1
|
Rojas-Osornio SA, Guerra-Castillo F, Mata-Marín A, Paredes-Cervantes V, Aguirre-Alvarado C, Bekker-Méndez C, Pérez-Sánchez G, Molina-López J, Ortiz-Maganda M, Mercado-Méndez A, Tesoro-Cruz E. High Prevalence of Severe Depression in Mexican Patients Diagnosed with HIV Treated with Efavirenz and Atazanavir: Clinical Follow-Up at Four Weeks and Analysis of TPH2 SNPs. J Clin Med 2024; 13:7823. [PMID: 39768746 PMCID: PMC11728264 DOI: 10.3390/jcm13247823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Efavirenz (EFV) causes neuropsychiatric effects such as anxiety, depression, and suicidal thoughts in people with HIV (PWH). Depressive disorders have been associated with the Tryptophan hydroxylase type 2 (TPH2) gene. Objectives: This study determines the genotypes and allelic frequencies of three TPH2 single nucleotide polymorphisms (SNPs) in a Mexican cohort of HIV-1 treatment-naïve-patients and the severity of depressive symptoms at baseline and after a four-week clinical follow-up of antiretroviral treatment. Methods: In a pilot prospective study, eighty-one antiretroviral treatment-naïve patients were recruited from the Infectious Disease Hospital, National Medical Center "La Raza", in Mexico City. Of these, 39 were treated using a set-dose combination regimen of tenofovir disoproxil fumarate/emtricitabine (TDF/FTC) plus EFV and 42 were treated with TDF/FTC plus atazanavir/ritonavir (ATV/r), and fifty-nine control volunteers. Genomic DNA was obtained from peripheral blood mononuclear cells. All DNA samples underwent qPCR utilizing TaqMan probes for the three TPH2 SNPs studied. All participants underwent evaluation utilizing the Beck Depression Inventory. Results: Of the three SNPs examined, none exhibited any notable differences in the distribution of the alleles between the groups; nevertheless, rs4570625 TT and rs1386493 GG presented a twofold and fivefold greater risk of severe depression in PWH, respectively, independently of the treatment. Among PWH, those treated with EFV experienced severe depression at a higher rate of 90.4% after four weeks, compared to 87.5% in those treated with ATV/r. Conclusions: High rates of severe depression were identified in PWH, who presented the rs4570625 TT and rs1386493 GG polymorphic variants. Depression increased after four weeks of treatment and was higher with EFV than ATV/r. It is crucial to emphasize the necessity of conducting psychiatric monitoring for every patient with HIV and administering prompt antidepressant treatment.
Collapse
Affiliation(s)
| | - Francisco Guerra-Castillo
- Unidad de Investigación Biomédica en Inmunología e Infectología, Hospital de Infectología, “La Raza” National Medical Center, Instituto Mexicano del Seguro Social, Mexico City 02990, Mexico; (F.G.-C.); (C.A.-A.); (C.B.-M.); (M.O.-M.)
| | - Antonio Mata-Marín
- Infectious Diseases Department, Hospital de Infectología “La Raza” National Medical Center, Instituto Mexicano del Seguro Social, Mexico City 02990, Mexico;
| | - Vladimir Paredes-Cervantes
- Laboratorio Central, Hospital de Especialidades “Dr. Antonio Fraga Mouret”, “La Raza” National Medical Center, Instituto Mexicano del Seguro Social, Mexico City 02990, Mexico;
| | - Charmina Aguirre-Alvarado
- Unidad de Investigación Biomédica en Inmunología e Infectología, Hospital de Infectología, “La Raza” National Medical Center, Instituto Mexicano del Seguro Social, Mexico City 02990, Mexico; (F.G.-C.); (C.A.-A.); (C.B.-M.); (M.O.-M.)
| | - Carolina Bekker-Méndez
- Unidad de Investigación Biomédica en Inmunología e Infectología, Hospital de Infectología, “La Raza” National Medical Center, Instituto Mexicano del Seguro Social, Mexico City 02990, Mexico; (F.G.-C.); (C.A.-A.); (C.B.-M.); (M.O.-M.)
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico;
| | - José Molina-López
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas, Departamento de Salud Pública, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 06720, Mexico
| | - Mónica Ortiz-Maganda
- Unidad de Investigación Biomédica en Inmunología e Infectología, Hospital de Infectología, “La Raza” National Medical Center, Instituto Mexicano del Seguro Social, Mexico City 02990, Mexico; (F.G.-C.); (C.A.-A.); (C.B.-M.); (M.O.-M.)
| | - Aurora Mercado-Méndez
- Servicio de Higiene Mental del Hospital General, Centro Médico Nacional “La Raza”, Instituto Mexicano del Seguro Social, Mexico City 02990, Mexico;
| | - Emiliano Tesoro-Cruz
- Unidad de Investigación Biomédica en Inmunología e Infectología, Hospital de Infectología, “La Raza” National Medical Center, Instituto Mexicano del Seguro Social, Mexico City 02990, Mexico; (F.G.-C.); (C.A.-A.); (C.B.-M.); (M.O.-M.)
| |
Collapse
|
2
|
Jemal M, Adugna A, Getinet M, Baylie T, Waritu NC. Overweight and Obesity Among People Living With HIV on Dolutegravir- and Efavirenz-Based Therapies: A Comparative Cross-Sectional Study. AIDS Res Treat 2024; 2024:5347620. [PMID: 39735593 PMCID: PMC11671659 DOI: 10.1155/arat/5347620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/27/2024] [Indexed: 12/31/2024] Open
Abstract
Background: Overweight and obesity have arisen as major public health challenges, affecting not just the general population but also people living with human immunodeficiency virus (HIV) (PLWH). Obesity and being overweight are both risk factors for heart disease and other related complications. However, little is known in our setting. As a result, this study was conducted to evaluate the prevalence of overweight and obesity and its associated factors among PLWH on dolutegravir (DTG)- and efavirenz (EFV)-based therapies. Methods: An institution-based comparative cross-sectional study was carried out from June 30, 2021, to August 30, 2021. We purposively recruited 128 participants who have been on DTG (n = 64)- and EFV (n = 64)-based regimens for ≥ 6 months. Demographic, anthropometric, laboratory, and clinical data were collected using a structured questionnaire. The data were entered into EpiData Version 4.6 and analyzed using SPSS Version 26.0. Multivariable logistic regression was utilized to identify the factors that are associated with being overweight or obese, and the significance level was set at p < 0.05. Result: The prevalence of overweight and obesity was 28.1% in the DTG-prescribed participants and 15.6% in the EFV-prescribed participants. Age ≥ 40 years (adjusted odd ratio (AOR) = 3.86; 95% confidence interval (CI): 1.08-13.73; and p=0.037), cluster of differentiation 4 (CD4) T-cell counts ≥ 500 cells/mm3 (AOR = 2.95; 95% CI: 1.01-8.59; and p=0.029), and insufficient physical activity (AOR = 4.6; 95% CI: 1.53-13.84; and p=0.007) were predictors of overweight and obesity. Conclusion: Overweight and obesity are not uncommon among PLWH on ART. While the difference was statistically insignificant, the prevalence of overweight and obesity was higher in patients treated with DTG compared with those treated with EFV. Older age, higher CD4 cell counts, and insufficient physical activity were associated with overweight and obesity. As a result, healthcare providers must understand the health implications of obesity and consider incorporating targeted weight control programs into standard HIV treatment.
Collapse
Affiliation(s)
- Mohammed Jemal
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Adane Adugna
- Department of Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Mamaru Getinet
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Temesgen Baylie
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Nuredin Chura Waritu
- Department of Biomedical Sciences, School of Medicine, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| |
Collapse
|
3
|
Zhang Y, Zhang G, Wang T, Chen Y, Wang J, Li P, Wang R, Su J. Understanding Cytochrome P450 Enzyme Substrate Inhibition and Prospects for Elimination Strategies. Chembiochem 2024; 25:e202400297. [PMID: 39287061 DOI: 10.1002/cbic.202400297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/04/2024] [Indexed: 09/19/2024]
Abstract
Cytochrome P450 (CYP450) enzymes, which are widely distributed and pivotal in various biochemical reactions, catalyze diverse processes such as hydroxylation, epoxidation, dehydrogenation, dealkylation, nitrification, and bond formation. These enzymes have been applied in drug metabolism, antibiotic production, bioremediation, and fine chemical synthesis. Recent research revealed that CYP450 catalytic kinetics deviated from the classic Michaelis-Menten model. A notable substrate inhibition phenomenon that affects the catalytic efficiency of CYP450 at high substrate concentrations was identified. However, the substrate inhibition of various reactions catalyzed by CYP450 enzymes have not been comprehensively reviewed. This review describes CYP450 substrate inhibition examples and atypical Michaelis-Menten kinetic models, and provides insight into mechanisms of these enzymes. We also reviewed 3D structure and dynamics of CYP450 with substrate binding. Outline methods for alleviating substrate inhibition in CYP450 and other enzymes, including traditional fermentation approaches and protein engineering modifications. The comprehensive analysis presented in this study lays the foundation for enhancing the catalytic efficiency of CYP450 by deregulating substrate inhibition.
Collapse
Affiliation(s)
- Yisang Zhang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Guobin Zhang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Taichang Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Yu Chen
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Junqing Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Jing Su
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| |
Collapse
|
4
|
Li XY, Liu Q, Xu XY, Wang J, Zhong YS, Jin LH, Yuan J, Qian JC, Zhang XD. Activity Variations of CYP2B6 Determine the Metabolic Stratification of Efavirenz. Chem Res Toxicol 2024; 37:1867-1875. [PMID: 39400275 DOI: 10.1021/acs.chemrestox.4c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
PURPOSE To investigate the effects of hepatic enzyme activity variations and CYP2B6 gene polymorphisms on the in vivo and in vitro metabolism of efavirenz. MAIN METHODS In vitro enzyme systems using rat and human liver microsomes (RLM/HLM) were established, with in vivo studies conducted on Sprague-Dawley rats. Metabolite detection was performed via LC-MS/MS. Human recombinant CYP2B6 microsomes were prepared using a baculovirus-insect cell system and ultracentrifugation, with efavirenz serving as the substrate to study enzyme kinetics. RESULTS Isavuconazole exhibited an IC50 of 21.14 ± 0.57 μM in RLM, indicating a mixed competitive and noncompetitive mechanism, and an IC50 of 40.44 ± 4.23 μM in HLM, suggesting an anticompetitive mechanism. In rats, coadministration of efavirenz and isavuconazole significantly increased the AUC, Tmax, and Cmax of efavirenz. Co-administration of efavirenz and rifampicin significantly elevated the AUC, Tmax, and Cmax of 8-OH-efavirenz. The activity of CYP2B6.4, 6, and 7 increased significantly compared to CYP2B6.1, with relative clearance ranging from 158.34% to 212.72%. Conversely, the activity of CYP2B6.3, 8, 10, 11, 13-15, 18-21, 23-27, 31-33, and 37 was markedly reduced, ranging from 4.30% to 79.89%. CONCLUSION Variations in liver enzyme activity and CYP2B6 genetic polymorphisms can significantly alter the metabolism of efavirenz. It provides laboratory-based data for the precise application of efavirenz and other CYP2B6 substrate drugs.
