1
|
Ríos JA, Bórquez JC, Godoy JA, Zolezzi JM, Furrianca MC, Inestrosa NC. Emerging role of Metformin in Alzheimer's disease: A translational view. Ageing Res Rev 2024; 100:102439. [PMID: 39074563 DOI: 10.1016/j.arr.2024.102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
Alzheimer's disease (AD) constitutes a major public-health issue of our time. Regrettably, despite our considerable understanding of the pathophysiological aspects of this disease, current interventions lead to poor outcomes. Furthermore, experimentally promising compounds have continuously failed when translated to clinical trials. Along with increased population ageing, Type 2 Diabetes Mellitus (T2DM) has become an extremely common condition, mainly due to unbalanced dietary habits. Substantial epidemiological evidence correlates T2DM with cognitive impairment as well. Considering that brain insulin resistance, mitochondrial dysfunction, oxidative stress, and amyloidogenesis are common phenomena, further approaching the common features among these pathological conditions. Metformin constitutes the first-choice drug to preclude insulin resistance in T2DM clinical management. Experimental evidence suggests that its functions might include neuroprotective effects, in addition to its hypoglycemic activity. This review aims to summarize and discuss current knowledge of experimental data on metformin on this path towards translational medicine. Finally, we discuss the controversial data of responses to metformin in vitro, and in vivo, animal models and human studies.
Collapse
Affiliation(s)
- Juvenal A Ríos
- Facultad de Medicina y Ciencia, Escuela de Medicina, Universidad San Sebastián, Santiago, Chile
| | - Juan Carlos Bórquez
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile; Facultad de Ciencias de la Salud, Universidad de Magallanes, Punta Arenas, Chile
| | - Juan A Godoy
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan M Zolezzi
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | | | - Nibaldo C Inestrosa
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
2
|
Nemeth DV, Iannelli L, Gangitano E, D’Andrea V, Bellini MI. Energy Metabolism and Metformin: Effects on Ischemia-Reperfusion Injury in Kidney Transplantation. Biomedicines 2024; 12:1534. [PMID: 39062107 PMCID: PMC11275143 DOI: 10.3390/biomedicines12071534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Metformin (MTF) is the only biguanide included in the World Health Organization's list of essential medicines; representing a widespread drug in the management of diabetes mellitus. With its accessibility and affordability being one of its biggest assets, it has become the target of interest for many trying to find alternative treatments for varied pathologies. Over time, an increasing body of evidence has shown additional roles of MTF, with unexpected interactions of benefit in other diseases. Metformin (MTF) holds significant promise in mitigating ischemia-reperfusion injury (IRI), particularly in the realm of organ transplantation. As acceptance criteria for organ transplants expand, IRI during the preservation phase remain a major concern within the transplant community, prompting a keen interest in MTF's effects. Emerging evidence suggests that administering MTF during reperfusion may activate the reperfusion injury salvage kinase (RISK) pathway. This pathway is pivotal in alleviating IRI in transplant recipients, potentially leading to improved outcomes such as reduced rates of organ rejection. This review aims to contextualize MTF historically, explore its current uses, pharmacokinetics, and pharmacodynamics, and link these aspects to the pathophysiology of IRI to illuminate its potential future role in transplantation. A comprehensive survey of the current literature highlights MTF's potential to recondition and protect against IRI by attenuating free radical damage, activating AMP-activated protein kinase to preserve cellular energy and promote repair, as well as directly reducing inflammation and enhancing microcirculation.
Collapse
Affiliation(s)
- Denise V. Nemeth
- School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, TX 78235, USA
| | - Leonardo Iannelli
- Department of Surgery, Sapienza University of Rome, 00161 Rome, Italy
| | - Elena Gangitano
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Vito D’Andrea
- Department of Surgery, Sapienza University of Rome, 00161 Rome, Italy
| | | |
Collapse
|
3
|
Pujalte‐Martin M, Belaïd A, Bost S, Kahi M, Peraldi P, Rouleau M, Mazure NM, Bost F. Targeting cancer and immune cell metabolism with the complex I inhibitors metformin and IACS-010759. Mol Oncol 2024; 18:1719-1738. [PMID: 38214418 PMCID: PMC11223609 DOI: 10.1002/1878-0261.13583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/15/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024] Open
Abstract
Metformin and IACS-010759 are two distinct antimetabolic agents. Metformin, an established antidiabetic drug, mildly inhibits mitochondrial complex I, while IACS-010759 is a new potent mitochondrial complex I inhibitor. Mitochondria is pivotal in the energy metabolism of cells by providing adenosine triphosphate through oxidative phosphorylation (OXPHOS). Hence, mitochondrial metabolism and OXPHOS become a vulnerability when targeted in cancer cells. Both drugs have promising antitumoral effects in diverse cancers, supported by preclinical in vitro and in vivo studies. We present evidence of their direct impact on cancer cells and their immunomodulatory effects. In clinical studies, while observational epidemiologic studies on metformin were encouraging, actual trial results were not as expected. However, IACS-01075 exhibited major adverse effects, thereby causing a metabolic shift to glycolysis and elevated lactic acid concentrations. Therefore, the future outlook for these two drugs depends on preventive clinical trials for metformin and investigations into the plausible toxic effects on normal cells for IACS-01075.
Collapse
Affiliation(s)
- Marc Pujalte‐Martin
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Amine Belaïd
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Simon Bost
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Michel Kahi
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Pascal Peraldi
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Matthieu Rouleau
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
- CNRS UMR7370, LP2MNiceFrance
| | - Nathalie M. Mazure
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Frédéric Bost
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| |
Collapse
|
4
|
Sarkar A, Fanous KI, Marei I, Ding H, Ladjimi M, MacDonald R, Hollenberg MD, Anderson TJ, Hill MA, Triggle CR. Repurposing Metformin for the Treatment of Atrial Fibrillation: Current Insights. Vasc Health Risk Manag 2024; 20:255-288. [PMID: 38919471 PMCID: PMC11198029 DOI: 10.2147/vhrm.s391808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Metformin is an orally effective anti-hyperglycemic drug that despite being introduced over 60 years ago is still utilized by an estimated 120 to 150 million people worldwide for the treatment of type 2 diabetes (T2D). Metformin is used off-label for the treatment of polycystic ovary syndrome (PCOS) and for pre-diabetes and weight loss. Metformin is a safe, inexpensive drug with side effects mostly limited to gastrointestinal issues. Prospective clinical data from the United Kingdom Prospective Diabetes Study (UKPDS), completed in 1998, demonstrated that metformin not only has excellent therapeutic efficacy as an anti-diabetes drug but also that good glycemic control reduced the risk of micro- and macro-vascular complications, especially in obese patients and thereby reduced the risk of diabetes-associated cardiovascular disease (CVD). Based on a long history of clinical use and an excellent safety record metformin has been investigated to be repurposed for numerous other diseases including as an anti-aging agent, Alzheimer's disease and other dementias, cancer, COVID-19 and also atrial fibrillation (AF). AF is the most frequently diagnosed cardiac arrythmia and its prevalence is increasing globally as the population ages. The argument for repurposing metformin for AF is based on a combination of retrospective clinical data and in vivo and in vitro pre-clinical laboratory studies. In this review, we critically evaluate the evidence that metformin has cardioprotective actions and assess whether the clinical and pre-clinical evidence support the use of metformin to reduce the risk and treat AF.
Collapse
Affiliation(s)
- Aparajita Sarkar
- Department of Medical Education, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Kareem Imad Fanous
- Department of Medical Education, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Isra Marei
- Department of Pharmacology & Medical Education, Weill Cornell Medicine- Qatar, Doha, Qatar
| | - Hong Ding
- Department of Pharmacology & Medical Education, Weill Cornell Medicine- Qatar, Doha, Qatar
| | - Moncef Ladjimi
- Department of Biochemistry & Medical Education, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Ross MacDonald
- Health Sciences Library, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology, and Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Todd J Anderson
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael A Hill
- Dalton Cardiovascular Research Center & Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Chris R Triggle
- Department of Pharmacology & Medical Education, Weill Cornell Medicine- Qatar, Doha, Qatar
| |
Collapse
|
5
|
Lee OYA, Wong ANN, Ho CY, Tse KW, Chan AZ, Leung GPH, Kwan YW, Yeung MHY. Potentials of Natural Antioxidants in Reducing Inflammation and Oxidative Stress in Chronic Kidney Disease. Antioxidants (Basel) 2024; 13:751. [PMID: 38929190 PMCID: PMC11201162 DOI: 10.3390/antiox13060751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic kidney disease (CKD) presents a substantial global public health challenge, with high morbidity and mortality. CKD patients often experience dyslipidaemia and poor glycaemic control, further exacerbating inflammation and oxidative stress in the kidney. If left untreated, these metabolic symptoms can progress to end-stage renal disease, necessitating long-term dialysis or kidney transplantation. Alleviating inflammation responses has become the standard approach in CKD management. Medications such as statins, metformin, and GLP-1 agonists, initially developed for treating metabolic dysregulation, demonstrate promising renal therapeutic benefits. The rising popularity of herbal remedies and supplements, perceived as natural antioxidants, has spurred investigations into their potential efficacy. Notably, lactoferrin, Boerhaavia diffusa, Amauroderma rugosum, and Ganoderma lucidum are known for their anti-inflammatory and antioxidant properties and may support kidney function preservation. However, the mechanisms underlying the effectiveness of Western medications and herbal remedies in alleviating inflammation and oxidative stress occurring in renal dysfunction are not completely known. This review aims to provide a comprehensive overview of CKD treatment strategies and renal function preservation and critically discusses the existing literature's limitations whilst offering insight into the potential antioxidant effects of these interventions. This could provide a useful guide for future clinical trials and facilitate the development of effective treatment strategies for kidney functions.
Collapse
Affiliation(s)
- On Ying Angela Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Alex Ngai Nick Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Ching Yan Ho
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Ka Wai Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Angela Zaneta Chan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China;
| | - Yiu Wa Kwan
- The School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Martin Ho Yin Yeung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
6
|
Ussery E, McMaster M, Palace V, Parrott J, Blandford NC, Frank R, Kidd K, Birceanu O, Wilson J, Alaee M, Cunningham J, Wynia A, Clark T, Campbell S, Timlick L, Michaleski S, Marshall S, Nielsen K. Effects of metformin on wild fathead minnows (Pimephales promelas) using in-lake mesocosms in a boreal lake ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172457. [PMID: 38649046 DOI: 10.1016/j.scitotenv.2024.172457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Due to its widespread use for the treatment of Type-2 diabetes, metformin is routinely detected in surface waters globally. Laboratory studies have shown that environmentally relevant concentrations of metformin can adversely affect the health of adult fish, with effects observed more frequently in males. However, the potential risk to wild fish populations has yet to be fully elucidated and remains a topic of debate. To explore whether environmentally relevant metformin exposure poses a risk to wild fish populations, the present study exposed wild fathead minnows (Pimephales promelas) to 5 or 50 μg/L metformin via 2 m diameter in-lake mesocosms deployed in a natural boreal lake in Northern Ontario at the International Institute for Sustainable Development - Experimental Lakes Area (IISD-ELA). Environmental monitoring was performed at regular intervals for 8-weeks, with fish length, weight (body, liver and gonad), condition factor, gonadosomatic index, liver-somatic index, body composition (water and biomolecules) and hematocrit levels evaluated at test termination. Metabolic endpoints were also evaluated using liver, brain and muscle tissue, and gonads were evaluated histologically. Results indicate that current environmental exposure scenarios may be sufficient to adversely impact the health of wild fish populations. Adult male fish exposed to metformin had significantly reduced whole body weight and condition factor and several male fish from the high-dose metformin had oocytes in their testes. Metformin-exposed fish had altered moisture and lipid (decrease) content in their tissues. Further, brain (increase) and liver (decrease) glycogen were altered in fish exposed to high-dose metformin. To our knowledge, this study constitutes the first effort to understand metformin's effects on a wild small-bodied fish population under environmentally relevant field exposure conditions.
