitions and related studies on periodization, problems arise in the following domains: (1) periodization has been proposed to serve as the macro-management of the training process concerning the annual plan, yet research on long-term effects is scarce; (2) periodization and programming are being used interchangeably in research; and (3) training is not periodized alongside other stressors such as sport (i.e., only resistance training is being performed without the inclusion of sport). Overall, the state of the literature suggests that the inability to define periodization makes the statement of its superiority difficult to experimentally test. This paper discusses the proposed definitions of periodization and the study designs which have been employed to examine the concept.
Collapse
Affiliation(s)
- Ryo Kataoka
- USF Muscle Lab, Exercise Science Program, University of South Florida, Tampa, FL, USA
| | - Ecaterina Vasenina
- USF Muscle Lab, Exercise Science Program, University of South Florida, Tampa, FL, USA
| | - Jeremy Loenneke
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Samuel L Buckner
- USF Muscle Lab, Exercise Science Program, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
22
|
Muscle Fatigability After Hex-Bar Deadlift Exercise Performed With Fast or Slow Tempo. Int J Sports Physiol Perform 2021; 16:117-123. [DOI: 10.1123/ijspp.2019-0599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 11/18/2022]
Abstract
Purpose: To examine the differences in muscle fatigability after resistance exercise performed with fast tempo (FT) compared with slow tempo (ST). Methods: A total of 8 resistance-trained males completed FT and ST hexagonal-barbell deadlifts, consisting of 8 sets of 6 repetitions at 60% 3-repetition maximum, using a randomized crossover design. Each FT repetition was performed with maximal velocity, while each repetition during ST was performed with a 3-1-3 (eccentric/isometric/concentric) tempo (measured in seconds). Isometric maximal voluntary contraction, voluntary muscle activation, and evoked potentiated twitch torque of the knee extensors were determined using twitch interpolation before, during (set 4), and after exercise. Displacement–time data were measured during the protocols. Results: The mean bar velocity and total concentric work were higher for FT compared with ST (995 [166] W vs 233 [52] W; 0.87 [0.05] m/s vs 0.19 [0.05] m/s; 4.8 [0.8] kJ vs 3.7 [1.1] kJ). Maximal voluntary contraction torque, potentiated twitch, and voluntary muscle activation were significantly reduced after FT (−7.8% [9.2%]; −5.2% [9.2%], −8.7% [12.2%]) and ST (−11.2% [8.4%], −13.3% [8.1%], −1.8% [3.6%]). Conclusion: The decline in maximal voluntary force after both the FT and ST hexagonal-barbell deadlifts exercise was accompanied by a similar decline in contractile force and voluntary muscle activation.
Collapse
|
23
|
James LP, Haycraft J, Pierobon A, Suchomel TJ, Connick M. Mixed versus Focused Resistance Training during an Australian Football Pre-Season. J Funct Morphol Kinesiol 2020; 5:jfmk5040099. [PMID: 33467314 PMCID: PMC7804883 DOI: 10.3390/jfmk5040099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 11/16/2022] Open
Abstract
The purpose of this investigation was to determine the effect of a focused versus mixed-methods strength-power training plan on athletes undertaking high volumes of concurrent training. Fourteen junior elite male Australian football players were randomly assigned into either the focused or mixed group. Both training groups undertook a sequenced training intervention consisting of a four-week mesocycle emphasising heavy strength followed by a four-week mesocycle of high velocity emphasis. Training differed between groups by way of the degree of emphasis placed on the targeted attribute in each cycle and occurred during the preseason. Testing occurred pre- and post-training and consisted of the unloaded and loaded (+20 kg) countermovement jump (CMJ). Focused training elicited practical (non-trivial) improvements in flight time to contraction ratio (FT:CT) (g = 0.45, ±90% confidence interval 0.49) underpinned by a small reduction in contraction time (g = -0.46, ±0.45) and a small increase in braking (g = 0.36, ±0.42) and concentric phase mean force (g = 0.22, ±0.39). Conversely, the mixed group demonstrated an unchanged FT:CT (g = -0.13, ±0.56). Similar respective changes occurred in the loaded condition. Preferential improvements in FT:CT occur when a greater focus is placed on a targeted physical quality in a sequenced training plan of junior elite Australian football players during preseason training.
Collapse
Affiliation(s)
- Lachlan P. James
- Sport and Exercise Science, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, VIC 3086, Australia
- Correspondence:
| | - Jade Haycraft
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC 3011, Australia;
| | | | - Timothy J. Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha, WI 53186, USA;
| | - Mark Connick
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, QLD 4072, Australia;
| |
Collapse
|
24
|
The Effect of Training Status on Adaptations to 11 Weeks of Block Periodization Training. Sports (Basel) 2020; 8:sports8110145. [PMID: 33142849 PMCID: PMC7693826 DOI: 10.3390/sports8110145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 11/23/2022] Open
Abstract
Some controversy exists as to the most efficacious method of training to achieve enhanced levels of sport performance. Controversy concerning the efficacy of periodization and especially block periodization (BP) likely stems from the use of poorly or untrained subjects versus trained who may differ in their responses to a stimulus. The purpose of this study was to investigate the effect of training status on performance outcomes resulting from 11 weeks of BP training. Fifteen males were recruited for this study and placed into strong (age = 24.3 ± 1.9 years., body mass (BM) = 87.7 ± 8.7 kg, squat: body mass = 1.96 ± 0.16), moderate (age = 25.3 ± 2.7 years., body mass = 100.2 ± 15.5 kg, squat: body mass = 1.46 ± 0.14), or weak (age = 23.2 ± 3.9 yrs., body mass = 83.5 ± 17.1 kg, squat: body mass = 1.17 ± 0.07) groups based on relative strength. Testing was completed at baseline, and after each block which consisted of 1 repetition maximum (1RM) squat, 0 kg static jump (SJ), 0 kg countermovement jump (CMJ), 20 kg SJ, and 20 kg CMJ. Absolute and relative strength were strongly correlated with rates of improvement for absolute strength, relative strength, 0 kg, and 20 kg vertical jumps. All subjects substantially improved back squat (p < 0.001), relative back squat (p < 0.001) with large–very large effect sizes between groups for percent change favoring the weak group over the moderate and strong group for all performance variables. All subjects showed statistically significant improvements in 0 kg SJ (p < 0.001), 0 kg CMJ (p < 0.001), 20 kg SJ (p = 0.002), and 20 kg CMJ (p < 0.001). Statistically significant between group differences were noted for both 20 kg SJ (p = 0.01) and 20 kg CMJ (p = 0.043) with the strong group statistically greater jump heights than the weak group. The results of this study indicate BP training is effective in improving strength and explosive ability. Additionally, training status may substantially alter the response to a resistance training program.