Collapse
Affiliation(s)
- Xin-Yue Li
- The Seventh People's Hospital of Wenzhou, Wenzhou, Zhejiang 325018, PR China
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Qian Liu
- Department of Clinical Laboratory, Aerospace Central Hospital, Beijing 100049, PR China
| | - Xiao-Yu Xu
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Jing Wang
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Yun-Shan Zhong
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Le-Hao Jin
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Jing Yuan
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Jian-Chang Qian
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Xiao-Dan Zhang
- The Seventh People's Hospital of Wenzhou, Wenzhou, Zhejiang 325018, PR China
| |
Collapse
|
5
|
Eniayewu O, Akinloye A, Shenkoya B, Azuka U, Bolaji O, Adejuyigbe E, Owen A, Olagunju A. Prenatal efavirenz exposure is independently associated with maternal, but not fetal CYP2B6 genotype. Pharmacogenet Genomics 2024; 34:253-260. [PMID: 38934229 PMCID: PMC7616417 DOI: 10.1097/fpc.0000000000000542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
OBJECTIVES Understanding the influence of fetal and maternal genetics on prenatal drug exposure could potentially improve benefit-risk evaluation. In this study, we investigated the impact of two functional polymorphisms in CYP2B6 on prenatal exposure to efavirenz. METHODS Dried blood spot (DBS) samples were collected from HIV-positive pregnant women ( n = 112) and their newborns ( n = 107) at delivery. They were genotyped for single nucleotide polymorphisms in CYP2B6. Efavirenz was quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS Significant correlations were observed in efavirenz concentration between maternal and newborn ( r = 0.46, R2 = 0.21, P < 0.001), and maternal and cord ( r = 0.83, R2 = 0.68, P < 0.001) samples. Median (interquartile range) newborn plasma-to-maternal plasma and cord-to-maternal plasma ratios were 0.85 (0.03-3.49) and 0.78 (0.23-1.96), respectively. Newborn efavirenz concentration in DBS varied significantly based on composite maternal CYP2B6 genotype: fast ( CYP2B6 516GG and 983TT, n = 26), 747 ng/ml (602-1060); intermediate ( CYP2B6 516GT or 983TC n = 50), 1177 ng/ml (898-1765); and slow ( CYP2B6 516GT and 983TC or 516TT or 983CC, n = 14), 3094 ng/ml (2126-3812). Composite newborn CYP2B6 genotype was, however, not significantly associated with prenatal exposure. Efavirenz concentration in newborn stratified as fast ( n = 25), intermediate ( n = 36), and slow metabolizers ( n = 19) from prenatal exposure was 999.7 (774-1285), 1240 (709-1984), and 1792 ng/ml (1201-3188), respectively. CONCLUSION The clinical relevance of the observed influence of maternal genetics on prenatal efavirenz exposure requires further investigation.
Collapse
Affiliation(s)
- Oluwasegun Eniayewu
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
- Department of Pharmaceutical and Medicinal Chemistry, University of Ilorin, Ilorin, Nigeria
| | - Abdulafeez Akinloye
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Babajide Shenkoya
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Uche Azuka
- Department of Obstetrics and Gynaecology, Federal Medical Centre, Makurdi, Nigeria
| | - Oluseye Bolaji
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Ebunoluwa Adejuyigbe
- Department of Paediatrics and Child Health, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Andrew Owen
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Adeniyi Olagunju
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
6
|
Costa B, Gouveia MJ, Vale N. PBPK Modeling of Lamotrigine and Efavirenz during Pregnancy: Implications for Personalized Dosing and Drug-Drug Interaction Management. Pharmaceutics 2024; 16:1163. [PMID: 39339201 PMCID: PMC11435310 DOI: 10.3390/pharmaceutics16091163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
This study aimed to model the pharmacokinetics of lamotrigine (LTG) and efavirenz (EFV) in pregnant women using physiologically based pharmacokinetic (PBPK) and pregnancy-specific PBPK (p-PBPK) models. For lamotrigine, the adult PBPK model demonstrated accurate predictions for pharmacokinetic parameters. Predictions for the area under the curve (AUC) and peak plasma concentration (Cmax) generally agreed well with observed values. During pregnancy, the PBPK model accurately predicted AUC and Cmax with a prediction error (%PE) of less than 25%. The evaluation of the EFV PBPK model revealed mixed results. While the model accurately predicted certain parameters for non-pregnant adults, significant discrepancies were observed in predictions for higher doses (600 vs. 400 mg) and pregnant individuals. The model's performance during pregnancy was poor, indicating the need for further refinement to account for genetic polymorphism. Gender differences also influenced EFV pharmacokinetics, with lower exposure levels in females compared to males. These findings highlight the complexity of modeling EFV, in general, but specifically in pregnant populations, and the importance of validating such models for accurate clinical application. The study highlights the importance of tailoring dosing regimens for pregnant individuals to ensure both safety and efficacy, particularly when using combination therapies with UGT substrate drugs. Although drug-drug interactions between LTG and EFV appear minimal, further research is needed to improve predictive models and enhance their accuracy.
Collapse
Affiliation(s)
- Bárbara Costa
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Centre for Parasite Biology and Immunology, Department of Infectious Diseases, National Health Institute Dr. Ricardo Jorge, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal
| | - Maria João Gouveia
- Centre for Parasite Biology and Immunology, Department of Infectious Diseases, National Health Institute Dr. Ricardo Jorge, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal
- Center for Study in Animal Science of University of Porto (CECA-ICETA UP), Praça Coronel Pacheco 15, 4050-453 Porto, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
7
|
Tan BH, Ahemad N, Pan Y, Ong CE. Mechanism-based inactivation of cytochromes P450: implications in drug interactions and pharmacotherapy. Xenobiotica 2024; 54:575-598. [PMID: 39175333 DOI: 10.1080/00498254.2024.2395557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Cytochrome P40 (CYP) enzymes dominate the metabolism of numerous endogenous and xenobiotic substances. While it is commonly believed that CYP-catalysed reactions result in the detoxication of foreign substances, these reactions can also yield reactive intermediates that can bind to cellular macromolecules to cause cytotoxicity or irreversibly inactivate CYPs that create them.Mechanism-based inactivation (MBI) produces either irreversible or quasi-irreversible inactivation and is commonly caused by CYP metabolic bioactivation to an electrophilic reactive intermediate. Many drugs that have been known to cause MBI in CYPs have been discovered as perpetrators in drug-drug interactions throughout the last 20-30 years.This review will highlight the key findings from the recent literature about the mechanisms of CYP enzyme inhibition, with a focus on the broad mechanistic elements of MBI for widely used drugs linked to the phenomenon. There will also be a brief discussion of the clinical or pharmacokinetic consequences of CYP inactivation with regard to drug interaction and toxicity risk.Gaining knowledge about the selective inactivation of CYPs by common therapeutic drugs helps with the assessment of factors that affect the systemic clearance of co-administered drugs and improves comprehension of anticipated interactions with other drugs or xenobiotics.
Collapse
Affiliation(s)
- Boon Hooi Tan
- Division of Applied Biomedical Sciences and Biotechnology, International Medical University, Kuala Lumpur, Malaysia
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Selangor, Malaysia
| | - Yan Pan
- Department of Biomedical Science, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Chin Eng Ong
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Costa B, Gouveia MJ, Vale N. Safety and Efficacy of Antiviral Drugs and Vaccines in Pregnant Women: Insights from Physiologically Based Pharmacokinetic Modeling and Integration of Viral Infection Dynamics. Vaccines (Basel) 2024; 12:782. [PMID: 39066420 PMCID: PMC11281481 DOI: 10.3390/vaccines12070782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Addressing the complexities of managing viral infections during pregnancy is essential for informed medical decision-making. This comprehensive review delves into the management of key viral infections impacting pregnant women, namely Human Immunodeficiency Virus (HIV), Hepatitis B Virus/Hepatitis C Virus (HBV/HCV), Influenza, Cytomegalovirus (CMV), and SARS-CoV-2 (COVID-19). We evaluate the safety and efficacy profiles of antiviral treatments for each infection, while also exploring innovative avenues such as gene vaccines and their potential in mitigating viral threats during pregnancy. Additionally, the review examines strategies to overcome challenges, encompassing prophylactic and therapeutic vaccine research, regulatory considerations, and safety protocols. Utilizing advanced methodologies, including PBPK modeling, machine learning, artificial intelligence, and causal inference, we can amplify our comprehension and decision-making capabilities in this intricate domain. This narrative review aims to shed light on diverse approaches and ongoing advancements, this review aims to foster progress in antiviral therapy for pregnant women, improving maternal and fetal health outcomes.