Collapse
Affiliation(s)
- Erin Ussery
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Mark McMaster
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Vince Palace
- University of Manitoba, Winnipeg, Manitoba, Canada; International Institute for Sustainable Development-Experimental Lakes Area, Winnipeg, Manitoba, Canada
| | - Joanne Parrott
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Nicholas C Blandford
- University of Manitoba, Winnipeg, Manitoba, Canada; International Institute for Sustainable Development-Experimental Lakes Area, Winnipeg, Manitoba, Canada
| | - Richard Frank
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Karen Kidd
- McMaster University, Department of Biology, Hamilton, Ontario, Canada
| | - Oana Birceanu
- Western University, Department of Physiology and Pharmacology, London, Ontario, Canada
| | - Joanna Wilson
- McMaster University, Department of Biology, Hamilton, Ontario, Canada
| | - Mehran Alaee
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Jessie Cunningham
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Abby Wynia
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Thomas Clark
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Sheena Campbell
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Lauren Timlick
- International Institute for Sustainable Development-Experimental Lakes Area, Winnipeg, Manitoba, Canada
| | - Sonya Michaleski
- International Institute for Sustainable Development-Experimental Lakes Area, Winnipeg, Manitoba, Canada
| | - Stephanie Marshall
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Kristin Nielsen
- University of Texas at Austin, Department of Marine Science, Port Aransas, TX, USA
| |
Collapse
|
7
|
Kumar AKH, Kadam A, Karunaianantham R, Tamizhselvan M, Padmapriyadarsini C, Mohan A, Jeyadeepa B, Radhakrishnan A, Singh UB, Bapat S, Mane A, Kumar P, Mamulwar M, Bhavani PK, Haribabu H, Rath N, Guleria R, Khan AM, Menon J. Effect of Metformin on Plasma Exposure of Rifampicin, Isoniazid, and Pyrazinamide in Patients on Treatment for Pulmonary Tuberculosis. Ther Drug Monit 2024; 46:370-375. [PMID: 38019456 PMCID: PMC11078288 DOI: 10.1097/ftd.0000000000001149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/08/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND To evaluate the effect of metformin on the plasma levels of rifampicin, isoniazid, and pyrazinamide in patients with drug-sensitive pulmonary tuberculosis being treated with first-line antituberculosis treatment (ATT) and to assess the influence of gene polymorphisms on the metabolic pathway of metformin and plasma levels of antitubercular drugs. METHODS Nondiabetic adults aged 18-60 years with pulmonary tuberculosis were randomized to either the standard ATT (ATT group) or ATT plus metformin (METRIF group) groups in a phase IIB clinical trial. An intensive pharmacokinetic study with blood collection at 0 hour (predosing), followed by 1, 2, 4, 6, 8, and 12 hours after dosing was conducted during the first month of treatment in a subset of 60 study participants after a minimum of 14 doses. Plasma concentrations of rifampicin, isoniazid, pyrazinamide, and metformin were measured by high-performance liquid chromatography using validated methods, and pharmacokinetic parameters and OCT1 and MATE1 gene polymorphisms were compared between the groups. RESULTS Significant increases in the clearance of rifampicin, isoniazid, and pyrazinamide were observed in patients in the METRIF group (n = 29) compared with those in the ATT group (n = 31). The AA genotypes of the single-nucleotide polymorphism of rs2289669 ( MATE1 ) in the METRIF group showed a significantly decreased area under the concentration-time curve to the last observation point and increased clearance of rifampicin. CONCLUSIONS Metformin altered rifampicin and isoniazid plasma concentrations in patients receiving antituberculosis treatment for pulmonary tuberculosis with little effect on sputum conversion at the end of treatment. Studies with larger sample sizes are needed to understand host drug-drug interactions.
Collapse
Affiliation(s)
| | | | | | | | | | - Anant Mohan
- All India Institute of Medical Sciences, New Delhi
| | - B. Jeyadeepa
- ICMR-National Institute for Research in Tuberculosis, Chennai
| | | | | | | | - Aarti Mane
- ICMR-National AIDS Research Institute, Pune
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Galal MA, Al-Rimawi M, Hajeer A, Dahman H, Alouch S, Aljada A. Metformin: A Dual-Role Player in Cancer Treatment and Prevention. Int J Mol Sci 2024; 25:4083. [PMID: 38612893 PMCID: PMC11012626 DOI: 10.3390/ijms25074083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer continues to pose a significant global health challenge, as evidenced by the increasing incidence rates and high mortality rates, despite the advancements made in chemotherapy. The emergence of chemoresistance further complicates the effectiveness of treatment. However, there is growing interest in the potential of metformin, a commonly prescribed drug for type 2 diabetes mellitus (T2DM), as an adjuvant chemotherapy agent in cancer treatment. Although the precise mechanism of action of metformin in cancer therapy is not fully understood, it has been found to have pleiotropic effects, including the modulation of metabolic pathways, reduction in inflammation, and the regulation of cellular proliferation. This comprehensive review examines the anticancer properties of metformin, drawing insights from various studies conducted in vitro and in vivo, as well as from clinical trials and observational research. This review discusses the mechanisms of action involving both insulin-dependent and independent pathways, shedding light on the potential of metformin as a therapeutic agent for different types of cancer. Despite promising findings, there are challenges that need to be addressed, such as conflicting outcomes in clinical trials, considerations regarding dosing, and the development of resistance. These challenges highlight the importance of further research to fully harness the therapeutic potential of metformin in cancer treatment. The aims of this review are to provide a contemporary understanding of the role of metformin in cancer therapy and identify areas for future exploration in the pursuit of effective anticancer strategies.
Collapse
Affiliation(s)
- Mariam Ahmed Galal
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| | - Mohammed Al-Rimawi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | | | - Huda Dahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | - Samhar Alouch
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| |
Collapse
|
9
|
Chen M, Yi Y, Chen B, Zhang H, Dong M, Yuan L, Zhou H, Jiang H, Ma Z. Metformin inhibits OCTN1- and OCTN2-mediated hepatic accumulation of doxorubicin and alleviates its hepatotoxicity in mice. Toxicology 2024; 503:153757. [PMID: 38364893 DOI: 10.1016/j.tox.2024.153757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/18/2024]
Abstract
Doxorubicin (DOX) is a widely used antitumor agent; however, its clinical application is limited by dose-related organ damage. Because organic cation/carnitine transporters (OCTN1 and OCTN2), which are critical for DOX uptake, are highly expressed in hepatocytes, we aimed to elucidate the role of these transporters in hepatic DOX uptake. The results indicated that inhibitors and RNA interference both significantly reduced DOX accumulation in HepG2 and HepaRG cells, suggesting that OCTN1/2 contribute substantially to DOX uptake by hepatocytes. To determine whether metformin (MET, an inhibitor of OCTN1 and OCTN2) ameliorates DOX-induced hepatotoxicity, we conducted in vitro and in vivo studies. MET (1-100 μM) inhibited DOX (500 nM) accumulation and cytotoxicity in vitro in a concentration-dependent manner. Furthermore, intravenous MET administration at 250 or 500 mg/kg or by gavage at 50, 100, or 200 mg/kg reduced DOX (8 mg/kg) accumulation in a dose-dependent manner in the mouse liver and attenuated the release of alanine aminotransferase, aspartate aminotransferase, and carboxylesterase 1. Additionally, MET reduced the distribution of DOX in the heart, liver, and kidney and enhanced the urinary elimination of DOX; however, it did not increase the nephric toxicity of DOX. In conclusion, our study demonstrated that MET alleviates DOX hepatotoxicity by inhibiting OCTN1- and OCTN2-mediated DOX uptake in vitro (mouse hepatocytes and HepaRG or HepG2 cells) and in mice.
Collapse
Affiliation(s)
- Mingyang Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yaodong Yi
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Binxin Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Hengbin Zhang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Minlei Dong
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Luexiang Yuan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hui Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Jinhua Institute of Zhejiang University, Jinhua, China
| | - Huidi Jiang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Jinhua Institute of Zhejiang University, Jinhua, China.
| | - Zhiyuan Ma
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China.
| |
Collapse
|
10
|
Kang MJ, Kim MJ, Kim A, Koo TS, Lee KR, Chae YJ. Pharmacokinetic interactions of niclosamide in rats: Involvement of organic anion transporters 1 and 3 and organic cation transporter 2. Chem Biol Interact 2024; 390:110886. [PMID: 38280639 DOI: 10.1016/j.cbi.2024.110886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/30/2023] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
Niclosamide is an anthelmintic drug with a long history of use and is generally safe and well tolerated in humans. As the conventional dose of niclosamide results in a low but certain level in systemic circulation, drug interactions with concomitant drugs should be considered. We aimed to investigate the interaction between niclosamide and drug transporters, as such information is currently limited. Niclosamide inhibited the transport activity of OATP1B1, OATP1B3, OAT1, OAT3, and OCT2 in vitro. Among them, the inhibitory effects on OAT1, OAT3, and OCT2 were strong, with IC50 values of less than 1 μM. When 3 mg/kg of niclosamide was co-administered to rats, systemic exposure to furosemide (a substrate of OAT1/3) and metformin (a substrate of OCT2) increased, and the renal clearance (CLr) of the drugs significantly decreased. These results suggest that niclosamide inhibits renal transporters, OAT1/3 and OCT2, not only in vitro but also in vivo, resulting in increased systemic exposure to the substrates of the transporters by strongly blocking the urinary elimination pathway in rats. The findings of this study will support a meticulous understanding of the transporter-mediated drug interactions of niclosamide and consequently aid in effective and safe use of niclosamide.
Collapse
Affiliation(s)
- Min-Ji Kang
- College of Pharmacy, Woosuk University, Wanju, 55338, Republic of Korea
| | - Min Ju Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Aeran Kim
- College of Pharmacy, Woosuk University, Wanju, 55338, Republic of Korea
| | - Tae-Sung Koo
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kyeong-Ryoon Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea; Department of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Yoon-Jee Chae
- College of Pharmacy, Woosuk University, Wanju, 55338, Republic of Korea; Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju, 55338, Republic of Korea.
| |
Collapse
|
11
|
Asano S, Kurosaki C, Mori Y, Shigemi R. Quantitative prediction of transporter-mediated drug-drug interactions using the mechanistic static pharmacokinetic (MSPK) model. Drug Metab Pharmacokinet 2024; 54:100531. [PMID: 38064927 DOI: 10.1016/j.dmpk.2023.100531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/21/2023] [Accepted: 10/02/2023] [Indexed: 02/06/2024]
Abstract
Guidance/guidelines on drug-drug interactions (DDIs) have been issued in Japan, the United States, and Europe. These guidance/guidelines provide decision trees for conducting metabolizing enzyme-mediated clinical DDI studies; however, the decision trees for transporter-mediated DDIs lack quantitative prediction methods. In this study, the accuracy of a net-effect mechanistic static pharmacokinetics (MSPK) model containing the fraction transported (ft) of transporters was examined to predict transporter-mediated DDIs. This study collected information on 25 oral drugs with new active reagents that were used in clinical DDI studies as perpetrators (42 cases) from drugs approved in Japan between April 2016 and June 2020. The AUCRs (AUC ratios with and without perpetrators) of victim drugs were predicted using the net-effect MSPK model. As a result, 83 and 95% of the predicted AUCRs were within 1.5- and 2-fold error in the observed AUCRs, respectively. In cases where the victims were statins in which pharmacokinetics several transporters are involved, 70 and 91% of the predicted AUCRs were within 1.5- and 2-fold errors, respectively. Therefore, the net-effect MSPK model was applicable for predicting the AUCRs of victims, which are substrates for multiple transporters.
Collapse
Affiliation(s)
- Satoshi Asano
- Japan Pharmaceutical Manufacturers Association, Nihonbashi Life Science Bldg, 2-3-11 Nihonbashi-honcho, Chuo-Ku, Tokyo, Japan; Teijin Pharma Limited, Toxicology & DMPK Development Research Group, 4-3-2, Asahigaoka, Hino, Tokyo, 191-8512, Japan.
| | - Chie Kurosaki
- Japan Pharmaceutical Manufacturers Association, Nihonbashi Life Science Bldg, 2-3-11 Nihonbashi-honcho, Chuo-Ku, Tokyo, Japan; FUJIFILM Toyama Chemical Co., Ltd, ADME-Tox Group, Bioanalytical Sciences Research Department, Toyama Research and Development Center, 4-1, Shimo-Okui 2-chome, Toyama-shi, Toyama, Japan
| | - Yuko Mori
- Japan Pharmaceutical Manufacturers Association, Nihonbashi Life Science Bldg, 2-3-11 Nihonbashi-honcho, Chuo-Ku, Tokyo, Japan; Pfizer R&D Japan, Clinical Pharmacology and Bioanalytics, Shinjuku Bunka Quint Bldg., 3-22-7, Yoyogi, Shibuya-ku, Tokyo, Japan
| | - Ryota Shigemi
- Japan Pharmaceutical Manufacturers Association, Nihonbashi Life Science Bldg, 2-3-11 Nihonbashi-honcho, Chuo-Ku, Tokyo, Japan; Bayer Yakuhin, Ltd, Preclinical Development, Breeze Tower, 2-4-9, Umeda, Kita-ku, Osaka, Japan
| |
Collapse
|
12
|
Isop LM, Neculau AE, Necula RD, Kakucs C, Moga MA, Dima L. Metformin: The Winding Path from Understanding Its Molecular Mechanisms to Proving Therapeutic Benefits in Neurodegenerative Disorders. Pharmaceuticals (Basel) 2023; 16:1714. [PMID: 38139841 PMCID: PMC10748332 DOI: 10.3390/ph16121714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Metformin, a widely prescribed medication for type 2 diabetes, has garnered increasing attention for its potential neuroprotective properties due to the growing demand for treatments for Alzheimer's, Parkinson's, and motor neuron diseases. This review synthesizes experimental and clinical studies on metformin's mechanisms of action and potential therapeutic benefits for neurodegenerative disorders. A comprehensive search of electronic databases, including PubMed, MEDLINE, Embase, and Cochrane library, focused on key phrases such as "metformin", "neuroprotection", and "neurodegenerative diseases", with data up to September 2023. Recent research on metformin's glucoregulatory mechanisms reveals new molecular targets, including the activation of the LKB1-AMPK signaling pathway, which is crucial for chronic administration of metformin. The pleiotropic impact may involve other stress kinases that are acutely activated. The precise role of respiratory chain complexes (I and IV), of the mitochondrial targets, or of the lysosomes in metformin effects remains to be established by further research. Research on extrahepatic targets like the gut and microbiota, as well as its antioxidant and immunomodulatory properties, is crucial for understanding neurodegenerative disorders. Experimental data on animal models shows promising results, but clinical studies are inconclusive. Understanding the molecular targets and mechanisms of its effects could help design clinical trials to explore and, hopefully, prove its therapeutic effects in neurodegenerative conditions.