Collapse
|
25
|
Buckner SL, Jessee MB, Mouser JG, Dankel SJ, Mattocks KT, Bell ZW, Abe T, Loenneke JP. The Basics of Training for Muscle Size and Strength: A Brief Review on the Theory. Med Sci Sports Exerc 2020; 52:645-653. [PMID: 31652235 DOI: 10.1249/mss.0000000000002171] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The periodization of resistance exercise is often touted as the most effective strategy for optimizing muscle size and strength adaptations. This narrative persists despite a lack of experimental evidence to demonstrate its superiority. In addition, the general adaptation syndrome, which provides the theoretical framework underlying periodization, does not appear to provide a strong physiological rationale that periodization is necessary. Hans Selye conducted a series of rodent studies which used toxic stressors to facilitate the development of the general adaptation syndrome. To our knowledge, normal exercise in humans has never been shown to produce a general adaptation syndrome. We question whether there is any physiological rationale that a periodized training approach would facilitate greater adaptations compared with nonperiodized approaches employing progressive overload. The purpose of this article is to briefly review currently debated topics within strength and conditioning and provide some practical insight regarding the implications these reevaluations of the literature may have for resistance exercise and periodization. In addition, we provide some suggestions for the continued advancement within the field of strength and conditioning.
Collapse
Affiliation(s)
- Samuel L Buckner
- USF Muscle Lab, Exercise Science Program, University of South Florida, Tampa, FL
| | - Matthew B Jessee
- Department of Health, Exercise Science, and Recreation Management, University of Mississippi, University, MS
| | - J Grant Mouser
- Department of Kinesiology and Health Promotion, Troy University, Troy, AL
| | - Scott J Dankel
- Department of Health and Exercise Science, Exercise Physiology Laboratory, Rowan University, Glassboro, NJ
| | | | - Zachary W Bell
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, University of Mississippi, University, MS
| | - Takashi Abe
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, University of Mississippi, University, MS
| | - Jeremy P Loenneke
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, University of Mississippi, University, MS
| |
Collapse
|
26
|
Hornsby WG, Fry AC, Haff GG, Stone MH. Addressing the Confusion within Periodization Research. J Funct Morphol Kinesiol 2020; 5:jfmk5030068. [PMID: 33467283 PMCID: PMC7739353 DOI: 10.3390/jfmk5030068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 11/16/2022] Open
Abstract
In this editorial, we focus on recent problematic developments in sport science, and more specifically, problems related to periodization research. Primary areas discussed are (1) appreciation of history, (2) considerations for training studies, (3) the development of concepts, and (4) programming-driven training models.
Collapse
Affiliation(s)
- W. Guy Hornsby
- College of Physical Activity and Sport Sciences, West Virginia University, Morgantown, WV 26505, USA
- Correspondence:
| | - Andrew C. Fry
- Osness Human Performance Laboratory, University of Kansas, Lawrence, KS 66045, USA;
| | - G. Gregory Haff
- School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia;
| | - Michael H. Stone
- Center of Excellence for Sport Science and Coach Education, SERK, East Tennessee State University, Johnson City, TN 37614, USA;
| |
Collapse
|
27
|
Sumaryanti S, Tomoliyus T. The effect of linear loading circuit training on physical fitness. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2020. [DOI: 10.23736/s0393-3660.18.04005-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Pearson J, Spathis JG, van den Hoek DJ, Owen PJ, Weakley J, Latella C. Effect of Competition Frequency on Strength Performance of Powerlifting Athletes. J Strength Cond Res 2020; 34:1213-1219. [PMID: 32149884 DOI: 10.1519/jsc.0000000000003563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pearson, J, Spathis, JG, van den Hoek, DJ, Owen, PJ, Weakley, J, and Latella, C. Effect of competition frequency on strength performance of powerlifting athletes. J Strength Cond Res 34(5): 1213-1219, 2020-Powerlifting (PL) requires athletes to achieve the highest possible "total" weight lifted across squat, bench press, and deadlift. Athletes compete multiple times per year; however, it is not well understood how often PL athletes should compete to facilitate maximal strength performance. This study investigated the effect of competition frequency on strength (relative and absolute) in PL athletes over a 12-month period. Results across all male (n = 563, mean ± SD; age; 28 ± 10 years, body mass; 89.3 ± 19.3 kg) and female (n = 437, age; 31 ± 11 years, body mass; 70.1 ± 15.8 kg) PL athletes were collated. Total competition scores were used to calculate absolute and relative strength for each competition. Linear mixed models with random effects, and effect sizes ± 95% confidence intervals compared competition frequency and total score for (a) all, (b) male, and (c) female competition entries, respectively. The association between total score at each competition was assessed with Pearson's correlation coefficient for the same independent variables. Results demonstrate greater absolute strength at competition 2 for all athletes (5.1%: p = 0.043: d = 0.16) and males (2.9%: p = 0.049: d = 0.15). For females, absolute strength was greater at competition 5 compared to 1 (12.0%: p = 0.001: d = 0.65) and 2 (9.6%: p = 0.007: d = 0.50). Weak positive correlations for relative strength and number of times competed for males were evident between competitions 1 to 4 (r = 0.070-0.085, p = 0.003-0.043). For females, 3 competitions weakly correlated with absolute strength (r = 0.106, p = 0.016). PL athletes who compete multiple times per year are more likely to achieve higher totals; however, there is an upper limit to the number of competitions (4 per year) that seem to allow a performance increase.