Collapse
Affiliation(s)
- Bárbara Costa
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Centre for Parasite Biology and Immunology, Department of Infectious Diseases, National Health Institute Dr. Ricardo Jorge, 4000-055 Porto, Portugal;
| | - Maria João Gouveia
- Centre for Parasite Biology and Immunology, Department of Infectious Diseases, National Health Institute Dr. Ricardo Jorge, 4000-055 Porto, Portugal;
- Center for the Study in Animal Science (CECA/ICETA), University of Porto, 4051-401 Porto, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
9
|
Rojas-Osornio SA, Crespo-Ramírez M, Paredes-Cervantes V, Mata-Marín A, Martínez-Lara R, Pérez de la Mora M, Tesoro-Cruz E. Oral Administration of Efavirenz Dysregulates the Tph2 Gene in Brain Serotonergic Areas and Alters Weight and Mood in Mice. Pharmaceuticals (Basel) 2024; 17:801. [PMID: 38931468 PMCID: PMC11206422 DOI: 10.3390/ph17060801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Most HIV-antiretroviral drugs have adverse effects. Efavirenz (EFV) is an example of a drug with neuropsychiatric effects, such as anxiety, depression, and suicidal thoughts, in people living with HIV (PLWH). The mechanisms by which EFV causes neuropsychiatric alterations in PLWH are complex, multifactorial, and not fully understood, although several studies in animals have reported changes in brain energy metabolism, alterations in monoamine turnover, GABA, and glutamate levels, and changes in 5-HT receptors. In this report, we studied the effects of EFV on the serotonergic system in healthy mice, specifically, whether EFV results in alterations in the levels of the tryptophan hydroxylase 2 (Tph2) gene in the brain. EFV (10 mg/kg) and distilled water (1.5 µL/kg) (control group) were orally administered to the mice for 36 days. At the end of the treatment, Tph2 expression levels in mouse brains were measured, and mood was evaluated by three trials: the forced swim test, elevated plus maze, and open field test. Our results revealed dysregulation of Tph2 expression in the brainstem, amygdala, and hypothalamus in the EFV group, and 5-HT levels increased in the amygdala in the EFV group. In the behavioral tests, mice given EFV exhibited a passive avoidance response in the forced swim test and anxiety-like behavior in the elevated plus maze, and they lost weight. Herein, for the first time, we showed that EFV triggered dysregulation of the Tph2 gene in the three serotonergic areas studied; and 5-HT levels increased in the amygdala using the ELISA method. However, further studies will be necessary to clarify the increase of 5-HT in the amygdala as well as understand the paradoxical decrease in body weight with the simultaneous increase in food consumption. It will also be necessary to measure 5-HT by other techniques different from ELISA, such as HPLC.
Collapse
Affiliation(s)
| | - Minerva Crespo-Ramírez
- Division de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Vladimir Paredes-Cervantes
- Laboratorio Central, Hospital de Especialidades “Dr. Antonio Fraga Mouret” Centro Médico Nacional “La Raza” Instituto Mexicano del Seguro Social, Mexico City 02990, Mexico;
| | - Antonio Mata-Marín
- Departamento de Infectología, Hospital de Infectología del Centro Médico Nacional “La Raza” IMSS, Mexico City 02990, Mexico;
| | - Ricardo Martínez-Lara
- Unidad de Investigación Biomédica en Inmunología e Infectología, del Hospital de Infectología del Centro Médico Nacional “La Raza” IMSS, Mexico City 02990, Mexico;
| | - Miguel Pérez de la Mora
- Division de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Emiliano Tesoro-Cruz
- Unidad de Investigación Biomédica en Inmunología e Infectología, del Hospital de Infectología del Centro Médico Nacional “La Raza” IMSS, Mexico City 02990, Mexico;
| |
Collapse
|
10
|
Leow JWH, Chan ECY. CYP2J2-mediated metabolism of arachidonic acid in heart: A review of its kinetics, inhibition and role in heart rhythm control. Pharmacol Ther 2024; 258:108637. [PMID: 38521247 DOI: 10.1016/j.pharmthera.2024.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 02/06/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Cytochrome P450 2 J2 (CYP2J2) is primarily expressed extrahepatically and is the predominant epoxygenase in human cardiac tissues. This highlights its key role in the metabolism of endogenous substrates. Significant scientific interest lies in cardiac CYP2J2 metabolism of arachidonic acid (AA), an omega-6 polyunsaturated fatty acid, to regioisomeric bioactive epoxyeicosatrienoic acid (EET) metabolites that show cardioprotective effects including regulation of cardiac electrophysiology. From an in vitro perspective, the accurate characterization of the kinetics of CYP2J2 metabolism of AA including its inhibition and inactivation by drugs could be useful in facilitating in vitro-in vivo extrapolations to predict drug-AA interactions in drug discovery and development. In this review, background information on the structure, regulation and expression of CYP2J2 in human heart is presented alongside AA and EETs as its endogenous substrate and metabolites. The in vitro and in vivo implications of the kinetics of this endogenous metabolic pathway as well as its perturbation via inhibition and inactivation by drugs are elaborated. Additionally, the role of CYP2J2-mediated metabolism of AA to EETs in cardiac electrophysiology will be expounded.
Collapse
Affiliation(s)
- Jacqueline Wen Hui Leow
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
11
|
Lungu GN, Diaconescu GI, Dumitrescu F, Docea OO, Mitrut R, Giubelan L, Zlatian O, Mitrut P. Liver Damage During Treatment with Reverse-Transcriptase Inhibitors in HIV Patients. CURRENT HEALTH SCIENCES JOURNAL 2024; 50:181-197. [PMID: 39371070 PMCID: PMC11447508 DOI: 10.12865/chsj.50.02.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/18/2024] [Indexed: 10/08/2024]
Abstract
The advent of highly active antiretroviral therapy (HAART) in 1996 has markedly enhanced the life expectancy of people living with HIV (PLWH), largely due to the effectiveness of reverse transcriptase inhibitors (RTIs). These drugs target the reverse transcriptase enzyme, crucial for the HIV virus to convert its RNA into DNA within host cells, effectively disrupting the viral replication process. This action reduces the patient's viral load, helping preserve immune function and prevent progression to AIDS. Consequently, the predominant causes of mortality among individuals living with HIV have transitioned from opportunistic infections and AIDS-related cancers to liver disease and cardiovascular complications. Liver damage in PLWH could arise from multiple sources including co-infections, chronic substance use, and notably, antiretroviral therapy itself, which can be hepatotoxic. This review highlights the risks of hepatic damage associated with nucleoside and non-nucleoside RTIs and underscores the variability in hepatotoxicity risks among different drugs. It emphasizes the necessity for regular monitoring of liver health in PLWH and adjusting antiretroviral regimens to minimize liver fibrosis risk. This risk is particularly pronounced in patients who associate the infection with hepatitis B or C virus, where the potential for hepatotoxicity significantly increases.
Collapse
Affiliation(s)
| | - Gheorghe Iulian Diaconescu
- Victor Babes" Infectious Diseases and Pneumophtisiology Clinical Hospital, Craiova, Romania
- VITAPLUS Clinic, 200345 Craiova, Romania
| | - Florentina Dumitrescu
- Victor Babes" Infectious Diseases and Pneumophtisiology Clinical Hospital, Craiova, Romania
- Department of Infectious Diseases, University of Medicine and Pharmacy of Craiova, Romania
| | - Oanca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Romania
| | - Radu Mitrut
- Doctoral School, University of Medicine and Pharmacy of Craiova, Romania
| | - Lucian Giubelan
- Victor Babes" Infectious Diseases and Pneumophtisiology Clinical Hospital, Craiova, Romania
- Department of Infectious Diseases, University of Medicine and Pharmacy of Craiova, Romania
| | - Ovidiu Zlatian
- Microbiology Department, University of Medicine and Pharmacy of Craiova, Romania
- Medical Laboratory, County clinical emergency hospital of Craiova, Romania
| | - Paul Mitrut
- Division of Internal Medicine, University of Medicine and Pharmacy of Craiova, Romania
- Department of Internal Medicine II, County Clinical Emergency Hospital, Craiova, Romania
| |
Collapse
|
12
|
Wang PF, Yang Y, Patel V, Neiner A, Kharasch ED. Natural Products Inhibition of Cytochrome P450 2B6 Activity and Methadone Metabolism. Drug Metab Dispos 2024; 52:252-265. [PMID: 38135504 PMCID: PMC10877711 DOI: 10.1124/dmd.123.001578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 12/24/2023] Open
Abstract
Methadone is cleared predominately by hepatic cytochrome P450 (CYP) 2B6-catalyzed metabolism to inactive metabolites. CYP2B6 also catalyzes the metabolism of several other drugs. Methadone and CYP2B6 are susceptible to pharmacokinetic drug-drug interactions. Use of natural products such as herbals and other botanicals is substantial and growing, and concomitant use of prescription medicines and non-prescription herbals is common and may result in interactions, often precipitated by CYP inhibition. Little is known about herbal product effects on CYP2B6 activity, and CYP2B6-catalyzed methadone metabolism. We screened a family of natural product compounds used in traditional medicines, herbal teas, and synthetic analogs of compounds found in plants, including kavalactones, flavokavains, chalcones and gambogic acid, for inhibition of expressed CYP2B6 activity and specifically inhibition of CYP2B6-mediated methadone metabolism. An initial screen evaluated inhibition of CYP2B6-catalyzed 7-ethoxy-4-(trifluoromethyl) coumarin O-deethylation. Hits were further evaluated for inhibition of racemic methadone metabolism, including mechanism of inhibition and kinetic constants. In order of decreasing potency, the most effective inhibitors of methadone metabolism were dihydromethysticin (competitive, K i 0.074 µM), gambogic acid (noncompetitive, K i 6 µM), and 2,2'-dihydroxychalcone (noncompetitive, K i 16 µM). Molecular modeling of CYP2B6-methadone and inhibitor binding showed substrate and inhibitor binding position and orientation and their interactions with CYP2B6 residues. These results show that CYP2B6 and CYP2B6-catalyzed methadone metabolism are inhibited by certain natural products, at concentrations which may be clinically relevant. SIGNIFICANCE STATEMENT: This investigation identified several natural product constituents which inhibit in vitro human recombinant CYP2B6 and CYP2B6-catalyzed N-demethylation of the opioid methadone. The most potent inhibitors (K i) were dihydromethysticin (0.074 µM), gambogic acid (6 µM) and 2,2'-dihydroxychalcone (16 µM). Molecular modeling of ligand interactions with CYP2B6 found that dihydromethysticin and 2,2'-dihydroxychalcone bound at the active site, while gambogic acid interacted with an allosteric site on the CYP2B6 surface. Natural product constituents may inhibit CYP2B6 and methadone metabolism at clinically relevant concentrations.