Collapse
Affiliation(s)
- Laura Mihaela Isop
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania; (L.M.I.)
| | - Andrea Elena Neculau
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania; (L.M.I.)
| | - Radu Dan Necula
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania
| | - Cristian Kakucs
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania
| | - Marius Alexandru Moga
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania
| | - Lorena Dima
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania; (L.M.I.)
| |
Collapse
|
13
|
Galiero R, Caturano A, Vetrano E, Monda M, Marfella R, Sardu C, Salvatore T, Rinaldi L, Sasso FC. Precision Medicine in Type 2 Diabetes Mellitus: Utility and Limitations. Diabetes Metab Syndr Obes 2023; 16:3669-3689. [PMID: 38028995 PMCID: PMC10658811 DOI: 10.2147/dmso.s390752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most widespread diseases in Western countries, and its incidence is constantly increasing. Epidemiological studies have shown that in the next 20 years. The number of subjects affected by T2DM will double. In recent years, owing to the development and improvement in methods for studying the genome, several authors have evaluated the association between monogenic or polygenic genetic alterations and the development of metabolic diseases and complications. In addition, sedentary lifestyle and socio-economic and pandemic factors have a great impact on the habits of the population and have significantly contributed to the increase in the incidence of metabolic disorders, obesity, T2DM, metabolic syndrome, and liver steatosis. Moreover, patients with type 2 diabetes appear to respond to antihyperglycemic drugs. Only a minority of patients could be considered true non-responders. Thus, it appears clear that the main aim of precision medicine in T2DM is to identify patients who can benefit most from a specific drug class more than from the others. Precision medicine is a discipline that evaluates the applicability of genetic, lifestyle, and environmental factors to disease development. In particular, it evaluated whether these factors could affect the development of diseases and their complications, response to diet, lifestyle, and use of drugs. Thus, the objective is to find prevention models aimed at reducing the incidence of pathology and mortality and therapeutic personalized approaches, to obtain a greater probability of response and efficacy. This review aims to evaluate the applicability of precision medicine for T2DM, a healthcare burden in many countries.
Collapse
Affiliation(s)
- Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Teresa Salvatore
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
14
|
Swenson KS, Wang D, Jones AK, Nash MJ, O’Rourke R, Takahashi DL, Kievit P, Hennebold JD, Aagaard KM, Friedman JE, Jones KL, Rozance PJ, Brown LD, Wesolowski SR. Metformin Disrupts Signaling and Metabolism in Fetal Hepatocytes. Diabetes 2023; 72:1214-1227. [PMID: 37347736 PMCID: PMC10450827 DOI: 10.2337/db23-0089] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/20/2023] [Indexed: 06/24/2023]
Abstract
Metformin is used by women during pregnancy to manage diabetes and crosses the placenta, yet its effects on the fetus are unclear. We show that the liver is a site of metformin action in fetal sheep and macaques, given relatively abundant OCT1 transporter expression and hepatic uptake following metformin infusion into fetal sheep. To determine the effects of metformin action, we performed studies in primary hepatocytes from fetal sheep, fetal macaques, and juvenile macaques. Metformin increases AMP-activated protein kinase (AMPK) signaling, decreases mammalian target of rapamycin (mTOR) signaling, and decreases glucose production in fetal and juvenile hepatocytes. Metformin also decreases oxygen consumption in fetal hepatocytes. Unique to fetal hepatocytes, metformin activates stress pathways (e.g., increased PGC1A gene expression, NRF-2 protein abundance, and phosphorylation of eIF2α and CREB proteins) alongside perturbations in hepatokine expression (e.g., increased growth/differentiation factor 15 [GDF15] and fibroblast growth factor 21 [FGF21] expression and decreased insulin-like growth factor 2 [IGF2] expression). Similarly, in liver tissue from sheep fetuses infused with metformin in vivo, AMPK phosphorylation, NRF-2 protein, and PGC1A expression are increased. These results demonstrate disruption of signaling and metabolism, induction of stress, and alterations in hepatokine expression in association with metformin exposure in fetal hepatocytes. ARTICLE HIGHLIGHTS The major metformin uptake transporter OCT1 is expressed in the fetal liver, and fetal hepatic uptake of metformin is observed in vivo. Metformin activates AMPK, reduces glucose production, and decreases oxygen consumption in fetal hepatocytes, demonstrating similar effects as in juvenile hepatocytes. Unique to fetal hepatocytes, metformin activates metabolic stress pathways and alters the expression of secreted growth factors and hepatokines. Disruption of signaling and metabolism with increased stress pathways and reduced anabolic pathways by metformin in the fetal liver may underlie reduced growth in fetuses exposed to metformin.
Collapse
Affiliation(s)
- Karli S. Swenson
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Dong Wang
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Amanda K. Jones
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Michael J. Nash
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Rebecca O’Rourke
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Diana L. Takahashi
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR
| | - Jon D. Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR
| | - Kjersti M. Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine & Texas Children’s Hospital, Houston, TX
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Kenneth L. Jones
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Paul J. Rozance
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Laura D. Brown
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | | |
Collapse
|
15
|
Gagliardi A, Bajraktari-Sylejmani G, Barocelli E, Weiss J, Rigalli JP. Extracellular Vesicles as Surrogates for Drug Metabolism and Clearance: Promise vs. Reality. Life (Basel) 2023; 13:1745. [PMID: 37629602 PMCID: PMC10455864 DOI: 10.3390/life13081745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Drug-metabolizing enzymes (DMEs) and transporters play a major role in drug efficacy and safety. They are regulated at multiple levels and by multiple factors. Estimating their expression and activity could contribute to predicting drug pharmacokinetics and their regulation by drugs or pathophysiological situations. Determining the expression of these proteins in the liver, intestine, and kidney requires the collection of biopsy specimens. Instead, the isolation of extracellular vesicles (EVs), which are nanovesicles released by most cells and present in biological fluids, could deliver this information in a less invasive way. In this article, we review the use of EVs as surrogates for the expression and activity of DMEs, uptake, and efflux transporters. Preliminary evidence has been provided for a correlation between the expression of some enzymes and transporters in EVs and the tissue of origin. In some cases, data obtained in EVs reflect the induction of phase I-DMEs in the tissues. Further studies are required to elucidate to what extent the regulation of other DMEs and transporters in the tissues reflects in the EV cargo. If an association between tissues and their EVs is firmly established, EVs may represent a significant advancement toward precision therapy based on the biotransformation and excretion capacity of each individual.
Collapse
Affiliation(s)
- Anna Gagliardi
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Gzona Bajraktari-Sylejmani
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Elisabetta Barocelli
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Juan Pablo Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
16
|
Memon H, Abdulla F, Reljic T, Alnuaimi S, Serdarevic F, Asimi ZV, Kumar A, Semiz S. Effects of combined treatment of probiotics and metformin in management of Type 2 diabetes: A systematic review and meta-analysis. Diabetes Res Clin Pract 2023:110806. [PMID: 37369280 DOI: 10.1016/j.diabres.2023.110806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Lifestyle changes and dietary intervention, including the use of probiotics, can modulate dysbiosis of gut microbiome and contribute to the management of type 2 diabetes mellitus (T2DM). This systematic review and meta-analysis aim to assess the efficacy of metformin plus probiotics versus metformin alone on outcomes in patients with T2DM. METHODS We searched MEDLINE and EMBASE from inception to February 2023 to identify all randomized controlled trials (RCTs), which compared the use of metformin plus probiotics versus metformin alone in adult patients with T2DM. Data were summarized as mean differences (MD) with 95% confidence interval (CI) and pooled under the random effects model. Findings Fourteen RCTs (17 comparisons, 1009 patients) were included in this systematic review. Pooled results show a significant decrease in fasting glucose (FG) (MD=-0.64, 95% CI=-1.06, -0.22) and HbA1c (MD=-0.29, 95% CI=-0.47, -0.10) levels in patients with T2DM treated with metformin plus probiotics versus metformin alone. The addition of probiotics to metformin resulted in lower odds of gastrointestinal adverse events (Odds ratio=0.18, 95% CI=0.09, 0.3.8; I2=0%). CONCLUSIONS The addition of probiotics to metformin therapy is associated with improvement in T2DM outcomes. However, high-quality and adequately reported RCTs are needed in the future to confirm our findings.
Collapse
Affiliation(s)
- Hamda Memon
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Fatima Abdulla
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Tea Reljic
- Research Methodology and Biostatistics Core, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Saif Alnuaimi
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Fadila Serdarevic
- Sarajevo Medical School, University Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina; Department of Child and Adolescent Psychiatry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Zelija Velija Asimi
- Sarajevo Medical School, University Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina
| | - Ambuj Kumar
- Research Methodology and Biostatistics Core, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Sabina Semiz
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
17
|
Papadakos SP, Ferraro D, Carbone G, Frampton AE, Vennarecci G, Kykalos S, Schizas D, Theocharis S, Machairas N. The Emerging Role of Metformin in the Treatment of Hepatocellular Carcinoma: Is There Any Value in Repurposing Metformin for HCC Immunotherapy? Cancers (Basel) 2023; 15:3161. [PMID: 37370771 PMCID: PMC10295995 DOI: 10.3390/cancers15123161] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. There has been significant progress in understanding the risk factors and epidemiology of HCC during the last few decades, resulting in efficient preventative, diagnostic and treatment strategies. Type 2 diabetes mellitus (T2DM) has been demonstrated to be a major risk factor for developing HCC. Metformin is a widely used hypoglycemic agent for patients with T2DM and has been shown to play a potentially beneficial role in improving the survival of patients with HCC. Experimental and clinical studies evaluating the outcomes of metformin as an antineoplastic drug in the setting of HCC were reviewed. Pre-clinical evidence suggests that metformin may enhance the antitumor effects of immune checkpoint inhibitors (ICIs) and reverse the effector T cells' exhaustion. However, there is still limited clinical evidence regarding the efficacy of metformin in combination with ICIs for the treatment of HCC. We appraised and analyzed in vitro and animal studies that aimed to elucidate the mechanisms of action of metformin, as well as clinical studies that assessed its impact on the survival of HCC patients.