Collapse
Affiliation(s)
- Joshua Pearson
- School of Behavioural and Health Sciences, Australian Catholic University, Banyo, Queensland, Australia
| | - Jemima G Spathis
- School of Behavioural and Health Sciences, Australian Catholic University, Banyo, Queensland, Australia
| | - Daniel J van den Hoek
- School of Behavioural and Health Sciences, Australian Catholic University, Banyo, Queensland, Australia
| | - Patrick J Owen
- School of Exercise and Nutrition Science, Deakin University, Geelong, Victoria, Australia
| | - Jonathon Weakley
- School of Behavioural and Health Sciences, Australian Catholic University, Banyo, Queensland, Australia.,Carnegie Applied Rugby Research (CARR) Center, Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, United Kingdom
| | - Christopher Latella
- Center for Exercise and Sports Science Research (CESSR), School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; and.,Neurophysiology Research Laboratory, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
29
|
Muazu Musa R, Abdul Majeed A, Taha Z, Abdullah M, Husin Musawi Maliki A, Azura Kosni N. The application of Artificial Neural Network and k-Nearest Neighbour classification models in the scouting of high-performance archers from a selected fitness and motor skill performance parameters. Sci Sports 2019. [DOI: 10.1016/j.scispo.2019.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Skeletal Muscle Fiber Adaptations Following Resistance Training Using Repetition Maximums or Relative Intensity. Sports (Basel) 2019; 7:sports7070169. [PMID: 31373325 PMCID: PMC6680702 DOI: 10.3390/sports7070169] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/04/2019] [Accepted: 07/07/2019] [Indexed: 11/16/2022] Open
Abstract
The purpose of the study was to compare the physiological responses of skeletal muscle to a resistance training (RT) program using repetition maximum (RM) or relative intensity (RISR). Fifteen well-trained males underwent RT 3 d·wk−1 for 10 weeks in either an RM group (n = 8) or RISR group (n = 7). The RM group achieved a relative maximum each day, while the RISR group trained based on percentages. The RM group exercised until muscular failure on each exercise, while the RISR group did not reach muscular failure throughout the intervention. Percutaneous needle biopsies of the vastus lateralis were obtained pre-post the training intervention, along with ultrasonography measures. Dependent variables were: Fiber type-specific cross-sectional area (CSA); anatomical CSA (ACSA); muscle thickness (MT); mammalian target of rapamycin (mTOR); adenosine monophosphate protein kinase (AMPK); and myosin heavy chains (MHC) specific for type I (MHC1), type IIA (MHC2A), and type IIX (MHC2X). Mixed-design analysis of variance and effect size using Hedge’s g were used to assess within- and between-group alterations. RISR statistically increased type I CSA (p = 0.018, g = 0.56), type II CSA (p = 0.012, g = 0.81), ACSA (p = 0.002, g = 0.53), and MT (p < 0.001, g = 1.47). RISR also yielded a significant mTOR reduction (p = 0.031, g = −1.40). Conversely, RM statistically increased only MT (p = 0.003, g = 0.80). Between-group effect sizes supported RISR for type I CSA (g = 0.48), type II CSA (g = 0.50), ACSA (g = 1.03), MT (g = 0.72), MHC2X (g = 0.31), MHC2A (g = 0.87), and MHC1 (g = 0.59); with all other effects being of trivial magnitude (g < 0.20). Our results demonstrated greater adaptations in fiber size, whole-muscle size, and several key contractile proteins when using RISR compared to RM loading paradigms.
Collapse
|
31
|
The Effect of Block Versus Daily Undulating Periodization on Strength and Performance in Adolescent Football Players. Int J Sports Physiol Perform 2019; 14:814–821. [PMID: 30569761 DOI: 10.1123/ijspp.2018-0609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Purpose: Muscle mass, strength, and power are important factors for performance. To improve these characteristics, periodized resistance training is used. However, there is no consensus regarding the most effective periodization model. Therefore, the purpose of this study was to compare the effects of block (BLOCK) vs daily undulating periodization (DUP) on body composition, hypertrophy, strength, performance, and power in adolescent American football players. Methods: A total of 47 subjects participated in this study (mean [SD] age = 17 [0.8] y, strength training experience = 0.93 [0.99] y). Premeasurements and postmeasurements consisted of body mass (BM); fat mass; relative fat mass; fat-free mass (FFM); muscle mass (MM); muscle thickness of the vastus lateralis (VL), rectus femoris (RF), and triceps brachii (TB); 1-repetition-maximum back squat (BS) and bench press (BP); countermovement jump (CMJ); estimated peak power (Wpeak) from vertical jump performance; medicine-ball put (MBP); and 40-yd sprint. Subjects were randomly assigned in either the BLOCK or DUP group prior to the 12-wk intervention period consisting of 3 full-body sessions per week. Results: Both groups displayed significantly higher BM (P < .001), FFM (P < .001), MM (P < .001), RF (P < .001), VL (P < .001), TB (P < .001), BS (P < .001), BP (P < .001), CMJ (P < .001), Wpeak (P < .001), and MBP (P < .001) and significantly lower sprint times (P < .001) after 12 wk of resistance training, with no difference between groups. Conclusions: Resistance training was effective to increase muscle mass, strength, power, and performance in adolescent athletes. BLOCK and DUP affect anthropometric measures and physical performance equally.