Collapse
Affiliation(s)
- Pan-Fen Wang
- Department of Anesthesiology, Duke University, Durham, North Carolina (P.-F.W., E.D.K.) and Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri (Y.Y., V.P., A.N.)
| | - Yanming Yang
- Department of Anesthesiology, Duke University, Durham, North Carolina (P.-F.W., E.D.K.) and Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri (Y.Y., V.P., A.N.)
| | - Vishal Patel
- Department of Anesthesiology, Duke University, Durham, North Carolina (P.-F.W., E.D.K.) and Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri (Y.Y., V.P., A.N.)
| | - Alicia Neiner
- Department of Anesthesiology, Duke University, Durham, North Carolina (P.-F.W., E.D.K.) and Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri (Y.Y., V.P., A.N.)
| | - Evan D Kharasch
- Department of Anesthesiology, Duke University, Durham, North Carolina (P.-F.W., E.D.K.) and Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri (Y.Y., V.P., A.N.)
| |
Collapse
|
13
|
Mast N, Li Y, Pikuleva IA. 7,8-Dihydroxy Efavirenz Is Not as Effective in CYP46A1 Activation In Vivo as Efavirenz or Its 8,14-Dihydroxy Metabolite. Int J Mol Sci 2024; 25:2242. [PMID: 38396919 PMCID: PMC10889178 DOI: 10.3390/ijms25042242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
High dose (S)-efavirenz (EFV) inhibits the HIV reverse transcriptase enzyme and is used to lower HIV load. Low-dose EFV allosterically activates CYP46A1, the key enzyme for cholesterol elimination from the brain, and is investigated as a potential treatment for Alzheimer's disease. Simultaneously, we evaluate EFV dihydroxymetabolites for in vivo brain effects to compare with those of (S)-EFV. We have already tested (rac)-8,14dihydroxy EFV on 5XFAD mice, a model of Alzheimer's disease. Herein, we treated 5XFAD mice with (rac)-7,8dihydroxy EFV. In both sexes, the treatment modestly activated CYP46A1 in the brain and increased brain content of acetyl-CoA and acetylcholine. Male mice also showed a decrease in the brain levels of insoluble amyloid β40 peptides. However, the treatment had no effect on animal performance in different memory tasks. Thus, the overall brain effects of (rac)-7,8dihydroxy EFV were weaker than those of EFV and (rac)-8,14dihydroxy EFV and did not lead to cognitive improvements as were seen in treatments with EFV and (rac)-8,14dihydroxy EFV. An in vitro study assessing CYP46A1 activation in co-incubations with EFV and (rac)-7,8dihydroxy EFV or (rac)-8,14dihydroxy EFV was carried out and provided insight into the compound doses and ratios that could be used for in vivo co-treatments with EFV and its dihydroxymetabolite.
Collapse
Affiliation(s)
| | | | - Irina A. Pikuleva
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH 44106, USA; (N.M.); (Y.L.)
| |
Collapse
|
14
|
Shamu T, Egger M, Mudzviti T, Chimbetete C, Manasa J, Anderegg N. Body weight and blood pressure changes on dolutegravir-, efavirenz- or atazanavir-based antiretroviral therapy in Zimbabwe: a longitudinal study. J Int AIDS Soc 2024; 27:e26216. [PMID: 38332525 PMCID: PMC10853595 DOI: 10.1002/jia2.26216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
INTRODUCTION Dolutegravir (DTG) is widely used for antiretroviral therapy (ART). We compared weight and blood pressure trends and examined the association between high blood pressure and weight gain among people living with HIV (PLHIV) switching to or starting DTG-based, efavirenz (EFV)-based and ritonavir-boosted atazanavir (ATV/r)-based ART in Zimbabwe. METHODS PLHIV aged 18 years or older who started or switched to DTG, EFV or ATV/r-based ART between January 2004 and June 2022 at Newlands Clinic in Harare, Zimbabwe, were eligible. Weight was measured at all visits (Seca floor scales); blood pressure only at clinician-led visits (Omron M2 sphygmomanometer). We used Bayesian additive models to estimate trends in weight gain and the proportion with high blood pressure (systolic >140 mmHg or diastolic >90 mmHg) in the first 2 years after starting or switching the regimen. Finally, we examined whether trends in the proportion with high blood pressure were related to weight change. RESULTS We analysed 99,969 weight and 35,449 blood pressure records from 9487 adults (DTG: 4593; EFV: 3599; ATV/r: 1295). At 24 months after starting or switching to DTG, estimated median weight gains were 4.54 kg (90% credibility interval 3.88-5.28 kg) in women and 3.71 kg (3.07-4.45 kg) in men, around twice that observed for ATV/r and over four-times the gain observed for EFV. Prevalence of high blood pressure among PLHIV receiving DTG-based ART increased from around 5% at baseline to over 20% at 24 months, with no change in PLHIV receiving EFV- or ATV/r-based ART. High blood pressure in PLHIV switching to DTG was associated with weight gain, with stronger increases in the proportion with high blood pressure for larger weight gains. CONCLUSIONS Among PLHIV starting ART or switching to a new regimen, DTG-based ART was associated with larger weight gains and a substantial increase in the prevalence of high blood pressure. Routine weight and blood pressure measurement and interventions to lower blood pressure could benefit PLHIV on DTG-based ART. Further studies are needed to elucidate the mechanisms and reversibility of these changes after discontinuation of DTG.
Collapse
Affiliation(s)
- Tinei Shamu
- Newlands ClinicHarareZimbabwe
- Institute of Social and Preventive MedicineUniversity of BernBernSwitzerland
- Graduate School of Health SciencesUniversity of BernBernSwitzerland
| | - Matthias Egger
- Institute of Social and Preventive MedicineUniversity of BernBernSwitzerland
- Centre for Infectious Disease Epidemiology and ResearchSchool of Public HealthUniversity of Cape TownCape TownSouth Africa
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Tinashe Mudzviti
- Newlands ClinicHarareZimbabwe
- Department of Pharmacy and Pharmaceutical SciencesUniversity of ZimbabweHarareZimbabwe
| | | | | | - Nanina Anderegg
- Institute of Social and Preventive MedicineUniversity of BernBernSwitzerland
- Centre for Infectious Disease Epidemiology and ResearchSchool of Public HealthUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
15
|
Vanangamudi M, Palaniappan S, Kathiravan MK, Namasivayam V. Strategies in the Design and Development of Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs). Viruses 2023; 15:1992. [PMID: 37896769 PMCID: PMC10610861 DOI: 10.3390/v15101992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
AIDS (acquired immunodeficiency syndrome) is a potentially life-threatening infectious disease caused by human immunodeficiency virus (HIV). To date, thousands of people have lost their lives annually due to HIV infection, and it continues to be a big public health issue globally. Since the discovery of the first drug, Zidovudine (AZT), a nucleoside reverse transcriptase inhibitor (NRTI), to date, 30 drugs have been approved by the FDA, primarily targeting reverse transcriptase, integrase, and/or protease enzymes. The majority of these drugs target the catalytic and allosteric sites of the HIV enzyme reverse transcriptase. Compared to the NRTI family of drugs, the diverse chemical class of non-nucleoside reverse transcriptase inhibitors (NNRTIs) has special anti-HIV activity with high specificity and low toxicity. However, current clinical usage of NRTI and NNRTI drugs has limited therapeutic value due to their adverse drug reactions and the emergence of multidrug-resistant (MDR) strains. To overcome drug resistance and efficacy issues, combination therapy is widely prescribed for HIV patients. Combination antiretroviral therapy (cART) includes more than one antiretroviral agent targeting two or more enzymes in the life cycle of the virus. Medicinal chemistry researchers apply different optimization strategies including structure- and fragment-based drug design, prodrug approach, scaffold hopping, molecular/fragment hybridization, bioisosterism, high-throughput screening, covalent-binding, targeting highly hydrophobic channel, targeting dual site, and multi-target-directed ligand to identify and develop novel NNRTIs with high antiviral activity against wild-type (WT) and mutant strains. The formulation experts design various delivery systems with single or combination therapies and long-acting regimens of NNRTIs to improve pharmacokinetic profiles and provide sustained therapeutic effects.
Collapse
Affiliation(s)
- Murugesan Vanangamudi
- Department of Pharmaceutical Chemistry, Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior 474005, Madhya Pradesh, India;
| | - Senthilkumar Palaniappan
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Coimbatore 641021, Tamilnadu, India;
- Center for Active Pharmaceutical Ingredients, Karpagam Academy of Higher Education, Coimbatore 641021, Tamilnadu, India
| | - Muthu Kumaradoss Kathiravan
- Dr. APJ Abdul Kalam Research Lab, SRM College of Pharmacy, SRMIST, Kattankulathur 603203, Tamilnadu, India;
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRMIST, Kattankulathur 603203, Tamilnadu, India
| | - Vigneshwaran Namasivayam
- Pharmaceutical Chemistry, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
- LIED, University of Lübeck and University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany
| |
Collapse
|
16
|
Obradovic B, Roberts O, Owen A, Milosevic I, Milic N, Ranin J, Dragovic G. Expression of CYP2B6 Enzyme in Human Liver Tissue of HIV and HCV Patients. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1207. [PMID: 37512019 PMCID: PMC10385124 DOI: 10.3390/medicina59071207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023]
Abstract
Background and Objectives: Hepatitis C virus (HCV) and human immunodeficiency virus (HIV) infections present significant public health challenges worldwide. The management of these infections is complicated by the need for antiviral and antiretroviral therapies, which are influenced by drug metabolism mediated by metabolic enzymes and transporters. This study focuses on the gene expression of CYP2B6, CYP3A4, and ABCB1 transporters in patients with HIV, HCV, and HIV/HCV co-infection, aiming to assess their potential association with the choice of therapy, patohistological and clinical parameters of liver damage such as the stage of liver fibrosis, serum levels of ALT and AST, as well as the grade of liver inflammation and other available biochemical parameters. Materials and Methods: The study included 54 patients who underwent liver biopsy, divided into HIV-infected, HCV-infected, and co-infected groups. The mRNA levels of CYP2B6, CYP3A4, and ABCB1 was quantified and compared between the groups, along with the analysis of liver fibrosis and inflammation levels. Results: The results indicated a significant increase in CYP2B6 mRNA levels in co-infected patients, a significant association with the presence of HIV infection with an increase in CYP3A4 mRNA levels. A trend towards downregulation of ABCB1 expression was observed in patients using lamivudine. Conclusions: This study provides insight into gene expression of CYP2B6 CYP3A4, and ABCB1 in HIV, HCV, and HIV/HCV co-infected patients. The absence of correlation with liver damage, inflammation, and specific treatment interventions emphasises the need for additional research to elucidate the complex interplay between gene expression, viral co-infection, liver pathology, and therapeutic responses in these particular patients population.