Collapse
Affiliation(s)
- Stavros P. Papadakos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Daniele Ferraro
- HPB Surgery and Liver Transplant Unit, AORN A. Cardarelli, 80131 Naples, Italy; (D.F.); (G.V.)
| | - Gabriele Carbone
- Department of General Surgery and Organ Transplantation, University of Rome “Sapienza”, 00161 Rome, Italy;
| | - Adam Enver Frampton
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London W12 0NN, UK;
- Oncology Section, Surrey Cancer Research Institute, Department of Clinical and Experimental Medicine, FHMS, University of Surrey, The Leggett Building, Daphne Jackson Road, Guildford GU2 7WG, UK
- HPB Surgical Unit, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK
| | - Giovanni Vennarecci
- HPB Surgery and Liver Transplant Unit, AORN A. Cardarelli, 80131 Naples, Italy; (D.F.); (G.V.)
| | - Stylianos Kykalos
- Second Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece;
| | - Dimitrios Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece;
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Nikolaos Machairas
- Second Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece;
| |
Collapse
|
18
|
Zeng H, Huang Y, Liu D, Xie T, Chen Z, Huang Q, Zhou X, Lai X, Liu J. Interaction between OCT1 and LPIN1 polymorphisms and response to pioglitazone-metformin tablets in patients with polycystic ovary syndrome. Chin Med J (Engl) 2023:00029330-990000000-00627. [PMID: 37232475 DOI: 10.1097/cm9.0000000000002322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Indexed: 05/27/2023] Open
Affiliation(s)
- Haixia Zeng
- Department of Endocrinology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yanting Huang
- Department of Endocrinology, Xiangyang First People's Hospital, Xiangyang, Hubei 441099, China
| | - Dengke Liu
- Department of Endocrinology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Tianqin Xie
- Department of Endocrinology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zheng Chen
- Department of Endocrinology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Qiulan Huang
- Department of Endocrinology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaojun Zhou
- School of Public Health, Nanchang University, School of Public Health, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xiaoyang Lai
- Department of Endocrinology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jianping Liu
- Department of Endocrinology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
19
|
Gurumayum S, Bharadwaj S, Sheikh Y, Barge SR, Saikia K, Swargiary D, Ahmed SA, Thakur D, Borah JC. Taxifolin-3-O-glucoside from Osbeckia nepalensis Hook. mediates antihyperglycemic activity in CC1 hepatocytes and in diabetic Wistar rats via regulating AMPK/G6Pase/PEPCK signaling axis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115936. [PMID: 36403743 DOI: 10.1016/j.jep.2022.115936] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/01/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Osbeckia nepalensis Hook. f. is an ICMR documented plant well known for its antidiabetic uses among the folk people of Northeast Region of India. In-depth study with scientific substantiation of the plant may uphold the therapeutic potential against the treatment of type 2 diabetes mellitus (T2DM). AIM OF THE STUDY The present study evaluates the traditionally claimed prophylactic potential of O. nepalensis and its extracts along with the isolated compound taxifolin-3-O-glucoside (TG) against the downregulation of T2DM related hepatic gluconeogenesis through in vitro, in vivo and in silico conditions as a means of ameliorating hyperglycemia. MATERIALS AND METHODS Antidiabetic potential of O. nepalensis was carried out in both CC1 hepatocytes (in vitro) and STZ-induced diabetic male Wistar rats (in vivo). Enriched bioactive fraction and bioactive molecules were isolated through bioactivity-guided fractionation, yielding two major molecules, taxifolin-3-O-glucoside and quercitin-3-O-rhamnoside. The bioactivity of taxifolin-3-O-glucoside was validated through immunoblotting techniques aided by in silico molecular docking and simulations. RESULTS Methanolic extract of O. nepalensis and taxifolin-3-O-glucoside (TG) isolated thereof enhanced the uptake of glucose in CC1 hepatocytes and downregulates the gluconeogenic enzymes (G6Pase and PEPCK) and its related transcription factors (FOXO1, HNF4α and PGC1α) through the stimulation of AMPK phosphorylation in in vitro condition. Moreover, in in vivo experiments, the in vitro most active fraction BuSFr1 (consisting of the two active major compounds taxifolin-3-O-glucoside and quercitin-3-O-rhamnoside) exhibited a substantial decrease in elevated blood glucose level and increase the glucose tolerance as well as plasma insulin level. In silico molecular docking and simulations for TG with the protein G6Pase inferred the docking sites and stability and showed taxifolin-3-O-glucoside as more potent and non-toxic as compared to quercitin-3-O-rhamnoside. CONCLUSION The traditionally claimed antidiabetic effect of O. nepalensis has been proved to be effective in lowering the blood glucose level through in vitro, in vivo and in silico analysis which will pave a way for the development of antidiabetic phytopharmaceutical drugs which can be validated through further clinical studies.
Collapse
Affiliation(s)
- Shalini Gurumayum
- Chemical Biology Laboratory 1, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Guwahati, Assam, 781035, India; Department of Biotechnology, Gauhati University, Guwahati, 14, Assam, India
| | - Simanta Bharadwaj
- Chemical Biology Laboratory 1, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Guwahati, Assam, 781035, India
| | - Yunus Sheikh
- Chemical Biology Laboratory 1, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Guwahati, Assam, 781035, India
| | - Sagar R Barge
- Chemical Biology Laboratory 1, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Guwahati, Assam, 781035, India
| | - Kangkon Saikia
- Microbial Biotechnology Laboratory, Institute of Advanced Study in Science and Technology, India
| | - Deepsikha Swargiary
- Chemical Biology Laboratory 1, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Guwahati, Assam, 781035, India
| | - Semim Akhtar Ahmed
- Chemical Biology Laboratory 1, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Guwahati, Assam, 781035, India
| | - Debajit Thakur
- Microbial Biotechnology Laboratory, Institute of Advanced Study in Science and Technology, India
| | - Jagat C Borah
- Chemical Biology Laboratory 1, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Guwahati, Assam, 781035, India.
| |
Collapse
|
20
|
Huang Z, Shen Y, Liu W, Yang Y, Guo L, Yan Q, Wei C, Guo Q, Fan X, Ma W. Berberine targets the electron transport chain complex I and reveals the landscape of OXPHOS dependency in acute myeloid leukemia with IDH1 mutation. Chin J Nat Med 2023; 21:136-145. [PMID: 36871981 DOI: 10.1016/s1875-5364(23)60391-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 03/07/2023]
Abstract
Metabolic reprogramming, a newly recognized trait of tumor biology, is an intensively studied prospect for oncology medicines. For numerous tumors and cancer cell subpopulations, oxidative phosphorylation (OXPHOS) is essential for their biosynthetic and bioenergetic functions. Cancer cells with mutations in isocitrate dehydrogenase 1 (IDH1) exhibit differentiation arrest, epigenetic and transcriptional reprogramming, and sensitivity to mitochondrial OXPHOS inhibitors. In this study, we report that berberine, which is widely used in China to treat intestinal infections, acted solely at the mitochondrial electron transport chain (ETC) complex I, and that its association with IDH1 mutant inhibitor (IDH1mi) AG-120 decreased mitochondrial activity and enhanced antileukemic effect in vitro andin vivo. Our study gives a scientific rationale for the therapy of IDH1 mutant acute myeloid leukemia (AML) patients using combinatory mitochondrial targeted medicines, particularly those who are resistant to or relapsing from IDH1mi.
Collapse
Affiliation(s)
- Zhe Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; Department of Pediatrics, the Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou 646000, China
| | - Yunfu Shen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Wenjun Liu
- Department of Pediatrics, the Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou 646000, China
| | - Yan Yang
- Department of Pediatrics, the Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou 646000, China
| | - Ling Guo
- Department of Pediatrics, the Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou 646000, China
| | - Qin Yan
- Department of Pediatrics, the Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou 646000, China
| | - Chengming Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Qulian Guo
- Department of Pediatrics, the Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou 646000, China
| | - Xianming Fan
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
21
|
Banerjee S, Ray S. Circadian medicine for aging attenuation and sleep disorders: Prospects and challenges. Prog Neurobiol 2023; 220:102387. [PMID: 36526042 DOI: 10.1016/j.pneurobio.2022.102387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/17/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Aging causes progressive deterioration of daily rhythms in behavioral and metabolic processes and disruption in the regular sleep-wake cycle. Circadian disruption is directly related to diverse age-induced health abnormalities. Rising evidence from various organisms shows that core clock gene mutations cause premature aging, reduced lifespan, and sleeping irregularities. Improving the clock functions and correcting its disruption by pharmacological interventions or time-regulated feeding patterns could be a novel avenue for effective clinical management of aging and sleep disorders. To this end, many drugs for sleep disorders and anti-aging compounds interact with the core clock machinery and alter the circadian output. Evaluation of dosing time-dependency and circadian regulation of drug metabolism for therapeutic improvement of the existing drugs is another fundamental facet of chronomedicine. Multiple studies have demonstrated dose-dependent manipulation of the circadian period and phase-shifting by pharmacologically active compounds. The chronobiology research field is gradually moving towards the development of novel therapeutic strategies based on targeting the molecular clock or dosing time-oriented medications. However, such translational research ventures would require more experimental evidence from studies on humans. This review discusses the impact of circadian rhythms on aging and sleep, emphasizing the potentiality of circadian medicine in aging attenuation and sleep disorders.
Collapse
Affiliation(s)
- Srishti Banerjee
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Sandipan Ray
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
22
|
Research Progress of Population Pharmacokinetic of Metformin. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4071111. [PMID: 36578804 PMCID: PMC9792241 DOI: 10.1155/2022/4071111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/21/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
Metformin is commonly used as first-line treatment for T2DM (type2 diabetes mellitus). Owing to the high pharmacokinetic (PK) variability, several population pharmacokinetic (PPK) models have been developed for metformin to explore potential covariates that affect its pharmacokinetic variation. This comprehensive review summarized the published PPK studies of metformin, aimed to summarize PPK models of metformin. Most studies described metformin pharmacokinetics as a 2-compartment (2-CMT) model with 4 study describing its pharmacokinetics as 1-compartment (1-CMT). Studies on metformin PPK have shown that obesity, creatinine clearance (CLCr), gene polymorphism, degree of renal function damage, and pathological conditions all have a certain impact on the PK parameters of metformin. It is particularly important to formulate individualized dosing regimens. For future PPK studies of metformin, we believe that more attention should be paid to special populations.
Collapse
|
23
|
Takeshita Y, Tanaka T, Takayama H, Kita Y, Goto H, Nakano Y, Saito Y, Takamura T. Circulating selenoprotein P levels predict glucose-lowering and insulinotropic effects of metformin, but not alogliptin: A post-hoc analysis. J Diabetes Investig 2022; 14:230-235. [PMID: 36479595 PMCID: PMC9889665 DOI: 10.1111/jdi.13949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/24/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
AIMS/INTRODUCTION Selenoprotein P (SeP; encoded by SEPP1 in humans) is a hepatokine that causes impaired insulin secretion and insulin resistance. Metformin downregulates SELENOP promoter activity through an adenosine monophosphate-activated kinase-forkhead box protein O3a pathway in hepatocytes. This study aimed to test our hypothesis that circulating SeP levels are associated with the glucose-lowering effect of metformin in humans. MATERIALS AND METHODS A total of 84 participants with poorly controlled type 2 diabetes were randomly assigned to receive metformin (1,000 mg, twice daily) or a dipeptidyl peptidase-4 inhibitor, alogliptin (25 mg, once daily) for 12 weeks. We tested metformin and alogliptin on SeP levels and factors associated therewith as a post-hoc analysis. RESULTS Both metformin and aloglipitin did not change the SeP levels. Although metformin significantly increased the insulin secretory index secretory units of islets in transplantation only in participants with higher baseline SeP (>3.87), both agents similarly reduced fasting plasma glucose and glycated hemoglobin. SeP levels at baseline were correlated negatively with changes in SeP (r = -0.484, P = 0.004) and fasting plasma glucose (r = -0.433, P = 0.011), and positively with changes in C-peptide immunoreactivity (r = 0.420, P = 0.017) and secretory units of islets in transplantation (r = 0.388, P = 0.028) in the metformin, but not alogliptin, group. CONCLUSIONS Higher baseline levels of SeP significantly predicted metformin-mediated, but not alogliptin-mediated, glucose-lowering and insulinotropic effects. Serum SeP levels might be a novel biomarker for predicting the outcomes of metformin therapy, which might be helpful in tailoring diabetes medication.
Collapse
Affiliation(s)
- Yumie Takeshita
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Takeo Tanaka
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Hiroaki Takayama
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Yuki Kita
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Hisanori Goto
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Yujiro Nakano
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical SciencesTohoku UniversitySendaiJapan
| | - Toshinari Takamura
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaJapan
| |
Collapse
|
24
|
Li S, Xu B, Fan S, Kang B, Deng L, Chen D, Yang B, Tang F, He Z, Xue Y, Zhou JC. Effects of single-nucleotide polymorphism on the pharmacokinetics and pharmacodynamics of metformin. Expert Rev Clin Pharmacol 2022; 15:1107-1117. [PMID: 36065506 DOI: 10.1080/17512433.2022.2118714] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Metformin has been recognized as the first-choice drug for type 2 diabetes mellitus (T2DM). The potency of metformin in the treatment of type 2 diabetes has always been in the spotlight and shown significant individual differences. Based on previous studies, the efficacy of metformin is related to the single-nucleotide polymorphisms of transporter genes carried by patients, amongst which a variety of gene polymorphisms of transporter and target protein genes affect the effectiveness and adverse repercussion of metformin. AREAS COVERED Here, we reviewed the current knowledge about gene polymorphisms impacting metformin efficacy based on transporter and drug target proteins. EXPERT OPINION The reason for the difference in clinical drug potency of metformin can be attributed to the gene polymorphism of drug transporters and drug target proteins in the human body. Substantial evidence shows that genetic polymorphisms in transporters such as organic cation transporter 1 (OCT1) and organic cation transporter 2 (OCT2) affect the glucose-lowering effectiveness of metformin. However, optimization of individualized dosing regimens of metformin is necessary to clarify the role of several polymorphisms.