Collapse
|
32
|
Comfort P, Dos'Santos T, Beckham GK, Stone MH, Guppy SN, Haff GG. Standardization and Methodological Considerations for the Isometric Midthigh Pull. Strength Cond J 2019. [DOI: 10.1519/ssc.0000000000000433] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Pichardo AW, Oliver JL, Harrison CB, Maulder PS, Lloyd RS. Integrating Resistance Training Into High School Curriculum. Strength Cond J 2019. [DOI: 10.1519/ssc.0000000000000412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Carroll KM, Bernards JR, Bazyler CD, Taber CB, Stuart CA, DeWeese BH, Sato K, Stone MH. Divergent Performance Outcomes Following Resistance Training Using Repetition Maximums or Relative Intensity. Int J Sports Physiol Perform 2019; 14:46-54. [PMID: 29809061 DOI: 10.1123/ijspp.2018-0045] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/10/2018] [Accepted: 05/21/2018] [Indexed: 11/18/2022]
Abstract
PURPOSE To compare repetition maximum (RM) to relative intensity using sets and repetitions (RISR) resistance training on measures of training load, vertical jump, and force production in well-trained lifters. METHODS Fifteen well-trained (isometric peak force = 4403.61 [664.69] N, mean [SD]) males underwent resistance training 3 d/wk for 10 wk in either an RM group (n = 8) or RISR group (n = 7). Weeks 8 to 10 consisted of a tapering period for both groups. The RM group achieved a relative maximum each day, whereas the RISR group trained based on percentages. Testing at 5 time points included unweighted (<1 kg) and 20-kg squat jumps, countermovement jumps, and isometric midthigh pulls. Mixed-design analyses of variance and effect size using Hedge's g were used to assess within- and between-groups alterations. RESULTS Moderate between-groups effect sizes were observed for all squat-jump and countermovement-jump conditions supporting the RISR group (g = 0.76-1.07). A small between-groups effect size supported RISR for allometrically scaled isometric peak force (g = 0.20). Large and moderate between-groups effect sizes supported RISR for rate of force development from 0 to 50 ms (g = 1.25) and 0 to 100 ms (g = 0.89). Weekly volume load displacement was not different between groups (P > .05); however, training strain was statistically greater in the RM group (P < .05). CONCLUSIONS Overall, this study demonstrated that RISR training yielded greater improvements in vertical jump, rate of force development, and maximal strength compared with RM training, which may be explained partly by differences in the imposed training stress and the use of failure/nonfailure training in a well-trained population.
Collapse
|
35
|
Pliauga V, Lukonaitiene I, Kamandulis S, Skurvydas A, Sakalauskas R, Scanlan AT, Stanislovaitiene J, Conte D. The effect of block and traditional periodization training models on jump and sprint performance in collegiate basketball players. Biol Sport 2018; 35:373-382. [PMID: 30765923 PMCID: PMC6358525 DOI: 10.5114/biolsport.2018.78058] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/11/2018] [Accepted: 06/04/2018] [Indexed: 01/16/2023] Open
Abstract
This study investigated the effect of block periodization (BP) and traditional periodization (TP) approaches on jumping and sprinting performance in collegiate basketball players during an 8-week pre-season period. Ten collegiate male basketball players (mean±SD; age: 21.5±1.7 years; body mass: 83.5±8.9 kg; stature: 192.5±5.4 cm) from the same team were equally assigned to a training group (BP or TP). BP and TP were designed with different numbers of power sessions (BP=8; TP=16) and recovery days (BP=14; TP=8). Counter-movement jump (CMJ) and 20-m sprint performance was measured prior to training commencement (baseline) and every 2 weeks thereafter (week 2, week 4, week 6 and week 8). Within-group, between-group and individual changes were assessed using magnitude-based statistics. Substantially higher (likely positive) CMJ scores were evident in week 8 compared to baseline, week 2 and week 4 with BP training. Substantially higher CMJ values were only observed in week 2 (likely positive) compared to baseline, with TP training. Sprint data showed likely negative differences in week 6 compared to baseline in both TP and BP, with no substantial differences in week 8. The only performance difference between TP and BP training was in CMJ in week 8 (very likely negative). Individual analysis showed that only three athletes demonstrated a negative predicted score (i.e. lower sprinting time) in BP, while all players following the TP model demonstrated positive predicted scores. BP training showed substantially higher jumping performance compared to TP, while no improvement in sprinting performance was observed in either training approach. Basketball coaches should consider using BP training rather than TP to train players' jumping abilities.
Collapse
Affiliation(s)
- Vytautas Pliauga
- Department of Coaching Science, Lithuanian Sports University, Kaunas, Lithuania
- Department of Education Science, Kaunas University of Technology, Kaunas, Lithuania
| | - Inga Lukonaitiene
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Sigitas Kamandulis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Albertas Skurvydas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Rytis Sakalauskas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Aaron T. Scanlan
- Human Exercise and Training Laboratory, Central Queensland University, Rockhampton, Queensland, Australia
| | | | - Daniele Conte
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
36
|
Guppy SN, Brady CJ, Kotani Y, Stone MH, Medic N, Haff GG. The Effect of Altering Body Posture and Barbell Position on the Between-Session Reliability of Force-Time Curve Characteristics in the Isometric Mid-Thigh Pull. Sports (Basel) 2018; 6:sports6040162. [PMID: 30513606 PMCID: PMC6316399 DOI: 10.3390/sports6040162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/16/2018] [Accepted: 11/27/2018] [Indexed: 11/16/2022] Open
Abstract
Seventeen strength and power athletes (n = 11 males, 6 females; height: 177.5 ± 7.0 cm, 165.8 ± 11.4 cm; body mass: 90.0 ± 14.1 kg, 66.4 ± 13.9 kg; age: 30.6 ± 10.4 years, 30.8 ± 8.7 years), who regularly performed weightlifting movements during their resistance training programs, were recruited to examine the effect of altering body posture and barbell position on the between-session reliability of force-time characteristics generated in the isometric mid-thigh pull (IMTP). After participants were familiarised with the testing protocol, they undertook two testing sessions which were separated by seven days. In each session, the participants performed three maximal IMTP trials in each of the four testing positions examined, with the order of testing randomized. In each position, no significant differences were found between sessions for all force-time characteristics (p = >0.05). Peak force (PF), time-specific force (F50, F90, F150, F200, F250) and IMP time-bands (0–50, 0–90, 0–150, 0–200, 0–250 ms) were reliable across each of the four testing positions (ICC ≥ 0.7, CV ≤ 15%). Time to peak force, peak RFD, RFD time-bands (0–50, 0–90, 0–150, 0–200, 0–250 ms) and peak IMP were unreliable regardless of the testing position used (ICC = <0.7, CV = >15%). Overall, the use of body postures and barbell positions during the IMTP that do not correspond to the second pull of the clean have no adverse effect on the reliability of the force-time characteristics generated.