Collapse
Affiliation(s)
- Bozana Obradovic
- University of Belgrade, Faculty of Medicine, Department of Pharmacology, Clinical Pharmacology and Toxicology, 11000 Belgrade, Serbia
| | - Owain Roberts
- University of Buckingham Medical School, Faculty of Medicine and Health Sciences, University of Buckingham, Buckingham MK18 1EG, UK
| | - Andrew Owen
- Centre of Excellence in Long-Acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Ivana Milosevic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Clinic of Infectious and Tropical Diseases, Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Natasa Milic
- University of Belgrade, Faculty of Medicine, Department of Medical Statistics & Informatics, 11000 Belgrade, Serbia
| | - Jovan Ranin
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Clinic of Infectious and Tropical Diseases, Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Gordana Dragovic
- University of Belgrade, Faculty of Medicine, Department of Pharmacology, Clinical Pharmacology and Toxicology, 11000 Belgrade, Serbia
| |
Collapse
|
17
|
Chala A, Kitabi EN, Ahmed JH, Tadesse BT, Chaka TE, Makonnen E, Aklillu E. Genetic and non-genetic factors influencing efavirenz population pharmacokinetics among human immunodeficiency virus-1-infected children in Ethiopia. CPT Pharmacometrics Syst Pharmacol 2023; 12:783-794. [PMID: 36840416 PMCID: PMC10272302 DOI: 10.1002/psp4.12951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 02/11/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
Despite the potential for efavirenz (EFV) to be an effective alternative antiretroviral agent, its sources of wide inter- and intra-individual pharmacokinetic (PK) variability are not well-characterized in children. We investigated the effects of genetic and non-genetic factors, including demographic, treatment duration, baseline clinical, and biochemical characteristics, on the PKs of EFV through population-PK modeling. Antiretroviral therapy (ART) naïve HIV infected children, 3-16 years (n = 100), were enrolled in Ethiopia and received EFV-based combination ART. EFV concentrations after the first dose and at steady-state collected over a span of 1 year were modeled using population-based methods. A one-compartment model with first-order absorption kinetics described the observed EFV data adequately. The CYP2B6*6 and ABCB1c.4036A>G genotypes were identified as major factors influencing EFV clearance. The typical estimates of oral clearance, volume of distribution, and absorption rate constant for typical 22 kg children with CYP2B6 *1/*1 and ABCB1c.4036G/G genotypes were 4.3 L/h, 124 L, and 0.776/h, respectively. Clearance was reduced by 28% and 72% in CYP2B6*1/*6 and CYP2B6*6/*6 genotypes, respectively. Compared to week 1, clearance was higher from weeks 8 and 12 in CYP2B6*1/*6 and CYP2B6*1/*1 genotypes, respectively. Simulations indicated that EFV 12-h concentrations were comparable across weight bands, but more than 80% of subjects with CYP2B6*6/*6 had EFV concentrations greater than 4 μg/mL. EFV PK variability among children is partly explained by body weight, treatment duration, CYP2B6*6, and ABCB1 rs3842 genotypes. Therefore, in addition to body weight, pediatric dosing of EFV should consider pharmacogenetic variability, duration of therapy, and individual treatment outcomes.
Collapse
Affiliation(s)
- Adugna Chala
- Department of Pharmacology and Clinical Pharmacy, College of Health SciencesAddis Ababa UniversityAddis AbabaEthiopia
- Department of Global Public HealthKarolinska Institutet, Widerströmska HusetStockholmSweden
| | - Eliford Ngaimisi Kitabi
- Division of PharmacometricsOffice of Clinical Pharmacology, Food and Drugs AdministrationSilver SpringMarylandUSA
| | | | - Birkneh Tilahun Tadesse
- Department of Global Public HealthKarolinska Institutet, Widerströmska HusetStockholmSweden
- Department of Pediatrics, College of Medicine and Health SciencesHawassa UniversityHawassaEthiopia
| | - Tolossa Eticha Chaka
- Department of Pediatrics and Child HealthAdama Hospital Medical CollegeAdamaEthiopia
| | - Eyasu Makonnen
- Department of Pharmacology and Clinical Pharmacy, College of Health SciencesAddis Ababa UniversityAddis AbabaEthiopia
- Center for Innovative Drug Development and Therapeutic Trials for Africa, College of Health SciencesAddis Ababa UniversityAddis AbabaEthiopia
| | - Eleni Aklillu
- Department of Global Public HealthKarolinska Institutet, Widerströmska HusetStockholmSweden
- Department of Medicine SolnaKarolinska InstituteStockholmSweden
| |
Collapse
|
18
|
Grañana-Castillo S, Williams A, Pham T, Khoo S, Hodge D, Akpan A, Bearon R, Siccardi M. General Framework to Quantitatively Predict Pharmacokinetic Induction Drug-Drug Interactions Using In Vitro Data. Clin Pharmacokinet 2023; 62:737-748. [PMID: 36991285 DOI: 10.1007/s40262-023-01229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/31/2023]
Abstract
INTRODUCTION Metabolic inducers can expose people with polypharmacy to adverse health outcomes. A limited fraction of potential drug-drug interactions (DDIs) have been or can ethically be studied in clinical trials, leaving the vast majority unexplored. In the present study, an algorithm has been developed to predict the induction DDI magnitude, integrating data related to drug-metabolising enzymes. METHODS The area under the curve ratio (AUCratio) resulting from the DDI with a victim drug in the presence and absence of an inducer (rifampicin, rifabutin, efavirenz, or carbamazepine) was predicted from various in vitro parameters and then correlated with the clinical AUCratio (N = 319). In vitro data including fraction unbound in plasma, substrate specificity and induction potential for cytochrome P450s, phase II enzymes and uptake, and efflux transporters were integrated. To represent the interaction potential, the in vitro metabolic metric (IVMM) was generated by combining the fraction of substrate metabolised by each hepatic enzyme of interest with the corresponding in vitro fold increase in enzyme activity (E) value for the inducer. RESULTS Two independent variables were deemed significant and included in the algorithm: IVMM and fraction unbound in plasma. The observed and predicted magnitudes of the DDIs were categorised accordingly: no induction, mild, moderate, and strong induction. DDIs were assumed to be well classified if the predictions were in the same category as the observations, or if the ratio between these two was < 1.5-fold. This algorithm correctly classified 70.5% of the DDIs. CONCLUSION This research presents a rapid screening tool to identify the magnitude of potential DDIs utilising in vitro data which can be highly advantageous in early drug development.
Collapse
Affiliation(s)
| | - Angharad Williams
- Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Thao Pham
- Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Saye Khoo
- Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Daryl Hodge
- Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Asangaedem Akpan
- Institute of Life Course and Medical Sciences, University of Liverpool and Liverpool University Hospitals NHS FT, Liverpool, UK
- NIHR Clinical Research Network, Northwest Coast, Liverpool, UK
| | - Rachel Bearon
- Mathematical Sciences, University of Liverpool, Liverpool, UK
| | - Marco Siccardi
- Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK.
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, 3rd Floor, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| |
Collapse
|
19
|
Angle ED, Cox PM. Multidisciplinary Insights into the Structure-Function Relationship of the CYP2B6 Active Site. Drug Metab Dispos 2023; 51:369-384. [PMID: 36418184 DOI: 10.1124/dmd.122.000853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 10/12/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022] Open
Abstract
Cytochrome P450 2B6 (CYP2B6) is a highly polymorphic human enzyme involved in the metabolism of many clinically relevant drugs, environmental toxins, and endogenous molecules with disparate structures. Over the last 20-plus years, in silico and in vitro studies of CYP2B6 using various ligands have provided foundational information regarding the substrate specificity and structure-function relationship of this enzyme. Approaches such as homology modeling, X-ray crystallography, molecular docking, and kinetic activity assays coupled with CYP2B6 mutagenesis have done much to characterize this originally neglected monooxygenase. However, a complete understanding of the structural details that make new chemical entities substrates of CYP2B6 is still lacking. Surprisingly little in vitro data has been obtained about the structure-function relationship of amino acids identified to be in the CYP2B6 active site. Since much attention has already been devoted to elucidating the function of CYP2B6 allelic variants, here we review the salient findings of in silico and in vitro studies of the CYP2B6 structure-function relationship with a deliberate focus on the active site. In addition to summarizing these complementary approaches to studying structure-function relationships, we note gaps/challenges in existing data such as the need for more CYP2B6 crystal structures, molecular docking results with various ligands, and data coupling CYP2B6 active site mutagenesis with kinetic parameter measurement under standard expression conditions. Harnessing in silico and in vitro techniques in tandem to understand the CYP2B6 structure-function relationship will likely offer further insights into CYP2B6-mediated metabolism. SIGNIFICANCE STATEMENT: The apparent importance of cytochrome P450 2B6 (CYP2B6) in the metabolism of various xenobiotics and endogenous molecules has grown since its discovery with many in silico and in vitro studies offering a partial description of its structure-function relationship. Determining the structure-function relationship of CYP2B6 is difficult but may be aided by thorough biochemical investigations of the CYP2B6 active site that provide a more complete pharmacological understanding of this important enzyme.
Collapse
Affiliation(s)
- Ethan D Angle
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, Azusa Pacific University, Azusa, California (E.D.A., P.M.C.) and Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa (E.D.A.)
| | - Philip M Cox
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, Azusa Pacific University, Azusa, California (E.D.A., P.M.C.) and Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa (E.D.A.)
| |
Collapse
|
20
|
Perez-Paramo YX, Watson CJW, Chen G, Lazarus P. CYP2C19 Plays a Major Role in the Hepatic N-Oxidation of Cotinine. Drug Metab Dispos 2023; 51:29-37. [PMID: 35197312 PMCID: PMC9832378 DOI: 10.1124/dmd.121.000624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 01/14/2023] Open
Abstract
The primary mode of metabolism of nicotine is via the formation of cotinine by the enzyme CYP2A6. Cotinine undergoes further CYP2A6-mediated metabolism by hydroxylation to 3-hydroxycotinine and norcotinine, but can also form cotinine-N-glucuronide and cotinine-N-oxide (COX). The goal of this study was to investigate the enzymes that catalyze COX formation and determine whether genetic variation in these enzymes may affect this pathway. Specific inhibitors of major hepatic cytochrome P450 (P450) enzymes were used in cotinine-N-oxidation reactions using pooled human liver microsomes (HLMs). COX formation was monitored by ultrahigh-pressure liquid chromatography-tandem mass spectrometry and enzyme kinetic analysis was performed using microsomes from P450-overexpressing human embryonic kidney 293 (HEK293) cell lines. Genotype-phenotype analysis was performed in a panel of 113 human liver specimens. Inhibition of COX formation was only observed in HLMs when using inhibitors of CYP2A6, CYP2B6, CYP2C19, CYP2E1, and CYP3A4. Microsomes from cells overexpressing CYP2A6 or CYP2C19 exhibited similar N-oxidation activity against cotinine, with maximum reaction rate over Michaelis constant values (intrinsic clearance) of 4.4 and 4.2 nL/min/mg, respectively. CYP2B6-, CYP2E1-, and CYP3A4-overexpressing microsomes were also active in COX formation. Significant associations (P < 0.05) were observed between COX formation and genetic variants in CYP2C19 (*2 and *17 alleles) in HLMs. These results demonstrate that genetic variants in CYP2C19 are associated with decreased COX formation, potentially affecting the relative levels of cotinine in the plasma or urine of smokers and ultimately affecting recommended smoking cessation therapies. SIGNIFICANCE STATEMENT: This study is the first to elucidate the enzymes responsible for cotinine-N-oxide formation and genetic variants that affect this biological pathway. Genetic variants in CYP2C19 have the potential to modify nicotine metabolic ratio in smokers and could affect pharmacotherapeutic decisions for smoking cessation treatments.