Collapse
Affiliation(s)
- Shaoqian Li
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Bo Xu
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shangzhi Fan
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Bo Kang
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Lijing Deng
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Danjun Chen
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Bo Yang
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Fan Tang
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zunbo He
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Department of Anesthesiology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yong Xue
- The Second Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jie-Can Zhou
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
25
|
Landry DA, Yakubovich E, Cook DP, Fasih S, Upham J, Vanderhyden BC. Metformin prevents age-associated ovarian fibrosis by modulating the immune landscape in female mice. SCIENCE ADVANCES 2022; 8:eabq1475. [PMID: 36054356 PMCID: PMC10848964 DOI: 10.1126/sciadv.abq1475] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/20/2022] [Indexed: 05/20/2023]
Abstract
Ovarian fibrosis is a pathological condition associated with aging and is responsible for a variety of ovarian dysfunctions. Given the known contributions of tissue fibrosis to tumorigenesis, it is anticipated that ovarian fibrosis may contribute to ovarian cancer risk. We recently reported that diabetic postmenopausal women using metformin had ovarian collagen abundance and organization that were similar to premenopausal ovaries from nondiabetic women. In this study, we investigated the effects of aging and metformin on mouse ovarian fibrosis at a single-cell level. We discovered that metformin treatment prevented age-associated ovarian fibrosis by modulating the proportion of fibroblasts, myofibroblasts, and immune cells. Senescence-associated secretory phenotype (SASP)-producing fibroblasts increased in aged ovaries, and a unique metformin-responsive subpopulation of macrophages emerged in aged mice treated with metformin. The results demonstrate that metformin can modulate specific populations of immune cells and fibroblasts to prevent age-associated ovarian fibrosis and offers a new strategy to prevent ovarian fibrosis.
Collapse
Affiliation(s)
- David A. Landry
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Edward Yakubovich
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - David P. Cook
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Sijyl Fasih
- Department of Physics and School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON, Canada
| | - Jeremy Upham
- Department of Physics and School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON, Canada
| | - Barbara C. Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
26
|
Nasykhova YA, Barbitoff YA, Tonyan ZN, Danilova MM, Nevzorov IA, Komandresova TM, Mikhailova AA, Vasilieva TV, Glavnova OB, Yarmolinskaya MI, Sluchanko EI, Glotov AS. Genetic and Phenotypic Factors Affecting Glycemic Response to Metformin Therapy in Patients with Type 2 Diabetes Mellitus. Genes (Basel) 2022; 13:genes13081310. [PMID: 35893047 PMCID: PMC9330240 DOI: 10.3390/genes13081310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 12/10/2022] Open
Abstract
Metformin is an oral hypoglycemic agent widely used in clinical practice for treatment of patients with type 2 diabetes mellitus (T2DM). The wide interindividual variability of response to metformin therapy was shown, and recently the impact of several genetic variants was reported. To assess the independent and combined effect of the genetic polymorphism on glycemic response to metformin, we performed an association analysis of the variants in ATM, SLC22A1, SLC47A1, and SLC2A2 genes with metformin response in 299 patients with T2DM. Likewise, the distribution of allele and genotype frequencies of the studied gene variants was analyzed in an extended group of patients with T2DM (n = 464) and a population group (n = 129). According to our results, one variant, rs12208357 in the SLC22A1 gene, had a significant impact on response to metformin in T2DM patients. Carriers of TT genotype and T allele had a lower response to metformin compared to carriers of CC/CT genotypes and C allele (p-value = 0.0246, p-value = 0.0059, respectively). To identify the parameters that had the greatest importance for the prediction of the therapy response to metformin, we next built a set of machine learning models, based on the various combinations of genetic and phenotypic characteristics. The model based on a set of four parameters, including gender, rs12208357 genotype, familial T2DM background, and waist–hip ratio (WHR) showed the highest prediction accuracy for the response to metformin therapy in patients with T2DM (AUC = 0.62 in cross-validation). Further pharmacogenetic studies may aid in the discovery of the fundamental mechanisms of type 2 diabetes, the identification of new drug targets, and finally, it could advance the development of personalized treatment.
Collapse
Affiliation(s)
- Yulia A. Nasykhova
- D. O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, 199034 Saint-Petersburg, Russia; (Y.A.N.); (Y.A.B.); (Z.N.T.); (M.M.D.); (I.A.N.); (A.A.M.); (O.B.G.); (M.I.Y.)
| | - Yury A. Barbitoff
- D. O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, 199034 Saint-Petersburg, Russia; (Y.A.N.); (Y.A.B.); (Z.N.T.); (M.M.D.); (I.A.N.); (A.A.M.); (O.B.G.); (M.I.Y.)
- St. Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Ziravard N. Tonyan
- D. O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, 199034 Saint-Petersburg, Russia; (Y.A.N.); (Y.A.B.); (Z.N.T.); (M.M.D.); (I.A.N.); (A.A.M.); (O.B.G.); (M.I.Y.)
| | - Maria M. Danilova
- D. O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, 199034 Saint-Petersburg, Russia; (Y.A.N.); (Y.A.B.); (Z.N.T.); (M.M.D.); (I.A.N.); (A.A.M.); (O.B.G.); (M.I.Y.)
| | - Ivan A. Nevzorov
- D. O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, 199034 Saint-Petersburg, Russia; (Y.A.N.); (Y.A.B.); (Z.N.T.); (M.M.D.); (I.A.N.); (A.A.M.); (O.B.G.); (M.I.Y.)
| | | | - Anastasiia A. Mikhailova
- D. O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, 199034 Saint-Petersburg, Russia; (Y.A.N.); (Y.A.B.); (Z.N.T.); (M.M.D.); (I.A.N.); (A.A.M.); (O.B.G.); (M.I.Y.)
| | | | - Olga B. Glavnova
- D. O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, 199034 Saint-Petersburg, Russia; (Y.A.N.); (Y.A.B.); (Z.N.T.); (M.M.D.); (I.A.N.); (A.A.M.); (O.B.G.); (M.I.Y.)
| | - Maria I. Yarmolinskaya
- D. O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, 199034 Saint-Petersburg, Russia; (Y.A.N.); (Y.A.B.); (Z.N.T.); (M.M.D.); (I.A.N.); (A.A.M.); (O.B.G.); (M.I.Y.)
| | | | - Andrey S. Glotov
- D. O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, 199034 Saint-Petersburg, Russia; (Y.A.N.); (Y.A.B.); (Z.N.T.); (M.M.D.); (I.A.N.); (A.A.M.); (O.B.G.); (M.I.Y.)
- Correspondence: ; Tel.: +7-9117832003
| |
Collapse
|
27
|
Metabolic Action of Metformin. Pharmaceuticals (Basel) 2022; 15:ph15070810. [PMID: 35890109 PMCID: PMC9317619 DOI: 10.3390/ph15070810] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/14/2022] [Accepted: 06/26/2022] [Indexed: 12/12/2022] Open
Abstract
Metformin, a cheap and safe biguanide derivative, due to its ability to influence metabolism, is widely used as a first-line drug for type 2 diabetes (T2DM) treatment. Therefore, the aim of this review was to present the updated biochemical and molecular effects exerted by the drug. It has been well explored that metformin suppresses hepatic glucose production in both AMPK-independent and AMPK-dependent manners. Substantial scientific evidence also revealed that its action is related to decreased secretion of lipids from intestinal epithelial cells, as well as strengthened oxidation of fatty acids in adipose tissue and muscles. It was recognized that metformin’s supra-therapeutic doses suppress mitochondrial respiration in intestinal epithelial cells, whereas its therapeutic doses elevate cellular respiration in the liver. The drug is also suggested to improve systemic insulin sensitivity as a result of alteration in gut microbiota composition, maintenance of intestinal barrier integrity, and alleviation of low-grade inflammation.
Collapse
|
28
|
Cloning and Functional Characterization of Dog OCT1 and OCT2: Another Step in Exploring Species Differences in Organic Cation Transporters. Int J Mol Sci 2022; 23:ijms23095100. [PMID: 35563491 PMCID: PMC9102066 DOI: 10.3390/ijms23095100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/21/2022] Open
Abstract
OCT1 and OCT2 are polyspecific membrane transporters that are involved in hepatic and renal drug clearance in humans and mice. In this study, we cloned dog OCT1 and OCT2 and compared their function to the human and mouse orthologs. We used liver and kidney RNA to clone dog OCT1 and OCT2. The cloned and the publicly available RNA-Seq sequences differed from the annotated exon-intron structure of OCT1 in the dog genome CanFam3.1. An additional exon between exons 2 and 3 was identified and confirmed by sequencing in six additional dog breeds. Next, dog OCT1 and OCT2 were stably overexpressed in HEK293 cells and the transport kinetics of five drugs were analyzed. We observed strong differences in the transport kinetics between dog and human orthologs. Dog OCT1 transported fenoterol with 12.9-fold higher capacity but 14.3-fold lower affinity (higher KM) than human OCT1. Human OCT1 transported ipratropium with 5.2-fold higher capacity but 8.4-fold lower affinity than dog OCT1. Compared to human OCT2, dog OCT2 showed 10-fold lower transport of fenoterol and butylscopolamine. In conclusion, the functional characterization of dog OCT1 and OCT2 reported here may have implications when using dogs as pre-clinical models as well as for drug therapy in dogs.
Collapse
|
29
|
Meyer MJ, Schreier PCF, Basaran M, Vlasova S, Seitz T, Brockmöller J, Zdrazil B, Tzvetkov MV. Amino acids in transmembrane helix 1 confer major functional differences between human and mouse orthologs of the polyspecific membrane transporter OCT1. J Biol Chem 2022; 298:101974. [PMID: 35469921 PMCID: PMC9130538 DOI: 10.1016/j.jbc.2022.101974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 01/04/2023] Open
Abstract
Organic cation transporter 1 (OCT1) is a membrane transporter that affects hepatic uptake of cationic and weakly basic drugs. OCT1 transports structurally highly diverse substrates. The mechanisms conferring this polyspecificity are unknown. Here, we analyzed differences in transport kinetics between human and mouse OCT1 orthologs to identify amino acids that contribute to the polyspecificity of OCT1. Following stable transfection of HEK293 cells, we observed more than twofold differences in the transport kinetics of 22 out of 28 tested substrates. We found that the β2-adrenergic drug fenoterol was transported with eightfold higher affinity but at ninefold lower capacity by human OCT1. In contrast, the anticholinergic drug trospium was transported with 11-fold higher affinity but at ninefold lower capacity by mouse Oct1. Using human–mouse chimeric constructs and site-directed mutagenesis, we identified nonconserved amino acids Cys36 and Phe32 as responsible for the species-specific differences in fenoterol and trospium uptake. Substitution of Cys36 (human) to Tyr36 (mouse) caused a reversal of the affinity and capacity of fenoterol but not trospium uptake. Substitution of Phe32 to Leu32 caused reversal of trospium but not fenoterol uptake kinetics. Comparison of the uptake of structurally similar β2-adrenergics and molecular docking analyses indicated the second phenol ring, 3.3 to 4.8 Å from the protonated amino group, as essential for the affinity for fenoterol conferred by Cys36. This is the first study to report single amino acids as determinants of OCT1 polyspecificity. Our findings suggest that structure–function data of OCT1 is not directly transferrable between substrates or species.
Collapse
Affiliation(s)
- Marleen J Meyer
- Department of General Pharmacology, Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| | - Pascale C F Schreier
- Department of General Pharmacology, Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| | - Mert Basaran
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Stefaniia Vlasova
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Tina Seitz
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Jürgen Brockmöller
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Barbara Zdrazil
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Mladen V Tzvetkov
- Department of General Pharmacology, Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
30
|
Dia M, Leon C, Chanon S, Bendridi N, Gomez L, Rieusset J, Thibault H, Paillard M. Effect of Metformin on T2D-Induced MAM Ca 2+ Uncoupling and Contractile Dysfunction in an Early Mouse Model of Diabetic HFpEF. Int J Mol Sci 2022; 23:ijms23073569. [PMID: 35408928 PMCID: PMC8998623 DOI: 10.3390/ijms23073569] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 01/27/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is a leading complication in type 2 diabetes patients. Recently, we have shown that the reticulum-mitochondria Ca2+ uncoupling is an early and reversible trigger of the cardiac dysfunction in a diet-induced mouse model of DCM. Metformin is a first-line antidiabetic drug with recognized cardioprotective effect in myocardial infarction. Whether metformin could prevent the progression of DCM remains not well understood. We therefore investigated the effect of a chronic 6-week metformin treatment on the reticulum-mitochondria Ca2+ coupling and the cardiac function in our high-fat high-sucrose diet (HFHSD) mouse model of DCM. Although metformin rescued the glycemic regulation in the HFHSD mice, it did not preserve the reticulum-mitochondria Ca2+ coupling either structurally or functionally. Metformin also did not prevent the progression towards cardiac dysfunction, i.e., cardiac hypertrophy and strain dysfunction. In summary, despite its cardioprotective role, metformin is not sufficient to delay the progression to early DCM.