Collapse
Affiliation(s)
- Stuart N Guppy
- Centre for Exercise and Sports Science Research, Edith Cowan University, Joondalup 6027, Australia.
| | - Claire J Brady
- Department of Physical Education & Sports Sciences, University of Limerick, Limerick V94 T9PX, Ireland.
| | - Yosuke Kotani
- Centre for Exercise and Sports Science Research, Edith Cowan University, Joondalup 6027, Australia.
| | - Michael H Stone
- Centre of Excellence for Sports Science and Coach Education, Department of Exercise and Sport Science, East Tennessee State University, Johnson City, TN 37614, USA.
| | - Nikola Medic
- Centre for Exercise and Sports Science Research, Edith Cowan University, Joondalup 6027, Australia.
| | - Guy Gregory Haff
- Centre for Exercise and Sports Science Research, Edith Cowan University, Joondalup 6027, Australia.
| |
Collapse
|
37
|
Abstract
Recent reviews have attempted to refute the efficacy of applying Selye's general adaptation syndrome (GAS) as a conceptual framework for the training process. Furthermore, the criticisms involved are regularly used as the basis for arguments against the periodization of training. However, these perspectives fail to consider the entirety of Selye's work, the evolution of his model, and the broad applications he proposed. While it is reasonable to critically evaluate any paradigm, critics of the GAS have yet to dismantle the link between stress and adaptation. Disturbance to the state of an organism is the driving force for biological adaptation, which is the central thesis of the GAS model and the primary basis for its application to the athlete's training process. Despite its imprecisions, the GAS has proven to be an instructive framework for understanding the mechanistic process of providing a training stimulus to induce specific adaptations that result in functional enhancements. Pioneers of modern periodization have used the GAS as a framework for the management of stress and fatigue to direct adaptation during sports training. Updates to the periodization concept have retained its founding constructs while explicitly calling for scientifically based, evidence-driven practice suited to the individual. Thus, the purpose of this review is to provide greater clarity on how the GAS serves as an appropriate mechanistic model to conceptualize the periodization of training.
Collapse
|
38
|
Abstract
This review covers underlying physiological characteristics and training considerations that may affect muscular strength including improving maximal force expression and time-limited force expression. Strength is underpinned by a combination of morphological and neural factors including muscle cross-sectional area and architecture, musculotendinous stiffness, motor unit recruitment, rate coding, motor unit synchronization, and neuromuscular inhibition. Although single- and multi-targeted block periodization models may produce the greatest strength-power benefits, concepts within each model must be considered within the limitations of the sport, athletes, and schedules. Bilateral training, eccentric training and accentuated eccentric loading, and variable resistance training may produce the greatest comprehensive strength adaptations. Bodyweight exercise, isolation exercises, plyometric exercise, unilateral exercise, and kettlebell training may be limited in their potential to improve maximal strength but are still relevant to strength development by challenging time-limited force expression and differentially challenging motor demands. Training to failure may not be necessary to improve maximum muscular strength and is likely not necessary for maximum gains in strength. Indeed, programming that combines heavy and light loads may improve strength and underpin other strength-power characteristics. Multiple sets appear to produce superior training benefits compared to single sets; however, an athlete's training status and the dose-response relationship must be considered. While 2- to 5-min interset rest intervals may produce the greatest strength-power benefits, rest interval length may vary based an athlete's training age, fiber type, and genetics. Weaker athletes should focus on developing strength before emphasizing power-type training. Stronger athletes may begin to emphasize power-type training while maintaining/improving their strength. Future research should investigate how best to implement accentuated eccentric loading and variable resistance training and examine how initial strength affects an athlete's ability to improve their performance following various training methods.
Collapse
|
39
|
Comparison of Periodized and Non-Periodized Resistance Training on Maximal Strength: A Meta-Analysis. Sports Med 2018; 47:2083-2100. [PMID: 28497285 DOI: 10.1007/s40279-017-0734-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Periodization is a logical method of organizing training into sequential phases and cyclical time periods in order to increase the potential for achieving specific performance goals while minimizing the potential for overtraining. Periodized resistance training plans are proposed to be superior to non-periodized training plans for enhancing maximal strength. OBJECTIVE The primary aim of this study was to examine the previous literature comparing periodized resistance training plans to non-periodized resistance training plans and determine a quantitative estimate of effect on maximal strength. METHODS All studies included in the meta-analysis met the following inclusion criteria: (1) peer-reviewed publication; (2) published in English; (3) comparison of a periodized resistance training group to a non-periodized resistance training group; (4) maximal strength measured by 1-repetition maximum (1RM) squat, bench press, or leg press. Data were extracted and independently coded by two authors. Random-effects models were used to aggregate a mean effect size (ES), 95% confidence intervals (CIs) and potential moderators. RESULTS The cumulative results of 81 effects gathered from 18 studies published between 1988 and 2015 indicated that the magnitude of improvement in 1RM following periodized resistance training was greater than non-periodized resistance training (ES = 0.43, 95% CI 0.27-0.58; P < 0.001). Periodization model (β = 0.51; P = 0.0010), training status (β = -0.59; P = 0.0305), study length (β = 0.03; P = 0.0067), and training frequency (β = 0.46; P = 0.0123) were associated with a change in 1RM. These results indicate that undulating programs were more favorable for strength gains. Improvements in 1RM were greater among untrained participants. Additionally, higher training frequency and longer study length were associated with larger improvements in 1RM. CONCLUSION These results suggest that periodized resistance training plans have a moderate effect on 1RM compared to non-periodized training plans. Variation in training stimuli appears to be vital for increasing maximal strength, and longer periods of higher training frequency may be preferred.