Collapse
Affiliation(s)
- Yadira X Perez-Paramo
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Christy J W Watson
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Gang Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| |
Collapse
|
21
|
Costa B, Vale N. Efavirenz: History, Development and Future. Biomolecules 2022; 13:biom13010088. [PMID: 36671473 PMCID: PMC9855767 DOI: 10.3390/biom13010088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Efavirenz (Sustiva®) is a first-generation non-nucleoside reverse transcriptase inhibitor (NNRTI) used to treat human immunodeficiency virus (HIV) type 1 infection or to prevent the spread of HIV. In 1998, the FDA authorized efavirenz for the treatment of HIV-1 infection. Patients formerly required three 200 mg efavirenz capsules daily, which was rapidly updated to a 600 mg tablet that only required one tablet per day. However, when given 600 mg once daily, plasma efavirenz concentrations were linked not only to poor HIV suppression but also to toxicity. Clinical data suggested that the standard dose of efavirenz could be reduced without compromising its effectiveness, resulting in a reduction in side effects and making the drug more affordable. Therefore, ENCORE1 was performed to compare the efficiency and safeness of a reduced dose of efavirenz (400 mg) with the standard dose (600 mg) plus two NRTI in antiretroviral-naïve HIV-infected individuals. Nowadays, due to the emergence of integrase strand transfer inhibitors (INSTIs), some consider that it is time to stop using efavirenz as a first-line treatment on a global scale, in the parts of the world where that is possible. Efavirenz has been a primary first-line antiviral drug for more than 15 years. However, at this moment, the best use for efavirenz could be for pre-exposure prophylaxis (PrEP) and repurposing in medicine.
Collapse
Affiliation(s)
- Bárbara Costa
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Correspondence: ; Tel.: +351-220426537
| |
Collapse
|
22
|
Wang PF, Sharma A, Montana M, Neiner A, Juriga L, Reddy KN, Tallchief D, Blood J, Kharasch ED. Methadone pharmacogenetics in vitro and in vivo: Metabolism by CYP2B6 polymorphic variants and genetic variability in paediatric disposition. Br J Clin Pharmacol 2022; 88:4881-4893. [PMID: 35538637 PMCID: PMC10908252 DOI: 10.1111/bcp.15393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/06/2022] [Accepted: 04/22/2022] [Indexed: 11/02/2022] Open
Abstract
AIMS Methadone metabolism and clearance are determined principally by polymorphic cytochrome P4502B6 (CYP2B6). Some CYP2B6 allelic variants affect methadone metabolism in vitro and disposition in vivo. We assessed methadone metabolism by CYP2B6 minor variants in vitro. We also assessed the influence of CYP2B6 variants, and P450 oxidoreductase (POR) and CYP2C19 variants, on methadone clearance in surgical patients in vivo. METHODS CYP2B6 and P450 oxidoreductase variants were coexpressed with cytochrome b5 . The metabolism of methadone racemate and enantiomers was measured at therapeutic concentrations and intrinsic clearances were determined. Adolescents receiving methadone for surgery were genotyped for CYP2B6, CYP2C19 and POR, and methadone clearance and metabolite formation clearance were determined. RESULTS In vitro, CYP2B6.4 was more active than wild-type CYP2B6.1. CYPs 2B6.5, 2B6.6, 2B6.7, 2B6.9, 2B6.17, 2B6.19 and 2B6.26 were less active. CYPs 2B6.16 and 2B6.18 were inactive. CYP2B6.1 expressed with POR variants POR.28, POR.5 and P228L had lower rates of methadone metabolism than wild-type reductase. In vivo, methadone clinical clearance decreased linearly with the number of CYP2B6 slow metabolizer alleles, but was not different in CYP2C19 slow or rapid metabolizer phenotypes, or in carriers of the POR*28 allele. CONCLUSIONS Several CYP2B6 and POR variants were slow metabolizers of methadone in vitro. Polymorphisms in CYP2B6, but not CYP2C19 or P450 reductase, affected methadone clearance in vivo. CYP2B6 polymorphisms 516G>T and 983T>C code for canonical loss of function variants and should be assessed when considering genetic influences on clinical methadone disposition. These complementary translational in vitro and in vivo results inform on pharmacogenetic variability affecting methadone disposition in patients.
Collapse
Affiliation(s)
- Pan-Fen Wang
- Department of Anesthesiology, Duke University, Durham, NC, USA
| | - Anshuman Sharma
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Michael Montana
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alicia Neiner
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Kavya Narayana Reddy
- Department of Pediatric Anesthesiology, Arkansas Children's Hospital, Little Rock, AK, USA
| | - Dani Tallchief
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jane Blood
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Evan D Kharasch
- Department of Anesthesiology, Duke University, Durham, NC, USA
| |
Collapse
|
23
|
Atypical kinetics of cytochrome P450 enzymes in pharmacology and toxicology. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:131-176. [PMID: 35953154 DOI: 10.1016/bs.apha.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atypical kinetics are observed in metabolic reactions catalyzed by cytochrome P450 enzymes (P450). Yet, this phenomenon is regarded as experimental artifacts in some instances despite increasing evidence challenging the assumptions of typical Michaelis-Menten kinetics. As P450 play a major role in the metabolism of a wide range of substrates including drugs and endogenous compounds, it becomes critical to consider the impact of atypical kinetics on the accuracy of estimated kinetic and inhibitory parameters which could affect extrapolation of pharmacological and toxicological implications. The first half of this book chapter will focus on atypical non-Michaelis-Menten kinetics (e.g. substrate inhibition, biphasic and sigmoidal kinetics) as well as proposed underlying mechanisms supported by recent insights in mechanistic enzymology. In particular, substrate inhibition kinetics in P450 as well as concurrent drug inhibition of P450 in the presence of substrate inhibition will be further discussed. Moreover, mounting evidence has revealed that despite the high degree of sequence homology between CYP3A isoforms (i.e. CYP3A4 and CYP3A5), they have the propensities to exhibit vastly different susceptibilities and potencies of mechanism-based inactivation (MBI) with a common drug inhibitor. These experimental observations pertaining to the presence of these atypical isoform- and probe substrate-specific complexities in CYP3A isoforms by several clinically-relevant drugs will therefore be expounded and elaborated upon in the second half of this book chapter.
Collapse
|
24
|
Quantitative Prediction of Drug Interactions Caused by Cytochrome P450 2B6 Inhibition or Induction. Clin Pharmacokinet 2022; 61:1297-1306. [PMID: 35857278 DOI: 10.1007/s40262-022-01153-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Numerous drugs have the potential to be affected by cytochrome P450 (CYP) 2B6-mediated drug-drug interactions (DDIs). OBJECTIVES In this work, we extend a static approach to the prediction of the extent of pharmacokinetics DDIs between substrates and inhibitors or inducers of CYP2B6. METHODS This approach is based on the calculation of two parameters (the contribution ratio [CR], representing the fraction of dose of the substrate metabolized via this pathway and the inhibitory or inducing potency of the perpetrator [IR or IC, respectively]) calculated from the area under the concentration-time curve (AUC) ratios obtained in in-vivo DDI studies. RESULTS Forty-eight studies involving 5 substrates, 11 inhibitors and 18 inducers of CYP2B6 (overall 15 inhibition and 33 induction studies) were divided into test and validation sets and considered for estimation of the parameters. The proposed approach demonstrated a fair accuracy for predicting the extent of DDI related to CYP2B6 inhibition and induction, all predictions related to the validation test (N = 18) being 50-200% of the observed ratios. CONCLUSIONS This methodology can be used for proposing initial dose adaptations to be adopted, for example in clinical use or for designing DDI studies involving this enzyme.