Collapse
Affiliation(s)
- Maya Dia
- Laboratoire CarMeN—IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, Univ-Lyon, 69500 Bron, France; (M.D.); (C.L.); (L.G.); (H.T.)
| | - Christelle Leon
- Laboratoire CarMeN—IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, Univ-Lyon, 69500 Bron, France; (M.D.); (C.L.); (L.G.); (H.T.)
| | - Stephanie Chanon
- Laboratoire CarMeN—MERISM Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, Univ-Lyon, 69921 Oullins, France; (S.C.); (N.B.); (J.R.)
| | - Nadia Bendridi
- Laboratoire CarMeN—MERISM Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, Univ-Lyon, 69921 Oullins, France; (S.C.); (N.B.); (J.R.)
| | - Ludovic Gomez
- Laboratoire CarMeN—IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, Univ-Lyon, 69500 Bron, France; (M.D.); (C.L.); (L.G.); (H.T.)
| | - Jennifer Rieusset
- Laboratoire CarMeN—MERISM Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, Univ-Lyon, 69921 Oullins, France; (S.C.); (N.B.); (J.R.)
| | - Helene Thibault
- Laboratoire CarMeN—IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, Univ-Lyon, 69500 Bron, France; (M.D.); (C.L.); (L.G.); (H.T.)
- Hospices Civils de Lyon, 69500 Bron, France
| | - Melanie Paillard
- Laboratoire CarMeN—IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, Univ-Lyon, 69500 Bron, France; (M.D.); (C.L.); (L.G.); (H.T.)
- Correspondence: ; Tel.: +33-(0)4-78-78-56-10
| |
Collapse
|
31
|
The Study of the Transport Mechanism of Isorhynchophylline in Liver. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3867323. [PMID: 35096110 PMCID: PMC8791713 DOI: 10.1155/2022/3867323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/18/2022]
Abstract
To investigate the transport mechanism of isorhynchophylline (IRN) by using the specific inhibitors of organic cation transporters (OCTs) and organic anion transporting polypeptides (OATPs) and attempt illustrate the metabolic mechanism of IRN in the liver. All animals were randomly divided into three groups: control group (only inject IRN), RIF group (inject IRN and rifampicin), and ADR group (inject IRN and adrenalone). The control group was injected with IRN via the caudal vein. The RIF group was injected with rifampicin (RIF) by gavage, and after 1 h, IRN was injected into the caudal vein. Similarly, the ADR group received adrenalone by the caudal vein, and after 0.5 h, IRN was injected into the caudal vein. Thereafter, blood samples were obtained by the heart punctures at 90 min, 180 min, and 300 min following drug administration. Rats were sacrificed at 300 min after drug administration; then, the liver tissue was harvested. The level of IRN was measured by using high-performance liquid chromatography (HPLC), and the Kp values were calculated. After RIF administration (OATPs inhibitors), the Kp value of IRN was slightly decreased when compared with that of the control group. Meanwhile, the Kp value of IRN was dramatically reduced compared to that of the control group following ADR administration (OCTs inhibitors). The results suggested that OCTs have mainly participated in the hepatic uptake process of IRN.
Collapse
|
32
|
Shirasaka Y, Seki M, Hatakeyama M, Kurokawa Y, Uchiyama H, Takemura M, Yasugi Y, Kishimoto H, Tamai I, Wang J, Inoue K. Multiple Transport Mechanisms Involved in the Intestinal Absorption of Metformin: Impact on the Nonlinear Absorption Kinetics. J Pharm Sci 2022; 111:1531-1541. [DOI: 10.1016/j.xphs.2022.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 01/11/2023]
|
33
|
Yoshida J, Ohishi T, Abe H, Ohba SI, Inoue H, Usami I, Amemiya M, Oriez R, Sakashita C, Dan S, Sugawara M, Kawaguchi T, Ueno J, Asano Y, Ikeda A, Takamatsu M, Amori G, Kondoh Y, Honda K, Osada H, Noda T, Watanabe T, Shimizu T, Shibasaki M, Kawada M. Mitochondrial complex I inhibitors suppress tumor growth through concomitant acidification of the intra- and extracellular environment. iScience 2021; 24:103497. [PMID: 34934919 DOI: 10.1016/j.isci.2021.103497] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/25/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
The disruption of the tumor microenvironment (TME) is a promising anti-cancer strategy, but its effective targeting for solid tumors remains unknown. Here, we investigated the anti-cancer activity of the mitochondrial complex I inhibitor intervenolin (ITV), which modulates the TME independent of energy depletion. By modulating lactate metabolism, ITV induced the concomitant acidification of the intra- and extracellular environment, which synergistically suppressed S6K1 activity in cancer cells through protein phosphatase-2A-mediated dephosphorylation via G-protein-coupled receptor(s). Other complex I inhibitors including metformin and rotenone were also found to exert the same effect through an energy depletion-independent manner as ITV. In mouse and patient-derived xenograft models, ITV was found to suppress tumor growth and its mode of action was further confirmed. The TME is usually acidic owing to glycolytic cancer cell metabolism, and this condition is more susceptible to complex I inhibitors. Thus, we have demonstrated a potential treatment strategy for solid tumors.
Collapse
Affiliation(s)
- Junjiro Yoshida
- Laboratory of Oncology, Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Tokyo 141-0021, Japan
| | - Tomokazu Ohishi
- Numazu Branch and Section of Animal Resources, Institute of Microbial Chemistry (BIKAKEN), Numazu-shi, Shizuoka 410-0301, Japan
| | - Hikaru Abe
- Laboratory of Synthetic Organic Chemistry, Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Tokyo 141-0021, Japan
| | - Shun-Ichi Ohba
- Numazu Branch and Section of Animal Resources, Institute of Microbial Chemistry (BIKAKEN), Numazu-shi, Shizuoka 410-0301, Japan
| | - Hiroyuki Inoue
- Numazu Branch and Section of Animal Resources, Institute of Microbial Chemistry (BIKAKEN), Numazu-shi, Shizuoka 410-0301, Japan
| | - Ihomi Usami
- Numazu Branch and Section of Animal Resources, Institute of Microbial Chemistry (BIKAKEN), Numazu-shi, Shizuoka 410-0301, Japan
| | - Masahide Amemiya
- Laboratory of Oncology, Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Tokyo 141-0021, Japan
| | - Raphael Oriez
- Laboratory of Synthetic Organic Chemistry, Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Tokyo 141-0021, Japan
| | - Chiharu Sakashita
- Laboratory of Synthetic Organic Chemistry, Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Tokyo 141-0021, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Minoru Sugawara
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Tokuichi Kawaguchi
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Junko Ueno
- Department of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Yuko Asano
- Department of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Ami Ikeda
- Department of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Manabu Takamatsu
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Gulanbar Amori
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Yasumitsu Kondoh
- Chemical Biology Research Group & Drug Discovery Chemical Bank Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Kaori Honda
- Chemical Biology Research Group & Drug Discovery Chemical Bank Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group & Drug Discovery Chemical Bank Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Tetsuo Noda
- Director's Room, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Takumi Watanabe
- Laboratory of Synthetic Organic Chemistry, Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Tokyo 141-0021, Japan
| | - Takao Shimizu
- Department of Lipid Signaling, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo 162-8655, Japan
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Laboratory of Virology, Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Tokyo 141-0021, Japan
| | - Masakatsu Shibasaki
- Laboratory of Synthetic Organic Chemistry, Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Tokyo 141-0021, Japan
| | - Manabu Kawada
- Laboratory of Oncology, Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Tokyo 141-0021, Japan
- Numazu Branch and Section of Animal Resources, Institute of Microbial Chemistry (BIKAKEN), Numazu-shi, Shizuoka 410-0301, Japan
| |
Collapse
|
34
|
Kim HW. Metabolomic Approaches to Investigate the Effect of Metformin: An Overview. Int J Mol Sci 2021; 22:10275. [PMID: 34638615 PMCID: PMC8508882 DOI: 10.3390/ijms221910275] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Metformin is the first-line antidiabetic drug that is widely used in the treatment of type 2 diabetes mellitus (T2DM). Even though the various therapeutic potential of metformin treatment has been reported, as well as the improvement of insulin sensitivity and glucose homeostasis, the mechanisms underlying those benefits are still not fully understood. In order to explain the beneficial effects on metformin treatment, various metabolomics analyses have been applied to investigate the metabolic alterations in response to metformin treatment, and significant systemic metabolome changes were observed in biofluid, tissues, and cells. In this review, we compare the latest metabolomic research including clinical trials, animal models, and in vitro studies comprehensively to understand the overall changes of metabolome on metformin treatment.
Collapse
Affiliation(s)
- Hyun Woo Kim
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
35
|
Tan HJ, Ling WC, Chua AL, Lee SK. Oral epigallocatechin gallate reduces intestinal nadolol absorption via modulation of Oatp1a5 and Oct1 transcriptional levels in spontaneously hypertensive rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153623. [PMID: 34303263 DOI: 10.1016/j.phymed.2021.153623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 04/27/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Concurrent use of epigallocatechin-3-gallate (EGCG) and medication may lead to botanical-drug interactions, subsequently therapeutic failure or drug toxicity. It has been reported that EGCG reduces plasma nadolol bioavailability in normotensive models. Nevertheless, evidence on the effects of EGCG on hypertensive model, and the possible underlying mechanism have not been elucidated. OBJECTIVES This study aims (i) to investigate the effects of EGCG on nadolol pharmacokinetics (maximum plasma concentration, time to achieve maximum concentration, area under the time-plasma concentration curve, plasma half-life and total clearance) and subsequently its impact on blood pressure control; and (ii) to identify transcriptional regulatory roles of EGCG on the nadolol intestinal and hepatic drug-transporters in SHR. METHODS Male SHR were pre-treated with a daily dose of EGCG (10 mg/kg body weight, i.g.) for 13 days. On day-14, a single dose of nadolol (10 mg/kg body weight) was given to the rats 30 min after the last dose of EGCG administration. Systolic blood pressure (SBP) was measured at 6-h and 22-h post-nadolol administration. Plasma and urinary nadolol concentrations were quantified using high-performance liquid chromatography, and pharmacokinetic parameters were analyzed by using non-compartmental analysis. Hepatic and ileal Oatp1a5, P-gp, and Oct1 mRNA expressions were determined by real-time PCR. RESULTS SBP of SHR pre-treated with EGCG and received nadolol was significantly higher than those which were not pre-treated with EGCG but received nadolol. Pre-treatment of EGCG resulted in a marked reduction of plasma nadolol maximum concentration (Cmax) and area under the time-plasma concentration curve (AUC) by 53% and 51% compared to its control. The 14-day treatment with oral EGCG led to a significant downregulation of mRNA levels of ileal Oatp1a5, P-gp, and Oct1 genes by 4.03-, 8.01- and 4.03-fold; and hepatic P-gp, and Oct1 genes by 2.61- and 2.66-fold. CONCLUSION These data concluded that exposure to EGCG could lead to reduced nadolol bioavailability and therefore, uncontrolled raised blood pressure and higher risks of cardiovascular events. Our data suggest that the reduced nadolol bioavailability is associated with the downregulation of ileal Oatp1a5 and Oct1 mRNA levels that subsequently lead to poor absorption of nadolol to the systemic circulation.
Collapse
Affiliation(s)
- Hong-Jie Tan
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Kajang, Bandar Sungai Long, Selangor, Malaysia
| | - Wei-Chih Ling
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Kajang, Bandar Sungai Long, Selangor, Malaysia
| | - Ang-Lim Chua
- Faculty of Medicine, Universiti Teknologi Malaysia, Sungai Buloh, Selangor, Malaysia
| | - Siew-Keah Lee
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Kajang, Bandar Sungai Long, Selangor, Malaysia.
| |
Collapse
|
36
|
Biguanides drugs: Past success stories and promising future for drug discovery. Eur J Med Chem 2021; 224:113726. [PMID: 34364161 DOI: 10.1016/j.ejmech.2021.113726] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Biguanides have attracted much attention a century ago and showed resurgent interest in recent years after a long period of dormancy. They constitute an important class of therapeutic agents suitable for the treatment of a wide spectrum of diseases. Therapeutic indications of biguanides include antidiabetic, antimalarial, antiviral, antiplaque, and bactericidal applications. This review presents an extensive overview of the biological activity of biguanides and different mechanisms of action of currently marketed biguanide-containing drugs, as well as their pharmacological properties when applicable. We highlight the recent developments in research on biguanide compounds, with a primary focus on studies on metformin in the field of oncology. We aim to provide a critical overview of all main bioactive biguanide compounds and discuss future perspectives for the design of new drugs based on the biguanide fragment.