Collapse
|
40
|
Rønnestad BR, Øfsteng SJ, Ellefsen S. Block periodization of strength and endurance training is superior to traditional periodization in ice hockey players. Scand J Med Sci Sports 2018; 29:180-188. [DOI: 10.1111/sms.13326] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/19/2018] [Accepted: 10/04/2018] [Indexed: 11/30/2022]
Affiliation(s)
| | - Sjur J. Øfsteng
- Inland Norway University of Applied Sciences; Lillehammer Norway
| | - Stian Ellefsen
- Inland Norway University of Applied Sciences; Lillehammer Norway
| |
Collapse
|
41
|
Resistance Training Volume Load with and without Exercise Displacement. Sports (Basel) 2018; 6:sports6040137. [PMID: 30400302 PMCID: PMC6316164 DOI: 10.3390/sports6040137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 01/05/2023] Open
Abstract
Monitoring the resistance training volume load (VL) (sets × reps × load) is essential to managing resistance training and the recovery–adaptation process. Subjects: Eight trained weightlifters, seven of which were at national level, participated in the study. Methods: VL was measured both with (VLwD) and without (VL) the inclusion of barbell displacement, across twenty weeks of training, in order to allow for comparisons to be made of these VL calculating methods. This consisted of recording the load, repetition count, and barbell displacement for every set executed. Comparisons were made between VL and VLwD for individual blocks of training, select training weeks, and select training days. Results: Strong, statistically significant correlations (r ≥ 0.78, p < 0.001) were observed between VL and VLwD between all training periods analyzed. t-tests revealed statistically significant (p ≤ 0.018) differences between VL and VLwD in four of the seven training periods analyzed. Conclusion: The very strong relationship between VL and VLwD suggest that a coach with time constraints and a large number of athletes can potentially spare the addition of displacement. However, differences in percent change indicate that coaches with ample time should include displacement in VL calculations, in an effort to acquire more precise workload totals.
Collapse
|
42
|
Buskard A, Zalma B, Cherup N, Armitage C, Dent C, Signorile JF. Effects of linear periodization versus daily undulating periodization on neuromuscular performance and activities of daily living in an elderly population. Exp Gerontol 2018; 113:199-208. [PMID: 30316811 DOI: 10.1016/j.exger.2018.09.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/05/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Periodization is a systematic training calendar designed to provide variations in performance targeting, while maximizing results and reducing the potential for overtraining. When provided across multiple weeks, termed a mesocycle, it may also incorporate active recovery periods using specified drills designed to translate neuromuscular gains into targeted functional abilities. There are a number of models that can be used when applying periodization to resistance training (RT). Among the most common are the linear (LP) and daily fixed non-linear (NLP) models. It is currently unknown whether an optimal periodization strategy exists that will maximize benefits for older adults; therefore, we compared the impact of these two periodization models on neuromuscular and functional measures in a group of older persons living independently in the community. METHODS Thirty-six older adults, 58-80 years of age, were randomly assigned to either a LP (n = 16; 69.3 ± 4.6 y) or NLP (n = 14; 68.9 ± 6.7 y) group. The LP group performed 12 weeks of training comprised of separate 4-week strength and power training cycles, each followed by a 2-week recovery period incorporating translational exercises. The NLP group performed the strength, power, and translational training on three separate days during the week. Neuromuscular testing included seated chest press and leg press strength and power tests, while physical function testing included the gallon jug shelf test, laundry transfer test, floor stand-up, chair-to-stand test, and 8 foot timed up-and-go. RESULTS 3 (time) × 2 (sex) × 2 (group) repeated measures ANOVA revealed both periodization strategies were equally effective at inducing neuromuscular and functional improvements and that men generally produced more strength and power than women. CONCLUSIONS Both LP and NLP can be used to improve strength, power, and functional performance in healthy untrained older adults when strength, power and functional training cycles are involved. Therefore, personal preference and variety should be considered when deciding which approach to use, provided high-speed power and translational recovery components are included.
Collapse
Affiliation(s)
- Andrew Buskard
- University of Miami, Laboratory of Neuromuscular Research and Active Aging, Department of Kinesiology and Sports Sciences, Coral Gables, FL, United States of America
| | - Brian Zalma
- University of Miami, Laboratory of Neuromuscular Research and Active Aging, Department of Kinesiology and Sports Sciences, Coral Gables, FL, United States of America
| | - Nicholes Cherup
- University of Miami, Laboratory of Neuromuscular Research and Active Aging, Department of Kinesiology and Sports Sciences, Coral Gables, FL, United States of America
| | - Catherine Armitage
- University of Miami, Laboratory of Neuromuscular Research and Active Aging, Department of Kinesiology and Sports Sciences, Coral Gables, FL, United States of America
| | - Craig Dent
- University of Miami, Laboratory of Neuromuscular Research and Active Aging, Department of Kinesiology and Sports Sciences, Coral Gables, FL, United States of America
| | - Joseph F Signorile
- University of Miami, Laboratory of Neuromuscular Research and Active Aging, Department of Kinesiology and Sports Sciences, Coral Gables, FL, United States of America; University of Miami Miller School of Medicine, Center on Aging, 1695 N.W. 9th Avenue Suite 3204, Miami, FL 33136, United States of America.