Collapse
|
25
|
Mast N, Fotinich A, Pikuleva IA. The Hydroxylation Position Rather than Chirality Determines How Efavirenz Metabolites Activate Cytochrome P450 46A1 In Vitro. Drug Metab Dispos 2022; 50:923-930. [PMID: 35489779 PMCID: PMC11022896 DOI: 10.1124/dmd.122.000874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/05/2022] [Indexed: 11/22/2022] Open
Abstract
(S)-Efavirenz (EFV) is a reverse transcriptase inhibitor and an antiviral drug. In addition, (S)-EFV can interact off target with CYP46A1, the major cholesterol hydroxylating enzyme in the mammalian brain, and allosterically activate CYP46A1 at a small dose in mice and humans. Studies with purified CYP46A1 identified two allosteric sites on the enzyme surface, one for (S)-EFV and the second site for L-glutamate (Glu), a neurotransmitter that also activates CYP46A1 either alone or in the presence of (S)-EFV. Previously, we found that racemic (rac)-7-hydroxyefavirenz, (rac)-8-hydroxyefavirenz, (S)-8-hydroxyefavirenz, and (rac)-8,14-dihydroxyefavirenz, compounds with the hydroxylation positions corresponding to the metabolism of (S)-EFV in the liver, activated CYP46A1 in vitro. Yet, these compounds differed from (S)-EFV in how they allosterically interacted with CYP46A1. Herein, we further characterized (rac)-7-hydroxyefavirenz, (rac)-8-hydroxyefavirenz, (S)-8-hydroxyefavirenz, and (rac)-8,14-dihydroxyefavirenz, and, in addition, (R)-EFV, (S)-7-hydroxyefavirenz, (rac)-7,8-dihydroxyefavirenz, (S)-7,8-dihydroxyefavirenz, and (S)-8,14-dihydroxyefavirenz for activation and binding to CYP46A1 in vitro. We found that the spatial configuration of all tested compounds neither affected the CYP46A1 activation nor the sites of binding to CYP46A1. Yet, the hydroxylation position determined whether the hydroxylated metabolite interacted with the allosteric site for (S)-EFV [(R)-EFV, (rac)-7,8-dihydroxyefavirenz, and (S)-7,8-dihydroxyefavirenz], L-Glu [(rac)- and (S)-8,14-dihydroxyefavirenz], or both [(rac)-7-hydroxyefavirenz, (S)-7-hydroxyefavirenz, (rac)-8-hydroxyefavirenz, and (S)-8-hydroxyefavirenz]. This difference in binding to the allosteric sites determined, in turn, how CYP46A1 activity was changed in the coincubations with (S)-EFV and either its metabolite or L-Glu. The results suggest EFV metabolites that could be more potent for CYP46A1 activation in vivo than (S)-EFV. SIGNIFICANCE STATEMENT: This study found that not only efavirenz but also all its hydroxylated metabolites allosterically activate CYP46A1 in vitro. The enzyme activation depended on the hydroxylation position but not the metabolite spatial configuration and involved either one or two allosteric sites-for efavirenz, L-glutamate, or both. The results suggest that the hydroxylated efavirenz metabolites may differ from efavirenz in how they interact with the CYP46A1 allosteric and active sites.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Anna Fotinich
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
26
|
Elimination of tucatinib, a small molecule kinase inhibitor of HER2, is primarily governed by CYP2C8 enantioselective oxidation of gem-dimethyl. Cancer Chemother Pharmacol 2022; 89:737-750. [PMID: 35435471 DOI: 10.1007/s00280-022-04429-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/27/2022] [Indexed: 12/21/2022]
Abstract
PURPOSE Tucatinib, a small molecule for the treatment of metastatic HER2-positive breast cancer, was extensively metabolized in humans to multiple oxidative metabolites. To fully understand the elimination and biotransformation pathways of tucatinib, we investigated the in vitro and in vivo metabolism of tucatinib, and also conducted a Phase I trial using [14C]tucatinib. METHODS To identify the responsible enzymes for tucatinib clearance, we investigated the in vitro metabolism of tucatinib including enzyme phenotyping, which facilitated the discovery of several metabolites in human and monkey plasma and excreta, in particular M1 (ONT-993, an aliphatic hydroxylated metabolite). Stereoselective formation of M1 was further investigated in vitro, in vivo, and in silico. RESULTS In humans, approximately 86% of the total radiolabeled dose was recovered in feces and 4% in urine; in plasma, approximately 76% of radioactivity circulated as parent drug, with 19% attributed to multiple metabolites. The primary isoforms responsible for the elimination of tucatinib were CYP2C8 and CYP3A4/5. CYP2C8 was shown to possess sole catalytic activity for the formation of M1, whereas CYP3A4/5 and aldehyde oxidase catalyzed the formation of the remaining metabolites. Subsequent investigation revealed that M1 was formed in a stereoselective manner. Examination of the enantiomeric ratio of M1 stereoisomers observed in humans relative to cynomolgus monkeys revealed comparable results, suggesting that the enantiomers that comprise M1 were not considered to be unique or disproportionately high in human. CONCLUSION CYP2C8 and CYP3A4/5 are the primary drug-metabolizing enzymes involved in the in vitro metabolism of tucatinib, which provided the basis to describe human disposition of tucatinib and formation of the observed metabolites.
Collapse
|
27
|
Mangó K, Kiss ÁF, Fekete F, Erdős R, Monostory K. CYP2B6 allelic variants and non-genetic factors influence CYP2B6 enzyme function. Sci Rep 2022; 12:2984. [PMID: 35194103 PMCID: PMC8863776 DOI: 10.1038/s41598-022-07022-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/10/2022] [Indexed: 12/20/2022] Open
Abstract
Human CYP2B6 enzyme although constitutes relatively low proportion (1–4%) of hepatic cytochrome P450 content, it is the major catalyst of metabolism of several clinically important drugs (efavirenz, cyclophosphamide, bupropion, methadone). High interindividual variability in CYP2B6 function, contributing to impaired drug-response and/or adverse reactions, is partly elucidated by genetic polymorphisms, whereas non-genetic factors can significantly modify the CYP2B6 phenotype. The influence of genetic and phenoconverting non-genetic factors on CYP2B6-selective activity and CYP2B6 expression was investigated in liver tissues from Caucasian subjects (N = 119). Strong association was observed between hepatic S-mephenytoin N-demethylase activity and CYP2B6 mRNA expression (P < 0.0001). In less than one third of the tissue donors, the CYP2B6 phenotype characterized by S-mephenytoin N-demethylase activity and/or CYP2B6 expression was concordant with CYP2B6 genotype, whereas in more than 35% of the subjects, an altered CYP2B6 phenotype was attributed to phenoconverting non-genetic factors (to CYP2B6-specific inhibitors and inducers, non-specific amoxicillin + clavulanic acid treatment and chronic alcohol consumption, but not to the gender). Furthermore, CYP2B6 genotype–phenotype mismatch still existed in one third of tissue donors. In conclusion, identifying potential sources of CYP2B6 variability and considering both genetic variations and non-genetic factors is a pressing requirement for appropriate elucidation of CYP2B6 genotype–phenotype mismatch.
Collapse
Affiliation(s)
- Katalin Mangó
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, Budapest, 1117, Hungary.,Doctoral School of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
| | - Ádám Ferenc Kiss
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, Budapest, 1117, Hungary
| | - Ferenc Fekete
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, Budapest, 1117, Hungary
| | - Réka Erdős
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, Budapest, 1117, Hungary
| | - Katalin Monostory
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, Budapest, 1117, Hungary.
| |
Collapse
|
28
|
Xiong X, Yu D, Gao Q, Zhang Y, Yin Q, Chen X, Xiao H, Tong R. Association between CYP2B6 c.516G >T variant and acute leukaemia: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e26740. [PMID: 34397877 PMCID: PMC8360481 DOI: 10.1097/md.0000000000026740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 04/27/2021] [Accepted: 06/28/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Acute leukemia (AL) is a kind of malignant tumor of hematopoietic system. A number of studies have suggested that Single Nucleotide Polymorphisms are significantly associated with risk of AL. Present study performs meta-analysis to evaluate the association between CYP2B6 c.516G>T variant and AL risk. METHODS Databases including PubMed, EMBASE, Chinese National Knowledge Infrastructure (CNKI), and Wanfang were searched for literatures to September 30, 2019, both in English and Chinese. Relative risk and its 95% confidence intervals were used to assess the associations. Statistical analyses of this meta-analysis were conducted by using STATA 13.0. software. RESULTS A total of 7 studies, including 1038 cases and 1648 controls, were analyzed. Our results indicated that CYP2B6 c.516G>T variant was significantly related to an increased the risk of AL under dominant model, recessive model, homozygote model, and allelic model. In addition, subgroup analyses were also performed by disease classification, country, and study design. No significant associations were obtained between CYP2B6 c.516G>T variant and the risk of AL under the recessive model in the design of hospital-based (relative risk = 0.98; 95% confidence interval: 0.95-1.01; P = 0.118). CONCLUSION Our meta-analysis indicated that the CYP2B6 variant is significantly associated with AL risk, in which CYP2B6 c.516G>T is related to an increased risk of AL.
Collapse
Affiliation(s)
- Xuan Xiong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China
| | - Dongke Yu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China
| | - Qiaoyue Gao
- Department of Pharmacy, Wenjiang District People ‘s Hospital of Chengdu
| | - Yuan Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China
| | - Qinan Yin
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China
| | - Xiaotao Chen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China
| | - Hongtao Xiao
- Department of Pharmacy, Sichuan Cancer Hospital & Institute, The Affiliated Cancer Hospital, School of medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China
| |
Collapse
|
29
|
Leow JWH, Verma RK, Lim ABH, Fan H, Chan ECY. Atypical kinetics of cytochrome P450 2J2: Epoxidation of arachidonic acid and reversible inhibition by xenobiotic inhibitors. Eur J Pharm Sci 2021; 164:105889. [PMID: 34044117 DOI: 10.1016/j.ejps.2021.105889] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/04/2021] [Accepted: 05/20/2021] [Indexed: 01/08/2023]
Abstract
Extrahepatic CYP2J2 metabolism of arachidonic acid (AA) to bioactive regioisomeric epoxyeicosatrienoic acids (EETs) is implicated in both physiological and pathological conditions. Here, we aimed to characterize atypical substrate inhibition kinetics of this endogenous metabolic pathway and its reversible inhibition by xenobiotic inhibitors when AA is used as the physiologically-relevant substrate vis-à-vis conventional probe substrate astemizole (AST). As compared to typical Michaelis-Menten kinetics observed for AST, complete substrate inhibition was observed for CYP2J2 metabolism of AA to 14,15-EET whereby velocity of the reaction declined significantly at concentrations of AA above 20-30 µM with an estimated substrate inhibition constant (Ks) of 31 µM. In silico sequential docking of two AA substrates to orthosteric (OBS) and adjacent secondary binding sites (SBS) within a 3-dimensional homology model of CYP2J2 revealed favorable and comparable binding poses of glide-scores -3.1 and -3.8 respectively. Molecular dynamics (MD) simulations ascertained CYP2J2 conformational stability with dual AA substrate binding as time-dependent root mean squared deviation (RMSD) of protein Cα atoms and ligand heavy atoms stabilized to a plateau in all but one trajectory (n=6). The distance between heme-iron and ω6 (C14, C15) double bond of AA in OBS also increased from 7.5 ± 1.4 Å to 8.5 ± 1.8 Å when CYP2J2 was simulated with only AA in OBS versus the presence of AA in both OBS and SBS (p<0.001), supporting the observed in vitro substrate inhibition phenomenon. Poor correlation was observed between inhibitory constants (Ki) determined for a panel of nine competitive and mixed mode xenobiotic inhibitors against CYP2J2 metabolism of AA as compared to AST, whereby 4 out of 9 drugs had a greater than 5-fold difference between Ki values. Nonlinear Eadie-Hofstee plots illustrated that complete substrate inhibition of CYP2J2 by AA was not attenuated even at high concentrations of xenobiotic inhibitors which further corroborates that CYP2J2 may accommodate three or more ligands simultaneously. In light of the atypical kinetics, our results highlight the importance of using physiologically-relevant substrates in in vitro enzymatic inhibition assays for the characterization of xenobiotic-endobiotic interactions which is applicable to other complex endogenous metabolic pathways beyond CYP2J2 metabolism of AA to EETs. The accurate determination of Ki would further facilitate the association of xenobiotic-endobiotic interactions to observed therapeutic or toxic outcomes.