Collapse
|
37
|
Kuhlmann I, Nøddebo Nyrup A, Bjerregaard Stage T, Hougaard Christensen MM, Korshøj Bergmann T, Damkier P, Nielsen F, Højlund K, Brøsen K. Oral and intravenous pharmacokinetics of metformin with and without oral codeine intake in healthy subjects: A cross-over study. Clin Transl Sci 2021; 14:2408-2419. [PMID: 34268884 PMCID: PMC8604249 DOI: 10.1111/cts.13107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 11/29/2022] Open
Abstract
The aim of the study was to investigate if there is a clinically relevant drug interaction between metformin and codeine. Volunteers were randomized to receive on four separate occasions: (A) orally administered metformin (1 g), (B) intravenously administered metformin (0.5 g), (C) five doses of tablet codeine 25 mg; the last dose was administered together with oral metformin (1 g), and (D) five doses of tablet codeine 25 mg; the last dose was administered together with metformin (0.5 g) intravenously. Blood samples were drawn for 24 h after administration of metformin, and for 6 h after administration of codeine and analyzed using liquid chromatography and tandem mass spectrometry. Healthy volunteers genotyped as CYP2D6 normal metabolizers (*1/*1) without known reduced function variants in the OCT1 gene (rs12208357, rs34130495, rs34059508, and rs72552763) were invited. The median absorption fraction of metformin was 0.31 and was not influenced by codeine intake. The median time to maximum concentration (Tmax) after oral intake of metformin was 2 h without, and 3 h with codeine (p = 0.06). The geometric mean ratios of the areas under the plasma concentration time‐curve (AUCs) for morphine and its metabolites M3G and M6G for oral intake of metformin‐to‐no metformin were 1.21, 1.31, and 1.27, respectively, and for i.v. metformin‐to‐no metformin 1.28, 1.34, and 1.30, respectively. Concomitant oral and i.v. metformin increased the plasma levels of morphine, M3G and M6G. These small pharmacokinetic changes may well contribute to an increased risk of early discontinuation of metformin. Hence, a clinically relevant drug‐drug interaction between metformin and codeine seems plausible.
Collapse
Affiliation(s)
- Ida Kuhlmann
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | - Amanda Nøddebo Nyrup
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | - Tore Bjerregaard Stage
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | - Mette Marie Hougaard Christensen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Troels Korshøj Bergmann
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark.,Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark
| | - Per Damkier
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Flemming Nielsen
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Kim Brøsen
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Odense, Denmark.,OPEN, Odense Patient data Explorative Network, Odense University Hospital, Odense, Denmark
| |
Collapse
|
38
|
Schilf P, Schmitz M, Derenda-Hell A, Thieme M, Bremer T, Vaeth M, Zillikens D, Sadik CD. Inhibition of Glucose Metabolism Abrogates the Effector Phase of Bullous Pemphigoid-Like Epidermolysis Bullosa Acquisita. J Invest Dermatol 2021; 141:1646-1655.e3. [DOI: 10.1016/j.jid.2021.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/09/2020] [Accepted: 01/15/2021] [Indexed: 12/26/2022]
|
39
|
Jeong YS, Jusko WJ. Meta-Assessment of Metformin Absorption and Disposition Pharmacokinetics in Nine Species. Pharmaceuticals (Basel) 2021; 14:545. [PMID: 34200427 PMCID: PMC8226464 DOI: 10.3390/ph14060545] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
The objective of this study was to systematically assess literature datasets and quantitatively analyze metformin PK in plasma and some tissues of nine species. The pharmacokinetic (PK) parameters and profiles of metformin in nine species were collected from the literature. Based on a simple allometric scaling, the systemic clearances (CL) of metformin in these species highly correlate with body weight (BW) (R2 = 0.85) and are comparable to renal plasma flow in most species except for rabbit and cat. Reported volumes of distribution (VSS) varied appreciably (0.32 to 10.1 L/kg) among species. Using the physiological and anatomical variables for each species, a minimal physiologically based pharmacokinetic (mPBPK) model consisting of blood and two tissue compartments (Tissues 1 and 2) was used for modeling metformin PK in the nine species. Permeability-limited distribution (low fd1 and fd2) and a single tissue-to-plasma partition coefficient (Kp) value for Tissues 1 and 2 were applied in the joint mPBPK fitting. Nonlinear regression analysis for common tissue distribution parameters along with species-specific CL values reasonably captured the plasma PK profiles of metformin across most species, except for rat and horse with later time deviations. In separate fittings of the mPBPK model to each species, Tissue 2 was considered as slowly-equilibrating compartment consisting of muscle and skin based on in silico calculations of the mean transit times through tissues. The well-fitted mPBPK model parameters for absorption and disposition PK of metformin for each species were compared with in vitro/in vivo results found in the literature with regard to the physiological details and physicochemical properties of metformin. Bioavailability and absorption rates decreased with the increased BW among the species. Tissues such as muscle dominate metformin distribution with low permeability and partitioning while actual tissue concentrations found in rats and mice show likely transporter-mediated uptake in liver, kidney, and gastrointestinal tissues. Metformin has diverse pharmacologic actions, and this assessment revealed allometric relationships in its absorption and renal clearance but considerable variability in actual and modeled tissue distribution probably caused by transporter differences.
Collapse
Affiliation(s)
| | - William J. Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA;
| |
Collapse
|
40
|
Meyer MJ, Tzvetkov MV. OCT1 Polyspecificity-Friend or Foe? Front Pharmacol 2021; 12:698153. [PMID: 34149437 PMCID: PMC8206551 DOI: 10.3389/fphar.2021.698153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marleen J Meyer
- Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| | - Mladen V Tzvetkov
- Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
41
|
Synchronous effects of targeted mitochondrial complex I inhibitors on tumor and immune cells abrogate melanoma progression. iScience 2021; 24:102653. [PMID: 34189432 PMCID: PMC8220235 DOI: 10.1016/j.isci.2021.102653] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/30/2021] [Accepted: 05/23/2021] [Indexed: 10/26/2022] Open
Abstract
Metabolic heterogeneity within the tumor microenvironment promotes cancer cell growth and immune suppression. We determined the impact of mitochondria-targeted complex I inhibitors (Mito-CI) in melanoma. Mito-CI decreased mitochondria complex I oxygen consumption, Akt-FOXO signaling, blocked cell cycle progression, melanoma cell proliferation and tumor progression in an immune competent model system. Immune depletion revealed roles for T cells in the antitumor effects of Mito-CI. While Mito-CI preferentially accumulated within and halted tumor cell proliferation, it also elevated infiltration of activated effector T cells and decreased myeloid-derived suppressor cells (MDSC) as well as tumor-associated macrophages (TAM) in melanoma tumors in vivo. Anti-proliferative doses of Mito-CI inhibited differentiation, viability, and the suppressive function of bone marrow-derived MDSC and increased proliferation-independent activation of T cells. These data indicate that targeted inhibition of complex I has synchronous effects that cumulatively inhibits melanoma growth and promotes immune remodeling.
Collapse
|
42
|
Beneficial Effects of Metformin on the Central Nervous System, with a Focus on Epilepsy and Lafora Disease. Int J Mol Sci 2021; 22:ijms22105351. [PMID: 34069559 PMCID: PMC8160983 DOI: 10.3390/ijms22105351] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
Metformin is a drug in the family of biguanide compounds that is widely used in the treatment of type 2 diabetes (T2D). Interestingly, the therapeutic potential of metformin expands its prescribed use as an anti-diabetic drug. In this sense, it has been described that metformin administration has beneficial effects on different neurological conditions. In this work, we review the beneficial effects of this drug as a neuroprotective agent in different neurological diseases, with a special focus on epileptic disorders and Lafora disease, a particular type of progressive myoclonus epilepsy. In addition, we review the different proposed mechanisms of action of metformin to understand its function at the neurological level.
Collapse
|
43
|
Marta M, Sánchez-Pozos K, Jaimes-Santoyo J, Monroy-Escutia J, Rivera-Santiago C, de Los Ángeles Granados-Silvestre M, Ortiz-López MG. Pharmacogenetic Evaluation of Metformin and Sulphonylurea Response in Mexican Mestizos with Type 2 Diabetes. Curr Drug Metab 2021; 21:291-300. [PMID: 32407269 DOI: 10.2174/1389200221666200514125443] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/19/2020] [Accepted: 04/08/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND In Mexico, approximately 25% of patients with type 2 diabetes (T2D) have adequate glycemic control. Polymorphisms in pharmacogenetic genes have been shown to have clinical consequences resulting in drug toxicity or therapeutic inefficacy. OBJECTIVE The study aimed to evaluate the impact of variants in genes known to be involved in response to oral hypoglycemic drugs, such as CYP2C9, OCT, MATE, ABCA1 and C11orf65, in the Mexican Mestizo population of T2D patients. METHODS In this study, 265 patients with T2D were enrolled from the Hospital Juárez de México, Mexico City. Genotyping was performed by TaqMan® assays. SNP-SNP interactions were analyzed using the multifactor dimensionality reduction (MDR) method. RESULTS Carriers of the del allele of rs72552763 could achieve better glycemic control than noncarriers. There was a significant difference in plasma glucose and HbA1c levels among rs622342 genotypes. The results suggested an SNP-SNP interaction between rs72552763 and rs622342 OCT1 and rs12943590 MATE2. CONCLUSION The interaction between rs72552763 and rs622342 in OCT1, and rs12943590 in MATE2 suggested an important role of these polymorphisms in metformin response in T2D Mexican Mestizo population.
Collapse
Affiliation(s)
- Menjivar Marta
- Laboratorio de Diabetes, Facultad de Quimica de la Universidad Nacional Autonoma de México, CDMX, Mexico
| | - Katy Sánchez-Pozos
- Laboratorio de Endocrinologia Molecular, Research Division, Hospital Juarez de Mexico, CDMX, Mexico
| | - Joel Jaimes-Santoyo
- Laboratorio de Endocrinologia Molecular, Research Division, Hospital Juarez de Mexico, CDMX, Mexico
| | - Jazmin Monroy-Escutia
- Laboratorio de Endocrinologia Molecular, Research Division, Hospital Juarez de Mexico, CDMX, Mexico
| | - Carolina Rivera-Santiago
- Laboratorio de Endocrinologia Molecular, Research Division, Hospital Juarez de Mexico, CDMX, Mexico
| | | | | |
Collapse
|
44
|
Römer S, Meyer MJ, Klein K, Schneider LV, Matthaei J, Tzvetkova A, Łapczuk-Romańska J, Gaedcke J, Droździk M, Brockmöller J, Nies AT, Tzvetkov MV. Effects of a Common Eight Base Pairs Duplication at the Exon 7-Intron 7 Junction on Splicing, Expression, and Function of OCT1. Front Pharmacol 2021; 12:661480. [PMID: 34025422 PMCID: PMC8137991 DOI: 10.3389/fphar.2021.661480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Organic cation transporter 1 (OCT1, SLC22A1) is localized in the sinusoidal membrane of human hepatocytes and mediates hepatic uptake of weakly basic or cationic drugs and endogenous compounds. Common amino acid substitutions in OCT1 were associated with altered pharmacokinetics and efficacy of drugs like sumatriptan and fenoterol. Recently, the common splice variant rs35854239 has also been suggested to affect OCT1 function. rs35854239 represents an 8 bp duplication of the donor splice site at the exon 7-intron 7 junction. Here we quantified the extent to which this duplication affects OCT1 splicing and, as a consequence, the expression and the function of OCT1. We used pyrosequencing and deep RNA-sequencing to quantify the effect of rs35854239 on splicing after minigene expression of this variant in HepG2 and Huh7 cells and directly in human liver samples. Further, we analyzed the effects of rs35854239 on OCT1 mRNA expression in total, localization and activity of the resulting OCT1 protein, and on the pharmacokinetics of sumatriptan and fenoterol. The 8 bp duplication caused alternative splicing in 38% (deep RNA-sequencing) to 52% (pyrosequencing) of the minigene transcripts when analyzed in HepG2 and Huh7 cells. The alternatively spliced transcript encodes for a truncated protein that after transient transfection in HEK293 cells was not localized in the plasma membrane and was not able to transport the OCT1 model substrate ASP+. In human liver, however, the alternatively spliced OCT1 transcript was detectable only at very low levels (0.3% in heterozygous and 0.6% in homozygous carriers of the 8 bp duplication, deep RNA-sequencing). The 8 bp duplication was associated with a significant reduction of OCT1 expression in the human liver, but explained only 9% of the general variability in OCT1 expression and was not associated with significant changes in the pharmacokinetics of sumatriptan and fenoterol. Therefore, the rs35854239 variant only partially changes splicing, causing moderate changes in OCT1 expression and may be of only limited therapeutic relevance.