| |
Collapse
|
43
|
An Integrated, Multifactorial Approach to Periodization for Optimal Performance in Individual and Team Sports. Int J Sports Physiol Perform 2018; 13:538-561. [PMID: 29848161 DOI: 10.1123/ijspp.2018-0093] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sports periodization has traditionally focused on the exercise aspect of athletic preparation, while neglecting the integration of other elements that can impact an athlete's readiness for peak competition performances. Integrated periodization allows the coordinated inclusion of multiple training components best suited for a given training phase into an athlete's program. The aim of this article is to review the available evidence underpinning integrated periodization, focusing on exercise training, recovery, nutrition, psychological skills, and skill acquisition as key factors by which athletic preparation can be periodized. The periodization of heat and altitude adaptation, body composition, and physical therapy is also considered. Despite recent criticism, various methods of exercise training periodization can contribute to performance enhancement in a variety of elite individual and team sports, such as soccer. In the latter, both physical and strategic periodization are useful tools for managing the heavy travel schedule, fatigue, and injuries that occur throughout a competitive season. Recovery interventions should be periodized (ie, withheld or emphasized) to influence acute and chronic training adaptation and performance. Nutrient intake and timing in relation to exercise and as part of the periodization of an athlete's training and competition calendar can also promote physiological adaptations and performance capacity. Psychological skills are a central component of athletic performance, and their periodization should cater to each athlete's individual needs and the needs of the team. Skill acquisition can also be integrated into an athlete's periodized training program to make a significant contribution to competition performance.
Collapse
|
44
|
Cunanan AJ, DeWeese BH, Wagle JP, Carroll KM, Sausaman R, Hornsby WG, Haff GG, Triplett NT, Pierce KC, Stone MH. Authors’ Reply to Buckner et al.: ‘Comment on: “The General Adaptation Syndrome: A Foundation for the Concept of Periodization”. Sports Med 2018; 48:1755-1757. [DOI: 10.1007/s40279-018-0884-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
45
|
Resting Hormone Alterations and Injuries: Block vs. DUP Weight-Training among D-1 Track and Field Athletes. Sports (Basel) 2018; 6:sports6010003. [PMID: 29910307 PMCID: PMC5969203 DOI: 10.3390/sports6010003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 11/16/2022] Open
Abstract
Daily undulating periodization (DUP), using daily alterations in repetitions, has been advocated as a superior method of resistance training, while traditional forms of programming for periodization (Block) have been questioned. Nineteen Division I track and field athletes were assigned to either a 10-week Block or DUP training group. Year and event were controlled. Over the course of the study, there were four testing sessions, which were used to evaluate a variety of strength characteristics, including maximum isometric strength, rate of force development, and one repetition maximum (1RM). Although, performance trends favored the Block group for strength and rate of force development, no statistical differences were found between the two groups. However, different (p ≤ 0.05) estimated volumes of work (VL) and amounts of improvement per VL were found between groups. Based upon calculated training efficiency scores, these data indicate that a Block training model is more efficient in producing strength gains than a DUP model. Additionally, alterations in testosterone (T), cortisol (C) and the T:C ratio were measured. Although there were no statistically (p ≤ 0.05) different hormone alterations between groups, relationships between training variables and hormone concentrations including the T:C ratio, indicate that Block may be more efficacious in terms of fatigue management.
Collapse
|
46
|
Bernards J, Blaisdell R, Light TJ, Stone MH. Prescribing an Annual Plan for the Competitive Surf Athlete: Optimal Methods and Barriers to Implementation. Strength Cond J 2017. [DOI: 10.1519/ssc.0000000000000335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Maximum Strength, Rate of Force Development, Jump Height, and Peak Power Alterations in Weightlifters across Five Months of Training. Sports (Basel) 2017; 5:sports5040078. [PMID: 29910439 PMCID: PMC5969034 DOI: 10.3390/sports5040078] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 11/29/2022] Open
Abstract
The purpose of this monitoring study was to investigate how alterations in training affect changes in force-related characteristics and weightlifting performance. Subjects: Seven competitive weightlifters participated in the study. Methods: The weightlifters performed a block style periodized plan across 20 weeks. Force plate data from the isometric mid-thigh pull and static jumps with 0 kg, 11 kg, and 20 kg were collected near the end of each training block (weeks 1, 6, 10, 13, 17, and 20). Weightlifting performance was measured at weeks 0, 7, 11, and 20. Results: Very strong correlations were noted between weightlifting performances and isometric rate of force development (RFD), isometric peak force (PF), peak power (PP), and jump height (JH). Men responded in a more predictable manner than the women. During periods of higher training volume, RFD was depressed to a greater extent than PF. JH at 20 kg responded in a manner reflecting the expected fatigue response more so than JH at 0 kg and 11 kg. Conclusions: PF appears to have been more resistant to volume alterations than RFD and JH at 20 kg. RFD and JH at 20 kg appear to be superior monitoring metrics due to their “sensitivity.”
Collapse
|
48
|
Manchado C, Cortell-Tormo JM, Tortosa-Martínez J. Effects of Two Different Training Periodization Models on Physical and Physiological Aspects of Elite Female Team Handball Players. J Strength Cond Res 2017; 32:280-287. [PMID: 29023322 DOI: 10.1519/jsc.0000000000002259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Manchado, C, Cortell-Tormo, JM, and Tortosa-Martínez, J. Effects of two different training periodization models on physical and physiological aspects of elite female team handball players. J Strength Cond Res 32(1): 280-287, 2018-The aim of this study was to compare training-induced changes in selected physiological and physical team handball performance factors after 2 training periodization models: traditional periodization (TP) vs. block periodization (BP). Eleven female team handball players who played over 2 consecutive seasons for a Spanish first league team were assessed twice per season during a training cycle. On each occasion, participants completed anthropometric, maximal strength, and lower-body power assessments. In addition, incremental tests to determine maximum oxygen uptake (V[Combining Dot Above]O2max), sprint- and sport-specific throwing velocity tests were performed. Block periodization group experienced significantly greater improvements than TP on squat jump (5.97%; p < 0.001), countermovement jump (8.76%; p = 0.011), hand-grip strength (8.22%; p = 0.029), bench press 1 repetition maximum (1RM) (5.14%; p = 0.049), 10-m sprint (-6.19%; p < 0.001), and 20-m sprint (2.95%; p = 0.008). Greater changes in BP group (p ≤ 0.05) were also found for the throwing velocities in sport-specific tests compared with the TP group. No significant difference between the groups were detected for the half-squat 1RM (p = 0.15) and the V[Combining Dot Above]O2max (p = 0.44). These findings suggest that BP may be more effective than TP for improving important physiological and physical team handball performance factors in high level female handball players.