Collapse
Affiliation(s)
- Jacqueline Wen Hui Leow
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543
| | - Ravi Kumar Verma
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Amos Boon Hao Lim
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543
| | - Hao Fan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543.
| |
Collapse
|
30
|
Schittny A, Waldner S, Duthaler U, Vorobyev A, Abramovich R, Krähenbühl S, Puchkov M, Huwyler J. Particle Forming Amorphous Solid Dispersions: A Mechanistic Randomized Pharmacokinetic Study in Humans. Pharmaceutics 2021; 13:401. [PMID: 33803049 PMCID: PMC8003007 DOI: 10.3390/pharmaceutics13030401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 11/17/2022] Open
Abstract
Amorphous solid dispersions (ASDs) are a promising drug-delivery strategy to overcome poor solubility through formulation. Currently, the understanding of drug absorption mechanisms from ASDs in humans is incomplete. Aiming to gain insights in this matter, we conducted a randomized cross-over design open-label clinical study (NCT03886766) with 16 healthy male volunteers in an ambulatory setting, using micro-dosed efavirenz as a model drug. In three phases, subjects were administered (1) solid ASD of efavirenz 50 mg or (2) dissolved ASD of efavirenz 50 mg or (3) a molecular solution of efavirenz 3 mg (non-ASD) as a control in block-randomized order. Endpoints were the pharmacokinetic profiles (efavirenz plasma concentration vs. time curves) and derived pharmacokinetic parameters thereof (AUC0-t, Cmax, tmax, and ka). Results showed that the dissolved ASD (intervention 2) exhibited properties of a supersaturated solution (compared to aqueous solubility) with rapid and complete absorption of the drug from the drug-rich particles. All interventions showed similar AUC0-t and were well tolerated by subjects. The findings highlight the potential of particle forming ASDs as an advanced drug-delivery system for poorly soluble drugs and provide essential insights into underlying mechanisms of ASD functioning in humans, partially validating current conceptual models.
Collapse
Affiliation(s)
- Andreas Schittny
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland; (A.S.); (S.W.); (M.P.)
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, 4056 Basel, Switzerland; (U.D.); (S.K.)
| | - Samuel Waldner
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland; (A.S.); (S.W.); (M.P.)
| | - Urs Duthaler
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, 4056 Basel, Switzerland; (U.D.); (S.K.)
| | - Alexander Vorobyev
- Department of Pharmtechnology, Faculty of Advanced Training of Medical Workers, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (A.V.); (R.A.)
| | - Rimma Abramovich
- Department of Pharmtechnology, Faculty of Advanced Training of Medical Workers, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (A.V.); (R.A.)
| | - Stephan Krähenbühl
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, 4056 Basel, Switzerland; (U.D.); (S.K.)
- Department of Clinical Research, University of Basel, 4056 Basel, Switzerland
| | - Maxim Puchkov
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland; (A.S.); (S.W.); (M.P.)
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland; (A.S.); (S.W.); (M.P.)
- Department of Clinical Research, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
31
|
Lin YS, Thummel KE, Thompson BD, Totah RA, Cho CW. Sources of Interindividual Variability. Methods Mol Biol 2021; 2342:481-550. [PMID: 34272705 DOI: 10.1007/978-1-0716-1554-6_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The efficacy, safety, and tolerability of drugs are dependent on numerous factors that influence their disposition. A dose that is efficacious and safe for one individual may result in sub-therapeutic or toxic blood concentrations in others. A significant source of this variability in drug response is drug metabolism, where differences in presystemic and systemic biotransformation efficiency result in variable degrees of systemic exposure (e.g., AUC, Cmax, and/or Cmin) following administration of a fixed dose.Interindividual differences in drug biotransformation have been studied extensively. It is recognized that both intrinsic factors (e.g., genetics, age, sex, and disease states) and extrinsic factors (e.g., diet , chemical exposures from the environment, and the microbiome) play a significant role. For drug-metabolizing enzymes, genetic variation can result in the complete absence or enhanced expression of a functional enzyme. In addition, upregulation and downregulation of gene expression, in response to an altered cellular environment, can achieve the same range of metabolic function (phenotype), but often in a less predictable and time-dependent manner. Understanding the mechanistic basis for variability in drug disposition and response is essential if we are to move beyond the era of empirical, trial-and-error dose selection and into an age of personalized medicine that will improve outcomes in maintaining health and treating disease.
Collapse
Affiliation(s)
- Yvonne S Lin
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA.
| | - Kenneth E Thummel
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Brice D Thompson
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Rheem A Totah
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Christi W Cho
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
32
|
Vanangamudi M, Kurup S, Namasivayam V. Non-nucleoside reverse transcriptase inhibitors (NNRTIs): a brief overview of clinically approved drugs and combination regimens. Curr Opin Pharmacol 2020; 54:179-187. [PMID: 33202360 DOI: 10.1016/j.coph.2020.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/27/2022]
Abstract
The non-nucleoside reverse transcriptase inhibitors (NNRTIs) are allosteric inhibitors of HIV-1 reverse transcriptase and are classified into generations depending on their discovery and resistance profiles. The NNRTIs are used in combination regimens with antiretroviral agents that target two or more enzymes in the viral life cycle. The combination regimens usually include a backbone of two nucleoside or nucleotide reverse transcriptase inhibitors and a third core agent among the NNRTIs or protease inhibitors. The combination regimens are maintained over long durations and consequently lead to long-term problems, including toxicity, drug-drug interactions, and increasing costs. This brief overview summarizes the pharmacokinetic profiles for NNRTIs and NNRTI-based combination regimens.
Collapse
Affiliation(s)
- Murugesan Vanangamudi
- Department of Medicinal and Pharmaceutical Chemistry, Sree Vidyanikethan College of Pharmacy, Tirupathi, Andhra Pradesh 517102, India
| | - Sonali Kurup
- College of Pharmacy, Ferris State University, 220 Ferris Drive, Big Rapids, MI 49301, USA
| | | |
Collapse
|
33
|
Wang PF, Neiner A, Kharasch ED. Stereoselective Bupropion Hydroxylation by Cytochrome P450 CYP2B6 and Cytochrome P450 Oxidoreductase Genetic Variants. Drug Metab Dispos 2020; 48:438-445. [PMID: 32238417 DOI: 10.1124/dmd.119.090407] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Bioactivation of the antidepressant and smoking cessation drug bupropion is catalyzed predominantly by CYP2B6. The metabolite hydroxybupropion derived from t-butylhydroxylation is considered to contribute to the antidepressant and smoking-cessation effects of the parent drug. Bupropion hydroxylation is the canonical in vitro and in vivo probe for CYP2B6 activity. P450 also requires obligate partnership with P450 oxidoreductase (POR). Human CYP2B6 and POR genes are highly polymorphic. Some CYP2B6 variants affect bupropion disposition. This investigation evaluated the influence of several human CYP2B6 and POR genetic variants on stereoselective bupropion metabolism, using an insect cell coexpression system containing CYP2B6, POR, and cytochrome b 5 Based on intrinsic clearances (Clints), relative activities for S,S-hydroxybupropion formation were in the order CYP2B6.4 > CYP2B6.1 > CYP2B6.17 > CYP2B6.5 > CYP2B6.6 ≈ CYP2B6.26 ≈ CYP2B6.19 > CYP2B6.7 > CYP2B6.9 > > CYP2B6.16 and CYP2B6.18; relative activities for R,R-hydroxybupropion formation were in the order CYP2B6.17 > CYP2B6.4 > CYP2B6.1 > CYP2B6.5 ≈ CYP2B6.19 ≈ CYP2B6.26 > CYP2B6.6 > CYP2B6.7 ≈ CYP2B6.9 > > CYP2B6.16 and CYP2B6.18. Bupropion hydroxylation was not influenced by POR variants. CYP2B6-catalyzed bupropion hydroxylation is stereoselective. Though Vmax and Km varied widely among CYP2B6 variants, stereoselectivity was preserved, reflected by similar Clint(S,S-hydroxybupropion)/Clint(R,R-hydroxybupropion) ratios (1.8-2.9), except CYP2B6.17, which was less enantioselective. Established concordance between human bupropion hydroxylation in vitro and in vivo, together with these new results, suggests additional CYP2B6 variants may influence human bupropion disposition. SIGNIFICANCE STATEMENT: Bupropion pharmacokinetics, metabolism, and clinical effects are affected by the CYP2B6*6 polymorphism. Other expressed CYP2B6 polymorphisms had diminished (*5, *6, *7, *9, *19, *26) or defective (*16, *18) in vitro bupropion hydroxylation. P450 oxidoreductase genetic variants had no effect on metabolism, suggesting no clinical consequence of this polymorphism. These CYP2B6 polymorphisms may portend diminished in vivo bupropion hydroxylation and predict additional clinically important variant alleles.
Collapse
Affiliation(s)
- Pan-Fen Wang
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina (P.-F.W., E.D.K.) and Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri (A.N.)
| | - Alicia Neiner
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina (P.-F.W., E.D.K.) and Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri (A.N.)
| | - Evan D Kharasch
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina (P.-F.W., E.D.K.) and Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri (A.N.)
| |
Collapse
|
34
|
Mast N, Verwilst P, Wilkey CJ, Guengerich FP, Pikuleva IA. In Vitro Activation of Cytochrome P450 46A1 (CYP46A1) by Efavirenz-Related Compounds. J Med Chem 2019; 63:6477-6488. [PMID: 31617715 PMCID: PMC7226586 DOI: 10.1021/acs.jmedchem.9b01383] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Cytochrome P450 46A1 (CYP46A1) is a central nervous system-specific
enzyme, which catalyzes cholesterol 24-hydroxylation. Currently CYP46A1
is being evaluated in a clinical trial for activation by small doses
of the anti-HIV drug efavirenz. Eight efavirenz-related compounds
were investigated for CYP46A1 activation in vitro, induction of a
CYP46A1 spectral response, spectral Kd values, interaction with the P450 allosteric sites, and a model
of binding to the enzyme active site. We gained insight into structure–activity
relationships of efavirenz for CYP46A1 activation and found that the
investigated efavirenz primary metabolites are stronger and better
activators of CYP46A1 than efavirenz. We also established that CYP46A1
is activated by racemates and that a conformational-selection mechanism
is operative in CYP46A1. The results suggest structural modifications
of efavirenz to further increase CYP46A1 activation without inhibition
at high compound concentrations. It is possible that not only efavirenz
but its metabolites activate CYP46A1 in vivo.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Peter Verwilst
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Clayton J Wilkey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|