Collapse
Affiliation(s)
- Sarah Römer
- Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| | - Marleen J Meyer
- Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| | - Kathrin Klein
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | - Lennart V Schneider
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Johannes Matthaei
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Ana Tzvetkova
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany.,Human Molecular Genetics Group, Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Joanna Łapczuk-Romańska
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Jochen Gaedcke
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Marek Droździk
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Jürgen Brockmöller
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Anne T Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - Mladen V Tzvetkov
- Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
45
|
Temur M, Taşgöz FN, Kender Ertürk N. Elevated circulating Selenoprotein P levels in patients with polycystic ovary syndrome. J OBSTET GYNAECOL 2021; 42:289-293. [PMID: 33938349 DOI: 10.1080/01443615.2021.1887112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Selenoprotein P (SeP), an hepatokine that is primarily produced by liver, has been reported to affect glucose metabolism. In this study, we aimed to measure and compare serum SeP values in patients with polycystic ovary syndrome (PCOS) and a healthy control group, and to investigate whether there was a relationship between SeP values and insulin resistance in patients with PCOS. This prospective case-control study included 40 patients with PCOS and 39 healthy women (non-PCOS) matched for age and body mass index. SeP levels were significantly higher in the PCOS group compared with the healthy controls (7.48 ± 3.80 vs. 5.17 ± 3.20 mg/ml, p = .005). Serum insulin, hs-CRP, HOMA-IR, FBG, total-testosterone, and free-testosterone levels were higher in women with PCOS than in controls. In an unadjusted model and after adjusting for potential confounders, SeP had increased odds for PCOS (p = .007). ROC curve analysis showed that the area under the ROC curves were 0.691 (95% CI: 0.576-0.806, p < .003) for SeP levels. The optimal cut-off value of SeP for detecting PCOS was ≥5.87 mgl/ml. We showed, for the first time, that serum SeP levels were increased significantly in PCOS, Our results suggest that there is a potential link between PCOS and SeP levelsIMPACT STATEMENTWhat is already known on this subject? Selenoprotein deficiency causes various dysfunctions associated with oxidative stress, but recent studies found that increased SeP levels were associated with insulin resistance. Circulating SeP levels have been found to be increased in patients with type 2 diabetes mellitus (T2DM).What the results of this study add? Our study is the first in the literature to examine the relationship between SeP levels and the presence of PCOS. Serum SeP levels were increased significantly in PCOS.What the implications are of these findings for clinical practice and/or further research? SeP seemed to have a role in PCOS. SeP can be used to predict metabolic disorders associated with PCOS and to determine treatment methods.
Collapse
Affiliation(s)
- Muzaffer Temur
- Department of Obstetrics and Gynecology, Bursa Private Doruk Hospital, Bursa, Turkey
| | - Fatma Nurgül Taşgöz
- Department of Obstetrics and Gynecology, Bursa Yüksek İhtisas Education and Research Hospital, Bursa, Turkey
| | - Nergis Kender Ertürk
- Department of Obstetrics and Gynecology, Bursa Yüksek İhtisas Education and Research Hospital, Bursa, Turkey
| |
Collapse
|
46
|
Morse BL, Fallon JK, Kolur A, Hogan AT, Smith PC, Hillgren KM. Comparison of Hepatic Transporter Tissue Expression in Rodents and Interspecies Hepatic OCT1 Activity. AAPS J 2021; 23:58. [PMID: 33903987 DOI: 10.1208/s12248-021-00583-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/16/2021] [Indexed: 11/30/2022] Open
Abstract
Hepatic clearance may be uptake rate limited by organic anion transporting polypeptides (OATPs) and organic cation transporter 1 (OCT1). While comparison of OATP activity has been investigated across species, little has been reported for OCT1. Additionally, while data on interspecies transporter expression in the liver exist, quantitative comparison of these transporters in multiple tissues is lacking. In the current research, the pharmacokinetics of OCT1 substrates (sumatriptan and metformin) were assessed in Oct knockout rats for comparison with previous Oct1/2-/- mice data and OCT1 pharmacogenetics in humans. Effect of OCT1 inhibitors verapamil and erlotinib on OCT1 substrate liver partitioning was also evaluated in rats. Expression of 18 transporters, including Oatps and Octs, in 9 tissues from mice and rats was quantitated using nanoLC/MS-MS, along with uptake transporters in hepatocytes from 5 species. Interspecies differences in OCT1 activity were further evaluated via uptake of OCT1 substrates in hepatocytes with corresponding in vivo liver partitioning in rodents and monkey. In Oct1-/- rats, sumatriptan hepatic clearance and liver partitioning decreased; however, metformin pharmacokinetics were unaffected. OCT1 inhibitor coadministration decreased sumatriptan liver partitioning. In rodents, Oatp expression was highest in the liver, although comparable expression of Oatps in other tissues was determined. Expression of Octs was highest in the kidney, with liver Oct1 expression comparably lower than Oatps. Liver partitioning of OCT1 substrates was lower in rodents than in monkey, in agreement with the highest OCT1 expression and uptake of OCT1 substrates in monkey hepatocytes. Species-dependent OCT1 activity requires consideration when translating preclinical data to the clinic.
Collapse
Affiliation(s)
- Bridget L Morse
- Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA.
| | - John K Fallon
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anil Kolur
- Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Andrew T Hogan
- Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Philip C Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kathleen M Hillgren
- Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| |
Collapse
|
47
|
Wenzel C, Drozdzik M, Oswald S. Organic Cation Transporter 1 an Intestinal Uptake Transporter: Fact or Fiction? Front Pharmacol 2021; 12:648388. [PMID: 33935750 PMCID: PMC8080103 DOI: 10.3389/fphar.2021.648388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/01/2021] [Indexed: 01/11/2023] Open
Abstract
Intestinal transporter proteins are known to affect the pharmacokinetics and in turn the efficacy and safety of many orally administered drugs in a clinically relevant manner. This knowledge is especially well-established for intestinal ATP-binding cassette transporters such as P-gp and BCRP. In contrast to this, information about intestinal uptake carriers is much more limited although many hydrophilic or ionic drugs are not expected to undergo passive diffusion but probably require specific uptake transporters. A transporter which is controversially discussed with respect to its expression, localization and function in the human intestine is the organic cation transporter 1 (OCT1). This review article provides an up-to-date summary on the available data from expression analysis as well as functional studies in vitro, animal findings and clinical observations. The current evidence suggests that OCT1 is expressed in the human intestine in small amounts (on gene and protein levels), while its cellular localization in the apical or basolateral membrane of the enterocytes remains to be finally defined, but functional data point to a secretory function of the transporter at the basolateral membrane. Thus, OCT1 should not be considered as a classical uptake transporter in the intestine but rather as an intestinal elimination pathway for cationic compounds from the systemic circulation.
Collapse
Affiliation(s)
- Christoph Wenzel
- Department of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany
| | - Marek Drozdzik
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Stefan Oswald
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
48
|
Pinyopornpanish K, Leerapun A, Pinyopornpanish K, Chattipakorn N. Effects of Metformin on Hepatic Steatosis in Adults with Nonalcoholic Fatty Liver Disease and Diabetes: Insights from the Cellular to Patient Levels. Gut Liver 2021; 15:827-840. [PMID: 33820884 PMCID: PMC8593497 DOI: 10.5009/gnl20367] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/05/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) patients with diabetes constitute a subgroup of patients with a high rate of liver-related complications. Currently, there are no specific drug recommendations for these patients. Metformin, a conventional insulin sensitizer agent, has been widely prescribed in patients with diabetes. Metformin treatment has been shown to be effective at alleviating hepatic lipogenesis in animal models of NAFLD, with a variety of mechanisms being deemed responsible. To date, most studies have enrolled diabetic patients who are treated with metformin, with the drug being taken continuously throughout the study. Although evidence exists regarding the benefits of metformin for NAFLD in preclinical studies, reports on the efficacy of metformin in adult NAFLD patients have had some discrepancies regarding changes in liver biochemistry and hepatic fat content. Evidence has also suggested possible effects of metformin as regards the prevention of hepatocellular carcinoma tumorigenesis. This review was performed to comprehensively summarize the available in vitro, in vivo and clinical studies regarding the effects of metformin on liver steatosis for the treatment of adult NAFLD patients with diabetes. Consistent reports as well as controversial findings are included in this review, and the mechanistic insights are also provided. In addition, this review focuses on the efficacy of metformin as a monotherapy and as a combined therapy with other antidiabetic medications.
Collapse
Affiliation(s)
| | - Apinya Leerapun
- Division of Gastroenterology, Department of Internal Medicine, Chiang Mai, Thailand
| | | | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
49
|
The Influence of Diet Change and Oral Metformin on Blood Glucose Regulation and the Fecal Microbiota of Healthy Horses. Animals (Basel) 2021; 11:ani11040976. [PMID: 33915682 PMCID: PMC8065426 DOI: 10.3390/ani11040976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/04/2021] [Accepted: 03/29/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Horses are susceptible to a condition known as Equine Metabolic Syndrome (EMS), which is somewhat similar to metabolic syndrome and type II diabetes in people, and is characterized by elevated insulin levels and increased susceptibility to other adverse health outcomes. Common treatments, including change to an all-hay diet and a drug called metformin, may provide benefits through modulation of intestinal bacteria, collectively known as the gut microbiota. In the studies reported here, horses undergoing such a diet change, regardless of the presence of metformin, showed a significant expansion in their fecal microbiota of a specific, poorly characterized group of bacteria. Notably, this phylum is distantly related to the bacteria found to expand in the fecal microbiota of mice and humans following metformin administration, suggesting removal from pasture to reduce the caloric intake may exert effects on the equine microbiota similar to those seen in other host species treated with metformin. Abstract Common treatments for Equine Metabolic Syndrome (EMS) and associated conditions include removal from pasture and adoption of an all-hay diet. Pharmacological treatments for EMS include metformin, a biguanide antihyperglycemic agent also administered to people to help improve glucose tolerance and insulin sensitivity. Both treatments may work, at least partially, through the gut microbiota, yet little is known regarding these effects in the equine host. To determine the influence on the fecal microbiota of this diet change and administration of metformin, six healthy horses were removed from pasture and switched to an all-hay diet, with four of those horses also receiving oral metformin for seven days. Control horses (n = 24) remaining on pasture and receiving no metformin were sampled at the beginning and end of one week. All samples were subjected to 16S rRNA sequencing, and horses undergoing the diet change were subjected to an oral sugar test twice, one week apart. Characteristic changes in the microbiota following diet change included the significant expansion of the phylum Kiritimatiellaeota. As Kiritimatiellaeota are related to Verrucomicrobia, found to expand in the microbiota of mice and humans in response to metformin, this taxon may represent the cognate microbes in equine hosts.
Collapse
|
50
|
Lee CB, Chae SU, Jo SJ, Jerng UM, Bae SK. The Relationship between the Gut Microbiome and Metformin as a Key for Treating Type 2 Diabetes Mellitus. Int J Mol Sci 2021; 22:ijms22073566. [PMID: 33808194 PMCID: PMC8037857 DOI: 10.3390/ijms22073566] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 02/08/2023] Open
Abstract
Metformin is the first-line pharmacotherapy for treating type 2 diabetes mellitus (T2DM); however, its mechanism of modulating glucose metabolism is elusive. Recent advances have identified the gut as a potential target of metformin. As patients with metabolic disorders exhibit dysbiosis, the gut microbiome has garnered interest as a potential target for metabolic disease. Henceforth, studies have focused on unraveling the relationship of metabolic disorders with the human gut microbiome. According to various metagenome studies, gut dysbiosis is evident in T2DM patients. Besides this, alterations in the gut microbiome were also observed in the metformin-treated T2DM patients compared to the non-treated T2DM patients. Thus, several studies on rodents have suggested potential mechanisms interacting with the gut microbiome, including regulation of glucose metabolism, an increase in short-chain fatty acids, strengthening intestinal permeability against lipopolysaccharides, modulating the immune response, and interaction with bile acids. Furthermore, human studies have demonstrated evidence substantiating the hypotheses based on rodent studies. This review discusses the current knowledge of how metformin modulates T2DM with respect to the gut microbiome and discusses the prospect of harnessing this mechanism in treating T2DM.
Collapse
Affiliation(s)
- Chae Bin Lee
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon 14662, Korea; (C.B.L.); (S.U.C.); (S.J.J.)
| | - Soon Uk Chae
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon 14662, Korea; (C.B.L.); (S.U.C.); (S.J.J.)
| | - Seong Jun Jo
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon 14662, Korea; (C.B.L.); (S.U.C.); (S.J.J.)
| | - Ui Min Jerng
- Department of Internal Medicine, College of Korean Medicine, Sangji University, Wonju 26339, Korea;
| | - Soo Kyung Bae
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon 14662, Korea; (C.B.L.); (S.U.C.); (S.J.J.)
- Correspondence: ; Tel.: +82-2-2164-4054
| |
Collapse
|