Collapse
Affiliation(s)
- Carmen Manchado
- Department of General and Specific Didactics, University of Alicante, Alicante, Spain
| | | | | |
Collapse
|
49
|
Stuart CA, Lee ML, South MA, Howell MEA, Stone MH. Muscle hypertrophy in prediabetic men after 16 wk of resistance training. J Appl Physiol (1985) 2017; 123:894-901. [PMID: 28663372 DOI: 10.1152/japplphysiol.00023.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 06/11/2017] [Accepted: 06/22/2017] [Indexed: 12/25/2022] Open
Abstract
Resistance training of healthy young men typically results in muscle hypertrophy and a shift in vastus lateralis composition away from type IIx fibers to an increase in IIa fiber content. Our previous studies of 8 wk of resistance training found that many metabolic syndrome men and women paradoxically increased IIx fibers with a decrease in IIa fibers. To confirm the hypothesis that obese subjects might have muscle remodeling after resistance training very different from healthy lean subjects, we subjected a group of nine obese male volunteers to progressive resistance training for a total of 16 wk. In these studies, weight loss was discouraged so that muscle changes would be attributed to the training alone. Detailed assessments included comparisons of histological examinations of needle biopsies of vastus lateralis muscle pretraining and at 8 and 16 wk. Prolonging the training from 8 to 16 wk resulted in increased strength, improved body composition, and more muscle fiber hypertrophy, but euglycemic clamp-quantified insulin responsiveness did not improve. Similar to prior studies, muscle fiber composition shifted toward more fast-twitch type IIx fibers (23 to 42%). Eight weeks of resistance training increased the muscle expression of phosphorylated Akt2 and mTOR. Muscle GLUT4 expression increased, although insulin receptor and IRS-1 expression did not change. We conclude that resistance training of prediabetic obese subjects is effective at changing muscle, resulting in fiber hypertrophy and increased type IIx fiber content, and these changes continue up to 16 wk of training.NEW & NOTEWORTHY Obese, insulin-resistant men responded to 16 wk of progressive resistance training with muscle hypertrophy and increased strength and a shift in muscle fiber composition toward fast-twitch, type IIx fibers. Activation of muscle mTOR was increased by 8 wk but did not increase further at 16 wk despite continued augmentation of peak power and rate of force generation.
Collapse
Affiliation(s)
- Charles A Stuart
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee;
| | - Michelle L Lee
- Department of Allied Health, College of Clinical and Rehabilitative Health, East Tennessee State University, Johnson City, Tennessee and
| | - Mark A South
- Department of Exercise and Sports Science, Clemmer College of Education, East Tennessee State University, Johnson City, Tennessee
| | - Mary E A Howell
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Michael H Stone
- Department of Exercise and Sports Science, Clemmer College of Education, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
50
|
Conlon JA, Newton RU, Tufano JJ, Peñailillo LE, Banyard HG, Hopper AJ, Ridge AJ, Haff GG. The efficacy of periodised resistance training on neuromuscular adaptation in older adults. Eur J Appl Physiol 2017; 117:1181-1194. [PMID: 28401310 DOI: 10.1007/s00421-017-3605-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 04/01/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE This study compared the effect of periodised versus non-periodised (NP) resistance training on neuromuscular adaptions in older adults. METHODS Forty-one apparently healthy untrained older adults (female = 21, male = 20; 70.9 ± 5.1 years; 166.3 ± 8.2 cm; 72.9 ± 13.4 kg) were recruited and randomly stratified to an NP, block periodised (BP), or daily undulating periodised (DUP) training group. Outcome measures were assessed at baseline and following a 22-week resistance training intervention (3 day week-1), including: muscle cross-sectional area (CSA), vertical jump performance, isometric and isokinetic peak torque, isometric rate of force development (RFD), and muscle activation. Thirty-three participants satisfied all study requirements and were included in analyses (female = 17, male = 16; 71.3 ± 5.4 years; 166.3 ± 8.5 cm; 72.5 ± 13.7 kg). RESULTS Block periodisation, DUP, and NP resistance training induced statistically significant improvements in muscle CSA, vertical jump peak velocity, peak power and jump height, and peak isometric and isokinetic torque of the knee extensors at 60 and 180° s-1, with no between-group differences. Muscle activity and absolute RFD measures were statistically unchanged following resistance training across the entire cohort. CONCLUSIONS Periodised resistance training, specifically BP and DUP, and NP resistance training are equally effective for promoting increases in muscular hypertrophy, strength, and power among untrained older adults. Consequently, periodisation strategies are not essential for optimising neuromuscular adaptations during the initial stages of resistance training in the aging population.
Collapse
Affiliation(s)
- Jenny A Conlon
- Centre for Exercise and Sport Science Research, Edith Cowan University, Joondalup, Australia. .,Exercise Medicine Research Institute, Edith Cowan University, Joondalup, Australia.
| | - Robert U Newton
- Centre for Exercise and Sport Science Research, Edith Cowan University, Joondalup, Australia.,Exercise Medicine Research Institute, Edith Cowan University, Joondalup, Australia.,Centre for Clinical Research, University of Queensland, Brisbane, Australia
| | - James J Tufano
- Centre for Exercise and Sport Science Research, Edith Cowan University, Joondalup, Australia.,Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | | | - Harry G Banyard
- Centre for Exercise and Sport Science Research, Edith Cowan University, Joondalup, Australia
| | - Amanda J Hopper
- Centre for Exercise and Sport Science Research, Edith Cowan University, Joondalup, Australia
| | - Ashley J Ridge
- Centre for Exercise and Sport Science Research, Edith Cowan University, Joondalup, Australia
| | - G Gregory Haff
- Centre for Exercise and Sport Science Research, Edith Cowan University, Joondalup, Australia
| |
Collapse
|